WorldWideScience

Sample records for fatigue curve approximation

  1. Design fatigue curve for Hastelloy-X

    International Nuclear Information System (INIS)

    Nishiguchi, Isoharu; Muto, Yasushi; Tsuji, Hirokazu

    1983-12-01

    In the design of components intended for elevated temperature service as the experimental Very High-Temperature gas-cooled Reactor (VHTR), it is essential to prevent fatigue failure and creep-fatigue failure. The evaluation method which uses design fatigue curves is adopted in the design rules. This report discussed several aspects of these design fatigue curves for Hastelloy-X (-XR) which is considered for use as a heat-resistant alloy in the VHTR. Examination of fatigue data gathered by a literature search including unpublished data showed that Brinkman's equation is suitable for the design curve of Hastelloy-X (-XR), where total strain range Δ epsilon sub(t) is used as independent variable and fatigue life Nsub(f) is transformed into log(log Nsub(f)). (author)

  2. RMS fatigue curves for random vibrations

    International Nuclear Information System (INIS)

    Brenneman, B.; Talley, J.G.

    1984-01-01

    Fatigue usage factors for deterministic or constant amplitude vibration stresses may be calculated with well known procedures and fatigue curves given in the ASME Boiler and Pressure Vessel Code. However, some phenomena produce nondeterministic cyclic stresses which can only be described and analyzed with statistical concepts and methods. Such stresses may be caused by turbulent fluid flow over a structure. Previous methods for solving this statistical fatigue problem are often difficult to use and may yield inaccurate results. Two such methods examined herein are Crandall's method and the ''3sigma'' method. The objective of this paper is to provide a method for creating ''RMS fatigue curves'' which accurately incorporate the requisite statistical information. These curves are given and may be used by analysts with the same ease and in the same manner as the ASME fatigue curves

  3. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  4. MODELS OF FATIGUE LIFE CURVES IN FATIGUE LIFE CALCULATIONS OF MACHINE ELEMENTS – EXAMPLES OF RESEARCH

    Directory of Open Access Journals (Sweden)

    Grzegorz SZALA

    2014-03-01

    Full Text Available In the paper there was attempted to analyse models of fatigue life curves possible to apply in calculations of fatigue life of machine elements. The analysis was limited to fatigue life curves in stress approach enabling cyclic stresses from the range of low cycle fatigue (LCF, high cycle fatigue (HCF, fatigue limit (FL and giga cycle fatigue (GCF appearing in the loading spectrum at the same time. Chosen models of the analysed fatigue live curves will be illustrated with test results of steel and aluminium alloys.

  5. Evaluation of Strain-Life Fatigue Curve Estimation Methods and Their Application to a Direct-Quenched High-Strength Steel

    Science.gov (United States)

    Dabiri, M.; Ghafouri, M.; Rohani Raftar, H. R.; Björk, T.

    2018-03-01

    Methods to estimate the strain-life curve, which were divided into three categories: simple approximations, artificial neural network-based approaches and continuum damage mechanics models, were examined, and their accuracy was assessed in strain-life evaluation of a direct-quenched high-strength steel. All the prediction methods claim to be able to perform low-cycle fatigue analysis using available or easily obtainable material properties, thus eliminating the need for costly and time-consuming fatigue tests. Simple approximations were able to estimate the strain-life curve with satisfactory accuracy using only monotonic properties. The tested neural network-based model, although yielding acceptable results for the material in question, was found to be overly sensitive to the data sets used for training and showed an inconsistency in estimation of the fatigue life and fatigue properties. The studied continuum damage-based model was able to produce a curve detecting early stages of crack initiation. This model requires more experimental data for calibration than approaches using simple approximations. As a result of the different theories underlying the analyzed methods, the different approaches have different strengths and weaknesses. However, it was found that the group of parametric equations categorized as simple approximations are the easiest for practical use, with their applicability having already been verified for a broad range of materials.

  6. Application of environmentally-corrected fatigue curves to nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E.

    1996-01-01

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four US nuclear steam supply system vendors. For each facility, six locations were studied including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This paper discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants

  7. Experimental verification of different parameters influencing the fatigue S/N-curve

    International Nuclear Information System (INIS)

    Roos, E.; Maile, K.; Herter, K.-H.; Schuler, X.

    2005-01-01

    For the construction, design and operation of nuclear components the appropriate technical codes and standards provide detailed stress analysis procedures, material data and a design philosophy which guarantees a reliable behavior throughout the specified lifetime. Especially for cyclic stress evaluation the different codes and standards provide different fatigue analyses procedures to be performed considering the various (specified or measured) loading histories which are of mechanical and/or thermal origin and the geometric complexities of the components. In order to fully understand the background of the fatigue analysis included in the codes and standards as well as of the fatigue design curves used as a limiting criteria (to determine the fatigue life usage factor), it is important to understand the history, background as well as the methodologies which are important for the design engineers to get reliable results. The design rules according to the technical codes and standards provide for explicit consideration of cyclic operation, using design fatigue curves of allowable alternating loads (allowable stress or strain amplitudes) vs. number of loading cycles (S/N-curves), specific rules for assessing the cumulative fatigue damage (cumulative fatigue life usage factor) caused by different specified or monitored load cycles. The influence of different factors like welds, environment, surface finish, temperature, mean stress and size must be taken into consideration. In the paper parameters influencing the S/N-curves used within a fatigue analysis, like different type of material, the surface finish, the temperature, the difference between unwelded and welded areas, the strain rate as well as the influences of notches are verified on the basis of experimental results obtained by specimens testing in the LCF regime for high strain amplitudes. Thus safety margins relevant for the assessment of fatigue life depending on the different influencing parameters are

  8. Fitting fatigue test data with a novel S-N curve using frequentist and Bayesian inference

    NARCIS (Netherlands)

    Leonetti, D.; Maljaars, J.; Snijder, H.H.B.

    2017-01-01

    In design against fatigue, a lower bound stress range vs. endurance curve (S-N curve) is employed to characterize fatigue resistance of plain material and structural details. With respect to the inherent variability of the fatigue life, the S-N curve is related to a certain probability of

  9. Fatigue crack extension in nozzle junctions; comparison of analytical approximations with experimental data

    International Nuclear Information System (INIS)

    Broekhoven, M.J.G.; Ruijtenbeek, M.G. van de

    1975-01-01

    The fracture mechanics based stress intensity factor (K-factor) concept has obtained wide-spread acceptance as a tool for quantitative analysis of both fatigue crack growth and instable fracture. The present study discusses the applicability of various simple analytical approximations by comparing results with experimental data. A semi-analytical procedure has been developed whose main characteristics are: the true stress distribution perpendicular to the crack plane for the uncracked structure is used as input data; an extended version of the Shah and Kobayashi solution for elliptical cracks, loaded on their surfaces by tractions described by fourth order double symmetrical polynomials fit through the data of previous step is used to calculate full K-factor variations along the crack fronts; several corrections, a.o. to correct for free surfaces and for a corner radius are incorporated. The experiments concern careful monitoring crack growth rates (da/dN) under uniaxial fatigue loading of precracked nozzle-on-plate models, a.o. using a closed T.V. circuit. Resulting da/dN versus crack length (a) curves are converted into K versus a curves using da/dN versus ΔK curves for the same material (ASTM A 508 C12) obtained by standard procedures. Comparison of theoretical and experimental data yields the conclusion that: simple analytical approximations as sometimes recommended in literature may largely overestimate or underestimate K-factors for nozzle corner cracks; a computer program based on the semi-analytical procedure yields results within seconds of CPU-time once the input data have been generated. These results compare well with experimental and available finite element data for the range of crack depths of practical concern

  10. High cycle fatigue test and regression methods of S-N curve

    International Nuclear Information System (INIS)

    Kim, D. W.; Park, J. Y.; Kim, W. G.; Yoon, J. H.

    2011-11-01

    The fatigue design curve in the ASME Boiler and Pressure Vessel Code Section III are based on the assumption that fatigue life is infinite after 106 cycles. This is because standard fatigue testing equipment prior to the past decades was limited in speed to less than 200 cycles per second. Traditional servo-hydraulic machines work at frequency of 50 Hz. Servo-hydraulic machines working at 1000 Hz have been developed after 1997. This machines allow high frequency and displacement of up to ±0.1 mm and dynamic load of ±20 kN are guaranteed. The frequency of resonant fatigue test machine is 50-250 Hz. Various forced vibration-based system works at 500 Hz or 1.8 kHz. Rotating bending machines allow testing frequency at 0.1-200 Hz. The main advantage of ultrasonic fatigue testing at 20 kHz is performing Although S-N curve is determined by experiment, the fatigue strength corresponding to a given fatigue life should be determined by statistical method considering the scatter of fatigue properties. In this report, the statistical methods for evaluation of fatigue test data is investigated

  11. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented

  12. Development of probabilistic fatigue curve for asphalt concrete based on viscoelastic continuum damage mechanics

    Directory of Open Access Journals (Sweden)

    Himanshu Sharma

    2016-07-01

    Full Text Available Due to its roots in fundamental thermodynamic framework, continuum damage approach is popular for modeling asphalt concrete behavior. Currently used continuum damage models use mixture averaged values for model parameters and assume deterministic damage process. On the other hand, significant scatter is found in fatigue data generated even under extremely controlled laboratory testing conditions. Thus, currently used continuum damage models fail to account the scatter observed in fatigue data. This paper illustrates a novel approach for probabilistic fatigue life prediction based on viscoelastic continuum damage approach. Several specimens were tested for their viscoelastic properties and damage properties under uniaxial mode of loading. The data thus generated were analyzed using viscoelastic continuum damage mechanics principles to predict fatigue life. Weibull (2 parameter, 3 parameter and lognormal distributions were fit to fatigue life predicted using viscoelastic continuum damage approach. It was observed that fatigue damage could be best-described using Weibull distribution when compared to lognormal distribution. Due to its flexibility, 3-parameter Weibull distribution was found to fit better than 2-parameter Weibull distribution. Further, significant differences were found between probabilistic fatigue curves developed in this research and traditional deterministic fatigue curve. The proposed methodology combines advantages of continuum damage mechanics as well as probabilistic approaches. These probabilistic fatigue curves can be conveniently used for reliability based pavement design. Keywords: Probabilistic fatigue curve, Continuum damage mechanics, Weibull distribution, Lognormal distribution

  13. Application of NUREG/CR-5999 interim fatigue curves to selected nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E.

    1995-03-01

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four U.S. nuclear steam supply system vendors. For each facility, six locations were studied, including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This report discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants

  14. Comparison of the ASME Environmental Fatigue Design Curve with the Leax' Low Bound Model

    International Nuclear Information System (INIS)

    Jeong, Ill Seok; Kim, Wan Jae; Jun, Hyun Ik

    2010-01-01

    Environmental fatigue issue long time argued between industry and regulator. The issues of the debates are about environmental fatigue data only from experiment laboratories, no evidences in fields, and over conservatism. However, NRC issued the requirement to implement it to the construction design prior to industry practical design code. American Society of Mechanical Engineers (ASME) determined to issue non-mandatory code cases of environmental fatigue design. This paper evaluated the conservatism of the ASME proposed environmental fatigue design curve in comparison with the Leax' low bound approach model of environmental fatigue curve. A group of CF8M cast austenitic stainless steel (CASS) produced in KEPCO Research Center was introduced in the evaluation

  15. Review of the margins for ASME code fatigue design curve - effects of surface roughness and material variability

    International Nuclear Information System (INIS)

    Chopra, O. K.; Shack, W. J.

    2003-01-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. The Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ((var e psilon)-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of the existing fatigue (var e psilon)-N data for carbon and low-alloy steels and wrought and cast austenitic SSs to define the effects of key material, loading, and environmental parameters on the fatigue lives of the steels. Experimental data are presented on the effects of surface roughness on the fatigue life of these steels in air and LWR environments. Statistical models are presented for estimating the fatigue (var e psilon)-N curves as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are discussed. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue evaluations. A critical review of the margins for ASME Code fatigue design curves is presented

  16. Review of the margins for ASME code fatigue design curve - effects of surface roughness and material variability.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Shack, W. J.; Energy Technology

    2003-10-03

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. The Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of the existing fatigue {var_epsilon}-N data for carbon and low-alloy steels and wrought and cast austenitic SSs to define the effects of key material, loading, and environmental parameters on the fatigue lives of the steels. Experimental data are presented on the effects of surface roughness on the fatigue life of these steels in air and LWR environments. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are discussed. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue evaluations. A critical review of the margins for ASME Code fatigue design curves is presented.

  17. Proposal of fatigue crack growth rate curve in air for nickel-base alloys used in BWR

    International Nuclear Information System (INIS)

    Ogawa, Takuya; Itatani, Masao; Nagase, Hiroshi; Aoike, Satoru; Yoneda, Hideki

    2013-01-01

    When the defects are detected in the nuclear components in Japan, structural integrity assessment should be performed for the technical judgment on continuous service based on the Rules on Fitness-for-Service for Nuclear Power Plants of the Japan Society of Mechanical Engineers Code (JSME FFS Code). Fatigue crack growth analysis is required when the cyclic loading would be applied for the components. Recently, fatigue crack growth rate curve in air environment for Nickel-base alloys weld metal used in BWR was proposed by the authors and it was adopted as a code case of JSME FFS Code to evaluate the embedded flaw. In this study, fatigue crack growth behavior for heat-affected zone (HAZ) of Nickel-base alloys in air was investigated. And a unified fatigue crack growth rate curve in air for HAZ and weld metal of Nickel-base alloys used in BWR was evaluated. As a result, it was found that the curve for weld metal could be applied as a curve for both HAZ and weld metal since moderately conservative assessment of fatigue crack growth rate of HAZ is possible by the curve for weld metal in the Paris region. And the threshold value of stress intensity far range (ΔK th ) is determined to 3.0 MPa√m based on the fatigue crack growth rate of HAZ. (author)

  18. APPROXIMATION OF FREE-FORM CURVE – AIRFOIL SHAPE

    Directory of Open Access Journals (Sweden)

    CHONG PERK LIN

    2013-12-01

    Full Text Available Approximation of free-form shape is essential in numerous engineering applications, particularly in automotive and aircraft industries. Commercial CAD software for the approximation of free-form shape is based almost exclusively on parametric polynomial and rational parametric polynomial. The parametric curve is defined by vector function of one independent variable R(u = (x(u, y(u, z(u, where 0≤u≤1. Bézier representation is one of the parametric functions, which is widely used in the approximating of free-form shape. Given a string of points with the assumption of sufficiently dense to characterise airfoil shape, it is desirable to approximate the shape with Bézier representation. The expectation is that the representation function is close to the shape within an acceptable working tolerance. In this paper, the aim is to explore the use of manual and automated methods for approximating section curve of airfoil with Bézier representation.

  19. A simple approximative procedure for taking into account low cycle fatigue loads

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G; Thomsen, K

    1996-09-01

    In this paper a simple approximative algorithm for taking into account low cycle fatigue loads is presented. Traditionally, the fatigue life consumption of a wind turbine is estimated by considering a number of (independent) load cases and performing a rainflow counting analysis on each of those. These results are then subsequently synthesized into a total load spectrum by performing a weighed sum of the number of individual load case ranges. The fatigue life consumption is thus obtained by applying the Palmgren-Miner rule on the total load spectrum. However, due to the assumption of isolated basic load cases, the above procedure fail to represent the low-frequency contributions related to the transition between those load cases. The procedure to be described in the following aims at taking the fatigue contribution, related to the transitions between the defined load cases, into account in an approximative manner. (au)

  20. Two stage S-N curve in corrosion fatigue of extruded magnesium alloy AZ31

    Directory of Open Access Journals (Sweden)

    Yoshiharu Mutoh

    2009-11-01

    Full Text Available Tension-compression fatigue tests of extruded AZ31 magnesium alloys were carried out under corrosive environments:(a high humidity environment (80 %RH and (b 5 wt. %NaCl environment. It was found that the reduction rate of fatiguestrength due to corrosive environment was 0.12 under a high humidity and 0.53 under a NaCl environment. It was alsoobserved that under corrosive environments, the S-N curve was not a single curve but a two-stage curve. Above the fatiguelimit under low humidity, the crack nucleation mechanism was due to a localized slip band formation mechanism. Below thefatigue limit under low humidity, the reduction in fatigue strength was attributed to the corrosion pit formation and growth to the critical size for fatigue crack nucleation under the combined effect of cyclic load and the corrosive environment. The critical size was attained when the stress intensity factor range reached the threshold value for crack growth.

  1. Interim fatigue design curves for carbon, low-alloy, and austenitic stainless steels in LWR environments

    International Nuclear Information System (INIS)

    Majumdar, S.; Chopra, O.K.; Shack, W.J.

    1993-01-01

    Both temperature and oxygen affect fatigue life; at the very low dissolved-oxygen levels in PWRs and BWRs with hydrogen water chemistry, environmental effects on fatigue life are modest at all temperatures (T) and strain rates. Between 0.1 and 0.2 ppM, the effect of dissolved-oxygen increases rapidly. In oxygenated environments, fatigue life depends strongly on strain rate and T. A fracture mechanics model is developed for predicting fatigue lives, and interim environmentally assisted cracking (EAC)-adjusted fatigue curves are proposed for carbon steels, low-alloy steels, and austenitic stainless steels

  2. A NURBS approximation of experimental stress-strain curves

    International Nuclear Information System (INIS)

    Fedorov, Timofey V.; Morrev, Pavel G.

    2016-01-01

    A compact universal representation of monotonic experimental stress-strain curves of metals and alloys is proposed. It is based on the nonuniform rational Bezier splines (NURBS) of second order and may be used in a computer library of materials. Only six parameters per curve are needed; this is equivalent to a specification of only three points in a stress-strain plane. NURBS-functions of higher order prove to be surplus. Explicit expressions for both yield stress and hardening modulus are given. Two types of curves are considered: at a finite interval of strain and at infinite one. A broad class of metals and alloys of various chemical compositions subjected to various types of preliminary thermo-mechanical working is selected from a comprehensive data base in order to test the methodology proposed. The results demonstrate excellent correspondence to the experimental data. Keywords: work hardening, stress-strain curve, spline approximation, nonuniform rational B-spline, NURBS.

  3. Factors Associated with Visual Fatigue from Curved Monitor Use: A Prospective Study of Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Haeng Jin Lee

    Full Text Available To investigate the factors associated with visual fatigue using monitors with various radii of curvature.Twenty normal healthy adults (8 men, 12 women; mean age, 26.2 ± 2.5 years prospectively watched five types of monitors including flat, 4000R, 3000R, 2000R, and 1000R curved monitors for 30 min. An experienced examiner measured the ophthalmological factors including near point of accommodation (NPA, near point of convergence (NPC, refraction, parameters during pupil response at light and saccadic movement just before and after the visual tasks. The questionnaires about subjective ocular symptoms were also investigated just before and after the visual tasks.The NPA increased after the visual tasks with a flat monitor compared with the curved monitors, with the 1000R curved monitor showing the smallest change (p = 0.020. The NPC increased for every monitor after the visual tasks; the largest increase occurred with the flat monitor (p = 0.001. There was no difference in refractive error, pupil response, or saccadic movement in the comparison of before and after the visual tasks. Among the nine factors in the questionnaire, the score of "eye pain" was significantly higher for the flat monitor versus the 1000R curved monitor after the visual tasks (p = 0.034.We identified NPA, NPC, and eye pain as factors associated with visual fatigue. Also, the curvature of the monitor was related to the visual fatigue.

  4. The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy

    International Nuclear Information System (INIS)

    Di Shusheng; Yang Xinqi; Fang Dapeng; Luan Guohong

    2007-01-01

    The microstructure and fatigue properties of friction stir welded joints of 7075-T6 Al alloy were discussed. It was shown that the zigzag-curve defect at the root of welds is Key factor to reduce the fatigue performance of single-sided friction stir welded joints of 7075-T6 high strength aluminum alloy. On the other hand, the FSW joints of 7075-T6 Al alloy achieved higher fatigue strength compared to the traditional fusion design curves IIW FAT40 and Draft Eurocode 9 design category 55-6 for structural aluminum alloy components

  5. Experimental Method for Plotting S-N Curve with a Small Number of Specimens

    Directory of Open Access Journals (Sweden)

    Strzelecki Przemysław

    2016-12-01

    Full Text Available The study presents two approaches to plotting an S-N curve based on the experimental results. The first approach is commonly used by researchers and presented in detail in many studies and standard documents. The model uses a linear regression whose parameters are estimated by using the least squares method. A staircase method is used for an unlimited fatigue life criterion. The second model combines the S-N curve defined as a straight line and the record of random occurrence of the fatigue limit. A maximum likelihood method is used to estimate the S-N curve parameters. Fatigue data for C45+C steel obtained in the torsional bending test were used to compare the estimated S-N curves. For pseudo-random numbers generated by using the Mersenne Twister algorithm, the estimated S-N curve for 10 experimental results plotted by using the second model, estimates the fatigue life in the scatter band of the factor 3. The result gives good approximation, especially regarding the time required to plot the S-N curve.

  6. Unified approach for estimating the probabilistic design S-N curves of three commonly used fatigue stress-life models

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Wang Jinnuo; Gao Qing

    2001-01-01

    A unified approach, referred to as general maximum likelihood method, is presented for estimating probabilistic design S-N curves and their confidence bounds of the three commonly used fatigue stress-life models, namely three parameter, Langer and Basquin. The curves are described by a general form of mean and standard deviation S-N curves of the logarithm of fatigue life. Different from existent methods, i.e., the conventional method and the classical maximum likelihood method,present approach considers the statistical characteristics of whole test data. The parameters of the mean curve is firstly estimated by least square method and then, the parameters of the standard deviation curve is evaluated by mathematical programming method to be agreement with the maximum likelihood principle. Fit effects of the curves are assessed by fitted relation coefficient, total fitted standard error and the confidence bounds. Application to the virtual stress amplitude-crack initiation life data of a nuclear engineering material, Chinese 1Cr18Ni9Ti stainless steel pipe-weld metal, has indicated the validity of the approach to the S-N data where both S and N show the character of random variable. Practices to the two states of S-N data of Chinese 45 carbon steel notched specimens (k t = 2.0) have indicated the validity of present approach to the test results obtained respectively from group fatigue test and from maximum likelihood fatigue test. At the practices, it was revealed that in general the fit is best for the three-parameter model,slightly inferior for the Langer relation and poor for the Basquin equation. Relative to the existent methods, present approach has better fit. In addition, the possible non-conservative predictions of the existent methods, which are resulted from the influence of local statistical characteristics of the data, are also overcome by present approach

  7. Fatigue Reliability and Calibration of Fatigue Design Factors for Offshore Wind Turbines

    Directory of Open Access Journals (Sweden)

    Sergio Márquez-Domínguez

    2012-06-01

    Full Text Available Consequences of failure of offshore wind turbines (OWTs is in general lower than consequences of failure of, e.g., oil & gas platforms. It is reasonable that lower fatigue design factors can be applied for fatigue design of OWTs when compared to other fixed offshore structures. Calibration of appropriate partial safety factors/Fatigue Design Factors (FDF for steel substructures for OWTs is the scope of this paper. A reliability-based approach is used and a probabilistic model has been developed, where design and limit state equations are established for fatigue failure. The strength and load uncertainties are described by stochastic variables. SN and fracture mechanics approaches are considered for to model the fatigue life. Further, both linear and bi-linear SN-curves are formulated and various approximations are investigated. The acceptable reliability level for fatigue failure of OWTs is discussed and results are presented for calibrated optimal fatigue design factors. Further, the influence of inspections is considered in order to extend and maintain a given target safety level.

  8. Multiaxial fatigue criterion based on parameters from torsion and axial S-N curve

    Directory of Open Access Journals (Sweden)

    M. Margetin

    2016-07-01

    Full Text Available Multiaxial high cycle fatigue is a topic that concerns nearly all industrial domains. In recent years, a great deal of recommendations how to address problems with multiaxial fatigue life time estimation have been made and a huge progress in the field has been achieved. Until now, however, no universal criterion for multiaxial fatigue has been proposed. Addressing this situation, this paper offers a design of a new multiaxial criterion for high cycle fatigue. This criterion is based on critical plane search. Damage parameter consists of a combination of normal and shear stresses on a critical plane (which is a plane with maximal shear stress amplitude. Material parameters used in proposed criterion are obtained from torsion and axial S-N curves. Proposed criterion correctly calculates life time for boundary loading condition (pure torsion and pure axial loading. Application of proposed model is demonstrated on biaxial loading and the results are verified with testing program using specimens made from S355 steel. Fatigue material parameters for proposed criterion and multiple sets of data for different combination of axial and torsional loading have been obtained during the experiment.

  9. Heat rate curve approximation for power plants without data measuring devices

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (CY

    2012-07-01

    In this work, a numerical method, based on the one-dimensional finite difference technique, is proposed for the approximation of the heat rate curve, which can be applied for power plants in which no data acquisition is available. Unlike other methods in which three or more data points are required for the approximation of the heat rate curve, the proposed method can be applied when the heat rate curve data is available only at the maximum and minimum operating capacities of the power plant. The method is applied on a given power system, in which we calculate the electricity cost using the CAPSE (computer aided power economics) algorithm. Comparisons are made when the least squares method is used. The results indicate that the proposed method give accurate results.

  10. METHODS OF THE APPROXIMATE ESTIMATIONS OF FATIGUE DURABILITY OF COMPOSITE AIRFRAME COMPONENT TYPICAL ELEMENTS

    Directory of Open Access Journals (Sweden)

    V. E. Strizhius

    2015-01-01

    Full Text Available Methods of the approximate estimations of fatigue durability of composite airframe component typical elements which can be recommended for application at the stage of outline designing of the airplane are generated and presented.

  11. Polygonal approximation and scale-space analysis of closed digital curves

    CERN Document Server

    Ray, Kumar S

    2013-01-01

    This book covers the most important topics in the area of pattern recognition, object recognition, computer vision, robot vision, medical computing, computational geometry, and bioinformatics systems. Students and researchers will find a comprehensive treatment of polygonal approximation and its real life applications. The book not only explains the theoretical aspects but also presents applications with detailed design parameters. The systematic development of the concept of polygonal approximation of digital curves and its scale-space analysis are useful and attractive to scholars in many fi

  12. On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour

    Science.gov (United States)

    Gorash, Yevgen; MacKenzie, Donald

    2017-06-01

    This study proposes cyclic yield strength as a potential characteristic of safe design for structures operating under fatigue and creep conditions. Cyclic yield strength is defined on a cyclic stress-strain curve, while monotonic yield strength is defined on a monotonic curve. Both values of strengths are identified using a two-step procedure of the experimental stress-strain curves fitting with application of Ramberg-Osgood and Chaboche material models. A typical S-N curve in stress-life approach for fatigue analysis has a distinctive minimum stress lower bound, the fatigue endurance limit. Comparison of cyclic strength and fatigue limit reveals that they are approximately equal. Thus, safe fatigue design is guaranteed in the purely elastic domain defined by the cyclic yielding. A typical long-term strength curve in time-to-failure approach for creep analysis has two inflections corresponding to the cyclic and monotonic strengths. These inflections separate three domains on the long-term strength curve, which are characterised by different creep fracture modes and creep deformation mechanisms. Therefore, safe creep design is guaranteed in the linear creep domain with brittle failure mode defined by the cyclic yielding. These assumptions are confirmed using three structural steels for normal and high-temperature applications. The advantage of using cyclic yield strength for characterisation of fatigue and creep strength is a relatively quick experimental identification. The total duration of cyclic tests for a cyclic stress-strain curve identification is much less than the typical durations of fatigue and creep rupture tests at the stress levels around the cyclic yield strength.

  13. Low cycle fatigue of irradiated LMFBR materials

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1976-01-01

    A review of low cycle fatigue data on irradiated LMFBR materials was conducted and extensive graphical representations of available data are presented. Representative postirradiation tensile properties of annealed 304 and 316 SS are selected and employed in several predictive methods to estimate irradiated material fatigue curves. Experimental fatigue data confirm the use of predictive methods for establishing conservative design curves over the range of service conditions relevant to such CRBRP components as core former, fixed radial shielding, core barrel, lower inlet module and upper internals structures. New experimental data on fatigue curves and creep-fatigue interaction in irradiated 20 percent cold worked (CW) 316 SS and Alloy 718 would support the design of removable radial shielding and upper internals in CRBRP. New experimental information on notched fatigue behavior and cyclic stress-strain curves of all these materials in the irradiated condition could provide significant design data

  14. Sensitivity of the magnetization curves of different austenitic stainless tube and pipe steels to mechanical fatigue

    International Nuclear Information System (INIS)

    Niffenegger, M.; Leber, H.J.

    2008-01-01

    In meta-stable austenitic stainless steels, fatigue is accompanied by a partial strain-induced transformation of paramagnetic austenite to ferromagnetic martensite [G.B. Olsen, M. Cohen, Kinetics of strain induced martensite nucleation, Metall. Trans. 6 (1975) 791-795]. The associated changes of magnetic properties as the eddy current impedance, magnetic permeability or the remanence field may serve as an indication for the degree of fatigue and therefore the remaining lifetime of a component, even though the exact causal relationship between martensite formation and fatigue is not fully understood. However, measuring these properties by magnetic methods may be limited by the low affinity for strain-induced martensite formation. Thus other methods have to be found which are able to detect very small changes of ferromagnetic contents. With this aim the influence of cyclic strain loading on the magnetization curves of the austenitic stainless tube and pipe steels TP 321, 347, 304L and 316L is analysed in the present paper. The measured characteristic magnetic properties, which are the saturation magnetization, residual magnetization, coercive field and the field dependent permeability (AC-magnetization), are sensitive to fatigue and the corresponding material changes (martensitic transformation). In particular, the AC-magnetization was found to be very sensitive to small changes of the amount of strain induced martensite and therefore also to the degree of fatigue. Hence we conclude that applying magnetic minor loops are promising for the non-destructive evaluation of fatigue in austenitic stainless steel, even if a very small amount of strain induced martensite is formed

  15. Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zuo-peng [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Qiao, Gui-ying [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Tang, Lei [Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhu, Hong-wei; Liao, Bo [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Xiao, Fu-ren, E-mail: frxiao@ysu.edu.cn [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-03-07

    Fatigue properties are important parameters for the safety design and security evaluation of gas transmission pipelines. In this work, the fatigue life at different stresses of full-thickness X80 pipeline steel plates with a ferrite/bainite dual-phase microstructure was investigated using a MTS servo-hydraulic universal testing machine; the fatigue crack propagation rate was examined with CT specimens by using an INSTRON 8874 testing machine. Results indicate that fatigue life increases as maximum stress decreases; as the maximum stress decreases to the maximum operating stress (440 MPa), the fatigue life is approximately 4.2×10{sup 5} cycles. The fatigue crack of the full-thickness fatigue life specimens is generated at the surface of rolled steel plates and then the crack propagates and grows inward until a fracture is formed. During fatigue crack growth, a transitional turning point appears in the curve of da/dN with ΔK in the Paris region. The transitional turning point that divides the Paris region to two stages is approximately ΔK≅30 MPa m{sup 1/2}. The change in the growth rate (da/dN) is related to the variation of the crack path and in the fracture mode because of the possible microstructural sensitivity of fatigue crack propagation behavior. This study also discussed the effect of duple phase ferrite/bainite microstructure on fatigue crack initiation and propagation.

  16. Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure

    International Nuclear Information System (INIS)

    Zhao, Zuo-peng; Qiao, Gui-ying; Tang, Lei; Zhu, Hong-wei; Liao, Bo; Xiao, Fu-ren

    2016-01-01

    Fatigue properties are important parameters for the safety design and security evaluation of gas transmission pipelines. In this work, the fatigue life at different stresses of full-thickness X80 pipeline steel plates with a ferrite/bainite dual-phase microstructure was investigated using a MTS servo-hydraulic universal testing machine; the fatigue crack propagation rate was examined with CT specimens by using an INSTRON 8874 testing machine. Results indicate that fatigue life increases as maximum stress decreases; as the maximum stress decreases to the maximum operating stress (440 MPa), the fatigue life is approximately 4.2×10"5 cycles. The fatigue crack of the full-thickness fatigue life specimens is generated at the surface of rolled steel plates and then the crack propagates and grows inward until a fracture is formed. During fatigue crack growth, a transitional turning point appears in the curve of da/dN with ΔK in the Paris region. The transitional turning point that divides the Paris region to two stages is approximately ΔK≅30 MPa m"1"/"2. The change in the growth rate (da/dN) is related to the variation of the crack path and in the fracture mode because of the possible microstructural sensitivity of fatigue crack propagation behavior. This study also discussed the effect of duple phase ferrite/bainite microstructure on fatigue crack initiation and propagation.

  17. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  18. Investigation of LWR environmental effect on fatigue lifetime of austenitic stainless steel component

    International Nuclear Information System (INIS)

    Kim, J. S.; Youm, H. K.; Jin, T. E.

    1999-01-01

    The fatigue lifetime of principal components in nuclear power plant is evaluated by using the design fatigue curves in ASME B and PV code during design process. However, it is inadequate to evaluate fatigue lifetime considering the LWR environmental effect by these design fatigue curves because these are presented only under atmosphere environment. Therefore, many studies are recently performed for the design fatigue curves considering LWR environmental effect and are presented that the design fatigue curves in ASME B and PV code can be non-conservative. In present paper, the limits and differences of the design fatigue curves considering environmental effect are presented. To investigate the change of fatigue lifetime according to each design fatigue curve, the CUFs for the pressurizer spray nozzle partly composed of austenitic stainless steel are calculated according to each one. Finally, if the evaluation result can not be satisfied with fatigue design requirement, the alternatives to reduce design cumulative usage factor are discussed. (author)

  19. Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals.

    Science.gov (United States)

    Xie, Hong-Bo; Guo, Jing-Yi; Zheng, Yong-Ping

    2010-04-01

    In the present contribution, a complexity measure is proposed to assess surface electromyography (EMG) in the study of muscle fatigue during sustained, isometric muscle contractions. Approximate entropy (ApEn) is believed to provide quantitative information about the complexity of experimental data that is often corrupted with noise, short data length, and in many cases, has inherent dynamics that exhibit both deterministic and stochastic behaviors. We developed an improved ApEn measure, i.e., fuzzy approximate entropy (fApEn), which utilizes the fuzzy membership function to define the vectors' similarity. Tests were conducted on independent, identically distributed (i.i.d.) Gaussian and uniform noises, a chirp signal, MIX processes, Rossler equation, and Henon map. Compared with the standard ApEn, the fApEn showed better monotonicity, relative consistency, and more robustness to noise when characterizing signals with different complexities. Performance analysis on experimental EMG signals demonstrated that the fApEn significantly decreased during the development of muscle fatigue, which is a similar trend to that of the mean frequency (MNF) of the EMG signal, while the standard ApEn failed to detect this change. Moreover, fApEn of EMG demonstrated a better robustness to the length of the analysis window in comparison with the MNF of EMG. The results suggest that the fApEn of an EMG signal may potentially become a new reliable method for muscle fatigue assessment and be applicable to other short noisy physiological signal analysis.

  20. Structural evolution and mechanisms of fatigue in polycrystalline brass

    International Nuclear Information System (INIS)

    Vejloe Carstensen, J.

    1998-03-01

    The plastic strain controlled fatigue behaviour of polycrystalline Cu-15%Zn and Cu-30%Zn has been investigated with the aim of studying the effect of slip mode modification by the addition of zinc to copper. It has been clearly demonstrated, that true cyclic saturation does not occur in the plastic strain controlled fatigue of brass. This complicates the contstruction of a cyclic stress-strain (CSS) curve and thus the comparison with copper. A method to overcome this complication has been suggested. Surface observations on fatigued brass specimens show that individual grains tend to deform by Sachs type single slip. This behaviour has been described by the self-consistent Sachs-Eshelby model, which provides estimates of the CSS curve for brass polycrystals. Successive stages of primary hardening, softening and secondary hardening has been observed in the plastic strain controlled fatigue of brass. It has been found that the primary hardening is attributed to an increase of intergranular stresses whereas the secondary hardening apparently is attributed to an increase of friction stresses. Investigations of the structural evolution show that the softening behaviour can be explained by the presence of short-range order (SRO). SRO promote the formation of extended dipole arrays which hardens the material. The formation of intense shear bands destroy the dipole arrays, which explains the cyclic softening. The present results reveal that Cu-30%Zn in a pure planar slip alloy, while Cu-15%Zn displays both planar and wavy slip. The mechanical and structural behaviour observed in brass resembles recent observations in 316L austenitic stainless steels, and the present results reveal that Cu-30%Zn and 316L have approximately the same fatigue life curve. This emphasizes brass as being a convenient model system for the industrially important austenitic steels. (au)

  1. Wave equation dispersion inversion using a difference approximation to the dispersion-curve misfit gradient

    KAUST Repository

    Zhang, Zhendong; Schuster, Gerard T.; Liu, Yike; Hanafy, Sherif M.; Li, Jing

    2016-01-01

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized

  2. Interconnect fatigue design for terrestrial photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  3. Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Kroon, I. B.

    1993-01-01

    life experiments for the same purpose. The methodology is basedon modern probabilistic concepts amd classical decision theory. The special case where the fatigue life experiments are given in terms of SN curves is considered in Particular. The proposed techniques are illustrated by an example.......This paper considers the reassessment of the reliability of tubular joints subjected to fatigue load. The reassessment is considered in two parts namely the task of utilizing new experimental data on fatigue life to update the reliability of the tubular joint ant the task of planning new fatigue...

  4. S-curve networks and an approximate method for estimating degree distributions of complex networks

    Science.gov (United States)

    Guo, Jin-Li

    2010-12-01

    In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabási-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabási-Albert method commonly used in current network research.

  5. S-curve networks and an approximate method for estimating degree distributions of complex networks

    International Nuclear Information System (INIS)

    Guo Jin-Li

    2010-01-01

    In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabási-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabási-Albert method commonly used in current network research. (general)

  6. Fretting fatigue life estimation using fatigue damage gradient correction factor in various contact configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)

    2017-03-15

    A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient

  7. Wave equation dispersion inversion using a difference approximation to the dispersion-curve misfit gradient

    KAUST Repository

    Zhang, Zhendong

    2016-07-26

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized surface waves because the skeletonized dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the multi-dimensional elastic wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Our method can invert for lateral velocity variations and also can mitigate the local minimum problem in full waveform inversion with a reasonable computation cost for simple models. Results with synthetic and field data illustrate the benefits and limitations of this method. © 2016 Elsevier B.V.

  8. Fatigue Life Estimation of Medium-Carbon Steel with Different Surface Roughness

    Directory of Open Access Journals (Sweden)

    Changyou Li

    2017-03-01

    Full Text Available Medium-carbon steel is commonly used for the rail, wire ropes, tire cord, cold heading, forging steels, cold finished steel bars, machinable steel and so on. Its fatigue behavior analysis and fatigue life estimation play an important role in the machinery industry. In this paper, the estimation of fatigue life of medium-carbon steel with different surface roughness using established S-N and P-S-N curves is presented. To estimate the fatigue life, the effect of the average surface roughness on the fatigue life of medium-carbon steel has been investigated using 75 fatigue tests in three groups with average surface roughness (Ra: 0.4 μm, 0.8 μm, and 1.6 μm, respectively. S-N curves and P-S-N curves have been established based on the fatigue tests. The fatigue life of medium-carbon steel is then estimated based on Tanaka-Mura crack initiation life model, the crack propagation life model using Paris law, and material constants of the S-N curves. Six more fatigue tests have been conducted to validate the presented fatigue life estimation formulation. The experimental results have shown that the presented model could estimate well the mean fatigue life of medium-carbon steel with different surface roughness.

  9. Structural evolution and mechanisms of fatigue in polycrystalline brass

    Energy Technology Data Exchange (ETDEWEB)

    Vejloe Carstensen, J

    1998-03-01

    The plastic strain controlled fatigue behaviour of polycrystalline Cu-15%Zn and Cu-30%Zn has been investigated with the aim of studying the effect of slip mode modification by the addition of zinc to copper. It has been clearly demonstrated, that true cyclic saturation does not occur in the plastic strain controlled fatigue of brass. This complicates the contstruction of a cyclic stress-strain (CSS) curve and thus the comparison with copper. A method to overcome this complication has been suggested. Surface observations on fatigued brass specimens show that individual grains tend to deform by Sachs type single slip. This behaviour has been described by the self-consistent Sachs-Eshelby model, which provides estimates of the CSS curve for brass polycrystals. Successive stages of primary hardening, softening and secondary hardening has been observed in the plastic strain controlled fatigue of brass. It has been found that the primary hardening is attributed to an increase of intergranular stresses whereas the secondary hardening apparently is attributed to an increase of friction stresses. Investigations of the structural evolution show that the softening behaviour can be explained by the presence of short-range order (SRO). SRO promote the formation of extended dipole arrays which hardens the material. The formation of intense shear bands destroy the dipole arrays, which explains the cyclic softening. The present results reveal that Cu-30%Zn in a pure planar slip alloy, while Cu-15%Zn displays both planar and wavy slip. The mechanical and structural behaviour observed in brass resembles recent observations in 316L austenitic stainless steels, and the present results reveal that Cu-30%Zn and 316L have approximately the same fatigue life curve. This emphasizes brass as being a convenient model system for the industrially important austenitic steels. (au) 9 tabs., 94 ills., 177 refs.; The thesis is also available as DCAMM-R-S80 and as an electronic document on http://www.risoe.dk/rispubl

  10. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  11. Fatigue resistance of engine-driven rotary nickel-titanium endodontic instruments.

    Science.gov (United States)

    Chaves Craveiro de Melo, Marta; Guiomar de Azevedo Bahia, Maria; Lopes Buono, Vicente Tadeu

    2002-11-01

    A comparative study of the fatigue resistance of engine-driven nickel-titanium endodontic instruments was performed, aiming to access the influence of the cutting flute design and of the size of the files that reach the working length in curved canal shaping. Geometrical conditions similar to those found in practice were used. Series 29 #5 ProFile, together with #6 and #8 Quantec instruments, were tested in artificial canals with a 45-degree angle of curvature and 5-mm radius of curvature. It was observed that the size of the instrument, which determines the maximum strain amplitude during cyclic deformation, is the most important factor controlling fatigue resistance. The effect of heat sterilization on the fatigue resistance of the instruments was also examined. The results obtained indicate that the application of five sterilization procedures in dry heat increases the average number of cycles to failure of unused instruments by approximately 70%.

  12. Fatigue Lifetime of ADI from Ultimate Tensile Strength to Permanent Fatigue Limit

    Czech Academy of Sciences Publication Activity Database

    Zapletal, J.; Věchet, S.; Kohout, J.; Obrtlík, Karel

    -, č. 1 (2008), s. 40-43 ISSN 0556-171X. [MSMF /5./. Brno, 27.06.2007-29.06.2007] R&D Projects: GA ČR GA106/03/1265 Institutional research plan: CEZ:AV0Z20410507 Keywords : austempered ductile iron * fatigue behaviour * S N curve Subject RIV: JL - Materials Fatigue , Friction Mechanics

  13. Study on Fatigue Characteristics of High-Strength Steel Welds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong Suk; Yoo, Seung Won; Park, Jong Chan [Hyundai Motor Group, Seoul (Korea, Republic of)

    2015-03-15

    High-strength steel has replaced mild steel as the material of choice for truck decks or frames, owing to the growing demand for lightweight vehicles. Although studies on the weld fatigue characteristics of mild steel are available, studies on high-strength steels have been seldom conducted. In this study, firstly, we surveyed a chosen number of approaches and selected the Radaj method, which uses the notch factor approach, as the one suitable for evaluating the fatigue life of commercial vehicles. Secondly, we obtained the S-N curves of HARDOX and ATOS60 steel welds, and the F-N curves of the T-weld and overlapped-weld structures. Thirdly, we acquired a general S-N curve of welded structures made of high-strength steel from the F-N curve, using the notch factor approach. Fourthly, we extracted the weld fatigue characteristics of high-strength steel and incorporated the results in the database of a commercial fatigue program. Finally, we compared the results of the fatigue test and the CAE prediction of the example case, which demonstrated sufficiently good agreement.

  14. Preliminary tests to determine the fatigue curve of the Ibis ACSR (Aluminum Cable Steel Reinforced) conductor; Ensaios preliminares para determinacao da curva de fadiga do cabo condutor ACSR Ibis

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Daniel M. [Universidade de Brasilia (UnB-Gama), DF (Brazil)], E-mail: danielrosa@unb.br; Fadel, Aida A.; Araujo, Jose Alexander; Ferreira, Jorge Luiz A.; Henriques, Antonio Manoel D. [Universidade de Brasilia (EnM/UnB), DF (Brazil). Dept. de Engenharia Mecanica], Emails: aida@unb.br, alex07@unb.br, jorge@unb.br, Henriques@unb.br; Hortencio, Tania M.O.S. [Companhia Energetica de Goias Distribuicao S.A. (CELG D), Goiania, GO (Brazil)], E-mail: tania.hortencio@celg.com.br

    2009-07-01

    The aim of this work was to present a fretting fatigue experimental rig for overhead conductors and to carry out a set of experiments to obtain life estimative for a standard Ibis ACSR, Aluminium Conductor Steel Reinforced. A preliminary S-N (Wohler) Curve was obtained in the medium high cycle fatigue regime. Experiments considered the occurrence of at least two wire breaks to obtain each point of the S-N curve, which was compared to CIGRE's Safe Border Line (CSBL). The experimental results showed five to ten times large lives than the ones provided by CSBL adoption. (author)

  15. Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain-life (ε-N) fatigue data

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers only S-N and ε-N relationships that may be reasonably approximated by a straight line (on appropriate coordinates) for a specific interval of stress or strain. It presents elementary procedures that presently reflect good practice in modeling and analysis. However, because the actual S-N or ε-N relationship is approximated by a straight line only within a specific interval of stress or strain, and because the actual fatigue life distribution is unknown, it is not recommended that (a) the S-N or ε-N curve be extrapolated outside the interval of testing, or (b) the fatigue life at a specific stress or strain amplitude be estimated below approximately the fifth percentile (P ≃ 0.05). As alternative fatigue models and statistical analyses are continually being developed, later revisions of this practice may subsequently present analyses that permit more complete interpretation of S-N and ε-N data.

  16. Observations and recommendations for further research regarding environmentally assisted fatigue evaluation methods

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, G.L.; Tregoning, R.L. [U.S. Nuclear Regulatory Commission (U.S. NRC), Rockville, MD (United States); Chopra, O.K. [Argonne National Laboratory, Argonne, IL (United States)

    2014-07-01

    The U.S. Nuclear Regulatory Commission (NRC) and Argonne National Laboratory (ANL) have completed research activities on environmentally assisted fatigue (EAF) methods. This work has led to a revision of NUREG/CR-6909 in its entirety, a draft of which is forthcoming for public review and comment. These activities addressed the following areas: - Air and water fatigue curves were re-developed using a much larger fatigue (ε-N) database. The additional data include an expansion in the ε-N data previously used by the NRC and ANL by as much as 50%. - The environmental fatigue multiplier (F{sub en}) expressions for carbon, low-alloy, stainless, and nickel-alloy steels were revised. - The revised F{sub en} expressions address comments from interested stakeholders related to: (a) the constants in previous F{sub en} expressions that results in F{sub en} values of approximately 2.0 even when the strain rate is very high or the temperature is very low, (b) the temperature dependence of the F{sub en} expression for carbon and low-alloy steels, and (c) the dependence of F{sub en} on water chemistry for austenitic stainless steels. - In addition, the appropriateness of a strain threshold and the possible effects of hold periods were evaluated. - The potential effects of dynamic strain aging (DSA) on cyclic deformation and environmental effects were discussed. - The revised F{sub en} expressions proposed were validated to the extent possible by comparing the results of five different experimental data sets obtained from fatigue tests that simulate actual plant conditions to estimates of fatigue usage adjusted for environmental effects using the updated F{sub en} expressions. In the course of performing the foregoing EAF research activities, the NRC and ANL observed several areas where further research could yield reduced conservatism in EAF evaluation. These include more refined, material-specific fatigue (S-N) curves, S-N curves for ferritic materials based on material tensile

  17. Creep, fatigue and creep-fatigue damage evaluation and estimation of remaining life of SUS 304 austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Nishino, Seiichi; Sakane, Masao; Ohnami, Masateru

    1986-01-01

    Experimental study was made on the damage evaluation and estimation of remaining life of SUS 304 stainless steel in creep, low-cycle fatigue and creep-fatigue at 873 K in air. Creep, fatigue and creep-fatigue damage curves were drawn by the method proposed by D.A. Woodford and the relations between these damages and non-destructive parameters, i.e., microvickers hardness and quantities obtained from X-ray diffraction, were discussed. From these tests, the following conclusions were obtained. (1) Constant damage lines in the diagram of remaining lives in creep and fatigue could be drawn by changing load levels during the tests. Constant damage lines in creep-fatigue were also made by a linear damage rule using both static creep and fatigue damage curves, which agree well with the experimental data in creep-fatigue. (2) Microvickers hardness and half-value breadth in X-ray diffraction are appropriate parameters to evaluate creep damage but are not proper to evaluate fatigue damage. Particle size and microstrain obtained by X-ray profile analysis are good parameters to evaluate both creep and fatigue damages. (author)

  18. Individual aircraft life monitoring: An engineering approach for fatigue damage evaluation

    Directory of Open Access Journals (Sweden)

    Rui JIAO

    2018-04-01

    Full Text Available Individual aircraft life monitoring is required to ensure safety and economy of aircraft structure, and fatigue damage evaluation based on collected operational data of aircraft is an integral part of it. To improve the accuracy and facilitate the application, this paper proposes an engineering approach to evaluate fatigue damage and predict fatigue life for critical structures in fatigue monitoring. In this approach, traditional nominal stress method is applied to back calculate the S-N curve parameters of the realistic structure details based on full-scale fatigue test data. Then the S-N curve and Miner’s rule are adopted in damage estimation and fatigue life analysis for critical locations under individual load spectra. The relationship between relative small crack length and fatigue life can also be predicted with this approach. Specimens of 7B04-T74 aluminum alloy and TA15M titanium alloy are fatigue tested under two types of load spectra, and there is a good agreement between the experimental results and analysis results. Furthermore, the issue concerning scatter factor in individual aircraft damage estimation is also discussed. Keywords: Fatigue damage, Fatigue monitoring, Fatigue test, Scatter factor, S-N curve

  19. A methodology for strain-based fatigue reliability analysis

    International Nuclear Information System (INIS)

    Zhao, Y.X.

    2000-01-01

    A significant scatter of the cyclic stress-strain (CSS) responses should be noted for a nuclear reactor material, 1Cr18Ni9Ti pipe-weld metal. Existence of the scatter implies that a random cyclic strain applied history will be introduced under any of the loading modes even a deterministic loading history. A non-conservative evaluation might be given in the practice without considering the scatter. A methodology for strain-based fatigue reliability analysis, which has taken into account the scatter, is developed. The responses are approximately modeled by probability-based CSS curves of Ramberg-Osgood relation. The strain-life data are modeled, similarly, by probability-based strain-life curves of Coffin-Manson law. The reliability assessment is constructed by considering interference of the random fatigue strain applied and capacity histories. Probability density functions of the applied and capacity histories are analytically given. The methodology could be conveniently extrapolated to the case of deterministic CSS relation as the existent methods did. Non-conservative evaluation of the deterministic CSS relation and availability of present methodology have been indicated by an analysis of the material test results

  20. Verification of anti-fatigue effect of anserine by angle fatigue indicator based on median frequency changes of electromyograms

    Directory of Open Access Journals (Sweden)

    Hirohisa Kishi

    2013-10-01

    Full Text Available ABSTRACT: Objective: Anserine, which is abundant in avian species and in a wide range of fish such as bonito and tuna, is reported to have anti-fatigue effect. Although chicken soup and bonito soup is traditionally used to recover from physical fatigue, it is generally difficult to verify the effect in humans. This study was to directly demonstrate the anti-fatigue effect of oceanic anserine in humans. Methods: Edible-grade anserine was purified from fish extract with food-grade reagents. Subjects were 17 healthy male volunteers (35.5 ± 5 yr., 75.5 ± 5.0 kg. Each subject performed the isometric exercise tolerance test (ETT on the rectus femoris muscle twice (Ex_1, Ex_2 both for anserine and water conditions on a different day. Median frequency changes (MDF during Functional Foods in Health and Disease 2013; 3(10 389-399 ETTs were calculated and regression curves were calculated over a frequency range of 21-214 Hz. The difference, or angle, between the slopes of Ex_1 and Ex_2 MDF regression curves, which corresponds to the degree of fatigue, was defined as an angle fatigue index and compared between anserine and water intake conditions. Results: MDF decreased during ETTs in most patients and the slopes of regression curves were larger in Ex_2 than in Ex_1. Angle fatigue index for water (control was significantly larger than that for anserine (p<0.01, paired t-test, n=17. The result indicates that anserine have an anti-fatigue effect on skeletal muscle in humans. Conclusions: We proposed the angle fatigue index as a touchstone of the muscle fatigue. The index indicates that anserine is effective to reduce the muscle fatigue in humans.

  1. Two micro fatigue test methods for irradiated materials

    International Nuclear Information System (INIS)

    Nunomura, Shigetomo; Noguchi, Shinji; Okamura, Yuichi; Kumai, Shinji

    1993-01-01

    This paper demonstrates two miniature fatigue test methods in response to the requirements of the fusion reactor wall materials development program. It is known that the fatigue strength evaluated by the axial loading test is independent of the specimen size, while that evaluated by the bend test or torsion test is dependent upon the size of specimen. The new type of gripping system for the axial, tension-tension, fatigue testing of TEM disk-size specimens that has been developed is described in this paper. An alignment tool assists in gripping the miniature specimen. The miniature tension-tension fatigue test method seems to provide reliable S-N curves for SUS304 and SUS316L stainless steels. An indentation method has also been developed to determine fatigue properties. A hard steel ball or ceramic ball was used for cyclically loading the specimen, and an S-N curve was subsequently obtained. The merit of this method is primarily simple handling. S-N curves obtained from four materials by this indentation method compared well with those obtained from the rotary bend fatigue test employing a standard-size specimen

  2. Fatigue Reliability Analysis of Wind Turbine Cast Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Fæster, Søren

    2017-01-01

    .) and to quantify the relevant uncertainties using available fatigue tests. Illustrative results are presented as obtained by statistical analysis of a large set of fatigue data for casted test components typically used for wind turbines. Furthermore, the SN curves (fatigue life curves based on applied stress......The fatigue life of wind turbine cast components, such as the main shaft in a drivetrain, is generally determined by defects from the casting process. These defects may reduce the fatigue life and they are generally distributed randomly in components. The foundries, cutting facilities and test...... facilities can affect the verification of properties by testing. Hence, it is important to have a tool to identify which foundry, cutting and/or test facility produces components which, based on the relevant uncertainties, have the largest expected fatigue life or, alternatively, have the largest reliability...

