The essential theory of fast wave current drive with full wave method
International Nuclear Information System (INIS)
Liu Yan; Gong Xueyu; Yang Lei; Yin Chenyan; Yin Lan
2007-01-01
The full wave numerical method is developed for analyzing fast wave current drive in the range of ion cyclotron waves in tokamak plasmas, taking into account finite larmor radius effects and parallel dispersion. the physical model, the dispersion relation on the assumption of Finite Larmor Radius (FLR) effects and the form of full wave be used for computer simulation are developed. All of the work will contribute to further study of fast wave current drive. (authors)
Recent Developments in High-Harmonic Fast Wave Physics in NSTX
International Nuclear Information System (INIS)
LeBlanc, B.P.; Bell, R.E.; Bonoli, P.; Harvey, R.; Heidbrink, W.W.; Hosea, J.C.; Kaye, S.M.; Liu, D.; Maingi, R.; Medley, S.S.; Ono, M.; Podesta, M.; Phillips, C.K.; Ryan, P.M.; Roquemore, A.L.; Taylor, G.; Wilson, J.R.
2010-01-01
Understanding the interaction between ion cyclotron range of frequency (ICRF) fast waves and the fast-ions created by neutral beam injection (NBI) is critical for future devices such as ITER, which rely on a combination ICRF and NBI. Experiments in NSTX which use 30 MHz High-Harmonic Fast-Wave (HHFW) ICRF and NBI heating show a competition between electron heating via Landau damping and transit-time magnetic pumping, and radio-frequency wave acceleration of NBI generated fast ions. Understanding and mitigating some of the power loss mechanisms outside the last closed flux surface (LCFS) has resulted in improved HHFW heating inside the LCFS. Nevertheless a significant fraction of the HHFW power is diverted away from the enclosed plasma. Part of this power is observed locally on the divertor. Experimental observations point toward the radio-frequency (RF) excitation of surface waves, which disperse wave power outside the LCFS, as a leading loss mechanism. Lithium coatings lower the density at the antenna, thereby moving the critical density for perpendicular fast-wave propagation away from the antenna and surrounding material surfaces. Visible and infrared imaging reveal flows of RF power along open field lines into the divertor region. In L-mode -- low average NBI power -- conditions, the fast-ion D-alpha (FIDA) diagnostic measures a near doubling and broadening of the density profile of the upper energetic level of the fast ions concurrent with the presence of HHFW power launched with k// = -8m-1. We are able to heat NBI-induced H-mode plasmas with HHFW. The captured power is expected to be split between absorption by the electrons and absorption by the fast ions, based on TORIC calculation. In the case discussed here the Te increases over the whole profile when ∼2MW of HHFW power with antenna k// = 13m-1 is applied after the H-mode transition. But somewhat unexpectedly fast-ion diagnostics do not observe a change between the HHFW heated NBI discharge and the
Fast wave current drive in reactor scale tokamaks
International Nuclear Information System (INIS)
Moreau, D.
1992-01-01
The IAEA Technical Committee Meeting on Fast Wave Current Drive in Reactor Scale Tokamaks, hosted by the Commissariat a l'Energie Atomique (CEA), Departement de Recherches sur la Fusion Controlee (Centres d'Etudes de Cadarache, under the Euratom-CEA Association for fusion) aimed at discussing the physics and the efficiency of non-inductive current drive by fast waves. Relevance to reactor size tokamaks and comparison between theory and experiment were emphasized. The following topics are described in the summary report: (i) theory and modelling of radiofrequency current drive (theory, full wave modelling, ray tracing and Fokker-Planck calculations, helicity injection and ponderomotive effects, and alternative radio-frequency current drive effects), (ii) present experiments, (iii) reactor applications (reactor scenarios including fast wave current drive; and fast wave current drive antennas); (iv) discussion and summary. 32 refs
Fast wave current drive on DIII-D
International Nuclear Information System (INIS)
deGrassie, J.S.; Petty, C.C.; Pinsker, R.I.; Forest, C.B.; Ikezi, H.; Prater, R.; Baity, F.W.; Callis, R.W.; Cary, W.P.; Chiu, S.C.; Doyle, E.J.; Ferguson, S.W.; Hoffman, D.J.; Jaeger, E.F.; Kim, K.W.; Lee, J.H.; Lin-Liu, Y.R.; Murakami, M.; ONeill, R.C.; Porkolab, M.; Rhodes, T.L.; Swain, D.W.
1996-01-01
The physics of electron heating and current drive with the fast magnetosonic wave has been demonstrated on DIII-D, in reasonable agreement with theoretical modeling. A recently completed upgrade to the fast wave capability should allow full noninductive current drive in steady state advanced confinement discharges and provide some current density profile control for the Advanced Tokamak Program. DIII-D now has three four-strap fast wave antennas and three transmitters, each with nominally 2 MW of generator power. Extensive experiments have been conducted with the first system, at 60 MHz, while the two newer systems have come into operation within the past year. The newer systems are configured for 60 to 120 MHz. The measured FWCD efficiency is found to increase linearly with electron temperature as γ=0.4x10 18 T e0 (keV) [A/m 2 W], measured up to central electron temperature over 5 keV. A newly developed technique for determining the internal noninductive current density profile gives efficiencies in agreement with this scaling and profiles consistent with theoretical predictions. Full noninductive current drive at 170 kA was achieved in a discharge prepared by rampdown of the Ohmic current. Modulation of microwave reflectometry signals at the fast wave frequency is being used to investigate fast wave propagation and damping. Additionally, rf pick-up probes on the internal boundary of the vessel provide a comparison with ray tracing codes, with clear evidence for a toroidally directed wave with antenna phasing set for current drive. copyright 1996 American Institute of Physics
International Nuclear Information System (INIS)
Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.
1985-07-01
Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities
Fast wave current drive on DIII-D
International Nuclear Information System (INIS)
deGrassie, J.S.; Petty, C.C.; Pinsker, R.I.
1995-01-01
The physics of electron heating and current drive with the fast magnetosonic wave has been demonstrated on DIII-D, in reasonable agreement with theoretical modeling. A recently completed upgrade to the fast wave capability should allow full noninductive current drive in steady state advanced confinement discharges and provide some current density profile control for the Advanced Tokamak Program. DIII-D now has three four-strap fast wave antennas and three transmitters, each with nominally 2 MW of generator power. Extensive experiments have been conducted with the first system, at 60 MHz, while the two newer systems have come into operation within the past year. The newer systems are configured for 60 to 120 MHz. The measured FWCD efficiency is found to increase linearly with electron temperature as γ = 0.4 x 10 18 T eo (keV) [A/m 2 W], measured up to central electron temperature over 5 keV. A newly developed technique for determining the internal noninductive current density profile gives efficiencies in agreement with this scaling and profiles consistent with theoretical predictions. Full noninductive current drive at 170 kA was achieved in a discharge prepared by rampdown of the Ohmic current. Modulation of microwave reflectometry signals at the fast wave frequency is being used to investigate fast wave propagation and damping. Additionally, rf pick-up probes on the internal boundary of the vessel provide a comparison with ray tracing codes, with dear evidence for a toroidally directed wave with antenna phasing set for current drive. There is some experimental evidence for fast wave absorption by energetic beam ions at high cyclotron harmonic resonances
THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES
International Nuclear Information System (INIS)
Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard
2012-01-01
One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ( f ast waves ) . In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.
Understanding the Physical Nature of Coronal "EIT Waves".
Long, D M; Bloomfield, D S; Chen, P F; Downs, C; Gallagher, P T; Kwon, R-Y; Vanninathan, K; Veronig, A M; Vourlidas, A; Vršnak, B; Warmuth, A; Žic, T
2017-01-01
For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not agree with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and data with higher spatial and temporal resolution from the Solar Dynamics Observatory . In this article, we reexamine the theories proposed to explain EIT waves to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that the so-called EIT waves are best described as fast-mode large-amplitude waves or shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.
Fast wave current drive technology development at ORNL
International Nuclear Information System (INIS)
Baity, F.W.; Batchelor, D.B.; Goulding, R.H.; Hoffman, D.J.; Jaeger, E.F.; Ryan, P.M.; deGrassie, J.S.; Petty, C.C.; Pinsker, R.I.; Prater, R.
1993-01-01
The technology required for fast wave current drive (FWCD) systems is discussed. Experiments are underway on DIII-D, JET, and elsewhere. Antennas for FWCD draw heavily upon the experience gained in the design of ICRF heating systems with the additional requirement of launching a directional wave spectrum. Through collaborations with DIII-D, JET, and Tore Supra rapid progress is being made in the demonstration of the physics and technology of FWCD needed for TPX and ITER
Fast wave current drive technology development at ORNL
International Nuclear Information System (INIS)
Baity, F.W.; Batchelor, D.B.; Goulding, R.H.
1994-01-01
The technology required for fast wave current drive (FWCD) systems is discussed. Experiments are underway on DIII-D, JET, and elsewhere. Antennas for FWCD draw heavily upon the experience gained in the design of ICRF heating systems with the additional requirement of launching a directional wave spectrum. Through collaborations with DIII-D, JET, and Tore Supra rapid progress is being made in the demonstration of the physics and technology of FWCD needed for TPX and ITER. (author)
Experimentally determined profiles of fast wave current drive on DIII-D
International Nuclear Information System (INIS)
Forest, C.B.; Petty, C.C.; Baity, F.W.; Chiu, S.C.; deGrassie, J.S.; Groebner, R.J.; Ikezi, H.; Jaeger, E.F.; Kupfer, K.; Murakami, M.; Pinsker, R.I.; Prater, R.; Rice, B.W.; Wade, M.R.; Whyte, D.G.
1996-01-01
Profiles of non-inductive current driven by fast waves have been determined for reversed-shear DIII-D discharges. Both the current profile and toroidal electric field profile are determined from time sequences of equilibrium reconstructions [C. B. Forest et al., Phys. Rev. Lett. 73, 2224 (1994)]. Using this information, the measured current profile has been separated into inductive and non-inductive portions. By comparing similar discharges with co and counter antenna phasings and similar fast wave power, the portion of the total non-inductive current driven by fast waves was determined. The experimentally determined profiles of FWCD are in general agreement with theoretical predictions. Specifically, 135 kA was driven by 1.4 MW of rf power with a profile peaked inside ρ=2. copyright 1996 American Institute of Physics
Mode conversion of fast Alfvacute en waves at the ion endash ion hybrid resonance
International Nuclear Information System (INIS)
Ram, A.K.; Bers, A.; Schultz, S.D.; Fuchs, V.
1996-01-01
Substantial radio-frequency power in the ion-cyclotron range of frequencies can be effectively coupled to a tokamak plasma from poloidal current strap antennas at the plasma edge. If there exists an ion endash ion hybrid resonance inside the plasma, then some of the power from the antenna, delivered into the plasma by fast Alfvacute en waves, can be mode converted to ion-Bernstein waves. In tokamak confinement fields the mode-converted ion-Bernstein waves can damp effectively and locally on electrons [A. K. Ram and A. Bers, Phys. Fluids B 3, 1059 (1991)]. The usual mode-conversion analysis that studies the propagation of fast Alfvacute en waves in the immediate vicinity of the ion endash ion hybrid resonance is extended to include the propagation and reflection of the fast Alfvacute en waves on the high magnetic-field side of the ion endash ion hybrid resonance. It is shown that there exist plasma conditions for which the entire fast Alfvacute en wave power incident on the ion endash ion hybrid resonance can be converted to ion-Bernstein waves. In this extended analysis of the mode conversion process, the fast Alfvacute en waves can be envisioned as being coupled to an internal plasma resonator. This resonator extends from the low magnetic-field cutoff near the ion endash ion hybrid resonance to the high magnetic-field cutoff. The condition for 100% mode conversion corresponds to a critical coupling of the fast Alfvacute en waves to this internal resonator. As an example, the appropriate plasma conditions for 100% mode conversion are determined for the Tokamak Fusion Test Reactor (TFTR) [R. Majeski et al., Proceedings of the 11th Topical Conference on RF Power in Plasmas, Palm Springs (American Institute of Physics, New York, 1995), Vol. 355, p. 63] experimental parameters. copyright 1996 American Institute of Physics
Fast wave current drive above the slow wave density limit
International Nuclear Information System (INIS)
McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.
1989-01-01
Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit
Fast surface waves in an ideal Hall-magnetohydrodynamic plasma slab
International Nuclear Information System (INIS)
Zhelyazkov, I.; Debosscher, A.; Goossens, M.
1996-01-01
The propagation of fast sausage and kink magnetohydrodynamic (MHD) surface waves in an ideal magnetized plasma slab is studied taking into account the Hall term in the generalized Ohm close-quote s law. It is found that the Hall effect modifies the dispersion characteristics of MHD surface modes when the Hall term scaling length is not negligible (less than, but comparable to the slab thickness). The dispersion relations for both modes have been derived for parallel propagation (along the ambient equilibrium magnetic field lines).The Hall term imposes some limits on the possible wave number range. It turns out that the space distribution of almost all perturbed quantities in sausage and kink surface waves with Hall effect is rather complicated as compared to that of usual fast MHD surface waves. The applicability to solar wind aspects of the results obtained, is briefly discussed. copyright 1996 American Institute of Physics
Waves from Propulsion Systems of Fast Ferries
DEFF Research Database (Denmark)
Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.
1998-01-01
Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as being...... generated by the ship hulls alone. Whereas this assumption may be reasonable for conventional ships with large hulls and limited propulsive power, the situation is different for fast ferries with their smaller hulls and very large installed power. A simple theoretical model and a series of model tests...... on a monohull fast ferry seem to indicate that a substantial part of the wave-making can be directly attributed to the propulsion system itself. Thus, two wave systems are created with different phases, but with similar frequency contents, which means that they merge into one system behind the ship, very...
Fast wave current drive in neutral beam heated plasmas on DIII-D
International Nuclear Information System (INIS)
Petty, C.C.; Forest, C.B.; Pinsker, R.I.
1997-04-01
The physics of non-inductive current drive and current profile control using the fast magnetosonic wave has been demonstrated on the DIII-D tokamak. In non-sawtoothing discharges formed by neutral beam injection (NBI), the radial profile of the fast wave current drive (FWCD) was determined by the response of the loop voltage profile to co, counter, and symmetric antenna phasings, and was found to be in good agreement with theoretical models. The application of counter FWCD increased the magnetic shear reversal of the plasma and delayed the onset of sawteeth, compared to co FWCD. The partial absorption of fast waves by energetic beam ions at high harmonics of the ion cyclotron frequency was also evident from a build up of fast particle pressure near the magnetic axis and a correlated increase in the neutron rate. The anomalous fast particle pressure and neutron rate increased with increasing NBI power and peaked when a harmonic of the deuterium cyclotron frequency passed through the center of the plasma. The experimental FWCD efficiency was highest at 2 T where the interaction between the fast waves and the beam ions was weakest; as the magnetic field strength was lowered, the FWCD efficiency decreased to approximately half of the maximum theoretical value
Studies on fast wave current drive in the JAERI tokamaks
International Nuclear Information System (INIS)
Kimura, H.; Yamamoto, T.; Fujii, T.; Kawashima, H.; Tamai, H.; Saigusa, M.; Imai, T.; Hamamatsu, K.; Fukuyama, A.
1991-01-01
Fast wave electron heating experiment (FWEH) on JFT-2M and JT-60 and analysis of fast wave current drive (FWCD) ability on JT-60U are presented. In the JFT-2M, absorption of fast waves have been investigated by using a phased four-loop antenna array. The absorption of the fast waves has been studied for various plasma parameters by using combination of other additional heating methods such as electron cyclotron heating (ECH) and ion cyclotron heating. It is shown that the absorption efficiency estimated from various methods well correlates with one calculated theoretically in single pass damping. Interaction of the fast waves with fast electrons in combination with ECH has been examined through the measurement of non-thermal electron cyclotron emission (ECE). The observed ECE during FWEH is well explained by the theoretical model, which indicates generation of the appreciable energetic fast electrons by the fast waves. New four-loop array antennas have been employed to improve the absorption of unidirectionally-propagating waves. Characteristics of antenna loading resistance can be reproduced by a coupling calculation code. In JT-60, FWEH experiment in combination with lower hybrid current drive was performed. Power absorption efficiency of fast wave is substantially improved in combination with LHCD of relatively low power for both phasing modes. Bulk electron heating is observed with high-k // mode and coupling with fast electron is confirmed in hard X-ray emission with low-k // mode. The results are consistent with theoretical prediction based on 1.D full wave code. Synergetic effects between FWEH and LHCD are found. Coupling calculation indicates that eight-loop antenna is favourable for keeping high directivity in the required N // -range. Current drive efficiency is calculated with 1-D full wave code including trapped particle effects and higher harmonic ion cyclotron damping
Model for ICRF fast wave current drive in self-consistent MHD equilibria
International Nuclear Information System (INIS)
Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.
1993-01-01
Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device
Fast wave current drive in DIII-D
International Nuclear Information System (INIS)
Petty, C.C.; Callis, R.W.; Chiu, S.C.; deGrassie, J.S.; Forest, C.B.; Freeman, R.L.; Gohil, P.; Harvey, R.W.; Ikezi, H.; Lin-Liu, Y.-R.
1995-02-01
The non-inductive current drive from fast Alfven waves launched by a directional four-element antenna was measured in the DIII-D tokamak. The fast wave frequency (60 MHz) was eight times the deuterium cyclotron frequency at the plasma center. An array of rf pickup loops at several locations around the torus was used to verify the directivity of the four-element antenna. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For discharges with steady plasma current, up to 110 kA of FWCD was inferred from an analysis of the loop voltage, with a maximum non-inductive current (FWCD, ECCD, and bootstrap) of 195 out of 310 kA. The FWCD efficiency increased linearly with central electron temperature. For low current discharges, the FWCD efficiency was degraded due to incomplete fast wave damping. The experimental FWCD was found to agree with predictions from the CURRAY ray-tracing code only when a parasitic loss of 4% per pass was included in the modeling along with multiple pass damping
Enhanced coupling of the fast wave to electrons through mode conversion to the ion hybrid wave
International Nuclear Information System (INIS)
Lashmore-Davies, C.N.; Fuchs, V.; Ram, A.K.; Bers, A.
1996-07-01
The mode conversion of the fast compressional Alfven wave to the ion hybrid wave is analyzed with particular reference to a plasma with two ion species present in approximately equal proportions. Two configurations are considered, the first referring to the usual resonance-cut-off case and the second to a cut-off-resonance-cut-off situation. The optimum conditions for maximising the mode converted energy are given. The second order fast wave equation is generalised to include the effect of the parallel electric field. Hence, all ion and electron loss mechanisms for the fast wave are incorporated, including mode conversion at the two-ion hybrid resonance. The significance of the approximate equality of the two ion species concentrations is that the mode converted ion hybrid wave is damped only by the electrons. The damping of the ion hybrid wave is described with the aid of the local dispersion relation and by means of a toroidal ray tracing code. In particular, the ray tracing calculation shows that the mode converted energy is totally absorbed by the electrons close to the two-ion hybrid resonance. The generalised fast wave equation is solved to determine how much energy is lost from the fast wave, incident from the low field side, before it encounters the two-ion hybrid resonance. For comparable concentrations of the two ion species, the mode converted power can be separated from the power directly absorbed by the ions and electrons from the fast wave. This allows the conditions to be ascertained under which strong electron heating through mode conversion dominates the direct dissipation of the fast wave. (UK)
A reason of fast and deep fading of centimeter wave
International Nuclear Information System (INIS)
Danzan, D.; Damdinsuren, E.; Hiamjav, J.; Chuluunbaatar, Ch.; Battulga, S.
1992-01-01
First discovered experimentally exactly correlation between of appearance and of disappearance of optical mirage and fast and deep fading of horizontal polarization of centimeter wave. Proved the interference of the straight and reflected rays from the thin layer of air in mirage a reason of this fading. The physical parameters data of the layer of mirage: change of dielectric permeability and n/ h gradient of refraction index of air in this layer are been showed
International Nuclear Information System (INIS)
Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim; Olmedo, Oscar; Davila, Joseph M.; Thompson, Barbara J.; Cho, Kyung-Suk
2013-01-01
We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns out to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.
Elmore, William C
1985-01-01
Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam
Fast wave experiments in LAPD: RF sheaths, convective cells and density modifications
Carter, T. A.; van Compernolle, B.; Martin, M.; Gekelman, W.; Pribyl, P.; van Eester, D.; Crombe, K.; Perkins, R.; Lau, C.; Martin, E.; Caughman, J.; Tripathi, S. K. P.; Vincena, S.
2017-10-01
An overview is presented of recent work on ICRF physics at the Large Plasma Device (LAPD) at UCLA. The LAPD has typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B 1000 G. A new high-power ( 150 kW) RF system and fast wave antenna have been developed for LAPD. The source runs at a frequency of 2.4 MHz, corresponding to 1 - 7fci , depending on plasma parameters. Evidence of rectified RF sheaths is seen in large increases ( 10Te) in the plasma potential on field lines connected to the antenna. The rectified potential scales linearly with antenna current. The rectified RF sheaths set up convective cells of local E × B flows, measured indirectly by potential measurements, and measured directly with Mach probes. At high antenna powers substantial modifications of the density profile were observed. The plasma density profile initially exhibits transient low frequency oscillations (10 kHz). The amplitude of the fast wave fields in the core plasma is modulated at the same low frequency, suggesting fast wave coupling is affected by the density rearrangement. Work performed at the Basic Plasma Science Facility, supported jointly by the National Science Foundation and the Department of Energy.
Coupling to the fast wave via a phased waveguide array
International Nuclear Information System (INIS)
Olson, L.; McWilliams, R.; Glanz, J.; Motley, R.W.
1984-03-01
A dielectric-loaded waveguide array has been used to launch fast waves into a plasma in which ω/sup pi/ < ω << ω/sub pe/ approx. ω/sub ce/. The wave propagates when accessibility and cutoff requirements are satisfied. Reflection coefficients as low as 1% have been measured. Use of the fast wave for steady-state current drive is suggested
Coupling to the fast wave via a phased waveguide array
Energy Technology Data Exchange (ETDEWEB)
Olson, L.; McWilliams, R.; Glanz, J.; Motley, R.W.
1984-03-01
A dielectric-loaded waveguide array has been used to launch fast waves into a plasma in which ..omega../sup pi/ < ..omega.. << ..omega../sub pe/ approx. ..omega../sub ce/. The wave propagates when accessibility and cutoff requirements are satisfied. Reflection coefficients as low as 1% have been measured. Use of the fast wave for steady-state current drive is suggested.
Fast waves near the lower hybrid frequency. Final contract report
International Nuclear Information System (INIS)
McWilliams, R.
1984-01-01
The main function of this contract has been to advance the theory of fast waves near the lower hybrid frequency. Special emphasis was to be given to aspects which would assist experimentalists in planning and performing experiments to test the feasibility of using the fast wave for plasma heating and current drive. Evanescent and propagating conditions for the wave were to be determined. Possible antennas for launching the waves were to be determined. Coupling coefficients of the waves into the plasma were to be found. The results were to be applied to present day and reactor grade plasma parameters
Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks
DEFF Research Database (Denmark)
Wright, J.C.; Bonoli, P.T.; Brambilla, M.
2004-01-01
Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k...
Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion
International Nuclear Information System (INIS)
Borg, G.G.
1994-01-01
Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs
Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves
International Nuclear Information System (INIS)
Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.
2008-01-01
The Doppler-shifted cyclotron resonance (ω-k z v z =Ω f ) between fast ions and shear Alfven waves is experimentally investigated (ω, wave frequency; k z , axial wavenumber; v z , fast-ion axial speed; Ω f , fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li + source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude δ B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8ω ci . Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.
Fast wave current drive in H mode plasmas on the DIII-D tokamak
International Nuclear Information System (INIS)
Petty, C.C.; Grassie, J.S. de; Baity, F.W.
1999-01-01
Current driven by fast Alfven waves is measured in H mode and VH mode plasmas on the DIII-D tokamak for the first time. Analysis of the poloidal flux evolution shows that the fast wave current drive profile is centrally peaked but sometimes broader than theoretically expected. Although the measured current drive efficiency is in agreement with theory for plasmas with infrequent ELMs, the current drive efficiency is an order of magnitude too low for plasmas with rapid ELMs. Power modulation experiments show that the reduction in current drive with increasing ELM frequency is due to a reduction in the fraction of centrally absorbed fast wave power. The absorption and current drive are weakest when the electron density outside the plasma separatrix is raised above the fast wave cut-off density by the ELMs, possibly allowing an edge loss mechanism to dissipate the fast wave power since the cut-off density is a barrier for fast waves leaving the plasma. (author)
60 MHz fast wave current drive experiment for DIII-D
Energy Technology Data Exchange (ETDEWEB)
Mayberry, M.J.; Chiu, S.C.; Porkolab, M.; Chan, V.; Freeman, R.; Harvey, R.; Pinsker, R. (General Atomics, San Diego, CA (USA))
1989-07-01
The DIII-D facility provides an opportunity to test fast wave current drive appoach. Efficient FWCD is achieved by direct electron absorption due to Landa damping and transit time magnetic pumping. To avoid competing damping mechamisms we seek to maximize the single-pass asorption of the fast waves by electrons. (AIP)
Anderson, Christian Carl
This Dissertation explores the physics underlying the propagation of ultrasonic waves in bone and in heart tissue through the use of Bayesian probability theory. Quantitative ultrasound is a noninvasive modality used for clinical detection, characterization, and evaluation of bone quality and cardiovascular disease. Approaches that extend the state of knowledge of the physics underpinning the interaction of ultrasound with inherently inhomogeneous and isotropic tissue have the potential to enhance its clinical utility. Simulations of fast and slow compressional wave propagation in cancellous bone were carried out to demonstrate the plausibility of a proposed explanation for the widely reported anomalous negative dispersion in cancellous bone. The results showed that negative dispersion could arise from analysis that proceeded under the assumption that the data consist of only a single ultrasonic wave, when in fact two overlapping and interfering waves are present. The confounding effect of overlapping fast and slow waves was addressed by applying Bayesian parameter estimation to simulated data, to experimental data acquired on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The Bayesian approach successfully estimated the properties of the individual fast and slow waves even when they strongly overlapped in the acquired data. The Bayesian parameter estimation technique was further applied to an investigation of the anisotropy of ultrasonic properties in cancellous bone. The degree to which fast and slow waves overlap is partially determined by the angle of insonation of ultrasound relative to the predominant direction of trabecular orientation. In the past, studies of anisotropy have been limited by interference between fast and slow waves over a portion of the range of insonation angles. Bayesian analysis estimated attenuation, velocity, and amplitude parameters over the entire range of insonation angles, allowing a more complete
Energy Technology Data Exchange (ETDEWEB)
Cho, Su Won; Yeom, Hyun Ju [Kyonggi University, Suwon (Korea, Republic of); Hong, Sang Hee; Chung, Mo Se [Seoul National University, Seoul (Korea, Republic of)
1996-09-01
A full 3-dimensional code for fast wave heating and the current drive has been developed ant its results are compared with those of FASTWA for Phaedrus-T tokamak. The finite Larmour radius expansion and the order reduction method have been used to derive the wave equation in the toroidal coordinate from the Maxwell-Vlasov equations. By expanding the fields in poloidal Fourier series, the wave equations are reduced to the system of ordinary differential equations in the radial axis, which are then numerically integrated via the shooting method. In addition, the convergence of the solutions and energy conservation are discussed. Finally, and example calculation of the current drive is presented for the advanced superconducting tokamak which is in its conceptual design phase. 17 refs., 10 tabs., 31 figs. (author)
Fast wave current drive experiment on the DIII-D tokamak
International Nuclear Information System (INIS)
Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Lohr, J.; Luce, T.C.; Mayberry, M.J.; Prater, R.; Porkolab, M.; Baity, F.W.; Goulding, R.H.; Hoffman, J.D.; James, R.A.; Kawashima, H.
1992-06-01
One method of radio-frequency heating which shows theoretical promise for both heating and current drive in tokamak plasmas is the direct absorption by electrons of the fast Alfven wave (FW). Electrons can directly absorb fast waves via electron Landau damping and transit-time magnetic pumping when the resonance condition ω - κ parallele υ parallele = O is satisfied. Since the FW accelerates electrons traveling the same toroidal direction as the wave, plasma current can be generated non-inductively by launching FW which propagate in one toroidal direction. Fast wave current drive (FWCD) is considered an attractive means of sustaining the plasma current in reactor-grade tokamaks due to teh potentially high current drive efficiency achievable and excellent penetration of the wave power to the high temperature plasma core. Ongoing experiments on the DIII-D tokamak are aimed at a demonstration of FWCD in the ion cyclotron range of frequencies (ICRF). Using frequencies in the ICRF avoids the possibility of mode conversion between the fast and slow wave branches which characterized early tokamak FWCD experiments in the lower hybrid range of frequencies. Previously on DIII-D, efficient direct electron heating by FW was found using symmetric (non-current drive) antenna phasing. However, high FWCD efficiencies are not expected due to the relatively low electron temperatures (compared to a reactor) in DIII-D
Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism
Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard E.
2018-01-01
Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density exhibits positive slopes in the perpendicular velocity space, ∂fp/∂v⊥>0, which can be a source for these waves. Linear theory analyses and PIC simulations use plasma and field parameters measured in situ except that the modeled proton distribution is modified to have larger ∂fp/∂v⊥ under the assumption that the observed distribution corresponds to a marginally stable state when the distribution has already been scattered by the excited waves. The results show that the positive slope is the source of the proton cyclotron harmonic waves at propagation quasi-perpendicular to the background magnetic field, and as a result of interactions with the excited waves the evolving proton distribution progresses approximately toward the observed distribution.
Second harmonic ion cylotron resonance heating by the fast magnetosonic wave on the PLT tokamak
International Nuclear Information System (INIS)
Thompson, H.R. Jr.
1984-01-01
Second harmonic ion cyclotron resonance heating by the fast magnetosonic wave, and the propagation of the fast wave from the fundamental of the ion cyclotron frequency to its second harmonic was investigated in a hydrogen plasma on the PLT tokamak. The theory of fast magnetosonic wave propagation was extended to include the effects of density gradients, plasma current, and impurity ion species. The damping of the fast wave at the second harmonic is calculated, where the theory has been extended to include the full radial dependence of the fast wave fields. Power deposition profiles and eigenmode Q's are calculated using this theory. The effects of the interaction between the ion Bernstein wave and the fast magnetosonic wave are calculated, and enhanced fast wave damping is predicted. The antenna loading is calculated including the effects of overlap of the fast wave eigenmodes. During the second harmonic heating experiments, the antenna loading was characterized as a function of the plasma parameters, and efficient coupling of the RF power to the plasma at high density was observed. At very low densities, fast wave eigenmodes were identified on PLT, and their Q's are measured. Eigenmodes with different toroidal directions of propagation were observed to exhibit large splitting in density due to the plasma current. Efficient bulk heating, with centrally peaked profiles, is observed at the second harmonic, and a tail, which decreases monotonically with energy, is observed on the ion distribution
Parasitic excitation of ion Bernstein waves from a Faraday shielded fast wave loop antenna
International Nuclear Information System (INIS)
Skiff, F.; Ono, M.; Colestock, P.; Wong, K.L.
1984-12-01
Parasitic excitation of ion Bernstein waves is observed from a Faraday shielded fast wave loop antenna in the ion cyclotron frequency range. Local analysis of the Vlasov-Maxwell equations demonstrates the role of plasma density gradient in the coupling process. The effects of plasma density and of parallel wave number on the excitation process are investigated
Fast wave current drive on ITER in the presence of energetic alphas
International Nuclear Information System (INIS)
Mau, T.K.
1989-01-01
The impact of energetic alpha particle wave absorption on the range of frequencies for efficient fast wave current drive in an ITER-like fusion reactor core is investigated. The energetic alpha damping decrement is calculated, using an exact slowing down distribution function, and compared to electron and fuel ion damping over a wide range of frequencies. A combination of strong alpha damping and edge electron absorption in the higher ion harmonic regime limits efficient core fast wave current drive to the lower harmonics (1=2.3). However, high frequency fast waves may be employed to generate current in the outer plasma region. 11 refs., 7 figs
ATLAS Fast Physics Monitoring: TADA
AUTHOR|(INSPIRE)INSPIRE-00375930; The ATLAS collaboration; Elsing, Markus
2017-01-01
The ATLAS experiment at the LHC is recording data from proton-proton collisions with 13 TeV center-of-mass energy since spring 2015. The collaboration is using a fast physics monitoring framework (TADA) to automatically perform a broad range of fast searches for early signs of new physics and to monitor the data quality across the year with the full analysis level calibrations applied to the rapidly growing data.TADA is designed to provide fast feedback directly after the collected data has been fully calibrated and processed at the Tier-0, the CERN Data Center. The system can monitor a large range of physics channels, offline data quality and physics performance quantities nearly final analysis level object calibrations. TADA output is available on a website accessible by the whole collaboration that gets updated twice a day with the data from newly processed runs. Hints of potentially interesting physics signals or performance issues identified in this way are reported to be followed up by physics or combin...
ATLAS Fast Physics Monitoring: TADA
Elsing, Markus; The ATLAS collaboration; Sabato, Gabriele; Kamioka, Shusei; Nairz, Armin Michael; Moyse, Edward; Gumpert, Christian
2016-01-01
The ATLAS Experiment at the LHC is recording data from proton-proton collisions with 13 TeV center-of-mass energy since spring 2015. The collaboration is using a fast physics monitoring framework (TADA) to automatically perform a broad range of fast searches for early signs of new physics and to monitor the data quality across the year with the full analysis level calibrations applied to the rapidly growing data. TADA is designed to provide fast feedback directly after the collected data has been fully calibrated and processed at the Tier-0. The system can monitor a large range of physics channels, offline data quality and physics performance quantities nearly final analysis level object calibrations. TADA output is available on a website accessible by the whole collaboration that gets updated twice a day with the data from newly processed runs. Hints of potentially interesting physics signals or performance issues identified in this way are reported to be followed up by physics or combined performance groups...
Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak
International Nuclear Information System (INIS)
Prater, R.; Petty, C.C.; Pinsker, R.I.
1993-01-01
Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency. (Author)
Wave Physics Oscillations - Solitons - Chaos
Nettel, Stephen
2009-01-01
This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.
Investigations of Low and Moderate Harmonic Fast Wave Physics on CDX-U
International Nuclear Information System (INIS)
Spaleta, J.; Majeski, R.; Phillips, C.K.; Dumont, R.J.; Kaita, R.; Soukhanovskii, V.; Zakharov, L.
2003-01-01
Third harmonic hydrogen cyclotron fast wave heating studies are planned in the near term on CDX-U to investigate the potential for bulk ion heating. In preparation for these studies, the available radio-frequency power in CDX-U has been increased to 0.5 MW. The operating frequency of the CDX-U radio-frequency transmitter was lowered to operate in the range of 8-10 MHz, providing access to the ion harmonic range 2* ∼ 4* in hydrogen. A similar regime is accessible for the 30 MHz radio-frequency system on the National Spherical Torus Experiment (NSTX), at 0.6 Tesla in hydrogen. Preliminary computational studies over the plasma regimes of interest for NSTX and CDX-U indicate the possibility of strong localized absorption on bulk ion species
Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave
International Nuclear Information System (INIS)
Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.
1996-06-01
The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile
Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave
Energy Technology Data Exchange (ETDEWEB)
Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.
1996-06-01
The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile.
Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak
International Nuclear Information System (INIS)
Prater, R.; Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Ikel, H.; Lin-Liu, Y.R.; Luce, T.C.; James, R.A.; Porkolab, M.; Baity, F.W.; Goulding, R.H.; Hoffmann, D.J.; Kawashima, H.; Trukhin, V.
1992-09-01
Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency, 0.015 x 10 20 MA/MW/m 2
ATLAS fast physics monitoring: TADA
Sabato, G.; Elsing, M.; Gumpert, C.; Kamioka, S.; Moyse, E.; Nairz, A.; Eifert, T.; ATLAS Collaboration
2017-10-01
The ATLAS experiment at the LHC has been recording data from proton-proton collisions with 13 TeV center-of-mass energy since spring 2015. The collaboration is using a fast physics monitoring framework (TADA) to automatically perform a broad range of fast searches for early signs of new physics and to monitor the data quality across the year with the full analysis level calibrations applied to the rapidly growing data. TADA is designed to provide fast feedback directly after the collected data has been fully calibrated and processed at the Tier-0. The system can monitor a large range of physics channels, offline data quality and physics performance quantities. TADA output is available on a website accessible by the whole collaboration. It gets updated twice a day with the data from newly processed runs. Hints of potentially interesting physics signals or performance issues identified in this way are reported to be followed up by physics or combined performance groups. The note reports as well about the technical aspects of TADA: the software structure to obtain the input TAG files, the framework workflow and structure, the webpage and its implementation.
Turbulence Scattering of High Harmonic Fast Waves
International Nuclear Information System (INIS)
M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau
2001-01-01
Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)
Spectral Effects on Fast Wave Core Heating and Current Drive
International Nuclear Information System (INIS)
Phillips, C.K.; Bell, R.E.; Berry, L.A.; Bonoli, P.T.; Harvey, R.W.; Hosea, J.C.; Jaeger, E.F.; LeBlanc, B.P.; Ryan, P.M.; Taylor, G.; Valeo, E.J.; Wilson, J.R.; Wright, J.C.; Yuh, H. and the NSTX Team
2009-01-01
Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations
Nuclear Burning Wave Modular Fast Reactor Concept
International Nuclear Information System (INIS)
Kodochigov, N.G.; Sukharev, Yu.P.
2014-01-01
The necessity to provide nuclear power industry, comparable in a scope with power industry based on a traditional fuel, inspired studies of an open-cycle fast reactor aimed at: - solution of the problem of fuel provision by implementing the highest breeding characteristics of new fissile materials of raw isotopes in a fast reactor and applying accumulated fissile isotopes in the same reactor, independently on a spent fuel reprocessing rate in the external fuel cycle; - application of natural or depleted uranium for makeup fuel, which, with no spent fuel reprocessing, forms the most favorable non-proliferation conditions; - application of inherent properties of the core and reactor for safety provision. The present report, based on previously published papers, gives the theoretical backgrounds of the concept of the reactor with a nuclear burning wave, in which an enriched-fuel core (driver) is replaced by a blanket, and basic conditions for nuclear burning wave initiating and keeping are shown. (author)
Development of a spatially uniform fast ionization wave in a large-volume discharge
International Nuclear Information System (INIS)
Zatsepin, D.V.; Starikovskaya, S.M.; Starikovskii, A.Yu.
1998-01-01
A study is made of a high-voltage nanosecond breakdown in the form of a fast ionization wave produced in a large-volume (401) discharge chamber. The propagation speed of the wave front and the integral energy deposition in a plasma are measured for various regimes of the air discharge at pressures of 10 -2 -4 Torr. A high degree of both the spatial uniformity of the discharge and the reproducibility of the discharge parameters is obtained. The possibility of the development of a fast ionization wave in an electrodeless system is demonstrated. A transition of the breakdown occurring in the form of a fast ionization wave into the streamer breakdown is observed. It is shown that such discharges are promising for technological applications
Geometry of fast magnetosonic rays, wavefronts and shock waves
Energy Technology Data Exchange (ETDEWEB)
Núñez, Manuel, E-mail: mnjmhd@am.uva.es
2016-11-25
Fast magnetosonic waves in a two-dimensional plasma are studied in the geometrical optics approximation. The geometry of rays and wavefronts influences decisively the formation and ulterior evolution of shock waves. It is shown that the curvature of the curve where rays start and the angle between rays and wavefronts are the main parameters governing a wide variety of possible outcomes. - Highlights: • Magnetosonic waves are studied in a genuinely multidimensional setting. • Curvature and the angle between rays and wavefronts are the main parameters. • Shock waves may exist or not, depending on initial conditions. • Both velocity and shape of those waves present a large variety of possible outcomes.
Fast wave and electron cyclotron current drive in the DIII-D tokamak
International Nuclear Information System (INIS)
Petty, C.C.; Pinsker, R.I.; Austin, M.E.
1995-01-01
The non-inductive current drive from directional fast Alfven and electron cyclotron waves was measured in the DIII-D tokamak in order to demonstrate these forms of radiofrequency (RF) current drive and to compare the measured efficiencies with theoretical expectations. The fast wave frequency was 8 times the deuterium cyclotron frequency at the plasma centre, while the electron cyclotron wave was at twice the electron cyclotron frequency. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For steady current discharges, an analysis of the loop voltage revealed up to 195 kA of a non-inductive current (out of 310 kA) during combined electron cyclotron and fast wave injection, with a maximum of 110 kA of FWCD and 80 kA of ECCD achieved (not simultaneously). The peakedness of the current profile increased with RF current drive, indicating that the driven current was centrally localized. The FWCD efficiency increased linearly with the central electron temperature as expected; however, the FWCD was severely degraded in low current discharges owing to incomplete fast wave absorption. The measured FWCD agreed with the predictions of a ray tracing code only when a parasitic loss of 4% per pass was included in the modelling along with multiple pass absorption. Enhancement of the second harmonic ECCD efficiency by the toroidal electric field was observed experimentally. The measured ECCD was in good agreement with Fokker-Planck code predictions. (author). 41 refs, 13 figs, 1 tab
Hamiltonian analysis of fast wave current drive in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Becoulet, A; Fraboulet, D; Giruzzi, G; Moreau, D; Saoutic, B [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Chinardet, J [CISI Ingenierie, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)
1993-12-01
The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs.
Hamiltonian analysis of fast wave current drive in tokamak plasmas
International Nuclear Information System (INIS)
Becoulet, A.; Fraboulet, D.; Giruzzi, G.; Moreau, D.; Saoutic, B.
1993-12-01
The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs
Fast wave evanescence in filamentary boundary plasmas
International Nuclear Information System (INIS)
Myra, J. R.
2014-01-01
Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed
Liu, W.; Ofman, L.; Title, A. M.; Zhao, J.; Aschwanden, M. J.
2011-12-01
Recent EUV imaging observations from SDO/AIA led to the discovery of quasi-periodic fast (~2000 km/s) propagating (QFP) waves in active regions (Liu et al. 2011). They were interpreted as fast-mode magnetosonic waves and reproduced in 3D MHD simulations (Ofman et al. 2011). Since then, we have extended our study to a sample of more than a dozen such waves observed during the SDO mission (2010/04-now). We will present the statistical properties of these waves including: (1) Their projected speeds measured in the plane of the sky are about 400-2200 km/s, which, as the lower limits of their true speeds in 3D space, fall in the expected range of coronal Alfven or fast-mode speeds. (2) They usually originate near flare kernels, often in the wake of a coronal mass ejection, and propagate in narrow funnels of coronal loops that serve as waveguides. (3) These waves are launched repeatedly with quasi-periodicities in the 30-200 seconds range, often lasting for more than one hour; some frequencies coincide with those of the quasi-periodic pulsations (QPPs) in the accompanying flare, suggestive a common excitation mechanism. We obtained the k-omega diagrams and dispersion relations of these waves using Fourier analysis. We estimate their energy fluxes and discuss their contribution to coronal heating as well as their diagnostic potential for coronal seismology.
A fast method for linear waves based on geometrical optics
Stolk, C.C.
2009-01-01
We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the
Effects of a longitudinal magnetic field on current pulses and fast ionization-wave structure
International Nuclear Information System (INIS)
Asinovskii, E.I.; Lagar'kov, A.N.; Markovets, V.V.; Rutkevich, I.M.; Ul'yanov, A.M.; Filyugin, I.V.
1988-01-01
A longitudinal magnetic field affects the fast ionization-wave structure in a discharge tube surrounded by a metal screen. The field does not alter the wave speed, but the current amplitude is increased. This is explained from a theory for fast-wave propagation in a cylindrical guide containing an axial field. Numerical solutions have been obtained for the stationary nonlinear waves, which are compared with measurements. A theoretical study has been made on the ionization-wave features for large values of the Hall parameter
Generation of sheet currents by high frequency fast MHD waves
Energy Technology Data Exchange (ETDEWEB)
Núñez, Manuel, E-mail: mnjmhd@am.uva.es
2016-07-01
The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.
Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment
International Nuclear Information System (INIS)
Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Gates, D.; Hosea, J.; Le Blanc, B.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Rosenberg, A.; Bonoli, P.; Mau, T.K.; Pinsker, R.I.; Raman, R.; Ryan, P.; Swain, D.; Wilgen, J.
2003-01-01
High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge
Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment
International Nuclear Information System (INIS)
Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T.K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Pinsker, R.I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.
2003-01-01
High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge
International Nuclear Information System (INIS)
Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Beveren, V. van; Goede, A. P. H.; Graswinckel, M. F.; Schueller, F. C.; Oosterbeek, J. W.; Buerger, A.; Hennen, B. A.
2009-01-01
A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.
Population of vibrational levels of carbon dioxide by cylindrical fast ionization wave
Levko, Dmitry
2017-09-08
The population of vibrational levels of carbon dioxide (CO2) by a cylindrical fast ionization wave is analyzed using a one-dimensional Particle-in-Cell Monte Carlo collisions model. The model takes into account the inelastic electron-neutral collisions as well as the super-elastic collisions between electrons and excited species. We observe an efficient population of only the first two levels of the symmetric and asymmetric vibrational modes of CO2 by means of a fast ionization wave. The excitation of other higher vibrational modes by the fast ionization wave is inefficient. Additionally, we observe a strong influence of the secondary electron emission on the population of vibrational states of CO2. This effect is associated with the kinetics of high energy electrons generated in the cathode sheath.
Fast Physics Testbed for the FASTER Project
Energy Technology Data Exchange (ETDEWEB)
Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.
2010-03-15
This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.
Fast Breakdown as Coronal/Ionization Waves?
Krehbiel, P. R.; Petersen, D.; da Silva, C. L.
2017-12-01
Studies of high-power narrow bipolar events (NBEs) have shown they are produced by a newly-recognized breakdown process called fast positive breakdown (FPB, Rison et al., 2016, doi:10.1038/ncomms10721). The breakdown was inferred to be produced by a system of positive streamers that propagate at high speed ( ˜3-6 x 107 m/s) due to occurring in a localized region of strong electric field. The polarity of the breakdown was determined from broadband interferometer (INTF) observations of the propagation direction of its VHF radiation, which was downward into the main negative charge region of a normally-electrified storm. Subsequent INTF observations being conducted in at Kennedy Space Center in Florida have shown a much greater incidence of NBEs than in New Mexico. Among the larger dataset have been clear-cut instances of some NBEs being produced by upward breakdown that would be of negative polarity. The speed and behavior of the negative breakdown is the same as that of the fast positive, leading to it being termed fast negative breakdown (FNB). The similarity (not too mention its occurrence) is surprising, given the fact that negative streamers and breakdown develops much differently than that of positive breakdown. The question is how this happens. In this study, we compare fast breakdown characteristics to well-known streamer properties as inferred from laboratory experiments and theoretical analysis. Additionally, we begin to explore the possibility that both polarities of fast breakdown are produced by what may be called coronal or ionization waves, in which the enhanced electric field produced by streamer or coronal breakdown of either polarity propagates away from the advancing front at the speed of light into a medium that is in a metastable condition of being at the threshold of hydrometeor-mediated corona onset or other ionization processes. The wave would develop at a faster speed than the streamer breakdown that gives rise to it, and thus would be
Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas
International Nuclear Information System (INIS)
Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.
1996-01-01
A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, δf = f - f 0 , from an initial analytic distribution f 0 . High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question
Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains
Energy Technology Data Exchange (ETDEWEB)
Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2017-10-01
Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train. The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.
A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave Computations
DEFF Research Database (Denmark)
Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.
2011-01-01
We present performance results of a mixed-precision strategy developed to improve a recently developed massively parallel GPU-accelerated tool for fast and scalable simulation of unsteady fully nonlinear free surface water waves over uneven depths (Engsig-Karup et.al. 2011). The underlying wave......-preconditioned defect correction method. The improved strategy improves the performance by exploiting architectural features of modern GPUs for mixed precision computations and is tested in a recently developed generic library for fast prototyping of PDE solvers. The new wave tool is applicable to solve and analyze...
Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.
Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei
2018-01-24
An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.
Parabolic approximation method for fast magnetosonic wave propagation in tokamaks
International Nuclear Information System (INIS)
Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.
1985-07-01
Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters
Fast reactor physics - an overview
International Nuclear Information System (INIS)
Lee, S.M.
2004-01-01
An introduction to the basic features of fast neutron reactors is made, highlighting the differences from the more conventional thermal neutron reactors. A discussion of important feedback reactivity mechanisms is given. Then an overview is presented of the methods of fast reactor physics, which play an important role in the successful design and operation of fast reactors. The methods are based on three main elements, namely (i) nuclear data bases, (ii) numerical methods and computer codes, and (iii) critical experiments. These elements are reviewed and the present status and future trends are summarized. (author)
Numerical calculation of high frequency fast wave current drive in a reactor grade tokamak
International Nuclear Information System (INIS)
Ushigusa, Kenkichi; Hamamatsu, Kiyotaka
1988-02-01
A fast wave current drive with a high frequency is estimated for a reactor grade tokamak by the ray tracing and the quasi-linear Fokker-Planck calculations with an assumption of single path absorption. The fast wave can drive RF current with the drive efficiency of η CD = n-bar e (10 19 m -3 )I RC (A)R(m)/P RF (W) ∼ 3.0 when the wave frequency is selected to be f/f ci > 7. A sharp wave spectrum and a ph|| >/υ Te ∼ 3.0 are required to obtain a good efficiency. A center peaked RF current profile can be formed with an appropriate wave spectrum even in the high temperature plasma. (author)
Physics Structure Analysis of Parallel Waves Concept of Physics Teacher Candidate
International Nuclear Information System (INIS)
Sarwi, S; Linuwih, S; Supardi, K I
2017-01-01
The aim of this research was to find a parallel structure concept of wave physics and the factors that influence on the formation of parallel conceptions of physics teacher candidates. The method used qualitative research which types of cross-sectional design. These subjects were five of the third semester of basic physics and six of the fifth semester of wave course students. Data collection techniques used think aloud and written tests. Quantitative data were analysed with descriptive technique-percentage. The data analysis technique for belief and be aware of answers uses an explanatory analysis. Results of the research include: 1) the structure of the concept can be displayed through the illustration of a map containing the theoretical core, supplements the theory and phenomena that occur daily; 2) the trend of parallel conception of wave physics have been identified on the stationary waves, resonance of the sound and the propagation of transverse electromagnetic waves; 3) the influence on the parallel conception that reading textbooks less comprehensive and knowledge is partial understanding as forming the structure of the theory. (paper)
Physics, Astrophysics and Cosmology with Gravitational Waves.
Sathyaprakash, B S; Schutz, Bernard F
2009-01-01
Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.
Effect of discrete RF spectrum on fast wave current drive
International Nuclear Information System (INIS)
Okazaki, Takashi; Yoshioka, Ken; Sugihara, Masayoshi
1987-08-01
Effect of discrete RF spectrum has been studied for the fast wave current drive with the ion cyclotron range of frequency. Driven current and power densities decrease in this spectrum than in the continuous spectrum. However, there is a possibility to have the mechanism which allows electrons outside the resonance region to interact with the fast wave, taking into account the electron trapping by discrete RF spectrum. In the case of neglecting the electron trapping effect, driven current and power densities decrease up to 0.6 - 0.8 of those which are obtained for the continuous spectrum for the FER (Fusion Experimental Reactor). However, their driven current and power densities can be almost doubled in their magnitude for the discrete spectrum by taking into account the trapping effect. (author)
Full-wave simulations of current profiles for fast magnetosonic wave current drive
International Nuclear Information System (INIS)
Dmitrieva, M.V.; Eriksson, L.-G.; Gambier, D.J.
1992-12-01
Numerical simulations of current drive in tokamaks by fast waves (FWCD) have been performed in the range of the ion cyclotron and at lower frequencies via 3-Dimensional numerical code ICTOR. Trapped particles effects were taken into account in the calculation of the fast wave current drive efficiency and the bootstrap current generation. The global efficiency of FWCD if found to be γ∼ 0.1 x 10 20 AW -1 m -2 for the Joint European Torus tokamak (JET) parameters at a central electron temperature of ∼ 10 kev. The efficiency of FWCD for reactor-like plasmas is found to be γ∼0.3 x 10 20 AW -1 m -2 for ∼ 100% of FWCD and γ∼ 1 x 10 20 AW -1 m -2 for FWCD and ∼ 65% of bootstrap in a total current of ∼ 25MA at a 25kev central temperature with a density of ∼10 20 m -3 and major radius R ∼ 8m. Non-inductive current density profiles are studied. Broad FWCD current profiles are obtained for flat reactor temperature and density profiles with bootstrap current concentrated at the plasma edge. The possibility of a steady-state reactor on full wave (FW) with a large fraction of bootstrap current is discussed. It appears to be impractical to rely on such an external current driven (CD) scheme for a reactor as long a γ is less than 2 x 10 20 AW -1 m -2 . (Author)
Wave Generation in Physical Models
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...
FWCD (fast wave current drive) and ECCD (electron cyclotron current drive) experiments on DIII-D
International Nuclear Information System (INIS)
Prater, R.; Austin, M.; Baity, F.W.
1994-01-01
Fast wave current drive and electron cyclotron current drive experiments have been performed on the DIII-D tokamak as part of the advanced tokamak program. The goal of this program is to develop techniques for controlling the profile of the current density in order to access regimes of improved confinement and stability. The experiments on fast wave current drive used a four strap antenna with 90deg phasing between straps. A decoupler was used to help maintain the phasing, and feedback control of the plasma position was used to keep the resistive loading constant. RF pickup loops demonstrate that the directivity of the antenna is as expected. Plasma currents up to 0.18 MA were driven by 1.5 MW of fast wave power. Electron cyclotron current drive experiments at 60 GHz have shown 0.1 MA of plasma current driven by 1 MW of power. New fast wave and electron cyclotron heating systems are in development for DIII-D, so that the goals of the advanced tokamak program can be carried out. (author)
Les Houches Summer School of Theoretical Physics : Session 72, Coherent Atomic Matter Waves
Westbrook, C; David, F; Coherent Atomic Matter Waves
2001-01-01
Progress in atomic physics has been so vigorous during the past decade that one is hard pressed to follow all the new developments. In the early 1990s the first atom interferometers opened a new field in which we have been able to use the wave nature of atoms to probe fundamental quantum me chanics questions as well as to make precision measurements. Coming fast on the heels of this development was the demonstration of Bose Einstein condensation in dilute atomic vapors which intensified research interest in studying the wave nature of matter, especially in a domain in which "macro scopic" quantum effects (vortices, stimulated scattering of atomic beams) are visible. At the same time there has been much progress in our understanding of the behavior of waves (notably electromagnetic) in complex media, both periodic and disordered. An obvious topic of speculation and probably of future research is whether any new insight or applications will develop if one examines the behavior of de Broglie waves in ana...
Potentiality of fast wave current drive in non-maxwellian plasmas
International Nuclear Information System (INIS)
Moreau, D.; O'Brien, M.R.; Cox, M.; Start, D.F.H.
1987-06-01
After a short analysis of the available experimental data on pure fast wave electron current drive we propose a theoretical scaling law for the wave absorption through combined electron Landau damping and transit time magnetic pumping. We then present the result of a fully relativistic calculation which we apply to a bi-Maxwellian electron distribution function and conclude on the requirements to be fulfilled by the energetic tail for obtaining significant damping in Tore-Supra
Physics, Astrophysics and Cosmology with Gravitational Waves
Directory of Open Access Journals (Sweden)
Sathyaprakash B. S.
2009-03-01
Full Text Available Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers, and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.
Bootstrap and fast wave current drive for tokamak reactors
International Nuclear Information System (INIS)
Ehst, D.A.
1991-09-01
Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power ( o = 18 MA needs P FW = 15 MW, P LH = 75 MW). A computational survey of bootstrap fraction and current drive efficiency is presented. 11 refs., 8 figs
Indian Academy of Sciences (India)
The ATLAS Collaboration has set up a framework to automatically process the rapidly growing dataset and produce performance and physics plots for the most interesting analyses. The system is designed to give fast feedback. The histograms are produced within hours of data reconstruction (2–3 days after data taking).
Monte-Carlo Orbit/Full Wave Simulation of Fast Alfven Wave (FW) Damping on Resonant Ions in Tokamaks
International Nuclear Information System (INIS)
Choi, M.; Chan, V.S.; Pinsker, R.I.; Tang, V.; Bonoli, P.; Wright, J.
2005-01-01
To simulate the resonant interaction of fast Alfven wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement
International Nuclear Information System (INIS)
Ryutov, D.D.; Derzon, M.S.; Matzen, M.K.
1998-07-01
The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizes the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z-pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 52 figures and nearly 300 references
Energy Technology Data Exchange (ETDEWEB)
RYUTOV,D.D.; DERZON,MARK S.; MATZEN,M. KEITH
1999-10-25
The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizing the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 36 figures and more than 300 references.
International Nuclear Information System (INIS)
Lashmore-Davies, C.N.; Fuchs, V.; Dendy, R.O.
1993-01-01
A full-wave equation has been obtained from the gyrokinetic theory for the fast wave traversing a minority cyclotron resonance [Phys. Fluids B 4, 493 (1992)] with the aid of the fast wave approximation [Phys. Fluids 31, 1614 (1988)]. This theory describes the transmission, reflection, and absorption of the fast wave for arbitrary values of the parallel wave number. For oblique propagation the absorption is due to both ion cyclotron damping by minority ions and mode conversion to the ion Bernstein wave. The results for a 3 He minority in a D plasma indicate that for perpendicular propagation and minority temperatures of a few keV the power lost by the fast wave is all mode converted whereas for minority temperatures ∼100 keV∼30% of the incident power is dissipated by the minority ions due to the gyrokinetic correction. The gyrokinetic correction also results in a significant reduction in the reflection coefficient for low field side incidence when k zLB approx-lt 1 and the minority and hybrid resonances overlap
Launching fast waves in large devices
International Nuclear Information System (INIS)
Jacquinot, J.; Bhatnagar, V.P.; Kaye, A.; Brown, T.
1994-01-01
Design features of JET A2-antennae including that of remote location of ceramic are outlined. These antennae are being installed in preparation for the new divertor phase of JET that will commence in 1994. The experience of antenna design gained at JET is carried forward to present an outline in blanket/shield design of an antenna for launching fast waves in ITER for heating and current drive. Further, a new wide band antenna the so called 'violin antenna' is presented that features high plasma coupling resistance in selected bands in the 20-85 MHz frequency range. (author)
International Nuclear Information System (INIS)
Becoulet, A.
1990-06-01
The role of additional Heatings, such as the Ion Cyclotron Heating, is to raise magnetic fusion plasmas to higher temperatures, to satisfy the ignition condition. The understanding of the wave absorption mechanisms by the plasma first requires a precise description of the particle individual trajectories. The Hamiltonian mechanics, through action-angle variables, allows this description, and makes the computation of the wave-particle interaction easier. We then derive a quantitative evaluation of the intrinsic stochasticity for ionic trajectories perturbated by the fast wave. This stochasticity, combinated to the collisional effects, gives the validity domain for a quasilinear approximation of the evolution equation. This equation is then written under a variational formulation, and solved semi-analytically. Results conclude to the importance of the Hamiltonian chaos in the formation of the deeply anisotropic distribution tails, encountered in minority heating scenarios. Direct interaction of the electrons and the fast wave is similarly analysed. The influence of the various parameters (wave spectrum, magnetic configuration, frequency,...) is then examined in order to optimize this scenario of fast wave current drive in tokamaks [fr
Full-wave calculation of fast-wave current drive in tokamaks including kparallel upshifts
International Nuclear Information System (INIS)
Jaeger, E.F.; Batchelor, D.B.
1991-01-01
Numerical calculations of fast-wave current drive (FWCD) efficiency have generally been of two types: ray tracing or global wave calculations. Ray tracing shows that the projection of the wave number (k parallel) along the magnetic field can vary greatly over a ray trajectory, particularly when the launch point is above or below the equatorial plane. As the wave penetrates toward the center of the plasma, k parallel increases, causing a decrease in the parallel phase speed and a corresponding decrease in the current drive efficiency, γ. But the assumptions of geometrical optics, namely short wavelength and strong single-pass absorption, are not greatly applicable in FWCD scenarios. Eigenmode structure, which is ignored in ray tracing, can play an important role in determining electric field strength and Landau damping rates. In such cases, a full-wave or global solution for the wave fields is desirable. In full-wave calculations such as ORION k parallel appear as a differential operator (rvec B·∇) in the argument of the plasma dispersion function. Since this leads to a differential system of infinite order, such codes of necessity assume k parallel ∼ k var-phi = const, where k var-phi is the toroidal wave number. Thus, it is not possible to correctly include effects of the poloidal magnetic field on k parallel. The problem can be alleviated by expressing the electric field as a superposition of poloidal modes, in which case k parallel is purely algebraic. This paper describes a new full-wave calculation, Poloidal Ion Cyclotron Expansion Solution, which uses poloidal and toroidal mode expansions to solve the wave equation in general flux coordinates. The calculation includes a full solution for E parallel and uses a reduced-order form of the plasma conductivity tensor to eliminate numerical problems associated with resolution of the very short wavelength ion Bernstein wave
Calculation of coupling to slow and fast waves in the LHRF from phased waveguide arrays
International Nuclear Information System (INIS)
Pinsker, R.I.; Duvall, R.E.; Fortgang, C.M.; Colestock, P.L.
1986-04-01
A previously reported algorithm for solving the problem of coupling electromagnetic energy in the LHRF from a phased array of identical rectangular waveguides to a plane-stratified, magnetized cold plasma is numerically implemented. The resulting computer codes are sufficiently general to allow for an arbitrary number of waveguides with finite dimensions in both poloidal and toroidal directions, and are thus capable of computing coupling to both slow and fast waves in the plasma. Some of the details of the implementation and the extension of the algorithm to allow study of the Fourier spectrum of slow and fast waves launched by the array are discussed. Good agreement is found with previously reported, less general work for the slow wave launching case. The effect of phasing multirow arrays in the poloidal direction is studied, and an asymmetry between phasing 'up' and 'down' is found that persists in the case where the plasma adjacent to the array is uniform. A 4 x 3 array designed to launch fast waves of high phase velocity is studied. By using the optimal poloidal phasing, low reflection coefficients (absolute value of R 2 less than or equal to 20%) are found under some not unrealistic edge plasma conditions, but most of the input power is trapped in the outermost layer of the plasma. Implications of our results for fast wave current drive experiments are discussed
Fast Wave Transmission Measurements on Alcator C-Mod
Reardon, J.; Bonoli, P. T.; Porkolab, M.; Takase, Y.; Wukitch, S. J.
1997-11-01
Data are presented from an array of single-turn loop probes newly installed on the inner wall of C-Mod, directly opposite one of the two fast-wave antennas. The 8-loop array extends 32^circ in the toroidal direction at the midplane and can distinguish electromagnetic from electrostatic modes. Data are acquired by 1GHz digitizer, spectrum analyzer, and RF detector circuit. Phase measurements during different heating scenarios show evidence of both standing and travelling waves. The measurement of toroidal mode number N_tor (conserved under the assumption of axisymmetry) is used to guide the toroidal full-wave code TORIC(Brambilla, M., IPP Report 5/66, February 1996). Amplitude measurements show modulation both by Type III ELMs and sawteeth; the observed sawtooth modulation may be interpreted as due to changes in central absorption. The amplitude of tildeB_tor measured at the inner wall is compared to the prediction of TORIC.
Influence of fast waves on the collective scattering of microwaves in fusion plasmas
International Nuclear Information System (INIS)
Chiu, S.C.
1992-01-01
Microwave scattering by the fluctuations of fusion plasmas is one of the most promising α-diagnostic techniques. Previous investigations have concentrated on the fluctuations near the slow wave branch in the lower hybrid range of frequencies. The small signal and the lack of sensitivity to the contribution of α-particles to the total cross-section near the slow branch severely limits the effectiveness of this technique. In this paper, we report results of investigations of scattering by fluctuations in the lower hybrid range of frequencies near the fast branch. Surprisingly, when both fast and slow branches exist, the scattering amplitudes are comparable. More important, the α-contribution is larger for the fast branch and the fast branch has a larger parameter space where it exists. Specifically, the slow branch exists only above the lower hybrid frequency, while the fast branch can exist at all frequencies up to the electron cyclotron range of frequencies. We find numerically that the scattering amplitudes near the fast branch below the lower hybrid frequency are several orders of magnitude larger than those near the slow branch above that frequency where it can exist. This may make microwave scattering by fast waves a more attractive α-diagnostic technique. (orig.)
Fast-wave heating of a two-component plasma
International Nuclear Information System (INIS)
Stix, T.H.
1975-02-01
The use of the compressional hydromagnetic mode (also called the magnetosonic or, simply, the fast wave) is examined in some detail with respect to the heating of a tritium plasma containing a few percent deuterium. Efficient absorption of wave energy by the deuteron component is found when ω = ω/sub c/ (deuterons), with Q/sub wave/ greater than or equal to 100. The dominant behavior of the high-energy deuteron distribution function is found to be f(v) approximately exp[3/2) ∫/sup v/ dv less than Δv greater than/less than(Δv/sub perpendicular to/) 2 greater than], where [Δv] is the Chandrasekhar-Spitzer drag coefficient, and [(Δv/sub perpendicular to/) 2 sigma] is the Kennel-Englemann quasilinear diffusion coefficient for wave--particle interaction at the deuteron cyclotron frequency. An analytic solution to the one-dimensional Fokker--Planck equation, with rf-induced diffusion, is developed, and using this solution together with Duane's fit to the D-T fusion cross-section, it is found that the nuclear fusion power output from an rf-produced two-component plasma can significantly exceed the incremental (radiofrequency) power input. (auth)
Effects of minority ions on the propagation of the Fast Alfven wave
International Nuclear Information System (INIS)
Wong, K.L.; Kristiansen, M.; Hagler, M.
1985-01-01
Minority ions play an important role in ICRF wave heating and fast wave current drive. The former provides supplemental heating to the plasma ions, and the latter enables a Tokamak reactor to operate in steady state. The injection of minority ions greatly perturbs the propagation and absorption properties of the fast waves provided that the excitation frequency and confining magnetic field strength make the hybrid layers exist inside the plasma. A cold-plasma slab model with gradient confining magnetic field, parabolic plasma density, vacuum layer, launching antenna and conducting walls was used in studying wave propagation with and without minority ions. The wave propagation was studied individually for each discrete toroidal eigenmode (N=Rk/sub z/). There exists an asymmetric density cutoff region which is mainly due to the density variation in a single-ion plasma. The larger the torodial mode number, the larger the density cutoff region. Therefore, there exists a maximum mode number N/sub m/, which can be excited for each operating frequency. With injection of minority ions, the cutoff region for each mode number is almost unchanged. But, if one carefully chooses the excitation frequency; the hybrid layers can exist inside the plamsa for all or part of the allowed eigenmodes. Those eigenmodes with hybrid layers inside the plasma will undergo drastic change in the propagation and absorption of the waves
International Nuclear Information System (INIS)
Komoshvili, K.; Bruma, C.; Cuperman, S.
2004-01-01
Full Text:In the magnetically confined fusion devices, externally launched e.m. waves are used, e.g., for heating, non-inductive current drive and turbulent transport suppression barriers. In view of the complexity of these processes, it is desirable to assist the planning of the actual experiments by reliable theoretical (computational) studies. This work aims to (i) assess the effect of antenna position and extension on the fast waves-plasma interactions in pre-heated spherical tokamaks and consequently, (ii) to further the physical understanding as well as to determine optimal conditions in order to achieve the imposed goals. Thus, using as a study case the spherical tokamak START, we considered the following antenna positions and extensions: (a) low field side location and i T ±π/4 poloidal extension; (b) above and below middle-plane locations (two separate sections) and extending (each) π/2; (c) (hypothetical) circular, 2π-extension. We solved the full wave equations in order to consistently determine the global e.m. field for Alfvinic modes in inhomogeneous, non-uniformly magnetized, resistive, small aspect ratio tokamak plasma in the presence of externally launched fast waves. The global approach consists of simultaneous treatment of the plasma-vacuum-external RF source-vacuum-metal wall configuration with the appropriate consideration of wave propagation, transmission, absorption and mode conversion; in this, no simplifying approximations or small parameter extension are used. Illustrative results of these investigations will be presented and discussed
INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH ION CYCLOTRON RESONANCE FREQUENCY WAVES
International Nuclear Information System (INIS)
CHOI, M.; CHAN, V.S.; CHIU, S.C.; OMELCHENKO, Y.A.; SENTOKU, Y.; STJOH, H.E.
2003-01-01
OAK B202 INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH CYCLOTRON RESONANCE FREQUENCY WAVES. Existing tokamaks such as DIII-D and future experiments like ITER employ both NB injection (NBI) and ion-cyclotron resonance heating (ICRH) for auxiliary heating and current drive. The presence of energetic particles produced by NBI can result in absorption of the Ion cyclotron radio frequency (ICRF) power. ICRF can also interact with the energetic beam ions to alter the characteristics of NBI momentum deposition and resultant impact on current drive and plasma rotation. To study the synergism between NBI and ICRF, a simple physical model for the slowing-down of NB injected fast ions is implemented in a Monte-Carlo rf orbit code. This paper presents the first results. The velocity space distributions of energetic ions generated by ICRF and NBI are calculated and compared. The change in mechanical momentum of the beam and an estimate of its impact on the NB-driven current are presented and compared with ONETWO simulation results
RF heating and current drive on NSTX with high harmonic fast waves
International Nuclear Information System (INIS)
Ryan, P.M.
2002-01-01
NSTX is a small aspect ratio tokamak with a large dielectric constant (50-100); under these conditions high harmonic fast waves (HHFW) will readily damp on electrons via Landau damping and TTMP. The HHFW system is a 30 MHz, 12-element array capable of launching both symmetric and directional wave spectra for plasma heating and non-inductive current drive. It has delivered up to 6 MW for short pulses and has routinely operated at ∼3-4 MW for 100-200 ms pulses. Results include strong, centrally-peaked electron heating in both D and He plasmas, for both high and low phase velocity spectra. H-modes were obtained with application of HHFW power alone, with stored energy doubling after the L-H transition. Beta poloidal as large as unity has been obtained with large fractions (0.4) of bootstrap current. A fast ion tail with energies extending up to 140 keV has been observed when HHFW interacts with 80 keV neutral beams; neutron rate and lost ion measurements, as well as modeling, indicate significant power absorption by the fast ions. Radial power deposition profiles are being calculated with ray tracing and kinetic full-wave codes and benchmarked against measurements. (author)
International Nuclear Information System (INIS)
Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.
2008-01-01
A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.
Project Physics Programmed Instruction, Waves 2.
Harvard Univ., Cambridge, MA. Harvard Project Physics.
This is the second of two programmed instruction booklets on the topic of waves, developed by Harvard Project Physics. It covers the relationships among the frequency, period, wavelength, and speed of a periodic wave. For the first booklet in this series, see SE 015 552. (DT)
A kind of iteration algorithm for fast wave heating
International Nuclear Information System (INIS)
Zhu Xueguang; Kuang Guangli; Zhao Yanping; Li Youyi; Xie Jikang
1998-03-01
The standard normal distribution for particles in Tokamak geometry is usually assumed in fast wave heating. In fact, due to the quasi-linear diffusion effect, the parallel and vertical temperature of resonant particles is not equal, so, this will bring some error. For this case, the Fokker-Planck equation is introduced, and iteration algorithm is adopted to solve the problem well
Instantaneous wave emission model
International Nuclear Information System (INIS)
Kruer, W.L.
1970-12-01
A useful treatment of electrostatic wave emission by fast particles in a plasma is given. First, the potential due to a fast particle is expressed as a simple integration over the particle orbit; several interesting results readily follow. The potential in the wake of an accelerating particle is shown to be essentially that produced through local excitation of the plasma by the particle free-streaming about its instantaneous orbit. Application is made to one dimension, and it is shown that the wave emission and adsorption synchronize to the instantaneous velocity distribution function. Guided by these calculations, we then formulate a test particle model for computing the instantaneous wave emission by fast particles in a Vlasov plasma. This model lends itself to physical interpretation and provides a direct approach to many problems. By adopting a Fokker-Planck description for the particle dynamics, we calculate the broadening of the wave-particle resonance due to velocity diffusion and drag
An accurate, fast, and scalable solver for high-frequency wave propagation
Zepeda-Núñez, L.; Taus, M.; Hewett, R.; Demanet, L.
2017-12-01
In many science and engineering applications, solving time-harmonic high-frequency wave propagation problems quickly and accurately is of paramount importance. For example, in geophysics, particularly in oil exploration, such problems can be the forward problem in an iterative process for solving the inverse problem of subsurface inversion. It is important to solve these wave propagation problems accurately in order to efficiently obtain meaningful solutions of the inverse problems: low order forward modeling can hinder convergence. Additionally, due to the volume of data and the iterative nature of most optimization algorithms, the forward problem must be solved many times. Therefore, a fast solver is necessary to make solving the inverse problem feasible. For time-harmonic high-frequency wave propagation, obtaining both speed and accuracy is historically challenging. Recently, there have been many advances in the development of fast solvers for such problems, including methods which have linear complexity with respect to the number of degrees of freedom. While most methods scale optimally only in the context of low-order discretizations and smooth wave speed distributions, the method of polarized traces has been shown to retain optimal scaling for high-order discretizations, such as hybridizable discontinuous Galerkin methods and for highly heterogeneous (and even discontinuous) wave speeds. The resulting fast and accurate solver is consequently highly attractive for geophysical applications. To date, this method relies on a layered domain decomposition together with a preconditioner applied in a sweeping fashion, which has limited straight-forward parallelization. In this work, we introduce a new version of the method of polarized traces which reveals more parallel structure than previous versions while preserving all of its other advantages. We achieve this by further decomposing each layer and applying the preconditioner to these new components separately and
Fast Particle Interaction With Waves In Fusion Plasmas
International Nuclear Information System (INIS)
Breizman, Boris
2006-01-01
There are two well-known motivations for theoretical studies of fast particle interaction with waves in magnetic confinement devices. One is the challenge of avoiding strong collective losses of alpha particles and beam ions in future burning plasma experiments. The other one is the compelling need to quantitatively interpret the large amount of experimental data from JET, TFTR, JT-60U, DIII-D, and other machines. Such interpretation involves unique diagnostic opportunities offered by MHD spectroscopy. This report discusses how the present theory responds to the stated challenges and what theoretical and computational advances are required to address the outstanding problems. More specifically, this paper deals with the following topics: predictive capabilities of linear theory and simulations; theory of Alfven cascades; diagnostic opportunities based on linear and nonlinear properties of unstable modes; interplay of kinetic and fluid nonlinearities; fast chirping phenomena for non-perturbative modes; and global transport of fast particles. Recent results are presented on some of the listed topics, although the main goal is to identify critical issues for future work
Oblique Propagation of Fast Surface Waves in a Low-Beta Hall-Magnetohydrodynamics Plasma Slab
International Nuclear Information System (INIS)
Zhelyazkov, I.; Mann, G.
1999-01-01
The oblique propagation of fast sausage and kink magnetohydrodynamics (MHD) surface waves in an ideal magnetized plasma slab in the low-beta plasma limit is studied considering the Hall term in the generalized Ohm's law. It is found that the combined action of the Hall effect and oblique wave propagation makes possible the existence of multivalued solutions to the wave dispersion relations - some of them corresponding to positive values of the transfer wave number, k y , undergo a 'propagation stop' at specific (numerically found) full wave numbers. It is also shown that with growing wave number the waves change their nature - from bulk modes to pseudosurface or pure surface waves. (author)
Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks
Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.
2005-09-01
To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.
Development of physical conceptions of fast reactors
International Nuclear Information System (INIS)
Khomyakov, Yu.S.; Matveev, V.I.; Moiseev, A.V.
2013-01-01
• Russian experience in developing fast reactors has proved clearly scientific justification of conceptual physical principles and their technical feasibility. • However, the potential of fast reactors caused by their physical features has not been fully realized. • In order to assure the real possibility of transition to the nuclear power with fast reactors by about 2030 it is necessary to consistently update fast reactor designs for solving the following key problems: - increasing of self-protection level of reactor core; - improvement of technical and economical characteristics; - solution of the problems related to the fuel supply of nuclear power and assimilation of closed nuclear fuel cycle; - disposal of long lived radioactive waste and transmutation of minor actinides. • Russian program (2010-2020) on the development of basic concepts of the new generation reactors implies successive solution of the above problems. • New technical decisions will be demonstrated by development and assimilation of the new reactors: - BN-800 – development of the fuel cycle infrastructure and mastering of the new types of fuel; - BN-1200 reactor – demonstration economical efficiency of fast reactor and new level of safety; - BREST development and demonstration new heavy liquid metal coolant technology and alternative design concept
Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom
Energy Technology Data Exchange (ETDEWEB)
Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico); Garipov, R., E-mail: ruslan.garipov@mrsolutions.co.uk [MR Solutions Ltd, Surrey (United Kingdom); Rodríguez, A. O., E-mail: arog@xanum.uam.mx [Departamento Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, México, DF 09340 (Mexico)
2014-11-07
Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.
High frequency fast wave results from the CDX-U spherical torus
International Nuclear Information System (INIS)
Kaita, R.; Majeski, R.; Menard, J.
2001-01-01
The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)
High frequency fast wave results from the CDX-U spherical torus
International Nuclear Information System (INIS)
Kaita, R.; Majeski, R.; Menard, J.
1999-01-01
The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)
DEFF Research Database (Denmark)
Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak
2016-01-01
A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...
Propagation of fast ionization waves in long discharge tubes filled with a preionized gas
International Nuclear Information System (INIS)
Boutine, O.V.; Vasilyak, L.M.
1999-01-01
The propagation of fast ionization waves in discharge tubes is modeled with allowance for radial variations in the electric potential, nonlocal dependence of the plasma parameters on the electric field, and nonsteady nature of the electron energy distribution. The wave propagation dynamics and the wave attenuation in helium are described. The plasma parameters at the wave front and behind the front and the energy deposition in the discharge are found. The results obtained are compared with experimental data
RF heating and current drive on NSTX with high harmonic fast waves
International Nuclear Information System (INIS)
Ryan, P.M.; Swain, D.W.; Rosenberg, A.L.
2003-01-01
NSTX is a small aspect ratio tokamak (R = 0.85 m, a = 0.65 m). The High Harmonic Fast Wave (HHFW) system is a 30 MHz, 12-element array capable of launching both symmetric and directional wave spectra for plasma heating and non-inductive current drive. It has delivered up to 6 MW for short pulses and has routinely operated at ∼3 MW for 100-400 ms pulses. Results include strong, centrally-peaked electron heating in both D and He plasmas for both high and low phase velocity spectra. H-modes were obtained with application of HHFW power alone, with stored energy doubling after the L-H transition. Beta poloidal as large as unity has been obtained with significant fractions (0.4) of bootstrap current. Differences in the loop voltage are observed depending on whether the array is phased to drive current in the co- or counter-current directions. A fast ion tail with energies extending up to 140 keV has been observed when HHFW interacts with 80 keV neutral beams; neutron rate and lost ion measurements, as well as modeling, indicate significant power absorption by the fast ions. Radial rf power deposition and driven current profiles have been calculated with ray tracing and kinetic full-wave codes and compared with measurements. (author)
Understanding "Human" Waves: Exploiting the Physics in a Viral Video
Ferrer-Roca, Chantal
2018-01-01
Waves are a relevant part of physics that students find difficult to grasp, even in those cases in which wave propagation kinematics can be visualized. This may hinder a proper understanding of sound, light or quantum physics phenomena that are explained using a wave model. So-called "human" waves, choreographed by people, have proved to…
Combline antennas for launching traveling fast waves
International Nuclear Information System (INIS)
Moeller, C.P.; Gould, R.W.; Phelps, D.A.; Pinsker, R.I.
1994-01-01
The combline structure shows promise for launching traveling fast magnetosonic waves with adjustable n parallel (3 ≤ n parallel ≤ 6) for current drive. In this paper, the dispersion and damping properties of the combline antenna with and without a Faraday shield are given. The addition of a Faraday shield which eliminates the electrostatic coupling between current straps as well as between the straps and plasma offers the advantage of eliminating the need for the lumped capacitors which are otherwise required with this structure. The results of vacuum dispersion and damping measurements on a low power model antenna are also given. (author)
Benchmark on traveling wave fast reactor with negative reactivity feedback obtained with MCNPX code
International Nuclear Information System (INIS)
Gann, V.V.; Gann, A.V.
2012-01-01
This paper presents results of computer simulations of traveling wave fast reactor with negative reactivity feedback. The results were obtained using MCNPX code combined with CINDER90 subroutine for depletion calculations. We considered 1-D model of TWR containing 4 m long core made of mixture of 66 at. % 238 U and 34 at. % 10 B. Ignitor made of 235 U was located in the center of the core. Boron was included as imitator of structural in-core materials and coolant. Negative reactivity feedback was adjusted to reactor power of 500 MW. In this case two burning waves originated from the igniter and travel to the ends of the core during the following 40 years; coefficient of utilization of 238 U reached 80 %. Distribution of specific power in traveling wave, isotope concentration of fission products and actinides, neutron flux, fast neutron spectrum, specific activity were calculated. Data of the computer simulation is in qualitative agreement with theoretical results obtained in slow burning wave approximation
Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves
Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.
2016-10-01
Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org
Experimental study of the fast wave propagation in TFR
International Nuclear Information System (INIS)
1981-02-01
Several experiments (PLT, DIVA, ERASMUS, TFR) have shown that the heating mechanism of ICRF is dominated in Tokamaks by the presence of the ion-ion hybrid layer. The first experimental evidence of this effect came from propagation studies: a very strong damping was observed on magnetic probes since the hybrid layer was inside the plasma. Comparison with simple models which do not take into account boundary conditions have been undertaken. Recently a new theoretical model has been developped. Based on a plane, inhomogeneous, bounded plasma, it shows that the radial structure of the fast wave and hence the loading impedance of the launching coil depends on the position of the hybrid layer with respect to the plasma boundaries. This result is obtained by solving the wave equation, in the cold plasma approximation. We present here, a serie of experiments, performed in TFR. It confirms the validity of that model underlining thus the importance of radial eigenmodes, when the wave conversion layer is inside the plasma
Possibilities of heating a TFR plasma by absorption of the fast hydromagnetic wave
International Nuclear Information System (INIS)
Adam, J.
The prospects of TFR heating by fast hydromagnetic waves are considered by an examination of the following topics: (1) characteristics of the dispersion relation, (2) the charge impedance of an antenna capable of exciting these modes, and (3) the heating effects which would be caused by dissipation of these waves around ω = ω/sub ci/ and ω = 2ω/sub ci/
Population of vibrational levels of carbon dioxide by cylindrical fast ionization wave
Levko, Dmitry; Pachuilo, Michael; Raja, Laxminarayan L.
2017-01-01
The population of vibrational levels of carbon dioxide (CO2) by a cylindrical fast ionization wave is analyzed using a one-dimensional Particle-in-Cell Monte Carlo collisions model. The model takes into account the inelastic electron
Physical studies of fast ignition in China
International Nuclear Information System (INIS)
He, X T; Cai, Hong-bo; Wu, Si-zhong; Cao, Li-hua; Zhang, Hua; He, Ming-qing; Chen, Mo; Wu, Jun-feng; Zhou, Cang-tao; Zhou, Wei-Min; Shan, Lian-qiang; Wang, Wei-wu; Zhang, Feng; Bi, Bi; Zhao, Zong-qing; Gu, Yu-qiu; Zhang, Bao-han; Wang, Wei; Fang, Zhi-heng; Lei, An-le
2015-01-01
Fast ignition approach to inertial confinement fusion is one of the important goals today, in addition to central hot spot ignition in China. The SG-IIU and PW laser facilities are coupled to investigate the hot spot formation for fast ignition. The SG-III laser facility is almost completed and will be coupled with tens kJ PW lasers for the demonstration of fast ignition. In recent years, for physical studies of fast ignition, we have been focusing on the experimental study of implosion symmetry, M-band radiation preheating and mixing, advanced fast ignition target design, and so on. In addition, the modeling capabilities and code developments enhanced our ability to perform the hydro-simulation of the compression implosion, and the particle-in-cell (PIC) and hybrid-PIC simulation of the generation, transport and deposition of relativistic electron beams. Considerable progress has been achieved in understanding the critical issues of fast ignition. (paper)
Plane wave fast color flow mode imaging
DEFF Research Database (Denmark)
Bolic, Ibrahim; Udesen, Jesper; Gran, Fredrik
2006-01-01
A new Plane wave fast color flow imaging method (PWM) has been investigated, and performance evaluation of the PWM based on experimental measurements has been made. The results show that it is possible to obtain a CFM image using only 8 echo-pulse emissions for beam to flow angles between 45...... degrees and 75 degrees. Compared to the conventional ultrasound imaging the frame rate is similar to 30 - 60 times higher. The bias, B-est of the velocity profile estimate, based on 8 pulse-echo emissions, is between 3.3% and 6.1% for beam to flow angles between 45 degrees and 75 degrees, and the standard...