  3. Fatigue properties of particle reinforced aluminium alloys

    International Nuclear Information System (INIS)

    Tabernig, B.J.

    2000-06-01

    In this work the particle reinforced Al-alloys 359 T6 + 20 % SiC and 2124 + 17 % SiC which differ significantly in their production and microstructure are investigated. Standard and in-situ tensile tests show, that in the powder metallurgically produced alloy 2124 reinforcement leads to a higher Young's modulus, yield and ultimate tensile stress where the cast alloy 359 + 20 % SiC exhibit increased stiffness, but low ductility due to cast porosity of some 100 μm. The failure mechanism governed by microstructural parameters is found to play an important role for ductility. The fatigue properties are investigated with specific regard to the influence of the in-service condition (load ratio, temperature, variable amplitude loading) in the foreseen applications in the automobile- and aerospace industry. Standard fatigue tests point out that the endurance limit is improved by reinforcement, but is strongly dependent on the size of given initial defects. The fatigue crack properties are characterised by standard crack growth curves and r(esistance)-curves for the threshold of stress intensity factor range. Both composites exhibit a higher effective threshold than their unreinforced alloys. Furthermore the fatigue resistance described by the R-curve as well as the long crack threshold are improved in the alloy 2124 + 17 % SiC. While in crack growth tests under constant amplitude loading the alloy 2124 + 17 % SiC shows lower crack growth rates than its unreinforced alloy, the opposite case is in the alloy 359 + 20 % SiC at high DK. Periodic overloads lead in the 359 + 20 % SiC to particle fracture at the crack tip and to a steeper increase in the crack growth rate. In the 2124 + 17% SiC the fatigue crack grows predominately in the matrix and a retardation effect due to overloads is observed. In order to describe the fatigue limit of components as a function of initial defect size an analytical concept is developed assuming that the fatigue limit is controlled by the

  4. A fatigue analysis including environmental effects for a pipe system in a Swedish BWR

    International Nuclear Information System (INIS)

    Steingrimsdottir, Kristin; Dahlberg, Magnus

    2011-10-01

    A BWR feed water piping system (austenitic steel) has been analyzed with two different fatigue curves and environmental factors. Original fatigue curve from ASME is compared to a new fatigue curve; ANL. The influence of environmental correction factors (Fen) is studied further for the piping system. It is noted that the results apply for this particular system, and general conclusions should be cautiously drawn. Typical for this system is that all dominant loads are within the low-cycle regime. This implies that the change of fatigue curve only leads to limited increases in usage factors. Larger changes can occur if larger number of cycles is within the high-cycle regime

  5. Low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2013-11-01

    Full Text Available Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-Al-Mn-Ce alloys were analyzed. The results show that the Mg-Al-Mn-Ce alloys under die-cast (F and aged (T5 states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-Al-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-Al-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly.

  6. Fatigue strength degradation of metals in corrosive environments

    Science.gov (United States)

    Adasooriya, N. D.; Hemmingsen, T.; Pavlou, D.

    2017-12-01

    Structures exposed to aggressive environmental conditions are often subjected to time-dependent loss of coating and loss of material due to corrosion; this causes reduction in the cross-sectional properties of the members, increased surface roughness, surface irregularities and corrosion pits, and degradation of material strengths. These effects have been identified and simulated in different research studies. However, time and corrosive media dependent fatigue strength curves for materials have not been discussed in the design or assessment guidelines for structures. This paper attempts to review the corrosion degradation process and available approaches/models used to determine the fatigue strength of corroded materials and to interpolate corrosion deterioration data. High cycle fatigue and full range fatigue life formulae for fatigue strength of corroded materials are proposed. The above formulae depend on the endurance limit of corroded material, in addition to the stress-life fatigue curve parameters of the uncorroded material. The endurance limit of corroded material can either be determined by a limited number of tests in the very high-cycle fatigue region or predicted by an analytical approach. Comparison with experimentally measured corrosion fatigue behavior of several materials is provided and discussed.

  7. Cumulative fatigue and creep-fatigue damage at 3500C on recrystallized zircaloy 4

    International Nuclear Information System (INIS)

    Brun, G.; Pelchat, J.; Floze, J.C.; Galimberti, M.

    1985-06-01

    An experimental programme undertaken by C.E.A., E.D.F. and FRAGEMA with the aim of characterizing the fatigue and creep fatigue behaviour of zircaloy-4 following annealing treatments (recrystallized, stress-delived) is in progress. The results given below concern only recrystallized material. Cyclic properties, low-cycle fatigue curves and creep behaviour laws under stresses have been established. Sequential tests of pure fatigue and creep-fatigue were performed. The cumulative life fractions at fracture depend on the sequence of leading, stress history and number of cycles of prestressing. The MINER's rule appears to be conservative with regard to a low-high loading sequence whereas it is not for the reverse high-low loading sequences. Fatigue and creep damage are not interchangeable. Pre-creep improves the fatigue resistance. Pre-fatigue improves the creep strength as long as the beneficial effect of cyclic hardening overcomes the damaging effect of surface cracking. The introduction of a tension hold time into the fatigue cycle slightly increases cyclic hardening and reduces the number of cycles to failure. For hold times of less than one hour, the sum of fatigue and creep life fractions is closed to one

  8. SU-F-T-144: Analytical Closed Form Approximation for Carbon Ion Bragg Curves in Water

    Energy Technology Data Exchange (ETDEWEB)

    Tuomanen, S; Moskvin, V; Farr, J [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2016-06-15

    Purpose: Semi-empirical modeling is a powerful computational method in radiation dosimetry. A set of approximations exist for proton ion depth dose distribution (DDD) in water. However, the modeling is more complicated for carbon ions due to fragmentation. This study addresses this by providing and evaluating a new methodology for DDD modeling of carbon ions in water. Methods: The FLUKA, Monte Carlo (MC) general-purpose transport code was used for simulation of carbon DDDs for energies of 100–400 MeV in water as reference data model benchmarking. Based on Thomas Bortfeld’s closed form equation approximating proton Bragg Curves as a basis, we derived the critical constants for a beam of Carbon ions by applying models of radiation transport by Lee et. al. and Geiger to our simulated Carbon curves. We hypothesized that including a new exponential (κ) residual distance parameter to Bortfeld’s fluence reduction relation would improve DDD modeling for carbon ions. We are introducing an additional term to be added to Bortfeld’s equation to describe fragmentation tail. This term accounts for the pre-peak dose from nuclear fragments (NF). In the post peak region, the NF transport will be treated as new beams utilizing the Glauber model for interaction cross sections and the Abrasion- Ablation fragmentation model. Results: The carbon beam specific constants in the developed model were determined to be : p= 1.75, β=0.008 cm-1, γ=0.6, α=0.0007 cm MeV, σmono=0.08, and the new exponential parameter κ=0.55. This produced a close match for the plateau part of the curve (max deviation 6.37%). Conclusion: The derived semi-empirical model provides an accurate approximation of the MC simulated clinical carbon DDDs. This is the first direct semi-empirical simulation for the dosimetry of therapeutic carbon ions. The accurate modeling of the NF tail in the carbon DDD will provide key insight into distal edge dose deposition formation.

  9. Effects of LWR environments on fatigue life of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1995-03-01

    SME Boiler and Pressure Vessel Code provides construction of nuclear power plant components. Figure I-90 Appendix I to Section III of the Code specifies fatigue design curves for structural materials. While effects of environments are not explicitly addressed by the design curves, test data suggest that the Code fatigue curves may not always be adequate in coolant environments. This paper reports the results of recent fatigue tests that examine the effects of steel type, strain rate, dissolved oxygen level, strain range, loading waveform, and surface morphology on the fatigue life of A 106-Gr B carbon steel and A533-Gr B low-alloy steel in water

  10. Fatigue behavior of porous biomaterials manufactured using selective laser melting.

    Science.gov (United States)

    Yavari, S Amin; Wauthle, R; van der Stok, J; Riemslag, A C; Janssen, M; Mulier, M; Kruth, J P; Schrooten, J; Weinans, H; Zadpoor, A A

    2013-12-01

    Porous titanium alloys are considered promising bone-mimicking biomaterials. Additive manufacturing techniques such as selective laser melting allow for manufacturing of porous titanium structures with a precise design of micro-architecture. The mechanical properties of selective laser melted porous titanium alloys with different designs of micro-architecture have been already studied and are shown to be in the range of mechanical properties of bone. However, the fatigue behavior of this biomaterial is not yet well understood. We studied the fatigue behavior of porous structures made of Ti6Al4V ELI powder using selective laser melting. Four different porous structures were manufactured with porosities between 68 and 84% and the fatigue S-N curves of these four porous structures were determined. The three-stage mechanism of fatigue failure of these porous structures is described and studied in detail. It was found that the absolute S-N curves of these four porous structures are very different. In general, given the same absolute stress level, the fatigue life is much shorter for more porous structures. However, the normalized fatigue S-N curves of these four structures were found to be very similar. A power law was fitted to all data points of the normalized S-N curves. It is shown that the measured data points conform to the fitted power law very well, R(2)=0.94. This power law may therefore help in estimating the fatigue life of porous structures for which no fatigue test data is available. It is also observed that the normalized endurance limit of all tested porous structures (<0.2) is lower than that of corresponding solid material (c.a. 0.4). © 2013.

  11. Statistical analysis of fatigue strain-life data for carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Keisler, J.; Chopra, O.K.; Shack, W.J.

    1994-08-01

    The existing fatigue strain vs. life (S-N) data, foreign and domestic, for carbon and low-alloy steels used in the construction of nuclear power plant components have been compiled and categorized according to material, loading, and environmental conditions. A statistical model has been developed for estimating the effects of the various test conditions on fatigue life. The results of a rigorous statistical analysis have been used to estimate the probability of initiating a fatigue crack. Data in the literature were reviewed to evaluate the effects of size, geometry, and surface finish of a component on its fatigue life. The fatigue S-N curves for components have been determined by applying design margins for size, geometry, and surface finish to crack initiation curves estimated from the model. The significance of the effect of environment on the current Code design curve and on the proposed interim design curves for carbon and low-alloy steels presented in NUREG/CR-5999 is discussed

  12. Fatigue Life Prediction of the Keel Structure of a Tsunami Buoy Using Spectral Fatigue Analysis Method

    Directory of Open Access Journals (Sweden)

    Angga Yustiawan

    2013-09-01

    Full Text Available One  of  the  components  of  the  Indonesia  Tsunami  Early  Warning  System  (InaTEWS  is  a  surface  buoy.  The  surface buoy  is  exposed  to  dynamic  and  random  loadings  while  operating  at  sea,  particularly  due  to  waves.  Because  of  the cyclic  nature  of  the  wave  load,  this  may  result  in  a fatigue  damage  of  the  keel  structure,  which  connects  the  mooring line  with  the  buoy  hull.  The  operating  location  of  the buoy  is  off  the  Java  South  Coast  at  the  coordinate (10.3998  S, 108.3417  E. To  determine  the  stress  transfer  function, model  tests  were  performed,  measuring  the  buoy  motions  and the stress at the mooring line. A spectral fatigue analysis method is applied for the purpose of estimating the fatigue life of the keel structure. Utilizing the  model-test results, the S-N curve obtained in a previous study and the  wave data at the buoy location, it is found that the fatigue life of the keel structure is approximately 11 years.

  13. Re-analysis of fatigue data for welded joints using the notch stress approach

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    Experimental fatigue data for welded joints have been collected and subjected to re-analysis using the notch stress approach according to IIW recommendations. This leads to an overview regarding the reliability of the approach, based on a large number of results (767 specimens). Evidently......-welded joints agree quite well with the FAT 225 curve; however a reduction to FAT 200 is suggested in order to achieve approximately the same safety as observed in the nominal stress approach....

  14. Fatigue assessment of the ITER TF coil case based on JJ1 fatigue tests

    International Nuclear Information System (INIS)

    Hamada, K.; Nakajima, H.; Takano, K.; Kudo, Y.; Tsutsumi, F.; Okuno, K.; Jong, C.

    2005-01-01

    The material of the TF coil case in the ITER requires to withstand cyclic electromagnetic forces applied up to 3 x 10 4 cycles at 4.2 K. A cryogenic stainless steel, JJ1, is used in high stress region of TF coil case. The fatigue characteristics (S-N curve) of JJ1 base metal and welded joint at 4.2 K has been measured. The fatigue strength of base metal and welded joint at 3 x 10 4 cycles are measured as 1032 and 848 MPa, respectively. The design S-N curve is derived from the measured data taking account of the safety factor of 20 for cycle-to-failure and 2 for fatigue strength, and it indicates that an equivalent alternating stress of the case should be kept less than 516 MPa for the base metal and 424 MPa for the welded joint at 3 x 10 4 cycles. It is demonstrated that the TF coil case has enough margins for the cyclic operation. It is also shown the welded joint should be located in low cyclic stress region because a residual stress affects the fatigue life

  15. Fatigue and damage tolerance scatter models

    Science.gov (United States)

    Raikher, Veniamin L.

    1994-09-01

    Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.

  16. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors.

    Science.gov (United States)

    Hall, Daniel L; Antoni, Michael H; Lattie, Emily G; Jutagir, Devika R; Czaja, Sara J; Perdomo, Dolores; Lechner, Suzanne C; Stagl, Jamie M; Bouchard, Laura C; Gudenkauf, Lisa M; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G

    Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one's daily functioning in both patient populations to better understand their relationships with depressed mood. Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants' fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p's fatigued breast cancer survivors (β=.18, p =.19). CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed.

  17. Fatigue Analysis of Load-Carrying Fillet Welds

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tychsen, Jesper; Andersen, Jens Ulfkjær

    2006-01-01

    that the degree of bending (DOB) has an influence on the fatigue lifetime. The fatigue lifetime decreases significantly when increasing the bending stress. In order to take into account the effect of the bending, a new fatigue stress definition applicable for fillet welds failing through the weld is presented....... Using the test results, it is shown that the new definition of fatigue stress can be used for a wide range of DOB with a low standard deviation of the resulting SN curve....

  18. Probabilistic assessment of fatigue life including statistical uncertainties in the S-N curve

    International Nuclear Information System (INIS)

    Sudret, B.; Hornet, P.; Stephan, J.-M.; Guede, Z.; Lemaire, M.

    2003-01-01

    A probabilistic framework is set up to assess the fatigue life of components of nuclear power plants. It intends to incorporate all kinds of uncertainties such as those appearing in the specimen fatigue life, design sub-factor, mechanical model and applied loading. This paper details the first step, which corresponds to the statistical treatment of the fatigue specimen test data. The specimen fatigue life at stress amplitude S is represented by a lognormal random variable whose mean and standard deviation depend on S. This characterization is then used to compute the random fatigue life of a component submitted to a single kind of cycles. Precisely the mean and coefficient of variation of this quantity are studied, as well as the reliability associated with the (deterministic) design value. (author)

  19. Effects of loading sequences and size of repeated stress block of loads on fatigue life calculated using fatigue functions

    International Nuclear Information System (INIS)

    Schott, G.

    1989-01-01

    It is well-known that collective form, stress intensity and loading sequence of individual stresses as well as size of repeated stress blocks can influence fatigue life, significantly. The basic variant of the consecutive Woehler curve concept will permit these effects to be involved into fatigue life computation. The paper presented will demonstrate that fatigue life computations using fatigue functions reflect the loading sequence effect with multilevel loading precisely and provide reliable fatigue life data. Effects of size of repeated stress block and loading sequence on fatigue life as observed with block program tests can be reproduced using the new computation method. (orig.) [de

  20. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors

    Science.gov (United States)

    Hall, Daniel L.; Antoni, Michael H.; Lattie, Emily G.; Jutagir, Devika R.; Czaja, Sara J.; Perdomo, Dolores; Lechner, Suzanne C.; Stagl, Jamie M.; Bouchard, Laura C.; Gudenkauf, Lisa M.; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G.

    2015-01-01

    Objective Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one’s daily functioning in both patient populations to better understand their relationships with depressed mood. Methods Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants’ fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. Results CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p’sfatigued breast cancer survivors (β=.18, p=.19). Conclusions CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed. PMID:26180660

  1. Comparative evaluation of cyclic fatigue resistance of D-RaCe and ProTaper retreatment instruments in curved artificial canals.

    Science.gov (United States)

    Topçuoğlu, H S; Topçuoğlu, G; Aktı, A

    2016-06-01

    To compare the cyclic fatigue resistance of D-RaCe and ProTaper rotary nickel-titanium (NiTi) retreatment files when used in curved artificial canals. A total of 120 new D-RaCe DR2 and ProTaper D3 retreatment files were tested in stainless steel artificial canals having 45° and 60° angles of curvature. Thirty instruments of each of the file systems were tested in both angles of curvature (n = 30). The retreatment instruments were rotated until fracture to calculate the number of cycles to failure. The length of each fractured fragment was recorded. Data were analysed by independent sample t-test. Fractured surfaces of the instruments were analysed by scanning electron microscopy. In the canal with 45° angle of curvature, no significant difference was observed between the retreatment systems (P > 0.05); on the other hand, in the canal with 60° angle of curvature, D-RaCe DR2 instruments had greater cyclic fatigue resistance than ProTaper D3 (P  0.05). The fracture surfaces of the instruments had morphologic characteristics of ductile fracture. D-RaCe DR2 instrument exhibited greater cyclic fatigue resistance than ProTaper D3 only in root canals with 60° angle of curvature. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Hyeon; Han, Seung-Wook; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2017-08-15

    High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

  3. Probabilistic Fatigue Damage Program (FATIG)

    Science.gov (United States)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  4. Proof of fatigue strength of nuclear components part II: Numerical fatigue analysis for transient stratification loading considering environmental effects

    International Nuclear Information System (INIS)

    Krätschmer, D.; Roos, E.; Schuler, X.; Herter, K.-H.

    2012-01-01

    For the construction, design and operation of nuclear components and systems the appropriate technical codes and standards provide detailed analysis procedures which guarantee a reliable behaviour of the structural components throughout the specified lifetime. Especially for cyclic stress evaluation the different codes and standards provide different fatigue analyses procedures to be performed considering the various mechanical and thermal loading histories and geometric complexities of the components. To consider effects of light water reactor coolant environments, new design curves included in report NUREG/CR-6909 for austenitic stainless steels and for low alloy steels have been presented. For the usage of these new design curves an environmental fatigue correction factor for incorporating environmental effects has to be calculated and used. The application of this environmental correction factor to a fatigue analysis of a nozzle with transient stratification loads, derived by in-service monitoring, has been performed. The results are used to compare with calculated usage factors, based on design curves without taking environmental effects particularly into account. - Highlights: ► We model an nozzle for fatigue analysis und mechanical and thermal loading conditions. ► A simplified as well as a general elastic–plastic fatigue analysis considering environmental effects is performed. ► The influence of different factors calculating the environmental factor F en are shown. ► The presented numerical evaluation methodology allows the consideration of all relevant parameters to assess lifetime.

  5. Effect of microstructure on low cycle fatigue properties of ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Kubena, Ivo, E-mail: kubena@ipm.cz [IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno (Czech Republic); Fournier, Benjamin [CEA/DEN/DANS/DMN/SRMA, Bat. 453, 91191 Gif-sur-Yvette Cedex (France); Kruml, Tomas [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno (Czech Republic)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Three various ODS steels are studied and compared. Black-Right-Pointing-Pointer Low cycle fatigue data at RT, 650 Degree-Sign C and 750 Degree-Sign C are given. Black-Right-Pointing-Pointer Microstructural characterization. Black-Right-Pointing-Pointer Detailed discussion of strengthening mechanisms. - Abstract: Low cycle fatigue properties at room temperature, 650 Degree-Sign C and 750 Degree-Sign C of three high chromium steels (9%Cr ferritic-martensitic and two 14%Cr ferritic steels) strengthened by oxide dispersion were studied and compared. Cyclic softening/hardening curves, cyclic deformation curves, S-N curves and Coffin-Manson curves are presented together with microstructural observations. Differences in cyclic response, stress level and fatigue life are attributed to differences in the matrix microstructure. The oxide particles stabilize the cyclic response, even if cyclic softening is detected for some experimental conditions. The strength of these steels is discussed in terms of strengthening mechanisms such as grain size effect, particle-dislocations interaction and dislocation density. Comparing three different ODS steels offers an opportunity to tests the contribution of individual mechanisms to the cyclic strength. The reduction of fatigue life in one of the ferritic steels is explained by the presence of large grains, facilitating the fatigue crack nucleation and the early growth.

  6. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  7. Elastic creep-fatigue evaluation for ASME code

    International Nuclear Information System (INIS)

    Severud, L.K.; Winkel, B.V.

    1987-01-01

    Experience with applying the ASME Code Case N-47 rules for evaluation of creep-fatigue with elastic analysis results has been problematic. The new elastic evaluation methods are intended to bound the stress level and strain range values needed for use in employing the code inelastic analysis creep-fatigue damage counting procedures. To account for elastic followup effects, ad hoc rules for stress classification, shakedown, and ratcheting are employed. Because elastic followup, inelastic strain concentration, and stress-time effects are accounted for, the design fatigue curves in Case N-47 for inelastic analysis are used instead of the more conservative elastic analysis curves. Creep damage assessments are made using an envelope stress-time history that treats multiple load events and repeated cycles during elevated temperature service life. (orig./GL)

  8. Boundary curves of individual items in the distribution of total depressive symptom scores approximate an exponential pattern in a general population.

    Science.gov (United States)

    Tomitaka, Shinichiro; Kawasaki, Yohei; Ide, Kazuki; Akutagawa, Maiko; Yamada, Hiroshi; Furukawa, Toshiaki A; Ono, Yutaka

    2016-01-01

    Previously, we proposed a model for ordinal scale scoring in which individual thresholds for each item constitute a distribution by each item. This lead us to hypothesize that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores follow a common mathematical model, which is expressed as the product of the frequency of the total depressive symptom scores and the probability of the cumulative distribution function of each item threshold. To verify this hypothesis, we investigated the boundary curves of the distribution of total depressive symptom scores in a general population. Data collected from 21,040 subjects who had completed the Center for Epidemiologic Studies Depression Scale (CES-D) questionnaire as part of a national Japanese survey were analyzed. The CES-D consists of 20 items (16 negative items and four positive items). The boundary curves of adjacent item scores in the distribution of total depressive symptom scores for the 16 negative items were analyzed using log-normal scales and curve fitting. The boundary curves of adjacent item scores for a given symptom approximated a common linear pattern on a log normal scale. Curve fitting showed that an exponential fit had a markedly higher coefficient of determination than either linear or quadratic fits. With negative affect items, the gap between the total score curve and boundary curve continuously increased with increasing total depressive symptom scores on a log-normal scale, whereas the boundary curves of positive affect items, which are not considered manifest variables of the latent trait, did not exhibit such increases in this gap. The results of the present study support the hypothesis that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores commonly follow the predicted mathematical model, which was verified to approximate an exponential mathematical pattern.

  9. Boundary curves of individual items in the distribution of total depressive symptom scores approximate an exponential pattern in a general population

    Directory of Open Access Journals (Sweden)

    Shinichiro Tomitaka

    2016-10-01

    Full Text Available Background Previously, we proposed a model for ordinal scale scoring in which individual thresholds for each item constitute a distribution by each item. This lead us to hypothesize that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores follow a common mathematical model, which is expressed as the product of the frequency of the total depressive symptom scores and the probability of the cumulative distribution function of each item threshold. To verify this hypothesis, we investigated the boundary curves of the distribution of total depressive symptom scores in a general population. Methods Data collected from 21,040 subjects who had completed the Center for Epidemiologic Studies Depression Scale (CES-D questionnaire as part of a national Japanese survey were analyzed. The CES-D consists of 20 items (16 negative items and four positive items. The boundary curves of adjacent item scores in the distribution of total depressive symptom scores for the 16 negative items were analyzed using log-normal scales and curve fitting. Results The boundary curves of adjacent item scores for a given symptom approximated a common linear pattern on a log normal scale. Curve fitting showed that an exponential fit had a markedly higher coefficient of determination than either linear or quadratic fits. With negative affect items, the gap between the total score curve and boundary curve continuously increased with increasing total depressive symptom scores on a log-normal scale, whereas the boundary curves of positive affect items, which are not considered manifest variables of the latent trait, did not exhibit such increases in this gap. Discussion The results of the present study support the hypothesis that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores commonly follow the predicted mathematical model, which was verified to approximate an

  10. The fractography analysis of IN718 alloy after three-point flexure fatigue test

    Directory of Open Access Journals (Sweden)

    Belan Juraj

    2018-01-01

    Full Text Available In this study, the high cycle fatigue (HCF properties of IN718 superalloy with given chemical composition were investigated at three-point flexure fatigue test at room temperature. INCONEL alloy 718 is nickel-chromium-iron hardenable alloy and due to its unique combination of mechanical properties (high-strength; corrosion-resistant and so on used for production of heat resistant parts of aero jet engine mostly. Mechanical properties of this alloy are strongly dependent on microstructure and on presence of structural features such are principal strengthening phase gamma double prime, gamma prime and due to its morphology less desired delta phases. The mentioned phases precipitate at various temperature ranges and Nb content as well. The three-point flexure fatigue test was performed on ZWICK/ROELL Amsler 150 HFP 5100 test equipment with approximate loading frequency f=150 Hz. The S – N (Stress – Number of cycles curve was obtained after testing. With the help of scanning electron microscope (SEM, fractography analyses were performed to disclose the fracture features of specimens in different life ranges. The brief comparison of three-point flexure and push-pull fatigue loading modes and its influence on fatigue life is discussed as well.

  11. Fatigue Analysis of Magnesium Alloys Components for Car Industry

    Science.gov (United States)

    Marsavina, Liviu; Rusu, Lucian; Șerban, Dan Andrei; Negru, Radu Marcel; Cernescu, Anghel

    2017-12-01

    The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.

  12. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Polák, Jaroslav, E-mail: polak@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Petráš, Roman; Heczko, Milan; Kuběna, Ivo [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Kruml, Tomáš [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Chai, Guocai [Sandvik Materials Technology, SE-811 81 Sandviken (Sweden); Linköping University, Engineering Materials, SE-581 83 Linköping (Sweden)

    2014-10-06

    Austenitic heat resistant Sanicro 25 steel developed for high temperature applications in power generation industry has been subjected to strain controlled low cycle fatigue tests at ambient and at elevated temperature in a wide interval of strain amplitudes. Fatigue hardening/softening curves, cyclic stress–strain curves and fatigue life curves were evaluated at room temperature and at 700 °C. The internal dislocation structures of the material at room and at elevated temperature were studied using transmission electron microscopy. High resolution surface observations and FIB cuts revealed early damage at room temperature in the form of persistent slip bands and at elevated temperature as oxidized grain boundary cracks. Dislocation arrangement study and surface observations were used to identify the cyclic slip localization and to discuss the fatigue softening/hardening behavior and the temperature dependence of the fatigue life.

  13. Statistical treatment of fatigue test data

    International Nuclear Information System (INIS)

    Raske, D.T.

    1980-01-01

    This report discussed several aspects of fatigue data analysis in order to provide a basis for the development of statistically sound design curves. Included is a discussion on the choice of the dependent variable, the assumptions associated with least squares regression models, the variability of fatigue data, the treatment of data from suspended tests and outlying observations, and various strain-life relations

  14. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, Antoine; Gourdin, Cedric [DM2S/SEMT/LISN, Gif sur Yvette (France); Vincent, Ludovic [DMN/SRMA/LCD, Gif sur Yvette (France)

    2009-07-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  15. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    International Nuclear Information System (INIS)

    Fissolo, Antoine; Gourdin, Cedric; Vincent, Ludovic

    2009-01-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  16. An evaluation on fatigue crack growth in a fine-grained isotropic graphite

    International Nuclear Information System (INIS)

    Wang Hongtao; Sun Libin; Li Chenfeng; Shi Li; Wang Haitao

    2012-01-01

    Highlights: ► The propagation of micro- and macro-fatigue cracks in IG-11 graphite was studied. ► The curves of the fatigue crack growth rate versus the SIF range show three stages. ► The fatigue microcrack propagation is very sensitive to graphite's microstructures. ► Graphite's microstructures have no significant impact on fatigue macrocrack growth. ► The fatigue fracture surface indicates the fracture mechanism of the IG-11 graphite. - Abstract: The aim of this paper is to investigate the mechanism of fatigue crack propagation in IG-11 graphite, and determine the crack growth rate in relation to the stress level. Experimental studies were performed at both micro and macro scales. For fatigue microcrack propagation, single-edge-notch specimens were chosen for testing and the fatigue crack growth was measured in situ with a scanning electron microscope. For fatigue macrocrack propagation, CT specimens were used and the fatigue crack growth was measured with a high-accuracy optic microscope. Combining the two groups of experimental results, the following conclusions are derived: (1) The heterogeneous microstructures of the graphite material have significant impact on the fatigue microcrack growth, while their influence on fatigue macrocrack growth is very limited. (2) The relationship between the fatigue crack growth rate and the crack-tip stress intensity factor range can be expressed in the form of Paris formulae, which contains three stages: an initial rising part with a small slope, an abrupt rise with a very large acceleration, and a short final part with a small slope. (3) The fatigue fracture surface of the graphite material contains considerable sliding of leaf-shape graphite flakes combined with small cotton-shape plastic deformations. These sliding traces are approximately aligned at 45°, showing the main cause of the fatigue fracture is the shear stress. There are also a large amount of secondary cracks inside unit cells and on cell walls

  17. Fatigue Life Methodology for Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    urri, Gretchen B.; Schaff, Jeffery R.

    2006-01-01

    Nonlinear-tapered flexbeam specimens from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. Two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) associated with simulated delamination growth in the flexbeams are presented from both codes. These results compare well with each other and suggest that the initial delamination growth from the tip of the ply-drop toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves for comparison with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared well with the test results.

  18. Creep-fatigue rules in the RCC-MR code

    International Nuclear Information System (INIS)

    Drubay, B.

    1988-01-01

    In 1978, CEA, Electricite de France (EDF) and NOVATOME decided to draw up a complete set of design and construction rules for LMFBR components. This RCC-MR code issued in June 1985 and completed in November 1987 was chosen as a sound basis for the next European Fast Reactor (EFR). The purpose of this paper is to describe the present RCC-MR creep-fatigue design rules to be applied with elastic analysis including the modifications adopted in the first addenda. This method is based on a separate evaluation of a fatigue usage fraction V and creep rupture usage fraction W with the common linear summation rule. The fatigue usage fraction is obtained from continuous fatigue curves (without hold times) and from total strain ranges (elastic + plastic + creep). The creep rupture usage fraction W is obtained from stress to rupture curves and a stress σk evaluating the stress generated during the cycle. (author)

  19. Fatigue behaviour and crack growth of ferritic steel under environmental conditions

    International Nuclear Information System (INIS)

    Herter, K.H.; Schuler, X.; Weissenberg, T.

    2012-01-01

    The assessment of fatigue and cyclic crack growth behaviour of safety relevant components is of importance for the ageing management with regard to safety and reliability. For cyclic stress evaluation different codes and standards provide fatigue analysis procedures to be performed considering the various mechanical and thermal loading histories and geometric complexities of the components. For the fatigue design curves used as a limiting criteria the influence of different factors like e.g. environment, surface finish and temperature must be taken into consideration in an appropriate way. Fatigue tests were performed in the low cycle fatigue (LCF) und high cycle fatigue (HCF) regime with low alloy steels as well as with Nb- and Ti-stabilized German austenitic stainless steels in air and high temperature (HT) boiling water reactor environment to extend the state of knowledge of environmentally assisted fatigue (EAF) as it can occur in boiling water reactor (BWR) plants. Using the reactor pressure vessel (RPV) steel 22NiMoCr3-7 experimental data were developed to verify the influence of BWR coolant environment (high purity water as well as sulphate containing water with 90 ppb SO 4 at a test temperature of 240 C and an oxygen content of 400 ppb) on the fatigue life and to extend the basis for a reliable estimation of the remaining service life of reactor components. Corresponding experiments in air were performed to establish reference data to determine the environmental correction factor F en accounting for the environment. The experimental results are compared with international available mean data curves, the new design curves and on the basis of the environmental factor F en . Furthermore the behaviour of steel 22NiMoCr3-7 in oxygenated high temperature water under transient loading conditions was investigated with respect to crack initiation and cyclic crack growth. In this process the stress state of the specimen and the chemical composition of the high

  20. The Fatigue Life Prediction of Train Wheel Rims Containing Spherical Inclusions

    Science.gov (United States)

    Li, Yajie; Chen, Huanguo; Cai, Li; Chen, Pei; Qian, Jiacheng; Wu, Jianwei

    2018-03-01

    It is a common phenomenon that fatigue crack initiation occurs frequently in the inclusions of wheel rims. Research on the fatigue life of wheel rims with spherical inclusions is of great significance on the reliability of wheels. To find the danger point and working condition of a wheel, the stress state of the wheel rim with spherical inclusions was analyzed using the finite element method. Results revealed that curve conditions are dangerous. The critical plane method, based on the cumulative fatigue damage theory, was used to predict the fatigue life of the wheel rim and whether it contained spherical inclusions or not under curve conditions. It was found that the fatigue life of the wheel rim is significantly shorter when the wheel rim contains spherical inclusions. Analysis of the results can provide a theoretical basis and technical support for train operations and maintenance.

  1. A structural strain method for low-cycle fatigue evaluation of welded components

    International Nuclear Information System (INIS)

    Dong, P.; Pei, X.; Xing, S.; Kim, M.H.

    2014-01-01

    In this paper, a new structural strain method is presented to extend the early structural stress based master S–N curve method to low cycle fatigue regime in which plastic deformation can be significant while an elastic core is still present. The method is formulated by taking advantage of elastically calculated mesh-insensitive structural stresses based on nodal forces available from finite element solutions. The structural strain definition is consistent with classical plate and shell theory in which a linear through-thickness deformation field is assumed a priori in both elastic or elastic–plastic regimes. With considerations of both yield and equilibrium conditions, the resulting structural strains are analytically solved if assuming elastic and perfectly plastic material behavior. The formulation can be readily extended to strain-hardening materials for which structural strains can be numerically calculated with ease. The method is shown effective in correlating low-cycle fatigue test data of various sources documented in the literature into a single narrow scatter band which is remarkable consistent with the scatter band of the existing master S–N curve adopted ASME B and PV Code since 2007. With this new method, some of the inconsistencies of the pseudo-elastic structural stress procedure in 2007 ASME Div 2 Code can now be eliminated, such as its use of Neuber's rule in approximating structural strain beyond yield. More importantly, both low cycle and high cycle fatigue behaviors can now be treated in a unified manner. The earlier mesh-insensitive structural stress based master S–N curve method can now be viewed as an application of the structural strain method in high cycle regime, in which structural strains are linearly related to traction-based structural stresses according to Hooke's law. In low-cycle regime, the structural strain method characterizes fatigue damage directly in terms of structural strains that satisfy linear through

  2. Correction of fatigue parameters of concrete using approximation of mechanical-Fracture parameters in time

    Czech Academy of Sciences Publication Activity Database

    Šimonová, H.; Keršner, Z.; Seitl, Stanislav; Pryl, D.; Pukl, R.

    -, č. 1 (2012), s. 57-59 ISSN 1213-3116 R&D Projects: GA ČR(CZ) GAP104/11/0833 Institutional support: RVO:68081723 Keywords : fatigue * concrete * correction * fracture parameters Subject RIV: JL - Materials Fatigue, Friction Mechanics

  3. Fatigue evaluation of socket welded piping in nuclear power plant

    International Nuclear Information System (INIS)

    Vecchio, R.S.

    1996-01-01

    Fatigue failures in piping systems occur, almost without exception, at the welded connections. In nuclear power plant systems, such failures occur predominantly at the socket welds of small diameter piping ad fillet attachment welds under high-cycle vibratory conditions. Nearly all socket weld fatigue failures are identified by leaks which, though not high in volume, generally are costly due to attendant radiological contamination. Such fatigue cracking was recently identified in the 3/4 in. diameter recirculation and relief piping socket welds from the reactor coolant system (RCS) charging pumps at a nuclear power plant. Consequently, a fatigue evaluation was performed to determine the cause of cracking and provide an acceptable repair. Socket weld fatigue life was evaluated using S-N type fatigue life curves for welded structures developed by AASHTO and the assessment of an effective cyclic stress range adjacent to each socket weld. Based on the calculated effective tress ranges and assignment of the socket weld details to the appropriate AASHTO S-N curves, the socket weld fatigue lives were calculated and found to be in excellent agreement with the accumulated cyclic life to-date

  4. Statistical analysis of fatigue strain-life data for carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Keisler, J.; Chopra, O.K.

    1995-03-01

    The existing fatigue strain vs life (S-N) data, foreign and domestic, for carbon and low-alloy steels used in the construction of nuclear power plant components have been compiled and categorized according to material, loading, and environmental conditions. A statistical model has been developed for estimating the effects of the various test conditions on fatigue life. The results of a rigorous statistical analysis have been used to estimate the probability of initiating a fatigue crack. Data in the literature were reviewed to evaluate the effects of size, geometry, and surface finish of a component on its fatigue life. The fatigue S-N curves for components have been determined by applying design margins for size, geometry, and surface finish to crack initiation curves estimated from the model

  5. ESTIMATION OF IRREVERSIBLE DAMAGEABILITY AT FATIGUE OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-04-01

    exist with inhomogeneous position of crystalline structure defects and, primarily, dislocations. Practical value. Increase of carbon content from 0.65 to 0.7%, in the conditions of cyclic loading of steel with the structure of lamellar pearlite is accompanied by the fatigue durability increase approximately on 40%. The increase of carbon content in steel accelerates transition from the stage of forming the convertible damages of internal structure to irreversible ones that is confirmed by the increase of angular coefficient of French curves.

  6. Modified Spectral Fatigue Methods for S-N Curves With MIL-HDBK-5J Coefficients

    Science.gov (United States)

    Irvine, Tom; Larsen, Curtis

    2016-01-01

    The rainflow method is used for counting fatigue cycles from a stress response time history, where the fatigue cycles are stress-reversals. The rainflow method allows the application of Palmgren-Miner's rule in order to assess the fatigue life of a structure subject to complex loading. The fatigue damage may also be calculated from a stress response power spectral density (PSD) using the semi-empirical Dirlik, Single Moment, Zhao-Baker and other spectral methods. These methods effectively assume that the PSD has a corresponding time history which is stationary with a normal distribution. This paper shows how the probability density function for rainflow stress cycles can be extracted from each of the spectral methods. This extraction allows for the application of the MIL-HDBK-5J fatigue coefficients in the cumulative damage summation. A numerical example is given in this paper for the stress response of a beam undergoing random base excitation, where the excitation is applied separately by a time history and by its corresponding PSD. The fatigue calculation is performed in the time domain, as well as in the frequency domain via the modified spectral methods. The result comparison shows that the modified spectral methods give comparable results to the time domain rainflow counting method.

  7. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  8. An accurate fatigue damage model for welded joints subjected to variable amplitude loading

    Science.gov (United States)

    Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.

    2017-12-01

    Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.

  9. Fatigue life of bovine meniscus under longitudinal and transverse tensile loading.

    Science.gov (United States)

    Creechley, Jaremy J; Krentz, Madison E; Lujan, Trevor J

    2017-05-01

    The knee meniscus is composed of a fibrous extracellular matrix that is subjected to large and repeated loads. Consequently, the meniscus is frequently torn, and a potential mechanism for failure is fatigue. The objective of this study was to measure the fatigue life of bovine meniscus when applying cyclic tensile loads either longitudinal or transverse to the principal fiber direction. Fatigue experiments consisted of cyclic loads to 60%, 70%, 80% or 90% of the predicted ultimate tensile strength until failure occurred or 20,000 cycles was reached. The fatigue data in each group was fit with a Weibull distribution to generate plots of stress level vs. cycles to failure (S-N curve). Results showed that loading transverse to the principal fiber direction gave a two-fold increase in failure strain, a three-fold increase in creep, and a nearly four-fold increase in cycles to failure (not significant), compared to loading longitudinal to the principal fiber direction. The S-N curves had strong negative correlations between the stress level and the mean cycles to failure for both loading directions, where the slope of the transverse S-N curve was 11% less than the longitudinal S-N curve (longitudinal: S=108-5.9ln(N); transverse: S=112-5.2ln(N)). Collectively, these results suggest that the non-fibrillar matrix is more resistant to fatigue failure than the collagen fibers. Results from this study are relevant to understanding the etiology of atraumatic radial and horizontal meniscal tears, and can be utilized by research groups that are working to develop meniscus implants with fatigue properties that mimic healthy tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. High cycle fatigue of austenitic stainless steels under random loading

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Petrequin, P.

    1987-08-01

    To investigate reactor components, load control random fatigue tests were performed at 300 0 C and 550 0 C, on specimens from austenitic stainless steels plates in the transverse orientation. Random solicitations are produced on closed loop servo-hydraulic machines by a mini computer which generates random load sequence by the use of reduced Markovian matrix. The method has the advantage of taking into account the mean load for each cycle. The solicitations generated are those of a stationary gaussian process. Fatigue tests have been mainly performed in the endurance region of fatigue curve, with scattering determination using stair case method. Experimental results have been analysed aiming at determining design curves for components calculations, depending on irregularity factor and temperature. Analysis in term of mean square root fatigue limit calculation, shows that random loading gives more damage than constant amplitude loading. Damage calculations following Miner rule have been made using the probability density function for the case where the irregularity factor is nearest to 100 %. The Miner rule is too conservative for our results. A method using design curves including random loading effects with irregularity factor as an indexing parameter is proposed

  11. Thermal fatigue strength estimation of 2.25Cr-1Mo steel under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Kuwahara, Kazuo; Nitta, Akihito; Kitamura, Takayuki

    1980-01-01

    A 2-1/4Cr-1Mo steel is one of principal materials for high temperature equipments in nuclear and thermal power plants. The authors experimentally analyzed the high temperature fatigue strength and creep strength of a 2-1/4 Cr-1Mo steel main steam pipe which had been used in a thermal plant for operation up to 130,000 hours, and pointed out that the strain-range vs. life curves crossed each other due to the difference of temperature-strain phase in thermal fatigue. This suggests that it is difficult to estimate thermal fatigue life of steel materials having been subjected to different temperature-strain phase on the basis of isothermal low-cycle fatigue life at the upper limit temperature of thermal fatigue, and that it is urgently required to establish an appropriate method of evaluating thermal fatigue life. The authors attempted to prove that the strain range partitioning method used for the evaluation of thermal fatigue life in SUS 304 steels is applicable to this 2-1/4Cr-1Mo steel. Consequently, it was found that the thermal fatigue life could be estimated within a factor of 2.5 by the application of this method. (author)

  12. Fatigue life prediction for a cold worked T316 stainless steel

    International Nuclear Information System (INIS)

    Manjoine, M.J.

    1983-01-01

    Permanent damage curves of initiation-life and propagation-life which predict the fatigue life of specimens of a cold-worked type 316 stainless steel under complex strain-range histories were generated by a limited test program. Analysis of the test data showed that fatigue damage is not linear throughout life and that propagation life is longer than initiation-life at high strain ranges but is shorter at low strain ranges. If permanent damage has been initiated by prior history and/or fabrication, propagation to a given life can occur at a lower strain range than that estimated from the fatigue curves for constant CSR. (author) [pt

  13. Thermal fatigue loading for a type 304-L stainless steel used for pressure water reactor: investigations on the effect of a nearly perfect biaxial loading, and on the cumulative fatigue life

    International Nuclear Information System (INIS)

    Fissolo, A.; Gourdin, C.; Bouin, P.; Perez, G.

    2010-01-01

    Fatigue-life curves are used in order to estimate crack-initiation, and also to prevent water leakage on Pressure Water Reactor pipes. Such curves are built exclusively from push-pull tests performed under constant and uniaxial strain or stress-amplitude. However, thermal fatigue corresponds to a nearly perfect biaxial stress state and severe loading fluctuations are observed in operating conditions. In this frame, these two aspects have been successively investigated in this paper: In order to investigate on potential difference between thermal fatigue and mechanical fatigue, tests have been carried out at CEA using thermal fatigue devices. They show that for an identical level of strain-amplitude, the number of cycles required to achieve crack-initiation is significantly lower under thermal fatigue. This enhanced damage results probably from a perfect biaxial state under thermal fatigue. In this frame, application of the multiaxial Zamrik's criterion seems to be very promising. In order to investigate on cumulative damage effect in fatigue, multi-level strain controlled fatigue tests have been performed. Experimental results show that linear Miner's rule is not verified. A loading sequence effect is clearly evidenced. The double linear damage rule ('DLDR') improves significantly predictions of fatigue-life. (authors)

  14. Proof of fatigue strength of ferritic and austenitic nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Herter, K.H.; Schuler, X.; Weissenberg, T. [Materialpruefungsanstalt, Univ. Stuttgart (Germany)

    2009-07-01

    For the construction, design and operation of nuclear components and systems the appropriate technical codes and standards provide material data, detailed stress analysis procedures and a design philosophy which guarantees a reliable behaviour of the structural components throughout the specified lifetime. Especially for cyclic stress evaluation the different codes and standards provide different fatigue analyses procedures to be performed considering the various mechanical and thermal loading histories and geometric complexities of the components. For the fatigue design curves used as limiting criteria the influence of different factors like e.g., environment, surface finish and temperature must be taken into consideration in an appropriate way. Fatigue tests were performed with low alloy steels as well as with Nb- and Ti-stabilized German austenitic stainless steels in air and simulated high temperature boiling water reactor environment. The experimental results are compared and valuated with the mean data curves in air as well as with mean data curves under high temperature water environment published in the international literature. (orig.)

  15. An evaluation on fatigue crack growth in a fine-grained isotropic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hongtao; Sun Libin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Li Chenfeng [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Shi Li [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wang Haitao, E-mail: wanght@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The propagation of micro- and macro-fatigue cracks in IG-11 graphite was studied. Black-Right-Pointing-Pointer The curves of the fatigue crack growth rate versus the SIF range show three stages. Black-Right-Pointing-Pointer The fatigue microcrack propagation is very sensitive to graphite's microstructures. Black-Right-Pointing-Pointer Graphite's microstructures have no significant impact on fatigue macrocrack growth. Black-Right-Pointing-Pointer The fatigue fracture surface indicates the fracture mechanism of the IG-11 graphite. - Abstract: The aim of this paper is to investigate the mechanism of fatigue crack propagation in IG-11 graphite, and determine the crack growth rate in relation to the stress level. Experimental studies were performed at both micro and macro scales. For fatigue microcrack propagation, single-edge-notch specimens were chosen for testing and the fatigue crack growth was measured in situ with a scanning electron microscope. For fatigue macrocrack propagation, CT specimens were used and the fatigue crack growth was measured with a high-accuracy optic microscope. Combining the two groups of experimental results, the following conclusions are derived: (1) The heterogeneous microstructures of the graphite material have significant impact on the fatigue microcrack growth, while their influence on fatigue macrocrack growth is very limited. (2) The relationship between the fatigue crack growth rate and the crack-tip stress intensity factor range can be expressed in the form of Paris formulae, which contains three stages: an initial rising part with a small slope, an abrupt rise with a very large acceleration, and a short final part with a small slope. (3) The fatigue fracture surface of the graphite material contains considerable sliding of leaf-shape graphite flakes combined with small cotton-shape plastic deformations. These sliding traces are approximately aligned at 45 Degree-Sign , showing the

  16. A critical evaluation on the fatigue problem

    International Nuclear Information System (INIS)

    Rosa, E. da; Costa Machado Leal, L. da

    1978-01-01

    A review of the different aspects of approaches to the fatigue problems since the Woehler curves till the crack propagation is presented. The interrelationship among each one of the aspects is then carried out as well as the relation of the aspects to the different fatigue phases, since the crack nucleation till the final rupture in an attempt to unify the design procedure. (Author)

  17. IIW guidelines on weld quality in relationship to fatigue strength

    CERN Document Server

    Jonsson, Bertil; Hobbacher, A F; Kassner, M; Marquis, G

    2016-01-01

    This book presents guidelines on quantitative and qualitative measures of the geometric features and imperfections of welds to ensure that it meets the fatigue strength requirements laid out in the recommendations of the IIW (International Institute of Welding). Welds that satisfy these quality criteria can be assessed in accordance with existing IIW recommendations based on nominal stress, structural stress, notch stress or linear fracture mechanics. Further, the book defines more restrictive acceptance criteria based on weld geometry features and imperfections with increased fatigue strength. Fatigue strength for these welds is defined as S-N curves expressed in terms of nominal applied stress or hot spot stress. Where appropriate, reference is made to existing quality systems for welds.In addition to the acceptance criteria and fatigue assessment curves, the book also provides guidance on their inspection and quality control. The successful implementation of these methods depends on adequate training for o...

  18. Cement based composites for thin building elements: Fracture and fatigue parameters

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Bílek, V.; Keršner, Z.; Veselý, J.

    2010-01-01

    Roč. 2, č. 1 (2010), s. 911-916 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GA103/08/0963 Institutional research plan: CEZ:AV0Z20410507 Keywords : Cement-based composites * Fatigue concrete * Wöhler curve * Fibers Subject RIV: JL - Materials Fatigue, Friction Mechanics

  19. Fatigue tests and life estimation of Incoloy alloy 908

    International Nuclear Information System (INIS)

    Feng, J.; Toma, L.S.; Jang, C.H.; Steeves, M.M.

    1997-01-01

    Incoloy reg-sign alloy 908* is a candidate conduit material for Nb 3 Sn cable-in-conduit superconductors. The conduit is expected to experience cyclic loads at 4 K. Fatigue fracture of the conduit is one possible failure mode. So far, fatigue life has been estimated from fatigue crack growth data, which provide conservative results. The more traditional practice of life estimation using S-N curves has not been done for alloy 908 due to a lack of data at room and cryogenic temperatures. This paper presents a series of fatigue test results in response to this need. Tests were performed in reversed bending, rotating bending, and uniaxial fatigue machines. The test matrix included different heat treatments, two load ratios (R=-1 and 0.1), two temperatures (298 and 77 K), and two orientations (longitudinal and transverse). As expected, there is a semi-log linear relation between the applied stress and fatigue life above an applied stress (e.g., 310 MPa for tests at 298 K and R=-1). Below this stress the curves show an endurance limit. The aged and cold-worked materials have longer fatigue lives and higher endurance limits than the others. Different orientations have no apparent effect on life. Cryogenic temperature results in a much high fatigue life than room temperature. A higher tensile mean stress gives shorter fatigue life. It was also found that the fatigue lives of the reversed bending specimens were of the same order as those of the uniaxial test specimens, but were only half the lives of the rotating bending specimens for given stresses. A sample application of the S-N data is discussed

  20. FATIGUE CRACK PROPAGATION THROUGH AUSTEMPERED DUCTILE IRON MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2010-10-01

    Full Text Available Austempered ductile iron (ADI has a wide range of application, particularly for castings used in automotive and earth moving machinery industries. These components are usually subjected to variable dynamic loading that may promote initiation and propagation of fatigue cracks up to final fracture. Thus, it is important to determine the fatigue crack propagation behavior of ADI. Since fatigue crack growth rate (da/dN vs. stress intensity factor K data describe fatigue crack propagation resistance and fatigue durability of structural materials, da/dN vs. Ka curves of ADI 1050 are reported here. The threshold amplitude of stress intensity factor Kath is also determined. Finally, the influence of stress intensity factor amplitude to the character of fatigue crack propagation through the ADI microstructure is described.

  1. Fatigue characteristics of dual-phase steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Onn, Irwan Herman; Ahmad, Norhayati; Tamin, Mohd Nasir [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-01-15

    Fatigue characteristics of dual-phase steel sheets, commonly used in automobile body construction were established. For this purpose, a series of fatigue tests, each at constant stress amplitude were conducted on 1.2 mm-thick, dual-phase DP600 steel sheet specimens with two different load ratios of minimum-to-maximum stress, R = 0.1 and -1. The resulting fatigue behavior is expressed in terms of fatigue strength-life (S-N) curves. Fatigue behavior of the steel sheets in the high-cycle fatigue region can be represented by Basquin's equation with coefficient and exponent value of 921.2 and 0.093, respectively. An endurance limit of 255 MPa is observed. In addition, fatigue strengths of the dual-phase steel sheets display lower magnitude than their bulk counterparts. Effect of mean stress on fatigue behavior of the steel sheets is well predicted by Walker's model. Exponential calibration factor is introduced to the models by SWT, Goodman and Morrow with comparable prediction to the Walker's model.

  2. Fatigue Behavior of Inconel 718 TIG Welds

    Science.gov (United States)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  3. Low cycle fatigue strength of austenitic stainless steel under large strain regime

    International Nuclear Information System (INIS)

    Sakai, Michiya; Saito, Kiyoshi; Matsuura, Shinichi

    1998-01-01

    In order to establish realistic seismic safety of nuclear power plants, it is necessary to clarify the failure mode of each components and prepare a damage evaluation method. The authors have proposed the damage evaluation method based on the fully numerical approach to evaluate the low cycle fatigue (LCF) failure under seismic loadings. This method has been validated by comparison with the dynamic failure tests of thin elbows which should be the one of the important components of the FBR primary piping system. However, since there exists limited LCF data, fatigue lives under large strain regime have been extrapolated by available fatigue data. In this study, LCF tests have been conducted over a large strain range from 2% to 10% on austenitic stainless steel SUS304. From the results, the regressive LCF curve has been proposed to modify the Wada's best-fit LCF curve under large strain regime. The usage factors calculated by author's numerical approach using proposed LCF curve have been improved to correct the underestimation of the fatigue damage. (author)

  4. Crack Growth Behaviour of P92 Steel Under Creep-fatigue Interaction Conditions

    Directory of Open Access Journals (Sweden)

    JING Hong-yang

    2017-05-01

    Full Text Available Creep-fatigue interaction tests of P92 steel at 630℃ under stress-controlled were carried out, and the crack propagation behaviour of P92 steel was studied. The fracture mechanism of crack growth under creep-fatigue interaction and the transition points in a-N curves were analyzed based on the fracture morphology. The results show that the fracture of P92 steel under creep-fatigue interaction is creep ductile fracture and the (Ctavg parameter is employed to demonstrate the crack growth behaviour; in addition, the fracture morphology shows that the crack growth for P92 steel under creep-fatigue interaction is mainly caused by the nucleation and growth of the creep voids and micro-cracks. Furthermore, the transition point of a-lg(Ni/Nf curve corresponds to the turning point of initial crack growth changed into steady crack growth while the transition point of (da/dN-N curve exhibits the turning point of steady creep crack growth changed into the accelerated crack growth.