Effect of material parameters on stress wave propagation during fast upsetting
Institute of Scientific and Technical Information of China (English)
WANG Zhong-jin; CHENG Li-dong
2008-01-01
Based'on a dynamic analysis method and an explicit algorithm, a dynamic explicit finite element code was developed for modeling the fast upsetting process of block under drop hammer impact, in which the hammer velocity during the deformation was calculated by energy conservation law according to the operating principle of hammer equipment. The stress wave propagation and its effect on the deformation were analyzed by the stress and strain distributions. Industrial pure lead, oxygen-free high-conductivity (OFHC) copper and 7039 aluminum alloy were chosen to investigate the effect of material parameters on the stress wave propagation. The results show that the stress wave propagates from top to bottom of block, and then reflects back when it reaches the bottom surface. After that, stress wave propagates and reflects repeatedly between the upper surface and bottom surface. The stress wave propagation has a significant effect on the deformation at the initial stage, and then becomes weak at the middle-final stage. When the ratio of elastic modulus or the slope of stress-strain curve to mass density becomes larger, the velocity of stress wave propagation increases, and the influence of stress wave on the deformation becomes small.
Fast electron flux driven by lower hybrid wave in the scrape-off layer
International Nuclear Information System (INIS)
Li, Y. L.; Xu, G. S.; Wang, H. Q.; Wan, B. N.; Chen, R.; Wang, L.; Gan, K. F.; Yang, J. H.; Zhang, X. J.; Liu, S. C.; Li, M. H.; Ding, S.; Yan, N.; Zhang, W.; Hu, G. H.; Liu, Y. L.; Shao, L. M.; Li, J.; Chen, L.; Zhao, N.
2015-01-01
The fast electron flux driven by Lower Hybrid Wave (LHW) in the scrape-off layer (SOL) in EAST is analyzed both theoretically and experimentally. The five bright belts flowing along the magnetic field lines in the SOL and hot spots at LHW guard limiters observed by charge coupled device and infrared cameras are attributed to the fast electron flux, which is directly measured by retarding field analyzers (RFA). The current carried by the fast electron flux, ranging from 400 to 6000 A/m 2 and in the direction opposite to the plasma current, is scanned along the radial direction from the limiter surface to the position about 25 mm beyond the limiter. The measured fast electron flux is attributed to the high parallel wave refractive index n || components of LHW. According to the antenna structure and the LHW power absorbed by plasma, a broad parallel electric field spectrum of incident wave from the antennas is estimated. The radial distribution of LHW-driven current density is analyzed in SOL based on Landau damping of the LHW. The analytical results support the RFA measurements, showing a certain level of consistency. In addition, the deposition profile of the LHW power density in SOL is also calculated utilizing this simple model. This study provides some fundamental insight into the heating and current drive effects induced by LHW in SOL, and should also help to interpret the observations and related numerical analyses of the behaviors of bright belts and hot spots induced by LHW
Simulations of ICRF-fast wave current drive on DIIID
International Nuclear Information System (INIS)
Ehst, D.A.
1990-06-01
Self-consistent calculations of MHD equilibria, generated by fast wave current drive and including the bootstrap effect, were done to guide and anticipate the results of upcoming experiments on the DIIID tokamak. The simulations predict that 2 MW of ICRF power is more than adequate to create several hundred kiloamperes in steady state; the total current increases with the temperature and density of the target plasma. 12 refs., 12 figs., 1 tab
Global Hybrid Simulation of Alfvenic Waves Associated with Magnetotail Reconnection and Fast Flows
Cheng, L.; Lin, Y.; Wang, X.; Perez, J. D.
2017-12-01
Alfvenic fluctuations have been observed near the magnetotail plasma sheet boundary layer associated with fast flows. In this presentation, we use the Auburn 3-D Global Hybrid code (ANGIE3D) to investigate the generation and propagation of Alfvenic waves in the magnetotail. Shear Alfven waves and kinetic Alfven waves (KAWs) are found to be generated in magnetic reconnection in the plasma sheet as well as in the dipole-like field region of the magnetosphere, carrying Poynting flux along magnetic field lines toward the ionosphere, and the wave structure is strongly altered by the flow braking in the tail. The 3-D structure of the wave electromagnetic field and the associated parallel currents in reconnection and the dipole-like field region is presented. The Alfvenic waves exhibit a turbulence spectrum. The roles of these Alfvenic waves in ion heating is discussed.
Energy Technology Data Exchange (ETDEWEB)
Wang, Hongjuan; Liu, Siqing; Gong, Jiancun [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Ning [School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan 650031 (China); Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)
2015-06-01
We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.
International Nuclear Information System (INIS)
Takashima, Keisuke; Adamovich, Igor V.; Xiong Zhongmin; Kushner, Mark J.; Starikovskaia, Svetlana; Czarnetzki, Uwe; Luggenhoelscher, Dirk
2011-01-01
Fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 ns, and voltage rise time ∼1 kV/ns), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.
Fisher, Ryan Patrick; Hughey, Brennan; Howell, Eric; LIGO Collaboration
2018-01-01
Although Fast Radio Bursts (FRB) are being detected with increasing frequency, their progenitor systems are still mostly a mystery. We present the plan to conduct targeted searches for gravitational-wave counterparts to these FRB events in the data from the first and second observing runs of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).
International Nuclear Information System (INIS)
Liu, D; Heidbrink, W W; Podesta, M; Ruskov, E; Bell, R E; Fredrickson, E D; Medley, S S; Harvey, R W
2010-01-01
Combined neutral beam injection and high-harmonic fast-wave (HHFW) heating accelerate deuterium fast ions in the National Spherical Torus Experiment (NSTX). With 1.1 MW of HHFW power, the neutron emission rate is about three times larger than in the comparison discharge without HHFW heating. Acceleration of fast ions above the beam injection energy is evident on an E||B type neutral particle analyzer (NPA), a 4-chord solid state neutral particle analyzer (SSNPA) array and a 16-channel fast-ion D-alpha (FIDA) diagnostic. The accelerated fast ions observed by the NPA and SSNPA diagnostics mainly come from passive charge exchange reactions at the edge due to the NPA/SSNPA localization in phase space. The spatial profile of accelerated fast ions that is measured by the FIDA diagnostic is much broader than in conventional tokamaks because of the multiple resonance layers and large orbits in NSTX. The fast-ion distribution function calculated by the CQL3D Fokker-Planck code differs from the measured spatial profile, presumably because the current version of CQL3D uses a zero-banana-width model. In addition, compressional Alfven eigenmode activity is stronger during the HHFW heating and it may affect the fast-ion spatial profile.
Study of fast wave current drive in a KT-2 tokamak plasma
International Nuclear Information System (INIS)
Hong, B.G.; Hamamatsu, Kiyotaka
1996-02-01
Global analysis of fast wave current drive in a KT-2 tokamak plasma is performed by using the code, TASKW1, developed by JAERI and Okayama University (Dr. Fukuyama), which solves the kinetic wave equation in a one dimensional slab geometry. A phase-shifted antenna array is used to inject toroidal momentum to electrons. To find guidelines of optimum antenna design for efficient current drive, accessibility conditions are derived. The dependence of the current drive efficiency on launching conditions such as the total number of antennas, phase and spacing is investigated for two cases of wave frequency; f=30 MHz ( cH ) and f=225 MHz (=5f cH ). (author)
Fast-wave current drive modelling for large non-circular tokamaks
International Nuclear Information System (INIS)
Batchelor, D.B.; Goldfinger, R.C.; Jaeger, E.F.; Carter, M.D.; Swain, D.W.; Ehst, D.; Karney, C.F.F.
1990-01-01
It is widely recognized that a key element in the development of an attractive tokamak reactor, and in the successful achievement of the mission of ITER, is the development of an efficient steady-state current drive technique. Fast waves in the ion cyclotron range of frequencies hold the promise to drive steady-state currents with the required efficiency and to effectively heat the plasma to ignition. Advantages over other heating and current drive techniques include low cost per watt and the ability to penetrate to the center of high-density plasmas. The primary issues that must be resolved are: can an antenna array be designed to radiate the required spectrum of waves and have adequate coupling properties? Will the rf power be efficiently absorbed by electrons in the desired velocity range without unacceptable parasitic damping by fuel ions or α particles? What will the efficiency of current drive be when toroidal effects such as trapped particles are included? Can a practical rf system be designed and integrated into the device? We have addressed these issues by performing extensive calculations with ORION, a 2-D code, and the ray tracing code RAYS, which calculate wave propagation, absorption and current drive in tokamak geometry, and with RIP, a 2-D code that self-consistently calculates current drive with MHD equilibrium. An important figure of merit in this context is the integrated, normalized current drive efficiency. The calculations that we present here emphasize the ITER device. We consider a low-frequency scenario such that no ion resonances appear in the machine, and a high-frequency scenario such that the deuterium second harmonic resonance is just outside the plasma and the tritium second harmonic is in the plasma, midway between the magnetic axis and the inside edge. In both cases electron currents are driven by combined TTMP and Landau damping of the fast waves
Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point
Energy Technology Data Exchange (ETDEWEB)
Kumar, Pankaj [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Nakariakov, Valery M. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Cho, Kyung-Suk, E-mail: pankaj.kumar@nasa.gov [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of)
2017-08-01
This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s{sup −1}. Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of the flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s{sup −1}. The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.
Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point
International Nuclear Information System (INIS)
Kumar, Pankaj; Nakariakov, Valery M.; Cho, Kyung-Suk
2017-01-01
This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s −1 . Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of the flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s −1 . The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.
Fast T Wave Detection Calibrated by Clinical Knowledge with Annotation of P and T Waves
Directory of Open Access Journals (Sweden)
Mohamed Elgendi
2015-07-01
Full Text Available Background: There are limited studies on the automatic detection of T waves in arrhythmic electrocardiogram (ECG signals. This is perhaps because there is no available arrhythmia dataset with annotated T waves. There is a growing need to develop numerically-efficient algorithms that can accommodate the new trend of battery-driven ECG devices. Moreover, there is also a need to analyze long-term recorded signals in a reliable and time-efficient manner, therefore improving the diagnostic ability of mobile devices and point-of-care technologies. Methods: Here, the T wave annotation of the well-known MIT-BIH arrhythmia database is discussed and provided. Moreover, a simple fast method for detecting T waves is introduced. A typical T wave detection method has been reduced to a basic approach consisting of two moving averages and dynamic thresholds. The dynamic thresholds were calibrated using four clinically known types of sinus node response to atrial premature depolarization (compensation, reset, interpolation, and reentry. Results: The determination of T wave peaks is performed and the proposed algorithm is evaluated on two well-known databases, the QT and MIT-BIH Arrhythmia databases. The detector obtained a sensitivity of 97.14% and a positive predictivity of 99.29% over the first lead of the validation databases (total of 221,186 beats. Conclusions: We present a simple yet very reliable T wave detection algorithm that can be potentially implemented on mobile battery-driven devices. In contrast to complex methods, it can be easily implemented in a digital filter design.
General remarks on fast neutron reactor physics
International Nuclear Information System (INIS)
Barre, J.Y.
1980-01-01
The main aspects of fast reactor physics, presented in these lecture notes, are restricted to LMFBR's. The emphasis is placed on the core neutronic balance and the burn-up problems. After a brief description of the power reactor main components and of the fast reactor chronology, the fundamental parameters of the one-group neutronic balance are briefly reviewed. Then the neutronic burn-up problems related to the Pu production and to the doubling time are considered
Technology of fast-wave current drive antennas
International Nuclear Information System (INIS)
Hoffman, D.J.; Baity, F.W.; Goulding, R.H.; Haste, G.R.; Ryan, P.M.; Taylor, D.J.; Swain, D.W.; Mayberry, M.J.; Yugo, J.J.
1989-01-01
The design of fast-wave current drive (FWCD) antennas combines the usual antenna considerations (e.g., the plasma/antenna interface, disruptions, high currents and voltages, and thermal loads) with new requirements for spectral shaping and phase control. The internal configuration of the antenna array has a profound effect on the spectrum and the ability to control phasing. This paper elaborates on these considerations, as epitomized by a proof-of-principle (POP) experiment designed for the DIII-D tokamak. The extension of FWCD for machines such as the International Thermonuclear Engineering Reactor (ITER) will require combining ideas implemented in the POP experiment with reactor-relevant antenna concepts, such as the folded waveguide. 6 refs., 8 figs
Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube
Murawski, K.; Kayshap, P.; Srivastava, A. K.; Pascoe, D. J.; Jelínek, P.; Kuźma, B.; Fedun, V.
2018-02-01
We perform numerical simulations of impulsively generated magnetic swirls in an isolated flux tube that is rooted in the solar photosphere. These swirls are triggered by an initial pulse in a horizontal component of the velocity. The initial pulse is launched either (a) centrally, within the localized magnetic flux tube or (b) off-central, in the ambient medium. The evolution and dynamics of the flux tube are described by three-dimensional, ideal magnetohydrodynamic equations. These equations are numerically solved to reveal that in case (a) dipole-like swirls associated with the fast magnetoacoustic kink and m = 1 Alfvén waves are generated. In case (b), the fast magnetoacoustic kink and m = 0 Alfvén modes are excited. In both these cases, the excited fast magnetoacoustic kink and Alfvén waves consist of a similar flow pattern and magnetic shells are also generated with clockwise and counter-clockwise rotating plasma within them, which can be the proxy of dipole-shaped chromospheric swirls. The complex dynamics of vortices and wave perturbations reveals the channelling of sufficient amount of energy to fulfil energy losses in the chromosphere (˜104 W m-1) and in the corona (˜102 W m-1). Some of these numerical findings are reminiscent of signatures in recent observational data.
An analysis of JET fast-wave heating and current drive experiments directly related to ITER
Energy Technology Data Exchange (ETDEWEB)
Bhatnagar, V P; Eriksson, L; Gormezano, C; Jacquinot, J; Kaye, A; Start, D F.H. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking
1994-07-01
The ITER fast-wave system is required to serve a variety of purposes, in particular, plasma heating to ignition, current profile and burn control and eventually, in conjunction with other schemes, a central non-inductive current drive (CD) for the steady-state operation of ITER. The ICRF heating and current drive data that has been obtained in JET are analyzed in terms of dimensionless parameters, with a view to ascertaining its direct relevance to key ITER requirements. The analysis is then used to identify areas both in physics and technological aspects of ion-cyclotron resonance heating (ICRH) and CD that require further experimentation in ITER-relevant devices such as JET to establish the required data base. (authors). 12 refs., 8 figs.
An analysis of JET fast-wave heating and current drive experiments directly related to ITER
International Nuclear Information System (INIS)
Bhatnagar, V.P.; Eriksson, L.; Gormezano, C.; Jacquinot, J.; Kaye, A.; Start, D.F.H.
1994-01-01
The ITER fast-wave system is required to serve a variety of purposes, in particular, plasma heating to ignition, current profile and burn control and eventually, in conjunction with other schemes, a central non-inductive current drive (CD) for the steady-state operation of ITER. The ICRF heating and current drive data that has been obtained in JET are analyzed in terms of dimensionless parameters, with a view to ascertaining its direct relevance to key ITER requirements. The analysis is then used to identify areas both in physics and technological aspects of ion-cyclotron resonance heating (ICRH) and CD that require further experimentation in ITER-relevant devices such as JET to establish the required data base. (authors). 12 refs., 8 figs
The non-resonant decay of the fast magnetosonic wave during ICRH of a tokamak plasma
International Nuclear Information System (INIS)
Avinash, K.; Core, W.G.; Hellsten, T.; Farrell, C.M.
1988-01-01
The non-resonant decay of the fast magnetosonic wave into an Ion Bernstein wave and a quasi-mode is investigated from the point of view of assessing the importance of this process for the observed direct heating of the edge plasma during ion-cyclotron resonance heating (ICRH). Starting from the Maxwell-Vlasov equations, expressions for the threshold electric field and the growth rates of the decay process are obtained. For JET like parameters, the thresholds for the decay are easily exceeded and the growth time for typical fast wave electric field strengths is of the order of a microsecond. The parametric dependence of the threshold on magnetic field, temperature, the density of the various ion species, and electron-ion collisions is studied. Finally the relevance of this process to the heating of plasma edge during ICRH is discussed. (author)
International Nuclear Information System (INIS)
Batchelor, D.B.; Baity, F.W.; Carter, M.D.
1994-01-01
The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve these objectives requires compatibility and flexibility in the use of available heating and current drive systems--ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various roles of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The authors have addressed these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX
Nonlinear physics of shear Alfvén waves
International Nuclear Information System (INIS)
Zonca, Fulvio; Chen, Liu
2014-01-01
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results
Nonlinear physics of shear Alfvén waves
Zonca, Fulvio; Chen, Liu
2014-02-01
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These "nonlinear equilibria" or "phase-space zonal structures" dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
Understanding ‘human’ waves: exploiting the physics in a viral video
Ferrer-Roca, Chantal
2018-01-01
Waves are a relevant part of physics that students find difficult to grasp, even in those cases in which wave propagation kinematics can be visualized. This may hinder a proper understanding of sound, light or quantum physics phenomena that are explained using a wave model. So-called ‘human’ waves, choreographed by people, have proved to be an advisable way to understand basic wave concepts. Videos are widely used as a teaching resource and can be of considerable help in order to watch and discuss ‘human’ waves provided their quality is reasonably good. In this paper we propose and analyse a video that went viral online and has been revealed to be a useful teaching resource for introductory physics students. It shows a unique and very complete series of wave propagations, including pulses with different polarizations and periodic waves that can hardly be found elsewhere. After a proposal on how to discuss the video qualitatively, a quantitative analysis is carried out (no video-tracker needed), including a determination of the main wave magnitudes such as period, wavelength and propagation speed.
Directory of Open Access Journals (Sweden)
H. C. Scoffield
2005-02-01
Full Text Available On 14 December 1999, a large-scale ULF wave event was observed by the Hankasalmi radar of the SuperDARN chain. Simultaneously, the FAST satellite passed through the Hankasalmi field-of-view, measuring the magnetic field oscillations of the wave at around 2000km altitude, along with the precipitating ion and electron populations associated with these fields. A simple field line resonance model of the wave has been created and scaled using the wave's spatial and temporal characteristics inferred from SuperDARN and IMAGE magnetometer data. Here the model calculated field-aligned current is compared with field-aligned currents derived from the FAST energetic particle spectra and magnetic field measurements. This comparison reveals the small-scale structuring and energies of the current carriers in a large-scale Alfvén wave, a topic, which at present, is of considerable theoretical interest. When FAST traverses a region of the wave involving low upward field-aligned current densities, the current appears to be carried by unstructured downgoing electrons of energies less than 30eV. A downward current region appears to be carried partially by upgoing electrons below the FAST energy detection threshold, but also consists of a mixture of hotter downgoing magnetospheric electrons and upgoing ionospheric electrons of energies <30eV, with the hotter upgoing electrons presumably representing those upgoing electrons which have been accelerated by the wave field above the low energy detection threshold of FAST. A stronger interval of upward current shows that small-scale structuring of scale ~50km has been imposed on the current carriers, which are downgoing magnetospheric electrons of energy 0-500eV.
Shock wave physics group (M-6)
International Nuclear Information System (INIS)
Morris, C.E.
1981-01-01
Experimental facilities and activities of the shock wave physics group at LASL are described. The facilities include a compressed gas gun, two-stage gas gun, high explosive facilities, and a pulsed megagauss field facility
International Nuclear Information System (INIS)
Choi, M.; Pinsker, R. I.; Chan, V. S.; Muscatello, C. M.; Jaeger, E. F.
2011-01-01
In recent moderate to high harmonic fast wave heating and current drive experiments in DIII-D, a synergy effect was observed when the 6 th harmonic 90 MHz fast wave power is applied to the plasma preheated by neutral beams and the 4 th harmonic 60 MHz fast wave. In this paper, we investigate how the synergy can occur using ORBIT-RF coupled with AORSA. Preliminary simulations suggest that damping of 4 th harmonic FW on beam ions accelerates them above the injection energy, which may allow significant damping of 6 th harmonic FW on beam ion tails to produce synergy.
Elastic wave from fast heavy ion irradiation on solids
Kambara, T; Kanai, Y; Kojima, T M; Nanai, Y; Yoneda, A; Yamazaki, Y
2002-01-01
To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al sub 2 O sub 3), fused silica (SiO sub 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the...
A deterministic combination of numerical and physical models for coastal waves
DEFF Research Database (Denmark)
Zhang, Haiwen
2006-01-01
of numerical and physical modelling hence provides an attractive alternative to the use of either tool on it's own. The goal of this project has been to develop a deterministically combined numerical/physical model where the physical wave tank is enclosed in a much larger computational domain, and the two......Numerical and physical modelling are the two main tools available for predicting the influence of water waves on coastlines and structures placed in the near-shore environment. Numerical models can cover large areas at the correct scale, but are limited in their ability to capture strong...... nonlinearities, wave breaking, splash, mixing, and other such complicated physics. Physical models naturally include the real physics (at the model scale), but are limited by the physical size of the facility and must contend with the fact that different physical effects scale differently. An integrated use...
Waves and particles two essays on fundamental physics
Newton, Roger G
2014-01-01
The book consists of two separate parts, the first part is on waves and the second part on particles. In part 1, after describing the awesome power of tsunami and the history of their occurrences, the book turns to the history of explaining phenomena by means of mathematical equations. Then it describes other wave phenomena and the laws governing them: the vibration of strings and drums in musical instruments, the sound waves making them audible, ultrasound and its uses, sonar, and shock waves; electromagnetic waves: light waves, refraction, diffraction, why the sky is blue, the rainbow, and the glory; microwaves and radio waves: radar, radio astronomy, the discovery of the cosmic microwave background radiation, microwave ovens and how a radio works, lasers and masers; waves in modern physics: the Schrödinger wave function and gravitational waves in general relativity; water waves in the ocean, tides and tidal waves, and the quite different solitary waves, solitons discovered in canals. Finally we return to ...
International Nuclear Information System (INIS)
Rehman, S.; Kouser, R.; Nazir, R.; Manzoor, Z.; Tasneem, G.; Jehan, N.; Nasim, M.H.; Salahuddin, M.
2015-01-01
Dynamics of thermonuclear burn wave propagation assisted by thermal radiation precursor in a heavy ion fast ignition of cylindrical deuterium-tritium (DT) fuel target are studied by two dimensional radiation hydrodynamic simulations using Multi-2D code. Thermal radiations, as they propagate ahead of the burn wave, suffer multiple reflections and preheat the fuel, are found to play a vital role in burn wave dynamics. After fuel ignition, the burn wave propagates in a steady state manner for some time. Multiple reflection and absorption of radiation at the fuel-tamper interface, fuel ablation and radial implosion driven by ablative shock and fast fusion rates on the fuel axis, at relatively later times, result into filamentary wave front. Strong pressure gradients are developed and sausage like structures behind the front are appeared. The situation leads to relatively reduced and non-uniform radial fuel burning and burn wave propagation. The fuel burning due to DD reaction is also taken into account and overall fusion energy and fusion power density, due to DT and DD reactions, during the burn wave propagation are determined as a function of time. (authors)
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Pérez-Jordá, José M
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
Thermonuclear-driven fast magnetosonic-wave heating in tokamak plasmas
International Nuclear Information System (INIS)
Sutton, W.R. III.
1982-01-01
A thermonuclear driven fast magnetosonic wave instability is investigated in tokamak plasmas for propagation transverse to the external magnetic field at frequencies of several times the alpha particle gyro rate: ω approx. = L Ω/sub α/ = k/sub perpendicular/ v/sub A/, L approx. 4 to 8, k/sub parallel/ << k/sub perpendicular/. The 2-D differential quasi-linear diffusion equation is derived in circular cylindrical, v/sub perpendicular/-v/sub parallel/ geometry. We perform an expansion in the small parameter k/sub parallel/k/sub perpendicucular/ of the quasi-linear diffusion coefficients
Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.
Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S
2018-04-01
It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.
International Nuclear Information System (INIS)
Zhao, X. H.; Feng, X. S.; Jiang, C. W.; Wu, S. T.; Wang, A. H.; Vourlidas, A.
2011-01-01
An EIT wave, which typically appears as a diffuse brightening that propagates across the solar disk, is one of the major discoveries of the Extreme ultraviolet Imaging Telescope on board the Solar and Heliospheric Observatory. However, the physical nature of the so-called EIT wave continues to be debated. In order to understand the relationship between an EIT wave and its associated coronal wave front, we investigate the morphology and kinematics of the coronal mass ejection (CME)-EIT wave event that occurred on 2010 January 17. Using the observations of the SECCHI EUVI, COR1, and COR2 instruments on board the Solar Terrestrial Relations Observation-B, we track the shape and movements of the CME fronts along different radial directions to a distance of about 15 solar radii (R s ); for the EIT wave, we determine the propagation of the wave front on the solar surface along different propagating paths. The relation between the EIT wave speed, the CME speed, and the local fast-mode characteristic speed is also investigated. Our results demonstrate that the propagation of the CME front is much faster than that of the EIT wave on the solar surface, and that both the CME front and the EIT wave propagate faster than the fast-mode speed in their local environments. Specifically, we show a significant positive correlation between the EIT wave speed and the local fast-mode wave speed in the propagation paths of the EIT wave. Our findings support that the EIT wave under study is a fast-mode magnetohydrodynamic wave.
Fast wave absorption at the Alfven resonance during ion cyclotron resonance heating
International Nuclear Information System (INIS)
Heikkinen, J.A.; Hellsten, T.; Alava, M.J.
1991-01-01
For ICRH scenarii where the majority cyclotron resonance intersects the plasma core, mode conversion of the fast magnetosonic wave to an Alfven wave takes place at the plasma boundary on the high field side. Simple analytical estimates of the converted power for this mode conversion process are derived and compared with numerical calculations including finite electron inertia and kinetic effects. The converted power is found to depend on the local value of the wave field as well as on plasma parameters at the Alfven wave resonance. The interference with the reflected wave will therefore modify the mode conversion. If the conversion layer is localized near the wall, the conversion will be strongly reduced. The conversion coefficient is found to be strongest for small density gradients and high density and it is sensitive to the value of the parallel wave number. Whether it increases or decreases with the latter depends on the ion composition. Analysis of this problem for ICRH in JET predicts that a large fraction of the power is mode converted at the plasma boundary for first harmonic heating of tritium in a deuterium-tritium plasma. (author). 13 refs, 10 figs, 1 tab
International Nuclear Information System (INIS)
Batchelor, D.B.; Baity, F.W.; Carter, M.D.
1995-01-01
The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve this objective requires compatibility and flexibility in the use of available heating and current drive systems - ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various role of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The paper addresses these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX. (author). 6 refs, 3 figs
Variational full wave calculation of fast wave current drive in DIII-D using the ALCYON code
International Nuclear Information System (INIS)
Becoulet, A.; Moreau, D.
1992-04-01
Initial fast wave current drive simulations performed with the ALCYON code for the 60 MHz DIII-D experiment are presented. Two typical shots of the 1991 summer campaign were selected with magnetic field intensities of 1 and 2 teslas respectively. The results for the wave electromagnetic field in the plasma chamber are displayed. They exhibit a strong enrichment of the poloidal mode number m-spectrum which leads to the upshift of the parallel wavenumber, κ perpendicular, and to the wave absorption. The m-spectrum is bounded when the local poloidal wavenumber reaches the Alfven wavenumber and the κ perpendicular upshifts do not destroy the wave directionality. Linear estimations of the driven current are made. The current density profiles are found to be peaked and we find that about 88 kA can be driven in the 1 tesla/1.7 keV phase with 1.7 MW coupled to the electrons. In the 2 tesla/3.4 keV case, 47 kA are driven with a total power of 1.5 MW, 44% of which are absorbed on the hydrogen minority, through the second harmonic ion cyclotron resonance. The global efficiency is then 0.18 x 10 19 A m -2 W -1 if one considers only the effective power going to the electrons
Development of slow and fast wave coupling and heating from the C-Stellarator to NSTX
Directory of Open Access Journals (Sweden)
Hosea Joel
2017-01-01
Full Text Available A historical perspective on key discoveries which contributed to understanding the properties of coupling both slow and fast waves and the effects on plasma heating and current drive will be presented. Important steps made include the demonstration that the Alfven resonance was in fact a mode conversion on the C-stellarator, that toroidal m = -1 eigenmodes were excited in toroidal geometry and impurity influx caused the Z mode on the ST tokamak, that the H minority regime provided strong heating and that 3He minority could be used as well on PLT, that the 2nd harmonic majority tritium regime was viable on TFTR, and that high harmonic fast wave heating was efficient when the SOL losses were avoided on NSTX.
Proceedings of the workshop on atomic physics with fast heavy-ion beams
International Nuclear Information System (INIS)
Kanter, E.P.; Minchinton, A.
1983-01-01
The Workshop on Atomic Physics with Fast Heavy-Ion Beams was held in the Physics Division, Argonne National Laboratory on January 20 and 21, 1983. The meeting brought together approx. 50 practitioners in the field of accelerator-based atomic physics. The workshop was held to focus attention on possible areas of atomic physics research which would benefit from use of the newest generation of accelerators designed to produce intense high-quality beams of fast heavy ions. Abstracts of individual paper were prepared separately for the data base
GRAVITATIONAL-WAVE CONSTRAINTS ON THE PROGENITORS OF FAST RADIO BURSTS
International Nuclear Information System (INIS)
Callister, Thomas; Kanner, Jonah; Weinstein, Alan
2016-01-01
The nature of fast radio bursts (FRBs) remains enigmatic. Highly energetic radio pulses of millisecond duration, FRBs are observed with dispersion measures consistent with an extragalactic source. A variety of models have been proposed to explain their origin. One popular class of theorized FRB progenitor is the coalescence of compact binaries composed of neutron stars and/or black holes. Such coalescence events are strong gravitational-wave emitters. We demonstrate that measurements made by the LIGO and Virgo gravitational-wave observatories can be leveraged to severely constrain the validity of FRB binary coalescence models. Existing measurements constrain the binary black hole rate to approximately 5% of the FRB rate, and results from Advanced LIGO’s O1 and O2 observing runs may place similarly strong constraints on the fraction of FRBs due to binary neutron star and neutron star–black hole progenitors.
Possibility of simulation experiments for fast particle physics in the large helical device (LHD)
International Nuclear Information System (INIS)
Sato, K.N.; Murakami, S.; Nakajima, N.; Itoh, K.
1995-01-01
The confinement of fusion produced or high energy particles is one of the most important issues to be studied in the helical confinement system. A preliminary study has been carried out on the possibility of developing techniques for simulation experiments for the study of high energy particle physics in the Large Helical Device (LHD) project. Candidate methods have been considered as follows: (a) a high energy (∼ 3.5 MeV) He 0 beam injection method; (b) a medium energy (∼ 200 keV) H 0 beam injection method; (c) a method involving high energy tail production by an ICRF wave and/or a method of reaction rate enhancement by an ICRF wave; and (d) a method involving the combination of neutral beam injection and ICRF wave. Various features of each method have been considered. Although the high energy He 0 beam injection method has some advantages, the technique for production of this beam is extremely difficult because of the difficulties of the production of both negative helium and ground state neutral helium by neutralization. It is pointed out, on the other hand, that a wide range of simulation experiments for fast particle physics may be carried out even by the medium energy beam method, because the typical orbit deviation (e.g. equivalent super-banana size in a classical sense) can be largely controlled by controlling the magnetic field configuration in the case of a helical system, for example by shifting the magnetic axis. This is one of the unique features of a helical system in contrast to an axisymmetric system. (author). 12 refs, 6 figs, 2 tabs
Current-drive on the Versator-II tokamak with a slotted-waveguide fast-wave coupler
International Nuclear Information System (INIS)
Colborn, J.A.
1987-11-01
A slotted-waveguide fast-wave coupler has been constructed, without dielectric, and used to drive current on the Versator-II tokamak. Up to 35 kW of net microwave power at 2.45 GHz has been radiated into plasmas with 2 x 10 12 cm -3 ≤ mean of n/sub e/ ≤ 1.2 x 10 13 cm -3 and B/sub tor/ ≅ 1.0 T. The launched spectrum had a peak near N/sub parallel/ = -2.0 and a larger peak near N/sub parallel/ = 0.7. Radiating efficiency of the antenna was roughly independent of antenna position except when the antenna was at least 0.2 cm outside the limiter, in which case the radiating efficiency slightly improved as the antenna was moved farther outside. When the coupler was inside the limiter, radiating efficiency improved moderately with increased mean of n/sub e/. Current-drive efficiency was comparable to that of the slow wave and was not affected when the antenna spectrum was reversed; however, no current was driven for mean of n/sub e/ ≤ 2 x 10 12 cm -3 . These results indicate the fast wave was launched, but a substantial part of the power may have been mode-converted to the slow wave, possibly via a downshift in N/sub parallel/, and these slow waves may have been responsible for most of the driven current. Relevant theory for waves in plasma, current-drive efficiency, and coupling of the slotted-waveguide is discussed, the antenna design method is explained, and future work, including the construction of a much-improved probe-fed antenna, is described. 42 refs., 45 figs
Effect of surface modes on coupling to fast waves in the LHRF
International Nuclear Information System (INIS)
Pinsker, R.I.; Colestock, P.L.
1990-01-01
The effect of surface modes of propagation on coupling to fast waves in the LHRF is studied theoretically and experimentally. The previously reported 'up-down' poloidal phasing asymmetry for coupling to a uniform plasma is shown to be due to the properties of a mode which carries energy along the plasma-conducting wall interface. Comparison of the theory with coupling experiments performed on the PLT tokamak with a phased array of twelve dielectric-loaded waveguides at 800 MHz shows that the observed dependence of the net reflection coefficient on toroidal phase angle can be explained only if the surface wave is taken into account. 43 refs., 10 figs
International Nuclear Information System (INIS)
Yamamoto, Takumi; Uesugi, Yoshihiko; Hoshino, Katsumichi; Kawashima, Hisato; Ohtsuka, Hideo
1986-08-01
A 200 MHz fast wave experiment for the JET-2M tokamak is examined. Noticeable single-path electron Landau damping of the fast waves with the parallel refractive index of N // = 4 is expected in the plasma with electron temperature more than 2.5 keV at the electron density of n e = 1.5 x 10 19 m -3 . Furthermore, it is shown that 8 kA of the plasma current is driven by the fast waves with N //≅ 2 at n e = 3 x 10 19 m -3 in the single-path damping when 100 kW of the rf power radiates into the plasma in the presence of the hot electrons with the temperature of 19 keV and the fraction of the density of 2 %. (author)
Strong electron dissipation by a mode converted ion hybrid (Bernstein) wave
International Nuclear Information System (INIS)
Lashmore-Davies, C.N.; Ram, A.K.
1996-01-01
The fast wave approximation, extended to include the effects of electron dissipation, is used to calculate the power mode converted to the ion hybrid (Bernstein) wave in the vicinity of the ion hybrid resonance. The power absorbed from the fast wave by ion cyclotron damping and by electron Landau and transit time damping (including cross terms) is also calculated. The fast wave equation is solved for either the Budden configuration of a cut-off-resonance pair or the triplet configuration of cut-off-resonance-cut-off. The fraction mode converted is compared for the triplet case and the Budden multi-pass situation. The electron damping rate of the ion hybrid wave is obtained from the local dispersion relation and a ray tracing code is used to calculate the damping of the mode converted ion hybrid wave by the electrons as it propagates away from the resonance. Quantitative results for a range of conditions relevant to JET, TFTR and ITER are given. copyright 1996 American Institute of Physics
The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer
Jackson, Frederick C.
1987-01-01
The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.
Slow and fast light in semiconductor waveguides
DEFF Research Database (Denmark)
Mørk, Jesper; Hansen, Per Lunnemann; Xue, Weiqi
2010-01-01
Investigations of slow and fast light effects in semiconductor waveguides entail interesting physics and point to a number of promising applications. In this review we give an overview of recent progress in the field, in particular focusing on the physical mechanisms of electromagnetically induced...... transparency and coherent population oscillations. While electromagnetically induced transparency has been the most important effect in realizing slowdown effects in atomic gasses, progress has been comparatively slow in semiconductors due to inherent problems of fast dephasing times and inhomogeneous...... broadening in quantum dots. The physics of electromagnetically induced transparency in semiconductors is discussed, emphasizing these limitations and recent suggestions for overcoming them. On the other hand, the mechanism of coherent population oscillations relies on wave mixing effects and is well suited...
Directory of Open Access Journals (Sweden)
Kim Sun Ho
2017-01-01
Full Text Available An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.
Stress wave calculations in composite plates using the fast Fourier transform.
Moon, F. C.
1973-01-01
The protection of composite turbine fan blades against impact forces has prompted the study of dynamic stresses in composites due to transient loads. The mathematical model treats the laminated plate as an equivalent anisotropic material. The use of Mindlin's approximate theory of crystal plates results in five two-dimensional stress waves. Three of the waves are flexural and two involve in-plane extensional strains. The initial value problem due to a transient distributed transverse force on the plate is solved using Laplace and Fourier transforms. A fast computer program for inverting the two-dimensional Fourier transform is used. Stress contours for various stresses and times after application of load are obtained for a graphite fiber-epoxy matrix composite plate. Results indicate that the points of maximum stress travel along the fiber directions.
DEFF Research Database (Denmark)
Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.
2014-01-01
In this series of two papers, we report on the irregular wave extension of the second-order coupling theory of numerical and physical wave model described in [Z. Yang, S. Liu, H.B. Bingham and J. Li. Second-order theory for coupling numerical and physical wave tanks: Derivation, evaluation...
Mathematical analogies in physics. Thin-layer wave theory
Directory of Open Access Journals (Sweden)
José M. Carcione
2014-03-01
Full Text Available Field theory applies to elastodynamics, electromagnetism, quantum mechanics, gravitation and other similar fields of physics, where the basic equations describing the phenomenon are based on constitutive relations and balance equations. For instance, in elastodynamics, these are the stress-strain relations and the equations of momentum conservation (Euler-Newton law. In these cases, the same mathematical theory can be used, by establishing appropriate mathematical equivalences (or analogies between material properties and field variables. For instance, the wave equation and the related mathematical developments can be used to describe anelastic and electromagnetic wave propagation, and are extensively used in quantum mechanics. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of a thin layer embedded between dissimilar media, considering the presence of anisotropy and attenuation/viscosity in the viscoelastic case, conductivity in the electromagnetic case and a potential barrier in quantum physics (the tunnel effect. The analogy is mainly illustrated with geophysical examples of propagation of S (shear, P (compressional, TM (transverse-magnetic and TE (transverse-electric waves. The tunnel effect is obtained as a special case of viscoelastic waves at normal incidence.
Self-similar regimes of fast ionization waves in shielded discharge tubes
International Nuclear Information System (INIS)
Gerasimov, D.N.; Sinkevich, O.A.
1999-01-01
An analytical self-similar solution to the problem of the propagation of a fast ionization wave (FIW) in a long shielded tube is constructed. An expression determining the influence of the device parameters on the FIW velocity is obtained; the velocity is found to be the nonmonotonic function of the working-gas pressure. The theoretical predictions are compared with the results of experiments carried out with helium and nitrogen. The calculation and experimental results agree within experimental errors
Enhanced loss of fast ions during mode conversion ion Bernstein wave heating in TFTR
International Nuclear Information System (INIS)
Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.
1995-12-01
A strong interaction of fast ions with ion Bernstein waves has been observed in TFTR. It results in a large increase in the fast ion loss rate, and heats the lost particles to several MeV. The lost ions are observed at the passing/trapped boundary and appear to be either DD fusion produced tritons or accelerated D neutral beam ions. Under some conditions, enhanced loss of DT alpha particles is also seen. The losses provide experimental support for some of the elements required for alpha energy channeling
International Nuclear Information System (INIS)
Ferguson, S.W.; Allen, J.C.; Callis, R.W.; Cary, W.P.; Harris, T.E.
1995-10-01
The Fast Wave Current Drive System uses three 2 MW transmitters to drive three antennas inside the DIII-D vacuum vessel. This paper describes the diagnostics for this system. The diagnostics associated with the General Atomics Fast Wave Current Drive System allow the system tuning to be analyzed and modified on a between shot basis. The transmitters can be exactly tuned to match the plasma with only one tuning shot into the plasma. This facilitates maximum rf power utilization
The physics of orographic gravity wave drag
Directory of Open Access Journals (Sweden)
Miguel A C Teixeira
2014-07-01
Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.
Transversality of Electromagnetic Waves in the Calculus--Based Introductory Physics Course
Burko, Lior M.
2009-05-01
Introductory calculus--based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation), and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes. We have successfully integrated this approach in the calculus--based introductory physics course at the University of Alabama in Huntsville.
Energy Technology Data Exchange (ETDEWEB)
Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). School of Physics and Astronomy; Coll. of Judea and Samaria, Ariel (Israel); Cuperman, S. [Tel Aviv Univ. (Israel). School of Physics and Astronomy
2000-11-01
Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)
International Nuclear Information System (INIS)
Bruma, C.; Komoshvili, K.; Cuperman, S.
2000-01-01
Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)
Fast reactor physics at CEA: present studies and future prospects
International Nuclear Information System (INIS)
Hammer, P.
1980-09-01
This paper aims at giving a general survey of the fast reactor core physics and shielding studies wich are in progress at CEA (1979-1983) in order to solve the neutronic problems related to: - core design optimization, - reactor operation and fuel management, - safety, for the development of fast commercial breeders in France after the SUPER-PHENIX 1 construction is achieved
Disciplinary Knots and Learning Problems in Waves Physics
Di Renzone, Simone; Frati, Serena; Montalbano, Vera
An investigation on student understanding of waves is performed during an optional laboratory realized in informal extracurricular way with few, interested and talented pupils. The background and smart intuitions of students rendered the learning path very dynamic and ambitious. The activities started by investigating the basic properties of waves by means of a Shive wave machine. In order to make quantitative observed phenomena, the students used a camcorder and series of measures were obtained from the captured images. By checking the resulting data, it arose some learning difficulties especially in activities related to the laboratory. This experience was the starting point for a further analysis on disciplinary knots and learning problems in the physics of waves in order to elaborate a teaching-learning proposal on this topic.
Effect of physical activities and obesity on Ramadan fasting among hypertensive patients
Directory of Open Access Journals (Sweden)
Nazeer Khan
2016-12-01
Full Text Available Objective: To find out the effect of physical activities and obesity among Ramadan fasting hypertensive patients of Karachi. Methods: 117 hypertensive patients were selected conveniently from the staff and faculty members of Dow University and other locations of Karachi. The inclusion criterion was the hypertensive patients with at least 20 days of fasting. The investigators visited three times (last ten days of Shaban, Ramadan and Shawwal for collection of data. A questionnaire was completed before clinical examination. Blood pressures were measured 3 times in sitting position. 103 patients fasted at least 20 days. Results: The mean age of the 103 patients was 53.7±11.0 years. 11% participants could be considered as active using MET value of 600 and above. Mean sleeping hours decreased from 6.9 hours in Shaban to 6.3 hours in Ramadan. Mean systolic and diastolic blood pressures decreased from Shaban to Ramadan and bounced back in Shawwal for both ‘active’ and ‘inactive’ patients. However, it was statistically significant for ‘inactive’ patients only. Only mean SBP decreased significantly from Shaban to Ramadan for normal and overweight patients. Combined effect of physical activity, obesity, sleeping pattern and number of fasting days with repeated measure ANOVA showed that only number of fasting days was statistically significant. Conclusions: The study concludes that fasting does not harm anyway to the hypertensive patients. Nevertheless, it significantly reduces the systolic and diastolic blood pressures. Changes in physical activities, sleeping patterns, and weight reduction, except number days of fasting, do not affect on the fasting hypertensive patients.
Transversality of electromagnetic waves in the calculus-based introductory physics course
International Nuclear Information System (INIS)
Burko, Lior M
2008-01-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes
Transversality of electromagnetic waves in the calculus-based introductory physics course
Burko, Lior M.
2008-11-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.
Valero, Manuel; Averkin, Robert G; Fernandez-Lamo, Ivan; Aguilar, Juan; Lopez-Pigozzi, Diego; Brotons-Mas, Jorge R; Cid, Elena; Tamas, Gabor; Menendez de la Prida, Liset
2017-06-21
Memory traces are reactivated selectively during sharp-wave ripples. The mechanisms of selective reactivation, and how degraded reactivation affects memory, are poorly understood. We evaluated hippocampal single-cell activity during physiological and pathological sharp-wave ripples using juxtacellular and intracellular recordings in normal and epileptic rats with different memory abilities. CA1 pyramidal cells participate selectively during physiological events but fired together during epileptic fast ripples. We found that firing selectivity was dominated by an event- and cell-specific synaptic drive, modulated in single cells by changes in the excitatory/inhibitory ratio measured intracellularly. This mechanism collapses during pathological fast ripples to exacerbate and randomize neuronal firing. Acute administration of a use- and cell-type-dependent sodium channel blocker reduced neuronal collapse and randomness and improved recall in epileptic rats. We propose that cell-specific synaptic inputs govern firing selectivity of CA1 pyramidal cells during sharp-wave ripples. Copyright © 2017 Elsevier Inc. All rights reserved.
2005-01-01
UNIVERSITE DE GENEVE ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet - 1211 GENEVE 4 Tél : (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 11 May PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium The search for gravitational waves. Physical motivations and experimental perspectives by Prof. Michele Maggiore / DPT-UniGe I will give an overview of gravitational-wave physics, addressing two main questions: What are the physical motivations for gravitational-wave research, both from the point of view of astrophysics and of high-energy physics. Present status and future perspectives of gravitational-wave experiments. Information: http://dpnc.unige.ch/seminaire/annonce.html Organizer: A. Cervera Villanueva
Massimiliano Rossi; Riccardo Maria Liberati; Marco Frasca; Mauro Angelini
2018-01-01
The paper investigates the theory of operation of a passive millimeter-wave seeker sensor using a fast electronic sequential-lobing technique and the experimental validation obtained through laboratory trials. The paper analyzes in detail the theoretical performance of a difference channel sensor and a pseudo-monopulse sensor deriving agile formulas for the estimation of target angular tracking accuracy and the subsequent experimental validation.
The interaction physics of the fast ignitor concept
Energy Technology Data Exchange (ETDEWEB)
Deutsch, C; Furukawa, H; Mima, K; Murakami, M; Nishihara, K [Osaka Univ. (Japan). Inst. for Laser Engineering
1997-12-31
In the so called Fast Ignitor Scenario the powerful laser radiation or heavy ion beams are used for igniting hot spots inside a super-compressed indirectly driven DT pellet. The possibility to use high-energy electron beams for this purpose is studied theoretically in the paper. Transfer of the beam energy to the target are treated through binary collisions and Langmuir wave excitation. The overall penetration depth is determined by quasielastic and multiple scattering on target ions. It is shown that hot spots may be efficiently ignited in a target with density larger than 300 g/cc. (J.U.). 2 figs., 8 refs.
The interaction physics of the fast ignitor concept
International Nuclear Information System (INIS)
Deutsch, C.; Furukawa, H.; Mima, K.; Murakami, M.; Nishihara, K.
1996-01-01
In the so called Fast Ignitor Scenario the powerful laser radiation or heavy ion beams are used for igniting hot spots inside a super-compressed indirectly driven DT pellet. The possibility to use high-energy electron beams for this purpose is studied theoretically in the paper. Transfer of the beam energy to the target are treated through binary collisions and Langmuir wave excitation. The overall penetration depth is determined by quasielastic and multiple scattering on target ions. It is shown that hot spots may be efficiently ignited in a target with density larger than 300 g/cc. (J.U.). 2 figs., 8 refs
Energy Technology Data Exchange (ETDEWEB)
Asai, Ayumi; Isobe, Hiroaki [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Ishii, Takako T.; Kitai, Reizaburo; Ichimoto, Kiyoshi; UeNo, Satoru; Nagata, Shin' ichi; Morita, Satoshi; Nishida, Keisuke; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shiota, Daikou [Advanced Science Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Oi, Akihito [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Akioka, Maki, E-mail: asai@kwasan.kyoto-u.ac.jp [Hiraiso Solar Observatory, National Institute of Information and Communications Technology, Hitachinaka, Ibaraki 311-1202 (Japan)
2012-02-15
We report on the first simultaneous observation of an H{alpha} Moreton wave, the corresponding EUV fast coronal waves, and a slow and bright EUV wave (typical EIT wave). We observed a Moreton wave, associated with an X6.9 flare that occurred on 2011 August 9 at the active region NOAA 11263, in the H{alpha} images taken by the Solar Magnetic Activity Research Telescope at Hida Observatory of Kyoto University. In the EUV images obtained by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory we found not only the corresponding EUV fast 'bright' coronal wave, but also the EUV fast 'faint' wave that is not associated with the H{alpha} Moreton wave. We also found a slow EUV wave, which corresponds to a typical EIT wave. Furthermore, we observed, for the first time, the oscillations of a prominence and a filament, simultaneously, both in the H{alpha} and EUV images. To trigger the oscillations by the flare-associated coronal disturbance, we expect a coronal wave as fast as the fast-mode MHD wave with the velocity of about 570-800 km s{sup -1}. These velocities are consistent with those of the observed Moreton wave and the EUV fast coronal wave.
System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors
International Nuclear Information System (INIS)
Moiseyev, A.V.
2008-01-01
There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k eff , control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)
System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors
Energy Technology Data Exchange (ETDEWEB)
Moiseyev, A.V. [SSC RF - IPPE, 1 Bondarenko Square, Obninsk, Kaluga Region 249033 (Russian Federation)
2008-07-01
There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k{sub eff}, control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)
Directory of Open Access Journals (Sweden)
Massimiliano Rossi
2018-01-01
Full Text Available The paper investigates the theory of operation of a passive millimeter-wave seeker sensor using a fast electronic sequential-lobing technique and the experimental validation obtained through laboratory trials. The paper analyzes in detail the theoretical performance of a difference channel sensor and a pseudo-monopulse sensor deriving agile formulas for the estimation of target angular tracking accuracy and the subsequent experimental validation.
d-3He reaction measurements during fast wave minority heating in PLT
International Nuclear Information System (INIS)
Chrien, R.E.; Strachan, J.D.
1983-01-01
Time- and energy-resolved d- 3 He fusion reactions have been measured to infer the energy of the d + or He ++ minority ions heated near their cyclotron frequency by the magnetosonic fast wave. The average energy of the reacting 3 He ions during 3 He minority heating is in the range of 100 to 400 keV, as deduced from the magnitude of the reaction rate, its decay time, and the energy spread of the proton reaction products. The observed reaction rate and its scaling with wave power and electron density and temperature are in qualitative agreement with a radial reaction rate model using the minority distribution predicted from quasilinear velocity space diffusion. Oscillations in the reaction rate are observed concurrent with sawtooth and m = 2 MHD activity in the plasma
DEFF Research Database (Denmark)
Jensen, Jonas
This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...
Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Kommoshvili, K [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Cuperman, S [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Bruma, C [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel)
2003-03-01
Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.
Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas
International Nuclear Information System (INIS)
Kommoshvili, K; Cuperman, S; Bruma, C
2003-01-01
Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects
HEATING AND ACCELERATION OF THE FAST SOLAR WIND BY ALFVÉN WAVE TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Van Ballegooijen, A. A.; Asgari-Targhi, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2016-04-20
We present numerical simulations of reduced magnetohydrodynamic (RMHD) turbulence in a magnetic flux tube at the center of a polar coronal hole. The model for the background atmosphere is a solution of the momentum equation and includes the effects of wave pressure on the solar wind outflow. Alfvén waves are launched at the coronal base and reflect at various heights owing to variations in Alfvén speed and outflow velocity. The turbulence is driven by nonlinear interactions between the counterpropagating Alfvén waves. Results are presented for two models of the background atmosphere. In the first model the plasma density and Alfvén speed vary smoothly with height, resulting in minimal wave reflections and low-energy dissipation rates. We find that the dissipation rate is insufficient to maintain the temperature of the background atmosphere. The standard phenomenological formula for the dissipation rate significantly overestimates the rate derived from our RMHD simulations, and a revised formula is proposed. In the second model we introduce additional density variations along the flux tube with a correlation length of 0.04 R {sub ⊙} and with relative amplitude of 10%. These density variations simulate the effects of compressive MHD waves on the Alfvén waves. We find that such variations significantly enhance the wave reflection and thereby the turbulent dissipation rates, producing enough heat to maintain the background atmosphere. We conclude that interactions between Alfvén and compressive waves may play an important role in the turbulent heating of the fast solar wind.
Rays, waves, and scattering topics in classical mathematical physics
Adam, John A
2017-01-01
This one-of-a-kind book presents many of the mathematical concepts, structures, and techniques used in the study of rays, waves, and scattering. Panoramic in scope, it includes discussions of how ocean waves are refracted around islands and underwater ridges, how seismic waves are refracted in the earth's interior, how atmospheric waves are scattered by mountains and ridges, how the scattering of light waves produces the blue sky, and meteorological phenomena such as rainbows and coronas. Rays, Waves, and Scattering is a valuable resource for practitioners, graduate students, and advanced undergraduates in applied mathematics, theoretical physics, and engineering. Bridging the gap between advanced treatments of the subject written for specialists and less mathematical books aimed at beginners, this unique mathematical compendium features problems and exercises throughout that are geared to various levels of sophistication, covering everything from Ptolemy's theorem to Airy integrals (as well as more technica...
International Nuclear Information System (INIS)
Perkins, R.J.; Bell, R.E.; Diallo, A.; Gerhardt, S.; Hosea, J.C.; Jaworski, M.A.; LeBlanc, B.P.; Kramer, G.J.; Maingi, R.; Phillips, C.K.; Podestà, M.; Roquemore, L.; Scotti, F.; Ahn, J.-W.; Gray, T.K.; Green, D.L.; McLean, A.; Ryan, P.M.; Jaeger, E.F.; Sabbagh, S.
2013-01-01
Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape-off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER. (paper)
Allaerts, Dries; Meyers, Johan
2017-11-01
Wind farm design and control often relies on fast analytical wake models to predict turbine wake interactions and associated power losses. Essential input to these models are the inflow velocity and turbulent intensity at hub height, which come from prior measurement campaigns or wind-atlas data. Recent LES studies showed that in some situations large wind farms excite atmospheric gravity waves, which in turn affect the upstream wind conditions. In the current study, we develop a fast boundary-layer model that computes the excitation of gravity waves and the perturbation of the boundary-layer flow in response to an applied force. The core of the model is constituted by height-averaged, linearised Navier-Stokes equations for the inner and outer layer, and the effect of atmospheric gravity waves (excited by the boundary-layer displacement) is included via the pressure gradient. Coupling with analytical wake models allows us to study wind-farm wakes and upstream flow deceleration in various atmospheric conditions. Comparison with wind-farm LES results shows excellent agreement in terms of pressure and boundary-layer displacement levels. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).
Between tide and wave marks: a unifying model of physical zonation on littoral shores
Directory of Open Access Journals (Sweden)
Christopher E. Bird
2013-09-01
Full Text Available The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as ‘intertidal’, whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However mean significant wave height exceeds tidal range at many locations worldwide. Here we construct a simple sinusoidal model of coastal water level based on both tidal range and wave height. From the patterns of emergence and submergence predicted by the model, we derive four vertical shoreline benchmarks which bracket up to three novel, spatially distinct, and physically defined zones. The (1 emergent tidal zone is characterized by tidally driven emergence in air; the (2 wave zone is characterized by constant (not periodic wave wash; and the (3 submergent tidal zone is characterized by tidally driven submergence. The decoupling of tidally driven emergence and submergence made possible by wave action is a critical prediction of the model. On wave-dominated shores (wave height ≫ tidal range, all three zones are predicted to exist separately, but on tide-dominated shores (tidal range ≫ wave height the wave zone is absent and the emergent and submergent tidal zones overlap substantially, forming the traditional “intertidal zone”. We conclude by incorporating time and space in the model to illustrate variability in the physical conditions and zonation on littoral shores. The wave:tide physical zonation model is a unifying framework that can facilitate our understanding of physical conditions on littoral shores whether tropical or temperate, marine or lentic.
Investigation of Ion Absorption of the High Harmonic Fast Wave in NSTX using HPRT
International Nuclear Information System (INIS)
Rosenberg, A.; Menard, J.E.; LeBlanc, B.P.
2001-01-01
Understanding high harmonic fast wave (HHFW) power absorption by ions in a spherical torus (ST) is of critical importance to assessing the wave's viability as a means of heating and especially driving current. In this work, the HPRT code is used to calculate absorption for helium and deuterium, with and without minority hydrogen in National Spherical Torus Experiment (NSTX) plasmas using experimental EFIT code equilibria and kinetic profiles. HPRT is a two-dimensional ray-tracing code which uses the full hot plasma dielectric to compute the perpendicular wave number along the hot electron and cold ion plasma ray path. Ion and electron absorption dependence on antenna phasing, ion temperature, beta (subscript t), and minority temperature and concentration is analyzed. These results form the basis for comparisons with other codes, such as CURRAY, METS, TORIC, and AORSA
Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics
Energy Technology Data Exchange (ETDEWEB)
Bhattacharjee, Amitava [University New Hampshire- Durham
2012-02-16
Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.
Physics of plutonium recycling: volume V. Plutonium recycling in fast reactors
International Nuclear Information System (INIS)
1996-01-01
As part of a programme proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed. In this report, the multi-recycle performance of the metal-fuelled benchmark is evaluated. Benchmark results assess the reactor performance and toxicity behaviour in a closed nuclear fuel cycle for a parametric variation of the conversion ratio between 0.5 and 1.0. Results indicate that a fast burner reactor closed fuel cycle can be utilised to significantly reduce the radiotoxicity originating in the LWR cycle which would otherwise be destined for burial. (Author). tabs., figs., refs
Energy Technology Data Exchange (ETDEWEB)
Maneva, Y. G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Araneda, J. A. [Departamento de Física, Universidad de Concepción, 4070386 (Chile); Marsch, E., E-mail: yana.g.maneva@nasa.gov [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany)
2014-03-10
We study the preferential heating and differential acceleration of minor ions by dissipation of ion-acoustic waves (IAWs) generated by parametric instabilities of a finite-amplitude monochromatic Alfvén-cyclotron pump wave. We consider the associated kinetic effects of Landau damping and nonlinear pitch-angle scattering of protons and α particles in the tenuous plasma of coronal holes and the fast solar wind. Various data collected by Wind spacecraft show signatures for a local transverse heating of the minor ions, presumably by Alfvén-cyclotron wave dissipation, and an unexpected parallel heating by a so far unknown mechanism. Here, we present the results from a set of 1.5 dimensional hybrid simulations in search for a plausible explanation for the observed field-aligned kinetic features in the fast solar wind minor ions. We investigate the origin and regulation of ion relative drifts and temperature anisotropies in low plasma β, fast solar wind conditions. Depending on their initial drifts, both ion species can heat up not only transversely through cyclotron resonance and non-resonant wave-particle interactions, but also strongly in the parallel direction by Landau damping of the daughter IAWs. We discuss the dependence of the relative ion drifts and temperature anisotropies on the plasma β of the individual species and we describe the effect of the pump wave amplitude on the ion heating and acceleration.
On the existence of Alfvén waves in the terrestrial foreshock
Directory of Open Access Journals (Sweden)
J. P. Eastwood
2003-07-01
Full Text Available The terrestrial foreshock is characterised by the existence of large amplitude ultra low frequency waves. The majority of such waves are observed to be left-handed in the spacecraft frame, but are in fact intrinsically right-handed and have been identified as fast-magnetosonic waves. More rarely observed are waves that are right-handed in the spacecraft frame. Cluster four spacecraft observations of such waves are presented and analysed using multi-spacecraft techniques; in particular the k-filtering/wave telescope technique is used. The waves are found to be left-handed and propagating sunwards in the plasma rest frame, and are, therefore, identified as Alfvénic. The convection of the waves anti-sunward in the solar wind flow causes the observed polarisation to be reversed. Generation mechanisms are discussed.Key words. Interplanetary physics (MHD waves and turbulence; planetary bow shocks – Space plasma physics (wave particle interactions
Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas
Kommoshvili, K.; Cuperman, S.; Bruma, C.
2003-03-01
Kinetic effects in the conversion of fast waves to Alfvèn waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvènic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxilliary energy source for the succesful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.
Analysis of Electrically Large Antennas using Fast Physical Optics
DEFF Research Database (Denmark)
Borries, Oscar Peter; Viskum, Hans-Henrik; Meincke, Peter
2015-01-01
accelerated Physical Optics (Fast-PO) and show that this approach allows for a timely and accurate solution of realistic designs. Several examples, ranging from canonical tests of the scaling of the method against the wavelength to real-life applications, illustrate the performance of the approach in practice....
International Nuclear Information System (INIS)
Kho, T.H.; Lin, A.T.
1988-01-01
Cyclotron masers such as Gyrotrons and the Autoresonance Masers, are fast wave devices: the electromagnetic wave's phase velocity v rho , is greater than the electron beam velocity, v b . To be able to convert the beam kinetic energy into radiation in these devices the beam must have an initial transverse momentum, usually obtained by propagating the beam through a transverse wiggler magnet, or along a nonuniform guide magnetic field before entry into the interaction region. Either process introduces a significant amount of thermal spread in the beam which degrades the performance of the maser. However, if the wave phase velocity v rho v b , the beam kinetic energy can be converted directly into radiation without the requirement of an initial transverse beam momentum, making a slow wave cyclotron maser a potentially simpler and more compact device. The authors present the linear and nonlinear physics of the slow wave cyclotron maser and examine its potential for practical application
Universal Voltage Conveyor and Current Conveyor in Fast Full-Wave Rectifier
Directory of Open Access Journals (Sweden)
Josef Burian
2012-12-01
Full Text Available This paper deals about the design of a fast voltage-mode full-wave rectifier, where universal voltage conveyor and second-generation current conveyor are used as active elements. Thanks to the active elements, the input and output impedance of the non-linear circuit is infinitely high respectively zero in theory. For the rectification only two diodes and three resistors are required as passive elements. The performance of the circuit is shown on experimental measurement results showing the dynamic range, time response, frequency dependent DC transient value and RMS error for different values of input voltage amplitudes.
International Nuclear Information System (INIS)
Inutake, Masaaki; Ando, Akira
2007-01-01
Fast plasma flow is produced by Magneto-Plasma-Dynamic Arcjet (MPDA). The properties of fast flow and shock wave in various magnetic channels are reported by the experiment results. Fast plasma flow by MPDA, shocked flow in the magnetic channel, supersonic plasma flow in the divergence magnetic nozzle, ion acoustic wave in the mirror field, transonic flow and sonic throat in the magnetic Laval nozzle, fast flow in the helical magnetic channel, and future subjects are reported. Formation of the supersonic plasma flow by the divergence magnetic nozzle and effects of background gas, helical-kink instability in the fast plasma jet, and formation of convergence magnetic nozzle near outlet are described. From the phase difference of azimuthal and axial probe array signals, the plasma has twisted structure and it rotates in the same direction of the twist. Section of MPDA, principle of magnetic acceleration of MPDA, HITOP, relation among velocities, temperature, and Mach number of He ion and atom and the discharge current, distribution of magnetic-flux density in the direction of electromagnetic field, measurement of magnetic field near MPDA exit are illustrated. (S.Y.)
First results on fast wave current drive in advanced tokamak discharges in DIII-D
International Nuclear Information System (INIS)
Prater, R.; Cary, W.P.; Baity, F.W.
1995-07-01
Initial experiments have been performed on the DIII-D tokamak on coupling, direct electron heating, and current drive by fast waves in advanced tokamak discharges. These experiments showed efficient central heating and current drive in agreement with theory in magnitude and profile. Extrapolating these results to temperature characteristic of a power plant (25 keV) gives current drive efficiency of about 0.3 MA/m 2
On the existence of Alfvén waves in the terrestrial foreshock
Directory of Open Access Journals (Sweden)
J. P. Eastwood
Full Text Available The terrestrial foreshock is characterised by the existence of large amplitude ultra low frequency waves. The majority of such waves are observed to be left-handed in the spacecraft frame, but are in fact intrinsically right-handed and have been identified as fast-magnetosonic waves. More rarely observed are waves that are right-handed in the spacecraft frame. Cluster four spacecraft observations of such waves are presented and analysed using multi-spacecraft techniques; in particular the k-filtering/wave telescope technique is used. The waves are found to be left-handed and propagating sunwards in the plasma rest frame, and are, therefore, identified as Alfvénic. The convection of the waves anti-sunward in the solar wind flow causes the observed polarisation to be reversed. Generation mechanisms are discussed.
Key words. Interplanetary physics (MHD waves and turbulence; planetary bow shocks – Space plasma physics (wave particle interactions
Energy Technology Data Exchange (ETDEWEB)
Bertelli, N., E-mail: nbertell@pppl.gov; Gerhardt, S.; Hosea, J. C.; LeBlanc, B.; Perkins, R. J.; Phillips, C. K.; Taylor, G.; Valeo, E. J.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaeger, E. F. [XCEL Engineering Inc., Oak Ridge, TN 37830 (United States); Lau, C.; Blazevski, D.; Green, D. L.; Berry, L.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Bonoli, P. T.; Wright, J. C. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Pinsker, R. I.; Prater, R. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Qin, C. M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others
2015-12-10
Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes
Energy Technology Data Exchange (ETDEWEB)
Carlsson, J. A., E-mail: carlsson@pppl.gov [Crow Radio and Plasma Science, Princeton, New Jersey 08540 (United States); Wilson, J. R.; Hosea, J. C.; Greenough, N. L.; Perkins, R. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)
2016-06-15
Third-order spectral analysis, in particular, the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.
On possible beneficial ponderomotive force effects on fast wave coupling in tokamaks
International Nuclear Information System (INIS)
Petrzilka, V.
1994-02-01
Ponderomotive forces at fast wave launching lead in the vicinity of the launching structure in tokamaks at lower hybrid frequencies typically to a boundary plasma density increase. This results in a decrease of the reflection coefficient, and in cases of detached plasmas, to an appearance of a local electric field maximum at a distance of several centimeters from the launching grill structure; this electric field maximum is connected to the reversal of the plasma density gradient near the grill mouth because of ponderomotive force effects. (author) 3 figs., 20 refs
Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas
Energy Technology Data Exchange (ETDEWEB)
Chen, Liu [Univ. of California, Irvine, CA (United States)
2017-12-20
This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.
International Nuclear Information System (INIS)
Sund, R.; Scharer, J.
2003-01-01
Under advanced tokamak reactor conditions, the Ion-Bernstein wave (IBW) can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side on the second harmonic resonance of a minority hydrogen component, with near 100% efficiency. IBWs have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. The relatively high frequency (around 200 MHz) minimizes parasitic electron absorption and permits the converted IBW to approach the 5th tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. The scheme is applicable to reactors with aspect ratios < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Large machine size and adequate separation of the mode conversion layer from the magnetic axis minimize poloidal field effects in the conversion zone and permit a 1-D full-wave analysis. 2-D ray tracing of the IBW indicates a slightly bean-shaped equilibrium allows access to the tritium resonance
Directory of Open Access Journals (Sweden)
Andrea Colombi
2017-08-01
Full Text Available In metamaterial science, local resonance and hybridization are key phenomena strongly influencing the dispersion properties; the metasurface discussed in this article created by a cluster of resonators, subwavelength rods, atop an elastic surface being an exemplar with these features. On this metasurface, band-gaps, slow or fast waves, negative refraction, and dynamic anisotropy can all be observed by exploring frequencies and wavenumbers from the Floquet–Bloch problem and by using the Brillouin zone. These extreme characteristics, when appropriately engineered, can be used to design and control the propagation of elastic waves along the metasurface. For the exemplar we consider, two parameters are easily tuned: rod height and cluster periodicity. The height is directly related to the band-gap frequency and, hence, to the slow and fast waves, while the periodicity is related to the appearance of dynamic anisotropy. Playing with these two parameters generates a gallery of metasurface designs to control the propagation of both flexural waves in plates and surface Rayleigh waves for half-spaces. Scalability with respect to the frequency and wavelength of the governing physical laws allows the application of these concepts in very different fields and over a wide range of lengthscales.
High-burn-up fuels for fast reactors. Past experience and novel applications
International Nuclear Information System (INIS)
Weaver, Kevan D.; Gilleland, John; Whitmer, Charles; Zimmerman, George
2009-01-01
Fast reactors in the U.S. routinely achieved fuel burn-ups of 10%, with some fuel able to reach peak burn-ups of 20%, notably in the Experimental Breeder Reactor II and the Fast Flux Test Facility. Maximum burn-up has historically been constrained by chemical and mechanical interactions between the fuel and its cladding, and to some extent by radiation damage and thermal effects (e.g., radiation-induced creep, thermal creep, and radiation embrittlement) that cause the cladding to weaken. Although fast reactors have used several kinds of fuel - including oxide, metal alloy, carbide, and nitride - the vast majority of experience with fast reactors has been using oxide (including mixed oxide) and metal-alloy fuels based on uranium. Our understanding of high-burn-up operation is also limited by the fact that breeder reactor programs have historically assumed that their fuel would eventually undergo reprocessing; the programs thus have not made high burn-up a top priority. Recently a set of novel designs have emerged for fast reactors that require little initial enrichment and no reprocessing. These reactors exploit a concept known as a traveling wave (sometimes referred to as a breed-and-burn wave, fission wave, or nuclear-burning wave). By breeding and using its own fuel in place as it operates, a traveling-wave reactor can obtain burn-ups that approach 50%, well beyond the current base of knowledge and experience. Our computational work on the physics of traveling-wave reactors shows that they require metal-alloy fuel to provide the margins of reactivity necessary to sustain a breed-and-burn wave. This paper reviews operating experience with high-burn-up fuels and the technical feasibility of moving to a qualitatively new burn-up regime. We discuss our calculations on traveling-wave reactors, including those concerning the possible use of thorium. The challenges associated with high burn-up and fluence in fuels and materials are also discussed. (author)
Simulation of enhanced tokamak performance on DIII-D using fast wave current drive
International Nuclear Information System (INIS)
Grassie, J.S. de; Lin-Liu, Y.R.; Petty, C.C.; Pinsker, R.I.; Chan, V.S.; Prater, R.; John, H. St.; Baity, F.W.; Goulding, R.H.; Hoffman, D.H.
1993-01-01
The fast magnetosonic wave is now recognized to be a leading candidate for noninductive current drive for the tokamak reactor due to the ability of the wave to penetrate to the hot dense core region. Fast wave current drive (FWCD) experiments on DIII-D have realized up to 120 kA of rf current drive, with up to 40% of the plasma current driven noninductively. The success of these experiments at 60 MHz with a 2 MW transmitter source capability has led to a major upgrade of the FWCD system. Two additional transmitters, 30 to 120 MHz, with a 2 MW source capability each, will be added together with two new four-strap antennas in early 1994. Another major thrust of the DIII-D program is to develop advanced tokamak modes of operation, simultaneously demonstrating improvements in confinement and stability in quasi-steady-state operation. In some of the initial advanced tokamak experiments on DIII-D with neutral beam heated (NBI) discharges it has been demonstrated that energy confinement time can be improved by rapidly elongating the plasma to force the current density profile to be more centrally peaked. However, this high-l i phase of the discharge with the commensurate improvement in confinement is transient as the current density profile relaxes. By applying FWCD to the core of such a κ-ramped discharge it may be possible to sustain the high internal inductance and elevated confinement. Using computational tools validated on the initial DIII-D FWCD experiments we find that such a high-l i advanced tokamak discharge should be capable of sustainment at the 1 MA level with the upgraded capability of the FWCD system. (author) 16 refs., 3 figs., 1 tab
Testing fundamental physics with gravitational waves
CERN. Geneva
2017-01-01
The landmark detection of gravitational waves (GWs) has opened a new era in physics, giving access to the hitherto unexplored strong-gravity regime, where spacetime curvature is extreme and the relevant speed is close to the speed of light. In parallel to its countless astrophysical applications, this discovery can have also important implications for fundamental physics. In this context, I will discuss some outstanding, cross-cutting problems that can be finally investigated in the GW era: the nature of black holes and of spacetime singularities, the limits of classical gravity, the existence of extra light fields, and the effects of dark matter near compact objects. Future GW measurements will provide unparalleled tests of quantum-gravity effects at the horizon scale, exotic compact objects, ultralight dark matter, and of general relativity in the strong-field regime.
PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS
Energy Technology Data Exchange (ETDEWEB)
Luan, Jing; Goldreich, Peter, E-mail: jingluan@caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States)
2014-04-20
Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10{sup 3} pc cm{sup –3}. Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period.
PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS
International Nuclear Information System (INIS)
Luan, Jing; Goldreich, Peter
2014-01-01
Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10 3 pc cm –3 . Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period
Energy Technology Data Exchange (ETDEWEB)
Cuperman, S.; Bruma, C.; Komoshvili, K
2003-05-12
The generation in low aspect ratio tokamaks (LARTs) of ponderomotive forces and non-inductive current drive by the resonant fast wave-plasma interaction with mode conversion to kinetic Alfven waves (KAWs) and subsequent deposition, mainly by resonant electron Landau damping, is considered. The calculations follow the rigorous solution of the full wave equations upon using a dielectric tensor operator consisting of (i) a parallel conductivity including both kinetic effects (collisionless Landau damping on passing electrons) and collisional damping on both trapped electrons and passing electrons+ions and (ii) perpendicular components provided by the resistive two-fluid model equations. The fast waves are launched by an antenna located on the low field side and extending {+-}45 deg. about the equatorial plane. A parametric investigation of the structure and importance of the various components of the ponderomotive forces and current drive generated in START-like plasmas is carried out and their suitability for supplementing the required non-rf toroidal equilibrium current is demonstrated.
Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter
Shock Waves in Condensed Matter
1986-01-01
The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...
Fast physical random bit generation with chaotic semiconductor lasers
Uchida, Atsushi; Amano, Kazuya; Inoue, Masaki; Hirano, Kunihito; Naito, Sunao; Someya, Hiroyuki; Oowada, Isao; Kurashige, Takayuki; Shiki, Masaru; Yoshimori, Shigeru; Yoshimura, Kazuyuki; Davis, Peter
2008-12-01
Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.
A fast improved fat tree encoder for wave union TDC in an FPGA
International Nuclear Information System (INIS)
Shen Qi; Zhao Lei; Liu Shubin; Qi Binxiang; Hu Xueye; An Qi; Liao Shengkai; Peng Chengzhi
2013-01-01
Up to now, the wave union method can achieve the best timing performance in FPGA-based TDC designs. However, it should be guaranteed in such a structure that the non-thermometer code to binary code (NTH2B) encoding process should be finished within just one system clock cycle. So the implementation of the NTH2B encoder is quite challenging considering the high speed requirement. Besides, the high resolution wave union TDC also demands that the encoder convert an ultra-wide input code to a binary code. We present a fast improved fat tree encoder (IFTE) to fulfill such requirements, in which bubble error suppression is also integrated. With this encoder scheme, a wave union TDC with 7.7 ps RMS and 3.8 ps effective bin size was implemented in an FPGA from Xilinx Virtex 5 family. An encoding time of 8.33 ns was achieved for a 276-bit non-thermometer code to a 9-bit binary code conversion. We conducted a series of tests on the oscillating period of the wave union launcher, as well as the overall performance of the TDC; test results indicate that the IFTE works well. In fact, in the implementation of this encoder, no manual routing or special constraints were required; therefore, this IFTE structure could also be further applied in other delay-chain-based FPGA TDCs. (authors)
State-Space Realization of the Wave-Radiation Force within FAST: Preprint
Energy Technology Data Exchange (ETDEWEB)
Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.
2013-06-01
Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.
Physical characterization of the Skua fast burst assembly
International Nuclear Information System (INIS)
Paternoster, R.; Bounds, J.; Sanchez, R.; Miko, D.
1994-01-01
In this paper we discuss the system design and ongoing efforts to characterize the machine physics and operating properties of the Skua fast burst assembly. The machine is currently operating up to prompt critical while we await approval for super-prompt burst operations. Efforts have centered on characterizing neutron kinetic properties, comparing calculated and measured temperature coefficients and power distributions, improving the burst reproducibility, examining the site-wide dose characteristics, and fitting the machine with cooling and filtration systems
Implications of nuclear physics in the development of Fast Breeder Reactors
International Nuclear Information System (INIS)
Rapeanu, S.; Ilie, P.; Vasiliu, G.; Popescu, C.; Boeriu, S.; Constantinescu, D.; Mateescu, S.
1980-08-01
The purpose of this paper is to point out the involved aspects of nuclear physics in the calculation and design of the fast reactors. After a brief description of the advantages of using the fast reactors in the national economy, the national programs concerning this activity are presented. The structure and operation conditions of the liquid metal fast breeder reactor (LMFBR) are also reviewed. Then, the methods aimed to calculate the core, the burn-up, the reactor dynamics, the analysis of accidents, the shielding, as well as, the materials required in the fast reactor calculation, are shortly given. Further on, it deals with the nuclear data types connected to the fast reactor calculations, with accuracy requirements for nuclear data, as well as, with the present stage of nuclear data for fissile, fertile and structural materials. The requirements for new differential data measurements, new integral data and benchmark experiments are presented. Data adjustement methods are also summarized. Some aspects of the structural material behaviour in intense gamma radiation and neutron fields existing into a fast reactor are also presented in the last part of this paper. The concluding remarks are mentioned at the end of the paper. (author)
Measurement of the wave-front aberration of the eye by a fast psychophysical procedure
International Nuclear Information System (INIS)
He, J.C.; Marcos, S.; Webb, R.H.; Burns, S.A.
1998-01-01
We used a fast psychophysical procedure to determine the wave-front aberrations of the human eye in vivo. We measured the angular deviation of light rays entering the eye at different pupillary locations by aligning an image of a point source entering the pupil at different locations to the image of a fixation cross entering the pupil at a fixed location. We fitted the data to a Zernike series to reconstruct the wave-front aberrations of the pupil. With this technique the repeatability of the measurement of the individual coefficients was 0.019 μm. The standard deviation of the overall wave-height estimation across the pupil is less than 0.3 μm. Since this technique does not require the administration of pharmacological agents to dilate the pupil, we were able to measure the changes in the aberrations of the eye during accommodation. We found that administration of even a mild dilating agent causes a change in the aberration structure of the eye. copyright 1998 Optical Society of America
International Nuclear Information System (INIS)
Saigusa, M.; Moriyama, S.; Fujii, T.; Kimura, H.
1994-01-01
A new conceptual antenna, which we call as a spiral antenna, is proposed as a traveling wave antenna for fast wave current drive in tokamaks. The features of the spiral antenna are a sharp N z spectrum, easy impedance matching, N z controllable and good coupling. A back Faraday shield is proposed for improving the cooling design of Faraday shield and better antenna-plasma coupling. A helical support which is a compact and wide band support is proposed as a kind of quarter wave length stub supports. The RF properties of the spiral antenna and the back Faraday shield have been investigated by using mock-up antennas. The VSWR of spiral antenna is low at the wide frequency band from 15 MHz to 201 MHz. The back Faraday shield is effective for suppressing the RF toroidal electric field between adjacent currents straps. (author)
A review of Ramadan fasting and regular physical activity on metabolic syndrome indices
Directory of Open Access Journals (Sweden)
Seyyed Reza Attarzadeh Hosseini
2016-03-01
Full Text Available Introduction: Metabolic syndrome constitutes a cluster of risk factors such as obesity, hyperglycemia, hypertension, and dyslipidemia, which increase the risk of cardiovascular diseases and type II diabetes mellitus. In this review article, we aimed to discuss the possible effects of fasting and regular physical activity on risk factors for cardiovascular diseases. Methods: Online databases including Google Scholar, SID, PubMed, and MagIran were searched, using the following keywords: “training”, “exercise”, “physical activity”, “fasting”, “Ramadan”, “metabolic syndrome”, “fat percentage”, “blood pressure”, “blood sugar”, “cholesterol”, “triglyceride”, and “lowdensity lipoprotein-cholesterol”. All articles including research studies, review articles, descriptive and analytical studies, and ross-sectional research, published during 2006-2015, were reviewed. In case of any errors in the methodologyof articles, they were removed from our analysis. Results:Based on our literature review, inconsistent findings have been reported on risk factors formetabolic syndrome. However, the majority of conducted studies have suggested the positive effects offasting on reducing the risk factors for metabolic syndrome. Conclusion: Although fasting in different seasons of the year has no significant impacts on mental health or physical fitness, it can reduce the risk of various diseases such as cardiovascular diseases. Also, based on the conducted studies, if individuals adhere to a proper diet, avoid excessive eating, drink sufficient amounts of fluids, and keep a healthy level of physical activity, fasting can improve their physical health.
International Nuclear Information System (INIS)
Hosea, J.; Bernabei, S.; Colestock, P.
1979-07-01
Strong minority proton heating is produced in PLT through ion cyclotron resonance damping of fast waves at moderate rf power levels. In addition to demonstrating good proton confinement, the proton energy distribution is consistent with Fokker--Planck theory which provides the prescription for extrapolation of this heating regime to higher rf power levels
Two-wave propagation in in vitro swine distal ulna
Mano, Isao; Horii, Kaoru; Matsukawa, Mami; Otani, Takahiko
2015-07-01
Ultrasonic transmitted waves were obtained in an in vitro swine distal ulna specimen, which mimics a human distal radius, that consists of interconnected cortical bone and cancellous bone. The transmitted waveforms appeared similar to the fast waves, slow waves, and overlapping fast and slow waves measured in the specimen after removing the surface cortical bone (only cancellous bone). In addition, the circumferential waves in the cortical bone and water did not affect the fast and slow waves. This suggests that the fast-and-slow-wave phenomenon can be observed in an in vivo human distal radius.
Travelling wave solutions to nonlinear physical models by means
Indian Academy of Sciences (India)
This paper presents the ﬁrst integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established ﬁrst integrals, exact solutions are successfully ...
International Nuclear Information System (INIS)
Adam, J.; Jacquinot, J.
1977-04-01
Detailed calculations concerning the field structure and excitation of the fast magnetosonic wave are presented keeping in mind RF heating of a Tokamak near the ion cyclotron harmonic. The new contributions are - a discussion of the cylindrical problem in an inhomogeneous plasma including surface waves and the splitting of the eigenmodes by the poloidal field - a calculation of the field structure in the toroidal cavity resonator and the application to mode tracking - a formulation of the loading impedance of various coupling structures: array of coils in the low frequency limit or transmission lines in the high frequency case
Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents
Directory of Open Access Journals (Sweden)
Daniel Matatagui
2014-07-01
Full Text Available The following paper examines a time-efficient method for detecting biological warfare agents (BWAs. The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13, and the rabbit immunoglobulin (Rabbit IgG has been detected using the polyclonal antibody goat anti-rabbit (GAR. Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved.
Fast wave power flow along SOL field lines in NSTX
Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.
2012-10-01
On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.