  5. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  6. Assessment and propagation of mechanical property uncertainties in fatigue life prediction of composite laminates

    DEFF Research Database (Denmark)

    Castro, Oscar; Branner, Kim; Dimitrov, Nikolay Krasimirov

    2018-01-01

    amplitude loading cycles. Fatigue life predictions of unidirectional and multi-directional glass/epoxy laminates are carried out to validate the proposed model against experimental data. The probabilistic fatigue behavior of laminates is analyzed under constant amplitude loading conditions as well as under......A probabilistic model for estimating the fatigue life of laminated composite materials considering the uncertainty in their mechanical properties is developed. The uncertainty in the material properties is determined from fatigue coupon tests. Based on this uncertainty, probabilistic constant life...... diagrams are developed which can efficiently estimate probabilistic É›-N curves at any load level and stress ratio. The probabilistic É›-N curve information is used in a reliability analysis for fatigue limit state proposed for estimating the probability of failure of composite laminates under variable...

  7. Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere

    OpenAIRE

    Kahraman, Tanju; Hüseyin Ugurlu, Hasan

    2016-01-01

    In this paper, we give Darboux approximation for dual Smarandache curves of time like curve on unit dual Lorentzian sphere. Firstly, we define the four types of dual Smarandache curves of a timelike curve lying on dual Lorentzian sphere.

  8. Fatigue Life Prediction of Self-Piercing Rivet Joints Between Magnesium and Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Kang Hong-Tae

    2018-01-01

    Full Text Available Various light materials including aluminum alloys and magnesium alloys are being used to reduce the weight of vehicle structures. Joining of dissimilar materials is always a challenging task to construct a solid structure. Self-piercing rivet (SPR joint is one of various joining methods for dissimilar materials. Front shock tower structures were constructed with magnesium alloy (AM60 joined to aluminum alloy (Al6082 by SPR joints. To evaluate the durability performance of the SPR joints in the structures, fatigue tests of the front shock tower structures were conducted with constant amplitude loadings. Furthermore, this study investigated fatigue life prediction method of SPR joints and compared the fatigue life prediction results with that of experimental results. For fatigue life prediction of the SPR joints in the front shock tower structures, lap-shear and cross-tension specimens of SPR joint were constructed and tested to characterize the fatigue properties of the SPR joint. Then, the SPR joint was represented with area contact method (ACM in finite element (FE models. The load-life curves of the lap-shear and cross-tension specimens were converted to a structural stress-life (S-N curve of the SPR joints. The S-N curve was used to predict fatigue life of SPR joints in the front shock tower structures. The test results and the prediction results were well correlated.

  9. Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing

    Science.gov (United States)

    2011-09-01

    isolated AO mode first arrival, recorded at PZT 2, is shown at 3 different fatigue levels. Figure 5. The area under the PSD curve, calculated twice...Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing B. L. GRISSO, G. PARK, L. W. SALVINO...with several challenges including limited performance knowledge of the materials, aluminum sensitization, structural fatigue performance, and

  10. Low cycle fatigue of alloy 718 in cryogenic environment

    International Nuclear Information System (INIS)

    Vergara Aimone, J.

    1989-01-01

    A specially processed Ni-Fe base superalloy 718 has been selected as a structural material for a critical component in ALCATOR C-MOD, the new fusion experimental facility at the Massachusetts Institute of Technology. Draw bars made out of this material will be subjected to large alternating loads while operating at 77 0 K. Monotonic and cyclic mechanical properties were determined in order to evaluate the reactor's maintenance schedule with special emphasis in developing a Low Cycle Fatigue database for this special alloy. Improved monotonic properties over conventionally heat treated alloy 718 were observed. Partial hardening was observed at 77 0 K at 1% of the fatigue life, while softening was observed at room temperature, both relative to their respective monotonic stress strain curves. The fatigue curves were corrected for non-zero mean stress allowing satisfactory safety margin for the expected alternating stress. (author)

  11. Review of ASME-NH Design Materials for Creep-Fatigue

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Kim, Jong Bum

    2010-01-01

    To review and recommend the candidate design materials for the Sodium-Cooled Fast Reactor, the material sensitivity evaluations by the comparison of design data between the ASME-NH materials were performed by using the SIE ASME-NH computer program implementing the material database of the ASME-NH. The design material data provided by the ASME-NH code are the elastic modulus and yield Strength, Time-Independent Allowable Stress Intensity value, time-dependent allowable stress intensity value, expected minimum stress-to rupture value, stress rupture Factors for weldment, isochronous stress-strain curves, and design fatigue curves. Among these, the data related with the creep-fatigue evaluation are investigated in this study

  12. Choosing the Optimal Number of B-spline Control Points (Part 1: Methodology and Approximation of Curves)

    Science.gov (United States)

    Harmening, Corinna; Neuner, Hans

    2016-09-01

    Due to the establishment of terrestrial laser scanner, the analysis strategies in engineering geodesy change from pointwise approaches to areal ones. These areal analysis strategies are commonly built on the modelling of the acquired point clouds. Freeform curves and surfaces like B-spline curves/surfaces are one possible approach to obtain space continuous information. A variety of parameters determines the B-spline's appearance; the B-spline's complexity is mostly determined by the number of control points. Usually, this number of control points is chosen quite arbitrarily by intuitive trial-and-error-procedures. In this paper, the Akaike Information Criterion and the Bayesian Information Criterion are investigated with regard to a justified and reproducible choice of the optimal number of control points of B-spline curves. Additionally, we develop a method which is based on the structural risk minimization of the statistical learning theory. Unlike the Akaike and the Bayesian Information Criteria this method doesn't use the number of parameters as complexity measure of the approximating functions but their Vapnik-Chervonenkis-dimension. Furthermore, it is also valid for non-linear models. Thus, the three methods differ in their target function to be minimized and consequently in their definition of optimality. The present paper will be continued by a second paper dealing with the choice of the optimal number of control points of B-spline surfaces.

  13. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes the...

  14. Review of fatigue criteria development for HTGR core supports

    International Nuclear Information System (INIS)

    Ho, F.H.; Vollman, R.E.

    1979-10-01

    Fatigue criteria for HTGR core support graphite structure are presented. The criteria takes into consideration the brittle nature of the material, and emphasizes the probabilistic approach in the treatment of strength data. The stress analysis is still deterministic. The conventional cumulative damage approach is adopted here. A specified minimum S-N curve is defined as the curve with 99% probability of survival at a 95% confidence level to accommodate random variability of the material strength. A constant life diagram is constructed to reconcile the effect of mean stress. The linear damage rule is assumed to account for the effect of random cycles. An additional factor of safety of three on cycles is recommended. The uniaxial S-N curve is modified in the medium-to-high cycle range (> 2 x 10 3 cycles) for mutiaxial fatigue effects

  15. Mitigation of Over-conservatism in Fatigue Analysis of the Pressurizer Surge Line

    International Nuclear Information System (INIS)

    Moon, Chan Kook; Lee, Jang Gon; Kim, Tae Soon; Han, Sung Bong

    2007-01-01

    The U.S. Nuclear Regulatory Commission (NRC) issued draft regulatory guide DG-1144 in July 2006, entitled 'Guidelines for Evaluating Fatigue Analysis Incorporating the Life Reduction of Metal Components Due to the Effects of the Light-Water Reactor Environment for New Reactors.' This draft guide demands to perform fatigue analysis in accordance with the draft NUREG/CR-6909 report (Effect on Fatigue Life of Reactor material for LWR Coolant Environments) for carbon and low-alloy steels, and austenitic stainless steel materials. In March 2007, NRC formally issued Reg. guide 1.207 which demands to perform fatigue analysis in accordance with the final NUREG/CR-6909 report. Reviewing these documents it is found that in case of austenitic stainless steel and Ni-Cr alloy the new design fatigue curve is much more severe than present curve and will increase the cumulative usage factor (CUF) 4 to 5 times of the present value. In particular, detailed analysis for pressurizer surge line which is made of stainless steel is needed and mitigation of over-conservatism included in present fatigue analysis procedures is absolutely required. In this study, thus, the mitigation method for over conservatism in the present fatigue analysis procedure for the pressurizer surge line is studied

  16. Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP)

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2015-01-01

    The static and fatigue bending behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP) has been investigated by four-point bending tests. Fatigue panels and weakened panels (wESCP) with an initial interface defect were manufactured for the fatigue tests. Stress σ vs. number of cycles curves (S-N) were recorded under the different stress...

  17. Common Mathematical Model of Fatigue Characteristics

    Directory of Open Access Journals (Sweden)

    Z. Maléř

    2004-01-01

    Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.

  18. Classifying post-stroke fatigue: Optimal cut-off on the Fatigue Assessment Scale.

    Science.gov (United States)

    Cumming, Toby B; Mead, Gillian

    2017-12-01

    Post-stroke fatigue is common and has debilitating effects on independence and quality of life. The Fatigue Assessment Scale (FAS) is a valid screening tool for fatigue after stroke, but there is no established cut-off. We sought to identify the optimal cut-off for classifying post-stroke fatigue on the FAS. In retrospective analysis of two independent datasets (the '2015' and '2007' studies), we evaluated the predictive validity of FAS score against a case definition of fatigue (the criterion standard). Area under the curve (AUC) and sensitivity and specificity at the optimal cut-off were established in the larger 2015 dataset (n=126), and then independently validated in the 2007 dataset (n=52). In the 2015 dataset, AUC was 0.78 (95% CI 0.70-0.86), with the optimal ≥24 cut-off giving a sensitivity of 0.82 and specificity of 0.66. The 2007 dataset had an AUC of 0.83 (95% CI 0.71-0.94), and applying the ≥24 cut-off gave a sensitivity of 0.84 and specificity of 0.67. Post-hoc analysis of the 2015 dataset revealed that using only the 3 most predictive FAS items together ('FAS-3') also yielded good validity: AUC 0.81 (95% CI 0.73-0.89), with sensitivity of 0.83 and specificity of 0.75 at the optimal ≥8 cut-off. We propose ≥24 as a cut-off for classifying post-stroke fatigue on the FAS. While further validation work is needed, this is a positive step towards a coherent approach to reporting fatigue prevalence using the FAS. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Wind-Induced Fatigue Analysis of High-Rise Steel Structures Using Equivalent Structural Stress Method

    Directory of Open Access Journals (Sweden)

    Zhao Fang

    2017-01-01

    Full Text Available Welded beam-to-column connections of high-rise steel structures are susceptive to fatigue damage under wind loading. However, most fatigue assessments in the field of civil engineering are mainly based on nominal stress or hot spot stress theories, which has the disadvantage of dependence on the meshing styles and massive curves selected. To address this problem, in this paper, the equivalent structural stress method with advantages of mesh-insensitive quality and capability of unifying different stress-life curves (S-N curves into one is introduced to the wind-induced fatigue assessment of a large-scale complicated high-rise steel structure. The multi-scale finite element model is established and the corresponding wind loading is simulated. Fatigue life assessments using equivalent structural stress method, hot spot stress method and nominal stress method are performed, and the results are verified and comparisons are made. The mesh-insensitive quality is also verified. The results show that the lateral weld toe of the butt weld connecting the beam flange plate and the column is the location where fatigue damage most likely happens. Nominal stress method considers fatigue assessment of welds in a more global way by averaging all the stress on the weld section while in equivalent structural stress method and hot spot method local stress concentration can be taken into account more precisely.

  20. Multiaxial creep-fatigue rules

    International Nuclear Information System (INIS)

    Spindler, M.W.; Hales, R.; Ainsworth, R.A.

    1997-01-01

    Within the UK, a comprehensive procedure, called R5, is used to assess the high temperature response of structures. One part of R5 deals with creep-fatigue initiation, and in this paper we describe developments in this part of R5 to cover multiaxial stress states. To assess creep-fatigue, damage is written as the linear sum of fatigue and creep components. Fatigue is assessed using Miner's law with the total endurance split into initiation and growth cycles. Initiation is assessed by entering the curve of initiation cycles vs strain range using a Tresca equivalent strain range. Growth is assessed by entering the curve of growth cycles vs strain range using a Rankine equivalent strain range. The number of allowable cycles is obtained by summing the initiation and growth cycles. In this way the problem of defining an equivalent strain range applicable over a range of endurance is avoided. Creep damage is calculated using ductility exhaustion methods. In this paper we address two aspects; first, the nature of stress relaxation and, hence, accumulated creep strain in multiaxial stress fields; secondly, the effect of multiaxial stress on creep ductility. The effect of multiaxial stress state on creep ductility has been examined using experimental data and mechanistic models. Good agreement is demonstrated between an empirical description of test data and a cavity growth model, provided a simple nucleation criterion is included. A simple scaling factor is applied to uniaxial creep ductility, defined as a function of stress state. The factor is independent of the cavity growth mechanisms and yields a value of equivalent strain which can be conveniently used in determining creep damage by ductility exhaustion. (author). 14 refs, 4 figs

  1. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    Science.gov (United States)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  2. Obtaining and analysis of results of fatigue and corrosion-fatigue in steel API 5L X60; Obtencao e analise de resultados de fadiga e corrosao-fadiga em aco API 5L X60

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Bruno Allison [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Silva, Antonio Almeida; Santos, Fabio Gualberto Chagas [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    The corrosion process allied to the fatigue, due to repetitive efforts of several natures, is the main responsible for the damages in pipeline and offshore structures that results in the appears of located faults, and by the way can results in leaks and financial and environmental loss. This phenomenon calls corrosion-fatigue, however, it is very complex, and mainly, in what it concerns the form as this it develops in the structure. The objective of this work is to present some results of experimental fatigue tests and corrosion-fatigue accomplished with specimen that the material originated a pipeline steel API 5L X60. The tests developed in a machine which could test until 12 specimens per time. For test of corrosion-fatigue was used a cell-of-corrosion especially projected, in this way simulated an aggressive environmental condition in a corrosion conditions. With the results of tests, was possible estimate the fatigue limits of the specimen when submitted to the repeated flexing, and compare it with evaluate corrosion-fatigue graphs, that as the literature comes moved down of the curve, in relation to the fatigue curve. (author)

  3. Fatigue testing on samples from Zircaloy-4 tubes type SEU-43

    International Nuclear Information System (INIS)

    Olaru, V.; Ionescu, V.; Nitu, A.; Ionescu, D.; Voicu, F.

    2016-01-01

    The paper presents the testing of samples worked from Zicaloy-4 tubes (as-received.. metallurgical state), utilized in the composition of the CANDU SEU-43 fuel bundle. These tests are intended to simulate their behaviour in a power cycling process inside the reactor. The testing process is of low cycle fatigue type, done outside of the reactor, on ''C-ring'' samples, cut along the transversal direction. These samples are tested at 1%, 2% and 3% amplitude deformation, at room temperature. The calibration curves for both types of tube (small and big diameter) are determined by using the finite element analyses with the ANSYS computer code. The cycling test results are in the form of a fatigue life curve (N-e) for zircaloy-4 used in the SEU-43 fuel bundle. The curve is determined by the experimental dependency between the number of cycles to fracture and the deformation amplitude. The low cycle fatigue mechanical tests done at room temperature together with electronic microscopy analyses have reflected the characteristic behaviour of the zircaloy-4 metal in the given environment conditions. (authors)

  4. Fatigue strength evaluation of friction stir welded aluminium joints using the nominal and notch stress concepts

    International Nuclear Information System (INIS)

    Barsoum, Z.; Khurshid, M.; Barsoum, I.

    2012-01-01

    Highlights: ► Fatigue testing and evaluation of friction stir welded butt and overlap joints. ► Evaluation based on nominal and effective notch stress concept. ► Comparison with different design recommendations and codes. ► Higher fatigue strength and SN-slopes is observed. ► New fatigue design recommendations proposed for FSW joints. -- Abstract: In this study the fatigue strength is investigated for Friction Stir Welded (FSW) overlap and butt welded joints in different thicknesses based on nominal and effective notch stress concepts. The fatigue test results are compared with fatigue strength recommendations according to EN 1999-1-3 and International Institute of Welding (IIW). The results are also compared with available published data and Finite Element Analysis (FEA) is carried out to investigate the effect of plate thickness and nugget size on the fatigue strength of overlap joints. 3–3 mm butt welded joints shows the highest fatigue strength in comparison with 3–5 mm butt welded and overlap joints. Slopes of the SN-curves for two different joint types differ from the slope recommended by IIW. A specific failure trend is observed in overlap FSW joints. However, the slopes of the SN-curves are in close agreement with slopes found in EN 1999-1-3. The slopes of various published results and test results presented in this study are in good agreement with each other. The suggested fatigue design curves for the nominal and effective notch stress concept have a higher slope than given for fusion welds by IIW.

  5. Study on Determination Method of Fatigue Testing Load for Wind Turbine Blade

    Science.gov (United States)

    Liao, Gaohua; Wu, Jianzhong

    2017-07-01

    In this paper, the load calculation method of the fatigue test was studied for the wind turbine blade under uniaxial loading. The characteristics of wind load and blade equivalent load were analyzed. The fatigue property and damage theory of blade material were studied. The fatigue load for 2MW blade was calculated by Bladed, and the stress calculated by ANSYS. Goodman modified exponential function S-N curve and linear cumulative damage rule were used to calculate the fatigue load of wind turbine blades. It lays the foundation for the design and experiment of wind turbine blade fatigue loading system.

  6. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    Science.gov (United States)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  7. Stress intensity factors for fatigue loaded details between crossbeams and trapezoidal stringers

    NARCIS (Netherlands)

    Maljaars, J.; Pijpers, R.J.M.

    2013-01-01

    A number of orthotropic deck structures of existing bridges are suffering from fatigue cracks. Maintenance of these deck structures may consist of regular inspections and repair of detected cracks. The usual fatigue design life procedure for aswelded structures based on S-N curves is not feasible

  8. Fatigue behavior of a bolted assembly - a comparison between numerical analysis and experimental analysis

    International Nuclear Information System (INIS)

    Bosser, M.; Vagner, J.

    1987-01-01

    The fatigue behavior of a bolted assembly can be analysed, either by fatigue tests, or by computing the stress variations and using a fatigue curve. This paper presents the fatigue analysis of a stud-bolt and stud-flange of a steam generator manway carried out with the two methods. The experimental analysis is performed for various levels of load, according to the recommandations of the ASME code section III appendix II. The numerical analysis of the stresses is based on the results of a finite element analysis performed with the program SYSTUS. The maximum stresses are obtained in the first bolt threads. In using these stresses, the allowable number of cycles for each level of loading analysed, is obtained from fatigue curves, as defined in appendix I section III of the ASME code. The analysis underlines that, for each level of load the purely numerical approach is highly conservative, compared to the experimental approach. (orig.)

  9. Near threshold fatigue testing

    Science.gov (United States)

    Freeman, D. C.; Strum, M. J.

    1993-01-01

    Measurement of the near-threshold fatigue crack growth rate (FCGR) behavior provides a basis for the design and evaluation of components subjected to high cycle fatigue. Typically, the near-threshold fatigue regime describes crack growth rates below approximately 10(exp -5) mm/cycle (4 x 10(exp -7) inch/cycle). One such evaluation was recently performed for the binary alloy U-6Nb. The procedures developed for this evaluation are described in detail to provide a general test method for near-threshold FCGR testing. In particular, techniques for high-resolution measurements of crack length performed in-situ through a direct current, potential drop (DCPD) apparatus, and a method which eliminates crack closure effects through the use of loading cycles with constant maximum stress intensity are described.

  10. New fatigue damage analysis of complex engineering components based on FEM

    International Nuclear Information System (INIS)

    Ott, W.

    1987-05-01

    A new type of fatigue damage analysis for multiaxial elastoplastic conditions based on a three-dimensional finite element analysis has been developed. The analysis includes the material model after Mroz. The fatigue life evaluation in the critical areas is based on plastic work at these locations. The proposed damage concept can be applied to arbitrary multiaxial stress-strain paths. For the evaluation of the damage cycles in terms of closed stress-strain hysteresis loops are not required. The damage is determined on the basis of uniaxial material data (stress-strain curve, life to crack iniation curve). (orig./HP) [de

  11. Reliability based code calibration of fatigue design criteria of nuclear Class-1 piping

    International Nuclear Information System (INIS)

    Mishra, J.; Balasubramaniyan, V.; Chellapandi, P.

    2016-01-01

    Fatigue design of Class-l piping of NPP is carried out using Section-III of American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel code. The fatigue design criteria of ASME are based on the concept of safety factor, which does not provide means for the management of uncertainties for consistently reliable and economical designs. In this regards, a work is taken up to estimate the implicit reliability level associated with fatigue design criteria of Class-l piping specified by ASME Section III, NB-3650. As ASME fatigue curve is not in the form of analytical expression, the reliability level of pipeline fittings and joints is evaluated using the mean fatigue curve developed by Argonne National Laboratory (ANL). The methodology employed for reliability evaluation is FORM, HORSM and MCS. The limit state function for fatigue damage is found to be sensitive to eight parameters, which are systematically modelled as stochastic variables during reliability estimation. In conclusion a number of important aspects related to reliability of various piping product and joints are discussed. A computational example illustrates the developed procedure for a typical pipeline. (author)

  12. Life prediction of l6 steel using strain-life curve and cyclic stress-strain curve by means of low cycle fatigue testing

    Science.gov (United States)

    Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP

    2017-05-01

    L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.

  13. Fatigue analysis of HANARO primary cooling system piping

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    A main form of piping failure which occurring leak before break (LBB) is fatigue failure. The fatigue analysis of HANARO primary cooling system (PCS) piping was performed. The PCS piping had been designed in accordance with ASME Class 3 for service conditions. However fatigue analysis is not required in Class 3. In this study the quantitative fatigue analysis was carried out according to ASME Class 1. The highest stress points which have the largest possibility of ASME class 1. The highest stress points which have the largest possibility of the fatigue were determined from the piping stress analysis for each subsection piping. The fatigue analysis was performed for 3 highest stress points, i.e., branch connection, anchor point and butt welding joint. After calculating the peak stress intensity range the fatigue usage factors were evaluated considering operating cycles and S-N curve. The cumulative usage factors for 3 highest stress points were much less than 1. The results show that the possibility of fatigue failure for PCS piping subjected to thermal expansion and seismic loads is very small. The structural integrity of the HANARO PCS piping for fatigue failure was proved to apply the LBB. (author). 11 tabs., 6 figs

  14. FATIGUE PROPERTIES OF MODIFIED 316LN STAINLESS STEEL AT 4 K FOR HIGH FIELD CABLE-IN-CONDUIT APPLICATIONS

    International Nuclear Information System (INIS)

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-01-01

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb 3 Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  15. Comparison of Fatigue Properties and Fatigue Crack Growth Rates of Various Implantable Metals

    Science.gov (United States)

    Okazaki, Yoshimitsu

    2012-01-01

    The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P.) grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK) than Ti alloy.

  16. Fatigue behaviour of X70 steel in crude oil

    Czech Academy of Sciences Publication Activity Database

    Gajdoš, Lubomír; Šperl, Martin; Bystrianský, J.

    2015-01-01

    Roč. 49, č. 2 (2015), s. 243-246 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GAP105/10/2052; GA TA ČR(CZ) TE02000162 Institutional support: RVO:68378297 Keywords : corrosion fatigue * S-N curve * X70 steel * crude oil * separated water Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.439, year: 2015 http://mit.imt.si/Revija/izvodi/mit152/gajdos.pdf

  17. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    Science.gov (United States)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  18. On the estimation of durability during thermal fatigue tests

    International Nuclear Information System (INIS)

    Vashunin, A.I.; Kotov, P.I.

    1981-01-01

    It is shown that during thermal fatigue tests under conditions of varying loading rigidity the value of stored one-sided deformation in a fracture zone tends to the limit value of material ductility. Holding at Tsub(max) is semicycle of compression increases irreversible deformation on value of Atausub(confer)sup(a), which does not depend on loading rigidity. It is established that the Use of curves of thermal fatigue as basic ones for determination of resistance of non-isothermal low-cycle fatigue is possible only at values of stored quasistatical damage, constituting less than 5% from available ductility [ru

  19. A study on damage and fatigue characteristics of plain woven carbon fiber reinforced composite material(I)

    International Nuclear Information System (INIS)

    Kim, Kwang Soo; Kim, Sang Tae

    1993-01-01

    The characteristics of damage and fatigue subjected to tensile fatigue loading in plain woven carbon fiber reinforced composite material were studied. Constant amplitude load of 90% stress of notch strength was applied to each specimen, which had different initial notch length, and crack dectectvie compliance curve was determined form load-displacement data. The effective crack length(a eff ) was obtained form this compliance curve and the effective crack growth could be divided to three-steps and explained separately. After cycling the shape of fatigue crack was observed by S.E.M.. Change of elastic modulus(E N ) during fatigue cycle was explained by repeated sudden-death medel. The material constant determined by Jen-Hsu model was more useful to evaluate damage than Wang-Chim model. (Author)

  20. Fatigue Damage Predictions in Aluminium Constructions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Toernqvist, Rikard; Nielsen, Poul Erik

    2002-01-01

    The paper describes parts of the outcome of a large Danish research project on Large Scale Aluminum Connections. The topic addressed is calculation of fatigue failure in complicated welded aluminum connections. The calculation procedure is based on a S-N curve for the hot-spot stresses at the wel...

  1. Metabolomic markers of fatigue: Association between circulating metabolome and fatigue in women with chronic widespread pain.

    Science.gov (United States)

    Freidin, Maxim B; Wells, Helena R R; Potter, Tilly; Livshits, Gregory; Menni, Cristina; Williams, Frances M K

    2018-02-01

    Fatigue is a sensation of unbearable tiredness that frequently accompanies chronic widespread musculoskeletal pain (CWP) and inflammatory joint disease. Its mechanisms are poorly understood and there is a lack of effective biomarkers for diagnosis and onset prediction. We studied the circulating metabolome in a population sample characterised for CWP to identify biomarkers showing specificity for fatigue. Untargeted metabolomic profiling was conducted on fasting plasma and serum samples of 1106 females with and without CWP from the TwinsUK cohort. Linear mixed-effects models accounting for covariates were used to determine relationships between fatigue and metabolites. Receiver operating curve (ROC)-analysis was used to determine predictive value of metabolites for fatigue. While no association between fatigue and metabolites was identified in twins without CWP (n=711), in participants with CWP (n=395), levels of eicosapentaenoate (EPA) ω-3 fatty acid were significantly reduced in those with fatigue (β=-0.452±0.116; p=1.2×10 -4 ). A significant association between fatigue and two other metabolites also emerged when BMI was excluded from the model: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), and C-glycosyltryptophan (p=1.5×10 -4 and p=3.1×10 -4 , respectively). ROC analysis has identified a combination of 15 circulating metabolites with good predictive potential for fatigue in CWP (AUC=75%; 95% CI 69-80%). The results of this agnostic metabolomics screening show that fatigue is metabolically distinct from CWP, and is associated with a decrease in circulating levels of EPA. Our panel of circulating metabolites provides the starting point for a diagnostic test for fatigue in CWP. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Mean load effect on fatigue of welded joints using structural stress and fracture mechanics approach

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Kim, Cheol; Jin, Tae Eun; Dong, P.

    2006-01-01

    In order to ensure the structural integrity of nuclear welded structures during design life, the fatigue life has to be evaluated by fatigue analysis procedures presented in technical codes such as ASME B and PV Code Section III. However, existing fatigue analysis procedures do not explicitly consider the presence of welded joints. A new fatigue analysis procedure based on a structural stress/fracture mechanics approach has been recently developed in order to reduce conservatism by erasing uncertainty in the analysis procedure. A recent review of fatigue crack growth data under various mean loading conditions using the structural stress/fracture mechanics approach, does not consider the mean loading effect, revealed some significant discrepancies in fatigue crack growth curves according to the mean loading conditions. In this paper, we propose the use of the stress intensity factor range ΔK characterized with loading ratio R effects in terms of the structural stress. We demonstrate the effectiveness in characterizing fatigue crack growth and S-N behavior using the well-known data. It was identified that the S-N data under high mean loading could be consolidated in a master S-N curve for welded joints

  3. Study of interaction of fatigue damage and ratcheting. Effect of a tensile primary load on torsion fatigue resistance of stainless steel 304 L at ambient temperature

    International Nuclear Information System (INIS)

    Hakem, N.S.

    1987-01-01

    Effect of ratcheting on fatigue resistance of a stainless steel 304 L, used for reactor vessels, is studied experimentally. Lifetime of samples is reduced if a static constant tensile load (primary loading) is superimposed to cyclic torsion deformations (secondary loading). An equivalent deformation concept is developed to express a criterion of fatigue rupture under primary loading. No effect is noted on the curve of cyclic strain hardening. This fatigue analysis gives no information on cumulated axial deformation. Progressive elongation, observed during testing, is dependent of primary and secondary loading. Rupture is produced by fatigue because cumulated axial deformation is limited ( 4 cycles at rupture cumulated deformation is [fr

  4. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    Science.gov (United States)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  5. Probability of failure prediction for step-stress fatigue under sine or random stress

    Science.gov (United States)

    Lambert, R. G.

    1979-01-01

    A previously proposed cumulative fatigue damage law is extended to predict the probability of failure or fatigue life for structural materials with S-N fatigue curves represented as a scatterband of failure points. The proposed law applies to structures subjected to sinusoidal or random stresses and includes the effect of initial crack (i.e., flaw) sizes. The corrected cycle ratio damage function is shown to have physical significance.

  6. Assessment of fatigue in cancer patients and community dwellers: validation study of the Filipino version of the brief fatigue inventory.

    Science.gov (United States)

    Mendoza, Tito R; Laudico, Adriano V; Wang, Xin Shelley; Guo, Hong; Matsuda, Maria Lourdes; Yosuico, Victor D; Fragante, Edilberto P; Cleeland, Charles S

    2010-01-01

    Clinical trials that might identify effective therapies for cancer-related fatigue, one of the most distressing symptoms experienced by patients, require a validated fatigue assessment tool. We developed and validated a Filipino language version of the Brief Fatigue Inventory (BFI-F) for describing the prevalence and severity of fatigue among Filipino patients with cancer. We conducted a cross-sectional study in Manila, Philippines, in 206 patients with cancer and 170 age-matched community-dwelling adults who had never had a diagnosis of cancer. Validity and reliability were evaluated by principal factor analysis and Cronbach's α coefficients. Factor analysis extracted 1 factor, i.e. fatigue severity, with a Cronbach's α of 0.95; this is consistent with the original BFI English version validation study. Approximately 49% of the patients with cancer had mild fatigue, 34% had moderate fatigue, and 17% had severe fatigue. Patients with a poorer performance status had significantly worse fatigue than patients with a better performance status (5.0 ± 2.8 vs. 3.8 ± 2.2; p Filipino cancer patients. Copyright © 2010 S. Karger AG, Basel.

  7. Influence of combined impact and cyclic loading on the overall fatigue life of forged steel, EA4T

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, A.; Hadidi-Moud, S.; Farhangdoost, Kh [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2017-03-15

    The performance of forged steel, EA4T, used in rail industry, under simulated in service conditions, i.e. combined impact - cyclic loading, was investigated through a comprehensive experimental programme. The standard Paris-Erdogan fatigue design curve parameters, m and C, were calibrated to account for the effect of the impact component of loading. A minimum threshold for impact load component, identified in the experiments, was also incorporated in the proposed empirical model. Comparison with experimental findings indicated that this “modified” Fatigue design curve could predict the fatigue life of pre impact loaded specimens with sufficient accuracy. It was therefore suggested that the modified model may be used as a novel design tool for predicting the overall fatigue life of components made of this material under the specified combined impact and fatigue loading conditions.

  8. Investigation into fatigue crack growth and kinetic diagrams of fatigue failure

    International Nuclear Information System (INIS)

    Yarema, S.Ya.

    1977-01-01

    Studies on fatigue failure are discussed in terms of fatigue failure kinetic diagrams (FFKD), in which the fatigue crack growth rate is plotted against the stress intensity coefficient (SIC). The physical sense of the crack growth rate and SIC is discussed and their applicability for description of the material in the destruction zone, particularly in presence of various media. Variation of experimental parameters (loading and environment) is followed by a transition period during which the results of the experiment may depend on its history, so that FFKD would remain invariant. Advantages of tests under constant experimental conditions are shown. The ways to stabilize SIC are indicated and requirements to the samples are given. As an example, the tests of disc samples made of plate materials are given, where SIC does not depend on the crack length. The question of controlling the experimental conditions such as asymmetry and shape of the loading cycle, loading frequency, fluctuations of temperature and air composition is considered. The analytical functions describing FFKD are discussed. It is shown, that in appropriate dimensionless coordinates the FFKD of different materials merge into one curve

  9. Development of conventional fatigue database for structure materials of nuclear power plant

    International Nuclear Information System (INIS)

    Yang Bing

    2002-01-01

    Management system of the conventional fatigue database for structure materials of nuclear power plant (NPP) is developed. The database included the parameters of design curves, i.e., the stress-life, survival probability-stress-life, strain-life, survival probability-strain-life, stress-strain and survival probability-stress-strain curves, and corresponding information of materials and testing conditions. Two ways, by materials name or by the inter-bounds of material mechanical properties, are constructed to search the database. From the searched information it can be conveniently performed of the conventional fatigue design analysis and reliability assessment of structures

  10. Probabilistic finite elements for fracture and fatigue analysis

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.

    1989-01-01

    The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.

  11. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    International Nuclear Information System (INIS)

    Kwon, Oh Yang; Kim, Tae Hyun

    1999-01-01

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  12. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Yang; Kim, Tae Hyun [Inha University, Incheon (Korea, Republic of)

    1999-12-15

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  13. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.

    Science.gov (United States)

    Ritchie, R O; Dauskardt, R H; Yu, W K; Brendzel, A M

    1990-02-01

    Fracture-mechanics tests were performed to characterize the cyclic fatigue, stress-corrosion cracking, and fracture-toughness behavior of a pyrolytic carbon-coated graphite composite material used in the manufacture of cardiac valve prostheses. Testing was carried out using compact tension C(T) samples containing "atomically" sharp precracks, both in room-temperature air and principally in a simulated physiological environment of 37 degrees C Ringer's lactate solution. Under sustained (monotonic) loads, the composite exhibited resistance-curve behavior, with a fracture toughness (KIc) between 1.1 and 1.9 MPa square root of m, and subcritical stress-corrosion crack velocities (da/dt) which were a function of the stress intensity K raised to the 74th power (over the range approximately 10(-9) to over 10(-5) m/s). More importantly, contrary to common perception, under cyclic loading conditions the composite was found to display true (cyclic) fatigue failure in both environments; fatigue-crack growth rates (da/dN) were seen to be a function of the 19th power of the stress-intensity range delta K (over the range approximately 10(-11) to over 10(-8) m/cycle). As subcritical crack velocities under cyclic loading were found to be many orders of magnitude faster than those measured under equivalent monotonic loads and to occur at typically 45% lower stress-intensity levels, cyclic fatigue in pyrolytic carbon-coated graphite is reasoned to be a vital consideration in the design and life-prediction procedures of prosthetic devices manufactured from this material.

  14. Prediction of Accurate Mixed Mode Fatigue Crack Growth Curves using the Paris' Law

    Science.gov (United States)

    Sajith, S.; Krishna Murthy, K. S. R.; Robi, P. S.

    2017-12-01

    Accurate information regarding crack growth times and structural strength as a function of the crack size is mandatory in damage tolerance analysis. Various equivalent stress intensity factor (SIF) models are available for prediction of mixed mode fatigue life using the Paris' law. In the present investigation these models have been compared to assess their efficacy in prediction of the life close to the experimental findings as there are no guidelines/suggestions available on selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempts to outline models that would provide accurate and conservative life predictions.

  15. Prediction of Mean and Design Fatigue Lives of Self Compacting Concrete Beams in Flexure

    Science.gov (United States)

    Goel, S.; Singh, S. P.; Singh, P.; Kaushik, S. K.

    2012-02-01

    In this paper, result of an investigation conducted to study the flexural fatigue characteristics of self compacting concrete (SCC) beams in flexure are presented. An experimental programme was planned in which approximately 60 SCC beam specimens of size 100 × 100 × 500 mm were tested under flexural fatigue loading. Approximately 45 static flexural tests were also conducted to facilitate fatigue testing. The flexural fatigue and static flexural strength tests were conducted on a 100 kN servo-controlled actuator. The fatigue life data thus obtained have been used to establish the probability distributions of fatigue life of SCC using two-parameter Weibull distribution. The parameters of the Weibull distribution have been obtained by different methods of analysis. Using the distribution parameters, the mean and design fatigue lives of SCC have been estimated and compared with Normally vibrated concrete (NVC), the data for which have been taken from literature. It has been observed that SCC exhibits higher mean and design fatigue lives compared to NVC.

  16. Residual stress behaviors induced by laser peening along the edge of curved models

    International Nuclear Information System (INIS)

    Im, Jong Bin; Grandhi, Ramana V.; Ro, Young Hee

    2012-01-01

    Laser peening (LP) induces high magnitude compressive residual stresses in a small region of a component. The compressive residual stresses cause plastic deformation that is resistant to fatigue fracture. Fatigue cracks are generally nucleated at critical areas, and LP is applied for those regions so as to delay the crack initiation. Many critical regions are located on the edge of the curved portion of structures because of stress concentration effects. Several investigations that are available for straight components may not give meaningful guidelines for peening curved components. Therefore, in this paper, we investigate residual stress behaviors induced by LP along the edge of curved models. Three curved models that have different curvatures are investigated for peening performance. Two types of peening configurations, which are simultaneous corner shot and sequential corner shots, are considered in order to obtain compressive residual stresses along an edge. LP simulations of multiple shots are performed to identify overlapping effects on the edge portion of a curved model. In addition, the uncertainty calculation of residual stress induced by LP considering laser pulse duration is performed

  17. Muscle Fiber Type Composition and Knee Extension Isometric Strength Fatigue Patterns in Power- and Endurance-Trained Males.

    Science.gov (United States)

    Kroll, Walter; And Others

    1980-01-01

    There is a degree of uniqueness in fatigue patterns, particularly between different levels of absolute maximum strength. Caution should be used when analyzing fatigue curves among subjects with unspecified strength levels. (CJ)

  18. Shock Transmission and Fatigue in Human Running.

    Science.gov (United States)

    Verbitsky, Oleg; Mizrahi, Joseph; Voloshin, Arkady; Treiger, July; Isakov, Eli

    1998-08-01

    The goal of this research was to analyze the effects of fatigue on the shock waves generated by foot strike. Twenty-two subjects were instrumented with an externally attached, lightweight accelerometer placed over the tibial tuberosity. The subjects ran on a treadmill for 30 min at a speed near their anaerobic threshold. Fatigue was established when the end-tidal CO 2 pressure decreased. The results indicated that approximately half of the subjects reached the fatigue state toward the end of the test. Whenever fatigue occurred, the peak acceleration was found to increase. It was thus concluded that there is a clear association between fatigue and increased heel strike-induced shock waves. These results have a significant implication for the etiology of running injuries, since shock wave attenuation has been previously reported to play an important role in preventing such injuries.

  19. Finite-life fatigue constraints in 2D topology optimization of continua

    DEFF Research Database (Denmark)

    Oest, Jacob; Lund, Erik

    2017-01-01

    of fatigue damage are estimated using the stress-based Sines fatigue criterion and S − N curves, while the accumulated damage is estimated using Palmgren-Miner’s rule. The method is a natural extension of classical density-based topology optimization with static stress constraints, and thus utilizes many......Topology optimization of 2D continua with the objective of minimizing the mass while considering finite-life fatigue constraint is considered. The structure is subjected to proportional variable-amplitude loading. The topology optimization problem is solved using the density approach. The fractions...

  20. Low cycle corrosion fatigue properties of F316Ti in simulated LWR primary environment

    International Nuclear Information System (INIS)

    Xu Xuelian; Ding Yaping; Katada, Y.; Sato, S.

    1998-11-01

    Environment effect on fatigue performance of materials used for Pressurized boundary, including fatigue life and crack growth rate, are of importance to nuclear safety. To predict the fatigue life of nuclear materials and to improve the design of nuclear materials, it is necessary to investigated the material fatigue performances in corrosive environment and to get the fatigue data under its environment to be used in. Low cycle corrosion fatigue (CF) performance investigation of domestic F316Ti in simulated BWR and PWR primary environment was carried out. The result shows that the high temperature water environment is one of the most important factors on CF properties. For the same material, the low cycle fatigue life in high temperature air is longer than that in simulated BWR and PWR primary environments. In high temperature water, domestic F316Ti has almost the same low cycle corrosion fatigue performance as F316 (made in Japan). All of the fatigue data are scattered within ASME best-fit curve and ASME design fatigue curve. In high strain range, there is no significant difference of the CF performance for F316Ti in both of BWR and PWR primary environments. With the decrease of strain amplitude, the difference appears gradually. The data is located at the short life side of the fatigue data in simulated BWR primary environment. Titanium is distributed uniformly in F316Ti manufactured in Fushun Steel Factory. Ni, Cr, Mo in this material are located at the high side of the alloy chemical composition range. So, F316Ti has a better CF property in high temperature water

  1. Use of Neuber's rule to estimate the fatigue life of notched specimens of ASME SA 106-B steel piping in 2880C air

    International Nuclear Information System (INIS)

    Terrell, J.B.

    1989-01-01

    Fatigue strain-life tests were conducted on notched specimens of ADMESA 106-B piping steel at PWR operating temperatures (288 0 C (550 0 F)), under completely reversed loading. Fatigue limits at 10 7 cycles were estimated for smooth specimens to be 185 M Pa (26.8 ksi) at 24 0 C and 232 MPa (33.7 ksi) at 288 0 C. The higher fatigue strength observed at the PWR temperature is postulated to be caused by dynamic strain aging processes. However, a reduction in fatigue strength in the low cycle fatigue regime was observed in 288 0 C air environment tests, which may indicate that the current ASME Section III design curve for carbon steels is nonconservative in its positioning. Notch strain histories were estimated for the notched specimen tests using various interpretations of Neuber's rule. It was concluded that the use of the fatigue notch concentration factor (K f ) in the Neuber relation in conjunction with the uniaxial cyclic stress-strain curve provided the best correlation of notched specimen fatigue data with results obtained from smooth specimen tests. The notched specimen strain-life results derived from the application of Neuber's rule alone proved to be conservative when compared with smooth specimen test results to such an extent that Neuber-generated notch stresses and strain amplitudes cannot accurately be compared with the mean data curves derived from the ASME Section III fatigue curves for carbon steels which are based on net section stress measurements. (author)

  2. A curved beam test specimen for determining the interlaminar tensile strength of a laminated composite

    Science.gov (United States)

    Hiel, Clement C.; Sumich, Mark; Chappell, David P.

    1991-01-01

    A curved beam type of test specimen is evaluated for use in determining the through-the-thickness strength of laminated composites. Two variations of a curved beam specimen configuration (semicircular and elliptical) were tested to failure using static and fatigue loads. The static failure load for the semicircular specimens was found to be highly sensitive to flaw content, with the specimens falling into two distinct groups. This result supports the use of proof testing for structural validation. Static design allowables are derived based on the Weibull distribution. Fatigue data indicates no measured increase in specimen compliance prior to final fracture. All static and fatigue failures at room temperature dry conditions occurred catastrophically. The elliptical specimens demonstrated unusually high failure strengths indicating the presence of phenomena requiring further study. Results are also included for specimens exposed to a wet environment showing a matrix strength degradation due to moisture content. Further testing is underway to evaluate a fatigue methodology for matrix dominated failures based on residual static strength (wearout).

  3. Evaluation of upper limb muscle fatigue based on surface electromyography.

    Science.gov (United States)

    Zhou, Qianxiang; Chen, Yuhong; Ma, Chao; Zheng, Xiaohui

    2011-10-01

    Fatigue is believed to be a major contributory factor to occupational injuries in machine operators. The development of accurate and usable techniques to measure operator fatigue is therefore important. In this study, we used a novel method based on surface electromyography (sEMG) of the biceps brachii and the Borg scale to evaluate local muscle fatigue in the upper limb after isometric muscle action. Thirteen young males performed isometric actions with the upper limb at different force levels. sEMG activities of the biceps brachii were recorded during the actions. Borg scales were used to evaluate the subjective sensation of local fatigue of the biceps brachii after the actions. sEMG activities were analyzed using the one-third band octave method, and an equation to determine the degree of fatigue was derived based on the relationship between the variable and the Borg scale. The results showed that the relationship could be expressed by a conic curve, and could be used to evaluate muscle fatigue during machine operation.

  4. Fracture resistance of Zr–Nb alloys under low-cycle fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, S.A.; Rozhnov, A.B. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Gusev, A.Yu. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM), Rogova St. 5a, 123060 Moscow (Russian Federation); Nechaykina, T.A. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Rogachev, S.O., E-mail: csaap@mail.ru [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Zadorozhnyy, M.Yu. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-15

    Highlights: •Low-cycle fatigue tests of Zr–Nb alloys using DMA have been carried out. •The characteristics of low-cycle fatigue of the Zr–Nb alloy at 25/350 °C were determined. •Increasing test temperature up to 350 °C leads to a decrease of fatigue life. •The test temperature doesn’t have an effect on the character of fatigue curves. -- Abstract: Comparative low-cycle fatigue tests of small-scale specimens cut from the cladding tubes of E110, E125, E110opt zirconium alloys at temperatures of 25 and 350 °C using a dynamic mechanical analyzer have been carried out. It is shown that the limited cycles fatigue stress for all alloys is 50% less at temperature of 350 °C comparing to 25 °C. Besides it has been revealed that the limited cycles fatigue stress increases with increasing the strength of zirconium alloy.

  5. Static and fatigue mechanical behavior of three dental CAD/CAM ceramics.

    Science.gov (United States)

    Homaei, Ehsan; Farhangdoost, Khalil; Tsoi, James Kit Hon; Matinlinna, Jukka Pekka; Pow, Edmond Ho Nang

    2016-06-01

    The aim of this study was to measure the mechanical properties and fatigue behavior of three contemporary used dental ceramics, zirconia Cercon(®) (ZC), lithium disilicate e.max(®) CAD (LD), and polymer-infiltrated ceramic Enamic(®) (PIC). Flexural strength of each CAD/CAM ceramic was measured by three point bending (n=15) followed by Weibull analysis. Elastic modulus was calculated from the load-displacement curve. For cyclic fatigue loading, sinusoidal loading with a frequency of 8Hz with minimum load 3N were applied to these ceramics (n=24) using three point bending from 10(3) to 10(6) cycles. Fatigue limits of these ceramics were predicted with S-N fatigue diagram. Fracture toughness and Vickers hardness of the ceramics were measured respectively by single edge V-notch beam (SEVNB) and microindentation (Hv 0.2) methods. Chemical compositions of the materials׳ surfaces were analyzed by EDS, and microstructural analysis was conducted on the fracture surfaces by SEM. One-way ANOVA was performed and the level of significance was set at 0.05 to analyze the numerical results. The mean flexural strength of ZC, LD, and PIC was respectively 886.9, 356.7, and 135.8MPa. However, the highest Weibull modulus belonged to PIC with 19.7 and the lowest was found in LD with 7.0. The fatigue limit of maximum load for one million cycles of ZC, LD, and PIC was estimated to be 500.1, 168.4, and 73.8GPa. The mean fracture toughness of ZC, LD, and PIC was found to be respectively 6.6, 2.8, and 1.4MPam(1/2), while the mean Vickers hardness was 1641.7, 676.7, and 261.7Hv. Fracture surfaces followed fatigue loading appeared to be smoother than that after monotonic loading. Mechanical properties of ZC were substantially superior to the two other tested ceramics, but the scattering of data was the least in PIC. The fatigue limit was found to be approximately half of the mean flexural strength for all tested ceramics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Development of elevated temperature fatigue design information for type 316 stainless steel

    International Nuclear Information System (INIS)

    Jaske, C.E.; Mindlin, H.; Perrin, J.S.

    1975-01-01

    To develop material properties information for use in elevated-temperature fatigue design, an extensive study of the fatigue and stress-strain behaviour of Type 316 stainless steel was conducted at temperatures from 21 to 649 0 C. Fatigue life and cyclic stress-strain curves were developed. Creep-fatigue interaction was evaluated by conducting strain hold-time tests at 566 and 649 0 C. Hold periods at peak tensile strain produced a large reduction in cyclic life. It was found that both a linear damage rule and the strain-partitioning method could be used to assess cumulative creep and fatigue damage. Aging for 1000 h at test temperature before testing caused only small or no changes in continuous cycling fatigue resistance at 566 and 649 0 C and in tension hold-time fatigue resistance at 566 0 C. This aging produced a significant increase in tension hold-time fatigue resistance at 649 0 C. (author)

  7. Fatigue properties of type 316LN stainless steel in air and mercury

    International Nuclear Information System (INIS)

    Strizak, J.P.; Tian, H.; Liaw, P.K.; Mansur, L.K.

    2005-01-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S-N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared (R 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed

  8. Fatigue properties of type 316LN stainless steel in air and mercury

    Science.gov (United States)

    Strizak, J. P.; Tian, H.; Liaw, P. K.; Mansur, L. K.

    2005-08-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S- N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared ( R = 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed.

  9. High-temperature low-cycle fatigue behaviour of HIP treated and untreated superalloy MAR-M247

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel; Čelko, L.

    2016-01-01

    Roč. 54, č. 6 (2016), s. 471-481 ISSN 0023-432X R&D Projects: GA TA ČR(CZ) TA04011525; GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : hot isostatic pressing * high-temperature low cycle fatigue * fatigue life curves * Ni-based superalloy * dislocation structures * planar bands Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.366, year: 2016

  10. Method and data analysis example of fatigue tests

    International Nuclear Information System (INIS)

    Nogami, Shuhei

    2015-01-01

    In the design and operation of a nuclear fusion reactor, it is important to accurately assess the fatigue life. Fatigue life is evaluated by preparing a database on the relationship between the added stress / strain amplitude and the number of cycles to failure based on the fatigue tests on standard specimens, and by comparing this relationship with the generated stress / strain of the actual constructions. This paper mainly chooses low-cycle fatigue as an object, and explains standard test methods, fatigue limit, life prediction formula and the like. Using reduced-activation ferrite steel F82H as a material, strain controlled low-cycle fatigue test was performed under room temperature atmosphere. From these results, the relationship between strain and the number of cycles to failure was analyzed. It was found that the relationship is asymptotic to the formula of Coffin-Manson Law under high-strain (low-cycle condition), and asymptotic to the formula of Basquin Law under low-strain (high-cycle condition). For F82H to be used for the blanket of a nuclear fusion prototype reactor, the arrangement of fatigue life data up to about 700°C and the establishment of optimal fatigue design curves are urgent tasks. As for fusion reactor structural materials, the evaluation of neutron irradiation effect on fatigue damage behavior and life is indispensable. For this purpose, it is necessary to establish standardized testing techniques when applied to small specimens. (A.O.)

  11. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    International Nuclear Information System (INIS)

    Roth, M; Biermann, H

    2010-01-01

    The cyclic deformation and fatigue behavior of the γ-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400 0 C to 800 0 C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper P SWT is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750 0 C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter P SWT cannot be applied for the live prediction.

  12. Strength calculation of NPP equipment and pipelines during operation. Low- and high-cycle corrosion fatigue

    International Nuclear Information System (INIS)

    Filatov, V.M.; Evropin, S.V.

    2004-01-01

    This paper presents empirical equations and design curves for structural steels employed in nuclear power facilities with light water reactors. These equations allow to take into account the effects of cycle asymmetry, water coolant and ductility decrease during operation. The fatigue curves cover the low-cycle and high-cycle regions (up to 10 12 cycles). The equations include the mechanical characteristics of steels under static tension. The coolant effect on steel fatigue is allowed for using a model developed at the Argonne National Laboratory

  13. Uncertainty analysis of constant amplitude fatigue test data employing the six parameters random fatigue limit model

    Directory of Open Access Journals (Sweden)

    Leonetti Davide

    2018-01-01

    Full Text Available Estimating and reducing uncertainty in fatigue test data analysis is a relevant task in order to assess the reliability of a structural connection with respect to fatigue. Several statistical models have been proposed in the literature with the aim of representing the stress range vs. endurance trend of fatigue test data under constant amplitude loading and the scatter in the finite and infinite life regions. In order to estimate the safety level of the connection also the uncertainty related to the amount of information available need to be estimated using the methods provided by the theory of statistic. The Bayesian analysis is employed to reduce the uncertainty due to the often small amount of test data by introducing prior information related to the parameters of the statistical model. In this work, the inference of fatigue test data belonging to cover plated steel beams is presented. The uncertainty is estimated by making use of Bayesian and frequentist methods. The 5% quantile of the fatigue life is estimated by taking into account the uncertainty related to the sample size for both a dataset containing few samples and one containing more data. The S-N curves resulting from the application of the employed methods are compared and the effect of the reduction of uncertainty in the infinite life region is quantified.

  14. Explicitly solvable complex Chebyshev approximation problems related to sine polynomials

    Science.gov (United States)

    Freund, Roland

    1989-01-01

    Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.