International Nuclear Information System (INIS)
Liuzzi, G; Masiello, G; Serio, C; Blasi, M G; Venafra, S
2015-01-01
This paper describes the theoretical aspects of a fast scheme for the physical retrieval of surface temperature and emissivity from SEVIRI data, their implementation and some sample results obtained. The scheme is based on a Kalman Filter approach, which effectively exploits the temporal continuity in the observations of the geostationary Meteosat Second Generation (MSG) platform, on which SEVIRI (Spinning Enhanced Visible and InfraRed Imager) operates. Such scheme embodies in its core a physical retrieval algorithm, which employs an hyper fast radiative transfer code highly customized for this retrieval task. Radiative transfer and its customizations are described in detail. Fastness, accuracy and stability of the code are fully documented for a variety of surface features, showing a peculiar application to the massive Greek forest fires in August 2007. (paper)
Kaneda, K.; Misawa, H.; Iwai, K.; Masuda, S.; Tsuchiya, F.; Katoh, Y.; Obara, T.
2018-03-01
Various magnetohydrodynamic (MHD) waves have recently been detected in the solar corona and investigated intensively in the context of coronal heating and coronal seismology. In this Letter, we report the first detection of short-period propagating fast sausage mode waves in a metric radio spectral fine structure observed with the Assembly of Metric-band Aperture Telescope and Real-time Analysis System. Analysis of Zebra patterns (ZPs) in a type-IV burst revealed a quasi-periodic modulation in the frequency separation between the adjacent stripes of the ZPs (Δf ). The observed quasi-periodic modulation had a period of 1–2 s and exhibited a characteristic negative frequency drift with a rate of 3–8 MHz s‑1. Based on the double plasma resonance model, the most accepted generation model of ZPs, the observed quasi-periodic modulation of the ZP can be interpreted in terms of fast sausage mode waves propagating upward at phase speeds of 3000–8000 km s‑1. These results provide us with new insights for probing the fine structure of coronal loops.
Henriksen, Ellen Karoline; Angell, Carl; Vistnes, Arnt Inge; Bungum, Berit
2018-03-01
Quantum physics describes light as having both particle and wave properties; however, there is no consensus about how to interpret this duality on an ontological level. This article explores how pre-university physics students, while working with learning material focusing on historical-philosophical aspects of quantum physics, interpreted the wave-particle duality of light and which views they expressed on the nature of physics. A thematic analysis was performed on 133 written responses about the nature of light, given in the beginning of the teaching sequence, and 55 audio-recorded small-group discussions addressing the wave-particle duality, given later in the sequence. Most students initially expressed a wave and particle view of light, but some of these gave an "uncritical duality description", accepting without question the two ontologically different descriptions of light. In the small-group discussions, students expressed more nuanced views. Many tried to reconcile the two descriptions using semi-classical reasoning; others entered into philosophical discussions about the status of the current scientific description of light and expected science to come up with a better model. Some found the wave description of light particularly challenging and lacked a conception of "what is waving". Many seemed to implicitly take a realist view on the description of physical phenomena, contrary with the Copenhagen interpretation which is prevalent in textbooks. Results are discussed in light of different interpretations of quantum physics, and we conclude by arguing for a historical-philosophical perspective as an entry point for upper secondary physics students to explore the development and interpretation of quantum physical concepts.
International Nuclear Information System (INIS)
Bruma, C.; Cuperman, S.; Komoshvili, K.
1999-01-01
Some basic aspects of wave-plasma interaction of interest for tight aspect ratio spherical tokamaks are investigated theoretically. The following scenario is considered: A. Fast magnetosonic waves are launched by an external antenna into a simulated spherical Tokamak plasma; these waves are converted to Alfven waves at points (layer) satisfying the Alfven resonance condition. B. The simulated spherical tokamaks-plasma has a circular cross-section and toroidicity effects are simulated by Grad-Shafranov type, radially dependent axial magnetic field and its shear. (J. Actual equilibrium profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. D. The study is based on the numerical solution of the full e.m. wave equation which includes a quite general resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. Two kinds of results will be presented: I. Proofs validating the computational algorithm used and including convergence and energy conservation. II. Exact quantitative results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited p over . The dependence of the results on the launched wave characteristics (wave numbers, frequency and intensity) as well as on those of the equilibrium plasma (equilibrium current, neoclassical resistivity and electron inertia) will be discussed
Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course
Burko, Lior M.
2008-01-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…
International Nuclear Information System (INIS)
Mandt, M.E.; Lee, L.C.
1991-01-01
Observations have reported on the high correlation of Pc 1 events with magnetospheric compressions. A number of mechanisms have been suggested for the generation of the Pc 1 waves. In this paper, the authors propose a new mechanism which leads to the generation of Pc 1 waves. The interaction of a dynamic pressure pulse (Δρυ 2 ) with the Earth's bow shock leads to the formation of a weak fast mode shock propagating into the magnetosheath. The shock wave can pass right through a tangential discontinuity (magnetopause) and into the magnetosphere, without disturbing either of the structures. In a quasi-perpendicular geometry, the shock wave exhibits anisotropic heating with T perpendicular > T parallel . This anisotropy drives unstable ion cyclotron waves which they believe can contribute to the generation of the Pc 1 waves which are detected. The viability of the mechanism is demonstrated with simulations. This mechanism could explain peak in the occurrence of observed Pc 1 waves in the postnoon sector where a field-aligned discontinuity in the solar wind would most often be parallel to the magnetopause surface due to the average Parker spiral magnetic field configuration
On phase and ray directions of magnetosonic waves
International Nuclear Information System (INIS)
Lerche, I.
1978-01-01
The behavior of phase speed for the 'slow' and 'fast' magnetosonic waves is well documented in the literature. Not so well documented is the behavior of the ray direction and its relation to the phase direction - indeed the author has not found the ray behavior recorded in most of the standard plasma physics texts. This situation is rectified and some of the curiosities associated with the direction of the 'slow' ray relative to the direction of the 'slow' phase wave are pointed out. These calculations have been performed as a necessary basis for discussion of phase and ray evolution of magnetosonic waves in differentially shearing plasmas, which subject is the topic of a later paper. (Auth.)
Directory of Open Access Journals (Sweden)
AKM Zamanul Islam Bhuiyan
2013-01-01
Full Text Available Background: Renal calculi are frequent causes of ureteric colic. Extracorporeal shock wave lithotripsy is the most common treatment of these stones. It uses focused sound waves to break up stones externally. Objective: To compare the efficiency of slow and fast delivery rate of shock waves on stone fragmentation and treatment outcome in patients with renal calculi. Materials and Methods: This prospective study was done in the department of Urology, National Institute of Kidney diseases and Urology, Sher-e-Bangla Nagar, Dhaka from July 2006 to June 2007. Total 90 patients were treated using the Storz Medical Modulith ® SLX lithotripter. Patients were divided into Group A, Group B and Group C – each group having 30 subjects. Group A was selected for extracorporeal shockwave lithotripsy (ESWL by 60 shock waves per minute, Group B by 90 shock waves per minute and Group C by 120 shock waves per minute. Results: Complete clearance of stone was observed in 24 patients in Group A and 13 patients in both Group B and Group C in first session. In Group A only 3 patients needed second session but in Group B and Group C, 12 and 8 patients needed second session. In Group A only one patient needed third session but third session was required for 3 patients in Group B and 5 patients in Group C for complete clearance of stone. In Group A, subsequent sessions were performed under spinal anesthesia and in Group B under sedation and analgesia (p>0.001. Mean number of sessions for full clearance of stones in group A was 1.37 ± 0.85, in Group B was 1.8 ± 0.887 and in Group C was 2.0 ± 1.083. Significant difference was observed in term of sessions among groups (p>0.05. In first follow-up, complete clearance of stones was seen in 24 patients in Group A and 13 in both Group B and Group C. In second follow-up, 3 patients in Group A, 12 in Group B and 8 in Group C showed complete clearance of stones. It was observed that rate of stone clearance was higher in Group A
Directory of Open Access Journals (Sweden)
Seyyed Reza Attarzadeh Hosseini
2014-12-01
Full Text Available Introduction: Increased levels of certain markers like fibrinogen and Homocysteine are independently associated with an increased risk of cardiovascular diseases. Considering the numerous favorable effects of healthful nutrition and physical activity on reducing the risk of atherosclerosis, in this study we intend to take into account fasting and physical activity during the month of Ramadan and their impacts on Homocysteine and fibrinogen concentrations in overweight women. Materials and Methods: In this experiment, 22 overweight and obese women with a body mass index (BMI of greater than 25 kg/m2 aging from 20 to 45 years were enrolled into two groups by means of targeted-sampling method. One group involved fasting accompanied with regular physical activity (12 subjects and the other group involved only fasting (10 subjects. The protocol for the physical activity group consisted of three 60-minute sessions of aerobic exercise per week with a 50%- 65% heart rate reserved. Towards the end of Ramadan, the anthropometric and blood levels of Homocysteine and fibrinogen were closely measured. Data were analyzed using repeated measures and the significance level of P≤0 /05 was considered. Findings: A month of fasting along with regular physical activity did not prove to have any noticeable effects on the level of fibrinogen while a significant increase in the Homocysteine levels was discovered (P
Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models
DEFF Research Database (Denmark)
Christensen, Morten
in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...... generator is capable of of reducing the problem of rereflection in multidirectional, irregular wave fields significantly....
Fast burner reactor benchmark results from the NEA working party on physics of plutonium recycle
International Nuclear Information System (INIS)
Hill, R.N.; Wade, D.C.; Palmiotti, G.
1995-01-01
As part of a program proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed; fuel cycle scenarios using either PUREX/TRUEX (oxide fuel) or pyrometallurgical (metal fuel) separation technologies were specified. These benchmarks were designed to evaluate the nuclear performance and radiotoxicity impact of a transuranic-burning fast reactor system. International benchmark results are summarized in this paper; and key conclusions are highlighted
Can plane wave modes be physical modes in soliton models?
International Nuclear Information System (INIS)
Aldabe, F.
1995-08-01
I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to the physical there is not T-matrix of O(1). (author). 9 refs
New Experiments on Wave Physics with a Simply Modified Ripple Tank
Logiurato, Fabrizio
2014-01-01
The ripple tank is one of the physics education devices most appreciated by teachers and students. It allows one to visualize various phenomena related to wave physics in an effective and enthralling way. Usually this apparatus consists of a tank with a transparent bottom that is filled with a thin layer of water. A source of light illuminates the…
International Nuclear Information System (INIS)
Petrzilka, V.
1991-09-01
The nonlinear changes of the reflection coefficient R of fast waves launched by waveguide arrays may be significant even for power densities S in the range of 3 or 4 kW/cm 2 . For the input parameters chosen in the computations, the effects of ponderomotive forces lead to an increase in plasma density in front of the grill , whereas for the slow wave the plasma density always decreases with growing S. For small plasma density in front of the grill, ponderomotive forces thus lead to the decrease of R, whereas for high plasma densities R grows with growing power density S. The heating of the edge plasma by the wave tends to weaken these changes. (Z.S.) 6 figs., 17 refs
Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas
International Nuclear Information System (INIS)
Bruma, C.; Cuperman, S.; Komoshvili, K.
1997-01-01
This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({ω Alf (r)} min Alf (r)} max ) and discrete range, DR, where global Alfven eigenmodes, GAEs (ω Alf (r)} min ) exist, are considered. (Here, ω Alf (r) ≡ ω Alf [n(r), B 0 (r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author)
Han, Song; Zhang, Wei; Zhang, Jie
2017-09-01
A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.
A fast ADC scanner for multiparameter nuclear physics experiments
International Nuclear Information System (INIS)
Midttun, G.; Ingebretsen, F.; Holt, K.; Skaali, B.
1983-04-01
A fast readout system for multiparameter experiments in nuclear physics is described. The central part of the CAMAC aquisition hardware is an ADC scanner module. The scanner incorporates a new arbitration logic and direct memory access for simultaneous transfer of singles and correlated data. Together with specially designed ADC interfaces the system can be set up for any configuration of singles and multiparameter events from 1 up to 15 ADC's in one crate
A fast ADC scanner for multiparameter nuclear physics experiments
International Nuclear Information System (INIS)
Midttun, G.; Holt, K.; Ingebretsen, F.; Skaali, B.
1983-01-01
A fast readout system for multiparameter experiments in nuclear physics is described. The central part of the CAMAC aquisition hardware is an ADC scanner module. The scanner incorporates a new arbitration logic and direct memory access for simultaneous transfer of singles and correlated data. Together with specially designed ADC interfaces the system can be set up for any configurations of singles and multiparameter events from 1 up to 15 ADC's in one crate
Super fast physical-random number generation using laser diode frequency noises
Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo
2011-02-01
Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.
Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX
International Nuclear Information System (INIS)
Biewer, T.M.; Bell, R.E.; Diem, S.J.; Phillips, C.K.; Wilson, J.R.; Ryan, P.M.
2004-01-01
A new spectroscopic diagnostic on the National Spherical Torus Experiment (NSTX) measures the velocity distribution of ions in the plasma edge simultaneously along both poloidal and toroidal views. An anisotropic ion temperature is measured during high-power high harmonic fast wave (HHFW) radio-frequency (rf) heating in helium plasmas, with the poloidal ion temperature roughly twice the toroidal ion temperature. Moreover, the measured spectral distribution suggests that two populations of ions are present and have temperatures of typically 500 eV and 50 eV with rotation velocities of -50 km/s and -10 km/s, respectively (predominantly perpendicular to the local magnetic field). This bi-modal distribution is observed in both the toroidal and poloidal views (for both He + and C 2+ ions), and is well correlated with the period of rf power application to the plasma. The temperature of the hot component is observed to increase with the applied rf power, which was scanned between 0 and 4.3 MW . The 30 MHz HHFW launched by the NSTX antenna is expected and observed to heat core electrons, but plasma ions do not resonate with the launched wave, which is typically at >10th harmonic of the ion cyclotron frequency in the region of observation. A likely ion heating mechanism is parametric decay of the launched HHFW into an Ion Bernstein Wave (IBW). The presence of the IBW in NSTX plasmas during HHFW application has been directly confirmed with probe measurements. IBW heating occurs in the perpendicular ion distribution, consistent with the toroidal and poloidal observations. Calculations of IBW propagation indicate that multiple waves could be created in the parametric decay process, and that most of the IBW power would be absorbed in the outer 10 to 20 cm of the plasma, predominantly on fully stripped ions. These predictions are in qualitative agreement with the observations, and must be accounted for when calculating the energy budget of the plasma
Physics design of fast reactor safety test facilities for in-pile experiments
International Nuclear Information System (INIS)
Travelli, A.; Matos, J.E.; Snelgrove, J.L.; Shaftman, D.H.; Tzanos, C.P.; Lam, S.K.; Pennington, E.M.; Woodruff, W.L.
1976-01-01
A determined effort to identify and resolve current Fast Breeder Reactor safety testing needs has recently resulted in a number of conceptual designs for FBR safety test facilities which are very complex and diverse both in their features and in their purpose. The paper discusses the physics foundations common to most fast reactor safety test facilities and the constraints which they impose on the design. The logical evolution, features, and capabilities of several major conceptual designs are discussed on the basis of this common background
ICRF Wave Propagation and Absorption in Plasmas with Non-thermal Populations
International Nuclear Information System (INIS)
Dumont, R.J.; Phillips, C.K.; Smithe, D.N.
2002-01-01
Some results obtained with the one dimensional, all orders, full wave code METS, which has been successfully employed in the past to describe a number of experiments, are reported. By using massively parallel computers, this code has been extended to handle non-thermal populations. Various physical situations, in which non-Maxwellian species are expected to be encountered, are studied, such as simultaneous neutral beam injection and high harmonic fast wave electron heating or ion cyclotron resonance heating in the presence of fusion products
Snyder, D
2002-01-01
A straightforward explanation of fundamental tenets of quantum mechanics concerning the wave function results in the thesis that the quantum mechanical wave function is a link between human cognition and the physical world. The reticence on the part of physicists to adopt this thesis is discussed. A comparison is made to the behaviorists' consideration of mind, and the historical roots of how the problem concerning the quantum mechanical wave function arose are discussed. The basis for an empirical demonstration that the wave function is a link between human cognition and the physical world is provided through developing an experiment using methodology from psychology and physics. Based on research in psychology and physics that relied on this methodology, it is likely that Einstein, Podolsky, and Rosen's theoretical result that mutually exclusive wave functions can simultaneously apply to the same concrete physical circumstances can be implemented on an empirical level.
International Nuclear Information System (INIS)
Pinsker, R. I.
2015-01-01
This introductory-level tutorial article describes the application of plasma waves in the lower hybrid range of frequencies (LHRF) for current drive in tokamaks. Wave damping mechanisms in a nearly collisionless hot magnetized plasma are briefly described, and the connections between the properties of the damping mechanisms and the optimal choices of wave properties (mode, frequency, wavelength) are explored. The two wave modes available for current drive in the LHRF are described and compared. The terms applied to these waves in different applications of plasma physics are elucidated. The character of the ray paths of these waves in the LHRF is illustrated in slab and toroidal geometries. Applications of these ideas to experiments in the DIII-D tokamak are discussed
International Nuclear Information System (INIS)
Pedroso, L.J.
1990-01-01
One of the problems related to fluid-structure interaction that can compromise the structural integrity of components of a fast reactor is the explosion caused by the sodium-water reaction, in the case of a flood at the level of the thermic exchange wall at the steam generator. In this paper we have considered the aspects of the pressure-waves damping caused by the reaction, when these waves transverse certain perforated structures. In order to solve this problem, we also adopted a parametric experimental approach, using a scale model (RIO test rig). (author)
Jing Fu Qian
2002-01-01
Progress made in recent years on three topics that have been investigated at the Laboratory for Shock Wave and Detonation Physics Research are presented in this report. (1) A new equation of state (EOS) has been derived which can be used from a standard state to predict state variable change along an isobaric path. Good agreements between calculations for some representative metals using this new EOS and experiments have been found, covering a wide range from hundreds of MPa to hundreds of GPa and from ambient temperature to tens of thousands of GPa. (2) An empirical relation of Y/G = constant (Y is yield strength, G is shear modulus) at HT-HP has been reinvestigated and confirmed by shock wave experiment. 93W alloy was chosen as a model material. The advantage of this relation is that it is beneficial to formulate a kind of simplified constitutive equation for metallic solids under shock loading, and thus to faithfully describe the behaviours of shocked solids through hydrodynamic simulations. (3) An attempt...
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
Aguilar Guerrero, J.; Snively, J. B.
2017-12-01
Acoustic waves (AWs) have been predicted to be detectable by imaging systems for the OH airglow layer [Snively, GRL, 40, 2013], and have been identified in spectrometer data [Pilger et al., JASP, 104, 2013]. AWs are weak in the mesopause region, but can attain large amplitudes in the F region [Garcia et al., GRL, 40, 2013] and have local impacts on the thermosphere and ionosphere. Similarly, fast GWs, with phase speeds over 100 m/s, may propagate to the thermosphere and impart significant local body forcing [Vadas and Fritts, JASTP, 66, 2004]. Both have been clearly identified in ionospheric total electron content (TEC), such as following the 2013 Moore, OK, EF5 tornado [Nishioka et al., GRL, 40, 2013] and following the 2011 Tohoku-Oki tsunami [e.g., Galvan et al., RS, 47, 2012, and references therein], but AWs have yet to be unambiguously imaged in MLT data and fast GWs have low amplitudes near the threshold of detection; nevertheless, recent imaging systems have sufficient spatial and temporal resolution and sensitivity to detect both AWs and fast GWs with short periods [e.g., Pautet et al., AO, 53, 2014]. The associated detectability challenges are related to the transient nature of their signatures and to systematic challenges due to line-of-sight (LOS) effects such as enhancements and cancelations due to integration along aligned or oblique wavefronts and geometric intensity enhancements. We employ a simulated airglow imager framework that incorporates 2D and 3D emission rate data and performs the necessary LOS integrations for synthetic imaging from ground- and space-based platforms to assess relative intensity and temperature perturbations. We simulate acoustic and fast gravity wave perturbations to the hydroxyl layer from a nonlinear, compressible model [e.g., Snively, 2013] for different idealized and realistic test cases. The results show clear signal enhancements when acoustic waves are imaged off-zenith or off-nadir and the temporal evolution of these
Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.
2007-01-01
Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…
Absorption of fast waves at moderate to high ion cyclotron harmonics on DIII-D
International Nuclear Information System (INIS)
Pinsker, R.I.; Porkolab, M.; Heidbrink, W.W.; Luo, Y.; Petty, C.C.; Prater, R.; Choi, M.; Schaffner, D.A.; Baity, F.W.; Fredd, E.; Hosea, J.C.; Harvey, R.W.; Smirnov, A.P.; Murakami, M.; Zeeland, M.A. Van
2006-01-01
The absorption of fast Alfven waves (FW) by ion cyclotron harmonic damping in the range of harmonics from 4th to 8th is studied theoretically and with experiments in the DIII-D tokamak. A formula for linear ion cyclotron absorption on ions with an arbitrary distribution function which is symmetric about the magnetic field is used to estimate the single-pass damping for various cases of experimental interest. It is found that damping on fast ions from neutral beam injection can be significant even at the 8th harmonic if the fast ion beta, the beam injection energy and the background plasma density are high enough and the beam injection geometry is appropriate. The predictions are tested in several L-mode experiments in DIII-D with FW power at 60 MHz and at 116 MHz. It is found that 4th and 5th harmonic absorption of the 60 MHz power on the beam ions can be quite strong, but 8th harmonic absorption of the 116 MHz power appears to be weaker than expected. The linear modelling predicts a strong dependence of the 8th harmonic absorption on the initial pitch-angle of the injected beam, which is not observed in the experiment. Possible explanations of the discrepancy are discussed
Kaneda, K.; Misawa, H.; Iwai, K.; Masuda, S.; Tsuchiya, F.; Katoh, Y.; Obara, T.
2017-12-01
Recent observations have revealed that various modes of magnetohydrodynamic (MHD) waves are ubiquitous in the corona. In imaging observations in EUV, propagating fast magnetoacoustic waves are difficult to observe due to the lack of time resolution. Quasi-periodic modulation of radio fine structures is an important source of information on these MHD waves. Zebra patterns (ZPs) are one of such fine structures in type IV bursts, which consist of several parallel stripes superimposed on the background continuum. Although the generation mechanism of ZPs has been discussed still, the most favorable model of ZPs is so-called double plasma resonance (DPR) model. In the DPR model, the frequency separation between the adjacent stripes (Δf) is determined by the plasma density and magnetic field in their source. Hence, the variation of Δf in time and frequency represents the disturbance in their source region in the corona. We report the detection of propagating fast sausage waves through the analysis of a ZP event on 2011 June 21. The variation of Δf in time and frequency was obtained using highly resolved spectral data from the Assembly of Metric-band Aperture Telescope and Real-time Analysis System (AMATERAS). We found that Δf increases with the increase of emission frequency as a whole, which is consistent with the DPR model. Furthermore, we also found that irregularities in Δf are repetitively drifting from the high frequency side to the low frequency side. Their frequency drift rate was 3 - 8 MHz/s and the repetitive frequency was several seconds. Assuming the ZP generation by the DPR model, the drifting irregularities in Δf correspond to propagating disturbances in plasma density and magnetic field with speeds of 3000 - 8000 km/s. Taking account of these facts, the observed modulations in Δf can be explained by fast sausage waves propagating through the corona. We will also discuss the plasma conditions in the corona estimated from the observational results.
An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure
Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang
2018-05-01
Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.
Physics and applications of micro and fast z-pinch plasmas
International Nuclear Information System (INIS)
Masugata, Katsumi
2003-07-01
This is the proceedings of symposium on 'Physics and Application of Micro and Fast z-Pinch Plasma' held at National Institute for Fusion Science. Recent progress of experimental and theoretical works on high energy density plasmas produced by pulsed power is presented. Separate abstracts were presented for 4 of the papers in this report. The remaining 14 were considered outside the subject scope of INIS. (J.P.N.)
Slowing of a fast electron beam in a plasma in an intense electromagnetic wave
Energy Technology Data Exchange (ETDEWEB)
Karapetyan, R.V.; Fedorov, M.V.
1980-01-01
The slowing of a fast electron beam as it penetrates into a plasma in a strong external electromagnetic field is studied. The effective collision frequency ..nu../sub p/ which is responsible for the slowing is derived in the dipole approximation; many-photon stimulated bremsstrahlung and inverse bremsstrahlung are taken into account. The asymptotic behavior of ..nu../sub p/ in strong wave fields E/sub 0/ is found. The results show that ..nu../sub p/ falls off with increasing E/sub 0/, because of a decrease in the frequency of collisions with plasma ions proportional to E/sub 0//sup -1/.
Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang
2015-04-01
A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.
Energy Technology Data Exchange (ETDEWEB)
Longcope, D. W.; Tarr, L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2012-09-10
Using a simple two-dimensional, zero-{beta} model, we explore the manner by which reconnection at a current sheet releases and dissipates free magnetic energy. We find that only a small fraction (3%-11% depending on current-sheet size) of the energy is stored close enough to the current sheet to be dissipated abruptly by the reconnection process. The remaining energy, stored in the larger-scale field, is converted to kinetic energy in a fast magnetosonic disturbance propagating away from the reconnection site, carrying the initial current and generating reconnection-associated flows (inflow and outflow). Some of this reflects from the lower boundary (the photosphere) and refracts back to the X-point reconnection site. Most of this inward wave energy is reflected back again and continues to bounce between X-point and photosphere until it is gradually dissipated, over many transits. This phase of the energy dissipation process is thus global and lasts far longer than the initial purely local phase. In the process, a significant fraction of the energy (25%-60%) remains as undissipated fast magnetosonic waves propagating away from the reconnection site, primarily upward. This flare-generated wave is initiated by unbalanced Lorentz forces in the reconnection-disrupted current sheet, rather than by dissipation-generated pressure, as some previous models have assumed. Depending on the orientation of the initial current sheet, the wave front is either a rarefaction, with backward-directed flow, or a compression, with forward-directed flow.
Gravitational-wave physics and astronomy an introduction to theory, experiment and data analysis
Creighton, Jolien D E
2011-01-01
This most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitation
International Nuclear Information System (INIS)
1968-01-01
Proceedings of a Symposium organized by the IAEA and held in Karlsruhe, 30 October - 3 November 1967. The meeting was attended by 183 scientists from 23 countries and three international organizations. Contents: (Vol.1) Review of national programmes (5 papers); Nuclear data for fast reactors (12 papers); Experimental methods (3 papers); Zoned systems (7 papers); Kinetics (7 papers). (Vol.11) Fast critical experiments (8 papers); Heterogeneity in fast critical experiments (5 papers); Fast power reactors (13 papers); Fast pulsed reactors (3 papers); Panel discussion. Each paper is in its original language (50 English, 11 French and 3 Russian) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)
Energy Technology Data Exchange (ETDEWEB)
Levko, Dmitry; Raja, Laxminarayan L. [Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712 (United States)
2016-04-21
The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode–anode gap by rather dense plasma (∼10{sup 13 }cm{sup −3}) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizing it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.
Energy Technology Data Exchange (ETDEWEB)
Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-06-03
During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitch and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.
Full-wave modeling of ICRF waves: global and quasi-local descriptions
International Nuclear Information System (INIS)
Dumont, R. J.
2007-01-01
Waves in the Ion Cyclotron Range of Frequencies (ICRF) undergo significant space dispersion as they propagate in magnetic fusion plasmas, making it necessary to incorporate non-local effects in their physical description. Full-wave codes are routinely employed to simulate ICRF heating experiments in tokamaks. The vast majority of these codes rely on a description of the plasma based on a 'quasi-local' derivation of the dielectric tensor, i.e. assuming that the range of space dispersion remains small compared to the system dimensions. However, non-local effects caused by wide particle orbits are expected to play a significant role in current and future experiments featuring wave-driven fast ions, fusion-born alpha particles... Global formalisms have thus been proposed to include these effects in a more comprehensive fashion. Based on a description of the particle dynamics in terms of action-angle variables, a full-wave code, named EVE, is currently under development. Its first version, presented here, incorporates quasi-local expressions valid to second order in Larmor radius, derived from the more general Hamiltonian formalism. The obtained tool has the advantage of being compatible with the current requirements of integrated modeling, and lends itself to direct comparisons with existing codes
EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS
International Nuclear Information System (INIS)
Yuan, D.; Li, B.; Pascoe, D. J.; Nakariakov, V. M.; Keppens, R.
2015-01-01
We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wave pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere
Directory of Open Access Journals (Sweden)
Davide Grassi
2015-02-01
Full Text Available Hypertension and arterial stiffening are independent predictors of cardiovascular mortality. Flavonoids may exert some vascular protection. We investigated the effects of black tea on blood pressure (BP and wave reflections before and after fat load in hypertensives. According to a randomized, double-blind, controlled, cross-over design, 19 patients were assigned to consume black tea (129 mg flavonoids or placebo twice a day for eight days (13 day wash-out period. Digital volume pulse and BP were measured before and 1, 2, 3 and 4 h after tea consumption. Measurements were performed in a fasted state and after a fat load. Compared to placebo, reflection index and stiffness index decreased after tea consumption (p < 0.0001. Fat challenge increased wave reflection, which was counteracted by tea consumption (p < 0.0001. Black tea decreased systolic and diastolic BP (−3.2 mmHg, p < 0.005 and −2.6 mmHg, p < 0.0001; respectively and prevented BP increase after a fat load (p < 0.0001. Black tea consumption lowers wave reflections and BP in the fasting state, and during the challenging haemodynamic conditions after a fat load in hypertensives. Considering lipemia-induced impairment of arterial function may occur frequently during the day, our findings suggest regular consumption of black tea may be relevant for cardiovascular protection.
Wang, Y.; Tobias, B.; Chang, Y.-T.; Yu, J.-H.; Li, M.; Hu, F.; Chen, M.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Gu, J.; Liu, X.; Zhu, Y.; Domier, C. W.; Shi, L.; Valeo, E.; Kramer, G. J.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Luhmann, N. C., Jr.
2017-07-01
Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.
Directory of Open Access Journals (Sweden)
S. R. Cash
2002-09-01
Full Text Available A quantitative analysis is presented of the FAST satellite electric field and particle flux data during an EISCAT heating experiment run on 8 October 1998. Radio frequency heating, modulated at 3 Hz, launched ULF waves from the ionosphere into the lower magnetosphere. The ULF waves were observed in FAST data and constituted the first satellite detection of artificially excited Alfvénic ULF waves. The downward electron flux data for this event contain the first observations of electrons undergoing acceleration within the Ionospheric Alfvén Resonator (IAR due to parallel electric fields associated with an artificially stimulated Alfvén wave. The time history and spectral content of the observed down-ward electron fluxes is investigated by considering the effects of a localised parallel electric field. Furthermore, it is demonstrated that a power law electron energy distribution describes the time-variable observed fluxes better than a Maxwellian distribution.Key words. Ionosphere (active experiments; particle acceleration – Magnetospheric physics (electric fields
Directory of Open Access Journals (Sweden)
S. R. Cash
Full Text Available A quantitative analysis is presented of the FAST satellite electric field and particle flux data during an EISCAT heating experiment run on 8 October 1998. Radio frequency heating, modulated at 3 Hz, launched ULF waves from the ionosphere into the lower magnetosphere. The ULF waves were observed in FAST data and constituted the first satellite detection of artificially excited Alfvénic ULF waves. The downward electron flux data for this event contain the first observations of electrons undergoing acceleration within the Ionospheric Alfvén Resonator (IAR due to parallel electric fields associated with an artificially stimulated Alfvén wave. The time history and spectral content of the observed down-ward electron fluxes is investigated by considering the effects of a localised parallel electric field. Furthermore, it is demonstrated that a power law electron energy distribution describes the time-variable observed fluxes better than a Maxwellian distribution.
Key words. Ionosphere (active experiments; particle acceleration – Magnetospheric physics (electric fields
Wave-current interactions at the FloWave Ocean Energy Research Facility
Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis
2015-04-01
Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The
Energy Technology Data Exchange (ETDEWEB)
Kim, Sun Ho; Jeong, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyun Woo; Lee, Byung Je [Kwang Woon University, Chuncheon (Korea, Republic of); Jo, Jong Gab; Lee, Hyun Young; Hwang, Yong Seok [Seoul National University, Seoul (Korea, Republic of)
2015-10-15
Continuous current drive is one of the key issues for tokamak to be a commercial fusion reactor. As a part of new and efficient current drive concept research by using a Lower Hybrid Fast Wave (LHFW), the experimental study is planned on Versatile Experiment Spherical Torus (VEST) and a RF system is being developed in collaboration with Kwang Woon University (KWU), Korea Accelerator Plasma Research Association (KAPRA) and Seoul National University (SNU). The LHFW RF system includes UHF band klystron, inter-digital antenna, RF diagnostics and power transmission sub components such as circulator, DC breaker, vacuum feed-thru. The design and preparation status of the RF system will be presented in the meeting in detail. A RF system has been designed and prepared for the experimental study of efficient current drive by using Lower Hybrid Fast Wave. Overall LHFW RF system including diagnostics is designed to deliver about 10 kW in UHF band. And the key hardware components including klystron and antenna are being prepared and designed through the collaboration with KWU, KAPRA and SNU.
International Nuclear Information System (INIS)
Vajda, J.; Jamnicky, I.
2015-01-01
The 21. International Conference on Applied Physics of Condensed Matter was held on 24-26 June, 2015 on Strbske Pleso, Strba, Slovakia. The Scientific Conference the Advanced Fast Reactors was part of the 21 st International Conference on APCOM 2015. The specialists discussed various aspects of modern problems in: Physical properties and structural aspects of solid materials and their influencing; Advanced fast reactors; Physical properties and structural aspects of solid materials and their influencing; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Computational physics and theory of physical properties of matter; interdisciplinary physics of condensed matter; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Fifty seven contributions relevant of INIS interest has been inputted to INIS.
Nonlinear waves in Bose–Einstein condensates: physical relevance and mathematical techniques
International Nuclear Information System (INIS)
Carretero-González, R; Frantzeskakis, D J; Kevrekidis, P G
2008-01-01
The aim of this review is to introduce the reader to some of the physical notions and the mathematical methods that are relevant to the study of nonlinear waves in Bose–Einstein condensates (BECs). Upon introducing the general framework, we discuss the prototypical models that are relevant to this setting for different dimensions and different potentials confining the atoms. We analyse some of the model properties and explore their typical wave solutions (plane wave solutions, bright, dark, gap solitons as well as vortices). We then offer a collection of mathematical methods that can be used to understand the existence, stability and dynamics of nonlinear waves in such BECs, either directly or starting from different types of limits (e.g. the linear or the nonlinear limit or the discrete limit of the corresponding equation). Finally, we consider some special topics involving more recent developments, and experimental setups in which there is still considerable need for developing mathematical as well as computational tools. (invited article)
Target continuum distorted-wave theory for collisions of fast protons with atomic hydrogen
International Nuclear Information System (INIS)
Crothers, D.S.F.; Dunseath, K.M.
1990-01-01
By considering the target continuum distorted-wave (TCDW) theory as the high-energy limit of the half-way house variational continuum distorted-wave theory, it is shown not only that there is no intermediate elastic divergence but also that the second-order amplitude based on a purely elastic intermediate state is of order υ -6 and is thus negligible. The residual inelastic TCDW theory is developed to second-order at high velocities. It is used to describe charge exchange during collisions of fast protons with atomic hydrogen. Using an on-shell peaking approximation and considering 1s-1s capture it is shown that the residual purely second-order transition amplitude comprises two terms, one real term of order υ -6 and one purely imaginary term of order υ -7 ln υ. At 5 MeV laboratory energy, it is shown that these are negligible. It is also shown that the υ -5 first-order term gives a differential cross section in very good agreement with an experiment at all angles including forward, interference minimum, Thomas maximum and large angles, particularly having folded our theory over experimental resolution. (author)
Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra
Ryden, N.; Park, C.B.
2006-01-01
The conventional inversion of surface waves depends on modal identification of measured dispersion curves, which can be ambiguous. It is possible to avoid mode-number identification and extraction by inverting the complete phase-velocity spectrum obtained from a multichannel record. We use the fast simulated annealing (FSA) global search algorithm to minimize the difference between the measured phase-velocity spectrum and that calculated from a theoretical layer model, including the field setup geometry. Results show that this algorithm can help one avoid getting trapped in local minima while searching for the best-matching layer model. The entire procedure is demonstrated on synthetic and field data for asphalt pavement. The viscoelastic properties of the top asphalt layer are taken into account, and the inverted asphalt stiffness as a function of frequency compares well with laboratory tests on core samples. The thickness and shear-wave velocity of the deeper embedded layers are resolved within 10% deviation from those values measured separately during pavement construction. The proposed method may be equally applicable to normal soil site investigation and in the field of ultrasonic testing of materials. ?? 2006 Society of Exploration Geophysicists.
Effect of ramadan fasting on body composition and physical performance in female athletes.
Memari, Amir-Hossein; Kordi, Ramin; Panahi, Nekoo; Nikookar, Laya R; Abdollahi, Mohammad; Akbarnejad, Ali
2011-09-01
The aim of this study was to determine the effect of Ramadan fasting on body composition, calorie intake and physical performance in young female athletes undertaking training sessions during Ramadan. Twelve voluntary female athletes (15-27 years old) were assigned to the research. A prospective study was conducted to investigate the athletes on four different occasions: one week before Ramadan (T1), the second (T2) and fourth (T3) weeks of Ramadan, and two weeks after the end of Ramadan (T4). Food intake, body composition and physical performance (agility, balance and explosive leg power) were investigated on each occasion. Further, Physical performance was assessed by agility, vertical jump and balance tests. There was a significant main effect for time for body composition indices. A significant decrease was observed in weight (P=0.01) and body mass index (BMI) (P=0.01) in T2 compared with T1, further decrease in weight (Peffect for time for agility performance (P=0.03), but no significant main effect for time was observed for vertical jumping (P=0.1) and balance performance (P=0.3). This study has found that Ramadan fasting could affect the body composition, but not physical performance in female athletes during Ramadan.
Energy Technology Data Exchange (ETDEWEB)
Tang, Jau
1996-02-01
As an alternative to better physical explanations of the mechanisms of quantum interference and the origins of uncertainty broadening, a linear hopping model is proposed with ``color-varying`` dynamics to reflect fast exchange between time-reversed states. Intricate relations between this model, particle-wave dualism, and relativity are discussed. The wave function is shown to possess dual characteristics of a stable, localized ``soliton-like`` de Broglie wavelet and a delocalized, interfering Schroedinger carrier wave function.
Directory of Open Access Journals (Sweden)
Garry Robinson
2011-07-01
Full Text Available In this paper we present an Excel package that can be used to demonstrate physical phenomena in which variables may be automatically adjusted in real-time. This is accomplished by interrogating the system clock through the use of an appropriate macro, and using the clock reading to update the relevant variable. The package has been used for a number of years in first year physics courses to illustrate two phenomena: i waves, including travelling waves, standing waves, the addition of waves and the interference of waves in general, and also Lissajous figures, and ii Fraunhofer diffraction and the effects of varying such quantities as the wavelength of the incoming light, the number of slits, the slit width and the slit separation. A number of illustrative examples, generated by the package and taken from a fist year physics course, are presented graphically. The package, which is available for downloading from the web, may be used interactively by the student and is easily modified by them. The use of Excel has the advantage that it is accessible to a much wider audience than if it were written in, say, Matlab. We envisage that it may be useful for first year university courses in wave motion and optics, and may also be useful in physics courses in the last year of secondary school. The package has been tested under Excel 2003, 2007 and 2010, and runs satisfactorily in all three versions.
Computation of High-Frequency Waves with Random Uncertainty
Malenova, Gabriela
2016-01-06
We consider the forward propagation of uncertainty in high-frequency waves, described by the second order wave equation with highly oscillatory initial data. The main sources of uncertainty are the wave speed and/or the initial phase and amplitude, described by a finite number of random variables with known joint probability distribution. We propose a stochastic spectral asymptotic method [1] for computing the statistics of uncertain output quantities of interest (QoIs), which are often linear or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral convergence of the proposed method depends crucially on the presence of high stochastic regularity of the QoI independent of the wave frequency. In general, the high-frequency wave solutions to parametric hyperbolic equations are highly oscillatory and non-smooth in both physical and stochastic spaces. Consequently, the stochastic regularity of the QoI, which is a functional of the wave solution, may in principle below and depend on frequency. In the present work, we provide theoretical arguments and numerical evidence that physically motivated QoIs based on local averages of |uE|2 are smooth, with derivatives in the stochastic space uniformly bounded in E, where uE and E denote the highly oscillatory wave solution and the short wavelength, respectively. This observable related regularity makes the proposed approach more efficient than current asymptotic approaches based on Monte Carlo sampling techniques.
Antonelli, Ray; Viera, Anthony J.
2015-01-01
Introduction Numeric calorie content labels show limited efficacy in reducing the number of calories ordered from fast food meals. Physical activity calorie equivalent (PACE) labels are an alternative that may reduce the number of calories ordered in fast food meals while encouraging patrons to exercise. Methods A total of 1000 adults from 47 US states were randomly assigned via internet survey to one of four generic fast food menus: no label, calories only, calories + minutes, or calories + ...
Progress in Computational Physics (PiCP) Volume 1 Wave Propagation in Periodic Media
Ehrhardt, Matthias
2010-01-01
Progress in Computational Physics is a new e-book series devoted to recent research trends in computational physics. It contains chapters contributed by outstanding experts of modeling of physical problems. The series focuses on interdisciplinary computational perspectives of current physical challenges, new numerical techniques for the solution of mathematical wave equations and describes certain real-world applications. With the help of powerful computers and sophisticated methods of numerical mathematics it is possible to simulate many ultramodern devices, e.g. photonic crystals structures,
Slow speed—fast motion: time-lapse recordings in physics education
Vollmer, Michael; Möllmann, Klaus-Peter
2018-05-01
Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s-1, allowing us to study transient physics phenomena happening too fast for the naked eye. Here we want to extend the range of phenomena which may be studied by video analysis in the opposite direction by focusing on much longer time scales ranging from minutes, hours to many days or even months. We discuss this time-lapse method, needed equipment and give a few hints of how to produce respective recordings for two specific experiments.
International Nuclear Information System (INIS)
Gemmell, D.S.
1979-01-01
The Workshop on Physics with Fast Molecular-Ion Beams was held in the Physics Division, Argonne National Laboratory on August 20 and 21, 1979. The meeting brought together representatives from several groups studying the interactions of fast (MeV) molecular-ion beams with matter. By keeping the Workshop program sharply focussed on current work related to the interactions of fast molecular ions, it was made possible for the participants to engage in vigorous and detailed discussions concerning such specialized topics as molecular-ion dissociation and transmission, wake effects, ionic charge states, cluster stopping powers, beam-foil spectroscopy, electron-emissions studies with molecular-ion beams, and molecular-ion structure determinations
Applications of nanosecond, kilojoule lasers to the basic physics of waves in plasmas
International Nuclear Information System (INIS)
Drake, R.P.
1992-01-01
Plasmas can sustain many normal modes of oscillation (waves), including both electromagnetic and electrostatic modes. These waves can interact by a wide variety of linear and nonlinear mechanisms, including mode coupling, mixing, and instabilities. Furthermore, such mechanisms compete, so that a given wave might be absorbed, might mode convert, or might decay by one of several instabilities, depending upon the specific circumstances in which it is produced. Moreover, such waves are important in many applications, including for example laser fusion, x-ray lasers, plasma accelerators, and ionospheric heating. Laser-produced plasmas can provide an effective medium for the studies of such waves and the related mechanisms. New opportunities will be made possible by the advent of comparatively inexpensive nanosecond, kilojoule lasers. One can now contemplate affordable experiments, not limited by programmatic constraints, that could study such the basic physics of the waves in such plasmas with unprecedented precision and in unprecedented detail
Traveling waves in the discrete fast buffered bistable system.
Tsai, Je-Chiang; Sneyd, James
2007-11-01
We study the existence and uniqueness of traveling wave solutions of the discrete buffered bistable equation. Buffered excitable systems are used to model, among other things, the propagation of waves of increased calcium concentration, and discrete models are often used to describe the propagation of such waves across multiple cells. We derive necessary conditions for the existence of waves, and, under some restrictive technical assumptions, we derive sufficient conditions. When the wave exists it is unique and stable.
Hindman, Bradley W.; Jain, Rekha
2018-05-01
The arched field lines forming coronal arcades are often observed to undulate as magnetohydrodynamic waves propagate both across and along the magnetic field. These waves are most likely a combination of resonantly coupled fast magnetoacoustic waves and Alfvén waves. The coupling results in resonant absorption of the fast waves, converting fast wave energy into Alfvén waves. The fast eigenmodes of the arcade have proven difficult to compute or derive analytically, largely because of the mathematical complexity that the coupling introduces. When a traditional spectral decomposition is employed, the discrete spectrum associated with the fast eigenmodes is often subsumed into the continuous Alfvén spectrum. Thus fast eigenmodes become collective modes or quasi-modes. Here we present a spectral decomposition that treats the eigenmodes as having real frequencies but complex wavenumbers. Using this procedure we derive dispersion relations, spatial damping rates, and eigenfunctions for the resonant, fast eigenmodes of the arcade. We demonstrate that resonant absorption introduces a fast mode that would not exist otherwise. This new mode is heavily damped by resonant absorption, travelling only a few wavelengths before losing most of its energy.
Energy Technology Data Exchange (ETDEWEB)
Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-08-09
During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitch and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.
Energy Technology Data Exchange (ETDEWEB)
Komoshvili, K [Tel Aviv University, Ramat Aviv (Israel); Cuperman, S [Tel Aviv University, Ramat Aviv (Israel); Bruma, C [Tel Aviv University, Ramat Aviv (Israel)
2007-09-15
To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined.
International Nuclear Information System (INIS)
Komoshvili, K; Cuperman, S; Bruma, C
2007-01-01
To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined
Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Bruma, C.; Cuperman, S.; Komoshvili, K. [Tel Aviv Univ. (Israel). Faculty of Exact Sciences
1997-05-01
This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({l_brace}{omega}{sub Alf}(r){r_brace}{sub min} < {omega} < {l_brace}{omega}{sub Alf}(r){r_brace}{sub max}) and discrete range, DR, where global Alfven eigenmodes, GAEs ({omega} < {l_brace}{sub Alf}(r){r_brace}{sub min}) exist, are considered. (Here, {omega}{sub Alf}(r) {identical_to} {omega}{sub Alf}[n(r), B{sub 0}(r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author).
Directory of Open Access Journals (Sweden)
A. Canals
2002-09-01
Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques
Directory of Open Access Journals (Sweden)
A. Canals
Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.
Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques
Physical Processes Involved In Yellow Sea Solitary Waves
Warn-Varnas, A.; Chin-Bing, S.; King, D.; Lamb, K.; Hawkins, J.; Teixeira, M.
The study area is located south of the Shandong peninsula. In this area, soliton gener- ation and propagation studies are per formed with the Lamb(1994) model. The model is nonhydrostatic and is formulated in 2 1/2 dimensions for terrain following c oordi- nates. In the area, 20 to 30 m topographic variations over distances of 10 to 20 km are found to occur in the digit al atlas of Choi (1999). The area is shallow with maximum depths ranging from 40 m to 70 m. Along the southern boundary of the region the semi-diurnal tidal strength magnitude varies from .6 m/sec to 1.2 m/sec, Fang(1994). We show that, for sum mer conditions, the existing physical processes associated with the semi-diurnal tidal flow over the topographic variations , in the shelfbreak region, lead to the formation of internal bores in the model simulations. Through acting phys- ical proce sses, the internal bores propagate on and off the shelf. A disintegration process of internal bores into solitary waves occ urs through frequency and ampli- tude dispersion. SAR observations of the area show images containing six events con- sisting of internal bores and solitary waves that travel in a well-defined direction for two and a half days. The origin of the trains appeared to be at a point along a steep topo graphic drop. The SAR observations are used for guiding and tuning the model simulations, by comparing spectra of observed and modeled wavelengths. The tuned model yields wavelengths that are within a factor of 2 of the SAR data. The modeled amp litudes are within a factor of 2 of amplitudes obtained with a two-layer model and the SAR data The signature on the acoustical field of ongoing physical processes through the interaction of the resultant oceanic struct ure with the acoustical field is pursued. Internal bore and solitary wave structures interact with the acoustic field. A re distribution of acoustical energy to higher acoustical modes occurs at some fre- quencies. Mode decomposition of the
Development of a three dimension multi-physics code for molten salt fast reactor
International Nuclear Information System (INIS)
Cheng Maosong; Dai Zhimin
2014-01-01
Molten Salt Reactor (MSR) was selected as one of the six innovative nuclear reactors by the Generation IV International Forum (GIF). The circulating-fuel in the can-type molten salt fast reactor makes the neutronics and thermo-hydraulics of the reactor strongly coupled and different from that of traditional solid-fuel reactors. In the present paper: a new coupling model is presented that physically describes the inherent relations between the neutron flux, the delayed neutron precursor, the heat transfer and the turbulent flow. Based on the model, integrating nuclear data processing, CAD modeling, structured and unstructured mesh technology, data analysis and visualization application, a three dimension steady state simulation code system (MSR3DS) for the can-type molten salt fast reactor is developed and validated. In order to demonstrate the ability of the code, the three dimension distributions of the velocity, the neutron flux, the delayed neutron precursor and the temperature were obtained for the simplified MOlten Salt Advanced Reactor Transmuter (MOSART) using this code. The results indicate that the MSR3DS code can provide a feasible description of multi-physical coupling phenomena in can-type molten salt fast reactor. Furthermore, the code can well predict the flow effect of fuel salt and the transport effect of the turbulent diffusion. (authors)
Fast reactors fuel cycle core physics results from the CAPRA-CADRA programme
Energy Technology Data Exchange (ETDEWEB)
Vasile, A.; Rimpault, G.; Tommasi, J.; Saint Jean, C. de; Delpech, M. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Hesketh, K. [BNFL, Inc., Denver, CO (United States); Beaumont, H.M.; Sunderland, R.E. [NNC Ltd. (United Kingdom); Newton, T.; Smith, P. [AEA Technology (United Kingdom); Raedt, Ch. de [SCK.CEN, Mol (Belgium); Vambenepe, G. [Electricite de France (EDF), 75 - Paris (France); Lefevre, J.C. [FRAMATOME, 92 - Paris-La-Defence (France); Maschek, W.; Haas, D
2001-07-01
This paper presents an overview of fast reactor core physics results obtained in the context of the CAPRA-CADRA European collaborative programme, whose aim is to investigate a broad range of possible options for plutonium and radioactive waste management. Different types of fast reactors have been studied to evaluate their potential capabilities with respect to the long term management of plutonium, minor actinides (MAs) and long- lived fission products (LLFPs). Among the several options aiming at reducing waste and consequently radio toxicity are: homogeneous recycling of Minor Actinides, heterogeneous recycling of Minor Actinides either without or with moderation, dedicated critical cores (fuelled mainly with Minor Actinides) and Accelerator Driven System (ADS) variants. In order to achieve a detailed understanding of the potential of the various options, advanced core physics methods have been implemented and tested and applied, for example, to improving control rod modeling and to studying safety aspects. There has also been code development and experimental work carried out to improve the understanding of fuel performance behaviors. (author)
Fast reactors fuel cycle core physics results from the CAPRA-CADRA programme
International Nuclear Information System (INIS)
Vasile, A.; Rimpault, G.; Tommasi, J.; Saint Jean, C. de; Delpech, M.; Hesketh, K.; Beaumont, H.M.; Sunderland, R.E.; Newton, T.; Smith, P.; Raedt, Ch. de; Vambenepe, G.; Lefevre, J.C.; Maschek, W.; Haas, D
2001-01-01
This paper presents an overview of fast reactor core physics results obtained in the context of the CAPRA-CADRA European collaborative programme, whose aim is to investigate a broad range of possible options for plutonium and radioactive waste management. Different types of fast reactors have been studied to evaluate their potential capabilities with respect to the long term management of plutonium, minor actinides (MAs) and long- lived fission products (LLFPs). Among the several options aiming at reducing waste and consequently radio toxicity are: homogeneous recycling of Minor Actinides, heterogeneous recycling of Minor Actinides either without or with moderation, dedicated critical cores (fuelled mainly with Minor Actinides) and Accelerator Driven System (ADS) variants. In order to achieve a detailed understanding of the potential of the various options, advanced core physics methods have been implemented and tested and applied, for example, to improving control rod modeling and to studying safety aspects. There has also been code development and experimental work carried out to improve the understanding of fuel performance behaviors. (author)
The physics of wave-particle interactions with applications to astrophysics
International Nuclear Information System (INIS)
Karimabadi, H.
1988-01-01
The physics of electromagnetic wave-particle interactions in the limit of a strong static magnetic field is investigated using Hamiltonian and multiple time-scale techniques. For sufficiently small wave amplitude, the system is integrable and the motion in phase space is regular. For amplitudes exceeding a threshold value, the system become nonintegrable and the particle motion in phase space becomes stochastic. The stochasticity is caused by the overlapping of the adjacent resonances. The particle dynamics in various limits is discussed using a novel graphical technique for analyzing the particle motion. It is found that for ncosα > 1, the constant Hamiltonian surfaces are topologically closed and the maximum attainable particle energy is severely limited (n is the index of refraction and α is the wave propagation angle). For ncosα ≤ 1, however, the constant Hamiltonian surfaces are open due to relativistic correlations and the particles can gain large energies. A diffusion equation analogous to the Fokker-Planck equation is derived and used to examine the effect of the wave on an ensemble of particles. The model is applied to two different space applications. (i) It is shown that electrons can be accelerated by interacting with fundamental or second harmonic of an obliquely propagating cyclotron wave. This acceleration mechanism can explain the observed high energy electrons in solar type III bursts. (ii). The Kennel and Coroniti (1984) model of the Crab nebula is reexamined including the wave effects. A new model for the Crab nebula which accounts for the presence of radio electrons is proposed and its predictions compared to observations
Fast wave at 433 MHz on FTU by a folded waveguide launcher
International Nuclear Information System (INIS)
Barbato, E.; De Marco, F.
1993-01-01
The use of fast wave (FW) power to interact directly with electrons is a useful tool for central heating of high density, high temperature plasmas and for electron current drive (CD). Direct electron heating by FW has been observed on JET and TFTR and, although FW absorption is weak at low β, successful electron heating and CD have been achieved on DIII-D at Te=2--3keV. The folded waveguide (FWG) is a promising new concept for ICRF launchers having the advantage of compact, rigid structure and very low impedence (E y /H z ) at the plasma edge. The FWG is particularly attractive for FTU since loop antennas suffer efficiency degradation at high frequency due to poloidal current decrease, whereas the RF flux coupled by a FWG is more poloidally uniform. Here we consider the possibility of injecting ∼ 1 MW of FW at 433 MHz into the FTU-Tokamak using the FWG as a launcher. Besides testing the FWG, and studying the FW electron heating regime, an other interesting issue of this experiment would be the study of possible sinergy between FW and the lower hybrid wave (LHW) at 8 GHz which is also available on FTU. The main parameters of FTU are a=30 cm, R 0 =90 cm, B T =4--8 T, I p e =0.4--2.0 10 14 cm -3
Meckel, Yoav; Ismaeel, Aobeida; Eliakim, Alon
2008-04-01
The purpose of this study was to examine the effect of the Ramadan fast on performance capacities, dietary habits, and the daily behavioral patterns in adolescent (14-16-year-old) soccer players. Nineteen male players performed a series of fitness tests before and at the end of Ramadan fast. Caloric intake, physical activity pattern and sleep habits were evaluated during the week before the Ramadan fast and during the last week of the Ramadan fast. The fast resulted in a significant reduction in aerobic capacity [3,000 m run time (mean +/- SD): 812.8 +/- 73.3 s vs. 819.9 +/- 73.4 s, P performance decrement: 9.0 +/- 1.5% vs. 9.5 +/- 1.7%, P performance (44.8 +/- 4.5 cm vs. 44.0 +/- 4.5 cm, P performance (7.38 +/- 0.25 s vs. 7.40 +/- 0.26 s, P = 0.20) or agility (4 x 10 m shuttle run time: 9.53 +/- 0.35 s vs. 9.55 +/- 0.37 s, P = 0.26). Daily intense physical activity was significantly reduced during Ramadan (6.4 +/- 0.2 h/week vs. 4.5 +/- 0.1 h/week, P sleeping hours (8.6 +/- 0.7 h/day vs. 8.6 +/- 0.5 h/day, P = 0.80) between Ramadan and a regular month. The results indicate that Ramadan fasting can lead to a significant decrease in athletic performance capacities. The decrease in performance does not necessarily relate to changes in caloric intake and sleeping hours during the fast.
A thermodynamical analysis of rf current drive with fast electrons
Energy Technology Data Exchange (ETDEWEB)
Bizarro, João P. S., E-mail: bizarro@ipfn.tecnico.ulisboa.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)
2015-08-15
The problem of rf current drive (CD) by pushing fast electrons with high-parallel-phase-velocity waves, such as lower-hybrid (LH) or electron-cyclotron (EC) waves, is revisited using the first and second laws, the former to retrieve the well-known one-dimensional (1D) steady-state CD efficiency, and the latter to calculate a lower bound for the rate of entropy production when approaching steady state. The laws of thermodynamics are written in a form that explicitly takes care of frictional dissipation and are thus applied to a population of fast electrons evolving under the influence of a dc electric field, rf waves, and collisions while in contact with a thermal, Maxwellian reservoir with a well-defined temperature. Besides the laws of macroscopic thermodynamics, there is recourse to basic elements of kinetic theory only, being assumed a residual dc electric field and a strong rf drive, capable of sustaining in the resonant region, where waves interact with electrons, a raised fast-electron tail distribution, which becomes an essentially flat plateau in the case of the 1D theory for LHCD. Within the 1D model, particularly suited for LHCD as it solely retains fast-electron dynamics in velocity space parallel to the ambient magnetic field, an H theorem for rf CD is also derived, which is written in different forms, and additional physics is recovered, such as the synergy between the dc and rf power sources, including the rf-induced hot conductivity, as well as the equation for electron-bulk heating. As much as possible 1D results are extended to 2D, to account for ECCD by also considering fast-electron velocity-space dynamics in the direction perpendicular to the magnetic field, which leads to a detailed discussion on how the definition of an rf-induced conductivity may depend on whether one works at constant rf current or power. Moreover, working out the collisional dissipated power and entropy-production rate written in terms of the fast-electron distribution, it
Advantages of traveling wave resonant antennas for fast wave heating systems
International Nuclear Information System (INIS)
Phelps, D.A.; Callis, R.W.; Grassie, J.S. de
1997-04-01
The resilience of a maximally flat externally coupled traveling wave antenna (TWA) is contrasted with the sensitivity of a simple directly driven resonant loop array to vacuum and plasma conditions in DIII-D. We find a unique synergy between standing and traveling wave resonant TWA components. This synergy extends TWA operation to several passbands between 60 and 120 MHZ, provides 60 degrees- 120 degrees tunability between elements within a 1-2 MHZ bandwidth and permits efficient and continuous operation during ELMing H-mode
Recent Fast Wave Coupling and Heating Studies on NSTX, with Possible Implications for ITER
International Nuclear Information System (INIS)
Hosea, J.C.; Bell, R.E.; Feibush, E.; Harvey, R.W.; Jaeger, E.F.; LeBlanc, B.P; Maingi, R.; Phillips, C.K.; Roquemore, L.; Ryan, P.M.; Taylor, G.; Tritz, K.; Valeo, E.J.; Wilgen, J.; Wilson, J.R.
2009-01-01
The goal of the high harmonic fast wave (HHFW) research on NSTX is to maximize the coupling of RF power to the core of the plasma by minimizing the coupling of RF power to edge loss processes. HHFW core plasma heating efficiency in helium and deuterium L-mode discharges is found to improve markedly on NSTX when the density 2 cm in front of the antenna is reduced below that for the onset of perpendicular wave propagation (n onset ∝ B*k # parallel# 2 /ω). In NSTX, the observed RF power losses in the plasma edge are driven in the vicinity of the antenna as opposed to resulting from multi-pass edge damping. PDI surface losses through ion-electron collisions are estimated to be significant. Recent spectroscopic measurements suggest that additional PDI losses could be caused by the loss of energetic edge ions on direct loss orbits and perhaps result in the observed clamping of the edge rotation. Initial deuterium H-mode heating studies reveal that core heating is degraded at lower k φ (- 8 m -1 relative to 13 m -1 ) as for the Lmode case at elevated edge density. Fast visible camera images clearly indicate that a major edge loss process is occurring from the plasma scrape off layer (SOL) in the vicinity of the antenna and along the magnetic field lines to the lower outer divertor plate. Large type I ELMs, which are observed at both k φ values, appear after antenna arcs caused by precursor blobs, low level ELMs, or dust. For large ELMs without arcs, the source reflection coefficients rise on a 0.1 ms time scale, which indicates that the time derivative of the reflection coefficient can be used to discriminate between arcs and ELMs.
Lizurek, Grzegorz; Marmureanu, Alexandru; Wiszniowski, Jan
2017-03-01
Bucharest, with a population of approximately 2 million people, has suffered damage from earthquakes in the Vrancea seismic zone, which is located about 170 km from Bucharest, at a depth of 80-200 km. Consequently, an earthquake early warning system (Bucharest Rapid earthquake Early Warning System or BREWS) was constructed to provide some warning about impending shaking from large earthquakes in the Vrancea zone. In order to provide quick estimates of magnitude, seismic moment was first determined from P-waves and then a moment magnitude was determined from the moment. However, this magnitude may not be consistent with previous estimates of magnitude from the Romanian Seismic Network. This paper introduces the algorithm using P-wave spectral levels and compares them with catalog estimates. The testing procedure used waveforms from about 90 events with catalog magnitudes from 3.5 to 5.4. Corrections to the P-wave determined magnitudes according to dominant intermediate depth events mechanism were tested for November 22, 2014, M5.6 and October 17, M6 events. The corrections worked well, but unveiled overestimation of the average magnitude result of about 0.2 magnitude unit in the case of shallow depth event ( H < 60 km). The P-wave spectral approach allows for the relatively fast estimates of magnitude for use in BREWS. The average correction taking into account the most common focal mechanism for radiation pattern coefficient may lead to overestimation of the magnitude for shallow events of about 0.2 magnitude unit. However, in case of events of intermediate depth of M6 the resulting M w is underestimated at about 0.1-0.2. We conclude that our P-wave spectral approach is sufficiently robust for the needs of BREWS for both shallow and intermediate depth events.
Gabor Wave Packet Method to Solve Plasma Wave Equations
International Nuclear Information System (INIS)
Pletzer, A.; Phillips, C.K.; Smithe, D.N.
2003-01-01
A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach
Energy Technology Data Exchange (ETDEWEB)
Bess, J. D.; Briggs, J. B.; Gulliford, J.; Ivanova, T.; Rozhikhin, E. V.; Semenov, M. Yu.; Tsibulya, A. M.; Koscheev, V. N.
2017-07-01
Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energy Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning
Special issue on electron cyclotron wave physics, technology, and applications - Part 2
International Nuclear Information System (INIS)
Uckan, Nermin A.
2008-01-01
This issue of Fusion Science and Technology (FS and T) contains a compendium of full-length, peer-reviewed papers on electron cyclotron (EC) wave physics, technology, and applications on magnetically confined plasmas. The interest in this special issue started with a simple question from a single individual who asked if he could submit for publication in FS and T his paper ''ITER ECH Front Steering Upper Launcher,'' parts of which he was planning to present at the 14th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Santorini Island, Greece, May 2006. Such interest quickly grew, and the decision was made to offer the same opportunity to other workshop participants as well as to other interested researchers from around the world to contribute to a special FS and T issue on EC wave physics, technology, and applications. The person who started this ''wave'' of interest is no other than Dr. Mark Henderson, who was later drafted and kindly agreed to serve as the guest editor for this issue. The worldwide research program on EC wave physics, technology, and applications has shown impressive progress over the past couple of years, and much of this progress is reflected in the fifty or so papers that are included in this two-part special issue - part 1 in August 2007 and part 2 in January 2008. To complement the contributed papers, several informative reviews, which will be valuable for years to come, were also invited and are included. These review papers provide an objective summary of the current state of the art in EC emission research, theory of EC waves, EC heating and current drive experiments, gyrotron development, launcher development, and transmission systems. In preparation for ITER, this special issue is timely and should be of interest to those already working in the field and to the new generation of scientists and engineers who will be the ones to design, build, and carry out experiments on ITER. We extend our
International Nuclear Information System (INIS)
Zhang, S.Y.; Poznyak, V.I.; Ploskirev, G.; Kalupin, D.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Gao, X.; Wan, B.N.; Zhang, X.D.; Wang, K.J.; Kuang, G.L.
2001-01-01
Two sets of fast-scanning heterodyne radiometer receiver systems employing backward-wave oscillators (BWOs) in 78-118 and 118-178 GHz were developed and installed for electron cyclotron emission (ECE) measurements on HT-7 superconducting tokamak. The double sideband (DSB) radiometer in 78-118 GHz measures 16 ECE frequency points with a scanning time period of 0.65 ms. The other radiometer in 118-178 GHz consists of one independent channel of DSB heterodyne receiver with intermediate frequency (IF) of 100-500 MHz and two channels of single sideband (SSB) heterodyne receiver that are sensitive to upper sideband and lower sideband individually; the IF frequency of the SSB channels are 1.5 GHz around the local oscillator frequencies with 1 GHz bandwidth. By employing a novel design, this unique radiometer measures 3 ECE frequency points at each of the 16 local oscillator frequency points in 118-178 GHz, and the full band can be swept in 0.65 ms period, thus the radiometer measures 48 ECE frequency points in 0.65 ms in principle. Each of the local oscillators' frequency points can be preset by program to meet specific physics interests. Horizontal view of ECE was installed to measure electron temperature profiles; vertically viewing optics along a perpendicular chord was also installed to study nonthermal ECE spectra. Preliminary measurement results were presented during ohmic and pellet injection plasmas
Boniol, Mathieu; Dragomir, Miruna; Autier, Philippe; Boyle, Peter
2017-11-01
A systematic review was conducted of randomized trials which evaluated the impact of physical activity on the change in fasting glucose and HbA1c. A literature search was conducted in PubMed until December 2015. Studies reporting glucose or HbA1c at baseline and at the end of study were included, and the change and its variance were estimated from studies with complete data. Mixed-effect random models were used to estimate the change of fasting glucose (mg/dl) and HbA1c (%) per additional minutes of physical activity per week. A total of 125 studies were included in the meta-analysis. Based on 105 studies, an increase of 100 min in physical activity per week was associated with an average change of -2.75 mg/dl of fasting glucose (95% CI -3.96; -1.55), although there was a high degree of heterogeneity (83.5%). When restricting the analysis on type 2 diabetes and prediabetes subjects (56 studies), the average change in fasting glucose was -4.71 mg/dl (95% CI -7.42; -2.01). For HbA1c, among 76 studies included, an increase of 100 min in physical activity per week was associated with an average change of -0.14% of HbA1c (95% CI -0.18; -0.09) with heterogeneity (73%). A large degree of publication bias was identified (Egger test p HbA1c was -0.16% (95% CI -0.21; -0.11). This analysis demonstrates that moderate increases in physical activity are associated with significant reductions in both fasting glucose and HbA1c.
Antonelli, Ray; Viera, Anthony J
2015-01-01
Numeric calorie content labels show limited efficacy in reducing the number of calories ordered from fast food meals. Physical activity calorie equivalent (PACE) labels are an alternative that may reduce the number of calories ordered in fast food meals while encouraging patrons to exercise. A total of 1000 adults from 47 US states were randomly assigned via internet survey to one of four generic fast food menus: no label, calories only, calories + minutes, or calories + miles necessary to walk to burn off the calories. After completing hypothetical orders participants were asked to rate the likelihood of calorie-only and PACE labels to influence (1) food choice and (2) physical activity. Respondents (n = 823) ordered a median of 1580 calories from the no-label menu, 1200 from the calories-only menu, 1140 from the calories + minutes menu, and 1210 from the calories + miles menu (p = 0.0001). 40% of respondents reported that PACE labels were "very likely" to influence food item choice vs. 28% for calorie-only labels (pcalorie-only labels (pcalories ordered in fast food meals and may have the added benefit of encouraging exercise.
Traveling wave antenna for fast wave heating and current drive in tokamaks
International Nuclear Information System (INIS)
Ikezi, H.; Phelps, D.A.
1995-07-01
The traveling wave antenna for heating and current drive in the ion cyclotron range of frequencies is shown theoretically to have loading and wavenumber spectrum which are largely independent of plasma conditions. These characteristics have been demonstrated in low power experiments on the DIII-D tokamak, in which a standard four-strap antenna was converted to a traveling wave antenna through use of external coupling elements. The experiments indicate that the array maintains good impedance matching without dynamic tuning during abrupt changes in the plasma, such as during L- to H-mode transitions, edge localized mode activity, and disruptions. An analytic model was developed which exhibits the features observed in the experiments. Guidelines for the design of traveling wave antennas are derived from the validated model
Accuracy of inference on the physics of binary evolution from gravitational-wave observations
Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya
2018-04-01
The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.
Ionization Waves in a Fast, Hollow-Cathode-Assisted Capillary Discharge
International Nuclear Information System (INIS)
Rutkevich, I.; Mond, M.; Kaufman, Y.; Choi, P.; Favre, M.
1999-01-01
The initial, low-current stage of the evolution of a soft x-ray emitting, hollow-cathode-assisted capillary discharge initiated by a steep high-voltage pulse is investigated. The capillary is surrounded by a shield having the cathode potential. The mean electric field E of the order of 10 kV/cm and the low gas pressure (P<1Torr) provide conditions for extensive electron runaway. This is taken into account in the formulation of the theoretical approach by retaining the inertial terms in the momentum equation for the electrons. In addition, the ionization rate is calculated by considering the cross section for ionization by high-energy electrons. The two-dimensional system of the basic equations is reduced to a system of one-dimensional equations for the axial distributions of the physical quantities by introducing appropriate radial profiles of the electric potential, and the electron gas parameters and satisfying the electrodynamic boundary conditions at the capillary wall and at the shield. The resulting system of equations admits solutions in the form of stationary ionization waves transferring the anode potential to the cathode end. Numerical calculations of such solutions for argon show that the wave velocity V increases with the gas pressure P and with the density of initial electron beam ejected from the cathode hole ahead of the ionization front, while the dependence of V on the applied voltage is weak. At the instant when the virtual anode reaches the cathode hole, the plasma in the capillary is not yet fully ionized. The traverse time of the ionization wave along the capillary calculated for various gas pressures is in reasonable agreement with experimentally registered time delay for a high-current stage resulting in voltage collapse and soft x-ray emission
Breaking of ocean surface waves
International Nuclear Information System (INIS)
Babanin, A.V.
2009-01-01
Wind-generated waves are the most prominent feature of the ocean surface, and so are breaking waves manifested by the appearance of sporadic whitecaps. Such breaking represents one of the most interesting and most challenging problems for both fluid mechanics and physical oceanography. It is an intermittent random process, very fast by comparison with other processes in the wave breaking on the water surface is not continuous, but its role in maintaining the energy balance within the continuous wind-wave field is critical. Ocean wave breaking also plays the primary role in the air-sea exchange of momentum, mass and heat, and it is of significant importance for ocean remote sensing, coastal and maritime engineering, navigation and other practical applications. Understanding the wave breaking its occurrence, the breaking rates and even ability to describe its onset has been hindered for decades by the strong non-linearity of the process, together with its irregular and ferocious nature. Recently, this knowledge has significantly advanced, and the review paper is an attempt to summarise the facts into a consistent, albeit still incomplete picture of the phenomenon. In the paper, variety of definitions related to the were breaking are discussed and formulated and methods for breaking detection and measurements are examined. Most of attention is dedicated to the research of wave breaking probability and severity. Experimental, observational, numerical and statistical approaches and their outcomes are reviewed. Present state of the wave-breaking research and knowledge is analysed and main outstanding problems are outlined (Authors)
Corotating pressure waves without streams in the solar wind
International Nuclear Information System (INIS)
Burlaga, L.F.
1983-01-01
Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun
Structural damage detection using deep learning of ultrasonic guided waves
Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.
2018-04-01
Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.
International Nuclear Information System (INIS)
Bhatnagar, V.P.; Start, D.F.H.; Jacquinot, J.; Chaland, F.; Cherubini, A.; Porcelli, F.
1994-01-01
When an ion cyclotron resonance heating (ICRH) antenna array is phased (Δ Φ ≠ 0 or π), the excited asymmetric k parallel spectrum can drive non-inductive currents by interaction of fast waves both with electrons (transit time magnetic pumping (e-TTMP) and Landau damping (e-LD)) and with ions at minority (fundamental) or harmonic cyclotron resonances, depending upon the scenario. On the basis of earlier theories, a simplified description is presented that includes the minority ion and electron current drive effects simultaneously in a 3-D ray tracing calculation in the tokamak geometry. The experimental results of sawtooth stabilization or destabilization in JET using the minority ion current drive scheme are presented. This scheme allows a modification of the local current density gradient (or the magnetic shear) at the q = 1 surface resulting in a control of a sawteeth. The predictions of the above model of current drive and its effects on sawtooth period calculated in conjunction with a model of stability of internal resistive kink modes, that encompasses the effects of both the fast particle pressure and the local (q = 1) magnetic shear, are found to be qualitatively in good agreement with the experimental results. Further, the results are discussed of our model of fast wave current drive scenarios of magnetic shear reversal with a view to achieving long duration high confinement regimes in the forthcoming experimental campaign on JET. Finally, the results are presented of minority current drive for sawtooth control in next step devices such as the International Thermonuclear Experimental Reactor (ITER). (author). 44 refs, 23 figs, 3 tabs
Traveling-wave antenna for fast-wave heating and current drive in tokamaks
International Nuclear Information System (INIS)
Ikezi, H.; Phelps, D.A.
1997-01-01
The travelling-wave antenna for heating and current drive in the ion cyclotron range of frequencies is shown theoretically to have loading and wavenumber spectra that are largely independent of plasma conditions. These characteristics have been demonstrated in low-power experiments on the DIII-D tokamak, in which a standard four-strap antenna was converted to a traveling-wave antenna through use of external coupling elements. The experiments indicate that the array maintains good impedance matching without dynamic tuning during abrupt changes in the plasma, such as during L- to H-mode transitions, edge-localized mode activity, and disruptions. An analytic model was developed that exhibits the features observed in the experiments. Guidelines for the design of travelling-wave antennas are derived from the validated model. 11 refs., 14 figs
Physical simulation technique on the behaviour of oil spills in grease ice under wave actions
International Nuclear Information System (INIS)
Li, Z.; Hollebone, B.; Fingas, M.; Fieldhouse, B.
2008-01-01
Light or medium oil spilled on ice tends to rise and remain the surface in unconsolidated frazil or grease ice. This study looked for a new system for studying the oil emulsion in grease ice under experimental conditions. A physical simulation technique was designed to test the effect of wave energy on the spilled oil grease ice emulsion. The newly developed test system has the ability to perform simulation tests in wave, wave-ice, wave-oil and wave-ice-oil. This paper presented the design concept of the developed test system and introduced the experimental certifications of its capability in terms of temperature control, wave-making and grease ice-making. The key feature of the technique is a mini wave flume which derives its wave making power from an oscillator in a chemical laboratory. Video cameras record the wave action in the flume in order to obtain wave parameters. The wave making capability tests in this study were used to determine the relation of wave height, length and frequency with oscillator power transfer, oscillator frequency and the depth of the water flume. 16 refs., 10 figs
Accelerator physics and modeling: Proceedings
International Nuclear Information System (INIS)
Parsa, Z.
1991-01-01
This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings
Gravitational wave background from Standard Model physics: qualitative features
International Nuclear Information System (INIS)
Ghiglieri, J.; Laine, M.
2015-01-01
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors
Integrating Unified Gravity Wave Physics into the NOAA Next Generation Global Prediction System
Alpert, J. C.; Yudin, V.; Fuller-Rowell, T. J.; Akmaev, R. A.
2017-12-01
The Unified Gravity Wave Physics (UGWP) project for the Next Generation Global Prediction System (NGGPS) is a NOAA collaborative effort between the National Centers for Environmental Prediction (NCEP), Environemntal Modeling Center (EMC) and the University of Colorado, Cooperative Institute for Research in Environmental Sciences (CU-CIRES) to support upgrades and improvements of GW dynamics (resolved scales) and physics (sub-grid scales) in the NOAA Environmental Modeling System (NEMS)†. As envisioned the global climate, weather and space weather models of NEMS will substantially improve their predictions and forecasts with the resolution-sensitive (scale-aware) formulations planned under the UGWP framework for both orographic and non-stationary waves. In particular, the planned improvements for the Global Forecast System (GFS) model of NEMS are: calibration of model physics for higher vertical and horizontal resolution and an extended vertical range of simulations, upgrades to GW schemes, including the turbulent heating and eddy mixing due to wave dissipation and breaking, and representation of the internally-generated QBO. The main priority of the UGWP project is unified parameterization of orographic and non-orographic GW effects including momentum deposition in the middle atmosphere and turbulent heating and eddies due to wave dissipation and breaking. The latter effects are not currently represented in NOAA atmosphere models. The team has tested and evaluated four candidate GW solvers integrating the selected GW schemes into the NGGPS model. Our current work and planned activity is to implement the UGWP schemes in the first available GFS/FV3 (open FV3) configuration including adapted GFDL modification for sub-grid orography in GFS. Initial global model results will be shown for the operational and research GFS configuration for spectral and FV3 dynamical cores. †http://www.emc.ncep.noaa.gov/index.php?branch=NEMS
Core physics design calculation of mini-type fast reactor based on Monte Carlo method
International Nuclear Information System (INIS)
He Keyu; Han Weishi
2007-01-01
An accurate physics calculation model has been set up for the mini-type sodium-cooled fast reactor (MFR) based on MCNP-4C code, then a detailed calculation of its critical physics characteristics, neutron flux distribution, power distribution and reactivity control has been carried out. The results indicate that the basic physics characteristics of MFR can satisfy the requirement and objectives of the core design. The power density and neutron flux distribution are symmetrical and reasonable. The control system is able to make a reliable reactivity balance efficiently and meets the request for long-playing operation. (authors)
A wave model test bed study for wave energy resource characterization
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng
2017-12-01
This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.
Alfven wave experiments in the Phaedrus-T tokamak
International Nuclear Information System (INIS)
Majeski, R.; Probert, P.; Moroz, P.; Intrator, T.; Breun, R.; Brouchous, D.; Che, H.Y.; DeKock, J.R.; Diebold, D.; Doczy, M.; Fonck, R.; Hershkowitz, N.; Johnson, R.D.; Kishinevsky, M.; McKee, G.; Meyer, J.; Nonn, P.; Oliva, S.P.; Pew, J.; Sorensen, J.; Tanaka, T.; Vukovic, M.; Winz, G.
1993-01-01
Heating in the Alfven resonant regime has been demonstrated in the Phaedrus-T tokamak [Fusion Technol. 19, 1327 (1991)]. Electron heating during injection of radio-frequency (rf) power is indicated by a 30%--40% drop in loop voltage and modifications in sawtooth activity. Heating was observed at a frequency ω rf ∼0.7Ω i on axis, using a two-strap fast wave antenna operated at 7 and 9.2 MHz with 180 degree phasing (N parallel ∼100). Numerical modeling with the fast wave code FASTWA [Plasma Phys. Controlled Fusion 33, 417 (1991)] indicates that for Phaedrus-T parameters the kinetic Alfven wave is excited via mode conversion from a surface fast wave at the Alfven resonance and is subsequently damped on electrons
International Nuclear Information System (INIS)
Harvey, R.W.
2009-01-01
This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole
Sensory illusions: Common mistakes in physics regarding sound, light and radio waves
Briles, T. M.; Tabor-Morris, A. E.
2013-03-01
Optical illusions are well known as effects that we see that are not representative of reality. Sensory illusions are similar but can involve other senses than sight, such as hearing or touch. One mistake commonly noted among instructors is that students often mis-identify radio signals as sound waves and not as part of the electromagnetic spectrum. A survey of physics students from multiple high schools highlights the frequency of this common misconception, as well as other nuances on this misunderstanding. Many students appear to conclude that, since they experience radio broadcasts as sound, then sound waves are the actual transmission of radio signals and not, as is actually true, a representation of those waves as produced by the translator box, the radio. Steps to help students identify and correct sensory illusion misconceptions are discussed. School of Education
Physics design of experimental metal fuelled fast reactor cores for full scale demonstration
International Nuclear Information System (INIS)
Devan, K.; Bachchan, Abhitab; Riyas, A.; Sathiyasheela, T.; Mohanakrishnan, P.; Chetal, S.C.
2011-01-01
Highlights: → In this study we made physics designs of experimental metal fast reactor cores. → Aim is for full-scale demonstration of fuel assemblies in a commercial power reactor. → Minimum power with adequate safety is considered. → In addition, fuel sustainability is also considered in the design. → Sodium bonded U-Pu-6%Zr and mechanically bonded U-Pu alloys are used. - Abstract: Fast breeder reactors based on metal fuel are planned to be in operation for the year beyond 2025 to meet the growing energy demand in India. A road map is laid towards the development of technologies required for launching 1000 MWe commercial metal breeder reactors with closed fuel cycle. Construction of a test reactor with metallic fuel is also envisaged to provide full-scale testing of fuel sub-assemblies planned for a commercial power reactor. Physics design studies have been carried out to arrive at a core configuration for this experimental facility. The aim of this study is to find out minimum power of the core to meet the requirements of safety as well as full-scale demonstration. In addition, fuel sustainability is also a consideration in the design. Two types of metallic fuel pins, viz. a sodium bonded ternary (U-Pu-6% Zr) alloy and a mechanically bonded binary (U-Pu) alloy with 125 μm thickness zirconium liner, are considered for this study. Using the European fast reactor neutronics code system, ERANOS 2.1, four metallic fast reactor cores are optimized and estimated their important steady state parameters. The ABBN-93 system is also used for estimating the important safety parameters. Minimum achievable power from the converter metallic core is 220 MWt. A 320 MWt self-sustaining breeder metal core is recommended for the test facility.
Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR
Dammers, E.; Shephard, M.W.; Palm, M.; Cady-Pereira, K.; Capps, S.; Lutsch, E.; Strong, K.; Hannigan, J.W.; Ortega, I.; Toon, G.C.; Stremme, W.; Grutter, M.; Jones, N.; Smale, D.; Siemons, J.; Hrpcek, K.; Tremblay, D.; Schaap, M.; Notholt, J.; Willem Erisman, J.
2017-01-01
Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH3 retrieval (CFPR) column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the
Directory of Open Access Journals (Sweden)
Barbara eKrahé
2014-10-01
Full Text Available A longitudinal study with N = 1,854 adolescents from Germany investigated patterns of change and gender differences in physical and relational aggression in relation to normative beliefs about aggression. Participants, whose mean age was 13 years at T1, completed self-report measures of physically and relationally aggressive behavior and indicated their normative approval about both forms of aggression at four data waves separated by 12-month intervals. Boys scored higher than did girls on both forms of aggression, but the gender difference was more pronounced for physical aggression. Physical aggression decreased and relational aggression increased over the four data waves in both gender groups. The normative acceptance of both forms of aggression decreased over time, with a greater decrease for the approval of physical aggression. In both gender groups, normative approval of relational aggression prospectively predicted relational aggression across all data waves, and the normative approval of physical aggression predicted physically aggressive behavior at the second and third data waves. A reciprocal reinforcement of aggressive norms and behavior was found for both forms of aggression. The findings are discussed as supporting a social information processing perspective on developmental patterns of change in physical and relational aggression in adolescence.
Krahé, Barbara; Busching, Robert
2014-01-01
In a longitudinal study with N = 1,854 adolescents from Germany, we investigated patterns of change and gender differences in physical and relational aggression in relation to normative beliefs about these two forms of aggression. Participants, whose mean age was 13 years at T1, completed self-report measures of physically and relationally aggressive behavior and indicated their normative approval of both forms of aggression at four data waves separated by 12-month intervals. Boys scored higher than did girls on both forms of aggression, but the gender difference was more pronounced for physical aggression. Physical aggression decreased and relational aggression increased over the four data waves in both gender groups. The normative acceptance of both forms of aggression decreased over time, with a greater decrease for the approval of physical aggression. In both gender groups, normative approval of relational aggression prospectively predicted relational aggression across all data waves, and the normative approval of physical aggression predicted physically aggressive behavior at the second and third data waves. A reciprocal reinforcement of aggressive norms and behavior was found for both forms of aggression. The findings are discussed as supporting a social information processing perspective on developmental patterns of change in physical and relational aggression in adolescence.