  15. Influence of rotational speed on the cyclic fatigue of rotary nickel-titanium endodontic instruments.

    Science.gov (United States)

    Lopes, Hélio P; Ferreira, Alessandra A P; Elias, Carlos N; Moreira, Edson J L; de Oliveira, Júlio C Machado; Siqueira, José F

    2009-07-01

    During the preparation of curved canals, rotary nickel-titanium (NiTi) instruments are subjected to cyclic fatigue, which can lead to instrument fracture. Although several factors may influence the cyclic fatigue resistance of instruments, the role of the rotational speed remains uncertain. This study was intended to evaluate the effects of rotational speed on the number of cycles to fracture of rotary NiTi instruments. ProTaper Universal instruments F3 and F4 (Maillefer SA, Ballaigues, Switzerland) were used in an artificial curved canal under rotational speeds of 300 rpm or 600 rpm. The artificial canal was made of stainless steel, with an inner diameter of 1.5 mm, total length of 20 mm, and arc at the end with a curvature radius of 6 mm. The arc length was 9.4 mm and 10.6 mm on the straight part. The number of cycles required to fracture was recorded. Fractured surfaces and the helical shafts of the fractured instruments were analyzed by scanning electron microscopy. The results showed approximately a 30% reduction in the observed number of cycles to fracture as rotational speed was increased from 300 to 600 RPM (p ductile type, and no plastic deformation was observed on the helical shaft of fractured instruments. The present findings for both F3 and F4 ProTaper instruments revealed that the increase in rotational speed significantly reduced the number of cycles to fracture.

  16. High speed rails. Fatigue behaviour

    International Nuclear Information System (INIS)

    Duart, J. M.; Pero-Sanz, J. A.; Verdeja, J. I.

    2005-01-01

    In recent years, passenger train speed and freight train load have increased to enhance efficiency of rail road transportation. These trends have increased the severity of rail service conditions, calling for rails with greater wear resistance, strength and fatigue behaviour. In the United Stated and Europe, track site weld rails are made entirely by aluminothermic process. This work describes the results of experimental study conducted on bending fatigue strength of plain rails and aluminothermic welded rails with preheating procedures (oxipropane and air-induced propane) approved by railways authorities. Compliance with the required fatigue strength shall be ascertained by 4 point pulsating bending test in accordance with European standards by aluminothermic welding in rails. The locati method, based in the empirical Miner's law about the cumulative damage on a fatigue tested material, allows, once known the Wohler curve of the welding process in use to settle the fatigue tensile limit at 50% with only one test. The values obtained at 2.10''6 cycles for plain rails (S f =353 MPa), oxipropane preheated aluminothermic weld rails (S f =225 MPa), and propane-air induced aluminothermic weld rails (S f =210 MPa) are very similar to those resulting from test method stated in the European Standard. From our point of view and due to its ease, speediness and savings, this is the most suitable test to check the quality and compare the aluminothermic processes in use. (Author) 15 refs

  17. A model for high-cycle fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Marcela Angela [Rosario National Univ. (Argentina); National Council of Scientific Research and Technology (CONICET) (Argentina)

    2017-02-01

    This paper deals with the prediction of high-cycle fatigue behavior for four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel and 0.4 wt.-% C steel) using Chapetti's approach to estimate the fatigue crack propagation curve. In the first part of the paper, a single integral equation for studying the entire propagation process is determined using the recent results of Santus and Taylor, which consider a double regime of propagation (short and long cracks) characterized by the model of El Haddad. The second part of the paper includes a comparison of the crack propagation behavior model proposed by Navarro and de los Rios with the one mentioned in the first half of this work. The results allow us to conclude that the approach presented in this paper is a good and valid estimation of high-cycle fatigue crack propagation using a single equation to describe the entire fatigue crack regime.

  18. Development of a Very High Cycle Fatigue (VHCF multiaxial testing device

    Directory of Open Access Journals (Sweden)

    M. Vieira

    2016-07-01

    Full Text Available The very high cycle region of the S-N fatigue curve has been the subject of intensive research on the last years, with special focus on axial, bending, torsional and fretting fatigue tests. Very high cycle fatigue can be achieved using ultrasonic exciters which allow for frequency testing of up to 30 kHz. Still, the multiaxial fatigue analysis is not yet developed for this type of fatigue analyses, mainly due to conceptual limitations of these testing devices. In this paper, a device designed to produce biaxial fatigue testing using a single piezoelectric axial exciter is presented, as well as the preliminary testing of this device. The device is comprised of a horn and a specimen, which are both attached to the piezoelectric exciter. The steps taken towards the final geometry of the device are presented. Preliminary experimental testing of the developed device is made using thermographic imaging, strain measurements and vibration speeds and indicates good behaviour of the tested specimen.

  19. Prevalence of operator fatigue in winter maintenance operations.

    Science.gov (United States)

    Camden, Matthew C; Medina-Flintsch, Alejandra; Hickman, Jeffrey S; Bryce, James; Flintsch, Gerardo; Hanowski, Richard J

    2018-02-02

    Similar to commercial motor vehicle drivers, winter maintenance operators are likely to be at an increased risk of becoming fatigued while driving due to long, inconsistent shifts, environmental stressors, and limited opportunities for sleep. Despite this risk, there is little research concerning the prevalence of winter maintenance operator fatigue during winter emergencies. The purpose of this research was to investigate the prevalence, sources, and countermeasures of fatigue in winter maintenance operations. Questionnaires from 1043 winter maintenance operators and 453 managers were received from 29 Clear Road member states. Results confirmed that fatigue was prevalent in winter maintenance operations. Over 70% of the operators and managers believed that fatigue has a moderate to significant impact on winter maintenance operations. Approximately 75% of winter maintenance operators reported to at least sometimes drive while fatigued, and 96% of managers believed their winter maintenance operators drove while fatigued at least some of the time. Furthermore, winter maintenance operators and managers identified fatigue countermeasures and sources of fatigue related to winter maintenance equipment. However, the countermeasures believed to be the most effective at reducing fatigue during winter emergencies (i.e., naps) were underutilized. For example, winter maintenance operators reported to never use naps to eliminate fatigue. These results indicated winter maintenance operations are impacted by operator fatigue. These results support the increased need for research and effective countermeasures targeting winter maintenance operator fatigue. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Ultrathin flexible piezoelectric sensors for monitoring eye fatigue

    Science.gov (United States)

    Lü, Chaofeng; Wu, Shuang; Lu, Bingwei; Zhang, Yangyang; Du, Yangkun; Feng, Xue

    2018-02-01

    Eye fatigue is a symptom induced by long-term work of both eyes and brains. Without proper treatment, eye fatigue may incur serious problems. Current studies on detecting eye fatigue mainly focus on computer vision detect technology which can be very unreliable due to occasional bad visual conditions. As a solution, we proposed a wearable conformal in vivo eye fatigue monitoring sensor that contains an array of piezoelectric nanoribbons integrated on an ultrathin flexible substrate. By detecting strains on the skin of eyelid, the sensors may collect information about eye blinking, and, therefore, reveal human’s fatigue state. We first report the design and fabrication of the piezoelectric sensor and experimental characterization of voltage responses of the piezoelectric sensors. Under bending stress, the output voltage curves yield key information about the motion of human eyelid. We also develop a theoretical model to reveal the underlying mechanism of detecting eyelid motion. Both mechanical load test and in vivo test are conducted to convince the working performance of the sensors. With satisfied durability and high sensitivity, this sensor may efficiently detect abnormal eyelid motions, such as overlong closure, high blinking frequency, low closing speed and weak gazing strength, and may hopefully provide feedback for assessing eye fatigue in time so that unexpected situations can be prevented.

  1. Correction for Poisson's effect in an elastic analysis of low cycle fatigue

    International Nuclear Information System (INIS)

    Roche, R.; Moulin, D.

    1984-05-01

    Fatigue behaviour is essentially dependent on the real strain range, but the current practice is the use of elastic analysis. In low cycle fatigue conditions where inelastic strains predominate, elastic analysis never gives the real value of the strain range. In order to use these results some corrections are necessary. One of these corrections is due to the Poisson's effect (the Poisson ratio in inelastic behaviour is higher than in elastic behaviour). In this paper a method of correction of this effect is proposed. It consists in multiplying the results of the elastic analysis by a coefficient called Kν. A method to draw curves giving this coefficient Kν as a function of results of elastic analysis is developped. Only simple analytical computations using the unixial cyclic curve are needed to draw these curves. Examples are given. The proposed method is very convenient and low cost effective [fr

  2. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting

    International Nuclear Information System (INIS)

    Liu, Y.J.; Wang, H.L.; Li, S.J.; Wang, S.G.; Wang, W.J.; Hou, W.T.; Hao, Y.L.; Yang, R.; Zhang, L.C.

    2017-01-01

    β-type titanium porous structure is a new class of solution for implant because it offers excellent combinations of high strength and low Young's modulus. This work investigated the influence of porosity variation in electron beam melting (EBM)-produced β-type Ti2448 alloy samples on the mechanical properties including super-elastic property, Young's modulus, compressive strength and fatigue properties. The relationship between the misorientation angle of adjacent grains and fatigue crack deflection behaviors was also observed. The super-elastic property is improved as the porosity of samples increases because of increasing tensile/compressive ratio. For the first time, the position of fatigue crack initiation is defined in stress-strain curves based on the variation of the fatigue cyclic loops. The unique manufacturing process of EBM results in the generation of different sizes of grains, and the apparent fatigue crack deflection occurs at the grain boundaries in the columnar grain zone due to substantial misorientation between adjacent grains. Compared with Ti-6Al-4V samples, the Ti2448 porous samples exhibit a higher normalized fatigue strength owing to super-elastic property, greater plastic zone ahead of the fatigue crack tip and the crack deflection behavior. - Highlights: • The super-elastic property is improved with increasing porosity of Ti2448 porous samples. • The position of fatigue crack initiation on the strain curve is defined. • The unique EBM-produced microstructure leads to apparent fatigue crack deflection occurring at columnar grain boundary. • Ti2448 porous samples display only half of the Young's modulus of Ti-6Al-4V porous samples at same fatigue strength level.

  3. The Development of Confidence Limits for Fatigue Strength Data

    International Nuclear Information System (INIS)

    SUTHERLAND, HERBERT J.; VEERS, PAUL S.

    1999-01-01

    Over the past several years, extensive databases have been developed for the S-N behavior of various materials used in wind turbine blades, primarily fiberglass composites. These data are typically presented both in their raw form and curve fit to define their average properties. For design, confidence limits must be placed on these descriptions. In particular, most designs call for the 95/95 design values; namely, with a 95% level of confidence, the designer is assured that 95% of the material will meet or exceed the design value. For such material properties as the ultimate strength, the procedures for estimating its value at a particular confidence level is well defined if the measured values follow a normal or a log-normal distribution. Namely, based upon the number of sample points and their standard deviation, a commonly-found table may be used to determine the survival percentage at a particular confidence level with respect to its mean value. The same is true for fatigue data at a constant stress level (the number of cycles to failure N at stress level S(sub 1)). However, when the stress level is allowed to vary, as with a typical S-N fatigue curve, the procedures for determining confidence limits are not as well defined. This paper outlines techniques for determining confidence limits of fatigue data. Different approaches to estimating the 95/95 level are compared. Data from the MSU/DOE and the FACT fatigue databases are used to illustrate typical results

  4. Fracture probability properties of pure and cantilever bending fatigue of STS304 steel

    International Nuclear Information System (INIS)

    Roh, Sung Kuk; Park, Dae Hyun; Jeong, Soon Uk

    2001-01-01

    Big accidents of flyings, vessel, subways, gas equipments, buildings and bridge happens frequently. Therefore many people are suffering harm of property. The destruction cause of marcaine components is almost accused by fatigue. This study is test for STS304 specimen using pure and cantilever bending state. Rounded and notched specimen including fracture surface investigation was comparatively experimented, fatigue life according to degree of surface finishing was examined. Fatigue fracture probability of notched canilever specimens were predicted by P-S-N curve, median rank and Weibull distribution. And at the relation with the rotational speed and stress, the fatigue life of the test specimen was higher at high speed than low speed

  5. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Kwon Oh Yang [Dept. of Mechanical Engineering, Inje Univesity, Kimhae (Korea, Republic of)

    1999-05-15

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E{sub 0}) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  6. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    International Nuclear Information System (INIS)

    Kim, Tae Hyun; Kwon Oh Yang

    1999-01-01

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E 0 ) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  7. Method to predict fatigue lifetimes of GRP wind turbine blades and comparison with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Echtermeyer, A.T. [Det Norske Veritas Research AS, Hoevik (Norway); Kensche, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany, F.R); Bach, P. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Poppen, M. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Lilholt, H.; Andersen, S.I.; Broendsted, P. [Risoe National Lab., Roskilde (Denmark)

    1996-12-01

    This paper describes a method to predict fatigue lifetimes of fiber reinforced plastics in wind turbine blades. It is based on extensive testing within the EU-Joule program. The method takes the measured fatigue properties of a material into account so that credit can be given to materials with improved fatigue properties. The large number of test results should also give confidence in the fatigue calculation method for fiber reinforced plastics. The method uses the Palmgren-Miner sum to predict lifetimes and is verified by tests using well defined load sequences. Even though this approach is generally well known in fatigue analysis, many details in the interpretation and extrapolation of the measurements need to be clearly defined, since they can influence the results considerably. The following subjects will be described: Method to measure SN curves and to obtain tolerance bounds, development of a constant lifetime diagram, evaluation of the load sequence, use of Palmgren-Miner sum, requirements for load sequence testing. The fatigue lifetime calculation method has been compared against measured data for simple loading sequences and the more complex WISPERX loading sequence for blade roots. The comparison is based on predicted mean lifetimes, using the same materials to obtain the basic SN curves and to measure laminates under complicated loading sequences. 24 refs, 7 figs, 5 tabs

  8. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  9. High Cycle Fatigue Damage Mechanisms of MAR-M 247 Superalloy at High Temperatures

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Horník, Vít; Hutař, Pavel; Hrbáček, K.; Kunz, Ludvík

    2016-01-01

    Roč. 69, č. 2 (2016), s. 393-397 ISSN 0972-2815 R&D Projects: GA TA ČR(CZ) TA04011525; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : High cycle fatigue * S-N curves * Fractography * High temperature * EBSD analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.533, year: 2016

  10. Weibull statistical analysis of Krouse type bending fatigue of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Haidyrah, Ahmed S., E-mail: ashdz2@mst.edu [Nuclear Engineering, Missouri University of Science & Technology, 301 W. 14th, Rolla, MO 65409 (United States); Nuclear Science Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Newkirk, Joseph W. [Materials Science & Engineering, Missouri University of Science & Technology, 1440 N. Bishop Ave, Rolla, MO 65409 (United States); Castaño, Carlos H. [Nuclear Engineering, Missouri University of Science & Technology, 301 W. 14th, Rolla, MO 65409 (United States)

    2016-03-15

    A bending fatigue mini-specimen (Krouse-type) was used to study the fatigue properties of nuclear materials. The objective of this paper is to study fatigue for Grade 91 ferritic-martensitic steel using a mini-specimen (Krouse-type) suitable for reactor irradiation studies. These mini-specimens are similar in design (but smaller) to those described in the ASTM B593 standard. The mini specimen was machined by waterjet and tested as-received. The bending fatigue machine was modified to test the mini-specimen with a specially designed adapter. The cycle bending fatigue behavior of Grade 91 was studied under constant deflection. The S–N curve was created and mean fatigue life was analyzed using mean fatigue life. In this study, the Weibull function was predicted probably for high stress to low stress at 563, 310 and 265 MPa. The commercial software Minitab 17 was used to calculate the distribution of fatigue life under different stress levels. We have used 2 and 3- parameters Weibull analysis to introduce the probability of failure. The plots indicated that the 3- parameter Weibull distribution fits the data well.

  11. Weibull statistical analysis of Krouse type bending fatigue of nuclear materials

    International Nuclear Information System (INIS)

    Haidyrah, Ahmed S.; Newkirk, Joseph W.; Castaño, Carlos H.

    2016-01-01

    A bending fatigue mini-specimen (Krouse-type) was used to study the fatigue properties of nuclear materials. The objective of this paper is to study fatigue for Grade 91 ferritic-martensitic steel using a mini-specimen (Krouse-type) suitable for reactor irradiation studies. These mini-specimens are similar in design (but smaller) to those described in the ASTM B593 standard. The mini specimen was machined by waterjet and tested as-received. The bending fatigue machine was modified to test the mini-specimen with a specially designed adapter. The cycle bending fatigue behavior of Grade 91 was studied under constant deflection. The S–N curve was created and mean fatigue life was analyzed using mean fatigue life. In this study, the Weibull function was predicted probably for high stress to low stress at 563, 310 and 265 MPa. The commercial software Minitab 17 was used to calculate the distribution of fatigue life under different stress levels. We have used 2 and 3- parameters Weibull analysis to introduce the probability of failure. The plots indicated that the 3- parameter Weibull distribution fits the data well.

  12. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M [now at IAV GmbH, Kauffahrtei 25, D-09120 Chemnitz (Germany); Biermann, H, E-mail: marcel.roth@iav.d [TU Bergakademie Freiberg, Institute for Materials Engineering, Gustav-Zeuner-Strasse 5, D-09599 Freiberg (Germany)

    2010-07-01

    The cyclic deformation and fatigue behavior of the {gamma}-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400{sup 0}C to 800{sup 0}C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper P{sub SWT} is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750{sup 0}C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter P{sub SWT} cannot be applied for the live prediction.

  13. Signature Curves Statistics of DNA Supercoils

    OpenAIRE

    Shakiban, Cheri; Lloyd, Peter

    2004-01-01

    In this paper we describe the Euclidean signature curves for two dimensional closed curves in the plane and their generalization to closed space curves. The focus will be on discrete numerical methods for approximating such curves. Further we will apply these numerical methods to plot the signature curves related to three-dimensional simulated DNA supercoils. Our primary focus will be on statistical analysis of the data generated for the signature curves of the supercoils. We will try to esta...

  14. Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives

    Science.gov (United States)

    Cerfontaine, B.; Collin, F.

    2018-02-01

    The purpose of this paper is to provide a comprehensive state of the art of fatigue and cyclic loading of natural rock materials. Papers published in the literature are classified and listed in order to ease bibliographical review, to gather data (sometimes contradictory) on classical experimental results and to analyse the main interpretation concepts. Their advantages and limitations are discussed, and perspectives for further work are highlighted. The first section summarises and defines the different experimental set-ups (type of loading, type of experiment) already applied to cyclic/fatigue investigation of rock materials. The papers are then listed based on these different definitions. Typical results are highlighted in next section. Fatigue/cyclic loading mainly results in accumulation of plastic deformation and/or damage cycle after cycle. A sample cyclically loaded at constant amplitude finally leads to failure even if the peak load is lower than its monotonic strength. This subcritical crack is due to a diffuse microfracturing and decohesion of the rock structure. The third section reviews and comments the concepts used to interpret the results. The fatigue limit and S- N curves are the most common concepts used to describe fatigue experiments. Results published from all papers are gathered into a single figure to highlight the tendency. Predicting the monotonic peak strength of a sample is found to be critical in order to compute accurate S- N curves. Finally, open questions are listed to provide a state of the art of grey areas in the understanding of fatigue mechanisms and challenges for the future.

  15. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    Science.gov (United States)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  16. Evaluation of Mechanical Properties and Fatigue Behavior of STS 304L due to Plastic Working

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyun-Bo [Yeungnam Univ., Daegu (Korea, Republic of); Kim, Young-Kyun [KOGAS Research Institute, Seoul (Korea, Republic of); Suh, Chang-Min [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2017-07-15

    The purpose of this study is to investigate the influence of the cold reduction rate and an ultrasonic fatigue test (UFT) on the fatigue behaviors of STS 304L. The tensile strength, yield strength, hardness value and fatigue limit in the UFT fatigue test linearly increased as thickness decreased from 1.5 mm to 1.1 mm, as the cold reduction rate of STS 304L increased. As a result of the UFT fatigue test (R = -1) of four specimens, the fatigue limit of the S-N curve formed a knee point in the region of 10{sup 6}, and the 2nd fatigue limit caused by giga cycle fatigue did not appeared. In the case of t = 1.1 mm, the highest fatigue limit was 345 MPa, which was 64.3% higher than the original material (t = 1.5 mm). As a result of the UFT fatigue test of STS 304L, many small surface cracks occurred, grown, coalesced while tearing.

  17. Numerical simulation of tearing-fatigue interactions in 316l(N) austenitic stainless steel

    International Nuclear Information System (INIS)

    Sherry, A.H.; Wilkes, M.A.

    2005-01-01

    The loading history of engineering components can influence the behaviour of defects in service. This paper presents, the results of a numerical study aimed at using the Gurson ductile damage model, calibrated against J R-curve data, to simulate load-history effects on ductile tearing behaviour in austenitic materials. The work has demonstrated that ductile crack growth resistance is influenced by sub-critical crack growth by an intervening mechanism such as fatigue. Fatigue crack growth under a positive R-ratio leads to increase in subsequent tearing resistance through three main mechanisms: (i) re-sharpening of the crack tip; (ii) crack extension through the fracture process zone; and (iii) cyclic loading effects on void development. The ratio of minimum to maximum stress during fatigue loading (R-ratio) has been shown to influence subsequent tearing resistance, with an R-ratio of 0.2 generally leading to a greater enhancement in tearing resistance than an R-ratio of 0.1. This behaviour is due to the influence of R-ratio on void development ahead of the fatigue crack tip. Finally, relevant experimental data compare favourably with the predicted J R-curves

  18. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...... microns in front of the fatigue crack tip, which is comparable with the relevant mean free carbide spacing....

  19. Strain Rate Effects, Transition Behaviour and Master Curve Concept

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Pluvinage, G.; Holzmann, Miloslav

    č. 8 (2004), s. IV 16-IV 22 ISSN 1291-8199 R&D Projects: GA AV ČR IAA2041003; GA ČR GA106/01/0342 Institutional research plan: CEZ:AV0Z2041904 Keywords : ferritic steel * pressure vessel steel * master curve Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. The estimation of I–V curves of PV panel using manufacturers’ I–V curves and evolutionary strategy

    International Nuclear Information System (INIS)

    Barukčić, M.; Hederić, Ž.; Špoljarić, Ž.

    2014-01-01

    Highlights: • The approximation of a I–V curve by two linear and a sigmoid functions is proposed. • The sigmoid function is used to estimate the knee of the I–V curve. • Dependence on irradiance and temperature of sigmoid function parameters is proposed. • The sigmoid function is used to estimate maximum power point (MPP). - Abstract: The method for estimation of I–V curves of photovoltaic (PV) panel by analytic expression is presented in the paper. The problem is defined in the form of an optimization problem. The optimization problem objective is based on data from I–V curves obtained by manufacturers’ or measured I–V curves. In order to estimate PV panel parameters, the optimization problem is solved by using an evolutionary strategy. The proposed method is tested for different PV panel technologies using data sheets. In this method the I–V curve approximation with two linear and a sigmoid function is proposed. The method for estimating the knee of the I–V curve and maximum power point at any irradiance and temperature is proposed

  1. Fatigue strength of a single lap joint SPR-bonded

    International Nuclear Information System (INIS)

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-01-01

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints.The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  2. The fatigue behavior of composite laminates under various mean stresses

    Science.gov (United States)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  3. Study on Mechanical Features of Brazilian Splitting Fatigue Tests of Salt Rock

    Directory of Open Access Journals (Sweden)

    Weichao Wang

    2016-01-01

    Full Text Available The microtest, SEM, was carried out to study the fracture surface of salt rock after the Brazilian splitting test and splitting fatigue test were carried out with a servo-controlled test machine RMT-150B. The results indicate that the deviation of using the tablet splitting method is larger than that of using steel wire splitting method, in Brazilian splitting test of salt rock, when the conventional data processing method is adopted. There are similar deformation features in both the conventional splitting tests and uniaxial compression tests. The stress-strain curves include compaction, elasticity, yielding, and failure stage. Both the vertical deformation and horizontal deformation of splitting fatigue tests under constant average loading can be divided into three stages of “loosening-tightness-loosening.” The failure modes of splitting fatigue tests under the variational average loading are not controlled by the fracturing process curve of the conventional splitting tests. The deformation extent of fatigue tests under variational average loading is even greater than that of conventional splitting test. The tensile strength of salt rock has a relationship with crystallization conditions. Tensile strength of thick crystal salt rock is lower than the bonded strength of fine-grain crystals.

  4. Study on effect of mean stress on fatigue life prediction of thin film structure

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Soo [Ahtti Co., Seongnam (Korea, Republic of); Park, Jun Hyu [Tongmyong University, Busan (Korea, Republic of); Kim, Jung Yup [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-04-15

    This paper describes the effect of mean stress on fatigue life prediction of structure made with thin film. It is well known that the mean stress influences fatigue life prediction of mechanical structure. We investigated a reasonable method for considering mean stress when fatigue strength assessment of micro structure of thin film should be performed. Fatigue tests of smooth specimen of beryllium-copper (BeCu) thin film were performed in ambient air at R = 0.1 with 5 Hz. A micro probe was designed and made with BeCu thin film by the precision press process. Fatigue tests of micro structure were performed with 5 Hz frequency, in ambient air to verify the fatigue life predicted by computer simulation through FE analysis. The fatigue life predicted by the Sa -N curve modified by Goodman method with principal stress through FE analysis shows a more reasonable result than other methods.

  5. Study on effect of mean stress on fatigue life prediction of thin film structure

    International Nuclear Information System (INIS)

    Shin, Myung Soo; Park, Jun Hyu; Kim, Jung Yup

    2016-01-01

    This paper describes the effect of mean stress on fatigue life prediction of structure made with thin film. It is well known that the mean stress influences fatigue life prediction of mechanical structure. We investigated a reasonable method for considering mean stress when fatigue strength assessment of micro structure of thin film should be performed. Fatigue tests of smooth specimen of beryllium-copper (BeCu) thin film were performed in ambient air at R = 0.1 with 5 Hz. A micro probe was designed and made with BeCu thin film by the precision press process. Fatigue tests of micro structure were performed with 5 Hz frequency, in ambient air to verify the fatigue life predicted by computer simulation through FE analysis. The fatigue life predicted by the Sa -N curve modified by Goodman method with principal stress through FE analysis shows a more reasonable result than other methods

  6. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  7. Robust design and thermal fatigue life prediction of anisotropic conductive film flip chip package

    International Nuclear Information System (INIS)

    Nam, Hyun Wook

    2004-01-01

    The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF(Anisotropic Conductive Film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue life of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear bi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design Of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2 nd DOE was conducted to obtain RSM equation for the choose 3 design parameter. The coefficient of determination (R 2 ) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for Feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430μm, and 78μm, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter

  8. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    Science.gov (United States)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  9. A fatigue approach to wind turbine control

    International Nuclear Information System (INIS)

    Hammerum, K; Brath, P; Poulsen, N K

    2007-01-01

    Conventional design of wind turbine controllers is focused on speed and produced electric power. As fatigue loads is an important design consideration, the resulting design is evaluated also with respect to the fatigue loads inflicted on the turbine structure. This is normally done by performing simulations using tools like FLEX, HAWC or FAST, followed by rainflow counting in the resulting time series. This procedure constitutes an iterative design procedure involving realisations of the stress processes in order to obtain the time series needed for fatigue estimates. The focus of this paper is the elimination of the need for process realisation. To this end, known techniques for approximative fatigue load assesment based on the spectral moments of the inflicted stress histories are applied. Assuming a linearised system model, we present a novel scheme for efficient computation of these spectral moments. The scheme is applied to obtain rapid evaluation of cost functions including fatigue loads, hereby allowing efficient numerical optimisation of the controller. Three different controller design examples are given, all defined directly in terms of component life times

  10. Speed limiter integrated fatigue analyzer (SLIFA) for speed and fatigue control on diesel engine truck and bus

    Science.gov (United States)

    Wahyudi, Haris; Pranoto, Hadi; Leman, A. M.; Sebayang, Darwin; Baba, I.

    2017-09-01

    Every second, the number of road traffic deaths is increased globally with millions more sustaining severe injuries and living with long-term adverse health consequences. Jakarta alone in year 2015 had recorded 556 people died due to road accidents, approximately reached 6.231 road accident cases. The identified major contributory factors of such unfortunate events are both driver fatigue and over speeding habit especially related to the driving of truck and bus. This paper presents the idea on how to control the electronic system from input fuel system of injection pump and the combustion chamber engine will control the valve solenoid in injection pump which can lock and fuel will stop for moment, and speed limit can be success, by using sensor heart rate we can input reduce speed limit when fatigue detection driver. Integration process this tool can be relevant when Speed Limiter Integrated Fatigue Analyser (SLIFA) trial in the diesel engine for truck and bus, the result of this research Speed Limiter Integrated Fatigue Analyser (SLIFA) able to control speed of diesel engine for truck and bus almost 30km/h, 60km/h, and until 70 km/h. The installation of the sensor heart rate as the input speed limit SLIFA would work when the driver is detected to be in the fatigue condition. We make Speed Limiter Integrated Fatigue Analyser (SLIFA) for control and monitoring system for diesel engine in truck and bus. Speed Limiter Integrated Fatigue Analyser (SLIFA) system can save the historical of the speed record, fatigue, rpm, and body temperature of the driver.

  11. Fatigue behaviour of coke drum materials under thermal-mechanical cyclic loading

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-01-01

    Full Text Available Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in coke drums in the form of bulging and cracking. There were some studies on the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully developed to allow performing thermal-mechanical fatigue (TMF test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.

  12. Static and Fatigue Behavior Investigation of Artificial Notched Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Yafei Ma

    2017-05-01

    Full Text Available Pitting corrosion is one of the most common forms of localized corrosion. Corrosion pit results in a stress concentration and fatigue cracks usually initiate and propagate from these corrosion pits. Aging structures may fracture when the fatigue crack reaches a critical size. This paper experimentally simulates the effects of pitting morphologies on the static and fatigue behavior of steel bars. Four artificial notch shapes are considered: radial ellipse, axial ellipse, triangle and length-variable triangle. Each shape notch includes six sizes to simulate a variety of pitting corrosion morphologies. The stress-strain curves of steel bars with different notch shape and depth are obtained based on static tensile testing, and the stress concentration coefficients for various conditions are determined. It was determined that the triangular notch has the highest stress concentration coefficient, followed by length-variable triangle, radial ellipse and axial ellipse shaped notches. Subsequently, the effects of notch depth and notch aspect ratios on the fatigue life under three stress levels are investigated by fatigue testing, and the equations for stress range-fatigue life-notch depth are obtained. Several conclusions are drawn based on the proposed study. The established relationships provide an experimental reference for evaluating the fatigue life of concrete bridges.

  13. Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

    Directory of Open Access Journals (Sweden)

    Kulesa Anna

    2016-03-01

    Full Text Available The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.

  14. A methodology to evaluate the fatigue life of flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fernando J.M. de; Sousa, Jose Renato M. de; Siqueira, Marcos Q. de; Sagrilo, Luis V.S. [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Lemos, Carlos Alberto D. de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper focus on a methodology to perform the fatigue analysis of flexible pipes. This methodology employs functions that convert forces and moments obtained in global analyses into stresses. The stresses are then processed by well-known cycle counting methods, and S-N curves evaluate the damage at several points in the pipe cross-section. Palmgren-Miner linear damage hypothesis is assumed in order to calculate the accumulated fatigue damage. A parametric study on the fatigue life of a flexible pipe employing this methodology is presented. The main points addressed in the study are the influence of friction between layers in the results, the importance of evaluating the fatigue life in various points of the pipe cross-section and the effect of different mean stress levels. The obtained results suggest that the consideration of friction effects strongly influences the fatigue life of flexible risers and these effects have to be accounted both in the global and local analyses of the riser. Moreover, mean stress effects are also significant and at least 8 equally spaced wires in each analyzed section of the riser must be considered in fatigue analyses. (author)

  15. Vibrational fatigue failures in short cantilevered piping with socket-welding fittings

    International Nuclear Information System (INIS)

    Smith, J.K.

    1996-01-01

    Approximately 80% of the vibrational fatigue failures in nuclear power plants have been caused by high cycle vibrational fatigue. Many of these failures have occurred in short, small bore (2 in. nominal diameter and smaller), unbraced, cantilevered piping with socket-welding fittings. The fatigue failures initiated in the socket welds. These failures have been unexpected, and have caused costly, unscheduled outages in some cases. In order to reduce the number of vibrational fatigue failures in these short cantilevered pipes, an acceleration based vibrational fatigue screening criteria was developed under Electric Power Research Institute (EPRI) sponsorship. In this paper, the acceleration based criteria will be compared to the results obtained from detailed dynamic modeling of a short, cantilevered pipe

  16. Investigation of magnetic properties of steel in the process of fatigue

    International Nuclear Information System (INIS)

    Kasimov, G.A.; Pokrovskij, A.D.

    1976-01-01

    Non-destructive method was developed for the recognition of structural demages of mashine components, which is based on studying the effect of the cyclical loading of constructional steel (brands 10, 20, etc.) upon their magnetic characteristics. Using the experimental installation, we have determined the effect of the degree of fatigue destruction of steel specimens upon the main magnetization curve and the symmetrical cycles of magnetic hysteresis. The obtained results make it possible to choose the conditions of control over the fatigue process

  17. Effects of LWR coolant environments on fatigue lives of austenitic stainless steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gavenda, D.J.

    1997-01-01

    The ASME Boiler and Pressure Vessel Code fatigue design curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue life of pressure vessel and piping materials in light water reactor (LWR) environments. Fatigue tests have been conducted on Types 304 and 316NG stainless steel in air and LWR environments to evaluate the effects of various material and loading variables, e.g., steel type, strain rate, dissolved oxygen (DO) in water, and strain range, on fatigue lives of these steels. The results confirm the significant decrease in fatigue life in water. The environmentally assisted decrease in fatigue life depends both on strain rate and DO content in water. A decrease in strain rate from 0.4 to 0.004%/s decreases fatigue life by a factor of ∼ 8. However, unlike carbon and low-alloy steels, environmental effects are more pronounced in low-DO than in high-DO water. At ∼ 0.004%/s strain rate, reduction in fatigue life in water containing <10 ppb D is greater by a factor of ∼ 2 than in water containing ≥ 200 ppb DO. Experimental results have been compared with estimates of fatigue life based on the statistical model. The formation and growth of fatigue cracks in austenitic stainless steels in air and LWR environments are discussed

  18. Real-time Alarm Monitoring System for Detecting Driver Fatigue in Wireless Areas

    Directory of Open Access Journals (Sweden)

    Rongrong Fu

    2017-04-01

    Full Text Available The purpose of this paper was to develop a real-time alarm monitoring system that can detect the fatigue driving state through wireless communication. The drivers’ electroencephalogram (EEG signals were recorded from occipital electrodes. Seven EEG rhythms with different frequency bands as gamma, hbeta, beta, sigma, alpha, theta and delta waves were extracted. They were simultaneously assessed using relative operating characteristic (ROC curves and grey relational analysis to select one as the fatigue feature. The research results showed that the performance of theta wave was the best one. Therefore, theta wave was used as fatigue feature in the following alarm device. The real-time alarm monitoring system based on the result has been developed, once the threshold was settled by using the data of the first ten minutes driving period. The developed system can detect driver fatigue and give alarm to indicate the onset of fatigue automatically.

  19. Estimation of fatigue characteristics of asphaltic mixes using simple tests

    NARCIS (Netherlands)

    Medani, T.O.; Molenaar, A.A.A.

    2000-01-01

    A simplified procedure for estimation of fatigue characteristics of asphaltic mixes is presented. The procedure requires the determination of the so-called master curve (Le. the relationship between the mix stiffness, the loading time and the temperature), the asphalt properties and the mix

  20. Spline approximation, Part 1: Basic methodology

    Science.gov (United States)

    Ezhov, Nikolaj; Neitzel, Frank; Petrovic, Svetozar

    2018-04-01

    In engineering geodesy point clouds derived from terrestrial laser scanning or from photogrammetric approaches are almost never used as final results. For further processing and analysis a curve or surface approximation with a continuous mathematical function is required. In this paper the approximation of 2D curves by means of splines is treated. Splines offer quite flexible and elegant solutions for interpolation or approximation of "irregularly" distributed data. Depending on the problem they can be expressed as a function or as a set of equations that depend on some parameter. Many different types of splines can be used for spline approximation and all of them have certain advantages and disadvantages depending on the approximation problem. In a series of three articles spline approximation is presented from a geodetic point of view. In this paper (Part 1) the basic methodology of spline approximation is demonstrated using splines constructed from ordinary polynomials and splines constructed from truncated polynomials. In the forthcoming Part 2 the notion of B-spline will be explained in a unique way, namely by using the concept of convex combinations. The numerical stability of all spline approximation approaches as well as the utilization of splines for deformation detection will be investigated on numerical examples in Part 3.

  1. CYCLIC FATIGUE RESISTANCE OF AZ91 MAGNESIUM ALLOY

    Directory of Open Access Journals (Sweden)

    Aneta Němcová

    2009-11-01

    Full Text Available The paper deals with determination of principal mechanical properties and the investigation of fatigue behaviour of AZ91 magnesium alloy. The experimental material was made by squeeze casting technique and heat treated to obtain T4 state (solution annealing, when hard, brittle Mg17Al12 intermetallic phase is dissolved. The basic mechanical properties (Young’s modulus, ultimate tensile strength, yield strength, elongation to fracture and reduction of area were determined by static tensile test. Furthermore, fatigue parameters were investigated. The S-N curve on the basis of smooth test bars tested under symmetrical push-pull loading at room temperature was evaluated. The measured data were subsequently used for fitting with suitable regression functions (Kohout & Věchet and Stromeyer for determination of the fatigue parameters. Fatigue limit sigma-c of the studied alloy for 108 cycles is approaching 50 MPa. In addition, the fracture surfaces were observed by scanning electron microscopy. The failure analysis proved that the striations were observed in fatigue crack propagation area and in the area of static fracture was observed the transgranular ductile fracture. The structure of the studied alloy in the basic state and after heat treatment was observed by light and scanning electron microscopy.

  2. Study of fatigue crack propagation in laminated metal composites alluminium 1100/alluminium 2024

    International Nuclear Information System (INIS)

    Tavares, R.I.

    1984-01-01

    A study has been made of fatigue crack propagation in laminated metal composites with different volume fraction of constituents. The composites were produced by hot rolling, combining 1100 and 2024 aluminum alloys in crack divider orientation. Mechanical and metallurgical properties of the composites and original alloys sheets have been evaluated. Paris type relationship, corresponding to stage II of fatigue crack propagation curves, has been determined by two different methods, wich have shown to be equivalent. A computer software in FORTRAN language was developed for all the mathematical manipulation of fatigue data including statistical analysis and graphics. (Author) [pt

  3. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    International Nuclear Information System (INIS)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui

    2015-01-01

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life

  4. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life.

  5. The influence of the martensitic transformation on the fatigue of an AISI type 316 metastable stainless steel

    International Nuclear Information System (INIS)

    Pacheco, D.J; Sousa e Silva, A.S. de; Monteiro, S.N.

    The influence of the martensitic transformation on the process of pulse tension fatigue of a AISI type 316 metastable stainless steel was studied at 25 0 and 196 0 c. The fatigue tests were performed on annealed and cold worked specimens in order to separate the effects of static transformation, dynamic transformation and work hardening. The fatigue limits obtained from the corresponding Wohler curves were compared for the different test conditions. The results showed that the fatigue is not affected by the dynamically induced martensite. On the other hand the static martensite, previously induced, appears to decrease the resistance to fatigue. The reasons for these effects are discussed. (Author) [pt

  6. Fatigue damage mechanism and strength of woven laminates

    International Nuclear Information System (INIS)

    Xiao, J.; Bathias, C.

    1993-01-01

    The apparent secant stiffness changes with the cyclic number for both unnotched and notched woven laminated specimens (two orthotropic and one quasi-isotropic) during tensile fatigue test at a fixed ratio of maximum fatigue load to UTS were observed. The observable damage initiation and evolution as a function of the cyclic number were directly measured at the notched specimen surface with a video-camera system. The fatigue strengths of the unnotched and notched specimens were determined. The results show that the normalized apparent secant stiffness change curves as a function of cyclic numbers can be divided into three stages. For the first and the second stages in notched specimens and for total life of unnotched specimens, the damage has not been evidently observed and certainly verified with the traditional experimental methods such as radiography and microscopy although many acoustic emission signals can be obtained. The last stage for the notched specimens (N/Nf>0.4, the secant stiffness decreases fast) corresponds to the initiation and evolution of the observable damages. The fatigue strength of these woven composite laminates is dominated by the third stage during which the observable damage develops along the specimen ligament until fracture. During the third stage, a critical dimension at the specimen ligament and a life threshold can be found beyond which a final catastrophic fracture will immediately occur. The quasi-isotropic laminate is of a fatigue strength lower than the two orthotropic laminates of which the fatigue strengths are approaching to each other. The fatigue life is also influenced by the stacking sequences. (orig.)

  7. Development of a screening procedure for vibrational fatigue in small bore piping

    International Nuclear Information System (INIS)

    Smith, J.K.; Riccardella, P.C.; Gosselin, S.R.

    1995-01-01

    Approximately 80% of the documented fatigue failures in nuclear power plants are caused by high cycle vibrational fatigue. These failures typically occur in socket welded pipe fittings in small bore piping (2 in. nominal diameter and smaller). These failures have been unexpected, and have caused costly, unscheduled outages in some cases. In order to reduce the number of vibrational fatigue failures in operating nuclear power plants, a vibrational fatigue screening procedure has been developed under Electric Power Research Institute (EPRI) sponsorship. The purpose of this paper is to describe this procedure, and to discuss topics related to vibrational fatigue failures. These topics include sources of vibration in nuclear power plants, the effect of socket welds on vibrational fatigue failures, vibrational fatigue screening criteria for small bore piping systems, and good design practices for reducing the number of vibrational fatigue failures in small bore piping

  8. Fatigue following mild Traumatic Brain Injury : A six-month prospective cohort study

    NARCIS (Netherlands)

    Rakers, Sandra; Scheenen, Myrthe; de Koning, Myrthe; van der Horn, Harm J.; van der Naalt, Joukje; Spikman, Jacoba

    2017-01-01

    Objective: Fatigue is a frequent and profoundly disabling symptom following mild traumatic brain injury (mTBI), that may even persist for years. Approximately 85–90% of thepatients with TBI sustain a mild TBI, and among these patients, about 68% experience complaints of fatigue in the acute phase

  9. Generic Reliability-Based Inspection Planning for Fatigue Sensitive Details

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Straub, Daniel; Faber, Michael Havbro

    2005-01-01

    of fatigue sensitive details in fixed offshore steel jacket platforms and FPSO ship structures. Inspection and maintenance activities are planned such that code based requirements to the safety of personnel and environment for the considered structure are fulfilled and at the same time such that the overall......The generic approach for planning of in-service NDT inspections is extended to cover the case where the fatigue load is modified during the design lifetime of the structure. Generic reliability-based inspection planning has been developed as a practical approach to perform inspection planning...... expected costs for design, inspections, repairs and failures are minimized. The method is based on the assumption of “no-finds” of cracks during inspections. Each fatigue sensitive detail is categorized according to their type of details (SN curves), FDF values, RSR values, inspection, repair and failure...

  10. Improved methods of creep-fatigue life assessment of components

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Alfred; Berger, Christina [Inst. fuer Werkstoffkunde (IfW), Technische Univ. Darmstadt (Germany)

    2009-07-01

    The improvement of life assessment methods contributes to a reduction of efforts at design and an effective long term operation of high temperature components, reduces technical risk and increases high economical advantages. Creep-fatigue at multi-stage loading, covering cold start, warm start and hot start cycles in typical loading sequences e.g. for medium loaded power plants, was investigated here. At hold times creep and stress relaxation, respectively, lead to an acceleration of crack initiation. Creep fatigue life time can be calculated by a modified damage accumulation rule, which considers the fatigue fraction rule for fatigue damage and the life fraction rule for creep damage. Mean stress effects, internal stress and interaction effects of creep and fatigue are considered. Along with the generation of advanced creep data, fatigue data and creep fatigue data as well scatter band analyses are necessary in order to generate design curves and lower bound properties inclusive. Besides, in order to improve lifing methods the enhancement of modelling activities for deformation and life time are important. For verification purposes, complex experiments at variable creep conditions as well as at creep fatigue interaction under multi-stage loading are of interest. Generally, the development of methods to transfer uniaxial material properties to multiaxial loading situations is a current challenge. For specific design purposes, a constitutive material model is introduced which is implemented as an user subroutine for Finite Element applications due to start-up and shut-down phases of components. Identification of material parameters have been performed by Neural Networks. (orig.)

  11. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    Science.gov (United States)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  12. ''Safety rules of fatigue damage for nuclear facilities pressurized equipment at the sizing and the operation stage''

    International Nuclear Information System (INIS)

    Grandemange, J.M.; Faidy, C.

    2001-01-01

    This paper presents the method applied in the nuclear industry in the domain of the fatigue risk safety. It recalls the fatigue curves origins and presents the technical requirements implemented during the design and the construction. It also presents the follow-up of transients in service and the periodical examinations. (A.L.B.)

  13. Numerical and Experimental Analysis of Aircraft Wing Subjected to Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Hatem Rahim Wasmi

    2016-10-01

    Full Text Available This study deals with the aircraft wing analysis (numerical and experimental which subjected to fatigue loading in order to analyze the aircraft wing numerically by using ANSYS 15.0 software and experimentally by using loading programs which effect on fatigue test specimens at laboratory to estimate life of used metal (aluminum alloy 7075-T651 the wing metal and compare between numerical and experimental work, as well as to formulate an experimental mathematical model which may find safe estimate for metals and most common alloys that are used to build aircraft wing at certain conditions. In experimental work, a (34 specimen of (aluminum alloy 7075-T651 were tested using alternating bending fatigue machine rig. The test results are ; (18 Specimen to establish the (S-N curve and endurance limit and the other specimens used for variable amplitude tests were represented by loading programs which represents actual flight conditions. Also it has been obtained the safe fatigue curves which are described by mathematical formulas. ANSYS results show convergence with experimental results about cumulative fatigue damage (D, a mathematical model is proposed to estimate the life; this model gives good results in case of actual loading programs. Also, Miner and Marsh rules are applied to the specimens and compared with the proposal mathematical model in order to estimate the life of the wing material under actual flight loading conditions, comparing results show that it is possible to depend on present mathematical model than Miner and Marsh theories because the proposal mathematical model shows safe and good results compared with experimental work results.

  14. Thermal-stress fatigue behavior of twenty-six superalloys

    Science.gov (United States)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  15. Approximate stresses in 2-D flat elastic contact fretting problems

    Science.gov (United States)

    Urban, Michael Rene

    Fatigue results from the cyclic loading of a solid body. If the body subject to fatigue is in contact with another body and relative sliding motion occurs between these two bodies, then rubbing surface damage can accelerate fatigue failure. The acceleration of fatigue failure is especially important if the relative motion between the two bodies results in surface damage without excessive surface removal via wear. The situation just described is referred to as fretting fatigue. Understanding of fretting fatigue is greatly enhanced if the stress state associated with fretting can be characterized. For Hertzian contact, this can readily be done. Unfortunately, simple stress formulae are not available for flat body contact. The primary result of the present research is the development of a new, reasonably accurate, approximate closed form expression for 2-dimensional contact stresses which has been verified using finite element modeling. This expression is also combined with fracture mechanics to provide a simple method of determining when a crack is long enough to no longer be affected by the contact stress field. Lower bounds on fatigue life can then easily be calculated using fracture mechanics. This closed form expression can also be used to calculate crack propagation within the contact stress field. The problem of determining the cycles required to generate an initial crack and what to choose as an initial crack size is unresolved as it is in non-fretting fatigue.

  16. The direct-stress fatigue strength of 17S-T aluminum alloy throughout the range from 1/2 to 500,000,000 cycles of stress

    Science.gov (United States)

    Hartmann, E C; Stickley, G W

    1942-01-01

    Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.

  17. Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch

    Science.gov (United States)

    Agrawal, Richa; Veerababu, J.; Goyal, Sunil; Sandhya, R.; Uddanwadiker, Rashmi; Padole, Pramod

    2018-02-01

    Notches introduced in the plain specimen result in the multiaxial state of stress that exists in the actual components due to the presence of flaws and defects. In the present work, low cycle fatigue life estimation of plain and notched specimens of 316 LN stainless steel is carried out at room temperature and 823 K. The plain and notched specimens with different notch radii were subjected to varying strain amplitudes ranging from ± 0.25 to ± 1.0% at a strain rate of 3 × 10-3 s-1. The fatigue life decreased in the presence of notch for all strain amplitudes at both the temperatures. The decrease in fatigue life was found to be more at room temperature than at 823 K. The fatigue life of the notched specimen decreased by approximately 94.2% compared to plain specimen at room temperature. However, at 823 K the decrease in fatigue life for notched specimen was approximately 84.6%. Low cycle fatigue life of the plain and notched specimens was estimated by Neuber's rule and finite element analysis approach. Neuber's rule overestimated the fatigue life by maximum factor of 2.6 for specimens at room temperature and by maximum factor of 5 for specimens at 823 K. However, it gives closer approximation at higher strain amplitudes at 823 K. Life estimation by finite element analysis at room temperature was within a factor of 1.5 as compared to experimental life, whereas it underestimated the fatigue life within a factor of 6 at high temperature.

  18. Using Peano Curves to Construct Laplacians on Fractals

    Science.gov (United States)

    Molitor, Denali; Ott, Nadia; Strichartz, Robert

    2015-12-01

    We describe a new method to construct Laplacians on fractals using a Peano curve from the circle onto the fractal, extending an idea that has been used in the case of certain Julia sets. The Peano curve allows us to visualize eigenfunctions of the Laplacian by graphing the pullback to the circle. We study in detail three fractals: the pentagasket, the octagasket and the magic carpet. We also use the method for two nonfractal self-similar sets, the torus and the equilateral triangle, obtaining appealing new visualizations of eigenfunctions on the triangle. In contrast to the many familiar pictures of approximations to standard Peano curves, that do no show self-intersections, our descriptions of approximations to the Peano curves have self-intersections that play a vital role in constructing graph approximations to the fractal with explicit graph Laplacians that give the fractal Laplacian in the limit.

  19. Thermal fatigue in mixing tees: A step by step simplified procedure

    International Nuclear Information System (INIS)

    Faidy, Claude

    2003-01-01

    Following the CIVAUX 1 incident of a leak on RHR system, EDF has developed a step by step procedure to screen and analyse similar locations: mixing tees with long duration at high ΔT between the 2 fluids. The paper present the procedure, the background of the methodology and few R and D work that support this procedure. The procedure is based on: screening criteria on maximum DT and minimum duration. screening criteria without any duration consideration, only DT and material. a simplified and conservative estimation of a usage factor. a detailed analysis of usage factor and crack growth rate, based on specific data collection of operating transients. Around that procedure EDF launched an R and D program on fatigue curves and fatigue reduction factors for high cycle fatigue. The procedure is compared with field experience and recent R and D fatigue tests. (author)

  20. Human cortical neural correlates of visual fatigue during binocular depth perception: An fNIRS study.

    Directory of Open Access Journals (Sweden)

    Tingting Cai

    Full Text Available Functional near-infrared spectroscopy (fNIRS was adopted to investigate the cortical neural correlates of visual fatigue during binocular depth perception for different disparities (from 0.1° to 1.5°. By using a slow event-related paradigm, the oxyhaemoglobin (HbO responses to fused binocular stimuli presented by the random-dot stereogram (RDS were recorded over the whole visual dorsal area. To extract from an HbO curve the characteristics that are correlated with subjective experiences of stereopsis and visual fatigue, we proposed a novel method to fit the time-course HbO curve with various response functions which could reflect various processes of binocular depth perception. Our results indicate that the parietal-occipital cortices are spatially correlated with binocular depth perception and that the process of depth perception includes two steps, associated with generating and sustaining stereovision. Visual fatigue is caused mainly by generating stereovision, while the amplitude of the haemodynamic response corresponding to sustaining stereovision is correlated with stereopsis. Combining statistical parameter analysis and the fitted time-course analysis, fNIRS could be a promising method to study visual fatigue and possibly other multi-process neural bases.

  1. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (pfatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  2. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-09-15

    Highlights: • We aimed to determine the thermomechanical behaviour of VVER reactor steels. • Material tests were developed and performed on GLEEBLE 3800 physical simulator. • Coffin–Manson curves and parameters were derived. • High accuracy of the strain energy based evaluation was found. • The observed dislocation evolution correlates with the mechanical behaviour. - Abstract: The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin–Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  3. Fatigue reliability and effective turbulence models in wind farms

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frandsen, Sten Tronæs; Tarp-Johansen, N.J.

    2007-01-01

    behind wind turbines can imply a significant reduction in the fatigue lifetime of wind turbines placed in wakes. In this paper the design code model in the wind turbine code IEC 61400-1 (2005) is evaluated from a probabilistic point of view, including the importance of modeling the SN-curve by linear...

  4. Seasonality of cavitation and frost fatigue in Acer mono Maxim.

    Science.gov (United States)

    Zhang, Wen; Feng, Feng; Tyree, Melvin T

    2017-12-08

    Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation-refilling and freeze-thaw cycles for a whole year. Cavitation resistance was determined from 'vulnerability curves' showing the percent loss of conductivity versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation-refilling cycle, whereas frost fatigue was caused by a freeze-thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12-month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes. © 2017 John Wiley & Sons Ltd.

  5. Devices for fatigue testing of electroplated nickel (MEMS)

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Ravnkilde, J. T.; Ginnerup, Morten

    2002-01-01

    μm and an effective length from 4μm to 27μm. Maximum stresses of the test beam were calculated to be 500MPa to 2100MPa by use of FEM tools. The test results indicate very promising fatigue properties of nano-nickel, as none of the test devices have shown fatigue failure or even initiation of cracks......In-situ fatigue test devices with integrated electrostatic actuator were fabricated in electroplated nanocrystalline nickel (nano-nickel). The devices feature in-plane approximately pure bending with fixed displacement of the test specimen of the dimensions: widths from 2μm to 3.7μm, a height of 7...... after 108 cycles. The combination of high strength and toughness, which is known for nanocrystalline materials, together with very small test specimens and low surface roughness could be the explanation for the good fatigue properties....

  6. Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography.