Generation of relativistic electron beam and its anomalous stopping in the fast ignition scheme
International Nuclear Information System (INIS)
Sengupta, S.; Sandhu, A.S.; Dharmadhikari, A.K.; Kumar, G.R.; Das, A.; Kaw, P.K.
2005-01-01
We present experimental/theoretical results concerning two main physics issues related to the fast ignition scheme viz. the nonlinear mechanism of conversion of incident laser energy into a relativistic electron beam at the critical layer and its subsequent transport through an overdense plasma. Theoretical/numerical modelling of the experimental data, firstly shows that the conversion of the laser energy into an inward propagating electron beam occurs through the nonlinear mechanism of wave breaking of plasma waves excited at the critical layer and, secondly the transport of the electron beam through the overdense plasma is influenced by electrostatically induced and/or turbulence induced anomalous resistivity. (author)
Advanced computational simulations of water waves interacting with wave energy converters
Pathak, Ashish; Freniere, Cole; Raessi, Mehdi
2017-03-01
Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.
A criticism to the fundamental principles of physics: The problem of the quantum measurement (I)
International Nuclear Information System (INIS)
Mormontoy Cardenas, Oscar; Marquez Jacome, Mateo
2008-01-01
The wave packet model collapse debt to extremely fast fluctuations of quantum field leads to interpreting the phase speed of the harmonic waves that compose the packet, as the speed of time flux. If it consider that harmonics waves keep different phases, the waves packet scattered almost instantly and, as consequence of that, allows the possibility of the quantum system energy it is measure with exactitude absolute in given time. These results induce to think that the time would being a superforce which would determine finally the events of universe and being responsible of the intrinsic pulsations observable in the physics systems. (author)
An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves
Stegehuis, A.I.; Vautard, R.; Ciais, P.; Teuling, A.J.; Gonzalez Miralles, D.; Wild, M.
2015-01-01
Many climate models have difficulties in properly reproducing climate extremes, such as heat wave conditions. Here we use the Weather Research and Forecasting (WRF) regional climate model with a large combination of different atmospheric physics schemes, in combination with the NOAH land-surface
Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong
2017-12-01
First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.
Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting
Energy Technology Data Exchange (ETDEWEB)
Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)
2017-08-29
This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows: Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of
Wave motion as inquiry the physics and applications of light and sound
Espinoza, Fernando
2017-01-01
This undergraduate textbook on the physics of wave motion in optics and acoustics avoids presenting the topic abstractly in order to emphasize real-world examples. While providing the needed scientific context, Dr. Espinoza also relies on students' own experience to guide their learning. The book's exercises and labs strongly emphasize this inquiry-based approach. A strength of inquiry-based courses is that the students maintain a higher level of engagement when they are studying a topic that they have an internal motivation to know, rather than solely following the directives of a professor. "Wave Motion" takes those threads of engagement and interest and weaves them into a coherent picture of wave phenomena. It demystifies key components of life around us--in music, in technology, and indeed in everything we perceive--even for those without a strong math background, who might otherwise have trouble approaching the subject matter.
Physics constraints on the design of fast reactor safety test facilities
International Nuclear Information System (INIS)
Travelli, A.; Meneghetti, D.; Matos, J.; Snelgrove, J.; Shaftman, D.H.; Tzanos, C.; Lam, S.K.; Pennington, E.M.; Woodruff, W.L.
1976-01-01
This paper discusses the physics foundations common to all fast reactor safety test facilities and the constraints which they impose on the design. While detailed design discussions are confined to the experience with six ANL designs, available data from other designs are used to confirm the validity of the considerations and to broaden the scope of the discussion. This helps to view the various designs as a unified effort, to define their potential capabilities, and to assess how they could best complement each other
Improving the ATLAS physics potential with the Fast Track Trigger System
Cavaliere, Viviana; The ATLAS collaboration
2015-01-01
The ATLAS Fast TracKer (FTK) is a custom electronics system that will operate at the full Level-1 accept rate, 100 kHz, to provide high quality tracks as input to the High-Level Trigger. The event reconstruction is performed in hardware, thanks to the massive parallelism of associative memories (AM) and FPGAs. We present the advantages for the physics goals of the ATLAS experiment and the recent results on the design, technological advancements and testing of some of the core components used in the processor.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing
2017-02-08
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Skeletonized wave-equation Qs tomography using surface waves
Li, Jing
2017-08-17
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing; Dutta, Gaurav; Schuster, Gerard T.
2017-01-01
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
International Nuclear Information System (INIS)
Fraboulet, D.; Becoulet, A.; Nguyen, F.
1998-11-01
To maintain the ignition state in a tokamak fusion reactor, a control must be performed on the population of alpha-products, and this implies the ability to diagnose those α-particles. It is studied here whether the detection of emission radiated in the ion cyclotron range of frequency be a reactor plasma can provide useful information concerning fusion products, especially concerning their density profile. It is shown that the detection of the radiation emitted by the fast alpha particles along their cyclotron motion can give access to moments of their distribution function. This requires to compute the phase of the emitted field, using a full-wave approach. Such a technique allows to set in a convenient way the inverse problem of the determination of the emitting α-particles distribution through the radiation detection. A brief analysis of the expected situation in a reactor-relevant plasma is given. In parallel, the 1-D full-wave code developed in this frame is also useful for studying the physics of Fast Wave plasma heating. It enables to take into account the mode conversion of the Fast Wave into the Ion Bernstein Wave that appears near each ion cyclotron resonance. Results show that higher order terms may significantly alter the energy partitioning, in hot plasma cases involving mode conversion heating and/or ion cyclotron high harmonics heating. (author)
An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves
Stegehuis, A.I.; Vautard, R.; Ciais, P.; Teuling, A.J.; Miralles, D.G.; Wild, M.
2015-01-01
Many climate models have difficulties in properly reproducing climate extremes, such as heat wave conditions. Here we use the Weather Research and Forecasting (WRF) regional climate model with a large combination of different atmospheric physics schemes, in combination with the NOAH land-surface
Fast-to-Alfvén Mode Conversion in the Presence of Ambipolar Diffusion
Cally, Paul S.; Khomenko, Elena
2018-03-01
It is known that fast magnetohydrodynamic waves partially convert to upward and/or downward propagating Alfvén waves in a stratified atmosphere where Alfvén speed increases with height. This happens around the fast wave reflection height, where the fast wave’s horizontal phase speed equals the Alfvén speed (in a low-β plasma). Typically, this takes place in the mid to upper solar chromosphere for low-frequency waves in the few-millihertz band. However, this region is weakly ionized and thus susceptible to nonideal MHD processes. In this article, we explore how ambipolar diffusion in a zero-β plasma affects fast waves injected from below. Classical ambipolar diffusion is far too weak to have any significant influence at these low frequencies, but if enhanced by turbulence (in the quiet-Sun chromosphere but not in sunspot umbrae) or the production of sufficiently small-scale structure, can substantially absorb waves for turbulent ambipolar Reynolds numbers of around 20 or less. In that case, it is found that the mode conversion process is not qualitatively altered from the ideal case, though conversion to Alfvén waves is reduced because the fast wave flux reaching the conversion region is degraded. It is also found that any upward propagating Alfvén waves generated in this process are almost immune to further ambipolar attenuation, thereby reducing local ambipolar heating compared to cases without mode conversion. In that sense, mode conversion provides a form of “Alfvén cooling.”
Current profile evolution during fast wave current drive on the DIII-D tokamak
International Nuclear Information System (INIS)
Petty, C.C.; Forest, C.B.; Baity, F.W.
1995-06-01
The effect of co and counter fast wave current drive (FWCD) on the plasma current profile has been measured for neutral beam heated plasmas with reversed magnetic shear on the DIII-D tokamak. Although the response of the loop voltage profile was consistent with the application of co and counter FWCD, little difference was observed between the current profiles for the opposite directions of FWCD. The evolution of the current profile was successfully modeled using the ONETWO transport code. The simulation showed that the small difference between the current profiles for co and counter FWCD was mainly due to an offsetting change in the o at sign c current proffie. In addition, the time scale for the loop voltage to reach equilibrium (i.e., flatten) was found to be much longer than the FWCD pulse, which limited the ability of the current profile to fully respond to co or counter FWCD
International Nuclear Information System (INIS)
Lyu, L.H.; Kan, J.R.
1989-01-01
Nonlinear one-dimensional constant-profile hydromagnetic wave solutions are obtained in finite-temperature two-fluid collisionless plasmas under adiabatic equation of state. The nonlinear wave solutions can be classified according to the wavelength. The long-wavelength solutions are circularly polarized incompressible oblique Alfven wave trains with wavelength greater than hudreds of ion inertial length. The oblique wave train solutions can explain the high degree of alignment between the local average magnetic field and the wave normal direction observed in the solar wind. The short-wavelength solutions include rarefaction fast solitons, compression slow solitons, Alfven solitons and rotational discontinuities, with wavelength of several tens of ion inertial length, provided that the upstream flow speed is less than the fast-mode speed
NUMERICAL SIMULATIONS OF CONVERSION TO ALFVÉN WAVES IN SUNSPOTS
International Nuclear Information System (INIS)
Khomenko, E.; Cally, P. S.
2012-01-01
We study the conversion of fast magnetoacoustic waves to Alfvén waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfvén/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfvén speed gradient, but around and above this reflection height it partially converts to Alfvén waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfvén waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfvén waves. We find that the conversion to Alfvén waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90° the generated Alfvén waves continue upward, but above 90° downgoing Alfvén waves are preferentially produced. This yields negative Alfvén energy flux for azimuths between 90° and 180°. Alfvén energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.
Neighborhood fast food restaurants and fast food consumption: a national study.
Richardson, Andrea S; Boone-Heinonen, Janne; Popkin, Barry M; Gordon-Larsen, Penny
2011-07-08
Recent studies suggest that neighborhood fast food restaurant availability is related to greater obesity, yet few studies have investigated whether neighborhood fast food restaurant availability promotes fast food consumption. Our aim was to estimate the effect of neighborhood fast food availability on frequency of fast food consumption in a national sample of young adults, a population at high risk for obesity. We used national data from U.S. young adults enrolled in wave III (2001-02; ages 18-28) of the National Longitudinal Study of Adolescent Health (n = 13,150). Urbanicity-stratified multivariate negative binomial regression models were used to examine cross-sectional associations between neighborhood fast food availability and individual-level self-reported fast food consumption frequency, controlling for individual and neighborhood characteristics. In adjusted analysis, fast food availability was not associated with weekly frequency of fast food consumption in non-urban or low- or high-density urban areas. Policies aiming to reduce neighborhood availability as a means to reduce fast food consumption among young adults may be unsuccessful. Consideration of fast food outlets near school or workplace locations, factors specific to more or less urban settings, and the role of individual lifestyle attitudes and preferences are needed in future research.
Neighborhood fast food restaurants and fast food consumption: A national study
Directory of Open Access Journals (Sweden)
Gordon-Larsen Penny
2011-07-01
Full Text Available Abstract Background Recent studies suggest that neighborhood fast food restaurant availability is related to greater obesity, yet few studies have investigated whether neighborhood fast food restaurant availability promotes fast food consumption. Our aim was to estimate the effect of neighborhood fast food availability on frequency of fast food consumption in a national sample of young adults, a population at high risk for obesity. Methods We used national data from U.S. young adults enrolled in wave III (2001-02; ages 18-28 of the National Longitudinal Study of Adolescent Health (n = 13,150. Urbanicity-stratified multivariate negative binomial regression models were used to examine cross-sectional associations between neighborhood fast food availability and individual-level self-reported fast food consumption frequency, controlling for individual and neighborhood characteristics. Results In adjusted analysis, fast food availability was not associated with weekly frequency of fast food consumption in non-urban or low- or high-density urban areas. Conclusions Policies aiming to reduce neighborhood availability as a means to reduce fast food consumption among young adults may be unsuccessful. Consideration of fast food outlets near school or workplace locations, factors specific to more or less urban settings, and the role of individual lifestyle attitudes and preferences are needed in future research.
International Nuclear Information System (INIS)
Vogl, D.F.
2000-10-01
The interaction of the solar wind with magnetized planets leads to the formation of the so-called magnetosphere, a cavity generated by the geomagnetic field. The supersonic, superalfvenic, and magnetized solar wind flow interacting with blunt bodies produces a detached bow shock, separating the solar wind from the magnetosheath, the region between the shock wave and the magnetopause. On approach to a planetary obstacle, the solar wind becomes subsonic at the bow shock and then flows past the planet in the magnetosheath. At the bow shock, the plasma parameters and the magnetic field strength change from upstream to downstream, i.e., an increase of plasma density, temperature, pressure, and magnetic field strength, and a decrease of the velocity across the shock. In this PhD thesis we mainly concentrate on the variations of all physical quantities across the bow shock taking into account pressure anisotropy, which is an important feature in space plasma physics and observed by various spacecraft missions in the solar wind as well as in the magnetosheath. Dealing with anisotropic plasma conditions, one has to introduce the so-called pressure tensor, characterized by two scalar pressures, the pressure perpendicular (P p erp) and the pressure parallel (P p arallel) with respect to the magnetic field and in general one speaks of anisotropic conditions for P p erp is not P p arallel. Many spacecraft observations of the solar wind show P p arallel > P p erp, whereas observations of the magnetosheath show the opposite case, P p arallel p erp. Therefore, dissipation of kinetic energy into thermal energy plays an important role in studying the variations of the relevant physical quantities across the shock. It has to be mentioned that planetary bow shocks are good examples for fast MHD shock waves. Therefore, the basic equations for describing the changes across the shock can be obtained by integrating the MHD equations in conservative form. We note that these equations, the
Atomic physics effects on dissipative toroidal drift wave stability
International Nuclear Information System (INIS)
Beer, M.A.; Hahm, T.S.
1992-02-01
The effects of atomic physics processes such as ionization, charge exchange, and radiation on the linear stability of dissipative drift waves are investigated in toroidal geometry both numerically and analytically. For typical TFTR and TEXT edge parameters, overall linear stability is determined by the competition between the destabilizing influence of ionization and the stabilizing effect due to the electron temperature gradient. An analytical expression for the linear marginal stability condition, η e crit , is derived. The instability is most likely to occur at the extreme edge of tokamaks with a significant ionization source and a steep electron density gradient
[Levels of obesity, fasting glycemia and physical condition in Chilean students].
Delgado Floody, Pedro; Caamaño Navarrete, Felipe; Guzmán Guzmán, Iris Paola; Jerez Mayorga, Daniel; Ramírez-Campillo, Rodrigo; Campos Jara, Christian; Ríos Lagos, Gonzalo; Díaz Inostroza, Hugo
2015-06-01
Chile has drastically altered eating patterns and physical activity. The main nutritional problem faced by Chilean society is overweight, which arises progressively from an early age. The aim of this study is to determine the nutritional status and compare fitness levels and fasting glucose in students. A descriptive cross-sectional comparative study was conducted, making a comparison by gender and nutritional status, with 100 students (56 men and 44 women) aged 12-15 years old. Body composition, fasting glucose and fitness were evaluated. Women had a higher prevalence of overweight and obesity than men (22.73% and 19.65%). In the comparison of gender differences statistics were reported in one repetition maximum (1RM) (p = 0.001), abdominal strength (p = 0.004) and velocity (p = 0.001), there were no significant differences in body mass index (BMI) (p = 0.24) and fasting glucose (p = 0.99). In the comparison of nutritional status, the students classified as obese had a higher waist perimeter (p = 0.001), more time to walk 400 m (p = 0.008). There were no significant differences in other variables. Women have a higher prevalence of overweight and obesity than men. Obese students have a waist circumference more elevated, more time to walk 400 meters (p = <0.05) and they have increased levels of basal glucose. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Crenelated fast oscillatory outputs of a two-delay electro-optic oscillator.
Weicker, Lionel; Erneux, Thomas; Jacquot, Maxime; Chembo, Yanne; Larger, Laurent
2012-02-01
An electro-optic oscillator subject to two distinct delayed feedbacks has been designed to develop pronounced broadband chaotic output. Its route to chaos starts with regular pulsating gigahertz oscillations that we investigate both experimentally and theoretically. Of particular physical interest are the transitions to various crenelated fast time-periodic oscillations, prior to the onset of chaotic regimes. The two-delay problem is described mathematically by two coupled delay-differential equations, which we analyze by using multiple-time-scale methods. We show that the interplay of a large delay and a relatively small delay is responsible for the onset of fast oscillations modulated by a slowly varying square-wave envelope. As the bifurcation parameter progressively increases, this envelope undergoes a sequence of bifurcations that corresponds to successive fixed points of a sine map.
Nonlinear VLF Wave Physics in the Radiation Belts
Crabtree, C. E.; Tejero, E. M.; Ganguli, G.; Mithaiwala, M.; Rudakov, L.; Hospodarsky, G. B.; Kletzing, C.
2014-12-01
Electromagnetic VLF waves, such as whistler mode waves, both control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering and are responsible for the energization of electrons during storms. Traditional approaches to understanding the influence of waves on trapped electrons have assumed that the wave characteristics (frequency spectrum, wave-normal angle distribution, etc.) were both stationary in time and amplitude independent from event to event. In situ data from modern satellite missions, such as the Van Allen probes, are showing that this assumption may not be justified. In addition, recent theoretical results [Crabtree et al. 2012] show that the threshold for nonlinear wave scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear wave scattering (Nonlinear Landau Damping) is an amplitude dependent mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Nonlinear scattering can alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al., 2012]. Such nonlinear wave effects can dramatically reduce electron lifetimes. Nonlinear wave dynamics such as these occur when there are more than one wave present, such a condition necessarily violates the assumption of traditional wave-normal analysis [Santolik et al., 2003] which rely on the plane wave assumption. To investigate nonlinear wave dynamics using modern in situ data we apply the maximum entropy method [Skilling and Bryan, 1984] to solve for the wave distribution function
Energy Technology Data Exchange (ETDEWEB)
Wei, Hong-Xing [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Li, Yong-Dong, E-mail: LYDbeijing@163.com [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Xiong, Tao [Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Guan, Yong [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China)
2016-09-07
The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.
International Nuclear Information System (INIS)
Wei, Hong-Xing; Li, Yong-Dong; Xiong, Tao; Guan, Yong
2016-01-01
The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.
PARTICLE SCATTERING OFF OF RIGHT-HANDED DISPERSIVE WAVES
Energy Technology Data Exchange (ETDEWEB)
Schreiner, C.; Kilian, P.; Spanier, F., E-mail: cschreiner@astro.uni-wuerzburg.de [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)
2017-01-10
Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.
Cramer, Neil F
2011-01-01
Low-frequency wave modes of magnetized inhomogeneous plasmas have been subject to intense study in the last decade because they play important roles in the transport of energy in the plasmas. The "Alfvén wave heating" scheme has been investigated as a supplementary heating scheme for fusion plasma devices, and it has been invoked as a model of the heating of the solar and stellar coronae.This book covers the latest research into the properties and applications of low-frequency wave modes in magnetized plasmas, the Alfvén waves and magneto-acoustic waves, in the context of laborat
Mapping of spin wave propagation in a one-dimensional magnonic crystal
Energy Technology Data Exchange (ETDEWEB)
Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa; Monsivais, Guillermo [Instituto de Física, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico); Drozdovskii, Andrey; Kalinikos, Boris [St. Petersburg Electrotechnical University, 197376 St. Petersburg (Russian Federation); International laboratory “MultiferrLab,” ITMO University, 197101 St. Petersburg (Russian Federation); Domínguez-Juárez, J. L. [Cátedras CONACyT, CFATA, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230 (Mexico); Lopez-Maldonado, Guillermo [Universidad Autónoma Metropolitana, Lerma de Villada, 52006 Estado de México (Mexico); Qureshi, Naser; Kolokoltsev, Oleg [CCADET, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico)
2016-07-28
The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show that the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.
International Nuclear Information System (INIS)
Stroppe, Heribert; Streitenberger, Peter; Specht, Eckard; Zeitler, Juergen; Langer, Heinz
2017-01-01
The present book is the unification of the proved problem collections for the basic physical training of studyings of especially engineering courses at technical colleges and universities. The book contains - didactically prepared and structured in the style of a textbook as well as with increasing difficulty - a total of 960 exemplary and additional tasks from the fields mechanics, heat, electricity and magnetism, oscillations and waves, as well as atomic and nuclear physics. For the exemplary problems the whole solution path and the complete calculation process with explanation of the relevant physical laws are extensively presented, for the additional problems for the self-control only the solutions and, if necessary, intermediate calculations are given. The examples and problems with mostly practice-oriented content are selected in such a way that they largely cover the matter treated in courses and exercises and make by their didactical preparation an effective repetition and optimal examination-preparation possible.
Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi
2008-11-01
In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
Directory of Open Access Journals (Sweden)
Liang Zeng
2014-07-01
Full Text Available In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.
Slow Wave Propagation and Sheath Interaction for ICRF Waves in the Tokamak SOL
International Nuclear Information System (INIS)
Myra, J. R.; D'Ippolito, D. A.
2009-01-01
In previous work we studied the propagation of slow-wave resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the previous calculation to ''dense'' scrape-off-layer (SOL) plasmas where the usual slow wave is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the slow wave couples to a sheath plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length.
Gravitational waves from rotating neutron stars and evaluation of fast chirp transform techniques
Strohmayer, T E
2002-01-01
X-ray observations suggest that neutron stars in low mass x-ray binaries (LMXB) are rotating with frequencies in the range 300-600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion-induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so-called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end, I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince (Prince T A and Jenet F A 2000 Phys. Rev. D 62 122001) in the conte...
Population of nitrogen molecule electron states and structure of the fast ionization wave
Pancheshnyi, S V; Starikovskii, A Y
1999-01-01
The excitation of N sub 2 (C sup 3 supPI sub u , nu=0) and N sup + sub 2 (B sup 2 supSIGMA sup + sub u , nu=0) electron states has been studied by using a time-resolved emission spectroscopy technique. To excite the above states, the nanosecond, high-voltage, periodic impulsed discharge at low pressures in the form of the fast ionization wave (FIW) was used. The electron concentration and the average energy, electric field were found on the basis of experimental data. The spacial-temporal structure of the FIW front was investigated. It has been shown that the generation of the required electron concentration, as well as the electron level population take place behind the FIW front in residual fields. Sections corresponding to the 'electric' and 'luminous' FIW fronts are essentially separated in space. The proposed modelling electron energy distribution function describes qualitatively general regularities of the breakdown propagation in the whole range of parameters under study. (author)
Fast ions and momentum transport in JET tokamak plasmas
International Nuclear Information System (INIS)
Salmi, A.
2012-01-01
Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)
Fast ions and momentum transport in JET tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Salmi, A.
2012-07-01
Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)
International Nuclear Information System (INIS)
Grekov, D.; Kasilov, S.; Kernbichler, W.
2016-01-01
A two dimensional numerical code for computation of the electromagnetic field of a fast magnetosonic wave in a tokamak at high harmonics of the ion cyclotron frequency has been developed. The code computes the finite difference solution of Maxwell equations for separate toroidal harmonics making use of the toroidal symmetry of tokamak plasmas. The proper boundary conditions are prescribed at the realistic tokamak vessel. The currents in the RF antenna are specified externally and then used in Ampere law. The main poloidal tokamak magnetic field and the ''kinetic'' part of the dielectric permeability tensor are treated iteratively. The code has been verified against known analytical solutions and first calculations of current drive in the spherical torus are presented.
Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF
International Nuclear Information System (INIS)
Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.
1984-10-01
The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)
Wave Dragon Wave Energy Converters Used as Coastal Protection
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter
2011-01-01
This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....
Nonlinear Whistler Wave Physics in the Radiation Belts
Crabtree, Chris
2016-10-01
Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
International Nuclear Information System (INIS)
Kist, Tarso B.L.; Orszag, M.; Davidovich, L.
1997-01-01
The dynamics of open system is frequently modeled in terms of a small system S coupled to a reservoir R, the last having an infinitely larger number of degree of freedom than S. Usually the dynamics of the S variables may be of interest, which can be studied using either Langevin equations, or master equations, or yet the path integral formulation. Useful alternatives for the master equation method are the Monte Carlo Wave-function method (MCWF), and Stochastic Schroedinger Equations (SSE's). The methods MCWF and SSE's recently experienced a fast development both in their theoretical background and applications to the study of the dissipative quantum systems dynamics in quantum optics. Even though these alternatives can be shown to be formally equivalent to the master equation approach, they are often regarded as mathematical tricks, with no relation to a concrete physical evolution of the system. The advantage of using them is that one has to deal with state vectors, instead of density matrices, thus reducing the total amount of matrix elements to be calculated. In this work, we consider the possibility of giving a physical interpretation to these methods, in terms of continuous measurements made on the evolving system. We show that physical realizations of the two methods are indeed possible, for a mode of the electromagnetic field in a cavity interacting with a continuum of modes corresponding to the field outside the cavity. Two schemes are proposed, consisting of a mode of the electromagnetic field interacting with a beam of Rydberg two-level atoms. In these schemes, the field mode plays the role of a small system and the atomic beam plays the role of a reservoir (infinitely larger number of degrees of freedom at finite temperature, the interaction between them being given by the Jaynes-Cummings model
Lu, L.; Colas, L.; Jacquot, J.; Després, B.; Heuraux, S.; Faudot, E.; Van Eester, D.; Crombé, K.; Křivská, A.; Noterdaeme, J.-M.; Helou, W.; Hillairet, J.
2018-03-01
In order to model the sheath rectification in a realistic geometry over the size of ion cyclotron resonant heating (ICRH) antennas, the self-consistent sheaths and waves for ICH (SSWICH) code couples self-consistently the RF wave propagation and the DC SOL biasing via nonlinear RF and DC sheath boundary conditions applied at plasma/wall interfaces. A first version of SSWICH had 2D (toroidal and radial) geometry, rectangular walls either normal or parallel to the confinement magnetic field B 0 and only included the evanescent slow wave (SW) excited parasitically by the ICRH antenna. The main wave for plasma heating, the fast wave (FW) plays no role on the sheath excitation in this version. A new version of the code, 2D SSWICH-full wave, was developed based on the COMSOL software, to accommodate full RF field polarization and shaped walls tilted with respect to B 0 . SSWICH-full wave simulations have shown the mode conversion of FW into SW occurring at the sharp corners where the boundary shape varies rapidly. It has also evidenced ‘far-field’ sheath oscillations appearing at the shaped walls with a relatively long magnetic connection length to the antenna, that are only accessible to the propagating FW. Joint simulation, conducted by SSWICH-full wave within a multi-2D approach excited using the 3D wave coupling code (RAPLICASOL), has recovered the double-hump poloidal structure measured in the experimental temperature and potential maps when only the SW is modelled. The FW contribution on the potential poloidal structure seems to be affected by the 3D effects, which was ignored in the current stage. Finally, SSWICH-full wave simulation revealed the left-right asymmetry that has been observed extensively in the unbalanced strap feeding experiments, suggesting that the spatial proximity effects in RF sheath excitation, studied for SW only previously, is still important in the vicinity of the wave launcher under full wave polarizations.
Fast ion absorption of lower hybrid power in JET
International Nuclear Information System (INIS)
Andrade, M.C.R.; Brusati, M.
1993-01-01
The first experimental evidence at JET on the interaction of fast minority ions with LH is reported. An increase of approximately 20% on the fast ion energy content was observed in the presence of LH, with an estimated LH absorbed power of approximately 20% for 2 MW of LH power and plasma densities of 2.0 to 2.4 x 10 19 m -3 with central temperatures γ ray and neutron rates also show that absorption of LH waves by the fast minority ions is taking place. FFT analysis confirms a better damping of the wave when the overlap between ICRH and LHCD is maximized. (author)
Stefan, V. Alexander
2014-10-01
A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.
Coronal Waves and Oscillations
Directory of Open Access Journals (Sweden)
Nakariakov Valery M.
2005-07-01
Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.
Spin-Wave Wave Function for Quantum Spin Models : Condensed Matter and Statistical Physics
Franjo, FRANJIC; Sandro, SORELLA; Istituto Nazionale di Fisica della Materia International School for Advance Studies; Istituto Nazionale di Fisica della Materia International School for Advance Studies
1997-01-01
We present a new approach to determine an accurate variational wave function for general quantum spin models, completely defined by a consistency requirement with the simple and well-known linear spin-wave expansion. With this wave function, it is also possible to obtain the correct behavior of the long distance correlation functions for the 1D S=1/2 antiferromagnet. In 2D the proposed spin-wave wave function represents an excellent approximation to the exact ground state of the S=1.2 XY mode...
CERN. Geneva HR-RFA
2006-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.
Physics of interferometric gravitational wave detectors
Indian Academy of Sciences (India)
The Caltech-MIT joint LIGO project is operating three long-baseline interferometers (one of 2 km and two of 4 km) in order to unambiguously measure the infinitesimal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. An interferometric gravitational wave ...
Physical measurements of breaking wave impact on a floating wave energy converter
Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison
2013-04-01
Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.
International Nuclear Information System (INIS)
Adams, S.R.
1985-10-01
A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences
Energy Technology Data Exchange (ETDEWEB)
Adams, S.R.
1985-10-01
A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.
International Nuclear Information System (INIS)
Ogawa, T.; Hoshino, K.; Kanazawa, S.
2001-01-01
Several innovative applications of a travelling wave (combline) antenna designed for fast wave current drive have been demonstrated for the first time in the JFT-2M tokamak. High energy electrons of at least 10 keV were produced in the plasma core by highly directional fast waves in electron cyclotron heated plasmas. The ponderomotive potential of the beat wave, produced by fast waves at two different frequencies, was directly measured for the first time by a heavy ion beam probe. Plasma production was demonstrated using the wave fields excited by the combline antenna over a wide range of toroidal magnetic fields (0.5-2.2 T). (author)
Interaction of rippled shock wave with flat fast-slow interface
Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong
2018-04-01
The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.
Borcherdt, R. D.
2007-12-01
General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.
Big Data Challenges in High Energy Physics Experiments: The ATLAS (CERN) Fast TracKer Approach
Sotiropoulou, Calliope Louisa; The ATLAS collaboration
2016-01-01
We live in the era of “Big Data” problems. Massive amounts of data are produced and captured, data that require significant amounts of filtering to be processed in a realistically useful form. An excellent example of a “Big Data” problem is the data processing flow in High Energy Physics experiments, in our case the ATLAS detector in CERN. In the Large Hadron Collider (LHC) 40 million collisions of bunches of protons take place every second, which is about 15 trillion collisions per year. For the ATLAS detector alone 1 Mbyte of data is produced for every collision or 2000 Tbytes of data per year. Therefore what is needed is a very efficient real-time trigger system to filter the collisions (events) and identify the ones that contain “interesting” physics for processing. One of the upgrades of the ATLAS Trigger system is the Fast TracKer system. The Fast TracKer is a real-time pattern matching machine able to reconstruct the tracks of the particles in the inner silicon detector of the ATLAS experim...
Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments
Yucel, Abdulkadir C.
2013-01-01
A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier transform and fast multipole method accelerated surface integral equation-based EM simulator to statistically characterize fields from wireless transmitters in complex mine environments. 1536-1225 © 2013 IEEE.
Plasma loading and wave generation for ICRH in the ST Tokamak
International Nuclear Information System (INIS)
Adam, J.; Getty, W.D.; Hooke, W.M.; Hosea, J.C.; Sinclair, R.M.
1974-01-01
Plasma loading and wave generation for two half-turn loops operating at 25 MHz are being investigated on the ST Tokamak at power levels up to 1 MW. The equivalent series resistance R/sub s/ = P/sub rf//I 2 /sub rf/, measured as a function of Ω = ω/ω/sub ci/(r = 0) and plasma density, is found to be in good agreement with the predictions of the cylindrical theory. R/sub s/ values as high as several ohms are obtained at high densities giving wave generation efficiencies well above 90 percent. Loading near Ω = 1 and 2 is apparently independent of power level. Measurements of B/sub zrf/ at 20 locations about the torus reveal the predicted wave generation; m = 0, +1 slow waves in the vicinity of Ω = 1, m = -1 fast waves after the expected onset (usually Ω greater than or equal to 1), and m = 0, +1 fast waves for higher Ω. Toroidal eigenmodes accompanied by large loading are detected for the fast waves when the damping lengths are long
DEFF Research Database (Denmark)
Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.
2013-01-01
, 171–186] is extended to include the second-order dispersive correction. The new formulation is presented in a unified form that includes both progressive and evanescent modes and covers wavemaker configurations of the piston- and flap-type. The second order paddle stroke correction allows for improved...... nonlinear wave generation in the physical wave tank based on target numerical solutions. The performance and efficiency of the new model is first evaluated theoretically based on second order Stokes waves. Due to the complexity of the problem, the proposed method has been truncated at 2D and the treatment...... that the new second-order coupling theory provides an improvement in the quality of nonlinear wave generation when compared to existing techniques....
International Nuclear Information System (INIS)
Lell, R.M.; Hanan, N.A.
1987-01-01
Effects of multigroup neutron cross section generation procedures on core physics parameters for compact fast spectrum reactors have been examined. Homogeneous and space-dependent multigroup cross section sets were generated in 11 and 27 groups for a representative fast reactor core. These cross sections were used to compute various reactor physics parameters for the reference core. Coarse group structure and neglect of space-dependence in the generation procedure resulted in inaccurate computations of reactor flux and power distributions and in significant errors regarding estimates of core reactivity and control system worth. Delayed neutron fraction was insensitive to cross section treatment, and computed reactivity coefficients were only slightly sensitive. However, neutron lifetime was found to be very sensitive to cross section treatment. Deficiencies in multigroup cross sections are reflected in core nuclear design and, consequently, in system mechanical design
Interaction of High Intensity Electromagnetic Waves with Plasmas: Final Report
International Nuclear Information System (INIS)
Shvets, G.
2008-01-01
The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.
Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity
Energy Technology Data Exchange (ETDEWEB)
Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)
2017-01-10
We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile getting significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.
Effects of Ramadan on physical capacities of North African boys fasting for the first time.
Fenneni, Mohamed A; Latiri, Imed; Aloui, Asma; Rouatbi, Sonia; Saafi, Mohamed A; Bougmiza, Iheb; Chamari, Karim; Ben Saad, Helmi
2014-01-01
Most of the literature related to the effects of Ramadan fasting on physical performance has focused on adults, and only three studies have examined its impact on children's physical performance. To examine the effects of Ramadan fasting on first-time fasting boys' performance in short-term explosive exercises [vertical and horizontal jump tests (VJT and HJT), 20-m and 30-m sprints and medicine-ball throw (MBT)], as well as in sub-maximal endurance [6-min walking distance (6MWD) measured during the 6-min walk test (6MWT)]. Eighteen Tunisian boys [mean±standard deviation (SD) of age and body mass (BM): 11.9±0.8 y and 55.4±18.2 kg, respectively] were included. The experimental design comprised four testing phases: 2-weeks before Ramadan (BR), the end of the second week (R2) and the fourth week (R4) of Ramadan, and 10-12 days after the end of Ramadan (AR). At each phase, boys performed two test sessions in the afternoon (15:00-17:00 h) interrupted by 48 h of recovery (first test session: BM, VJT, HJT, and 20-m and 30-m sprint tests; second session: MBT and 6MWT). The study was conducted during the summer of 2012 from July 5 to August 29. 6MWDs (m) were significantly shorter during R2 (652±101) and R4 (595±123) compared to BR (697±86) and came back to baseline values AR. BM (kg) mean±SD did not significantly change during R2 (52±15) and during R4 (53±15) compared to BR (55±17), and short-term explosive performances were unchanged throughout the study. In non-athletic children, first-ever Ramadan fasting impairs sub-maximal aerobic capacity but has no effect on BM or short-term explosive performance.
A formula for efficiency of fast wave current drive in fusion devices
International Nuclear Information System (INIS)
Chiu, S.C.; Harvey, R.W.; Karney, C.F.F.; Mau, T.K.
1992-06-01
Fast wave current drive (FWCD) is a principal candidate for non- inductive current drive schemes in reactors. Major experiments are in progress or planned on DIII-D, JET, and Tore-Supra. A theory for FWCD was presented by two of the authors and collaborators. To minimize computations required in transport simulations, and for analytical understanding, it is very useful to have a concise analytical efficiency formula. Fisch and Karney, and Ehst and Karney have obtained empirical formulae that fits numerical results for the Landau limit and Alfven limit; the latter fits results at 1 i ≤ 2. This paper extends a previous numerical study on FWCD at arbitrary frequencies and Z i . Analytical formulae for FWCD efficiency, valid for all frequencies and Z i , are derived using the adjoint technique in high and low phase velocity regions. A smooth patching between the two regions produces an analytical formula which is accurate for all frequencies, Z i , and phase velocities. Comparison with existing results will be discussed. A corollary of the present calculation is that a low phase velocities and in the Landau limit, the efficiency is the same as that calculated from the Lorentz model collision operator
Waves in Space Plasmas Program
Fredricks, R. W.; Taylor, W. W. L.
1981-01-01
The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions; ELF/VLF propagation; traveling ionospheric disturbances and gravity wave coupling; equatorial plasma bubble phenomena; plasma wave physics such as mode-coupling, dispersion, and instabilities; and plasma physics of the antenna-plasma interactions.
Waves in Space Plasmas Program
International Nuclear Information System (INIS)
Fredricks, R.W.; Taylor, W.W.L.
1981-01-01
The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions, ELF/VLF propagation, traveling ionospheric disturbances and gravity wave coupling, equatorial plasma bubble phenomena, plasma wave physics such as mode-coupling, dispersion, and instabilities, and plasma physics of the antenna-plasma interactions
Energy Technology Data Exchange (ETDEWEB)
Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)
2014-09-25
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic
International Nuclear Information System (INIS)
Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.
2014-01-01
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave
Studies on the parametric decay of waves in fusion plasmas
International Nuclear Information System (INIS)
Paettikangas, T.
1992-08-01
Parametric instabilities of large-amplitude electromagnetic waves are investigated in fusion applications. In laser fusion, the electromegnetic wave reflected from the overdense plasma can act as a secondary pump wave and exite parametric instabilities. In double simulated Brilloun scattering (DSBS), both the incoming and the reflected pump wave scatter from a common ion sound wave. The stationary states and the dynamics of DSBS are investigated by using a simple envelope model. The ion sound wave that is exited in DSBS is shown to have soliton-like properties. The simulated Raman scattering (SRS) of free-electron-laser radiation can be applied to current drive in tokamaks. SRS generates fast longitudinal electron plasma waves which accelerate electrons to relativistic energies. Since the energetic current-carrying electrons are almost collisionless, the current decays very slowly. The feasibility of the Raman current drive in tokamaks is investigated theoretically. The current drive efficiency and the optimum free-electron-laser parameters are determined. The energy transfer to the fast electrons from the electrostatic wave is studied with relativistic Vlasov-Maxwell simulations. The parametric decay of a wave to half-harmonics is investigated. It is shown that the growth rate of the decay vanishes in the limit of a long wavelenght of the pump wave even for general electromagnetic or electrostatic decay models. The results are applied to the decay of a fast magnetosonic waves in tokamak plasmas. (orig.)
Fast hisslers: a form of magnetospheric radio emissions
International Nuclear Information System (INIS)
Siren, J.C.
1974-01-01
Auroral radio hiss bursts in the frequency range 2-18 kHz have been observed, with rise or turn-on-times of 20-50 ms, and fall or turn-off times of 20-80 ms. These time scales are too brief to reconcile with the Cerenkov radiation emission mechanism often proposed as the transducer that converts precipitating auroral electron kinetic energy into very-low-frequency radio wave energy. The auroral hiss bursts, called here ''fast hisslers,'' are observed to be ''dispersed,', that is, their arrival time at the receiving site is not simultaneous at all frequencies, but depends on frequency in a way that is consistent with propagation in the whistler mode of electromagnetic wave propagation. Since whistler mode wave propagation at these frequencies occurs only in the earth' magnetosphere, it is inferred that these fast hisslers are of magnetospheric origin. On the assumption that all the observed dispersion results from whistler mode dispersion at high latitudes, altitudes of origin of 1800 km to 30,000 km are calculated for these emissions. Fine details of some of the amplitude spectra of fast hisslers have been examined. Potential double layers have been investigated as a highly localized region of acceleration of the auroral electrons that are believed to be the source of energy of the fast hisslers. Evidence is strong that a plasma instability exists which rapidly converts electron kinetic energies into whistler-mode wave energy traveling in the same direction relative to the rest frame of the thermal magnetospheric plasma
Millimetre waves and plasma physics
International Nuclear Information System (INIS)
Brand, G.F.
1999-01-01
Full text: This talk is a review of the plasma-related presentations at the 23rd International Conference on Infrared and Millimeter Waves held at the University of Essex, Colchester, UK 7-11 September 1998. Of most relevance to fusion is the development of high-power sources for electron cyclotron resonance heating and current drive. The requirements for ITER are a total of 50 MW at 170 GHz. The state of the art is illustrated by (a) high-power gyrotrons that deliver 1 MW for 1 s at 170 GHz, and (b) a free-electron maser that has generated millimetre waves for the first time, 730 kW at 200 GHz. A number of papers describe new technologies that allow high powers to be achieved; internal mode converters to convert the whispering-gallery mode generated in the gyrotron cavity into a gaussian beam, depressed collectors to raise the efficiency from 1/3 to better than 1/2, CVD diamond output windows and coaxial gyrotrons with improved mode purity. Other papers describe transmission lines and steerable mirrors. Several papers deal with millimetre-wave plasma diagnostics for fusion such as electron cyclotron emission measurements and reflectometry. (author)
Sun, Li-Chung; Chang, Young-Fo; Chang, Chih-Hsiung; Chung, Chia-Lung
2012-05-01
In reflection seismology, detailed knowledge of how seismic waves propagate in anisotropic media is important for locating reservoirs accurately. The SH-wave possesses a pure mode polarization which does not convert to P- and SV-waves when reflecting from a horizontal interface, and vice versa. The simplicity of the SH-wave thus provides an easy way to view the details of SH-wave propagation in anisotropic media. In this study, we attempt to inspect the theoretical reflection moveouts of SH-waves reflected from transversely isotropic (TI) layers with tilted symmetry axes and to verify the reflection point, which could be shifted away from the common midpoint (CMP), by numerical calculations and physical modelling. In travel time-offset analyses, the moveout curves of SH-waves reflected from horizontal TI media (TIM) with different tilted angles of symmetry axes are computed by the TI modified hyperbolic equation and Fermat's principle, respectively. It turns out that both the computed moveout curves are similar and fit well to the observed physical data. The reflection points of SH-waves for a CMP gather computed by Fermat's principle show that they are close to the CMP for TIM with the vertical and horizontal symmetry axes, but they shift away from the CMP for the other tilted angles of symmetry axes. The shifts of the reflection points of the SH-waves from the CMP were verified by physical modelling.