    Science.gov (United States)

    Ishii, Akira; Tanaka, Masaaki; Iwamae, Masayoshi; Kim, Chongsoo; Yamano, Emi; Watanabe, Yasuyoshi

    2013-06-13

    It has been proposed that an inappropriately conditioned fatigue sensation could be one cause of chronic fatigue. Although classical conditioning of the fatigue sensation has been reported in rats, there have been no reports in humans. Our aim was to examine whether classical conditioning of the mental fatigue sensation can take place in humans and to clarify the neural mechanisms of fatigue sensation using magnetoencephalography (MEG). Ten and 9 healthy volunteers participated in a conditioning and a control experiment, respectively. In the conditioning experiment, we used metronome sounds as conditioned stimuli and two-back task trials as unconditioned stimuli to cause fatigue sensation. Participants underwent MEG measurement while listening to the metronome sounds for 6 min. Thereafter, fatigue-inducing mental task trials (two-back task trials), which are demanding working-memory task trials, were performed for 60 min; metronome sounds were started 30 min after the start of the task trials (conditioning session). The next day, neural activities while listening to the metronome for 6 min were measured. Levels of fatigue sensation were also assessed using a visual analogue scale. In the control experiment, participants listened to the metronome on the first and second days, but they did not perform conditioning session. MEG was not recorded in the control experiment. The level of fatigue sensation caused by listening to the metronome on the second day was significantly higher relative to that on the first day only when participants performed the conditioning session on the first day. Equivalent current dipoles (ECDs) in the insular cortex, with mean latencies of approximately 190 ms, were observed in six of eight participants after the conditioning session, although ECDs were not identified in any participant before the conditioning session. We demonstrated that the metronome sounds can cause mental fatigue sensation as a result of repeated pairings of the sounds

  7. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)

    2017-06-01

    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  8. Rotary bending fatigue behavior of A356 –T6 aluminum alloys by vacuum pressurizing casting

    Directory of Open Access Journals (Sweden)

    Yong-qin Liu

    2015-09-01

    Full Text Available Vacuum pressurizing casting technique, providing better mould filling and inter-dendritic feeding, can reduce the porosity greatly in cast aluminum alloys, and improve the fatigue properties. The rotary bending fatigue properties of A356-T6 alloys prepared by vacuum pressurizing casting were investigated. The S-N curve and limit strength 90 MPa under fatigue life of 107 cycles were obtained. The analyses on the fatigue fractography and microstructure of specimens showed that the fatigue fracture mainly occurs at the positions with casting defects in the subsurface, especially at porosities regions, which attributed to the crack propagation during the fatigue fracture process. Using the empirical crack propagation law of Pairs-Erdogon, the quantitative relationship among the initial crack size, fatigue life and applied stress was established. The fatigue life decreases with an increase in initial crack size. Two constants in the Pairs-Erdogon equation of aluminum alloy A356-T6 were calculated using the experimental data.

  9. Methods for predicting isochronous stress-strain curves

    International Nuclear Information System (INIS)

    Kiyoshige, Masanori; Shimizu, Shigeki; Satoh, Keisuke.

    1976-01-01

    Isochronous stress-strain curves show the relation between stress and total strain at a certain temperature with time as a parameter, and they are drawn up from the creep test results at various stress levels at a definite temperature. The concept regarding the isochronous stress-strain curves was proposed by McVetty in 1930s, and has been used for the design of aero-engines. Recently the high temperature characteristics of materials are shown as the isochronous stress-strain curves in the design guide for the nuclear energy equipments and structures used in high temperature creep region. It is prescribed that these curves are used as the criteria for determining design stress intensity or the data for analyzing the superposed effects of creep and fatigue. In case of the isochronous stress-strain curves used for the design of nuclear energy equipments with very long service life, it is impractical to determine the curves directly from the results of long time creep test, accordingly the method of predicting long time stress-strain curves from short time creep test results must be established. The method proposed by the authors, for which the creep constitution equations taking the first and second creep stages into account are used, and the method using Larson-Miller parameter were studied, and it was found that both methods were reliable for the prediction. (Kako, I.)

  10. Low cycle fatigue analysis of a last stage steam turbine blade

    Directory of Open Access Journals (Sweden)

    Měšťánek P.

    2008-11-01

    Full Text Available The present paper deals with the low cycle fatigue analysis of the low pressure (LP steam turbine blade. The blade is cyclically loaded by the centrifugal force because of the repeated startups of the turbine. The goal of the research is to develop a technique to assess fatigue life of the blade and to determine the number of startups to the crack initiation. Two approaches were employed. First approach is based on the elastic finite element analysis. Fictive 'elastic' results are recalculated using Neuber's rule and the equivalent energy method. Triaxial state of stress is reduced using von Mises theory. Strain amplitude is calculated employing the cyclic deformation curve. Second approach is based on elastic-plastic FE analysis. Strain amplitude is determined directly from the FE analysis by reducing the triaxial state of strain. Fatigue life was assessed using uniaxial damage parameters. Both approaches are compared and their applicability is discussed. Factors that can influence the fatigue life are introduced. Experimental low cycle fatigue testing is shortly described.

  11. The Effect of the Free Surface on the Singular Stress Field at the Fatigue Crack Front

    Directory of Open Access Journals (Sweden)

    Oplt Tomáš

    2017-11-01

    Full Text Available Description of stress singularity in the vicinity of a free surface is presented. Its presence causes the retardation of the fatigue crack growth in that region and fatigue crack is being curved. Numerical model is used to study dependence of the stress singularity exponent on Poisson’s ratio. Estimated values are compared to those already published. Experimentally measured angles of fatigue crack on SENB specimens confirm the relation between Poisson’s ratio and the angle between crack front and free surface.

  12. Research on Fatigue Damage of Compressor Blade Steel KMN-I Using Nonlinear Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-01-01

    Full Text Available The fatigue damage of compressor blade steel KMN-I was investigated using nonlinear ultrasonic testing and the relation curve between the material nonlinearity parameter β and the fatigue life was obtained. The results showed that the nonlinearity parameter increased first and then decreased with the increase of the fatigue cycles. The microstructures were observed by scanning electron microscopy (SEM. It was found that some small defects like holes and pits appeared in the material matrix with the increase of the fatigue cycles, and the nonlinearity parameter increased correspondingly. The nonlinearity parameter reached the peak value when the microcracks initiated, and the nonlinearity parameter began to decrease when the microcracks further propagated to macrocracks. Therefore, it is proved that the nonlinearity parameter can be used to characterize the initiation of microcracks at the early stage of fatigue, and a method of evaluating the fatigue life of materials by nonlinear ultrasonic testing is proposed.

  13. Reliability-based fatigue life estimation of shear riveted connections considering dependency of rivet hole failures

    Directory of Open Access Journals (Sweden)

    Leonetti* Davide

    2018-01-01

    Full Text Available Standards and guidelines for the fatigue design of riveted connections make use of a stress range-endurance (S-N curve based on the net section stress range regardless of the number and the position of the rivets. Almost all tests on which S-N curves are based, are performed with a minimum number of rivets. However, the number of rivets in a row is expected to increase the fail-safe behaviour of the connection, whereas the number of rows is supposed to decrease the theoretical stress concentration at the critical locations, and hence these aspects are not considered in the S-N curves. This paper presents a numerical model predicting the fatigue life of riveted connections by performing a system reliability analysis on a double cover plated riveted butt joint. The connection is considered in three geometries, with different number of rivets in a row and different number of rows. The stress state in the connection is evaluated using a finite element model in which the friction coefficient and the clamping force in the rivets are considered in a deterministic manner. The probability of failure is evaluated for the main plate, and fatigue failure is assumed to be originating at the sides of the rivet holes, the critical locations, or hot-spots. The notch stress approach is applied to assess the fatigue life, considered to be a stochastic quantity. Unlike other system reliability models available in the literature, the evaluation of the probability of failure takes into account the stochastic dependence between the failures at each critical location modelled as a parallel system, which means considering the change of the state of stress in the connection when a ligament between two rivets fails. A sensitivity study is performed to evaluate the effect of the pretension in the rivet and the friction coefficient on the fatigue life.

  14. Fatigue Behaviors of Materials Processed by Planar Twist Extrusion

    Science.gov (United States)

    Ebrahimi, Mahmoud

    2017-12-01

    Since the last decade, the fabrication of ultrafine grain and nanostructure metals and alloys has attracted much attention in the field of materials engineering. The present study aimed at experimentally investigating the fatigue properties that are of great importance in dynamic structures before and after the planar twist extrusion process for both commercially pure copper and 6061 aluminum alloy. The results indicated that the yield strength, tensile strength, hardness, and fatigue endurance of copper increased by about 398, 122, 198, and 183 pct, respectively, while they improved by about 429, 212, 227, and 148 pct, respectively, in aluminum alloy as compared to the initial conditions. The stress-strain curves displayed sizable reduction of strain hardening. Furthermore, grain-size correction factors based on the empirical results were introduced to include the effect of the grain-size effect on both low and high-cycle fatigue strengths of the material.

  15. Analysis of Fatigue Life of PMMA at Different Frequencies Based on a New Damage Mechanics Model

    Directory of Open Access Journals (Sweden)

    Aifeng Huang

    2014-01-01

    Full Text Available Low-cycle fatigue tests at different frequencies and creep tests under different stress levels of Plexiglas Resist 45 were conducted. Correspondingly, the creep fracture time, S-N curves, cyclic creep, and hysteresis loop were obtained. These results showed that the fatigue life increases with frequency at low frequency domain. After analysis, it was found that fatigue life is dependent on the load rate and is affected by the creep damage. In addition, a new continuum damage mechanics (CDM model was established to analyze creep-fatigue life, where the damage increment nonlinear summation rule was proposed and the frequency modification was made on the fatigue damage evolution equation. Differential evolution (DE algorithm was employed to determine the parameters within the model. The proposed model described fatigue life under different frequencies, and the calculated results agreed well with the experimental results.

  16. Section curve reconstruction and mean-camber curve extraction of a point-sampled blade surface.

    Directory of Open Access Journals (Sweden)

    Wen-long Li

    Full Text Available The blade is one of the most critical parts of an aviation engine, and a small change in the blade geometry may significantly affect the dynamics performance of the aviation engine. Rapid advancements in 3D scanning techniques have enabled the inspection of the blade shape using a dense and accurate point cloud. This paper proposes a new method to achieving two common tasks in blade inspection: section curve reconstruction and mean-camber curve extraction with the representation of a point cloud. The mathematical morphology is expanded and applied to restrain the effect of the measuring defects and generate an ordered sequence of 2D measured points in the section plane. Then, the energy and distance are minimized to iteratively smoothen the measured points, approximate the section curve and extract the mean-camber curve. In addition, a turbine blade is machined and scanned to observe the curvature variation, energy variation and approximation error, which demonstrates the availability of the proposed method. The proposed method is simple to implement and can be applied in aviation casting-blade finish inspection, large forging-blade allowance inspection and visual-guided robot grinding localization.

  17. The fatigue behaviour of the breathing webs of steel bridge girders

    Czech Academy of Sciences Publication Activity Database

    Škaloud, Miroslav; Zörnerová, Marie

    2005-01-01

    Roč. 11, č. 4 (2005), s. 323-336 ISSN 1392-3730 R&D Projects: GA ČR(CZ) GA103/05/2059 Institutional research plan: CEZ:AV0Z20710524 Keywords : repeated loads * fatigue crack * S-N curves Subject RIV: JM - Building Engineering

  18. Modelling stochastic chances in curve shape, with an application to cancer diagnostics

    DEFF Research Database (Denmark)

    Hobolth, A; Jensen, Eva B. Vedel

    2000-01-01

    Often, the statistical analysis of the shape of a random planar curve is based on a model for a polygonal approximation to the curve. In the present paper, we instead describe the curve as a continuous stochastic deformation of a template curve. The advantage of this continuous approach is that t......Often, the statistical analysis of the shape of a random planar curve is based on a model for a polygonal approximation to the curve. In the present paper, we instead describe the curve as a continuous stochastic deformation of a template curve. The advantage of this continuous approach...... is that the parameters in the model do not relate to a particular polygonal approximation. A somewhat similar approach has been used by Kent et al. (1996), who describe the limiting behaviour of a model with a first-order Markov property as the landmarks on the curve become closely spaced; see also Grenander(1993...

  19. Areva fatigue concept. Fast fatigue evaluation, a new method for fatigue analysis

    International Nuclear Information System (INIS)

    Heinz, Benedikt; Bergholz, Steffen; Rudolph, Juergen

    2011-01-01

    Within the discussions on the long term operation (LTO) of nuclear power plants the ageing management is on the focus of that analysis. The knowledge of the operational thermal cyclic load data on components of the power plants and their evaluation in the fatigue analysis is a central concern. The changes in fatigue requirements (e.g. the consideration of environmentally assisted fatigue - EAF) recently discussed and LTO efforts are a strong motivation for the identification of margins in the existing fatigue analysis approaches. These margins should be considered within new approaches in order to obtain realistic (or more accurate) analysis results. Of course, these new analysis approaches have to be manageable and efficient. The Areva Fatigue Concept (AFC) offers the comprehensive conceptual basis for the consideration of fatigue on different levels and depths. The combination of data logging and automated fatigue evaluation are important modules of the AFC. Besides the established simplified stress based fatigue estimation Areva develops a further automated fatigue analysis method called Fast Fatigue Evaluation (FFE). This method comprises highly automated stress analyses at the fatigue relevant locations of the component. Hence, a component specific course of stress as a function of time is determined based on FAMOS or similar temperature measurement systems. The subsequent application of the rain flow cycle counting algorithm allows for the determination of the usage factor following the rules of the design code requirements. The new FFE approach constitutes a cycle counting method based on the real stresses in the component, and determined as result a rule-conformity cumulative usage factor. (orig.)

  20. Cyclic fatigue of nickel-titanium rotary instruments in a double (S-shaped) simulated curvature.

    Science.gov (United States)

    Al-Sudani, Dina; Grande, Nicola M; Plotino, Gianluca; Pompa, Giorgio; Di Carlo, Stefano; Testarelli, Luca; Gambarini, Gianluca

    2012-07-01

    The goal of the present study was to test the fatigue resistance of nickel-titanium rotary files in a double curvature (S-shaped) artificial root canal and to compare those results with single curvature artificial root canals. Two nickel-titanium endodontic instruments consisting of identical instrument sizes (constant .06 taper and 0.25 tip diameter) were tested, ProFile instruments and Vortex instruments. Both instruments were tested for fatigue inside an artificial canal with a double curvature and inside a curved artificial canal with a single curvature. Ten instruments for each group were tested to fracture in continuous rotary motion at 300 rpm. Number of cycles to failure (NCF) was calculated to the nearest whole number, and the length of the fractured fragment was measured in millimeters. Data were statistically analyzed with a level of significance set at 95% confidence level. The NCF value was always statistically lower in the double curved artificial canal when compared with the single curve (P instruments of the same size of different brand only in the single curve; ProFile registered a mean of 633.5 ± 75.1 NCF, whereas Vortex registered a mean of 548 ± 48.9 NCF. Regardless of the differences between the instruments used in the present study, the results suggest that the more complex is the root canal, the more adverse are the effects on the cyclic fatigue resistance of the instruments. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Finite element reliability analysis of fatigue life

    International Nuclear Information System (INIS)

    Harkness, H.H.; Belytschko, T.; Liu, W.K.

    1992-01-01

    Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)

  2. Deformation Properties and Fatigue of Bituminous Mixtures

    Directory of Open Access Journals (Sweden)

    Frantisek Schlosser

    2013-01-01

    Full Text Available Deformation properties and fatigue performance are important characteristics of asphalt bound materials which are used for construction of pavement layers. Viscoelastic asphalt mixtures are better characterized via dynamic tests. This type of tests allows us to collate materials with regard to axle vibrations which lie usually in the range of 6 Hz–25 Hz for standard conditions. Asphalt modified for heat sensitivity in the range from −20°C to +60°C has significant impact on the overall characteristics of the mixture. Deformation properties are used as inputs for empirical mixture design, and fatigue performance of asphalt mixtures reflects the parameters of functional tests. Master curves convey properties of asphalt mixtures for various conditions and allow us to evaluate them without the need of time expensive testing.

  3. The fatigue and corrosion fatigue behavior of welded Inconel 625 alloy employed in off-shore platforms; Avaliacao do comportamento a fadiga e a corrosao-fadiga de juntas soldadas da liga Inconel 625 testada para uso em plaaformas off-shore

    Energy Technology Data Exchange (ETDEWEB)

    Pfingstag, M.E.; Schroeder, R.M.; Mueller, I.L. [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Dept. de Metalurgia. Lab. de Pesquisa em Corrosao], e-mail: maiquel10@walla.com

    2006-07-01

    The fatigue and corrosion fatigue behavior of welded Inconel 625 employed live like risers in off-shore platforms was studied. These risers may be employed integrally of this alloy, or combined with API 52 X60 steel in the form of 'Clads'. One of the most susceptible points in .these structures is the circumferential weld that joint the pipes together. In these regions, stresses and defects are generated by the welding process, and these material remind in contact with aggressive species like, chlorides and Co{sub 2} . Polarization curves, slow strain rate fatigue and corrosion fatigue tests were used to characterize the Inconel alloy behavior. In the welded deposit condition, this alloy shows an excellent resistance corrosion and a good fatigue and corrosion-fatigue behavior.(author)

  4. Cyclic fatigue of near-isotopic graphite: influence of stress cycle and neutron irradiation

    International Nuclear Information System (INIS)

    Price, R.J.

    1977-11-01

    Near-isotropic graphites H-451 and PGX were tested in uniaxial cyclic fatigue, and fatigue life (S-N) curves were generated to a maximum of 10 5 cycles. The stress ratio, R (minimum stress during a cycle divided by maximum stress) ranged from -1 to +0.5. With R = - 1, the homologous stress limits (maximum applied fatigue stress divided by the tensile strength) for 50% specimen survival to 10 5 cycles averaged 0.63 in the axial direction and 0.74 in the radial direction. Corresponding homologous stress limits for 99% specimen survival (99/95 tolerance limits) were 0.48 and 0.53. Higher R-values resulted in longer fatigue lives and increased stress limits. H-451 graphite specimens irradiated with fast neutrons at 1173 to 1263 0 K at fluences of up to 10 26 n/m 2 (equivalent fission fluence) showed fatigue stress limits of about twice the unirradiated levels when the unirradiated tensile strength was used as the basis for normalization

  5. Statistical analysis of fatigue crack propagation data of materials from ancient portuguese metallic bridges

    Directory of Open Access Journals (Sweden)

    J A F O. Correia

    2017-10-01

    Full Text Available In Portugal there is a number of old metallic riveted railway and highway bridges that were erected by the end of the 19th century and beginning of the 20th century, and are still in operation, requiring inspections and remediation measures to overcome fatigue damage. Residual fatigue life predictions should be based on actual fatigue data from bridge materials which is scarce due to the material specificities. Fatigue crack propagation data of materials from representative Portuguese riveted bridges, namely the Pinh�o and Luiz I road bridges, the Viana road/railway bridge, the F�o road bridge and the Trez�i railway bridge were considered in this study. The fatigue crack growth rates were correlated using the Pariss law. Also, a statistical analysis of the pure mode I fatigue crack growth (FCG data available for the materials from the ancient riveted metallic bridges is presented. Based on this analysis, design FCG curves are proposed and compared with BS7910 standard proposal, for the Paris region, which is one important fatigue regime concerning the application of the Fracture Mechanics approaches, to predict the remnant fatigue life of structural details

  6. Fatigue crack closure in submicron-thick freestanding copper films

    International Nuclear Information System (INIS)

    Kondo, Toshiyuki; Ishii, Takaki; Hirakata, Hiroyuki; Minoshima, Kohji

    2015-01-01

    The fatigue crack closure in approximately 500-nm-thick freestanding copper films were investigated by in situ field emission scanning electron microscope (FESEM) observations of the fatigue crack opening/closing behavior at three stress ratios of R=0.1, 0.5, and 0.8 in the low–K max (maximum stress intensity factor) region of K max <4.5 MPam 1/2 . The direct observation of fatigue cracks clarified that crack closure occurred at R=0.1 and 0.5, while the fatigue crack was always open at R=0.8. Changes in the gage distance across the fatigue crack during a fatigue cycle were measured from the FESEM images, and the crack opening stress intensity factor K op was evaluated on the basis of the stress intensity factor K vs. the gage distance relationship. The effective stress intensity factor range ΔK eff =K max −K op was then evaluated. The R-dependence of the da/dN vs. ΔK eff relationship was smaller than that of the da/dN vs. ΔK relationship. This suggests that ΔK eff is a dominating parameter rather than ΔK in the fatigue crack propagation in the films. This paper is the first report on the presence of the fatigue crack closure in submicron-thick freestanding metallic films

  7. Artificial neural networks and the effects of loading conditions on fatigue life of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Pleune, T.T.

    1996-11-01

    The ASME Boiler and Pressure Vessel Code contains rules for the construction of nuclear power plant components. Figure 1-90 of Appendix I to Section III of the Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Recent test data indicate significant decreases in the fatigue lives of carbon and low-alloy steels in LWR environments when five conditions are satisfied simultaneously. When applied strain range, temperature, dissolved oxygen in the water, and sulfur content of the steel are above a minimum threshold level, and the loading strain rate is below a threshold value, environmentally assisted fatigue occurs. For this study, a data base of 1036 fatigue tests was used to train an artificial neural network (ANN). Once the optimal ANN was designed, ANN were trained and used to predict fatigue life for specified sets of loading and environmental conditions. By finding patterns and trends in the data, the ANN can find the fatigue lifetime for any set of conditions. Artificial neural networks show great potential for predicting environmentally assisted corrosion. Their main benefits are that the fit of the data is based purely on data and not on preconceptions and that the network can interpolate effects by learning trends and patterns when data are not available

  8. A fatigue initiation parameter for gas pipe steel submitted to hydrogen absorption

    Energy Technology Data Exchange (ETDEWEB)

    Capelle, J; Gilgert, J; Pluvinage, G [LaBPS - Ecole Nationale d' Ingenieurs de Metz et Universite Paul Verlaine Metz, Ile du Saulcy, 57045 Metz (France)

    2010-01-15

    Fatigue initiation resistance has been determined on API 5L X52 gas pipe steel. Tests have been performed on Roman Tile (RT) specimen and fatigue initiation was detected by acoustic emission. A comparison between specimens electrolytically charged with hydrogen and specimens without hydrogen absorption were made and it has been noted that fatigue initiation time is reduced of about 3 times when hydrogen embrittlement occurs. It has been proposed to use the concept of Notch Stress Intensity Factor as parameter to describe the fatigue initiation process. Due to the fact that hydrogen is localised in area with high hydrostatic pressure, definitions of local effective stress and distance have been modified when hydrogen is absorbed. This modification can be explained by existence of a ductile-brittle transition with hydrogen concentration. The fatigue initiation resistance curve allows that to determine a threshold for large number of cycles of fatigue non initiation. This parameter introduced in a Failure Assessment Diagram (FAD) provides supplementary information about defect nocivity in gas pipes: a non-critical defect can be detected as dormant or not dormant defect i.e., as non propagating defect. (author)

  9. Fatigue limit of Zircaloy-2 under variable one-directional tension and temperature 300 deg C

    International Nuclear Information System (INIS)

    Spasic, Z.; Simic, G.

    1968-11-01

    A vacuum chamber wad designed and constructed. It was suitable for study of materials at higher temperatures in vacuum or controlled atmospheres. Zircaloy-2 fatigue at 300 deg C in argon atmosphere was measured. Character of strain is variable one directional (A=1) tension. Obtained results are presented in tables and in the form of Veler's curve. The obtained fatigue limit was σ - 15 kp/mm 2 . The Locati method was allied as well and fatigue limit value obtained was 15,75 kp/mm 2 . Error calculated in reference to the previous value obtained by classical methods was 5% [sr

  10. Modelling of fatigue crack propagation assisted by gaseous hydrogen in metallic materials

    International Nuclear Information System (INIS)

    Moriconi, C.

    2012-01-01

    Experimental studies in a hydrogenous environment indicate that hydrogen created by surface reactions, then drained into the plastic zone, leads to a modification of deformation and damage mechanisms at the fatigue crack tip in metals, resulting in a significant decrease of crack propagation resistance. This study aims at building a model of these complex phenomena in the framework of damage mechanics, and to confront it with the results of fatigue crack propagation tests in high pressure hydrogen on a 15-5PH martensitic stainless steel. To do so, a cohesive zone model was implemented in the finite element code ABAQUS. A specific traction-separation law was developed, which is suitable for cyclic loadings, and whose parameters depend on local hydrogen concentration. Furthermore, hydrogen diffusion in the bulk material takes into account the influence of hydrostatic stress and trapping. The mechanical behaviour of the bulk material is elastic-plastic. It is shown that the model can qualitatively predict crack propagation in hydrogen under monotonous loadings; then, the model with the developed traction-separation law is tested under fatigue loading. In particular, the simulated crack propagation curves without hydrogen are compared to the experimental crack propagation curves for the 15-5PH steel in air. Finally, simulated fatigue crack propagation rates in hydrogen are compared to experimental measurements. The model's ability to assess the respective contributions of the different damage mechanisms (HELP, HEDE) in the degradation of the crack resistance of the 15-5PH steel is discussed. (author)

  11. Thermomechanical fatigue life prediction for several solders

    Science.gov (United States)

    Wen, Shengmin

    Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for

  12. Inverse Diffusion Curves Using Shape Optimization.

    Science.gov (United States)

    Zhao, Shuang; Durand, Fredo; Zheng, Changxi

    2018-07-01

    The inverse diffusion curve problem focuses on automatic creation of diffusion curve images that resemble user provided color fields. This problem is challenging since the 1D curves have a nonlinear and global impact on resulting color fields via a partial differential equation (PDE). We introduce a new approach complementary to previous methods by optimizing curve geometry. In particular, we propose a novel iterative algorithm based on the theory of shape derivatives. The resulting diffusion curves are clean and well-shaped, and the final image closely approximates the input. Our method provides a user-controlled parameter to regularize curve complexity, and generalizes to handle input color fields represented in a variety of formats.

  13. EVALUATION OF METHODS FOR ESTIMATING FATIGUE PROPERTIES APPLIED TO STAINLESS STEELS AND ALUMINUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Taylor Mac Intyer Fonseca Junior

    2013-12-01

    Full Text Available This work evaluate seven estimation methods of fatigue properties applied to stainless steels and aluminum alloys. Experimental strain-life curves are compared to the estimations obtained by each method. After applying seven different estimation methods at 14 material conditions, it was found that fatigue life can be estimated with good accuracy only by the Bäumel-Seeger method for the martensitic stainless steel tempered between 300°C and 500°C. The differences between mechanical behavior during monotonic and cyclic loading are probably the reason for the absence of a reliable method for estimation of fatigue behavior from monotonic properties for a group of materials.

  14. Fatigue behaviour of friction welded medium carbon steel and austenitic stainless steel dissimilar joints

    International Nuclear Information System (INIS)

    Paventhan, R.; Lakshminarayanan, P.R.; Balasubramanian, V.

    2011-01-01

    Research highlights: → Fusion welding of dissimilar metals is a problem due to difference in properties. → Solid state welding process such as friction welding is a solution for the above problem. → Fatigue life of friction welded carbon steel and stainless steel joints are evaluated. → Effect of notch on the fatigue life of friction welded dissimilar joints is reported. → Formation of intermetallic is responsible for reduction in fatigue life of dissimilar joints. -- Abstract: This paper reports the fatigue behaviour of friction welded medium carbon steel-austenitic stainless steel (MCS-ASS) dissimilar joints. Commercial grade medium carbon steel rods of 12 mm diameter and AISI 304 grade austenitic stainless steel rods of 12 mm diameter were used to fabricate the joints. A constant speed, continuous drive friction welding machine was used to fabricate the joints. Fatigue life of the joints was evaluated conducting the experiments using rotary bending fatigue testing machine (R = -1). Applied stress vs. number of cycles to failure (S-N) curve was plotted for unnotched and notched specimens. Basquin constants, fatigue strength, fatigue notch factor and notch sensitivity factor were evaluated for the dissimilar joints. Fatigue strength of the joints is correlated with microstructure, microhardness and tensile properties of the joints.

  15. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani

    2015-04-01

    Full Text Available Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented with reliability analyses depending on various stochastic models and partial safety factors.

  16. Fatigue crack growth and endurance data on 9% Cr 1% Mo steels for AGR applications

    International Nuclear Information System (INIS)

    Priddle, E.K.

    1987-01-01

    Experimental investigations have been carried out on 9%Cr 1%Mo steels to examine: (1) The significance of carburisation on the fatigue endurance of plain and welded boiler tubes, and tube spacer strip; (2) the high cycle fatigue endurance of spacer strip and spacer weld metal; (3) fatigue crack growth rates in spacer strip and spacer weld metal. This report summarises the results of these investigations and where necessary compares the data to that in current data sheets. The effects of carburisation are variable depending on the structure and type of carburisation. The fatigue endurance properties of spacer strip and spacer weld metal are also similar and need not be considered separately for assessment or design purposes. Fatigue crack growth rates in spacer strip and space weld metal are similar and are influenced by both stress ratio and temperature. A design curve from a fast reactor data sheet may be used as an upper bound to these fatigue crack growth results. (author)

  17. Multiaxial Fatigue Properties of 2A12 Aluminum Alloy Under Different Stress Amplitude Ratio Loadings

    Directory of Open Access Journals (Sweden)

    CHEN Ya-jun

    2017-09-01

    Full Text Available The multiaxial fatigue behavior of 2A12 aluminum alloy was studied with SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under different stress amplitude ratios, the fracture morphology and the fatigue loading curve were observed to study the failure mechanism. The results show that, under the one stage loading condition, the fatigue life prolongs with the stress amplitude ratio increasing. Under pure torsion loading, smooth and even area exists in the fracture surface. As the stress amplitude ratio increases, the number of scratch reduces, the fatigue striation and some special morphology such as the fishbone pattern, scale pattern and honeycomb pattern can be observed; under cumulative paths of different stress amplitude ratios, the variation of multiaxial fatigue life changes with first stage loading cycles; under cumulative paths of high-low stress amplitude ratio, the cycle hardening occurs obviously in the axial direction for the first stage high stress amplitude ratio loading and 2A12 alloy shows training effect.

  18. Study on high-cycle fatigue behavior of candidate stainless steels for SCWR

    International Nuclear Information System (INIS)

    Xiong Ru; Zhao Yuxiang; Zhang Qiang; Wang Hao; Tang Rui; Qiao Yingjie

    2013-01-01

    The fatigue experiments of commerce stainless steels including 347, 316Ti and 310 were conducted under bending and rotating loadings. The environments were at room temperature (RT) as well as at 550℃ in air. The fracture morphology was observed by SEM, and the S-N curves were processed according to the experimental data. The results indicate the fatigue limited stresses for the 3 stainless steels were in the order of 347 < 316Ti < 310, which consistent with the order of their tensile strength. Elevated temperature would accelerate the oxidation and therefore the fatigue life would decrease, among them 347 was more sensitive to temperature with the maximum decreasing tendency. All the 3 stainless steels have good resistance to high cycle fatigue when comparing their experimental data with the calculated value from the empirical formula. The fracture morphology presents areas of crack initiation, crack growth and fracture, the width of fatigue ripples is about 1 μm, the fracture area has much dimples, and 347 presents much cavities of different sizes in dimples. (authors)

  19. Environmental factor approach to account for water effects in pressure vessel and piping fatigue evaluations

    International Nuclear Information System (INIS)

    Mehta, H.S.; Gosselin, S.R.

    1998-01-01

    This paper summarizes past and current studies of the environmental fatigue effects in light water reactor (LWR) applications. Current Argonne and Japanese research efforts are reviewed and an approach to calculate an environmental correction factor is described. A description of how the proposed approach can be implemented in section III, NB-3600 and NB-3200-type fatigue evaluations is presented along with examples of applying the approach to piping (NB-3600) and safe end fatigue evaluations. These procedures were applied to several BWR and pressurized water reactor (PWR) example cases. The results of these case studies indicated that there is a modest increase in calculated fatigue usage, which is considerably less than the results obtained when the NUREG/CR-5999 curves are applied directly. (orig.)

  20. Fatigue evaluation of the API specification 12F shop welded flat bottom tanks

    International Nuclear Information System (INIS)

    Rondon, A.; Guzey, S.

    2017-01-01

    Shop-built storage tanks are widely used in several industries all over the world. These equipment are fabricated with relatively small dimensions and capacities to facilitate their transportation to production fields. Particularly, API 12F shop-welded, flat bottom tanks are a group of standard equipment with specific sizes and capacities that are commonly used in the upstream, exploration, and production segments of oil and gas projects. The extensive utilization of this equipment has raised the need to investigate their behavior under different load cases and determine their service life due to cyclic loading. Throughout this investigation, a fatigue evaluation was performed following the guidelines of the ASME BPVC Section VIII, Division 2, design-by-analysis rules. The thirteen API 12F tanks were separated in three different groups according to their diameters. Also, different thicknesses as well as pressure cycles including internal pressure and vacuum were considered for the evaluation of each group. An elastic stress analysis using finite elements was conducted on shell models, axisymmetric models and solid submodels to determine the stress components and stress tensor range as well as obtain the effective alternating equivalent stress. Moreover, the fatigue penalty factor and a fatigue strength reduction factor were defined in accordance with the ASME code specifications. Hence, the protection against failure from cyclic loading of these equipment was determined using smooth bar design fatigue curves and the permissible number of operational cycles and location of the most critical joint were computed for each API 12F tank. - Highlights: • Stress analysis was performed following the ASME design-by-analysis. • Storage tanks axisymmetric and solid finite element models were developed. • Smooth bar design fatigue curve was obtained to perform the fatigue evaluation. • Clean out juncture is critical for the fatigue life of API 12F tanks. • Smaller

  1. Corrosion fatigue in nitrocarburized quenched and tempered steels

    Science.gov (United States)

    Khani, M. Karim; Dengel, D.

    1996-05-01

    In order to investigate the fatigue strength and fracture mechanism of salt bath nitrocarburized steels, specimens of the steels SAE 4135 and SAE 4140, in a quenched and tempered state, and additionally in a salt bath nitrocarburized and oxidizing cooled state as well as in a polished (after the oxidizing cooling) and renewed oxidized state, were subjected to comparative rotating bending fatigue tests in inert oil and 5 pct NaCl solution. In addition, some of the quenched and tempered specimens of SAE 4135 material were provided with an approximately 50-μm-thick electroless Ni-P layer, in order to compare corrosion fatigue behavior between the Ni-P layer and the nitride layers. Long-life corrosion fatigue tests of SAE 4135 material were carried out under small stresses in the long-life range up to 108 cycles with a test frequency of 100 Hz. Fatigue tests of SAE 4140 material were carried out in the range of finite life (low-cycle range) with a test frequency of 13 Hz. The results show that the 5 pct NaCl environment drastically reduced fatigue life, but nitrocarburizing plus oxidation treatment was found to improve the corrosion fatigue life over that of untreated and Ni-P coated specimens. The beneficial effect of nitrocarburizing followed by oxidation treatment on cor-rosion fatigue life results from the protection rendered by the compound layer by means of a well-sealed oxide layer, whereby the pores present in the compound layer fill up with oxides. The role of inclusions in initiating fatigue cracks was investigated. It was found that under corrosion fatigue conditions, the fatigue cracks started at cavities along the interfaces of MnS inclusions and matrix in the case of quenched and tempered specimens. The nitrocarburized specimens, however, showed a superposition of pitting corrosion and corrosion fatigue in which pores and nonmetallic inclusions in the compound layer play a predominant role concerning the formation of pits in the substrate.

  2. Computational predictive methods for fracture and fatigue

    Science.gov (United States)

    Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.

    1994-09-01

    The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.

  3. Four-quadrant propeller modeling: A low-order harmonic approximation

    Digital Repository Service at National Institute of Oceanography (India)

    Haeusler, A.J; Saccon, A.; Hauser, J; Pascoal, A.M.; Aguiar, A.P.

    . We explore the connection between the propeller thrust, torque, and efficiency curves and the lift and drag curves of the propeller blades. The model originates from a well-known four-quadrant model, based on a sinusoidal approximation...

  4. Fatigue-crack growth behavior of Type 347 stainless steels under simulated PWR water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokmin; Min, Ki-Deuk; Yoon, Ji-Hyun; Kim, Min-Chul; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fatigue crack growth rate (FCGR) curve of stainless steel exists in ASME code section XI, but it is still not considering the environmental effects. The longer time nuclear power plant is operated, the more the environmental degradation issues of materials pop up. There are some researches on fatigue crack growth rate of S304 and S316, but researches of FCGR of S347 used in Korea nuclear power plant are insufficient. In this study, the FCGR of S347 stainless steel was evaluated in the PWR high temperature water conditions. The FCGRs of S347 stainless steel under pressurized-water conditions were measured by using compact-tension (CT) specimens at different levels of dissolved oxygen (DO) and frequency. 1. FCGRs of SS347 were slower than that in ASME XI and environmental effect did not occur when frequency was higher than 1Hz. 2. Fatigue crack growth is accelerated by corrosion fatigue and it is more severe when frequency is slower than 0.1Hz. 3. Increase of crack tip opening time increased corrosion fatigue and it deteriorated environmental fatigue properties.

  5. Impact evaluation of rolling contact fatigue life models

    International Nuclear Information System (INIS)

    Choi, Young Sik; Yang, Xiaoping

    2012-01-01

    Since the accurate prediction of fatigue life has a significant value, many researchers have attempted to develop a reliable fatigue life model. Recently, rolling contact fatigue life models incorporating machining impact were developed. These models have contributed to a significant improvement in prediction accuracy as compared with earlier models, thus representing a major step forward in the modeling effort. This paper compares the prediction accuracy of these models with that of the prediction method in International Standards. When α is set to 0.25, the observed improvement of prediction accuracy as measured by variance of prediction errors due to these models over that due to prediction method in International Standards is statistically significant. Impact analyses of such improvement are conducted to illustrate its value. It is further noted that while difference was observed between the variance of prediction errors due to the crack initiation life model based on a dislocation model and that due to the crack initiation life model based on a local stress-life curve, the observed difference is not statistically significant

  6. Approximate Implicitization Using Linear Algebra

    Directory of Open Access Journals (Sweden)

    Oliver J. D. Barrowclough

    2012-01-01

    Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.

  7. Effects of stress concentrations on the fatigue life of a gamma based titanium aluminide

    International Nuclear Information System (INIS)

    Trail, S.J.; Bowen, P.

    1995-01-01

    S-N curves for a gamma based titanium aluminide alloy of composition Ti-47.2Al-2.1Mn-1.9Nb(at.%)+2TiB 2 (wt.%) have been used to define fatigue life. Effects of residual stress, stressed volume, loading ratio, loading mode, elevated temperature and surface roughness have been considered. Residual tensile stresses and micro-cracking are introduced by Electro Discharge Machining and the fatigue life is reduced slightly compared with polished samples. Notched fatigue tests show a significant notch strengthening effect which increases with increasing stress concentration factor. The fracture surfaces of specimens tested at room temperature reveal fully brittle failure mechanisms and no evidence of stable crack growth is observed. The fatigue life appears, therefore, to be determined predominantly by the number of cycles to crack initiation. At the elevated temperature of 830 C, evidence for some stable fatigue crack growth has been found. Probable sites for crack initiation are addressed

  8. The effect of surface corrosion damage on the fatigue life of 6061-T6 aluminum alloy extrusions

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Matthew; Eason, Paul D.; Özdeş, Hüseyin; Tiryakioğlu, Murat, E-mail: m.tiryakioglu@unf.edu

    2017-04-06

    An investigation was performed where 6061-T6 extrusions were exposed to a 3.5% NaCl solution at pH 2 for 2 days and 24 days to create distinct surface flaws. The effect of these flaws on the rotating beam fatigue life was then investigated and analyzed by using Wöhler curves, Weibull statistics and scanning electron microscopy (SEM). It was determined that corrosion damage reduced the fatigue life significantly and specimens corroded for both 2-days and 24-days exhibited similar fatigue lives. Statistical analyses showed that fatigue life of all three datasets followed the 3-parameter Weibull distribution and the difference between the fatigue lives of two corroded datasets was statistically insignificant. Analysis of fracture surfaces showed that sizes of pits that led to fatigue crack initiation were very different in the two corroded datasets. Implications of the similarity in fatigue lives despite disparity in surface condition are discussed in detail in the paper.

  9. Fatigue life response of ASME SA 106-B steel in pressurized water reactor environments

    International Nuclear Information System (INIS)

    Terrell, J.B.

    1989-01-01

    Fatigue strain-life tests were conducted on ASMESA 106-B piping steel base metal and weld metal specimens in 288 0 C (550 0 F) pressurized water reactor (PWR) environments as a function of strain amplitude, strain ratio, notch acuity, and cyclic frequency. Notched base metal specimens tested at 0.017 Hz in 0.001 part per million (ppm) dissolved oxygen environments nearly completely used up the margins of safety of 2 on stress and 20 on cycles incorporated into the ASMA Section III design curve for carbon steels. Tests conducted with smooth base metal and weld metal specimens at 1.0 Hz showed virtually no degradation in cycles to failure when compared to 288 0 C air test results. In all cases, however, the effect of temperature alone reduced the margin of safety offered by the design curve in the low cycle regime for the test specimens. Comparison between the fatigue life results of smooth and notched specimens suggests that fatigue crack initiation is not significantly affected by 0.001 ppm dissolved oxygen, and that most of the observed degradation may be attributed to crack growth acceleration. These results suggest that the ASMA Section III methodology should be reviewed, taking into account the PWR environment variables which degrade the fatigue life of pressure-retaining components. (author)

  10. Fatigue life response of ASME SA 106-B steel in pressurized water reactor environments

    Energy Technology Data Exchange (ETDEWEB)

    Terrell, J B [Materials Engineering Associates, Inc., Lanham, MD (USA)

    1989-01-01

    Fatigue strain-life tests were conducted on ASMESA 106-B piping steel base metal and weld metal specimens in 288{sup 0}C (550{sup 0}F) pressurized water reactor (PWR) environments as a function of strain amplitude, strain ratio, notch acuity, and cyclic frequency. Notched base metal specimens tested at 0.017 Hz in 0.001 part per million (ppm) dissolved oxygen environments nearly completely used up the margins of safety of 2 on stress and 20 on cycles incorporated into the ASMA Section III design curve for carbon steels. Tests conducted with smooth base metal and weld metal specimens at 1.0 Hz showed virtually no degradation in cycles to failure when compared to 288{sup 0}C air test results. In all cases, however, the effect of temperature alone reduced the margin of safety offered by the design curve in the low cycle regime for the test specimens. Comparison between the fatigue life results of smooth and notched specimens suggests that fatigue crack initiation is not significantly affected by 0.001 ppm dissolved oxygen, and that most of the observed degradation may be attributed to crack growth acceleration. These results suggest that the ASMA Section III methodology should be reviewed, taking into account the PWR environment variables which degrade the fatigue life of pressure-retaining components. (author).

  11. [Patients with fatigue in family practice: prevalence and treatment].

    Science.gov (United States)

    Kenter, E G; Okkes, I M

    1999-04-10

    To gain insight into the prevalence and treatment of severe fatigue in general practice. Secondary data analysis. By means of an episode-oriented morbidity registration by 54 GPs throughout the Netherlands over the period 1985-1994 it was established how often in the course of one year 'fatigue' was listed as the reason for consultation, what diagnoses were then made, how long episodes of care because of 'fatigue' lasted and what interventions took place (n = 93,297). Of the patients with a care episode because of 'fatigue' lasting at least 6 months, age, sex, comorbidity and consumption of care were established; for this purpose use was also made of a file containing data on 4 years in succession (n = 9630). Per annum, 92 per 1000 listed patients consulted the GP because of fatigue. Somatic or psychic diagnoses were made in 27.7 per 1000 patients listed. The episode of care lasted 4 weeks at most in 86% and at least 6 months in approximately 4%. The GPs' management of patients with 'fatigue' included physical examination in 63% and blood testing in 34%, conversation in 35%, prescription of medication in 24% and referral to a specialist in 3%. Of the 97 patients with fatigue lasting longer than 6 months, 61% had a chronic disease or psychic problems. Fatigue is frequently encountered in general practice, but the estimate that one per 1000 listed patients meets the criteria of the chronic fatigue syndrome looks a little high. It appears that GPs, in accordance with recommendations, mostly adopt a policy of wait and see.

  12. Bayesian Model on Fatigue Crack Growth Rate of Type 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sanhae; Yoon, Jae Young; Hwang, Il Soon [Nuclear Materials Laboratory, Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    The fatigue crack growth rate curve is typically estimated by deterministic methods in accordance with the ASME Boiler and Pressure Vessel Code Sec. XI. The reliability of nuclear materials must also consider the environmental effect. This can be overcome by probabilistic methods that estimate the degradation of materials. In this study, fatigue tests were carried out on Type 304 stainless steel (STS 304) to obtain a fatigue crack growth rate curve and Paris' law constants. Tests were conducted on a constant load and a constant delta K, respectively. The unknown constants of Paris' law were updated probabilistically by Bayesian inference and the method can be used for the probabilistic structural integrity assessment of other nuclear materials. In this paper, Paris' law constants including C and m for Type 304 stainless steel were determined by probabilistic approach with Bayesian Inference. The Bayesian update process is limited in accuracy, because this method should assume initial data distribution. If we select an appropriate distribution, this updating method is powerful enough to get data results considering the environment and materials. Until now, remaining lives of NPPs are estimated by deterministic methods using a priori model to finally assess structural integrity. Bayesian approach can utilize in-service inspection data derived from aged properties.

  13. Bayesian Model on Fatigue Crack Growth Rate of Type 304 Stainless Steel

    International Nuclear Information System (INIS)

    Choi, Sanhae; Yoon, Jae Young; Hwang, Il Soon

    2015-01-01

    The fatigue crack growth rate curve is typically estimated by deterministic methods in accordance with the ASME Boiler and Pressure Vessel Code Sec. XI. The reliability of nuclear materials must also consider the environmental effect. This can be overcome by probabilistic methods that estimate the degradation of materials. In this study, fatigue tests were carried out on Type 304 stainless steel (STS 304) to obtain a fatigue crack growth rate curve and Paris' law constants. Tests were conducted on a constant load and a constant delta K, respectively. The unknown constants of Paris' law were updated probabilistically by Bayesian inference and the method can be used for the probabilistic structural integrity assessment of other nuclear materials. In this paper, Paris' law constants including C and m for Type 304 stainless steel were determined by probabilistic approach with Bayesian Inference. The Bayesian update process is limited in accuracy, because this method should assume initial data distribution. If we select an appropriate distribution, this updating method is powerful enough to get data results considering the environment and materials. Until now, remaining lives of NPPs are estimated by deterministic methods using a priori model to finally assess structural integrity. Bayesian approach can utilize in-service inspection data derived from aged properties

  14. Fatigue crack growth in welded joints in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.B.

    1988-01-01

    A pipe-to-plate specimen has been developed to study the influence of seawater on the fatigue behaviour of welded tubular joints. DC potential drop techniques have been used to detect fatigue crack initiation, and to monitor the subsequent growth of fatigue cracks. Results for three specimens, tested in air are compared with similar data for tubular and T-plate joints. These comparisons indicate that the pipe/plate is a reasonable model of a tubular joint. Testing was performed on a further six specimens in artificial seawater; two each with free corrosion, optimum cathodic protection, and cathodic overprotection. Fatigue life reduction factors compared with corresponding tests in air were 1.8 and 2.8 for free corrosion, 1.7 and 1.1 with cathodic protection, and 4.2 and 3.3 with cathodic over-protection. These fatigue life reduction factors were comparable to results on T-plate specimens, and were strongly dependent on crack shape development. Linear elastic fracture mechanics techniques appear suitable for the calculation of fatigue crack propagation life. Three approximate solution techniques for crack tip stress intensity factors show reasonable agreement with experimentally derived values. It is recommended that forcing functions be used to model crack aspect ratio development in welded joints. Such forcing functions are influenced by the initial stress distribution and the environment. 207 refs., 192 figs., 22 tabs.

  15. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles

    DEFF Research Database (Denmark)

    Søgaard, Karen; Gandevia, Simon C; Todd, Gabrielle

    2006-01-01

    Subjects quickly fatigue when they perform maximal voluntary contractions (MVCs). Much of the loss of force is from processes within muscle (peripheral fatigue) but some occurs because voluntary activation of the muscle declines (central fatigue). The role of central fatigue during submaximal...... contractions is not clear. This study investigated whether central fatigue developed during prolonged low-force voluntary contractions. Subjects (n=9) held isometric elbow flexions of 15% MVC for 43 min. Voluntary activation was measured during brief MVCs every 3 min. During each MVC, transcranial magnetic...... several minutes while MVC torque only returned to approximately 85% baseline. The resting twitch showed no recovery. Thus, as well as fatigue in the muscle, the prolonged low-force contraction produced progressive central fatigue, and some of this impairment of the subjects' ability to drive the muscle...

  16. Fatigue strength degradation of metals in corrosive environments

    OpenAIRE

    Adasooriya, Mudiyan Nirosha Damayanthi; Hemmingsen, Tor; Pavlou, Dimitrios

    2017-01-01

    Structures exposed to aggressive environmental conditions are often subjected to time-dependent loss of coating and loss of material due to corrosion; this causes reduction in the cross-sectional properties of the members, increased surface roughness, surface irregularities and corrosion pits, and degradation of material strengths. These effects have been identified and simulated in different research studies. However, time and corrosive media dependent fatigue strength curves for materials h...

  17. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    Science.gov (United States)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  18. Evaluation of conservatisms and environmental effects in ASME Code, Section III, Class 1 fatigue analysis

    International Nuclear Information System (INIS)

    Deardorff, A.F.; Smith, J.K.

    1994-08-01

    This report documents the results of a study regarding the conservatisms in ASME Code Section 3, Class 1 component fatigue evaluations and the effects of Light Water Reactor (LWR) water environments on fatigue margins. After review of numerous Class 1 stress reports, it is apparent that there is a substantial amount of conservatism present in many existing component fatigue evaluations. With little effort, existing evaluations could be modified to reduce the overall predicted fatigue usage. Areas of conservatism include design transients considerably more severe than those experienced during service, conservative grouping of transients, conservatisms that have been removed in later editions of Section 3, bounding heat transfer and stress analysis, and use of the ''elastic-plastic penalty factor'' (K 3 ). Environmental effects were evaluated for two typical components that experience severe transient thermal cycling during service, based on both design transients and actual plant data. For all reasonable values of actual operating parameters, environmental effects reduced predicted margins, but fatigue usage was still bounded by the ASME Section 3 fatigue design curves. It was concluded that the potential increase in predicted fatigue usage due to environmental effects should be more than offset by decreases in predicted fatigue usage if re-analysis were conducted to reduce the conservatisms that are present in existing component fatigue evaluations

  19. Crude Oil Corrosion Fatigue of L485MB Pipeline Steel

    Czech Academy of Sciences Publication Activity Database

    Gajdoš, Lubomír; Šperl, Martin; Bystrianský, J.

    2015-01-01

    Roč. 137, č. 5 (2015), 051401 ISSN 0094-9930 R&D Projects: GA TA ČR(CZ) TE02000162 Institutional support: RVO:68378297 Keywords : corrosion fatigue * crude oil * pipeline steel * S–N curve * separated water Subject RIV: JI - Composite Materials Impact factor: 0.476, year: 2015 http://pressurevesseltech.asmedigitalcollection.asme.org/article.aspx?articleID=2107675

  20. FRACTURE MECHANICS APPROACH TO ESTIMATE FATIGUE LIVES OF WELDED LAP-SHEAR SPECIMENS

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.; Michigan, J.

    2014-04-25

    A full range of stress intensity factor solutions for a kinked crack is developed as a function of weld width and the sheet thickness. When used with the associated main crack solutions (global stress intensity factors) in terms of the applied load and specimen geometry, the fatigue lives can be estimated for the laser-welded lap-shear specimens. The estimations are in good agreement with the experimental data. A classical solution for an infinitesimal kink is also employed in the approach. However, the life predictions tend to overestimate the actual fatigue lives. The traditional life estimations with the structural stress along with the experimental stress-fatigue life data (S-N curve) are also provided. In this case, the estimations only agree with the experimental data under higher load conditions.

  1. Metallographic approach to the damage of austenitic stainless steels under plastic fatigue or under creep: description and physical interpretation of fatigue-creep-oxidation interactions

    International Nuclear Information System (INIS)

    Levaillant, Christophe

    1984-01-01

    This research thesis reports the study of interactions between fatigue, creep and oxidation in austenitic stainless steels which are to be used in the construction of fast breeder reactors. This study is addressed by means of low cycle plastic fatigue test with imposed strain, performed at 600 C with tensile relaxation hold times which may reach 24 hours. Continuous fatigue tests (without hold time) and pure creep tests have also been performed to define 'pure' fatigue damages and 'pure' creep damages. Two grades of Z3 CND 17-13 steel have been studied. Thus fracture mechanisms, crack initiation and propagation, and crack kinetic propagation have been studied. Metallographic measurements of damage have been performed. Damage types have been identified: propagation of cracks initiated at the surface, and intergranular de-cohesion within the material. An approximate modelling is proposed, as well as a critical comparison of various published models of fatigue-creep interaction. In order to predict structure lifetime, a new test methodology is proposed, based on experimental results

  2. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    Science.gov (United States)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  3. Fatigue

    Science.gov (United States)

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  4. An Experimental Investigation of the Effects of Vacuum Environment on the Fatigue Life, Fatigue-Crack-Growth Behavior, and Fracture Toughness of 7075-T6 Aluminum Alloy. Ph.D. Thesis - North Carolina State Univ.

    Science.gov (United States)

    Hudson, C. M.

    1972-01-01

    Axial load fatigue life, fatigue-crack propagation, and fracture toughness tests were conducted on 0.090-inch thick specimens made of 7075-T6 aluminum alloy. The fatigue life and fatigue-crack propagation experiments were conducted at a stress ratio of 0.02. Maximum stresses ranged from 33 to 60 ksi in the fatigue life experiments, and from 10 to 40 ksi in the fatigue-crack propagation experiments, and fatigue life experiments were conducted at gas pressures of 760, 0.5, 0.05, and 0.00000005 torr. Fatigue-crack-growth and fracture toughness experiments were conducted at gas pressures of 760 and 5 x 10 to the minus 8th power torr. Residual stress measurements were made on selected fatigue life specimens to determine the effect of such stresses on fatigue life. Analysis of the results from the fatigue life experiments indicated that fatigue life progressively increased as the gas pressure decreased. Analysis of the results from the fatigue-crack-growth experiments indicates that at low values of stress-intensity range, the fatigue crack growth rates were approximately twice as high in air as in vacuum. Fracture toughness data showed there was essentially no difference in the fracture toughness of 7075-T6 in vacuum and in air.

  5. Reliability of structural systems subject to fatigue

    International Nuclear Information System (INIS)

    Rackwitz, R.

    1984-01-01

    Concepts and computational procedures for the reliability calculation of structural systems subject to fatigue are outlined. Systems are dealt with by approximately computing componential times to first failure. So-called first-order reliability methods are then used to formulate dependencies between componential failures and to evaluate the system failure probability. (Author) [pt

  6. C-terminal agrin fragment is inversely related to neuromuscular fatigue in older men.

    Science.gov (United States)

    Stout, Jeffrey R; Fragala, Maren S; Hoffman, Jay R; Robinson, Edward H; Mccormack, William P; Townsend, Jeremy R; Jatjner, Adam R; Emerson, Nadia S; Oliveira, Leonardo P; Fukuda, David H

    2015-01-01

    The aim of this study was to examine the relationship between serum C-terminal agrin fragment (CAF) concentrations and neuromuscular fatigue in older adults. Twenty-two healthy older men and women volunteered for this study. Resting fasted blood samples were collected and prepared for measurement of serum CAF concentration by a commercially available ELISA kit. The onset of neuromuscular fatigue was measured by monitoring electromyographic fatigue curves from the vastus lateralis muscle using the physical working capacity at fatigue threshold (PWCFT ) test. A significant inverse correlation for men was observed between CAF and PWCFT (r = -0.602; P = 0.05), but not for women (r = 0.208; P = 0.54). After controlling for age and body mass index, significant correlations (r = -0.69; P = 0.042) remained for men, but not for women (r = 0.12; P = 0.76). These data suggest that serum CAF concentrations were significantly related to the onset of neuromuscular fatigue independent of age and BMI in men only. © 2014 Wiley Periodicals, Inc.

  7. New specimen design for studying the growth of small fatigue cracks with surface acoustic waves

    Science.gov (United States)

    London, Blair

    1985-08-01

    The study of small surface fatigue cracks in AISI 4140 quenched and tempered steel by a nondestructive surface acoustic wave technique is summarized. A novel cantilevered bending, plate-type fatigue specimen is described that is compatible with the acoustic method. Small cracks are initiated from a 25-μm deep surface pit produced by an electrospark machine. The importance of studying these cracks which closely approximate naturally occurring fatigue cracks is briefly discussed.

  8. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  9. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    Science.gov (United States)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-06-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  10. S-curve networks and an approximate method for estimating degree distributions of complex networks

    OpenAIRE

    Guo, Jin-Li

    2010-01-01

    In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (Logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference value for optimizing the distribution of IPv4 address resource and the development of IPv6. Based o...

  11. Designing aluminium friction stir welded joints against multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    L. Susmel

    2016-07-01

    Full Text Available The present paper investigates the accuracy of the Modified Wöhler Curve Method (MWCM in estimating multiaxial fatigue strength of aluminium friction stir (FS welded joints. Having developed a bespoke joining technology, circumferentially FS welded tubular specimens of Al 6082-T6 were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out using the experimental results have demonstrated that the MWCM applied in terms of nominal stresses, notch stresses, and also the Point Method is accurate in predicting the fatigue lifetime of the tested FS welded joints, with its use resulting in life estimates that fall within the uniaxial and torsional calibration scatter bands.

  12. Joined application of a multiaxial critical plane criterion and a strain energy density criterion in low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    Andrea Carpinteri

    2017-07-01

    Full Text Available In the present paper, the multiaxial fatigue life assessment of notched structural components is performed by employing a strain-based multiaxial fatigue criterion. Such a criterion, depending on the critical plane concept, is extended by implementing the control volume concept reated to the Strain Energy Density (SED approach: a material point located at a certain distance from the notch tip is assumed to be the verification point where to perform the above assessment. Such a distance, measured along the notch bisector, is a function of both the biaxiality ratio (defined as the ratio between the applied shear stress amplitude and the normal stress amplitude and the control volume radii under Mode I and Mode III. Once the position of the verification point is determined, the fatigue lifetime is assessed through an equivalent strain amplitude, acting on the critical plane, together with a unique material reference curve (i.e. the Manson-Coffin curve. Some uniaxial and multiaxial fatigue data related to V-notched round bars made of titanium grade 5 alloy (Ti-6Al-4V are examined to validate the present criterion.

  13. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, A.; Esfahanian, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kadkhodapour, J., E-mail: j.kad@srttu.edu [Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Stuttgart (Germany); Ziaei-Rad, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-03-01

    In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1–0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. - Highlights: • Numerical simulation was used to predict fatigue behavior of titanium scaffolds. • Good agreement between numerical and experimental results • S–N curves obeyed the power law. • Fatigue strength of scaffolds was proportional to their Young's modulus. • Failure surface of scaffolds was inclined at an angle of 45° to loading.

  14. Fatigue and fracture behavior of low alloy ferritic forged steels

    International Nuclear Information System (INIS)

    Chaudhry, V.; Sharma, A.K.; Muktibodh, U.C.; Borwankar, Neeraj; Singh, D.K.; Srinivasan, K.N.; Kulkarni, R.G.

    2016-01-01

    Low alloy ferritic steels are widely used in nuclear industry for the construction of pressure vessels. Pressure vessel forged low alloy steels 20MnMoNi55 (modified) have been developed indigenously. Experiments have been carried out to study the Low Cycle Fatigue (LCF) and fracture behavior of these forged steels. Fully reversed strain controlled LCF testing at room temperature and at 350 °C has been carried out at a constant strain rate, and for different axial strain amplitude levels. LCF material behavior has been studied from cyclic stress-strain responses and the strain-life relationships. Fracture behavior of the steel has been studied based on tests carried out for crack growth rate and fracture toughness (J-R curve). Further, responses of fatigue crack growth rate tests have been compared with the rate evaluated from fatigue precracking carried out for fracture toughness (J-R) tests. Fractography of the samples have been carried out to reveal dominant damage mechanisms in crack propagation and fracture. The fatigue and fracture properties of indigenously developed low alloy steel 20MnMoNi55 (modified) steels are comparable with similar class of steels. (author)

  15. Multiaxial fatigue of aluminium friction stir welded joints: preliminary results

    Directory of Open Access Journals (Sweden)

    D. G. Hattingh

    2015-07-01

    Full Text Available The aim of the present research is to check the accuracy of the Modified Wöhler Curve Method (MWCM in estimating the fatigue strength of friction stir (FS welded tubular joints of Al 6082-T6 subjected to in-phase and out-of-phase multiaxial fatigue loading. The welded samples being investigated were manufactured by equipping an MTS I-STIR process development system with a retracting tool that was specifically designed and optimised for this purpose. These specimens were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out by using the generated experimental results allowed us to prove that the MWCM (applied in terms of nominal stresses is highly accurate in predicting the fatigue strength of the tested FS welded joints, its usage resulting in estimates falling with the uniaxial and torsional calibration scatter bands.

  16. Persistent fatigue in young athletes: measuring the clinical course and identifying variables affecting clinical recovery.

    Science.gov (United States)

    Locke, S; Osborne, M; O'Rourke, P

    2011-02-01

    The objective of this paper is to measure the clinical course (months) in young athletes with persistent fatigue and to identify any covariates affecting the duration of recovery. This was a prospective longitudinal study of 68 athletes; 87% were elite (42 males, 26 females), aged 20.5±3.74 years (SD), who presented with the symptom of persistent fatigue. The collective duration to full clinical recovery was estimated using Kaplan-Meier product-limit curves, and covariates associated with prolonging recovery were identified from Cox proportional hazard models. The median recovery was 5 months (range 1-60 months). The range of presenting symptom duration was 0.5-36 months. The covariates identified were an increased duration of presenting symptoms [hazard ratio (HR), 1.06; 95% confidence interval (CI), 1.02-1.12; P=0.005] and the response of serum cortisol concentration to a standard exercise challenge (HR, 1.92; 95% CI, 1.09-3.38; P=0.03). Delay in recovery was not associated with categories of fatigue that included medical, training-related diagnoses, or other causes. In conclusion, the fatigued athlete represents a significant clinical problem with a median recovery of 5 months, whose collective clinical course to recovery can be estimated by Kaplan-Meier curves and appears to be a continuum. © 2009 John Wiley & Sons A/S.

  17. The Nature of Fatigue in Chronic Fatigue Syndrome.

    Science.gov (United States)

    Olson, Karin; Zimka, Oksana; Stein, Eleanor

    2015-10-01

    In this article, we report the findings of our study on the nature of fatigue in patients diagnosed with chronic fatigue syndrome. Using ethnoscience as a design, we conducted a series of unstructured interviews and card sorts to learn more about how people with chronic fatigue syndrome describe fatigue. Participants (N = 14) described three distinct domains: tiredness, fatigue, and exhaustion. Most participants experienced tiredness prior to diagnosis, fatigue during daily life, and exhaustion after overexertion. We also discuss participants' ability to adapt to a variety of stressors and prevent shifts to exhaustion, and relate our findings to stress theory and other current research. Primary strategies that promoted adaptation to stressors included pacing and extended rest periods. These findings can aid health care professionals in detecting impending shifts between tiredness, fatigue, and exhaustion and in improving adaptive strategies, thereby improving quality of life. © The Author(s) 2015.

  18. Effects Of Welding On The Fatigue Behaviour Of Commercial Aluminum AA-1100 Joints

    Science.gov (United States)

    Uthayakumar, M.; Balasubramanian, V.; Rani, Ahmad Majdi Abdul; Hadzima, Branislav

    2018-04-01

    Friction Stir Welding (FSW) is an budding solid state welding process, which is frequently used for joining aluminum alloys where materials can be joined without melt and recast. Therefore, when welding alloys through FSW the phase transformations occurs will be in the solid state form. The present work is aimed in evaluating the fatigue life of friction stir welded commercial grade aluminum alloy joints. The commercial grade AA1100 aluminum alloy of 12mm thickness plate is welded and the specimens are tested using a rotary beam fatigue testing machine at different stress levels. The stress versus number of cycles (S-N) curves was plotted using the data points. The Fatigue life of tungsten inert gas (TIG) and metal inert gas (MIG) welded joints was compared. The fatigue life of the weld joints was interrelated with the tensile properties, microstructure and micro hardness properties. The effects of the notches and welding processes are evaluated and reported.

  19. Identification of distinct fatigue trajectories in patients with breast cancer undergoing adjuvant chemotherapy.

    Science.gov (United States)

    Junghaenel, Doerte U; Cohen, Jules; Schneider, Stefan; Neerukonda, Anu R; Broderick, Joan E

    2015-09-01

    The goal of this study was to characterize changes in daily fatigue in women undergoing chemotherapy for breast cancer. We examined whether there are subgroups of patients with distinct fatigue trajectories and explored potential psychosocial and biomedical predictors of these subgroups. Participants were 77 women with breast cancer receiving adjuvant chemotherapy with AC-T (2-week cycle) and TC or TCH (3-week cycle) regimens. They completed 28 daily ratings online using an adapted version of the Patient-Reported Outcomes Measurement Information System (PROMIS®) fatigue instrument. Both regimens followed an "inverted-U-shaped" fatigue pattern over approximately 2 weeks. Growth mixture modeling identified three patient subgroups with distinct trajectories. Fatigue scores in the "low fatigue" group (23 %) increased following the infusion and quickly abated. The "transient fatigue" (27 %) group had a very pronounced increase. Patients in the "high fatigue" (50 %) group reported consistently elevated fatigue with a relatively small increase. Demographic and medical variables were not associated with fatigue trajectory. Patients in the "high fatigue" group reported significantly poorer physical, emotional, and social functioning, poorer general health, and more depressed mood than patients in the "low fatigue" group. The "transient fatigue" group reported significantly better physical and social functioning than the "high fatigue" group, but emotional distress and depression similar to the "high fatigue" group. The identification of patient subgroups with distinct fatigue trajectories during chemotherapy is an essential step for developing preventative strategies and tailored interventions. Our results suggest that different trajectories are associated with patients' psychosocial and general health.

  20. Evaluation of viewing experiences induced by a curved three-dimensional display

    Science.gov (United States)

    Mun, Sungchul; Park, Min-Chul; Yano, Sumio

    2015-10-01

    Despite an increased need for three-dimensional (3-D) functionality in curved displays, comparisons pertinent to human factors between curved and flat panel 3-D displays have rarely been tested. This study compared stereoscopic 3-D viewing experiences induced by a curved display with those of a flat panel display by evaluating subjective and objective measures. Twenty-four participants took part in the experiments and viewed 3-D content with two different displays (flat and curved 3-D display) within a counterbalanced and within-subject design. For the 30-min viewing condition, a paired t-test showed significantly reduced P300 amplitudes, which were caused by engagement rather than cognitive fatigue, in the curved 3-D viewing condition compared to the flat 3-D viewing condition at P3 and P4. No significant differences in P300 amplitudes were observed for 60-min viewing. Subjective ratings of realness and engagement were also significantly higher in the curved 3-D viewing condition than in the flat 3-D viewing condition for 30-min viewing. Our findings support that curved 3-D displays can be effective for enhancing engagement among viewers based on specific viewing times and environments.

  1. Crack resistance curves determination of tube cladding material

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)]. E-mail: johannes.bertsch@psi.ch; Hoffelner, W. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2006-06-30

    Zirconium based alloys have been in use as fuel cladding material in light water reactors since many years. As claddings change their mechanical properties during service, it is essential for the assessment of mechanical integrity to provide parameters for potential rupture behaviour. Usually, fracture mechanics parameters like the fracture toughness K {sub IC} or, for high plastic strains, the J-integral based elastic-plastic fracture toughness J {sub IC} are employed. In claddings with a very small wall thickness the determination of toughness needs the extension of the J-concept beyond limits of standards. In the paper a new method based on the traditional J approach is presented. Crack resistance curves (J-R curves) were created for unirradiated thin walled Zircaloy-4 and aluminium cladding tube pieces at room temperature using the single sample method. The procedure of creating sharp fatigue starter cracks with respect to optical recording was optimized. It is shown that the chosen test method is appropriate for the determination of complete J-R curves including the values J {sub 0.2} (J at 0.2 mm crack length), J {sub m} (J corresponding to the maximum load) and the slope of the curve.

  2. Analytical approximation of neutron physics data

    International Nuclear Information System (INIS)

    Badikov, S.A.; Vinogradov, V.A.; Gaj, E.V.; Rabotnov, N.S.

    1984-01-01

    The method for experimental neutron-physical data analytical approximation by rational functions based on the Pade approximation is suggested. It is shown that the existence of the Pade approximation specific properties in polar zones is an extremely favourable analytical property essentially extending the convergence range and increasing its rate as compared with polynomial approximation. The Pade approximation is the particularly natural instrument for resonance curve processing as the resonances conform to the complex poles of the approximant. But even in a general case analytical representation of the data in this form is convenient and compact. Thus representation of the data on the neutron threshold reaction cross sections (BOSPOR constant library) in the form of rational functions lead to approximately twenty fold reduction of the storaged numerical information as compared with the by-point calculation at the same accWracy

  3. Rational points, rational curves, and entire holomorphic curves on projective varieties

    CERN Document Server

    Gasbarri, Carlo; Roth, Mike; Tschinkel, Yuri

    2015-01-01

    This volume contains papers from the Short Thematic Program on Rational Points, Rational Curves, and Entire Holomorphic Curves and Algebraic Varieties, held from June 3-28, 2013, at the Centre de Recherches Mathématiques, Université de Montréal, Québec, Canada. The program was dedicated to the study of subtle interconnections between geometric and arithmetic properties of higher-dimensional algebraic varieties. The main areas of the program were, among others, proving density of rational points in Zariski or analytic topology on special varieties, understanding global geometric properties of rationally connected varieties, as well as connections between geometry and algebraic dynamics exploring new geometric techniques in Diophantine approximation.

  4. Influence of temperature on a low-cycle fatigue behavior of a ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, S. M. Humayun [Chittagong University of Engineering and Technology, Chittagong (Bangladesh); Yeo, Tae in [University of Ulsan, Ulsan (Korea, Republic of)

    2014-07-15

    The main objective of this study is to reveal the effect of dynamic strain ageing (DSA) on a ferritic stainless steel with detail relation to monotonic and cyclic responses over a wide range of temperatures. For assessing the effect of strain rate on mechanical properties, tensile test results are studied at two different strain rates of 2X10{sup -3} /s and 2X10{sup -4} /s. Typical responses of this material are compared with other alloy in literatures that exhibits DSA. Serrations in monotonic stress-strain curves and anomalous dependence of tensile properties with temperatures are attributed to the DSA effect. The low cycle fatigue curves exhibit prominent hardening and negative temperature dependence of half-life plastic strain amplitude in temperatures between 300 .deg. C - 500 .deg. C which can be explained by DSA phenomenon. The regime for dependence of marked cyclic hardening lies within the DSA regime of anomalous dependence of flow stress and dynamic strain hardening stress with temperature and negative strain rate sensitivity regime of monotonic response. It is believed that shortened fatigue life observed in the intermediate temperature is mainly due to the adverse effect of DSA. An empirical life prediction model is addressed for as-received material to consider the effect of temperature on fatigue life. The numbers of load reversals obtained from experiment and predicted from fatigue parameter are compared and found to be in good agreement.

  5. Influence of temperature on a low-cycle fatigue behavior of a ferritic stainless steel

    International Nuclear Information System (INIS)

    Kabir, S. M. Humayun; Yeo, Tae in

    2014-01-01

    The main objective of this study is to reveal the effect of dynamic strain ageing (DSA) on a ferritic stainless steel with detail relation to monotonic and cyclic responses over a wide range of temperatures. For assessing the effect of strain rate on mechanical properties, tensile test results are studied at two different strain rates of 2X10"-"3 /s and 2X10"-"4 /s. Typical responses of this material are compared with other alloy in literatures that exhibits DSA. Serrations in monotonic stress-strain curves and anomalous dependence of tensile properties with temperatures are attributed to the DSA effect. The low cycle fatigue curves exhibit prominent hardening and negative temperature dependence of half-life plastic strain amplitude in temperatures between 300 .deg. C - 500 .deg. C which can be explained by DSA phenomenon. The regime for dependence of marked cyclic hardening lies within the DSA regime of anomalous dependence of flow stress and dynamic strain hardening stress with temperature and negative strain rate sensitivity regime of monotonic response. It is believed that shortened fatigue life observed in the intermediate temperature is mainly due to the adverse effect of DSA. An empirical life prediction model is addressed for as-received material to consider the effect of temperature on fatigue life. The numbers of load reversals obtained from experiment and predicted from fatigue parameter are compared and found to be in good agreement.

  6. The Installation for Fatigue and Destruction Tests of Thin Wires

    Directory of Open Access Journals (Sweden)

    D. V. Prosvirin

    2015-01-01

    Full Text Available The fatigue strength of high-strength materials such as wire is, essentially, dependent on the surface state, stress concentrators, non-metal inclusions, etc. Multifactorial process of damage accumulation and fracture under cyclic loading makes it difficult to predict the durability of structural materials. So fatigue tests, taking into account the operating conditions of stress exposure as much as possible, are of special importance.A feature of the wire fatigue tests is that it is complicated to secure the samples and create the alternate stresses. Currently, there is no equipment to study the fatigue strength of the wire in accordance with GOST 1579-93. Partly the problem of the wire fatigue tests was solved owing to using the installation developed in IMET RAS and considered as the base case. However, the installation has significant disadvantages, namely: a complicated for implementing in practice method to control stresses in the sample; an imperfect system to count cycles; an incapability to change the engine speed of the motor and thus, the frequency of loading.In developing the new design all the basic blocks of installation were upgraded such as drive unit; unit to control stress in the sample; unit for determining the number of cycles to failure.To change the stresses in the sample the paper offers to use the platform from polymethylmethacrylate with slotted curved channels of different radii. The stresses in the sample are dependent on the channel radius R, the wire diameter d and the modulus of elasticity E of the material and may vary in the range of 200 - 1200 MPa. The use of CNC machines in cutting the channels allows stress adjustment within ± 0,1 MPa.The developed design is used to drive the rotation of the wire and makes it possible to change the frequency of loading in the range of 0 - 100 Hz. It is shown that the use of the closing relay in drive design and the transition to an electronic system of determining the number of

  7. Effect of Torsional and Fatigue Preloading on HyFlex EDM Files.

    Science.gov (United States)

    Shen, Ya; Tra, Charles; Hieawy, Ahmed; Wang, Zhejun; Haapasalo, Markus

    2018-04-01

    The purpose of this study was to evaluate the effect of a low amount of torsional preloading on the fatigue life and different degrees of cyclic fatigue on torsional failure of HyFlex EDM (EDM; Coltene-Whaledent, Allstetten, Switzerland) and HyFlex CM (CM; Coltene-Whaledent) instruments. EDM and CM files were used. The fatigue resistance was examined in a 5-mm radius and 60° single curve, and the mean number of cycles to failure (N f ) was recorded. The torque and rotation angles at failure of the instruments were measured according to ISO 3630-1. New files were precycled to 0%, 50%, and 75% of the N f , and torsional tests were then performed. Other new files were preloaded at 5%, 15%, 25%, and 50% of the mean rotation angles before the fatigue test. The fracture surfaces of the fragments were examined under a scanning electron microscope. The fatigue resistance of EDM instruments was higher than that of CM instruments (P EDM at 15% preloading (P EDM files even with 50% torsional preloading was significantly higher than unused CM files (P EDM files. Moderate precycling (50%) of EDM files increased their torsional resistance. The fractographic patterns corresponded to the pattern defined by the last stage test. A low amount (15%) of torsional preloading reduced the fatigue resistance of EDM files, whereas even extensive (75%) precyclic fatigue was not detrimental to their torsional resistance. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Comparison of Fatigue crack growth rate of Type 347 stainless steel with ASME and JSME models

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokmin; Min, Ki-Deuk; Jeon, Soon-Hyeok; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the FCGR of 347SS was evaluated in modified PWR high temperature water conditions. The FCGRs of 347SS under modified pressurized-water conditions were measured by using compact-tension (CT) specimens at different levels of dissolved oxygen (DO), and it were compared with other models proposed by ASME and Japanese groups. Corrosion fatigue is main factor of environmental fatigue effect. Increase of DO level in water induced more corrosion damage, and it accelerated FCGR in PWR and FCGR of 347SS in PWR water condition was faster than reference curves in J-PWR and ASME draft code case derived by 304 and 316 stainless steel, but it was slower than J-BWR reference curve. Using J-BWR model for estimating the FCGR of 347SS under PWR might be conservative.

  9. Statistical analysis of elevated-temperature, strain-controlled fatigue data on Type 304 stainless steel

    International Nuclear Information System (INIS)

    Diercks, D.R.; Raske, D.T.

    1976-01-01

    The available elevated-temperature, strain-controlled, uniaxial fatigue data on Type 304 stainless steel (435 data points) are summarized, and variables that influence cyclic life are divided into first- and second-order categories. The first-order variables, which include strain range, strain rate, temperature, and tensile hold time, were used in a multivariable regression analysis to describe the observed variation in fatigue life. Goodness of fit with respect to these variables as well as the appropriateness of the transformations employed are discussed. Confidence intervals are estimated, and a comparison with the ASME Boiler and Pressure Vessel Code Case 1592 creep-fatigue design curve is made for a particular set of conditions. The second-order variables include the laboratories at which the data were generated, the different heats from which the test specimens were fabricated, and the heat treatments that preceded testing. These variables were statistically analyzed to determine their effect on fatigue life. The results are discussed, and the heats and heat treatments that are most resistant to fatigue damage under these loading and environmental conditions are identified

  10. Simulation and analysis of data for enhancing low cycle fatigue test procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sarajaervi, U.; Cronvall, O. [VTT Technical Research Centre of Finland (Finland)

    2006-04-15

    The simulation and analysis of data for enhancing low cycle fatigue test procedures is discussed in this report. The analysed materials are an austenitic stainless piping steel and an austenitic weld material. This project continues the work performed in 2003 and 2004. The fatigue test data treatment application developed within the project in 2004 for the preparation of the fatigue data has been developed further. Also, more fatigue test data has been analysed with the application than in 2004. In addition to this numerical fatigue simulations were performed with FEM code ABAQUS. With the fatigue test data treatment application one can e.g. both calculate cyclically certain relevant characteristic values, e.g. elastic range, and form a set of certain cyclical parameter values needed as a part of ABAQUS analysis input files. The hardening properties of metals were modelled with both isotropic and kinematic hardening models. The further development of the application included trimming of the analysed data, and consequently trimming of resulting hardening parameters. The need for the trimming arose from the fact that the analysed fatigue test data presents some scatter caused by the limited accuracy of the test equipment and the sampling rate. The hardening parameters obtained from the application analysis results were used in the subsequent ABAQUS analyses, and then the fatigue test data were compared with the ABAQUS simulation results. After finding a procedure to trim result data to get smooth curves for cyclic hardening, hardening and softening could be reproduced in ABAQUS analysis with a reasonable accuracy. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  11. Simulation and analysis of data for enhancing low cycle fatigue test procedures

    International Nuclear Information System (INIS)

    Sarajaervi, U.; Cronvall, O.

    2006-04-01

    The simulation and analysis of data for enhancing low cycle fatigue test procedures is discussed in this report. The analysed materials are an austenitic stainless piping steel and an austenitic weld material. This project continues the work performed in 2003 and 2004. The fatigue test data treatment application developed within the project in 2004 for the preparation of the fatigue data has been developed further. Also, more fatigue test data has been analysed with the application than in 2004. In addition to this numerical fatigue simulations were performed with FEM code ABAQUS. With the fatigue test data treatment application one can e.g. both calculate cyclically certain relevant characteristic values, e.g. elastic range, and form a set of certain cyclical parameter values needed as a part of ABAQUS analysis input files. The hardening properties of metals were modelled with both isotropic and kinematic hardening models. The further development of the application included trimming of the analysed data, and consequently trimming of resulting hardening parameters. The need for the trimming arose from the fact that the analysed fatigue test data presents some scatter caused by the limited accuracy of the test equipment and the sampling rate. The hardening parameters obtained from the application analysis results were used in the subsequent ABAQUS analyses, and then the fatigue test data were compared with the ABAQUS simulation results. After finding a procedure to trim result data to get smooth curves for cyclic hardening, hardening and softening could be reproduced in ABAQUS analysis with a reasonable accuracy. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  12. Estimation of fatigue strength enhancement for carburized and shot-peened gears

    Science.gov (United States)

    Inoue, Katsumi; Kato, Masana

    1994-05-01

    An experimental formula has been proposed to estimate the bending fatigue strength of carburized gears from the hardness and the residual stress. The derivation of the formula is briefly reviewed, and the effectiveness of the formula is demonstrated in this article. The comparison with many test results for carburized and shot-peened gears verifies that the formula is effective for the approximate estimation of the fatigue strength. The formula quantitatively shows a way of enhancing fatigue strength, i.e., the increase of hardness and residual stress at the fillet. The strength is enhanced about 300 MPa by an appropriate shot peening, and it can be improved still more by the surface removal by electropolishing.

  13. Experimental Investigation on Fatigue Behavior of Epoxy Resin under Load and Displacement Controls

    Directory of Open Access Journals (Sweden)

    Mahmood Mehrdad Shokrieh

    2014-12-01

    Full Text Available The mechanical properties of epoxy resin including tensile and flexural modulus, tensile and flexural strength for static conditions are currently studied. The frequency effect as significant parameter at room temperature is investigated and fatigue behavior of the epoxy resin in tension-tension loading conditions for different frequencies of 2, 3 and 5 Hz are obtained. The epoxy resin has been taken under flexural bending fatigue loading and fatigue life is investigated. The results of the experiments show the values of 2.5 and 3 GPa of tensile and flexural modules and 59.98 and 110.02 MPa of tensile and flexural strengths for the resin, respectively. To achieve a linear load-deflection relationship in a three-point bending experiment, a maximum allowable deflection of 5 mm is acquired. The relationship between the frequency and fatigue life shows higher frequency results in lower fatigue life. Loading with frequency of 2 Hz has provided 5.8 times more fatigue life compared with 5 Hz loading. For a tension-tension fatigue loading condition, the variation of tensile module of epoxy resin shows no noticeable change during the fatigue loading condition. This module decreases significantly only in the primary and failure cycles close to the fracture point. In further experiments, fatigue behavior of epoxy resin was tested under flexural bending fatigue loadings with controlled deflection at room temperature. Maximum applied normalized stresses versus the number of cycles to failure curve are illustrated and it can be performed in order to predict the number of cycles to failure for the resin in arbitrary applied normal stresses as well.

  14. Experimental and Numerical Investigations of Fretting Fatigue Behavior for Steel Q235 Single-Lap Bolted Joints

    Directory of Open Access Journals (Sweden)

    Yazhou Xu

    2016-01-01

    Full Text Available This work aims to investigate the fretting fatigue life and failure mode of steel Q235B plates in single-lap bolted joints. Ten specimens were prepared and tested to fit the S-N curve. SEM (scanning electron microscope was then employed to observe fatigue crack surfaces and identify crack initiation, crack propagation, and transient fracture zones. Moreover, a FEM model was established to simulate the stress and displacement fields. The normal contact stress, tangential contact stress, and relative slipping displacement at the critical fretting zone were used to calculate FFD values and assess fretting fatigue crack initiation sites, which were in good agreement with SEM observations. Experimental results confirmed the fretting fatigue failure mode for these specimens. It was found that the crack initiation resulted from wear regions at the contact surfaces between plates, and fretting fatigue cracks occurred at a certain distance away from hole edges. The proposed FFD-N relationship is an alternative approach to evaluate fretting fatigue life of steel plates in bolted joints.

  15. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Science.gov (United States)

    Zhao, Jing; Ji, Honghong

    2017-01-01

    The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite. PMID:29286325

  16. Characterization of uniaxial fatigue behavior of precipitate strengthened Cu-Ni-Si alloy (SICLANIC(TM

    Directory of Open Access Journals (Sweden)

    B. Saadouki

    2018-01-01

    Full Text Available Fatigue tests were conducted on cylindrical bars specimens to understand the fatigue behavior of SICLANIC. Although it displays good resistance in monotonic tension, this material weakens and shows a softening in repeated solicitation. This has been verified through a SEM observation, the Cu-Ni-Si alloy presents transgranular failure by cleavage. The MansonCoffin diagram exhibited the plastic deformation accommodation. The plastic deformation becomes periodic and decreases progressively as the cycle number increases. The approximations of Manson Coffin give fatigue parameters values which are in good agreement with the experience

  17. Evaluation of shot peening on the fatigue strength of anodized Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Costa Midori Yoshikawa Pitanga

    2006-01-01

    Full Text Available The increasingly design requirements for modern engineering applications resulted in the development of new materials with improved mechanical properties. Low density, combined with excellent weight/strength ratio as well as corrosion resistance, make the titanium attractive for application in landing gears. Fatigue control is a fundamental parameter to be considered in the development of mechanical components. The aim of this research is to analyze the fatigue behavior of anodized Ti-6Al-4V alloy and the influence of shot peening pre treatment on the experimental data. Axial fatigue tests (R = 0.1 were performed, and a significant reduction in the fatigue strength of anodized Ti-6Al-4V was observed. The shot peening superficial treatment, which objective is to create a compressive residual stress field in the surface layers, showed efficiency to increase the fatigue life of anodized material. Experimental data were represented by S-N curves. Scanning electron microscopy technique (SEM was used to observe crack origin sites.

  18. Feature curve extraction from point clouds via developable strip intersection

    Directory of Open Access Journals (Sweden)

    Kai Wah Lee

    2016-04-01

    Full Text Available In this paper, we study the problem of computing smooth feature curves from CAD type point clouds models. The proposed method reconstructs feature curves from the intersections of developable strip pairs which approximate the regions along both sides of the features. The generation of developable surfaces is based on a linear approximation of the given point cloud through a variational shape approximation approach. A line segment sequencing algorithm is proposed for collecting feature line segments into different feature sequences as well as sequential groups of data points. A developable surface approximation procedure is employed to refine incident approximation planes of data points into developable strips. Some experimental results are included to demonstrate the performance of the proposed method.

  19. Very High Cycle Fatigue Crack Initiation Mechanism in Nugget Zone of AA 7075 Friction Stir Welded Joint

    Directory of Open Access Journals (Sweden)

    Chao He

    2017-01-01

    Full Text Available Very high cycle fatigue behavior of nugget zone in AA 7075 friction stir welded joint was experimentally investigated using ultrasonic fatigue testing system (20 kHz to clarify the crack initiation mechanism. It was found that the fatigue strength of nugget zone decreased continuously even beyond 107 cycles with no traditional fatigue limits. Fatigue cracks initiated from the welding defects located at the bottom side of the friction stir weld. Moreover, a special semicircular zone could be characterized around the crack initiation site, of which the stress intensity factor approximately equaled the threshold of fatigue crack propagation rate. Finally, a simplified model was proposed to estimate the fatigue life by correlating the welding defect size and applied stress. The predicted results are in good agreement with the experimental results.

  20. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.

    Science.gov (United States)

    de Krijger, Joep; Rans, Calvin; Van Hooreweder, Brecht; Lietaert, Karel; Pouran, Behdad; Zadpoor, Amir A

    2017-06-01

    Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R

  1. A note on families of fragility curves

    International Nuclear Information System (INIS)

    Kaplan, S.; Bier, V.M.; Bley, D.C.

    1989-01-01

    In the quantitative assessment of seismic risk, uncertainty in the fragility of a structural component is usually expressed by putting forth a family of fragility curves, with probability serving as the parameter of the family. Commonly, a lognormal shape is used both for the individual curves and for the expression of uncertainty over the family. A so-called composite single curve can also be drawn and used for purposes of approximation. This composite curve is often regarded as equivalent to the mean curve of the family. The equality seems intuitively reasonable, but according to the authors has never been proven. The paper presented proves this equivalence hypothesis mathematically. Moreover, the authors show that this equivalence hypothesis between fragility curves is itself equivalent to an identity property of the standard normal probability curve. Thus, in the course of proving the fragility curve hypothesis, the authors have also proved a rather obscure, but interesting and perhaps previously unrecognized, property of the standard normal curve

  2. CFD-FEM coupling for accurate prediction of thermal fatigue

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Kuczaj, A.K.; Blom, F.J.; Church, J.M.; Komen, E.M.J.

    2009-01-01

    together with a fatigue curve from a design code. For this assessment, the ASME Boiler and Pressure Vessel Code [2] is used. Previous work concentrated on the development and validation of numerical models for the simulation of turbulent mixing [3, 4]. This work focuses on the coupling between CFD and FEM models, and lifetime prediction by means of code assessment. The analysis tools that were developed are demonstrated on a test case. (orig.)

  3. Simplified elastoplastic fatigue analysis

    International Nuclear Information System (INIS)

    Autrusson, B.; Acker, D.; Hoffmann, A.

    1987-01-01

    Oligocyclic fatigue behaviour is a function of the local strain range. The design codes ASME section III, RCC-M, Code Case N47, RCC-MR, and the Guide issued by PNC propose simplified methods to evaluate the local strain range. After having briefly described these simplified methods, we tested them by comparing the results of experimental strains with those predicted by these rules. The experiments conducted for this study involved perforated plates under tensile stress, notched or reinforced beams under four-point bending stress, grooved specimens under tensile-compressive stress, and embedded grooved beams under bending stress. They display a relative conservatism depending on each case. The evaluation of the strains of rather inaccurate and sometimes lacks conservatism. So far, the proposal is to use the finite element codes with a simple model. The isotropic model with the cyclic consolidation curve offers a good representation of the real equivalent strain. There is obviously no question of representing the cycles and the entire loading history, but merely of calculating the maximum variation in elastoplastic equivalent deformations with a constant-rate loading. The results presented testify to the good prediction of the strains with this model. The maximum equivalent strain will be employed to evaluate fatigue damage

  4. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13

    Science.gov (United States)

    Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai

    2017-01-01

    The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R=0.25 and R=−1 are shown in the form of S–N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy. PMID:28772749

  5. Analysis of fatigue reliability for high temperature and high pressure multi-stage decompression control valve

    Science.gov (United States)

    Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang

    2018-03-01

    Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.

  6. Study on the Mechanical Properties of Stay Cable HDPE Sheathing Fatigue in Dynamic Bridge Environments

    Directory of Open Access Journals (Sweden)

    Danhui Dan

    2015-08-01

    Full Text Available As the main force-bearing component of a cable-stayed bridge, a durable stay cable is paramount to the safety and durability of the entire bridge. High-density polyethylene (HDPE sheathing is the main protective component of a stay cable and is the key to insuring cable durability. To address the issue of HDPE sheathing fracture on service, strain level data for in-service, HDPE bridge cable sheathing was used in this study as the basis for HDPE material aging and fatigue testing. A fatigue yield phenomenon with a yield platform on the hysteresis curve of the fatigue cycles is observed by the fatigue test. The parameters to describe this phenomenon are proposed and defined in this paper. A preliminary examination of the relationship between these parameters and the factors, such as the number of cycles, the strain amplitude, and strain rate, are presented. Based on the results obtained, it is suggested that the condition of fatigue yield of HDPE sheathing be defined as the fatigue durability limit state for the purposes of durability design, assessment, and protection of cable-stayed bridges.

  7. The influence of applied heat-treatment on in 718 fatigue life at three point flexural bending

    Directory of Open Access Journals (Sweden)

    J. Belan

    2017-01-01

    Full Text Available The Inconel alloy 718 is an iron-nickel based superalloy with a working temperature up to 650 °C. Presented phases such as γ'' (Ni3Nb, γ' (Ni3Al, and δ (delta – Ni3Nb are responsible for the alloy's unique properties. The δ – delta phase is profitable when situated at grain boundaries in small quantities due to increasing fatigue life. However, at temperatures close to 650 °C the γ'' transforms to δ – delta and causes a decrease in fatigue life. Heat-treatment (800°C/ for 72 hours and its influence on fatigue life are discussed in this paper. Fatigue tests were carried out at room temperature. After the tests we plotted the S-N curves for both stages. SEM (Scanning Electron Microscopy fractography was carried out as well.

  8. Post-irradiation characterization of PH13-8Mo martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M.; Schmalz, F.; Rensman, J.W. [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Luzginova, N.V., E-mail: luzginova@nrg.eu [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Wouters, O.; Hegeman, J.B.J.; Laan, J.G. van der [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2011-10-01

    The irradiation response of PH13-8Mo stainless steel was measured up to 2.5 dpa at 200 and 300 deg. C irradiation temperatures. The PH13-8Mo, a martensitic precipitation-hardened steel, was produced by Hot Isostatic Pressing at 1030 deg. C. The fatigue tests (high cycle fatigue and fatigue crack propagation) showed a test temperature dependency but no irradiation effects. Tensile tests showed irradiation hardening (yield stress increase) of approximately 37% for 200 deg. C irradiated material tested at 60 deg. C and approximately 32% for 300 deg. C irradiated material tested at 60 deg. C. This contradicts the shift in reference temperature (T{sub 0}) measured in toughness tests (Master Curve approach), where the {Delta}T{sub 0} for 300 deg. C irradiated is approximately 170 deg. C and the {Delta}T{sub 0} for the 200 deg. C irradiated is approximately 160 deg. C. This means that the irradiation hardening of PH13-8Mo steel is not suitable to predict the shift in the reference temperature for the Master Curve approach.

  9. Sequential creep-fatigue interaction in austenitic stainless steel type 316L-SPH

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Mottot, M.; Petrequin, P.

    1986-01-01

    Influence of a prior creep or fatigue exposure on subsequent fatigue or creep properties of stainless steel type 316 L SPH has been investigated. The results obtained are used to verify the validity of time and cycle fraction rule and to obtain information on the effect of very long intermittent hold times on low cycle fatigue properties, as well as on transitory loads occurring during normal service of some structural components of LMFBR reactors. Creep and fatigue tests have been carried out at 600 0 C and under conditions yielding equal or different fatigue saturation and creep stresses. Prior creep damage levels introduced range from primary to tertiary creep, whilst those of fatigue span from 20 to 70 percent of fatigue life. In both creep-fatigue and fatigue-creep sequences in the absence of a permanent prior damage (cavitation or cracking) the subsequent resistance of 316 L-SPH to fatigue or creep is unchanged, if not improved. Thin foils prepared from the specimens confirmed these observations and showed that the dislocation substructure developed during the first mode of testing is quickly replaced by that of the second mode. Grain boundary cavitation does not occur in 316 L-SPH during creep exposures to well beyond the apparent end of secondary stage and as a result prior creep exposures up to approximately 80% of rupture life do not affect fatigue properties. Conversely, significant surface cracks were found in the prior fatigue tested specimens after above about 50% life. In the presence of such cracks the subsequent creep damage was localized at the tip of the main crack and the remaining creep life was found to be usually proportional to the effective specimen cross section. Creep and fatigue sequential damage are not necessarily additive and this type of loadings are in general less severe than the repeated creep-fatigue cycling. 17 refs.

  10. Neural correlates of central inhibition during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available Central inhibition plays a pivotal role in determining physical performance during physical fatigue. Classical conditioning of central inhibition is believed to be associated with the pathophysiology of chronic fatigue. We tried to determine whether classical conditioning of central inhibition can really occur and to clarify the neural mechanisms of central inhibition related to classical conditioning during physical fatigue using magnetoencephalography (MEG. Eight right-handed volunteers participated in this study. We used metronome sounds as conditioned stimuli and maximum handgrip trials as unconditioned stimuli to cause central inhibition. Participants underwent MEG recording during imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The next day, neural activities during imagery of maximum grips of the right hand guided by metronome sounds were measured for 10 min. Levels of fatigue sensation and sympathetic nerve activity on the second day were significantly higher relative to those of the first day. Equivalent current dipoles (ECDs in the posterior cingulated cortex (PCC, with latencies of approximately 460 ms, were observed in all the participants on the second day, although ECDs were not identified in any of the participants on the first day. We demonstrated that classical conditioning of central inhibition can occur and that the PCC is involved in the neural substrates of central inhibition related to classical conditioning during physical fatigue.

  11. Adaptive subdivision and the length and energy of Bézier curves

    DEFF Research Database (Denmark)

    Gravesen, Jens

    1997-01-01

    It is an often used fact that the control polygon of a Bézier curve approximates the curve and that the approximation gets better when the curve is subdivided. In particular, if a Bézier curve is subdivided into some number of pieces, then the arc-length of the original curve is greater than...... the sum of the chord-lengths of the pieces, and less than the sum of the polygon-lengths of the pieces. Under repeated subdivisions, the difference between this lower and upper bound gets arbitrarily small.If $L_c$ denotes the total chord-length of the pieces and $L_p$ denotes the total polygon...... combination, and it forms the basis for a fast adaptive algorithm, which determines the arc-length of a Bézier curve.The energy of a curve is half the square of the curvature integrated with respect to arc-length. Like in the case of the arc-length, it is possible to use the chord-length and polygon...

  12. Investigation of the effect of vacuum environment on the fatigue and fracture behavior of 7075-T6.

    Science.gov (United States)

    Hudson, C. M.

    1972-01-01

    Axial-load fatigue-life, fatigue-crack propagation, and fracture-toughness experiments were conducted on sheet specimens made of 7075-T6 aluminum alloy. These experiments were conducted at air pressures ranging from 101 kN/sq m to 7 micronewtons/sq m to determine the effect of air pressure on fatigue behavior. Analysis of the results from the fatigue-life experiments indicated that for a given stress level, the lower the air pressure was the longer the fatigue life. At a pressure of 7 micronewtons/sq m, fatigue lives were 15 to 30 times longer than at 101 kN/sq m. Analysis of the results from the fatigue-crack-growth experiments indicates that at low values of stress-intensity range, the fatigue-crack-growth rates were approximately twice as high at atmospheric pressure as in vacuum. However, at higher values of stress-intensity range, the fatigue-crack-growth rates were nominally the same in vacuum and at atmospheric pressure.

  13. HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments.

    Science.gov (United States)

    Pirani, C; Iacono, F; Generali, L; Sassatelli, P; Nucci, C; Lusvarghi, L; Gandolfi, M G; Prati, C

    2016-05-01

    To evaluate the surface and microstructural alterations of new and used HyFlex EDM prototypes and to test their fatigue resistance. Fifteen HyFlex EDM prototypes were used for in vitro instrumentation of severely curved root canals. Surface and microstructural characteristics of new and used files were compared by ESEM analysis equipped with energy dispersive X-ray spectrophotometry (EDS) and optical metallographic imaging. Usage-induced degradation was assessed. Thirty additional HyFlex EDM prototypes and 20 standard manufactured HyFlex CM files were subjected to cyclic fatigue tests. Time to fracture was recorded, and results were validated using the Kruskal-Wallis test (α-level 0.05). Fatigued files were analysed by ESEM for fractographic evaluation. Surface and microstructural characterization of EDM prototypes revealed the typical spark-machined surface of a NiTi EDM alloy. No fractures were registered during root canal instrumentation. No evident surface alterations and minor degradation were observed between new and used instruments. The metallographic analysis of new and used files disclosed a homogeneous structure, mostly composed of lenticular martensite grains, and some residual austenite. The cyclic fatigue test showed an increase of fatigue resistance up to 700% on the EDM compared to CM files. Spark-machined peculiar surface is the main feature of HyFlex EDM. Low degradation was observed after multiple canal instrumentations. Prototypes exhibited surprising high values of cyclic fatigue resistance and a safe in vitro use in severely curved canals. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Electrical fatigue behaviour in lead zirconate titanate: an experimental and theoretical study

    International Nuclear Information System (INIS)

    Bhattacharyya, Mainak; Arockiarajan, A

    2013-01-01

    A systematic investigation on electrical fatigue in lead zirconate titanate (PZT) is carried out for different loading frequencies. Experiments are conducted up to 10 6 cycles to measure the electrical displacement and longitudinal strain on bulk ceramics in the bipolar mode with large electrical loading conditions. A simplified macroscopic model based on physical mechanisms of domain switching is developed to predict the non-linear behaviour. In this model, the volume fraction of a domain is used as the internal variable by considering the mechanisms of domain nucleation and propagation (domain wall movement). The measured material properties at different fatigue cycles are incorporated into the switching model as damage parameters and the classical strain versus electric field and electric displacement versus electric field curves are simulated. Comparison between the experiments and simulations shows that the proposed model can reproduce the characteristics of non-linear as well as fatigue responses. (paper)

  15. Electrical fatigue behaviour in lead zirconate titanate: an experimental and theoretical study

    Science.gov (United States)

    Bhattacharyya, Mainak; Arockiarajan, A.

    2013-08-01

    A systematic investigation on electrical fatigue in lead zirconate titanate (PZT) is carried out for different loading frequencies. Experiments are conducted up to 106 cycles to measure the electrical displacement and longitudinal strain on bulk ceramics in the bipolar mode with large electrical loading conditions. A simplified macroscopic model based on physical mechanisms of domain switching is developed to predict the non-linear behaviour. In this model, the volume fraction of a domain is used as the internal variable by considering the mechanisms of domain nucleation and propagation (domain wall movement). The measured material properties at different fatigue cycles are incorporated into the switching model as damage parameters and the classical strain versus electric field and electric displacement versus electric field curves are simulated. Comparison between the experiments and simulations shows that the proposed model can reproduce the characteristics of non-linear as well as fatigue responses.

  16. Fatigue life assessment of free spanning pipelines containing corrosion defects

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Rita de Kassia D.; Campello, Georga C.; Matt, Cyntia G. da Costa; Benjamin, Adilson C.; Franciss, Ricardo [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2009-12-19

    The free spanning pipelines assessment is a highlighted issue to be considered during the project and maintenance of the submarine pipelines. It is required to evaluate the fatigue life and the maximum stress due to VIV (Vortex Induced Vibration) as well as wave forces when applicable in case of shallow water. The code DNV-RP-F105 (2006) presents a methodology to calculate the fatigue life for free spanning pipelines. Such methodology however considers the pipe with no kind of defects. Nevertheless, sometimes corrosion defects are detected in periodic inspections and therefore their effects need to be taken into account in the fatigue life evaluation. The purpose of this paper thus is to present a procedure to assess the influence of the corrosion defects in the fatigue life of free spanning pipelines. Some FE analyses were performed to determine the stress concentrate factor (SCF) of the corrosion defects, which were used as input in the methodology presented in the code DNV-RP-F105 (2006). Curves of damage and so lifetime have been generated as function of the span length and water depth. As a practical application, this methodology was applied to a sub sea pipeline with several corrosion defects, localized in shallow water offshore Brazil. (author)

  17. Approximate first integrals of a chaotic Hamiltonian system | Unal ...

    African Journals Online (AJOL)

    Approximate first integrals (conserved quantities) of a Hamiltonian dynamical system with two-degrees of freedom which arises in the modeling of galaxy have been obtained based on the approximate Noether symmetries for the resonance ω1 = ω2. Furthermore, Kolmogorov-Arnold-Moser (KAM) curves have been ...

  18. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2017-12-01

    Full Text Available The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite.

  19. The Identification of Fatigue Resistant and Fatigue Susceptible Individuals

    National Research Council Canada - National Science Library

    Harrison, Richard; Chaiken, Scott; Harville, Donald; Fischer, Joseph; Fisher, Dion; Whitmore, Jeff

    2008-01-01

    The present study was designed to target two specific areas regarding fatigue. The primary purpose was to begin investigations into possible genetic markers linked to fatigue resistance and fatigue susceptibility...

  20. Fatigue assessment of laserbeam welded PM steel components by the notch stress approach

    Energy Technology Data Exchange (ETDEWEB)

    Waterkotte, R. [Schaeffler Technologies GmbH and Co. KG, Herzogenaurach (Germany); Sonsino, C.M. [Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt (Germany); Baumgartner, J.

    2011-10-15

    The local fatigue strength of a laserbeam weld of a complex engine component, which joins a PM with a formed sheet component, was assessed by the notch stress concept with the fictitious reference radius of r{sub ref}= 0.05 mm. First, simplified specimens, following the main geometric dimensions of the parts, were manufactured. On these specimens the fatigue strength was identified by tests and the notch stresses calculated by finite element analysis. Based on these results a design SN-curve was derived to assess the fatigue strength of the engine component. The numerical assessment of the welded joint was verified by proof tests with the component. The assessment could be improved by considering statistical and stress gradient dependent size effects according to the concept of the highly stressed volume. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Application of viscoelastic continuum damage approach to predict fatigue performance of Binzhou perpetual pavements

    Directory of Open Access Journals (Sweden)

    Wei Cao

    2016-04-01

    Full Text Available For this study, the Binzhou perpetual pavement test sections constructed in Shandong Province, China, were simulated for long-term fatigue performance using the layered viscoelastic pavement analysis for critical distresses (LVECD finite element software package. In this framework, asphalt concrete was treated in the context of linear viscoelastic continuum damage theory. A recently developed unified fatigue failure criterion that defined the boundaries of the applicable region of the theory was also incorporated. The mechanistic modeling of the fatigue mechanisms was able to accommodate the complex temperature variations and loading conditions of the field pavements in a rigorous manner. All of the material models were conveniently characterized by dynamic modulus tests and direct tension cyclic fatigue tests in the laboratory using cylindrical specimens. By comparing the obtained damage characteristic curves and failure criteria, it is found that mixtures with small aggregate particle sizes, a dense gradation, and modified asphalt binder tended to exhibit the best fatigue resistance at the material level. The 15-year finite element structural simulation results for all the test sections indicate that fatigue performance has a strong dependence on the thickness of the asphalt pavements. Based on the predicted location and severity of the fatigue damage, it is recommended that Sections 1 and 3 of the Binzhou test sections be employed for perpetual pavement design.

  2. Study of the effect of an equi-biaxial loading on the fatigue lifetime of austenitic stainless steel

    International Nuclear Information System (INIS)

    Bradai, Soumaya

    2014-01-01

    Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures.In some nuclear power plant components, the fatigue loading may be equi-biaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equi-biaxial tension. The aim of this study is to present the experimental and numerical results obtained with a device 'FABIME2' developed in the LISN in collaboration with EDF and AREVA. The association of the experimental results, obtained on the new experimental fatigue device FABIME2, with the numerical analyses obtained by FEM simulation with Cast3M code, has enabled to define the aggravating effect of the equi-biaxial fatigue loading. However, this effect is covered by the Design fatigue curve defined from the nuclear industry. For the crack propagation, a first simplified approach enables to study the kinetic behavior of crack propagation in equi-biaxial fatigue. (author) [fr

  3. Residual stress evaluation and fatigue life prediction in the welded joint by X-ray diffraction

    International Nuclear Information System (INIS)

    Yoo, Keun Bong; Kim, Jae Hoon

    2009-01-01

    In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or occurs the stress corrosion cracking and fatigue fracture. The residual stress of the welded part in the recently constructed power plants has been the cause of a variety of accidents. The objective of this study is measurement of the residual stress by X-ray diffraction method and to estimate the feasibility of this application for fatigue life assessment of the high-temperature pipeline. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The test results were analyzed by the distributed characteristics of residual stresses and the Full Width at Half Maximum intensity (FWHM) in x-ray diffraction intensity curve. Also, X-ray diffraction tests using specimens simulated low cycle fatigue damage were performed in order to analyze fatigue properties when fatigue damage conditions become various stages. As a result of X-ray diffraction tests for specimens simulated fatigue damages, we conformed that the ratio of the FWHM due to fatigue damage has linear relationship with fatigue life ratio algebraically. From this relationships, it was suggested that direct expectation of the life consumption rate was feasible.

  4. Inconel 718 and UNSM Treated Alloy Study on the Rotary Bending High Temperature Fatigue Characteristics under a Light Concentrating System

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang Min [Kyungpook Nat’l Univ., Daegu (Korea, Republic of); Nahm, Seung Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Woo, Young Han; Hur, Kwang Ho; Hong, Sang Hwui [Gyeongbuk Hybrid Technology Institute, Daegu (Korea, Republic of); Kim, Jun Hyong; Pyun, Young Sik [Sun Moon Univ., Asan (Korea, Republic of)

    2016-11-15

    This study investigated the influence of high temperature and UNSM on the fatigue behavior of Inconel 718 alloy at RT, 300, 500, and 600℃. Fatigue properties of Inconel 718 were reduced at high temperatures compared to those at room temperature. However, the endurance limit was similar to that of the room temperature sample at the design stress level. High-temperature fatigue characteristics of the UNSM-treated specimen were significantly improved at the design stress level as compared to the untreated specimens. Specifically, the influence of temperature on the S-N curves at the design stress level of the UNSM-treated specimen showed the tendency of longer fatigue lives than those of untreated ones. Researchers can obtain rotary fatigue test results simply by heating specimens with a halogen lamp to precise temperatures during specific operations.

  5. Fretting Fatigue Behaviour of Pin-Loaded Thermoset Carbon-Fibre-Reinforced Polymer (CFRP Straps

    Directory of Open Access Journals (Sweden)

    Fabio Baschnagel

    2016-04-01

    Full Text Available This paper focuses on the fretting fatigue behaviour of pin-loaded carbon-fibre-reinforced polymer (CFRP straps studied as models for rigging systems in sailing yachts, for suspenders of arch bridges and for pendent cables in cranes. Eight straps were subjected to an ultimate tensile strength test. In total, 26 straps were subjected to a fretting fatigue test, of which ten did not fail. An S–N curve was generated for a load ratio R of 0.1 and a frequency f of 10 Hz, showing a fatigue limit stress of the straps around the matrix fatigue limit, corresponding to 46% of the straps’ ultimate tensile strength (σUTS. The fatigue limit was defined as 3 million load cycles (N = 3 × 106, but tests were even conducted up to N = 11.09 × 106. Catastrophic failure of the straps was initiated in their vertex areas. Investigations on the residual strength and stiffness properties of straps tested around the fatigue limit stress (for N ≥ 1 × 106 showed little influence of the fatigue loading on these properties. Quasi-static finite element analyses (FEA were conducted. The results obtained from the FEA are in good agreement with the experiments and demonstrate a fibre parallel stress concentration in the vertex area of factor 1.3, under the realistic assumption of a coefficient of friction (cof between pin and strap of 0.5.

  6. An environmental factor approach to account for reactor water effects in light water reactor pressure vessel and piping fatigue evaluations

    International Nuclear Information System (INIS)

    Mehta, H.S.; Gosselin, S.R.

    1996-01-01

    This paper summarizes past and current studies of the environmental fatigue effects in LWR applications. Current Argonne and Japanese research efforts are reviewed and an approach to calculate an environmental correction factor is described. A description of how the proposed approach can be implemented in Section III, NB-3600 and NB-3200-type fatigue evaluations, is presented along with examples of applying the approach to piping (NB-3600) and safe-end fatigue evaluations. These procedures were applied to several BWR and PWR example cases. The results of these case studies indicated that there is a modest increase in calculated fatigue usage, which is considerably less than the results obtained when the NUREG/CR-5999 curves are applied directly

  7. Fatigue testing of wood composites for aerogenerator blades. Pt. 11: Assessment of fatigue damage accumulation using a fatigue modulus approach

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, C L; Ansell, M P [Bath Univ. (United Kingdom)

    1996-12-31

    Stress-strain hysteresis loops have been captured during fatigue tests performed at R=10 (compression-compression) and R=0.1 (tension-tension) on Khaya epoxy wood composites. A fatigue modulus approach, proposed by Hwang and Han in 1989, has been applied to the data and a relationship established between the initial change in fatigue modulus and fatigue life. By following changes in fatigue modulus during the first 100 test cycles it is possible to predict the life of the sample allowing rapid evaluation of the fatigue performance of wood composites. Fatigue modulus values have also been calculated for hysteresis loops captured during complex load - time history tests. Similar trends in change in fatigue modulus suggest that this approach could be used in complex loading conditions to evaluate fatigue damage accumulation and predict fatigue life. (Author)

  8. Creep-fatigue damage evaluation for SS-316LN (ORNL PLATES): - RCC-MR vs. ASME SEC III - NH

    International Nuclear Information System (INIS)

    Sati, Bhuwan Chandra; Jalaldeen, S.; Velusamy, K.; Selvaraj, P.

    2016-01-01

    Investigations of high temperature tests done on ORNL plate with deformation control loading, under creep-fatigue damage have been presented. The test results with methodology of RCC-MR and ASME-NH life prediction under creep-fatigue loading have been assessed. The stress relaxation effect in calculating the life using RCC-MR under creep-fatigue damage is found to be significant in presence of secondary stress. RCC-MR: 2007 is more realistic number of cycles (predicts 51 number of cycles) as compared to ASME-NH (predicts 312 number of cycles) which is demonstrated by the experimental work (observed 86 numbers of cycles). Between RCC-MR and experimental work, design code seems to be more conservative for life prediction due to creep-fatigue damage. For fatigue damage, the approaches are same and the difference comes from material properties and the starting stress for applying Neuber's rule. ASME approach has the limitation of stress range magnitude. ASME approach predicts lower elastic plus plastic strain for the cases having S* above the linear stress limit. For creep strain and creep damage evaluation, ASME and RCC-MR have different approaches for calculating the stress at the beginning and during the hold period. The RCC-MR takes account of cyclic hardening or softening effects (hardening in the present case of 316 LN) by means of the cyclic stress-strain curve and the benefit of symmetrization effects which are significant for this material. The ASME code neglects these effects and instead relies on an approach based on the isochronous stress-strain curves. (author)

  9. A Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results

    Science.gov (United States)

    Larsen, Curtis E.; Irvine, Tom

    2013-01-01

    A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.

  10. Development of a procedure for estimating the high cycle fatigue strength of some high temperature structural alloys

    International Nuclear Information System (INIS)

    Soo, P.; Chow, J.G.Y.

    1979-01-01

    The generation of strain controlled fatigue data, for the standard strain rate of 4 x 10 -3 sec -1 , presents a problem when the cycles to failure exceed 10 5 because of the prohibitively long test times involved. In an attempt to circumvent this difficulty an evaluation has been made of a test procedure involving a fast cycling rate (40 Hz) and load controlled conditions. The validity of this procedure for extending current fatigue curves from 10 5 to 10 8 cycles and beyond, hinges upon the selection of an appropriate effective strain value, since the strain usually changes rapidly during the early stage of fatigue. Results from annealed 2 1/4 Cr-1 Mo, type 304 stainless steel, Incoloy 800H and Hastelloy X, tested over a wide range of temperatures, show that the strain measured N/sub f/2 is a reasonable estimate since it gives an excellent correlation between the strain and load controlled tests in the 10 5 cycle range where the data overlap. It seems clear that the differences in cycling rate and early stress-strain history for the two tests do not significantly affect the correlation. It may, therefore, be concluded that such load control test procedures may be used as a valid fast way for extending currently available fatigue curves from 10 5 to 10 8 cycles, and beyond

  11. Environmentally assisted fatigue evaluation model of alloy 690 steam generator tube in high temperature water

    International Nuclear Information System (INIS)

    Tan Jibo; Wu Xinqiang; Han Enhou; Wang Xiang; Liu Xiaoqiang; Xu Xuelian

    2015-01-01

    Nickel-based alloy 690 has been widely used as steam generator tube in light water reactor (LWR) nuclear power plants, which may suffer from corrosion fatigue during long-term service. Many researches and operating experience indicated that the effect of LWR environment could significantly reduce the fatigue life of structural materials. However. such an environmental degradation effect was not fully addressed in the current ASME code design fatigue curves. Therefore, the Regulatory Guide 1.207 issued by US NRC required a new NPP have to incorporate the environment effects into fatigue analyses. In the last few decades, researchers in USA and Japan systematically investigated the corrosion fatigue behavior of nuclear-grade structural materials in LWR environment. Then, ANL model and JSME model were proposed, which incorporated environmental effects, including temperature, dissolved oxygen (DO) and strain rate for the nickel-based alloys. Due to lack of experiment data on domestic materials, there is no related environmental fatigue design model in China. In the present work, based on the corrosion fatigue tests of a kind of boat-shaped specimen in borated and lithiated high temperature water, the corrosion fatigue behavior and environmentally assisted cracking mechanism of domestic Alloy 690 steam generator tube have been investigate. An IMR model for the nickel-based alloy was proposed. The environmental fatigue life correction factor (F en ) was established, which addressed the environmental factors, including temperature, strain rate and dissolved oxygen. The method to evaluate environmental fatigue damage of structural materials in NPPs was proposed. (authors)

  12. What is the best term in Spanish to express the concept of cancer-related fatigue?

    Science.gov (United States)

    Centeno, Carlos; Portela Tejedor, María Angustias; Carvajal, Ana; San Miguel, Maria Teresa; Urdiroz, Julia; Ramos, Luis; De Santiago, Ana

    2009-05-01

    Fatigue is one of the most frequent symptoms in patients with cancer. No adequate term in Spanish has been defined to describe the English concept of fatigue. To identify the most suitable Spanish words that define the concept of fatigue and to check psychometric characteristics. Consensus with professional experts on Spanish words that best suit the English concept of fatigue. A prospective study on oncologic patients was also undertaken, which included an evaluation of the intensity of fatigue through visual numeric scales (VNS) where the words had been previously selected. The fatigue subscale of the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) questionnaire was taken as a reference. The experts highlighted the words cansancio, agotamiento, and debilidad (tiredness, exhaustion, and weakness) as the terms that best defined the concept of fatigue. In the psychometric assessment study, 100 patients were included, of which 61 (61%) presented diagnostic values for cancer-related fatigue in the FACT-F fatigue subscale (score 34/52 or lower). The VNS for the chosen terms obtained a high correlation with the FACT-F fatigue subscale results: cansancio (tiredness) r = -0.71, agotamiento (exhaustion) r = -0.74, debilidad (weakness) r = -0.74, with no statistical differences between them. For the detection of fatigue by means of the VNS, tiredness (cutoff point > or =4/10) gave sensitivity (S) 0.90 and specificity (E) 0.72; exhaustion (cutoff point > or =3/10) S 0.95 and E 0.90 and weakness (cutoff point > or =4/10) S 0.92 and E 0.72. The ROC curve was 0.88 for tiredness, 0.94 for exhaustion, and 0.92 for weakness, with no significant difference between the areas mentioned. The terms cansancio, agotamiento, and debilidad (tiredness, exhaustion, and weakness) are suitable for defining the English concept of fatigue in Spanish, and should be the preferred option for inclusion in evaluation tools.

  13. Fatigue Analysis of Tubesheet/Shell Juncture Applying the Mitigation Factor for Over-conservatism

    International Nuclear Information System (INIS)

    Kang, Deog Ji; Kim, Kyu Hyoung; Lee, Jae Gon

    2009-01-01

    If the environmental fatigue requirements are applied to the primary components of a nuclear power plant, to which the present ASME Code fatigue curves are applied, some locations with high level CUF (Cumulative Usage Factor) are anticipated not to meet the code criteria. The application of environmental fatigue damage is still particularly controversial for plants with 60-year design lives. Therefore, it is need to develop a detailed fatigue analysis procedure to identify the conservatisms in the procedure and to lower the cumulative usage factor. Several factors are being considered to mitigate the conservatism such as three-dimensional finite element modeling. In the present analysis, actual pressure transient data instead of conservative maximum and minimum pressure data was applied as one of mitigation factors. Unlike in the general method, individual transient events were considered instead of the grouped transient events. The tubesheet/shell juncture in the steam generator assembly is the one of the weak locations and was, therefore, selected as a target to evaluate the mitigation factor in the present analysis

  14. Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals

    Directory of Open Access Journals (Sweden)

    Jianfeng Hu

    2017-08-01

    Full Text Available Purpose: Driving fatigue has become one of the important causes of road accidents, there are many researches to analyze driver fatigue. EEG is becoming increasingly useful in the measuring fatigue state. Manual interpretation of EEG signals is impossible, so an effective method for automatic detection of EEG signals is crucial needed.Method: In order to evaluate the complex, unstable, and non-linear characteristics of EEG signals, four feature sets were computed from EEG signals, in which fuzzy entropy (FE, sample entropy (SE, approximate Entropy (AE, spectral entropy (PE, and combined entropies (FE + SE + AE + PE were included. All these feature sets were used as the input vectors of AdaBoost classifier, a boosting method which is fast and highly accurate. To assess our method, several experiments including parameter setting and classifier comparison were conducted on 28 subjects. For comparison, Decision Trees (DT, Support Vector Machine (SVM and Naive Bayes (NB classifiers are used.Results: The proposed method (combination of FE and AdaBoost yields superior performance than other schemes. Using FE feature extractor, AdaBoost achieves improved area (AUC under the receiver operating curve of 0.994, error rate (ERR of 0.024, Precision of 0.969, Recall of 0.984, F1 score of 0.976, and Matthews correlation coefficient (MCC of 0.952, compared to SVM (ERR at 0.035, Precision of 0.957, Recall of 0.974, F1 score of 0.966, and MCC of 0.930 with AUC of 0.990, DT (ERR at 0.142, Precision of 0.857, Recall of 0.859, F1 score of 0.966, and MCC of 0.716 with AUC of 0.916 and NB (ERR at 0.405, Precision of 0.646, Recall of 0.434, F1 score of 0.519, and MCC of 0.203 with AUC of 0.606. It shows that the FE feature set and combined feature set outperform other feature sets. AdaBoost seems to have better robustness against changes of ratio of test samples for all samples and number of subjects, which might therefore aid in the real-time detection of driver

  15. Results from low cycle fatigue testing of 316L plate and weld material

    International Nuclear Information System (INIS)

    Kaellstroem, R.; Josefsson, B.; Haag, Y.

    1993-01-01

    Specimens for low cycle fatigue testing from the second heat of the CEC reference 316L plate and from Tungsten Inert Gas (TIG) weld material have been neutron irradiated near room temperature to a displacement dose of approximately 0.3 dpa. The low cycle fatigue testing of both irradiated and unirradiated specimens was performed at 75, 250 and 450 degrees C, and with strain ranges of 0.75, 1.0 and 1.5%. There is no clear effect of the irradiation on low cycle fatigue properties. For the weld material the endurance is shorter than for plate, and the dependences on temperature and strain range are not clear

  16. A study of fatigue life prediction for automotive spot weldment using local strain approach

    International Nuclear Information System (INIS)

    Lee, Song In; Yu, Hyo Sun; Na, Sung Hun; Na, Eui Gyun

    2000-01-01

    The fatigue crack initiation life is studied on automotive spot weldment made from cold rolled carbon steel(SPC) sheet by using DCPDM and local strain approach. It can be found that the fatigue crack initiation behavior in spot weldment can be definitely detected by DCPDM system. The local stresses and strains are estimated by elastic-plastic FEM analysis and the alternative approximate method based on Neuber's rule were applied to predict the fatigue life of spot weldment. A satisfactory correlation between the predicted life and experimental life can be found in spot weldment within a factor of 4

  17. New York City social workers after 9/11: their attachment, resiliency, and compassion fatigue.

    Science.gov (United States)

    Tosone, Carol; Bettmann, Joanna E; Minami, Takuya; Jasperson, Rachael A

    2010-01-01

    This study examines the relationship between attachment classification, resiliency, and compassion fatigue in New York social workers following 9/11. We used single occasion, quasi-random sampling, surveying 481 social workers living in Manhattan. Hierarchical regression analyses revealed that secure attachment is predictive of the ability to cope with secondary traumatic stress as well as capacity for resilience, explaining approximately 7% of the variance in both compassion fatigue and resiliency. These findings suggest that secure attachment may serve as a source of resilience for social workers, immunizing them from significant compassion fatigue. Such findings have significant implications for clinicians working with traumatized populations.

  18. Structural Evolution and Mechanisms of Fatigue in Polycrystalline Brass

    DEFF Research Database (Denmark)

    Carstensen, Jesper Vejlø

    The plastic strain controlled fatigue behaviour of polycrystalline Cu-15%Zn and Cu-30%Zn has been investigated with the aim of studying the effect of slip mode modification by the addition of zinc to copper. It has been clearly demonstrated, that true cyclic saturation does not occur in the plastic...... type single slip. This behaviour has been described by the self-consistent Sachs-Eshelby model, which provides estimates of the CSS curve for brass polycrystals. Successive stages of primary hardening, softening and secondary hardening has been observed in the plastic strain controlled fatigue of brass....... It has been found that the primary hardening is attributed to an increase of intergranular stresses whereas the sec-ondary hardening apparently is attributed to an increase of friction stresses. Investigations of the structural evolution show that the softening behaviour can be explained by the presence...

  19. Spectral fatigue analysis of a tensioned riser compliant tower

    NARCIS (Netherlands)

    Karadeniz, H.; Vrouwenvelder, A.C.W.M.; Shi, C.

    1998-01-01

    In this paper, the conceptual Tensioned Riser Compliant Tower (TRCT) structure of the Shell Oil, which is developed for a region of approximately 600 meter water depth of the West of Shetlands in the North Sea, is analyzed by using the SAPOS program of the Delft University of Technology. The fatigue

  20. Seismic Capacity Estimation of Steel Piping Elbow under Low-cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of); Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In some cases, this large relative displacement can increase seismic risk of the isolated facility. Especially, a inelastic behavior of crossover piping system to connect base isolated building and fixed base building can caused by a large relative displacement. Therefore, seismic capacity estimation for isolated piping system is needed to increase safety of nuclear power plant under seismic condition. Dynamic behavior analysis of piping system under seismic condition using shake table tests was performed by Touboul et al in 1995. In accordance with their study, plastic behavior could be occurred at pipe elbow under seismic condition. Experimental researches for dynamic behavior of typical piping system in nuclear power plant have been performed for several years by JNES(Japan Nuclear Energy Safety Organization) and NUPEC(Nuclear Power Engineering Corporation). A low cycle ratcheting fatigue test was performed with scaled model of elbow which is a weakest component in piping system by Mizuno et al. In-plane cyclic loading tests under internal pressure condition were performed to evaluate the seismic capacity of the steel piping elbow. Leakage phenomenon occurred on and near the crown in piping elbow. Those cracks grew up in axial direction. The fatigue curve was estimated from test results. In the fatigue curve, loading amplitude exponentially decreased as the number of cycles increased. A FEM model of piping elbow was modified with test results. The relationships between displacement and force from tests and numerical analysis was well matched.

  1. Fatigue life prediction of oil ducts under service loads

    Energy Technology Data Exchange (ETDEWEB)

    Meggiolaro, Marco A.; Castro, Jaime T.P. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    2003-07-01

    A methodology to calculate the residual initiation and propagation lives of fatigue cracks in oil pipelines with corrosion-like defects is proposed and applied to predict the residual life of an old duct made of API 5L Gr. B steel, in service for more than 40 years. Since its inauguration, this pipeline has carried several heated products under variable temperatures and pressures. The calculated (nominal) service stresses are very high, due to thermal loads that induce significant bending in curved parts of the duct, with peaks close to the yield strength of the steel. The elastic- plastic fatigue damage at a notch or a corrosion pit root is calculated using the {epsilon}N method, and the effects of surface semi-elliptical cracks in its internal (or external) wall is studied considering appropriate stress intensity factor expressions and the actual service loads. In the presence of surface flaws associated to stress concentration factors of the order of three, a fatigue crack likely will initiate in the pipeline. However, if these surface cracks are small compared to the duct wall thickness, their predicted propagation rates are very low. (author)

  2. Constructing forward price curves in electricity markets

    DEFF Research Database (Denmark)

    Fleten, S.-E.; Lemming, Jørgen Kjærgaard

    2003-01-01

    We present and analyze a method for constructing approximated high-resolution forward price curves in electricity markets. Because a limited number of forward or futures contracts are traded in the market, only a limited picture of the theoretical continuous forward price curve is available...... to the analyst. Our method combines the information contained in observed bid and ask prices with information from the forecasts generated by bottom-up models. As an example, we use information concerning the shape of the seasonal variation from a bottom-up model to improve the forward price curve quoted...

  3. Neck curve polynomials in neck rupture model

    International Nuclear Information System (INIS)

    Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul

    2012-01-01

    The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of 280 X 90 with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.

  4. Estimates of thermal fatigue due to beam interruptions for an ALMR-type ATW

    International Nuclear Information System (INIS)

    Dunn, F. E.; Wade, D. C.

    1999-01-01

    Thermal fatigue due to beam interruptions has been investigated in a sodium cooled ATW using the Advanced Liquid Metal mod B design as a basis for the subcritical source driven reactor. A k eff of 0.975 was used for the reactor. Temperature response in the primary coolant system was calculated, using the SASSYS- 1 code, for a drop in beam current from full power to zero in 1 microsecond.. Temperature differences were used to calculate thermal stresses. Fatigue curves from the American Society of Mechanical Engineers Boiler and Pressure Vessel Code were used to determine the number of cycles various components should be designed for, based on these thermal stresses

  5. Influence of sodium on the low-cycle fatigue behavior of types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Smith, D.L.; Zeman, G.J.; Natesan, K.; Kassner, T.F.

    1976-01-01

    Fatigue tests in sodium were conducted to investigate the influence of a high-temperature sodium environment on the low-cycle fatigue behavior of Types 304 and 316 stainless steel. The effects of testing in a sodium environment as well as long-term sodium exposure were investigated. The fatigue tests were conducted at 600 and 700 0 C in sodium of controlled purity, viz., approximately 1 ppM oxygen and 0.4 ppM carbon, at a strain rate of 4 x 10 -3 s -1 . The fatigue life of annealed Type 316 stainless steel is substantially greater in sodium than when tested in air; however, the fatigue life of annealed Type 304 stainless steel is altered much less when tested in sodium. A 1512-h preexposure to sodium had no significant effect on the fatigue life of Type 316 stainless steel tested in sodium. However, a similar exposure substantially increased the fatigue life of Type 304 stainless steel in sodium. 10 fig

  6. In vitro comparison of the cyclic fatigue resistance of HyFlex EDM, One G, and ProGlider nickel titanium glide path instruments in single and double curvature canals.

    Science.gov (United States)

    Yılmaz, Koray; Uslu, Gülşah; Özyürek, Taha

    2017-11-01

    It was aimed to compare the cyclic fatigue resistances of ProGlider (PG), One G (OG), and HyFlex EDM (HEDM) nickel titanium glide path files in single- and double-curved artificial canals. 40 PG (16/0.02), 40 OG (14/0.03), and 40 HEDM (10/0.05) single-file glide path files were used in the present study. Sixty files were subjected to cyclic fatigue test by using double-curved canals and 60 files by using single-curved canal ( n = 20). The number of cycles to fracture (NCF) was calculated and the length of the fractured fragment (FL) was determined by a digital micro-caliper. Twelve pieces of fractured files were examined with scanning electron microscope to determine fracture types of the files ( n = 2). The NCF and the FL data were analyzed using one-way analysis of variance and post hoc Tukey test using SPSS 21 software ( p < 0.05). In all of the groups, NCF values were significantly lower in double-curved canals when compared to single-curved canals ( p < 0.05). For both of single- and double-curved canals, NCF values of HEDM group in apical and coronal curvatures were found to be significantly higher than NCF values of PG and OG groups ( p < 0.05). In both of single- and double-curved canals, NCF value of PG group was found significantly higher than OG group ( p < 0.05). Within the limitations of this study, HEDM glide path files were found to have the highest cyclic fatigue resistance in both of single- and double-curved canals.

  7. Fatigue data compilation and evaluation of fatigue on design

    International Nuclear Information System (INIS)

    Nyilas, A.

    1985-05-01

    The aim of this report is a review of the available fatigue data of various materials necessary for the design of large superconducting magnets for fusion. One of the primary objectives of this work is to present a broad outline of the low temperature fatigue data of relevant materials within the scope of available data. Besides the classical fatigue data of materials the fatigue crack propagation measurements are outlined widely. The existing recommendations for the design of cryogenic structures are described. A brief introduction of fracture mechanics as well as a historical background of the development of our present day understanding of fatigue has been done. (orig.) [de

  8. Dependence of offshore wind turbine fatigue loads on atmospheric stratification

    International Nuclear Information System (INIS)

    Hansen, K S; Larsen, G C; Ott, S

    2014-01-01

    The stratification of the atmospheric boundary layer (ABL) is classified in terms of the M-O length and subsequently used to determine the relationship between ABL stability and the fatigue loads of a wind turbine located inside an offshore wind farm. Recorded equivalent fatigue loads, representing blade-bending and tower bottom bending, are combined with the operational statistics from the instrumented wind turbine as well as with meteorological statistics defining the inflow conditions. Only a part of all possible inflow conditions are covered through the approximately 8200 hours of combined measurements. The fatigue polar has been determined for an (almost) complete 360° inflow sector for both load sensors, representing mean wind speeds below and above rated wind speed, respectively, with the inflow conditions classified into three different stratification regimes: unstable, neutral and stable conditions. In general, impact of ABL stratification is clearly seen on wake affected inflow cases for both blade and tower fatigue loads. However, the character of this dependence varies significantly with the type of inflow conditions – e.g. single wake inflow or multiple wake inflow

  9. Impact of choice of stabilized hysteresis loop on the end result of investigation of high-strength low-alloy (HSLA steel on low cycle fatigue

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available High strength low-alloy steel under low cycle fatigue at a certain level of strain controlled achieve stabilized condition. During the fatigue loading stabilized hysteresis loop is determined, which typical cycle of stabilization is calculated as half number of cycles to failure. Stabilized hysteresis loop is a representative of all hysteresis and it’s used to determine all of the parameters for the assessment of low cycle fatigue. This paper shows comparison of complete strain-life curves of low cycle fatigue for two chosen stabilized hysteresis loop cycles of base metal HSLA steel marked as Nionikral 70.

  10. Biaxial fatigue tests and crack paths for AISI 304L stainless steel

    Directory of Open Access Journals (Sweden)

    V. Chaves

    2014-10-01

    Full Text Available AISI 304L stainless steel specimens have been tested in fatigue. The tests were axial, torsional and in-phase biaxial, all of them under load control and R=-1. The S-N curves were built following the ASTM E739 standard and the method of maximum likelihood proposed by Bettinelli. The fatigue limits of the biaxial tests were represented in axes σ-τ. The elliptical quadrant, appropriate for ductile materials, and the elliptical arc, appropriate for fragile materials, were included in the graph. The experimental values were better fitted with an elliptical quadrant, despite the ratio between the pure torsion and tension fatigue limits, τFL/σFL, is 0.91, close to 1, which is a typical value for fragile materials. The crack direction along the surface has been analyzed by using a microscope, with especial attention to the crack initiation zones. The crack direction during the Stage I has been compared with theoretical models.

  11. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue.

    Science.gov (United States)

    Liu, Fangping; Zhou, Jianting; Yan, Lei

    2018-01-01

    For a reinforced concrete beam subjected to fatigue loads, the structural stiffness and bearing capacity will gradually undergo irreversible degeneration, leading to damage. Moreover, there is an inherent relationship between the stiffness and bearing capacity degradation and fatigue damage. In this study, a series of fatigue tests are performed to examine the degradation law of the stiffness and bearing capacity. The results pertaining to the stiffness show that the stiffness degradation of a reinforced concrete beam exhibits a very clear monotonic decreasing "S" curve, i.e., the stiffness of the beam decreases significantly at the start of the fatigue loading, it undergoes a linear decline phase in the middle for a long loading period, and before the failure, the bearing capacity decreases drastically again. The relationship between the residual stiffness and residual bearing capacity is determined based on the assumption that the residual stiffness and residual bearing capacity depend on the same damage state, and then, the bearing capacity degradation model of the reinforced concrete beam is established based on the fatigue stiffness. Through the established model and under the premise of the known residual stiffness degradation law, the degradation law of the bearing capacity is determined by using at least one residual bearing capacity test data, for which the parameters of the stiffness degradation function are considered as material constants. The results of the bearing capacity show that the bearing capacity degradation of the reinforced concrete beam also exhibits a very clear monotonic decreasing "S" curve, which is consistent with the stiffness degradation process and in good agreement with the experiment. In this study, the stiffness and bearing capacity degradation expressions are used to quantitatively describe their occurrence in reinforced concrete beams. In particular, the expression of the bearing capacity degradation can mitigate numerous

  12. Projection of curves on B-spline surfaces using quadratic reparameterization

    KAUST Repository

    Yang, Yijun; Zeng, Wei; Zhang, Hui; Yong, Junhai; Paul, Jean Claude

    2010-01-01

    Curves on surfaces play an important role in computer aided geometric design. In this paper, we present a hyperbola approximation method based on the quadratic reparameterization of Bézier surfaces, which generates reasonable low degree curves lying

  13. Statistical evaluation of low cycle loading curves parameters for structural materials by mechanical characteristics

    International Nuclear Information System (INIS)

    Daunys, Mykolas; Sniuolis, Raimondas

    2006-01-01

    About 300 welded joint materials that are used in nuclear power energy were tested under monotonous tension and low cycle loading in Kaunas University of Technology together with St. Peterburg Central Research Institute of Structural Materials in 1970-2000. The main mechanical, low cycle loading and fracture characteristics of base metals, weld metals and some heat-affected zones of welded joints metals were determined during these experiments. Analytical dependences of low cycle fatigue parameters on mechanical characteristics of structural materials were proposed on the basis of a large number of experimental data, obtained by the same methods and testing equipment. When these dependences are used, expensive low cycle fatigue tests may be omitted and it is possible to compute low cycle loading curves parameters and lifetime for structural materials according to the main mechanical characteristics given in technical manuals. Dependences of low cycle loading curves parameters on mechanical characteristics for several groups of structural materials used in Russian nuclear power energy are obtained by statistical methods and proposed in this paper

  14. Fast prediction of the fatigue behavior of short-fiber-reinforced thermoplastics based on heat build-up measurements: application to heterogeneous cases

    Science.gov (United States)

    Serrano, Leonell; Marco, Yann; Le Saux, Vincent; Robert, Gilles; Charrier, Pierre

    2017-09-01

    Short-fiber-reinforced thermoplastics components for structural applications are usually very complex parts as stiffeners, ribs and thickness variations are used to compensate the quite low material intrinsic stiffness. These complex geometries induce complex local mechanical fields but also complex microstructures due to the injection process. Accounting for these two aspects is crucial for the design in regard to fatigue of these parts, especially for automotive industry. The aim of this paper is to challenge an energetic approach, defined to evaluate quickly the fatigue lifetime, on three different heterogeneous cases: a classic dog-bone sample with a skin-core microstructure and two structural samples representative of the thickness variations observed for industrial components. First, a method to evaluate dissipated energy fields from thermal measurements is described and is applied to the three samples in order to relate the cyclic loading amplitude to the fields of cyclic dissipated energy. Then, a local analysis is detailed in order to link the energy dissipated at the failure location to the fatigue lifetime and to predict the fatigue curve from the thermomechanical response of one single sample. The predictions obtained for the three cases are compared successfully to the Wöhler curves obtained with classic fatigue tests. Finally, a discussion is proposed to compare results for the three samples in terms of dissipation fields and fatigue lifetime. This comparison illustrates that, if the approach is leading to a very relevant diagnosis on each case, the dissipated energy field is not giving a straightforward access to the lifetime cartography as the relation between fatigue failure and dissipated energy seems to be dependent on the local mechanical and microstructural state.

  15. [Factors related to subjective fatigue symptoms of adolescent girls].

    Science.gov (United States)

    Ikeda, Junko; Fukuda, Sayuri; Murakami, Toshio; Kawamoto, Naoki

    2011-09-01

    To assess changes in subjective fatigue symptoms of adolescent girls over a 15-year period and investigate factors related to these symptoms. A total of 86 items on physical health (including subjective fatigue symptoms), dietary life, and daily living were investigated and five items on physical activity were measured for approximately 100 female first-year dietetic students at a junior college each October over the 15-year period from 1994 to 2008. A total of 1,547 students (mean age, 19.2 +/- 0.3 years) were studied. Subjects were first divided into two groups using the median subjective fatigue score as the cutoff point, and annual changes in the proportion of students in the high subjective fatigue group were investigated by simple regression analysis. In addition, relationships between the two subjective fatigue groups and each item were investigated. 1) The proportion of students with many subjective fatigue symptoms showed a significantly increasing trend over the 15-year period. 2) Investigation of relationships between subjective fatigue symptoms and each factor revealed significance for many items, including dietary habits, life satisfaction, amount of sleep, and desire for a positive body image. 3) In order to determine which of the items were most strongly related to subjective fatigue symptoms, multiple logistic regression analysis was performed for the 15-year period as well as three 5-year periods into which it was divided. The results showed that the dietary habits score (an indicator of dietary habits) and life satisfaction were related to subjective fatigue symptoms during all four periods. As for other items, relationships were observed for amount of sleep in three, diet and salt intake score in two, and liking for coffee/tea, juice drinks, and oily food, bedtime snack, desire for body image, self-assessment of body type, and health consciousness in one. These findings indicate that perspectives in education for promoting the health of

  16. Fatigue approach for addressing environmental effects in fatigue usage calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany); Steinmann, Paul [Erlangen-Nuremberg Univ., erlangen (Germany). Chair of Applied Mechanics

    2015-04-15

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  17. Fatigue approach for addressing environmental effects in fatigue usage calculation

    International Nuclear Information System (INIS)

    Wilhelm, Paul; Rudolph, Juergen; Steinmann, Paul

    2015-01-01

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  18. Electrochemical behaviour of a stainless steel coating after thermal fatigue and thermal shocks

    International Nuclear Information System (INIS)

    Boudebane, A.; Darsouni, A.; Chadli, H.; Boudebane, S.

    2012-01-01

    This work aims to study of the influence of thermal fatigue and thermal shock on the corrosion behaviour of coated steel AISI 304L. The coating was welded by TIG welding on specimens in ferritic-pearlitic steel grade AISI 4140. The study concerns three different states of deposit: sensitized, sensitized and strain hardened in surface and no sensitized. We realized electrochemical corrosion in an aqueous solution of NaCl 34 g/l. The corrosion of the specimens were evaluated by comparing the potentiodynamic curves for different states of the coating. Firstly, electrochemical characterization of deposits has shown a localized intergranular corrosion. Furthermore, the increase in the number of cycles of thermal fatigue accelerates the dissolution of deposit. Thermal shocks tend to improve resistance to corrosion. Against, the mechanical treatment of surfaces by burnishing decreases the dissolution rate of deposit cycles in thermal fatigue. (authors)

  19. Lamb Wave Response of Fatigued Composite Samples

    Science.gov (United States)

    Seale, Michael; Smith, Barry T.; Prosser, William H.; Masters, John E.

    1994-01-01

    composite samples using strain gage measurements as well as Lamb wave velocity measurements. A description of the test samples is followed by the results of two different measurements of Lamb wave velocity. The first technique is a contact measurement done at a single frequency, while the second involves an immersion study of Lamb waves in which dispersion curves are obtained. The results of the Lamb wave monitoring of fatigue damage is compared to the damage progression measured by strain gages. The final section discusses the results and conclusions.

  20. Effect of the fabrication process on fatigue performance of U3Si2 fuel plate with sandwich structure

    International Nuclear Information System (INIS)

    Wang Xishu; Li Shuangshou; Wang Qingyuan; Xu Yong

    2005-01-01

    U 3 Si 2 -Al fuel plate is one of the dispersion fuel structure materials recently developed and widely used in research reactors. The mechanical properties of this structural material, especially the fatigue performance, are strongly dependent on its fabrication process. To investigate the effects of these processing technologies, the fatigue tests for the different specimens were carried out. The S-N curves indicate that the fabrication processing technologies of U 3 Si 2 fuel plate, such as the addition of U 3 Si 2 particles into aluminum powder to form the fuel meat, holding and rolling the processes of meat and cladding of 6061-Al alloy, plays an important role in improving the mechanical properties and fatigue performance of this fuel plate. In addition, some factors that influence the crack initiation and propagation are summarized based on the fatigue images that are in situ observations with SEM. The critical criterion for fatigue damage is proposed based on the fatigue data of the structural material, which were obtained at the different conditions

  1. Low Rank Approximation Algorithms, Implementation, Applications

    CERN Document Server

    Markovsky, Ivan

    2012-01-01

    Matrix low-rank approximation is intimately related to data modelling; a problem that arises frequently in many different fields. Low Rank Approximation: Algorithms, Implementation, Applications is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory. Applications described include: system and control theory: approximate realization, model reduction, output error, and errors-in-variables identification; signal processing: harmonic retrieval, sum-of-damped exponentials, finite impulse response modeling, and array processing; machine learning: multidimensional scaling and recommender system; computer vision: algebraic curve fitting and fundamental matrix estimation; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; ...

  2. Predictors and Trajectories of Morning Fatigue Are Distinct from Evening Fatigue

    Science.gov (United States)

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is the most common symptom in oncology patients during chemotherapy (CTX). Little is known about the predictors of interindividual variability in initial levels and trajectories of morning fatigue severity in these patients. Objectives An evaluation was done to determine which demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of morning fatigue and to compare findings with our companion paper on evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the morning fatigue trajectories. A piecewise model fit the data best. Patients with higher body mass index (BMI), who did not exercise regularly, with a lower functional status, and who had higher levels of state anxiety, sleep disturbance and depressive symptoms, reported higher levels of morning fatigue at enrollment. Variations in the trajectories of morning fatigue were predicted by the patients’ ethnicity and younger age. Conclusion The modifiable risk factors that were associated with only morning fatigue were BMI, exercise, and state anxiety. Modifiable risk factors that were associated with both morning and evening fatigue included functional status, depressive symptoms, and sleep disturbance. Using this information, clinicians can identify patients at higher risk for more severe morning fatigue and evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828559

  3. Crack growth and fracture in fiber reinforced concrete beams under static and fatigue loading

    International Nuclear Information System (INIS)

    Jeanfreau, J.; Arockiasamy, M.; Reddy, D.V.

    1987-01-01

    The paper presents the results of a two-phase experimental investigation on the fatigue and fracture of six different types of concrete: plain, 0.5%, 1.0%, 1.5%, and 2.0% steel fibers and 0.5% kevlar fibers. In the first phase the J-integral was evaluated for different types of concrete from load-displacement curves. The value shows a marked increase in the energy required to fracture concrete when fibers are added. The values did not vary substantially for different notch depths. In the second phase concrete beams were subjected to fatigue by applying a pure bending on the notch. The effect of fiber addition was examined with emphasis on the crack propagation and the increase in the fatigue strength. The crack pattern was mainly influenced by the presence, amount, and the distribution of the fibers in the concrete. (orig./HP)

  4. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.

    Science.gov (United States)

    Goličnik, Marko

    2011-01-01

    The Michaelis-Menten rate equation can be found in most general biochemistry textbooks, where the time derivative of the substrate is a hyperbolic function of two kinetic parameters (the limiting rate V, and the Michaelis constant K(M) ) and the amount of substrate. However, fundamental concepts of enzyme kinetics can be difficult to understand fully, or can even be misunderstood, by students when based only on the differential form of the Michaelis-Menten equation, and the variety of methods available to calculate the kinetic constants from rate versus substrate concentration "textbook data." Consequently, enzyme kinetics can be confusing if an analytical solution of the Michaelis-Menten equation is not available. Therefore, the still rarely known exact solution to the Michaelis-Menten equation is presented here through the explicit closed-form equation in terms of the Lambert W(x) function. Unfortunately, as the W(x) is not available in standard curve-fitting computer programs, the practical use of this direct solution is limited for most life-science students. Thus, the purpose of this article is to provide analytical approximations to the equation for modeling Michaelis-Menten kinetics. The elementary and explicit nature of these approximations can provide students with direct and simple estimations of kinetic parameters from raw experimental time-course data. The Michaelis-Menten kinetics studied in the latter context can provide an ideal alternative to the 100-year-old problems of data transformation, graphical visualization, and data analysis of enzyme-catalyzed reactions. Hence, the content of the course presented here could gradually become an important component of the modern biochemistry curriculum in the 21st century. Copyright © 2011 Wiley Periodicals, Inc.

  5. Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests.

    Science.gov (United States)

    Lopes, Hélio P; Britto, Izabelle M O; Elias, Carlos N; Machado de Oliveira, Julio C; Neves, Mônica A S; Moreira, Edson J L; Siqueira, José F

    2010-09-01

    This study evaluated the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cyclic fatigue tests. ProTaper Universal S2 instruments were used until fracture in an artificial curved canal under rotational speed of 300 rpm in either a static or a dynamic test model. Afterward, the length of the fractured segments was measured and fractured surfaces and helical shafts analyzed by scanning electron microscopy (SEM). The number of cycles to fracture was significantly increased when instruments were tested in the dynamic model (Pductile mode. Plastic deformation was not observed in the helical shaft of fractured instruments. The number of cycles to fracture ProTaper Universal S2 instruments significantly increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings reinforce the need for performing continuous pecking motions during rotary instrumentation of curved root canals. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  6. A phenomenological model of muscle fatigue and the power-endurance relationship.

    Science.gov (United States)

    James, A; Green, S

    2012-11-01

    The relationship between power output and the time that it can be sustained during exercise (i.e., endurance) at high intensities is curvilinear. Although fatigue is implicit in this relationship, there is little evidence pertaining to it. To address this, we developed a phenomenological model that predicts the temporal response of muscle power during submaximal and maximal exercise and which was based on the type, contractile properties (e.g., fatiguability), and recruitment of motor units (MUs) during exercise. The model was first used to predict power outputs during all-out exercise when fatigue is clearly manifest and for several distributions of MU type. The model was then used to predict times that different submaximal power outputs could be sustained for several MU distributions, from which several power-endurance curves were obtained. The model was simultaneously fitted to two sets of human data pertaining to all-out exercise (power-time profile) and submaximal exercise (power-endurance relationship), yielding a high goodness of fit (R(2) = 0.96-0.97). This suggested that this simple model provides an accurate description of human power output during submaximal and maximal exercise and that fatigue-related processes inherent in it account for the curvilinearity of the power-endurance relationship.

  7. A new model for fatigue damage accumulation of austenitic stainless steel under variable amplitude loading

    International Nuclear Information System (INIS)

    Taheri, S.; Vincent, L.; Le-Roux, J.C.

    2013-01-01

    The application of Miner's rule using a loading issued from a mock-up of a RHR system (removal heat system) of PWR plant, made of 304 steel gives a very important non-conservative fatigue life in strain control when strain fatigue curve is used. This result is due to the absence of sequence effect in Miner's rule. Many non linear damage accumulation models have been proposed to get a sequence effect. Shortcomings of some non linear damage accumulation models are discussed. So Smith-Watson-Topper and Fatemi-Socie criterions with a linear damage accumulation rule are then applied to experimental data. A major issue is the need for an elastic-plastic constitutive law which is difficult to propose in the presence of high cycle secondary hardening observed in austenitic stainless steels. A conservative model for fatigue damage accumulation under variable amplitude loading is then proposed for austenitic stainless steels in strain control, which does not need a constitutive law, but takes into account plasticity through cyclic strain stress curve. The model uses a linear damage accumulation rule. This model is based on the fact that for stainless steels, pre-hardening is detrimental for fatigue life in strain control, while it is beneficial in stress control. In the presence of low mean stress, the model is approved based on a large number of tests. Moreover the model allows to explain the larger detrimental effect of a tension mean stress in strain control tests than in stress control tests. (authors)

  8. Fatigue behaviour of T welded joints rehabilitated by tungsten inert gas and plasma dressing

    International Nuclear Information System (INIS)

    Ramalho, Armando L.; Ferreira, Jose A.M.; Branco, Carlos A.G.M.

    2011-01-01

    Highlights: → This study addresses the use of improvement techniques for repair T welded joints. → TIG and plasma arc re-melting are applied in joints with fatigue cracks at weld toes. → Plasma dressing provides reasonable repair in joints with cracks greater than 4 mm. → TIG dressing produces a deficient repair in joints with cracks greater than 4 mm. → TIG dressing provides good repair in joints with fatigue cracks lesser than 2.5 mm. -- Abstract: This paper concerns a fatigue study on the effect of tungsten inert gas (TIG) and plasma dressing in non-load-carrying fillet welds of structural steel with medium strength. The fatigue tests were performed in three point bending at the main plate under constant amplitude loading, with a stress ratio of R = 0.05 and a frequency of 7 Hz. Fatigue results are presented in the form of nominal stress range versus fatigue life (S-N) curves obtained from the as welded joints and the TIG dressing joints at the welded toe. These results were compared with the ones obtained in repaired joints, where TIG and plasma dressing were applied at the welded toes, containing fatigue cracks with a depth of 3-5 mm in the main plate and through the plate thickness. A deficient repair was obtained by TIG dressing, caused by the excessive depth of the crack. A reasonable fatigue life benefits were obtained with plasma dressing. Good results were obtained with the TIG dressing technique for specimens with shallower initial defects (depth lesser than 2.5 mm). The fatigue life benefits were presented in terms of a gain parameter assessed using both experimental data and life predictions based on the fatigue crack propagation law.

  9. SI:FatiguePro 4 Advanced Approach for Fatigue Monitoring

    International Nuclear Information System (INIS)

    Evon, Keith; Gilman, Tim; Carney, Curt

    2012-01-01

    Many nuclear plants are making commitments to implement fatigue monitoring systems in support of license renewal. Current fatigue monitoring systems use the methodology of ASME Code Subarticle NB-3200, which is a design code intended to compute a bounding cumulative usage factor (CUF). The first generation of fatigue monitoring software utilized a simplified, single stress term assumption and classical stress cycle-counting methods that take order into account such as Rainflow or Ordered Overall Range counting. Recently, the NRC has indicated in Regulatory Issue Summary 2008-30 that any fatigue analyses in support of License Renewal should use ASME Code Section III methodologies considering all six stress components. In addition, fatigue calculations for the license renewal term are required to consider the effects of environment. The implementation of a six stress term NB-3200 fatigue calculation to a Boiling Water Reactor (BWR) feedwater nozzle, including environmental effects, is the topic of this paper. Differences in results between the advanced methodology and the simplified methodology are discussed. (author)

  10. Study on elastic-plastic deformation analysis using a cyclic stress-strain curve

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Yamauchi, Masafumi

    1983-01-01

    This paper presents the results of the elastic-plastic deformation analysis using a cyclic stress-strain curve with an intention to apply this method for predicting the low-cycle fatigue life. Uniaxial plastic cycling tests were performed on 2 1/4Cr-1Mo steel to investigate the correspondence between the cyclic stress-strain curve and the hysteresis loop, and also to determine what mathematical model should be used for analysis of deformation at stress reversal. Furthermore, a cyclic in-plane bending test was performed on a flat plate to clarify the validity of the cyclic stress-strain curve-based theoretical analysis. The results obtained are as follows: (1) The cyclic stress-strain curve corresponds nearly to the ascending curve of hysteresis loop scaled by a factor of 1/2 for both stress and strain. Therefore, the cyclic stress-strain curve can be determined from the shape of hysteresis loop, for simplicity. (2) To perform the elastic-plastic deformation analysis using the cyclic stress-strain curve is both practical and effective for predicting the cyclic elastic-plastic deformation of structures at the stage of advanced cycles. And Masing model can serve as a suitable mathematical model for such a deformation analysis. (author)

  11. Background approximation in automatic qualitative X-ray-fluorescent analysis

    International Nuclear Information System (INIS)

    Jordanov, J.; Tsanov, T.; Stefanov, R.; Jordanov, N.; Paunov, M.

    1982-01-01

    An empirical method of finding the dependence of the background intensity (Isub(bg) on the wavelength is proposed, based on the approximation of the experimentally found values for the background in the course of an automatic qualitative X-ray fluorescent analysis with pre-set curve. It is assumed that the dependence I(lambda) will be well approximated by a curve of the type Isub(bg)=(lambda-lambda sub(o)sup(fsub(1)(lambda))exp[fsub(2)(lambda)] where fsub(1) (lambda) and f 2 (lambda) are linear functions with respect to the sought parameters. This assumption was checked out on a ''pure'' starch background, in which it is not known beforehand which points belong to the background. It was assumed that the dependence I(lambda) can be found from all minima in the spectrum. Three types of minima has been distinguished: 1. the lowest point between two well-solved X-ray lines; 2. a minimum obtained as a result of statistical fluctuations of the measured signal; 3. the lowest point between two overlapped lines. The minima strongly deviating from the background are removed from the obtained set. The sum-total of the remaining minima serves as a base for the approximation of the dependence I(lambda). The unknown parameters are determined by means of the LSM. The approximated curve obtained by this method is closer to the real background than the background determined by the method described by Kigaki Denki, as the effect of all recorded minima is taken into account. As an example the PbTe spectrum recorded with crystal LiF 220 is shown graphically. The curve well describes the background of the spectrum even in the regions in which there are no minima belonging to the background. (authors)

  12. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods.

    Science.gov (United States)

    Gambarini, Gianluca; Grande, Nicola Maria; Plotino, Gianluca; Somma, Francesco; Garala, Manish; De Luca, Massimo; Testarelli, Luca

    2008-08-01

    The aim of the present study was to investigate whether cyclic fatigue resistance is increased for nickel-titanium instruments manufactured by using new processes. This was evaluated by comparing instruments produced by using the twisted method (TF; SybronEndo, Orange, CA) and those using the M-wire alloy (GTX; Dentsply Tulsa-Dental Specialties, Tulsa, OK) with instruments produced by a traditional NiTi grinding process (K3, SybronEndo). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments inside curved artificial canals. Results indicated that size 06-25 TF instruments showed a significant increase (p 0.05) in the mean number of cycles to failure when compared with size 06-20 GT series X instruments. The new manufacturing process produced nickel-titanium rotary files (TF) significantly more resistant to fatigue than instruments produced with the traditional NiTi grinding process. Instruments produced with M-wire (GTX) were not found to be more resistant to fatigue than instruments produced with the traditional NiTi grinding process.

  13. Are nurses able to assess fatigue, exertion fatigue and types of fatigue in residential home patients?

    NARCIS (Netherlands)

    Tiesinga, L.J.; Dijkstra, Ate; Dassen, T.W.N.; Halfens, R.J.G.; van den Heuvel, W.J.A.

    Although fatigue is recognized as a subjective, generalized, extensive and disabling health care problem with a relatively high prevalence among the chronically ill, there have been no studies to show whether nurses caring for fatigued subjects are able to accurately assess the level of fatigue that

  14. Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation

    Directory of Open Access Journals (Sweden)

    Ghazal Moeini

    2017-07-01

    Full Text Available This study aims to simulate the stabilised stress-strain hysteresis loop of dual phase (DP steel using micromechanical modelling. For this purpose, the investigation was conducted both experimentally and numerically. In the experimental part, the microstructure characterisation, monotonic tensile tests and low cycle fatigue tests were performed. In the numerical part, the representative volume element (RVE was employed to study the effect of the DP steel microstructure of the low cycle fatigue behavior of DP steel. A dislocation-density based model was utilised to identify the tensile behavior of ferrite and martensite. Then, by establishing a correlation between the monotonic and cyclic behavior of ferrite and martensite phases, the cyclic deformation properties of single phases were estimated. Accordingly, Chaboche kinematic hardening parameters were identified from the predicted cyclic curve of individual phases in DP steel. Finally, the predicted hysteresis loop from low cycle fatigue modelling was in very good agreement with the experimental one. The stabilised hysteresis loop of DP steel can be successfully predicted using the developed approach.

  15. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Yamauchi, Masafumi; Nomura, Shinichi.

    1992-01-01

    Prediction methods of macroscopic and local stress-strain behaviors of perforated plates in plastic and creep regime are proposed in this paper, and are applied to the creep-fatigue life prediction of perforated plates. Both equivalent-solid-plate properties corresponding to the macroscopic behavior and the stress-strain concentration around a hole were obtained by assuming the analogy between plasticity and creep and also by extending the authors' proposal in creep condition. The perforated plates which were made of Hastelloy XR were subjected to the strain-controlled cyclic test at 950degC in air in order to experimentally obtain the macroscopic behavior such as the cyclic stress-strain curve and creep-fatigue life around a hole. The results obtained are summarized as follows. (1) The macroscopic behavior of perforated plates including cyclic stress-strain behavior and relaxation is predictable by using the proposed method in this paper. (2) The creep-fatigue life around a hole can be predicted by using the proposed method for stress-strain concentration around a hole. (author)

  16. Thermal fatigue behaviour for a 316 L type steel

    Science.gov (United States)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-10-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data.

  17. Projection of curves on B-spline surfaces using quadratic reparameterization

    KAUST Repository

    Yang, Yijun

    2010-09-01

    Curves on surfaces play an important role in computer aided geometric design. In this paper, we present a hyperbola approximation method based on the quadratic reparameterization of Bézier surfaces, which generates reasonable low degree curves lying completely on the surfaces by using iso-parameter curves of the reparameterized surfaces. The Hausdorff distance between the projected curve and the original curve is controlled under the user-specified distance tolerance. The projected curve is T-G 1 continuous, where T is the user-specified angle tolerance. Examples are given to show the performance of our algorithm. © 2010 Elsevier Inc. All rights reserved.

  18. Influence of martensitic transformation on the low-cycle fatigue behaviour of 316LN stainless steel at 77 K

    International Nuclear Information System (INIS)

    Botshekan, M.; Degallaix, S.; Desplanques, Y.

    1997-01-01

    Tensile and low-cycle fatigue tests were performed on a 316LN austenitic stainless steel at 300 and 77 K. The tensile and low-cycle fatigue properties were obtained and analysed in terms of influence of temperature on the plastic deformation process, and particularly on the strain-induced martensite formation. The martensite content was measured by a magnetic-at-saturation method. No martensite was detected at 300 K. On the contrary, strain-induced martensite transformation is responsible for the higher tensile elongation at 77 K and for the secondary hardening observed on softening-hardening curves in low-cycle fatigue at 77 K. The induced martensite content in tensile tests is a function of the strain according to Angel's model, and in low-cycle fatigue it is a function of the strain level and of the accumulated plastic strain. (orig.)

  19. Fatigue and fracture behavior of coiled pipes; Comportamento a fratura e fadiga de tubos bobinados

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Alexandre M.; Silva, Renato M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Frainer, Vitor J; Tarnowski, Gabriel A.; Strohaecker, Telmo R. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil)

    2005-07-01

    The possibility of applying coiled pipes in dynamic situations, such as risers, was investigated through full scale fatigue and fracture tests. A total of sixteen X-65 pipe specimens 41/2'' Od x 0.3'' x 13', containing a bias weld at the mid length, were fatigue tested in a resonance rig at 27 Hz. Six specimens were tested in the as fabricated condition while the ten others were previously subjected to five plastic deformation cycles, simulating reeling operations.. Tests were run until a crack propagated through thickness or 10{sup 7} cycles were achieved. Two cracked specimens were fracture tested in tension. All tests were carried out at room temperature. Test results showed that the fatigue lives were above the Bs-7608 mean class 'B' curves independently whether the specimen were plastically deformed or not. Post fatigue inspection and fractographic examination revealed that fatigue cracks propagate mostly from pits or surface scratches rather than from the bias weld. The two full size tensile specimens failed by ductile fracture at 80% of the material measured strength. (author)

  20. Constructing forward price curves in electricity markets

    International Nuclear Information System (INIS)

    Fleten, Stein-Erik; Lemming, Jacob

    2003-01-01

    We present and analyze a method for constructing approximated high-resolution forward price curves in electricity markets. Because a limited number of forward or futures contracts are traded in the market, only a limited picture of the theoretical continuous forward price curve is available to the analyst. Our method combines the information contained in observed bid and ask prices with information from the forecasts generated by bottom-up models. As an example, we use information concerning the shape of the seasonal variation from a bottom-up model to improve the forward price curve quoted on the Nordic power exchange

  1. The approximation of the normal distribution by means of chaotic expression

    International Nuclear Information System (INIS)

    Lawnik, M

    2014-01-01

    The approximation of the normal distribution by means of a chaotic expression is achieved by means of Weierstrass function, where, for a certain set of parameters, the density of the derived recurrence renders good approximation of the bell curve

  2. Fatigue behaviour of 304L steel welded structures: influence of residual stresses and surface mechanical finishing

    International Nuclear Information System (INIS)

    Magnier-Monin, L.

    2007-12-01

    This study focuses on the influence of residual stresses and surface mechanical finishing on lifetime of stainless steel 304L welded structures. Residual stresses are determined on specific specimens of three types: base-metal, as-welded and ground-welded specimens. Each type is submitted to fatigue tests in order to assess the influence of these parameters on the lifetime, and to determine their evolution. The experiments show that an important surface stress concentration is located in the weld root of as-welded structures, which has a negative effect on the fatigue life. The grinding operation generates high-level surface residual stresses but the lifetime is higher thanks to the reduction of the notch effect. The fatigue test results are compared to the nuclear industry best-fit S-N curves. This enables the determination of correction factors related to fatigue test results of polished specimens, and to assess the lifetime of structures. (author)

  3. Investigating the effect of clamping force on the fatigue life of bolted plates using volumetric approach

    International Nuclear Information System (INIS)

    Esmaeili, F.; Chakherlou, T. N.; Zehsaz, M.; Hasanifard, S.

    2013-01-01

    In this paper, the effects of bolt clamping force on the fatigue life for bolted plates made from Al7075-T6 have been studied on the values of notch strength reduction factor obtained by volumetric approach. To attain stress distribution around the notch (hole) which is required for volumetric approach, nonlinear finite element simulations were carried out. To estimate the fatigue life, the available smooth S-N curve of Al7075-T6 and the notch strength reduction factor obtained from volumetric method were used. The estimated fatigue life was compared with the available experimental test results. The investigation shows that there is a good agreement between the life predicted by the volumetric approach and the experimental results for various specimens with different amount of clamping forces. Volumetric approach and experimental results showed that the fatigue life of bolted plates improves because of the compressive stresses created around the plate hole due to clamping force.

  4. Fatigue following Acute Q-Fever: A Systematic Literature Review

    Science.gov (United States)

    Delsing, Corine E.; Bleijenberg, Gijs; Langendam, Miranda; Timen, Aura; Bleeker-Rovers, Chantal P.

    2016-01-01

    Background Long-term fatigue with detrimental effects on daily functioning often occurs following acute Q-fever. Following the 2007–2010 Q-fever outbreak in the Netherlands with over 4000 notified cases, the emphasis on long-term consequences of Q-fever increased. The aim of this study was to provide an overview of all relevant available literature, and to identify knowledge gaps regarding the definition, diagnosis, background, description, aetiology, prevention, therapy, and prognosis, of fatigue following acute Q-fever. Design A systematic review was conducted through searching Pubmed, Embase, and PsycInfo for relevant literature up to 26th May 2015. References of included articles were hand searched for additional documents, and included articles were quality assessed. Results Fifty-seven articles were included and four documents classified as grey literature. The quality of most studies was low. The studies suggest that although most patients recover from fatigue within 6–12 months after acute Q-fever, approximately 20% remain chronically fatigued. Several names are used indicating fatigue following acute Q-fever, of which Q-fever fatigue syndrome (QFS) is most customary. Although QFS is described to occur frequently in many countries, a uniform definition is lacking. The studies report major health and work-related consequences, and is frequently accompanied by nonspecific complaints. There is no consensus with regard to aetiology, prevention, treatment, and prognosis. Conclusions Long-term fatigue following acute Q-fever, generally referred to as QFS, has major health-related consequences. However, information on aetiology, prevention, treatment, and prognosis of QFS is underrepresented in the international literature. In order to facilitate comparison of findings, and as platform for future studies, a uniform definition and diagnostic work-up and uniform measurement tools for QFS are proposed. PMID:27223465

  5. Padé approximations and diophantine geometry.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1985-04-01

    Using methods of Padé approximations we prove a converse to Eisenstein's theorem on the boundedness of denominators of coefficients in the expansion of an algebraic function, for classes of functions, parametrized by meromorphic functions. This result is applied to the Tate conjecture on the effective description of isogenies for elliptic curves.

  6. Simulation of Stochastic Loads for Fatigue Experiments

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Brincker, Rune

    1989-01-01

    process by a Markov process. Two different spectra from two tubular joints in an offshore structure (one narrow banded and one wide banded) are considered in an example. The results show that the simple direct method is quite efficient and results in a simulation speed of about 3000 load cycles per second......A simple direct simulation method for stochastic fatigue-load generation is described in this paper. The simulation method is based on the assumption that only the peaks of the load process significantly affect the fatigue life. The method requires the conditional distribution functions of load...... ranges given the last peak values. Analytical estimates of these distribution functions are presented in the paper and compared with estimates based on a more accurate simulation method. In the more accurate simulation method samples at equidistant times are generated by approximating the stochastic load...

  7. Simulation of Stochastic Loads for Fatigue Experiments

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Brincker, Rune

    process by a Markov process. Two different spectra from two tubular joints in an offshore structure (one narrow banded and one wide banded) are considered in an example. The results show that the simple direct method is quite efficient and is results in a simulation speed at about 3000 load cycles per......A simple direct simulation method for stochastic fatigue load generation is described in this paper. The simulation method is based on the assumption that only the peaks of the load process significantly affect the fatigue life. The method requires the conditional distribution functions of load...... ranges given the last peak values. Analytical estimates of these distribution functions are presented in the paper and compared with estimates based on a more accurate simulation method. In the more accurate simulation method samples at equidistant times are generated by approximating the stochastic load...

  8. Chronic Fatigue Syndrome (CFS) and Cancer Related Fatigue (CRF): two "fatigue" syndromes with overlapping symptoms and possibly related aetiologies.

    Science.gov (United States)

    Rovigatti, Ugo

    2012-12-01

    In July 2010, at the Muscle Fatigue Meeting, I presented an overview of Chronic Fatigue Syndrome and Cancer Related Fatigue, emphasizing a critical interpretation of the potential association between Chronic Fatigue Syndrome and Cancer Related Fatigue and a newly discovered retrovirus: Xenotropic Murine Related Virus. Since this association was hotly debated at that time, I suggested at the Meeting that it was wrong and most likely due to the identification of the wrong virus culprit. Today, 20 months after the Meeting, the first part of our prediction has turned out to be correct, as Xenotropic Murine Related Virus was shown to be a laboratory-created artefact. Still, the potential association of fatigue-syndromes with an infection (most likely viral) is sustained by a plethora of evidence and this overview will initially summarize data suggesting prior viral infection(s). The principal hypothesized mechanisms for both peripheral and central Chronic Fatigue Syndrome/Cancer Related Fatigue will be then summarized, also indicating plausible associations and triggering factors. All evidence accrued so far suggests that further research work should be performed in this interesting area and in order to identify an infectious agent for Chronic Fatigue Syndrome/Cancer Related Fatigue. One candidate RNA virus, Micro-Foci inducing Virus, will be described in this overview. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Fatigue in adults with post-infectious fatigue syndrome: a qualitative content analysis.

    Science.gov (United States)

    Stormorken, Eva; Jason, Leonard A; Kirkevold, Marit

    2015-01-01

    Fatigue is a major problem among individuals with post-infectious fatigue syndrome (PIFS), also known as chronic fatigue syndrome or myalgic encephalomyelitis. It is a complex phenomenon that varies across illnesses. From a nursing perspective, knowledge and understanding of fatigue in this illness is limited. Nurses lack confidence in caring for these patients and devalue their professional role. The aim of this study was to explore in-depth the experiences of fatigue among individuals with PIFS. A detailed description of the phenomenon of fatigue is presented. Increased knowledge would likely contribute to more confident nurses and improved nursing care. A qualitative study with open interviews was employed. In-depth interviews with patients were fully transcribed and underwent a qualitative content analysis. A maximum variation sample of 26 affected adults between 26-59 years old was recruited from a population diagnosed at a fatigue outpatient clinic. The fatigue was a post-exertional, multidimensional, fluctuating phenomenon with varying degrees of severity and several distinct characteristics and was accompanied by concomitant symptoms. Fatigue was perceived to be an all-pervasive complex experience that substantially reduced the ability to function personally or professionally. A range of trigger mechanisms evoked or worsened the fatigue, but the affected were not always aware of what triggered it. There was an excessive increase in fatigue in response to even minor activities. An increase in fatigue resulted in the exacerbation of other concomitant symptoms. The term fatigue does not capture the participants' experiences, which are accompanied by a considerable symptom burden that contributes to the illness experience and the severe disability. Although some aspects of the fatigue experience have been reported previously, more were added in our study, such as the dimension of awakening fatigue and the characteristic beyond time, when time passes unnoticed

  10. Effect of Weld Bead Shape on the Fatigue Behavior of GMAW Lap Fillet Joint in GA 590 MPa Steel Sheets

    Directory of Open Access Journals (Sweden)

    Insung Hwang

    2017-09-01

    Full Text Available In this study, the effect of weld bead shape on the fatigue strength of lap fillet joints using the gas metal arc welding (GMAW process was investigated. The base material used in the experiment was 590 MPa grade galvanealed steel sheet with 2.3 mm and 2.6 mm thickness. In order to make the four types of weld beads with different shapes by factors such as length, angle, and area, the welding process, wire feeding speed, and joint shape were changed. The stress-number of cycles to failure (S–N curve and fatigue strength were obtained from the fatigue test for four types of weld bead, and the cause of the fatigue strength difference was clarified through the analysis of the geometrical factors, such as length, angle, and area of the weld bead. In addition, the relationship between weld bead shape and fatigue strength was discussed.

  11. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  12. Seafarer fatigue

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis; Zhao, Zhiwei; van Leeuwen, Wessel M. A.

    2015-01-01

    Background: The consequences of fatigue for the health and safety of seafarers has caused concern in the industry and among academics, and indicates the importance of further research into risk factors and preventive interventions at sea. This review gives an overview of the key issues relating...... to seafarer fatigue. Materials and methods: A literature study was conducted aiming to collect publications that address risk factors for fatigue, short-term and long-term consequences for health and safety, and options for fatigue mitigation at sea. Due to the limited number of publications that deals...... with seafarers, experiences from other populations sharing the same exposures (e.g. shift work) were also included when appropriate. Results: Work at sea involves multiple risk factors for fatigue, which in addition to acute effects (e.g., impaired cognition, accidents) contributes through autonomic, immunologic...

  13. Sparse approximation of currents for statistics on curves and surfaces.

    Science.gov (United States)

    Durrleman, Stanley; Pennec, Xavier; Trouvé, Alain; Ayache, Nicholas

    2008-01-01

    Computing, processing, visualizing statistics on shapes like curves or surfaces is a real challenge with many applications ranging from medical image analysis to computational geometry. Modelling such geometrical primitives with currents avoids feature-based approach as well as point-correspondence method. This framework has been proved to be powerful to register brain surfaces or to measure geometrical invariants. However, if the state-of-the-art methods perform efficiently pairwise registrations, new numerical schemes are required to process groupwise statistics due to an increasing complexity when the size of the database is growing. Statistics such as mean and principal modes of a set of shapes often have a heavy and highly redundant representation. We propose therefore to find an adapted basis on which mean and principal modes have a sparse decomposition. Besides the computational improvement, this sparse representation offers a way to visualize and interpret statistics on currents. Experiments show the relevance of the approach on 34 sets of 70 sulcal lines and on 50 sets of 10 meshes of deep brain structures.

  14. The effect of reflexology applied on haemodialysis patients with fatigue, pain and cramps.

    Science.gov (United States)

    Ozdemir, Gülistan; Ovayolu, Nimet; Ovayolu, Ozlem

    2013-06-01

    The research was conducted to evaluate the effect of foot reflexology on fatigue, pain and cramps in haemodialysis patients. The sample consisted of 80 patients in total, 40 intervention and 40 control patients, receiving treatment in the haemodialysis units of two institutions. Data were collected by using a questionnaire, Piper Fatigue Scale and visual analogue scale for measuring the severity of cramp and pain. The intervention group received reflexology treatment for 1 week in three sessions following haemodialysis, each session lasting approximately 30 min. Parametric and non-parametric tests were used in data analysis. It was determined that reflexology reduced the fatigue subscale scores and total scale scores as well as pain and cramp mean scores in the intervention group. The research results revealed that the severity of fatigue, pain and cramp decreased in patients receiving reflexology. © 2013 Wiley Publishing Asia Pty Ltd.

  15. Using DOProC method in reliability assessment of steel elements exposed to fatigue

    Directory of Open Access Journals (Sweden)

    Krejsa Martin

    2017-01-01

    Full Text Available Fatigue crack damage depends on a number of stress range cycles. This is a time factor in the course of reliability for the entire designed service life. Three sizes are important for the characteristics of the propagation of fatigue cracks - initial size, detectable size and acceptable size. The theoretical model of fatigue crack progression can be based on a linear fracture mechanic. Depending on location of an initial crack, the crack may propagate in structural element e.g. from the edge or from the surface. When determining the required degree of reliability, it is possible to specify the time of the first inspection of the construction which will focus on the fatigue damage. Using a conditional probability and Bayesian approach, times for subsequent inspections can be determined. For probabilistic modelling of fatigue crack progression was used the original and new probabilistic method - the Direct Optimized Probabilistic Calculation (“DOProC”, which uses a purely numerical approach without any simulation techniques or approximation approach based on optimized numerical integration.

  16. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shin-Hong; Wu, Xuan-Han

    2012-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference. PMID:22368481

  17. Associations of Midlife to Late Life Fatigue With Physical Performance and Strength in Early Old Age

    DEFF Research Database (Denmark)

    Mänty, Minna Regina; Kuh, Diana; Cooper, Rachel

    2015-01-01

    OBJECTIVES: To examine associations of fatigue in midlife and later life with physical performance and strength in early old age. METHODS: Data on approximately 1800 men and women from the UK Medical Research Council National Survey of Health and Development with data on fatigue at ages 43 and 60...... points. These associations were robust and were maintained after adjustment for a range of covariates including physical activity and health status. CONCLUSIONS: Reports of frequent fatigue were associated with poorer physical performance in early old age, especially if sustained from midlife to later...... to 64 years were used. Fatigue was defined as perceived tiredness and was assessed prospectively at ages 43 and 60 to 64 years. At both ages, participants were categorized as having no, occasional, or frequent fatigue. Physical performance and strength were measured at age 60 to 64 years using four...

  18. Effect of alumina-silica-zirconia eutectic ceramic thermal barrier coating on the low cycle fatigue behaviour of cast polycrystalline nickel-based superalloy at 900 °C

    Czech Academy of Sciences Publication Activity Database

    Obrtlík, Karel; Čelko, L.; Chráska, Tomáš; Šulák, Ivo; Gejdoš, P.

    2017-01-01

    Roč. 318, MAY (2017), s. 374-381 ISSN 0257-8972. [RIPT - International Meeting on Thermal Spraying /7./. Limoges, 09.12.2015-12.12.2015] R&D Projects: GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 ; RVO:61389021 Keywords : Thermal barrier coating * Nickel-based superalloy * Plasma spraying * High temperature fatigue * Fatigue life * Cyclic stress-strain curve Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFP-V) OBOR OECD: Audio engineering, reliability analysis; Audio engineering, reliability analysis (UFM-A); Audio engineering, reliability analysis (UFP-V) Impact factor: 2.589, year: 2016

  19. Intrinsic Diophantine approximation on general polynomial surfaces

    DEFF Research Database (Denmark)

    Tiljeset, Morten Hein

    2017-01-01

    We study the Hausdorff measure and dimension of the set of intrinsically simultaneously -approximable points on a curve, surface, etc, given as a graph of integer polynomials. We obtain complete answers to these questions for algebraically “nice” manifolds. This generalizes earlier work done...

  20. Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals.

    Science.gov (United States)

    Kahl, Lorenz; Hofmann, Ulrich G

    2016-11-01

    This work compared the performance of six different fatigue detection algorithms quantifying muscle fatigue based on electromyographic signals. Surface electromyography (sEMG) was obtained by an experiment from upper arm contractions at three different load levels from twelve volunteers. Fatigue detection algorithms mean frequency (MNF), spectral moments ratio (SMR), the wavelet method WIRM1551, sample entropy (SampEn), fuzzy approximate entropy (fApEn) and recurrence quantification analysis (RQA%DET) were calculated. The resulting fatigue signals were compared considering the disturbances incorporated in fatiguing situations as well as according to the possibility to differentiate the load levels based on the fatigue signals. Furthermore we investigated the influence of the electrode locations on the fatigue detection quality and whether an optimized channel set is reasonable. The results of the MNF, SMR, WIRM1551 and fApEn algorithms fell close together. Due to the small amount of subjects in this study significant differences could not be found. In terms of disturbances the SMR algorithm showed a slight tendency to out-perform the others. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Review of provisions on corrosion fatigue and stress corrosion in WWER and Western LWR Codes and Standards

    International Nuclear Information System (INIS)

    Buckthorpe, D.; Filatov, V.; Tashkinov, A.; Evropin, S.V.; Matocha, K.; Guinovart, J.

    2003-01-01

    Results are presented from a collaborative project performed on behalf of the European Commission, Working Group Codes and Standards. The work covered the contents of current codes and standards, plant experience and R and D results. Current fatigue design rules use S-N curves based on tests in air. Although WWER and LWR design curves are often similar they are derived, presented and used in different ways and it is neither convenient nor appropriate to harmonise them. Similarly the fatigue crack growth laws used in the various design and in-service inspection rules differ significantly with respect to both growth rates in air and the effects of water reactor environments. Harmonised approaches to the effects of WWER and LWR environments are possible based on results from R and D programmes carried out over the last decade. For carbon and low alloy steels a consistent approach to both crack initiation and growth can be formulated based on the superposition of environmentally assisted cracking effects on the fatigue crack development. The approach indicates that effects of the water environment are minimal given appropriate control of the oxygen content of the water and/or the sulphur content of the steel. For austenitic stainless steels a different mechanisms may apply and a harmonised approach is possible at present only for S-N curves. Although substantial progress has been made with respect to corrosion fatigue, more data and a clearer understanding are required in order to write code provisions particularly in the area of high cycle fatigue. Reactor operation experience shows stress corrosion cracking of austenitic steels is the most common cause of failure. These failures are associated with high residual stresses combined with high levels of dissolved oxygen or the presence of contaminants. For primary circuit internals there is a potential threat to integrity from irradiated assisted stress corrosion cracking. Design and in-service inspection rules do not at

  2. Numerical Integration Techniques for Curved-Element Discretizations of Molecule–Solvent Interfaces

    Science.gov (United States)

    Bardhan, Jaydeep P.; Altman, Michael D.; Willis, David J.; Lippow, Shaun M.; Tidor, Bruce; White, Jacob K.

    2012-01-01

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, we have developed methods to model several important surface formulations using exact surface discretizations. Following and refining Zauhar’s work (J. Comp.-Aid. Mol. Des. 9:149-159, 1995), we define two classes of curved elements that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. We then present numerical integration techniques that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, we present a set of calculations that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planartriangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute–solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved

  3. Fatigue processes in thermoplastic fibres; Les mecanismes de fatigue dans les fibres thermoplastiques

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Ramirez, J.M.

    2004-09-15

    The present study examines and compares the behaviour of the two types of PA66 fibres and two types of PET fibres under fatigue loading up to failure, and the correlation between the fibres (nano)structures and their structural heterogeneities, with fatigue lifetimes. Several techniques have been used to analyze the materials, such as scanning electron microscopy (SEM), microanalysis (EDS), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and micro-Raman spectroscopy. A meticulous analysis by scanning electron microscopy of the fracture morphology of fibres broken in tension and in fatigue, as well as a study of the fatigue life, were undertaken. The fatigue process occurs when the cyclic load amplitude is sufficiently large, however a condition for fatigue failure is that the minimum load each cycle must be lower than a threshold stress level. Failure under fatigue conditions leads to distinctive fracture morphologies which are very different from those seen after tensile or creep failure and this allows easy identification of the fatigue process. The fibres have been analyzed in the as received state and after fatigue failure in order to observe the microstructural changes resulting from the fatigue loading. The results will be compared with those obtained for fibres loaded under conditions where the fatigue process was hindered. The role of the microstructure of the fibres in determining fatigue will be discussed in this work and the possibility of improving their resistance to fatigue or eliminating the fatigue process will be discussed. (author)

  4. The role of central and peripheral muscle fatigue in postcancer fatigue: a randomized controlled trial.

    Science.gov (United States)

    Prinsen, Hetty; van Dijk, Johannes P; Zwarts, Machiel J; Leer, Jan Willem H; Bleijenberg, Gijs; van Laarhoven, Hanneke W M

    2015-02-01

    Postcancer fatigue is a frequently occurring problem, impairing quality of life. Little is known about (neuro)physiological factors determining postcancer fatigue. It may be hypothesized that postcancer fatigue is characterized by low peripheral muscle fatigue and high central muscle fatigue. The aims of this study were to examine whether central and peripheral muscle fatigue differ between fatigued and non-fatigued cancer survivors and to examine the effect of cognitive behavioral therapy (CBT) on peripheral and central muscle fatigue of fatigued cancer survivors in a randomized controlled trial. Sixteen fatigued patients in the intervention group (CBT) and eight fatigued patients in the waiting list group were successfully assessed at baseline and six months later. Baseline measurements of 20 fatigued patients were compared with 20 non-fatigued patients. A twitch interpolation technique and surface electromyography were applied, respectively, during sustained contraction of the biceps brachii muscle. Muscle fiber conduction velocity (MFCV) and central activation failure (CAF) were not significantly different between fatigued and non-fatigued patients. Change scores of MFCV and CAF were not significantly different between patients in the CBT and waiting list groups. Patients in the CBT group reported a significantly larger decrease in fatigue scores than patients in the waiting list group. Postcancer fatigue is neither characterized by abnormally high central muscle fatigue nor by low peripheral muscle fatigue. These findings suggest a difference in the underlying physiological mechanism of postcancer fatigue vs. other fatigue syndromes. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  5. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lassnig, A., E-mail: alice.lassnig@univie.ac.at [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); Pelzer, R. [Infineon Technologies Austria AG, Siemensstrae 2, 9500 Villach (Austria); Gammer, C. [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Khatibi, G. [Vienna University of Technology, Institute of Chemical Technology and Analytics, Getreidemarkt 9, 1060 Wien (Austria)

    2015-10-15

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al{sub 2}Cu, Al{sub 4}Cu{sub 9}) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path.

  6. A Transcriptional Signature of Fatigue Derived from Patients with Primary Sjögren's Syndrome.

    Directory of Open Access Journals (Sweden)

    Katherine James

    Full Text Available Fatigue is a debilitating condition with a significant impact on patients' quality of life. Fatigue is frequently reported by patients suffering from primary Sjögren's Syndrome (pSS, a chronic autoimmune condition characterised by dryness of the eyes and the mouth. However, although fatigue is common in pSS, it does not manifest in all sufferers, providing an excellent model with which to explore the potential underpinning biological mechanisms.Whole blood samples from 133 fully-phenotyped pSS patients stratified for the presence of fatigue, collected by the UK primary Sjögren's Syndrome Registry, were used for whole genome microarray. The resulting data were analysed both on a gene by gene basis and using pre-defined groups of genes. Finally, gene set enrichment analysis (GSEA was used as a feature selection technique for input into a support vector machine (SVM classifier. Classification was assessed using area under curve (AUC of receiver operator characteristic and standard error of Wilcoxon statistic, SE(W.Although no genes were individually found to be associated with fatigue, 19 metabolic pathways were enriched in the high fatigue patient group using GSEA. Analysis revealed that these enrichments arose from the presence of a subset of 55 genes. A radial kernel SVM classifier with this subset of genes as input displayed significantly improved performance over classifiers using all pathway genes as input. The classifiers had AUCs of 0.866 (SE(W 0.002 and 0.525 (SE(W 0.006, respectively.Systematic analysis of gene expression data from pSS patients discordant for fatigue identified 55 genes which are predictive of fatigue level using SVM classification. This list represents the first step in understanding the underlying pathophysiological mechanisms of fatigue in patients with pSS.

  7. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    International Nuclear Information System (INIS)

    Lassnig, A.; Pelzer, R.; Gammer, C.; Khatibi, G.

    2015-01-01

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al 2 Cu, Al 4 Cu 9 ) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path

  8. Low cycle fatigue lifetime of HIP bonded Bi-metallic first wall structures of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Toshihisa; Sato, Satoshi; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hashimoto, Toshiyuki; Kitamura, Kazunori

    1998-10-01

    A HIP bonded bi-metallic panel composed of a dispersion strengthened copper (DSCu) layer and type 316L stainless steel (SS316L) cooling pipes is the reference design of the ITER first wall. To examine the fatigue lifetime of the first wall panel under cyclic mechanical loads, low cycle fatigue tests of HIP bonded bi-metallic specimens made of SS316L and DSCu were conducted with the stress ratio of -1.0 and five nominal strain range conditions ranging from 0.2 to 1.0%. Elasto-plastic analysis has also been conducted to evaluate local strain ranges under the nominal strains applied. Initial cracks were observed at the inner surface of the SS316L cooling pipes for all of the specimens tested, which was confirmed by the elasto-plastic analysis that the maximum strains of the test specimens were developed at the same locations. It was found that the HIP bonded bi-metallic test specimens had a fatigue lifetime longer than that of the SS316L raw material obtained by round bar specimens. Similarly, the fatigue lifetime of the DSCu/SS316L HIP interface was also longer than the round bar test results for the HIP joints. From these results, it has been confirmed that the bi-metallic first wall panel with built-in cooling pipes made by HIP bonding has a sufficient fatigue lifetime in comparison with the raw fatigue data of the materials, which also suggests that the fatigue lifetime evaluation has an adequate margin against fracture if it follows the design fatigue curve based on the material fatigue data. (author)

  9. Minimal entropy approximation for cellular automata

    International Nuclear Information System (INIS)

    Fukś, Henryk

    2014-01-01

    We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim. (paper)

  10. On Usage of Pareto curves to Select Wind Turbine Controller Tunings to the Wind Turbulence Level

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh

    2015-01-01

    Model predictive control has in recently publications shown its potential for lowering of cost of energy of modern wind turbines. Pareto curves can be used to evaluate performance of these controllers with multiple conflicting objectives of power and fatigue loads. In this paper an approach...... to update an model predictive wind turbine controller tuning as the wind turbulence increases, as increased turbulence levels results in higher loads for the same controller tuning. In this paper the Pareto curves are computed using an industrial high fidelity aero-elastic model. Simulations show...

  11. Driver Fatigue Detection System Using Electroencephalography Signals Based on Combined Entropy Features

    Directory of Open Access Journals (Sweden)

    Zhendong Mu

    2017-02-01

    Full Text Available Driver fatigue has become one of the major causes of traffic accidents, and is a complicated physiological process. However, there is no effective method to detect driving fatigue. Electroencephalography (EEG signals are complex, unstable, and non-linear; non-linear analysis methods, such as entropy, maybe more appropriate. This study evaluates a combined entropy-based processing method of EEG data to detect driver fatigue. In this paper, 12 subjects were selected to take part in an experiment, obeying driving training in a virtual environment under the instruction of the operator. Four types of enthrones (spectrum entropy, approximate entropy, sample entropy and fuzzy entropy were used to extract features for the purpose of driver fatigue detection. Electrode selection process and a support vector machine (SVM classification algorithm were also proposed. The average recognition accuracy was 98.75%. Retrospective analysis of the EEG showed that the extracted features from electrodes T5, TP7, TP8 and FP1 may yield better performance. SVM classification algorithm using radial basis function as kernel function obtained better results. A combined entropy-based method demonstrates good classification performance for studying driver fatigue detection.

  12. Side Effects: Fatigue

    Science.gov (United States)

    Fatigue is a common side effect of many cancer treatments such as chemotherapy, radiation therapy, immunotherapy, and surgery. Anemia and pain can also cause fatigue. Learn about symptoms and way to manage fatigue.

  13. International Wage Curves

    OpenAIRE

    David G. Blanchflower; Andrew J. Oswald

    1992-01-01

    The paper provides evidence for the existence of a negatively sloped locus linking the level of pay to the rate of regional (or industry) unemployment. This "wage curve" is estimated using microeconomic data for Britain, the US, Canada, Korea, Austria, Italy, Holland, Switzerland, Norway, and Germany, The average unemployment elasticity of pay is approximately -0.1. The paper sets out a multi-region efficiency wage model and argues that its predictions are consistent with the data.

  14. About the method of approximation of a simple closed plane curve with a sharp edge

    Directory of Open Access Journals (Sweden)

    Zelenyy A.S.

    2017-02-01

    Full Text Available it was noted in the article, that initially the problem of interpolation of the simple plane curve arose in the problem of simulation of subsonic flow around a body with the subsequent calculation of the velocity potential using the vortex panel method. However, as it turned out, the practical importance of this method is much wider. This algorithm can be successfully applied in any task that requires a discrete set of points which describe an arbitrary curve: potential function method, flow around an airfoil with the trailing edge (airfoil, liquid drop, etc., analytic expression, which is very difficult to obtain, creation of the font and logo and in some tasks of architecture and garment industry.

  15. Myoelectrical manifestation of fatigue less prominent in patients with cancer related fatigue.

    Directory of Open Access Journals (Sweden)

    Katarzyna Kisiel-Sajewicz

    Full Text Available PURPOSE: A lack of fatigue-related muscle contractile property changes at time of perceived physical exhaustion and greater central than peripheral fatigue detected by twitch interpolation technique have recently been reported in cancer survivors with fatigue symptoms. Based on these observations, it was hypothesized that compared to healthy people, myoelectrical manifestation of fatigue in the performing muscles would be less significant in these individuals while sustaining a prolonged motor task to self-perceived exhaustion (SPE since their central fatigue was more prominent. The purpose of this study was to test this hypothesis by examining electromyographic (EMG signal changes during fatiguing muscle performance. METHODS: Twelve individuals who had advanced solid cancer and cancer-related fatigue (CRF, and 12 age- and gender-matched healthy controls performed a sustained elbow flexion at 30% maximal voluntary contraction till SPE. Amplitude and mean power frequency (MPF of EMG signals of the biceps brachii, brachioradialis, and triceps brachii muscles were evaluated when the individuals experienced minimal, moderate, and severe fatigue. RESULTS: CRF patients perceived physical "exhaustion" significantly sooner than the controls. The myoelectrical manifestation of muscular fatigue assessed by EMG amplitude and MPF was less significant in CRF than controls. The lower MPF even at minimal fatigue stage in CRF may indicate pathophysiologic condition of the muscle. CONCLUSIONS: CRF patients experience less myoelectrical manifestation of muscle fatigue than healthy individuals near the time of SPE. The data suggest that central nervous system fatigue plays a more important role in limiting endurance-type of motor performance in patients with CRF.

  16. A randomized controlled trial of qigong exercise on fatigue symptoms, functioning, and telomerase activity in persons with chronic fatigue or chronic fatigue syndrome.

    Science.gov (United States)

    Ho, Rainbow T H; Chan, Jessie S M; Wang, Chong-Wen; Lau, Benson W M; So, Kwok Fai; Yuen, Li Ping; Sham, Jonathan S T; Chan, Cecilia L W

    2012-10-01

    Chronic fatigue is common in the general population. Complementary therapies are often used by patients with chronic fatigue or chronic fatigue syndrome to manage their symptoms. This study aimed to assess the effect of a 4-month qigong intervention program among patients with chronic fatigue or chronic fatigue syndrome. Sixty-four participants were randomly assigned to either an intervention group or a wait list control group. Outcome measures included fatigue symptoms, physical functioning, mental functioning, and telomerase activity. Fatigue symptoms and mental functioning were significantly improved in the qigong group compared to controls. Telomerase activity increased in the qigong group from 0.102 to 0.178 arbitrary units (p chronic fatigue and chronic fatigue syndrome.

  17. Mechanical properties and fatigue strength of high manganese non-magnetic steel/carbon steel welded joints

    International Nuclear Information System (INIS)

    Nakaji, Eiji; Ikeda, Soichi; Kim, You-Chul; Nakatsuji, Yoshihiro; Horikawa, Kosuke.

    1997-01-01

    The dissimilar materials welded joints of high manganese non-magnetic steel/carbon steel (hereafter referred to as DMW joints), in which weld defects such as hot crack or blowhole are not found, were the good quality. Tensile strength of DMW joints was 10% higher than that of the base metal of carbon steel. In the bend tests, the DMW joints showed the good ductility without crack. Charpy absorbed energy at 0(degC) of the DMW joints was over 120(J) in the bond where it seems to be the lowest. Large hardening or softening was not detected in the heat affected zone. Fatigue strength of the DMW joints is almost the same with that of the welded joints of carbon steel/carbon steel. As the fatigue strength of the DMW joints exceeds the fatigue design standard curve of JSSC for carbon steel welded joints, the DMW joints can be treated the same as the welded joints of carbon steel/carbon steel of which strength is lower than that of high manganese non-magnetic steel, from the viewpoint of the fatigue design. (author)

  18. Random non-proportional fatigue tests with planar tri-axial fatigue testing machine

    Directory of Open Access Journals (Sweden)

    T. Inoue

    2016-10-01

    Full Text Available Complex stresses, which occur on the mechanical surfaces of transport machinery in service, bring a drastic degradation in fatigue life. However, it is hard to reproduce such complex stress states for evaluating the fatigue life with conventional multiaxial fatigue machines. We have developed a fatigue testing machine that enables reproduction of such complex stresses. The testing machine can reproduce arbitrary in-plane stress states by applying three independent loads to the test specimen using actuators which apply loads in the 0, 45, and 90 degree directions. The reproduction was tested with complex stress data obtained from the actual operation of transport machinery. As a result, it was found that the reproduced stress corresponded to the measured stress with an error range of less than 10 %. Then, we made a comparison between measured fatigue lives under random non-proportional loading conditions and predicted fatigue lives. It was found that predicted fatigue lives with cr, stress on critical plane, were over a factor of 10 against measured fatigue lives. On the other hand, predicted fatigue lives with ma, stress in consideration of a non-proportional level evaluated by using amplitude and direction of principal stress, were within a factor of 3 against measured fatigue lives

  19. Residual stress measurement by X-ray diffraction with the Gaussian curve method and its automation

    International Nuclear Information System (INIS)

    Kurita, M.

    1987-01-01

    X-ray technique with the Gaussian curve method and its automation are described for rapid and nondestructive measurement of residual stress. A simplified equation for measuring the stress by the Gaussian curve method is derived because in its previous form this method required laborious calculation. The residual stress can be measured in a few minutes, depending on materials, using an automated X-ray stress analyzer with a microcomputer which was developed in the laboratory. The residual stress distribution of a partially induction hardened and tempered (at 280 0 C) steel bar was measured with the Gaussian curve method. A sharp residual tensile stress peak of 182 MPa appeared right outside the hardened region at which fatigue failure is liable to occur

  20. An overview of fatigue

    International Nuclear Information System (INIS)

    Mc Evily, A.J.

    1987-01-01

    Four topics are briefly discussed in this paper: fatigue crack initiation and growth in a nickel-base superalloy single crystal, the environment effect on near-threshold fatigue crack growth behaviour, the role of crack closure in load-interaction effects in fatigue crack growth, and the nature of creep-fatigue interactions, if any, during fatigue crack growth. (Author)

  1. Sensitivity of the probability of failure to probability of detection curve regions

    International Nuclear Information System (INIS)

    Garza, J.; Millwater, H.

    2016-01-01

    Non-destructive inspection (NDI) techniques have been shown to play a vital role in fracture control plans, structural health monitoring, and ensuring availability and reliability of piping, pressure vessels, mechanical and aerospace equipment. Probabilistic fatigue simulations are often used in order to determine the efficacy of an inspection procedure with the NDI method modeled as a probability of detection (POD) curve. These simulations can be used to determine the most advantageous NDI method for a given application. As an aid to this process, a first order sensitivity method of the probability-of-failure (POF) with respect to regions of the POD curve (lower tail, middle region, right tail) is developed and presented here. The sensitivity method computes the partial derivative of the POF with respect to a change in each region of a POD or multiple POD curves. The sensitivities are computed at no cost by reusing the samples from an existing Monte Carlo (MC) analysis. A numerical example is presented considering single and multiple inspections. - Highlights: • Sensitivities of probability-of-failure to a region of probability-of-detection curve. • The sensitivities are computed with negligible cost. • Sensitivities identify the important region of a POD curve. • Sensitivities can be used as a guide to selecting the optimal POD curve.

  2. The Nottingham Fatigue After Stroke (NotFAST) study: results from follow-up six months after stroke.

    Science.gov (United States)

    Hawkins, Louise; Lincoln, Nadina B; Sprigg, Nikola; Ward, Nick S; Mistri, Amit; Tyrrell, Pippa; Worthington, Esme; Drummond, Avril

    2017-12-01

    Background Post-stroke fatigue is common and disabling. Objectives The aim of NotFAST was to examine factors associated with fatigue in stroke survivors without depression, six months after stroke. Methods Participants were recruited from four UK stroke units. Those with high levels of depressive symptoms (score ≥7 on Brief Assessment Schedule Depression Cards) or aphasia were excluded. Follow-up assessment was conducted at six months after stroke. They were assessed on the Fatigue Severity Scale, Rivermead Mobility Index, Nottingham Extended Activities of Daily Living scale, Barthel Index, Beck Anxiety Index, Brief Assessment Schedule Depression Cards, Impact of Event Scale-Revised, and Sleep Hygiene Index. Results Of the 371 participants recruited, 263 (71%) were contacted at six months after stroke and 213 (57%) returned questionnaires. Approximately half (n = 109, 51%) reported fatigue at six months. Of those reporting fatigue initially (n = 88), 61 (69%) continued to report fatigue. 'De novo' (new) fatigue was reported by 48 (38%) of those not fatigued initially. Lower Nottingham Extended Activities of Daily Living scores and higher Beck Anxiety Index scores were independently associated with fatigue at six months. Conclusions Half the stroke survivors reported fatigue at six months post-stroke. Reduced independence in activities of daily living and higher anxiety levels were associated with the level of fatigue. Persistent and delayed onset fatigue may affect independence and participation in rehabilitation, and these findings should be used to inform the development of appropriate interventions.

  3. Study on durability of welded bellows. Fatigue life of bellows with crack in welded bead

    International Nuclear Information System (INIS)

    Hirata, Osamu; Okada, Ken; Yanagisawa, Takasi; Nakajima, Akira.

    1994-01-01

    Reports of study for welded bellows with cracks have apparently not been published to date. The purpose of this investigation is to understand the relationship between the state of stress of welded bellows with micro cracks and the fatigue life. Stresses of welded bellows with cracks were calculated for several different crack lengths by finite element method (FEM), and lives of bellows with cracks were examined by fatigue test. The fatigue life, i.e. the number of cycles to failure was arranged against the remaining wall thickness measured after test instead of the crack length. As a result, it was found that there is a regular relationship between the stress amplitude of peak stress calculated by FEM and the fatigue life of bellows. And then, it was shown that the life of bellows becomes longer than the life estimated using a theoretical S-N curve calculated by Manson's method. Stress intensity factor range (ΔK) and crack propagation rate (da/dN) were also calculated using the results of stress analysis by FEM and fatigue test. The relationship between ΔK and da/dN obtained was almost coincident with the earlier result of fatigue crack growth test of Inconel 718 in the region of da/dN > 1.5x10 -6 mm/cycle, and the propriety of the present results was confirmed. (author)

  4. Fatigue with HIV/AIDS

    Science.gov (United States)

    ... 21, 2014 Select a Language: Fact Sheet 551 Fatigue WHAT IS FATIGUE? IS FATIGUE IMPORTANT? HOW DO ... It can be physical or psychological. With physical fatigue , your muscles cannot do things as easily as ...

  5. Multi-purpose fatigue sensor. Part 1. Uniaxial and multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    M.V. Karuskevich

    2016-10-01

    Full Text Available The paper describes the key principles and results of preliminary experiments aimed at the development of new technique for the fatigue life prediction under conditions of biaxial cyclic tension. The foundations of the method were developed early by the numerous tests with monitoring the process of surface deformation relief formation, which is proved to be an indicator of accumulated fatigue damage under uniaxial fatigue. The employed phenomenon was early applied for the development of a family of uniaxial loading fatigue sensors. The formation of strain induced relief has been recently taken into consideration as a part of damage accumulation criteria under biaxial fatigue as well. The home-made testing machine has been designed to implement combined bending and torsion loading that simulates loads experienced by an aircraft wing skin. The experimental evidences on formation and evolution of the deformation relief revealed under conditions of combined loading, supports the proposed concept of biaxial fatigue sensor

  6. Bridging the gap between metallurgy and fatigue reliability of hydraulic turbine runners

    International Nuclear Information System (INIS)

    Thibault, D; Gagnon, M; Godin, S

    2014-01-01

    The failure of hydraulic turbine runners is a very rare event. Hence, in order to assess the reliability of these components, one cannot rely on statistical models based on the number of failures in a given population. However, as there is a limited number of degradation mechanisms involved, it is possible to use physically-based reliability models. Such models are more complicated but have the advantage of being able to account for physical parameters in the prediction of the evolution of runner degradation. They can therefore propose solutions to help improve reliability. With the use of such models, the effect of materials properties on runner reliability can easily be illustrated. This paper will present a brief review of the Kitagawa-Takahashi diagram that links the damage tolerance approach, based on fracture mechanics, to the stress or strain-life approaches. This diagram is at the centre of the reliability model used in this study. Using simplified response spectra obtained from on-site runner stress measurements, the paper will show how fatigue reliability is impacted by materials fatigue properties, namely fatigue crack propagation behaviour and fatigue limit obtained on S-N curves. It will also present a review of the most important microstructural features of 13%Cr- 4%Ni stainless steels used for runner manufacturing and will review how they influence fatigue properties in an effort to bridge the gap between metallurgy and turbine runners reliability

  7. Evidence for sensitized fatigue pathways in patients with chronic fatigue syndrome.

    Science.gov (United States)

    Staud, Roland; Mokthech, Meriem; Price, Donald D; Robinson, Michael E

    2015-04-01

    Patients with chronic fatigue syndrome (CFS) frequently demonstrate intolerance to physical exertion that is often reported as increased and long-lasting fatigue. Because no specific metabolic alterations have been identified in CFS patients, we hypothesized that sensitized fatigue pathways become activated during exercise corresponding with increased fatigue. After exhausting handgrip exercise, muscle metabolites were trapped in the forearm tissues of 39 CFS patients and 29 normal control (NC) by sudden occlusion for up to 5 minutes. A nonocclusive condition of similar duration was used as control. Repeated fatigue and pain ratings were obtained before and after exercise. Mechanical and heat hyperalgesia were assessed by quantitative sensory testing. All subjects fulfilled the 1994 Fukuda Criteria for CFS. Normal control and CFS subjects exercised for 6.6 (2.4) and 7.0 (2.7) minutes (P > 0.05). Forearm occlusion lasted for 4.7 (1.3) and 4.9 (1.8) minutes in NC and CFS subjects, respectively (P > 0.05). Although fatigue ratings of CFS subjects increased from 4.8 (2.0) to 5.6 (2.1) visual analogue scale (VAS) units during forearm occlusion, they decreased from 5.0 (1.8) to 4.8 (2.0) VAS units during the control condition without occlusion (P = 0.04). A similar time course of fatigue ratings was observed in NC (P > 0.05), although their ratings were significantly lower than those of CFS subjects (P fatigue in CFS patients consistent with sensitization of fatigue pathways. Future interventions that reduce sensitization of fatigue pathways in CFS patients may be of therapeutic benefit.

  8. Thermal fatigue behaviour for a 316 L type steel

    International Nuclear Information System (INIS)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-01-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data. (orig.)

  9. Clinical neurophysiology of fatigue.

    Science.gov (United States)

    Zwarts, M J; Bleijenberg, G; van Engelen, B G M

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic disease has been established. If certain criteria are met, chronic fatigue syndrome can be diagnosed. The 4-item Abbreviated Fatigue Questionnaire allows the extent of the experienced fatigue to be assessed with a high degree of reliability and validity. Physiological fatigue has been well defined and originates in both the peripheral and central nervous system. The condition can be assessed by combining force and surface-EMG measurements (including frequency analyses and muscle-fibre conduction estimations), twitch interpolation, magnetic stimulation of the motor cortex and analysis of changes in the readiness potential. Fatigue is a well-known phenomenon in both central and peripheral neurological disorders. Examples of the former conditions are multiple sclerosis, Parkinson's disease and stroke. Although it seems to be a universal symptom of many brain disorders, the unique characteristics of the concomitant fatigue also point to a specific relationship with several of these syndromes. As regards neuromuscular disorders, fatigue has been reported in patients with post-polio syndrome, myasthenia gravis, Guillain-Barré syndrome, facioscapulohumeral dystrophy, myotonic dystrophy and hereditary motor and sensory neuropathy type-I. More than 60% of all neuromuscular patients suffer from severe fatigue, a prevalence resembling that of patients with MS. Except for several rare myopathies with specific metabolic derangements leading to exercise-induced muscle fatigue, most studies have not identified a prominent peripheral cause for the fatigue in this population. In contrast, the central activation of the diseased neuromuscular system is generally found to be suboptimal. The

  10. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    International Nuclear Information System (INIS)

    Kim, Jong Cheon; Cheong, Seong Kyun

    2012-01-01

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue

  11. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Cheon; Cheong, Seong Kyun [Seoul Nat' l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2012-11-15

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue.

  12. Reduced Electromyographic Fatigue Threshold after Performing a Cognitive Fatiguing Task.

    Science.gov (United States)

    Ferris, Justine R; Tomlinson, Mary A; Ward, Tayler N; Pepin, Marie E; Malek, Moh H

    2018-02-22

    Cognitive fatigue tasks performed prior to exercise may reduce exercise capacity. The electromyographic fatigue threshold (EMGFT) is the highest exercise intensity that can be maintained without significant increase in the EMG amplitude versus time relationship. To date, no studies have examined the effect of cognitive fatigue on the estimation of the EMGFT. The purpose of this study, therefore, was to determine whether or not cognitive fatigue prior to performing exercise reduces the estimated EMGFT. Eight healthy college-aged men were recruited from a university student population and visited the laboratory on multiple occasions. In a randomized order, subjects performed either the cognitive fatigue task (AX Continuous Performance Test; AX-CPT) for 60 min on one visit (experimental condition) or watched a video on trains for 60 min on the other visit (control condition). After each condition, subjects performed the incremental single-leg knee-extensor ergometry test while the EMG amplitude was recorded from the rectus femoris muscle and heart rate was monitored throughout. Thereafter, the EMGFT was calculated for each participant for each visit and compared using paired samples t-test. For exercise outcomes, there were no significant mean differences for maximal power output between the two conditions (control: 51 ± 5 vs. fatigue: 50 ± 3 W), but a significant decrease in EMGFT between the two conditions (control: 31 ± 3 vs. fatigue: 24 ± 2 W; p = 0.013). Moreover, maximal heart rate was significantly different between the two conditions (control: 151 ± 5 vs. fatigue: 132 ± 6; p = 0.027). These results suggest that performing the cognitive fatiguing task reduces the EMGFT with a corresponding reduction in maximal heart rate response.

  13. The effect of aging treatment on the high temperature fatigue strength and fatigue fracture behaviour of friction welded domestic heat resisting steels (SUH3-SUS303)

    International Nuclear Information System (INIS)

    Lee, K.Y.; Oh, S.K.; Kim, H.J.

    1981-01-01

    In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of 700 0 C high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10 hr., 100 hr. aging heat treated at 700 0 C after solution treatment 1 hr. at 1060 0 C for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviours as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and microstructural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8 kg/mm 2 , upsetting pressure 22 kg/mm 2 , the amount of total upset 7 mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH3, SUS303 and SUH3-SUS303, have the highest inclination gradiant on S-N curve due to the high temperature fatigue testing for long time at 700 0 C. 3) The optimum aging time of friction welded SUH3-SUS303, has been recognized near the 10 hr. at 700 0 C after the solution treatment of 1 hr. at 1060 0 C. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10 hr. aging, fatigue limits were increased by SUH3 75.4%, SUS303 28.5%, friction welded joints SUH3-SUS303 44.2% and 100 hr. aging the rate were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base metal SUS303 of the friction welded joints SUH3-SUS303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS303, SUH3-SUS303 is intergranular in any case, but SUH3 is fractured by transgranular cracking. (author)

  14. Multi-scale analysis of behavior and fatigue life of 304L stainless under cyclic loading with pre-hardening

    International Nuclear Information System (INIS)

    Belattar, A.

    2013-01-01

    This study investigates the effects of loading history on the cyclic stress-strain curve and fatigue behavior of 304L stainless steel at room temperature. Tension-compression tests were performed on the same specimen under controlled strain, using several loading sequences of increasing or decreasing amplitude. The results showed that fatigue life is significantly reduced by the previous loading history. A previously developed method for determining the effect of prehardening was evaluated. Microstructural analyses were also performed; the microstructures after pre-loading and their evolution during the fatigue cycles were characterized by TEM. The results of these analyses improve our understanding of the macroscopic properties of 304L stainless steel and can help us identify the causes of failure and lifetime reduction. (author)

  15. Classification of ASKAP Vast Radio Light Curves

    Science.gov (United States)

    Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.

    2012-01-01

    The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.

  16. The Nature of Self-Regulatory Fatigue and "Ego Depletion": Lessons From Physical Fatigue.

    Science.gov (United States)

    Evans, Daniel R; Boggero, Ian A; Segerstrom, Suzanne C

    2015-07-30

    Self-regulation requires overriding a dominant response and leads to temporary self-regulatory fatigue. Existing theories of the nature and causes of self-regulatory fatigue highlight physiological substrates such as glucose, or psychological processes such as motivation, but these explanations are incomplete on their own. Historically, theories of physical fatigue demonstrate a similar pattern of useful but incomplete explanations, as recent views of physical fatigue emphasize the roles of both physiological and psychological factors. In addition to accounting for multiple inputs, these newer views also explain how fatigue can occur even in the presence of sufficient resources. Examining these newer theories of physical fatigue can serve as a foundation on which to build a more comprehensive understanding of self-regulatory fatigue that integrates possible neurobiological underpinnings of physical and self-regulatory fatigue, and suggests the possible function of self-regulatory fatigue. © 2015 by the Society for Personality and Social Psychology, Inc.

  17. Creep-fatigue evaluation method for modified 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Wada, Y.; Aoto, K.

    1997-01-01

    As creep-fatigue evaluation methods on normalized and tempered Modified 9Cr-1Mo steel for design use, the time fraction rule and the simplified conventional ductility exhaustion rule are investigated for the prediction of tension strain hold creep-fatigue damage of this material. For the above investigation, stress relaxation behaviour during strain hold has to be analyzed using stress-strain-time relation. The initial value of stress relaxation was determined by cyclic stress-strain curves in continuous cycling fatigue tests. Cyclic stress-strain behaviour of Mod.9Cr-1Mo(NT) steel is different from that of austenitic stainless steels, so this effect was considered. Stress relaxation analysis was performed using static creep strain-time relation and conventional hardening rule. The time fraction by using the above stress relaxation analysis results can give good prediction for creep-fatigue life of Mod.9Cr-1Mo(NT) steel. For design use it is practical to be able to estimate creep damages conservatively by both strain behaviour of cyclic plastic (in continuous cycling fatigue tests) and monotonic creep (in standard creep tests). The life reduction by strain hold at the minimum peak of compressive stress in creep-fatigue tests was examined, and this effects can be evaluated by the relationship between the location of oxidation and the effective deformation at crack tip. In an accelerated oxidation environment, for example in high temperature and high pressure steam, a different approach for life reduction should be developed based on the mechanism of growth of oxide and crack growth with oxidation. However, in the creep damage dominant region, its effect is saturated and the effect of cavity growth along grain boundary becomes dominant for long-term strain hold in the high temperature conditions. (author). 6 refs, 6 figs

  18. Fatigue crack growth behavior and tearing instability characteristics under cyclic high stress, 2

    International Nuclear Information System (INIS)

    Mogami, Kazunari; Yamakawa, Jun; Ando, Kotoji; Ogura, Nobukazu

    1990-01-01

    The J-R curve, fatigue crack growth rate and characteristics of ductile unstable fracture under monotonic and cyclic load were investigated using 1TCT test specimens which were cut out from A508 steel for reactor pressure vessels. All the tests were carried out at 100degc. The main results obtained were as follows. (1) The J-R curve under the cyclic load is not a material constant but is dependent on the test conditions. (2) da/dN from typical fatigue data cannot be extrapolated by ΔJ only if the value of da/dN is above 5x10 -4 mm/cycles. However, it can be extrapolated by using the following equation in which J max is used: da/dN=C{√(ΔJ)/(B-√J max )} m . (3) The J values at instability obtained from the ductile unstable fracture test carried out under the cyclic load of stress ratio R=0, 01 and -1.0 were compared with those from the monotonically increasing load. These J values at instability were almost the same as that for the monotonically increasing load. (author)

  19. Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining

    Science.gov (United States)

    Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir

    2017-10-01

    The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.

  20. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Henriksen, T.; Dahlback, A.; Larsen, S.H.

    1988-08-01

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1 o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2