International Nuclear Information System (INIS)
Yan Zhenya
2010-01-01
We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black-Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.
On the fast gas ionization wave in an intense laser beam
International Nuclear Information System (INIS)
Fisher, V.I.
1980-01-01
The transfer of the adsorption zone of laser radiation along a beam is considered. It is shown that for a sufficiently strong laser beam intensity, q 0 >q tilde, the conditions of wave propagation differ principally from those known previously. In particular, the plasma temperature behind the wave front Tsup(*) decreases with the increase of q 0 , whereas the wave velocity D(q 0 ) grows faster than a linear function. The structure and laws of propagation of the ionization wave are determined
Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment
International Nuclear Information System (INIS)
Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J.
2010-01-01
The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.
Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment.
Nornberg, M D; Ji, H; Schartman, E; Roach, A; Goodman, J
2010-02-19
The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.
Physical and technical aspects of lead cooled fast reactors safety
International Nuclear Information System (INIS)
Orlov, V.V.; Smirnov, V.S.; Filin, A.I.
2001-01-01
The safety analysis of lead-cooled fast reactors has been performed for the well-developed concept of BREST-OD-300 reactor. The most severe accidents have been considered. An ultimate design-basis accident has been defined as an event resulting from an external impact and involving a loss of leak-tightness of the lead circuit, loss of forced circulation of lead and loss of heat sink to the secondary circuit, failure of controls and of reactor scram with resultant insertion of total reactivity margin, etc. It was assumed in accident analysis that the protective feature available for accident mitigation was only reactivity feedback on the changes in the temperatures of the reactor core elements and coolant flow rate, and in some cases also actuation of passive protections of threshold action in response to low flow rate and high coolant temperature at the core outlet. It should be noted that the majority of the analyzed accidents could be overcame even without initiation of the above protections. It has been demonstrated that a combination of inherent properties of lead coolant, nitride fuel, physical and design features of fast reactors will ensure natural safety of BREST and are instrumental for avoiding by a deterministic approach the accidents associated with a significant release of radioactivity and requiring evacuation of people in any credible initiating event and a combination of events. (author)
International Nuclear Information System (INIS)
Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.
1980-01-01
The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed
Fast breeder reactors an engineering introduction
Judd, A M
1981-01-01
Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,
Towne, Dudley H
1988-01-01
This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.
Quantum physics of entangled systems: wave-particle duality and atom-photon molecules
International Nuclear Information System (INIS)
Rempe, G.
2000-01-01
One of the cornerstones of quantum physics is the wave nature of matter. It explains experimentally observed effects like interference and diffraction, occurring when an object moves from one place to another along several indistinguishable ways simultaneously. The wave nature disappears when the individual ways are distinguishable. In this case, the particle nature of the object becomes visible. To determine the particle nature quantitatively, the way of the object has to be measured. Here, large progress has been made recently with new techniques, enabling one to investigate single moving atoms in a controlled manner. Two examples are discussed in the following two sections. The first experiment describes an atom interferometer, where the way of the atom is entangled with its internal state. This allows one to explore the origin of wave-particle duality and perform a quantitative test of this fundamental principle. The second experiment reports on the observation of an atom-photon molecule, a bound state between an atom and a single photon. A fascinating aspect of this system is that it makes possible to monitor the motion of a single neutral atom in real time. (orig.)
Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics
Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano
2017-01-01
We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…
Physics design of a 10 MeV, 6 kW travelling wave electron linac
Indian Academy of Sciences (India)
We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2 π / 3 mode constant impedance travelling wave structure, which ...
Directory of Open Access Journals (Sweden)
Sydorchenko K.
2010-06-01
Full Text Available The complex program of improvement of quality and acceleration of renewal of sportsmen are developed after the breaks of talocrural joint. In experiment took part 40 sportsmen-footballers in age of 20-25 years. The program plugged in itself: morning sanitary gymnastics, medical physical culture, massage, hydrokinesitherapy, hydromassage, employments on trainers, physiotherapy, power-waved therapy. It is well-proven that the use of power-waved therapy accelerates the processes of renewal on the average on 2-3 months.
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
Blast effects physical properties of shock waves
2018-01-01
This book compiles a variety of experimental data on blast waves. The book begins with an introductory chapter and proceeds to the topic of blast wave phenomenology, with a discussion Rankine-Hugoniot equations and the Friedlander equation, used to describe the pressure-time history of a blast wave. Additional topics include arrival time measurement, the initiation of detonation by exploding wires, a discussion of TNT equivalency, and small scale experiments. Gaseous and high explosive detonations are covered as well. The topics and experiments covered were chosen based on the comparison of used scale sizes, from small to large. Each characteristic parameter of blast waves is analyzed and expressed versus scaled distance in terms of energy and mass. Finally, the appendix compiles a number of polynomial laws that will prove indispensable for engineers and researchers.
Parametric Excitations of Fast Plasma Waves by Counter-propagating Laser Beams
International Nuclear Information System (INIS)
Shvets, G.; Fisch, N.J.
2001-01-01
Short- and long-wavelength plasma waves can become strongly coupled in the presence of two counter-propagating laser pump pulses detuned by twice the cold plasma frequency. What makes this four-wave interaction important is that the growth rate of the plasma waves occurs much faster than in the more obvious co-propagating geometry
International Nuclear Information System (INIS)
Sakaki, T.
2016-01-01
This document presents 3 experiments carried out within the framework of inertial fusion. The first experiment was devoted to the study of fast electron beam transport in a compressed target. The implosion of the target with a cylindrical geometry was carried out with the GEKKO XII laser facility (ILE Osaka, Japan). The fast electron beam was generated by the LFEX laser (∼10"1"9 W/cm"2) and its propagation through the compressed cylinder was observed with several X-ray diagnostics. This experiment showed the guiding effect of the electron beam resulting from self-generated magnetic fields. Furthermore, the results of this experiment were in good agreement with numerical simulations. Two other experiments were performed to study the propagation of strong shock waves created by lasers in a plasma. They were carried out with different laser systems. In the first experiment with the Gekko XII laser, we observed the creation and the propagation of two successive shock waves in an ablation plasma in CH and Be. The objective of characterizing the amplification of a transmitted shock by the collision of two counter-propagating shocks has been partially realized. The comparison of the experimental results with the hydrodynamic simulations enabled us to confirm an amplification of the shock by a factor 2 in pressure in the condition of this experiment. The shot with a Be target allowed the development and validation of the diagnostic method of X-ray radiography for shock wave propagation. The second experiment was performed with PHELIX GSI laser (Darmstadt, Germany). The purpose of this experiment was to study the generation of strong shocks. They were applied to study the equation of state of carbon in the WDM state. The condition of pressure and density for the carbon were obtained by deducing the pressure and the velocity of the shock wave chronometric diagnostics employed in this experiment. In this experiment, diamond was at the metallic liquid phase with a pressure
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Visell, Yon
2015-04-01
This paper proposes a fast, physically accurate method for synthesizing multimodal, acoustic and haptic, signatures of distributed fracture in quasi-brittle heterogeneous materials, such as wood, granular media, or other fiber composites. Fracture processes in these materials are challenging to simulate with existing methods, due to the prevalence of large numbers of disordered, quasi-random spatial degrees of freedom, representing the complex physical state of a sample over the geometric volume of interest. Here, I develop an algorithm for simulating such processes, building on a class of statistical lattice models of fracture that have been widely investigated in the physics literature. This algorithm is enabled through a recently published mathematical construction based on the inverse transform method of random number sampling. It yields a purely time domain stochastic jump process representing stress fluctuations in the medium. The latter can be readily extended by a mean field approximation that captures the averaged constitutive (stress-strain) behavior of the material. Numerical simulations and interactive examples demonstrate the ability of these algorithms to generate physically plausible acoustic and haptic signatures of fracture in complex, natural materials interactively at audio sampling rates.
The doping concentration and physical properties measurement of silicon water using tera hertz wave
International Nuclear Information System (INIS)
Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung
2017-01-01
In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10"1"4 to 10"1"8 in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer
The doping concentration and physical properties measurement of silicon water using tera hertz wave
Energy Technology Data Exchange (ETDEWEB)
Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul(Korea, Republic of)
2017-02-15
In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10{sup 14} to 10{sup 18} in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer.
Seasonal changing sand waves and the effect of surface waves
Sterlini, Fenneke; van Dijk, Thaiënne A.G.P.; IJzer, Steven; Hulscher, Suzanne; Schüttrumpf, Holger; Tomasicchio, Guiseppe Roberto
2012-01-01
Sand waves are wavelike subaqueous sediment structures that exist in large areas in shelf seas. Due to their characteristics sand waves can severely affect human offshore activities, such as navigation. This makes it important to understand the physical processes that shape and change sand waves. In
Waves in plasmas (part 1 - wave-plasma interaction general background)
International Nuclear Information System (INIS)
Dumont, R.
2004-01-01
This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)
A POSSIBLE CONNECTION BETWEEN FAST RADIO BURSTS AND GAMMA-RAY BURSTS
International Nuclear Information System (INIS)
Zhang, Bing
2014-01-01
The physical nature of fast radio bursts (FRBs), a new type of cosmological transient discovered recently, is not known. It has been suggested that FRBs can be produced when a spinning supra-massive neutron star loses centrifugal support and collapses to a black hole. Here, we suggest that such implosions can happen in supra-massive neutron stars shortly (hundreds to thousands of seconds) after their births, and an observational signature of such implosions may have been observed in the X-ray afterglows of some long and short gamma-ray bursts (GRBs). Within this picture, a small fraction of FRBs would be physically connected to GRBs. We discuss possible multi-wavelength electromagnetic signals and gravitational wave signals that might be associated with FRBs, and propose an observational campaign to unveil the physical nature of FRBs. In particular, we strongly encourage a rapid radio follow-up observation of GRBs starting from 100 s after a GRB trigger
Simulation of Wave Overtopping of Maritime Structures in a Numerical Wave Flume
Directory of Open Access Journals (Sweden)
Tiago C. A. Oliveira
2012-01-01
Full Text Available A numerical wave flume based on the particle finite element method (PFEM is applied to simulate wave overtopping for impermeable maritime structures. An assessment of the performance and robustness of the numerical wave flume is carried out for two different cases comparing numerical results with experimental data. In the first case, a well-defined benchmark test of a simple low-crested structure overtopped by regular nonbreaking waves is presented, tested in the lab, and simulated in the numerical wave flume. In the second case, state-of-the-art physical experiments of a trapezoidal structure placed on a sloping beach overtopped by regular breaking waves are simulated in the numerical wave flume. For both cases, main overtopping events are well detected by the numerical wave flume. However, nonlinear processes controlling the tests proposed, such as nonlinear wave generation, energy losses along the wave propagation track, wave reflection, and overtopping events, are reproduced with more accuracy in the first case. Results indicate that a numerical wave flume based on the PFEM can be applied as an efficient tool to supplement physical models, semiempirical formulations, and other numerical techniques to deal with overtopping of maritime structures.
ONR Ocean Wave Dynamics Workshop
In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.
Physical Meaning of Wick Rotation and Advanced Waves
Bartlett, Rodney
2018-01-01
Abstract - "When we solve (19th-century Scottish physicist James Clerk) Maxwell's equations for light, we find not one but two solutions: a 'retarded' wave, which represents the standard motion of light from one point to another; but also an 'advanced' wave, where the light beam goes backward in time. Engineers have simply dismissed the advanced wave as a mathematical curiosity since the retarded waves so accurately predicted the behavior of radio, microwaves, TV, radar, and X-rays. But fo...
Sexuality and Physical Contact in National Social Life, Health, and Aging Project Wave 2
Adena M. Galinsky; Martha K. McClintock; Linda J. Waite
2014-01-01
Introduction. Wave 2 of the National Social Life, Health, and Aging Project (NSHAP) includes new measures of sexual interest and behavior, as well as new measures of the context of sexual experience and the frequency and appeal of physical contact. This is the first time many of these constructs have been measured in a nationally representative sample.
Methods for reactor physics calculations for control rods in fast reactors
International Nuclear Information System (INIS)
Grimstone, M.J.; Rowlands, J.L.
1988-12-01
The IAEA Specialists' Meeting on ''Methods for Reactor Physics Calculations for Control Rods in Fast Reactors'' was held in Winfrith, United Kingdom, on 6-8 December, 1988. The meeting was attended by 23 participants from nine countries. The purpose of the meeting was to review the current calculational methods and their accuracy as assessed by theoretical studies and comparisons with measurements, and then to identify the requirements for improved methods or additional studies and comparisons. The control rod properties or effects to be considered were their reactivity worths, their effect on the power distribution through the core, and the reaction rates and energy deposition both within and adjacent to the rods. The meeting was divided into five sessions, in the first of which each national delegation presented a brief overview of their programme of work on calculational methods for fast reactor control rods. In the next three sessions a total of seventeen papers were presented describing calculational methods and assessments of their accuracy. The final session was a discussion to draw conclusions regarding the current status of methods and the further developments and validation work required. A separate abstract was prepared for each of the 23 papers presented at the meeting. Refs, figs and tabs
Directory of Open Access Journals (Sweden)
Bertelli Nicola
2017-01-01
Full Text Available A critical question for the use of ion cyclotron range of frequency (ICRF heating in the ITER device and beyond is interaction of fast waves with energetic ion populations from neutral beam injection (NBI, fusion reactions, and minority ions accelerated by the RF waves themselves. Several experiments have demonstrated that the interaction between fast waves and fast ions can indeed be strong enough to significantly modify the NB ion population. To model the RF/fast ion interaction and the resulting fast ion distribution, a recent extension of the full wave solver TORIC v.5 that includes non-Maxwellian effects has been combined with the Monte Carlo NUBEAM code through an RF “kick” operator. In this work, we present an initial verification of the NUBEAM RF “kick” operator for high harmonic fast wave (HHFW heating regime in NSTX plasma.
GLOBAL SIMULATION OF AN EXTREME ULTRAVIOLET IMAGING TELESCOPE WAVE
International Nuclear Information System (INIS)
Schmidt, J. M.; Ofman, L.
2010-01-01
We use the observation of an Extreme Ultraviolet Imaging Telescope (EIT) wave in the lower solar corona, seen with the two Solar Terrestrial Relations Observatory (STEREO) spacecraft in extreme ultraviolet light on 2007 May 19, to model the same event with a three-dimensional (3D) time-depending magnetohydrodynamic (MHD) code that includes solar coronal magnetic fields derived with Wilcox Solar Observatory magnetogram data, and a solar wind outflow accelerated with empirical heating functions. The model includes a coronal mass ejection (CME) of Gibson and Low flux rope type above the reconstructed active region with parameters adapted from observations to excite the EIT wave. We trace the EIT wave running as circular velocity enhancement around the launching site of the CME in the direction tangential to the sphere produced by the wave front, and compute the phase velocities of the wave front. We find that the phase velocities are in good agreement with theoretical values for a fast magnetosonic wave, derived with the physical parameters of the model, and with observed phase speeds of an incident EIT wave reflected by a coronal hole and running at about the same location. We also produce in our 3D MHD model the observed reflection of the EIT wave at the coronal hole boundary, triggered by the magnetic pressure difference between the wave front hitting the hole and the boundary magnetic fields of the coronal hole, and the response of the coronal hole, which leads to the generation of secondary reflected EIT waves radiating away in different directions than the incident EIT wave. This is the first 3D MHD model of an EIT wave triggered by a CME that includes realistic solar magnetic field, with results comparing favorably to STEREO Extreme Ultraviolet Imager observations.
DEFF Research Database (Denmark)
Acedo, P.; Carpintero, G.; Criado, A.R.
2012-01-01
We report a photonic synthesis scheme for continuous wave millimeter‐wave signal generation using a single passively mode‐locked laser diode (PMLLD), optical filtering and photomixing in a fast photodiode.The phase noise of the photonically synthesized signals is evaluated and inherits...
Review of lower hybrid wave heating and current drive
International Nuclear Information System (INIS)
Gormezano, C.
1986-01-01
Interaction of Lower Hybrid waves and plasmas is a very versatile method which has proven to be effective in a large range of applications: bulk ion heating, bulk electron heating, non inductive current drive. If the ratio between the mean velocity of HF induced fast particles and the thermal velocity of the bulk population is relatively small, effective bulk ion heating or bulk electron heating can occur via collisional transfer. If the above ratio is too large, fast ions, which have mainly a perpendicular energy, are poorly confined. Moreover they can be harmful for the discharge (impurities, etc...) since they are lost on the walls. In contrast, HF induced fast electrons gain essentially a parallel momentum from the wave. If unidirectional waves are launched, the dissymetry in electron distribution result in the obtention of an effective non inductive current
Sheikh, Mashhood Ahmed
2018-04-01
A number of cross-sectional studies have consistently shown a correlation between childhood physical maltreatment, perceived social isolation and internalizing symptoms. Using a longitudinal, three-wave design, this study sought to assess the mediating role of perceived social isolation in adulthood in the association between childhood physical maltreatment and internalizing symptoms in adulthood. The study has a three-wave design. We used data collected from 1994 to 2008 within the framework of the Tromsø Study (N = 4530), a representative prospective cohort study of men and women. Perceived social isolation was measured at a mean age of 54.7 years, and internalizing symptoms were measured at a mean age of 61.7 years. The difference-in-coefficients method was used to assess the indirect effects and the proportion (%) of mediated effects. Childhood physical maltreatment was associated with an up to 68% [relative risk (RR) = 1.68, 95% confidence interval (CI): 1.33-2.13] higher risk of perceived social isolation in adulthood. Childhood physical maltreatment and perceived social isolation in adulthood were associated with greater levels of internalizing symptoms in adulthood (p social isolation in adulthood mediated up to 14.89% (p social isolation into account when considering the impact of childhood physical maltreatment on internalizing symptoms.
Potential effect of physical activity calorie equivalent labeling on parent fast food decisions.
Viera, Anthony J; Antonelli, Ray
2015-02-01
Menu labels displaying food energy in physical activity calorie equivalents (PACE) is a possible strategy to encourage ordering meals with fewer calories and promoting physical activity. Potential effects of such labeling for children have never been examined. We conducted a national survey of 1000 parents randomized to 1 of 4 fast food menus: no labels, calories only, calories plus minutes, or calories plus miles needed to walk to burn the calories. Respondents were asked to imagine they were in a fast food restaurant and place an order for their child. At the survey's conclusion, all respondents were shown a calorie-only label and both PACE labels and asked to rate the likelihood each label would influence them to encourage their child to exercise. We excluded respondents whose meals totaled 0 calories or >4000 calories, leaving 823 parents in the analysis. The mean age of the child for whom the meal was "ordered" was 9.5 years. Parents whose menus displayed no label ordered an average of 1294 calories, whereas those shown calories only, calories plus minutes, or calories plus miles ordered 1066, 1060, and 1099 calories, respectively (P = .0001). Only 20% of parents reported that calories-only labeling would be "very likely" to prompt them to encourage their children to exercise versus 38% for calories plus minutes (P calories plus miles (P food items to order for their children and encourage them to get their children to exercise. Copyright © 2015 by the American Academy of Pediatrics.
Commissioning of the long-pulse fast wave current drive antennas for DIII-D
International Nuclear Information System (INIS)
Baity, F.W.; Barber, G.C.; Goulding, R.H.; Hoffman, D.J.; DeGrassie, J.S.; Pinsker, R.I.; Petty, C.C.; Cary, W.
1995-01-01
Two new four-element fast wave current drive antennas have been installed on DIII-D. These antennas are designed for 10-s pulses at 2 MW each in the frequency range of 30 to 120 MHz. Each element comprises two poloidal segments fed in parallel in order to optimize plasma coupling at the upper end of the frequency range. The antennas are mounted on opposite sides of the vacuum vessel, in ports designated 0 degrees and 180 degrees after their toroidal angle. Each antenna array is fed by a single transmitter. The power is first split two ways by means of a 3-dB hybrid coupler, then each of these lines feeds a resonant loop connecting a pair of array elements. The power transfer during asymmetric phasing is shunted between resonant loops by a decoupler. The resonant loops are fitted with line stretchers so that multiple frequencies of operation are possible without reconfiguring the transmission line. Commissioning of these antennas has been underway since June 1994. Several deficiencies in the transmission line system were uncovered during initial vacuum conditioning, including problems with the transmission line insulators and with the drive rods for the variable elements. The former was solved by replacing the original alumina insulators, and the latter has been avoided during operation to date by positioning the tuners to avoid high voltage appearing on the drive rods. A modified design for the drive rods will be implemented before RF operations resume operation June 1995. New transmitters were procured from ABB for the new antennas and were installed in parallel with the antenna installation. During initial vacuum conditioning of the antenna in the 180 degree port a fast digital oscilloscope was used to try to pinpoint the location of arcing by a time-of-flight technique and to develop an understanding of the typical arc signature in the system
Energy Technology Data Exchange (ETDEWEB)
John D. Bess
2010-03-01
The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these
Electromagnetic waves in gravitational wave spacetimes
International Nuclear Information System (INIS)
Haney, M.; Bini, D.; Ortolan, A.; Fortini, P.
2013-01-01
We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailed examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).
International Nuclear Information System (INIS)
Giruzzi, G.; Krivenski, V.; Fidone, I.; Ziebell, L.F.
1985-03-01
Wave damping near the electron gyrofrequency in a tokamak plasma with the energetic tail generated by the dc electric field is investigated. The electron tail is computed by a Fokker-Planck initial value code as a function of the relevant parameter Esub(parallel)/Esub(c)=Esub(parallel)Tsub(e)/(2πsub(e)c 3 Λ). It is shown that in most cases of physical interest strong damping of the e-mode occurs for oblique propagation. The results are of relevance for studies of ECRH in present-day tokamaks and in future reactors where a mildly relativistic electron tail is naturally present for large tsub(e). Special emphasis is therefore given to wave absorption for frequencies f significantly below the central electron gyrofrequency, and to the associated rf-driven current
Profile Modifications Resulting from Early High-harmonic Fast Wave heating in NSTX
International Nuclear Information System (INIS)
Mendard, J.E.; LeBlanc, Wilson J.R.; Sabbagh, S.A.; Stutman, D.; Swain, D.W.
2001-01-01
Experiments have been performed in the National Spherical Torus Experiment (NSTX) to inject high harmonic fast wave (HHFW) power early during the plasma current ramp-up in an attempt to reduce the current penetration rate to raise the central safety factor during the flattop phase of the discharge. To date, up to 2 MW of HHFW power has been coupled to deuterium plasmas as early as t = 50 ms using the slowest interstrap phasing of k|| approximately equals 14 m(superscript)-1 (nf = 24). Antenna-plasma gap scans have been performed and find that for small gaps (5-8 cm), electron heating is observed with relatively small density rises and modest reductions in current penetration rate. For somewhat larger gaps (10-12 cm), weak electron heating is observed but with a spontaneous density rise at the plasma edge similar to that observed in NSTX H-modes. In the larger gap configuration, EFIT code reconstructions (without MSE [motional Stark effect]) find that resistive flux consumption is reduced as much as 30%, the internal inductance is maintained below 0.6 at 1 MA into the flattop, q(0) is increased significantly, and the MHD stability character of the discharges is strongly modified
Collins, William
1989-01-01
The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.
Engelbrecht, Jüri
2015-01-01
This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.
DEFF Research Database (Denmark)
Nørgaard, Jørgen Quvang Harck; Andersen, Thomas Lykke
This paper deals with a case study on the wave height reduction behind floating Wave Dragon wave energy converters in Santander Bay, Spain. The study is performed using the MIKE21 Boussinesq model from DHI. The Wave Dragon transmission characteristics in the numerical wave propagation model...... are based on previously performed physical model tests in scale 1:51. Typical winter storm conditions are considered in the case study together with different stiffness in the mooring system of the floating device. From the study it is found that if multiple Wave Dragons are positioned in a farm the wave...
Design wave estimation considering directional distribution of waves
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Deo, M.C
.elsevier.com/locate/oceaneng Technical Note Design wave estimation considering directional distribution of waves V. Sanil Kumar a,C3 , M.C. Deo b a OceanEngineeringDivision,NationalInstituteofOceanography,Donapaula,Goa-403004,India b Civil... of Physical Oceanography Norway, Report method for the routine 18, 1020–1034. ocean waves. Division of No. UR-80-09, 187 p. analysis of pitch and roll Conference on Coastal Engineering, 1. ASCE, Taiwan, pp. 136–149. Deo, M.C., Burrows, R., 1986. Extreme wave...
Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments
Yucel, Abdulkadir C.; Liu, Yang; Bagci, Hakan; Michielssen, Eric
2013-01-01
A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier
Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave
Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.;
2017-01-01
Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.
2D full-wave simulation of waves in space and tokamak plasmas
Directory of Open Access Journals (Sweden)
Kim Eun-Hwa
2017-01-01
Full Text Available Simulation results using a 2D full-wave code (FW2D for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF waves in the scape-off layer (SOL of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.
2D full-wave simulation of waves in space and tokamak plasmas
Kim, Eun-Hwa; Bertelli, Nicola; Johnson, Jay; Valeo, Ernest; Hosea, Joel
2017-10-01
Simulation results using a 2D full-wave code (FW2D) for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry) and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC) waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF) waves in the scape-off layer (SOL) of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.
Directory of Open Access Journals (Sweden)
Emanuele Casarotti
2016-12-01
Full Text Available We present here the first application of the fast reacting framework for 3D simulations of seismic wave propagation generated by earthquakes in the Italian region with magnitude Mw 5. The driven motivation is to offer a visualization of the natural phenomenon to the general public but also to provide preliminary modeling to expert and civil protection operators. We report here a description of this framework during the emergency of 24 August 2016 Mw 6.0 central Italy Earthquake, a discussion on the accuracy of the simulation for this seismic event and a preliminary critical analysis of the visualization structure and of the reaction of the public.
Kinetic Alfven waves and electron physics. II. Oblique slow shocks
International Nuclear Information System (INIS)
Yin, L.; Winske, D.; Daughton, W.
2007-01-01
One-dimensional (1D) particle-in-cell (PIC; kinetic ions and electrons) and hybrid (kinetic ions; adiabatic and massless fluid electrons) simulations of highly oblique slow shocks (θ Bn =84 deg. and β=0.1) [Yin et al., J. Geophys. Res., 110, A09217 (2005)] have shown that the dissipation from the ions is too weak to form a shock and that kinetic electron physics is required. The PIC simulations also showed that the downstream electron temperature becomes anisotropic (T e parallel )>T e perpendicular ), as observed in slow shocks in space. The electron anisotropy results, in part, from the electron acceleration/heating by parallel electric fields of obliquely propagating kinetic Alfven waves (KAWs) excited by ion-ion streaming, which cannot be modeled accurately in hybrid simulations. In the shock ramp, spiky structures occur in density and electron parallel temperature, where the ion parallel temperature decreases due to the reduction of the ion backstreaming speed. In this paper, KAW and electron physics in oblique slow shocks are further examined under lower electron beta conditions. It is found that as the electron beta is reduced, the resonant interaction between electrons and the wave parallel electric fields shifts to the tail of the electron velocity distribution, providing more efficient parallel heating. As a consequence, for β e =0.02, the electron physics is shown to influence the formation of a θ Bn =75 deg. shock. Electron effects are further enhanced at a more oblique shock angle (θ Bn =84 deg.) when both the growth rate and the range of unstable modes on the KAW branch increase. Small-scale electron and ion phase-space vortices in the shock ramp formed by electron-KAW interactions and the reduction of the ion backstreaming speed, respectively, are observed in the simulations and confirmed in homogeneous geometries in one and two spatial dimensions in the accompanying paper [Yin et al., Phys. Plasmas 14, 062104 (2007)]. Results from this study
Turbulence and Waves as Sources for the Solar Wind
Cranmer, S. R.
2008-05-01
Gene Parker's insights from 50 years ago provided the key causal link between energy deposition in the solar corona and the acceleration of solar wind streams. However, the community is still far from agreement concerning the actual physical processes that give rise to this energy. It is still unknown whether the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy is input more intermittently from closed loops into the open-field regions. No matter the relative importance of reconnections and loop-openings, though, we do know that waves and turbulent motions are present everywhere from the photosphere to the heliosphere, and it is important to determine how they affect the mean state of the plasma. In this presentation, I will give a summary of wave/turbulence models that seem to succeed in explaining the time-steady properties of the corona (and the fast and slow solar wind). The coronal heating and solar wind acceleration in these models comes from anisotropic turbulent cascade, which is driven by the partial reflection of low-frequency Alfven waves propagating along the open magnetic flux tubes. Specifically, a 2D model of coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and fast streams seen by Ulysses. The radial gradient of the Alfven speed affects where the waves are reflected and damped, and thus whether energy is deposited below or above Parker's critical point. As predicted by earlier studies, a larger coronal expansion factor gives rise to a slower and denser wind, higher temperature at the coronal base, less intense Alfven waves at 1 AU, and correlative trends for commonly measured ratios of ion charge states and FIP-sensitive abundances that are in general agreement with observations. Finally, I will outline the types of future observations that would be most able to test and refine these ideas.
Perspectives gained from ICRF physics studies on TFTR
International Nuclear Information System (INIS)
Phillips, C.K.; Bell, M.; Batha, S.
1998-01-01
The physics of ICRF heating and current drive has been studied on TFTR for over a decade. Following the early low power coupling studies, high power experiments resulted in sawtooth stabilization, the first observation of RF-driven excitation of toroidal Alfven eigenmodes, and the discovery of a mode conversion scenario for localized off-axis electron heating. The program culminated with the first studies of high power ICRF heating and profile control in tritium-rich high performance plasmas. A significant part of the concluding experiments centered on the potential of ICRF to drive sheared flows in order to suppress turbulence in the plasma core. Initial measurements taken with a novel poloidal velocity diagnostic suggest that localized sheared poloidal flows can be driven with ion Bernstein waves excited directly or else via mode conversion from a propagating fast magnetosonic wave. In this paper, recent results from TFTR on wave-based profile control techniques will be summarized along with suggestions for future studies elsewhere
Concept and canons of fasting in Ayurveda
Directory of Open Access Journals (Sweden)
H Shripathi Adiga
2013-03-01
Full Text Available Ayurveda, manoeuvres mankind to head a healthy life in order to pursue four-fold bliss. With a view to combat physical and mental annoyances, classics have explicated two-fold therapeutic modalities; langhana/depletion and brihmana/nourishing. Upavasa /fasting is one among ten depletion therapies explained. It is envisioned at all three levels of Ayurvedic therapies- rational/objectively planned, psychological, and spiritual. Fasting is reckoned to be refraining from all forms of food intake for a given period, under supervision of a qualified physician. Acharya Charaka advocates fasting in diseases of milder intensity, in those due to aama (metabolic toxin, after purificatory procedures. Fasting person should avoid beautifying oneself, day sleep, sexual acts, and feasting prior and ulterior to fasting. Fasting is contraindicated in very young, elderly, emaciated, pregnant lady, and shortly after strenuous exercise. The principle avers that fasting kindles metabolic/digestive fire which, in absence of food, brings about paachana of vitiated doshas, thereby riposting health. Sound fasting ensues proper elimination of excretory wastes, clear belch, sweat, and taste for food. Benefits of fasting include lucidity of sense organs, lightness of body and mind, control of diseases, and enthusiasm. Yoga Shastra describes fasting with respect to three levels of food: physical, impressions, and associations and a means to unite three bodies: astral, physical, and causal. Ayurveda thus advocates fasting depending upon the dosha, agni, vaya, kala, and bala of the individual, as a preventive as well as therapeutic modality.
Nonlinear wave collapse and strong turbulence
International Nuclear Information System (INIS)
Robinson, P.A.
1997-01-01
The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society
Peripheral plasma measurement during SMBI in Heliotron J using fast cameras
International Nuclear Information System (INIS)
Nishino, N.; Mizuuchi, T.; Takeuchi, M.; Mukai, K.; Takabatake, Y.; Nagasaki, K.; Kobayashi, S.; Okada, H.; Ohshima, S.; Yamamoto, S.; Minami, T.; Hanatani, K.; Konoshima, S.; Nakamura, Y.; Sano, F.
2011-01-01
Since fueling technique is very important for maintaining fusion plasma, supersonic molecular beam injection (SMBI) was studied using mainly fast cameras, Hα measurement, Langmuir/magnetic probes, and electron density/diamagnetic measurement in Heliotron J. Using a fast camera with a tangential view a very bright stripe along the magnetic field line was observed during SMBI. Time-dependent FFT analysis of data from each pixel showed that the low frequency waves rotated around the magnetic field line in a left-handed sense at the initial stage of SMBI. After a few milliseconds they propagated towards the SMBI region along the magnetic field line, and their phase velocities were almost the same. Experimental evidence is consistent with the interpretation as the ion acoustic wave, and the peak frequency of these waves was the same as that of the power spectra of the magnetic probe signals. It suggests the slow magnetoacoustic wave may convert into the ion acoustic wave due to collisions with neutrals.
Propagation of waves in shear flows
Fabrikant, A L
1998-01-01
The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside
Neighborhood fast food availability and fast food consumption.
Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D
2015-09-01
Recent nutritional and public health research has focused on how the availability of various types of food in a person's immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person's perceived availability of fast-food and an objective measure of fast-food presence - Geographic Information Systems (GIS) - within that person's neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant's neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely effective
Wave Driven Fast Ion Loss in the National Spherical Torus Experiment
International Nuclear Information System (INIS)
Fredrickson, E.D.; Cheng, C.Z.; Darrow, D.; Fu, G.; Gorelenkov, N.N.; Kramer, G.; Medley, S.S.; Menard, J.; Roquemore, L.; Stutman, D.; White, R.B.
2003-01-01
The study of fast ion instabilities in conventional aspect ratio tokamaks is motivated in large part by their potential to negatively impact the ignition threshold in fusion reactors by causing fast ion losses. Spherical tokamak's (ST), with intrinsically low magnetic fields, are particularly susceptible to fast ion driven instabilities. The 3.5 MeV alpha's from the D-T [deuterium-tritium] fusion reaction in proposed ST reactors will have velocities much higher than the Alfven speed. The Larmor radius of the fusion alphas, normalized to the plasma size, will also be larger than for conventional aspect ratio tokamak reactors. The resulting longer wavelengths of the *AE instabilities will be more effective in driving fast ion loss. The change in magnetic topology also influences the mode structure, as in the case of the Compressional Alfven Eigenmodes (CAE) seen on NSTX
Czech Academy of Sciences Publication Activity Database
Yang, H.X.; Ma, Y.Y.; Xu, H.; Shao, F.Q.; Yu, M.Y.; Yin, Y.; Zhuo, H.B.; Borghesi, Marco
2013-01-01
Roč. 31, č. 3 (2013), s. 379-386 ISSN 0263-0346 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : betatron resonance * electron plasma waves * ponderomotive force * preplasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.701, year: 2013
International Nuclear Information System (INIS)
He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo
2012-01-01
To determine the wave modes prevailing in solar wind turbulence at kinetic scales, we study the magnetic polarization of small-scale fluctuations in the plane perpendicular to the data sampling direction (namely, the solar wind flow direction, V SW ) and analyze its orientation with respect to the local background magnetic field B 0,local . As an example, we take only measurements made in an outward magnetic sector. When B 0,local is quasi-perpendicular to V SW , we find that the small-scale magnetic-field fluctuations, which have periods from about 1 to 3 s and are extracted from a wavelet decomposition of the original time series, show a polarization ellipse with right-handed orientation. This is consistent with a positive reduced magnetic helicity, as previously reported. Moreover, for the first time we find that the major axis of the ellipse is perpendicular to B 0,local , a property that is characteristic of an oblique Alfvén wave rather than oblique whistler wave. For an oblique whistler wave, the major axis of the magnetic ellipse is expected to be aligned with B 0,local , thus indicating significant magnetic compressibility, and the polarization turns from right to left handedness as the wave propagation angle (θ kB ) increases toward 90°. Therefore, we conclude that the observation of a right-handed polarization ellipse with orientation perpendicular to B 0,local seems to indicate that oblique Alfvén/ion-cyclotron waves rather than oblique fast-mode/whistler waves dominate in the 'dissipation' range near the break of solar wind turbulence spectra occurring around the proton inertial length.
Modular approach for conversion to the ion-hybrid wave and α gyroresonance
International Nuclear Information System (INIS)
Kaufman, A.N.; Morehead, J.J.; Brizard, A.J.; Tracy, E.R.
1997-01-01
Linear conversion of an incoming magnetosonic wave (a.k.a. fast or compressional wave) to an ion-hybrid wave can be considered as a 3-step process in ray phase space. This is demonstrated by casting the cold-fluid model into the Friedland-Kaufman normal form for linear mode conversion. First, the incoming magnetosonic ray (MSR) converts a fraction of its action to an intermediate ion-hybrid ray (IHR), with the transmitted ray proceeding through the conversion layer. The IHR propagates in k-space to a second conversion point, where it converts in turn a fraction of its action into a reflected MSR, with the remainder of the its action constituting the converted IHR. The modular approach gives exact agreement with the more standard Budden formulation for the transmission, reflection and conversion coefficients, but has the important advantage of exposing the intermediate IHR. The existence of the intermediate IHR has important physical consequences as it can resonate with α particles. We estimate the time-integrated damping coefficient between the two conversions and show that ∫γdt is of order -100, thus the IH wave is completely annihilated between conversions and transfers its energy to the α close-quote s. This suggests that proposals to use the IH mode for current drive or DT heating are likely to fail in the presence of fusion α close-quote s. copyright 1997 American Institute of Physics
Propagation-invariant waves in acoustic, optical, and radio-wave fields
Salo, Janne
2003-01-01
The physical phenomena considered in this thesis are associated with electromagnetic and acoustic waves that propagate in free space or in homogeneous media without diffraction. The concept of rotationally periodic wave propagation is introduced in the first journal article included in the thesis and it is subsequently used to analyse waves that avoid diffractive deterioration by repeatedly returning to their initial shape, possibly rotated around the optical axis. Such waves constitute an es...
New exact travelling wave solutions of nonlinear physical models
International Nuclear Information System (INIS)
Bekir, Ahmet; Cevikel, Adem C.
2009-01-01
In this work, we established abundant travelling wave solutions for some nonlinear evolution equations. This method was used to construct travelling wave solutions of nonlinear evolution equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The ((G ' )/G )-expansion method presents a wider applicability for handling nonlinear wave equations.
Resonant Alfven wave instabilities driven by streaming fast particles
International Nuclear Information System (INIS)
Zachary, A.
1987-01-01
A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs
Advanced interferometric gravitational-wave detectors
Saulson, Peter R
2019-01-01
Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...
Fast ion loss diagnostic plans for NSTX
International Nuclear Information System (INIS)
Darrow, D. S.; Bell, R.; Johnson, R.; Kugel, H.; Wilson, J. R.; Cecil, F. E.; Maingi, R.; Krasilnikov, A.; Alekseyev, A.
2000-01-01
The prompt loss of neutral beam ions from the National Spherical Torus Experiment (NSTX) is expected to be between 12% and 42% of the total 5 MW of beam power. There may, in addition, be losses of fast ions arising from high harmonic fast wave (HHFW) heating. Most of the lost ions will strike the HHFW antenna or the neutral beam dump. To measure these losses in the 2000 experimental campaign, thermocouples in the antenna, several infrared camera views, and a Faraday cup lost ion probe will be employed. The probe will measure loss of fast ions with E > 1 keV at three radial locations, giving the scrape-off length of the fast ions
From the Somigliana waves to the evanescent waves
Directory of Open Access Journals (Sweden)
Pietro Caloi
2010-02-01
Full Text Available The Rayleigh equation has real coefficients; therefore, also the case of complex conjugated roots may be explained physically. The Author proves that the Somigliana waves may be formed for Poisson ratio values until 0.30543; for gradually less rigid media, they are missing altogether and degenerate into evanescent waves.
Physics design of a 10 MeV, 6 kW travelling wave electron linac for ...
Indian Academy of Sciences (India)
2016-10-11
Oct 11, 2016 ... We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear ... linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three- ... structures are preferred for relatively higher energy ... klystron in a TW linac, which results in cost reduction.
Tseng, C.
2013-12-01
In exploration seismology, subsurface medium commonly exhibits anisotropy, characterized by a vertical transversely isotropic (VTI) model. Due to the need of exploring small reservoirs in complex structures, the seismic exploration is extended to deal with anisotropic media. The P-S converted wave seismic exploration is a relatively inexpensive, broadly applicable, and effective way to obtain the S-wave information of the medium. In anisotropic traveltime analysis, the moveout curve of horizontal P-SV event can help to determine the ratio of the P- and SV-wave vertical velocities, the normal moveout (NMO) velocity of SV-waves, and the anisotropy parameters. The P-SV conversion point (CP) location is of great importance to P-SV data binning, NMO corrections and common conversion point (CCP) stacking, and the anisotropy has a more significant effect on the conversion point location than on the moveout. In this study, we attempt to inspect the theoretical non-hyperbolic moveout and CP equations for the P-SV waves reflected from a VTI layer by numerical calculations and physical modeling. We are also interested in visualizing the variations of the conversion point locations from a designed VTI medium. In traveltime analysis, the theoretical moveout curve is accurate up to offsets about one and a half times the reflector depth (x/z=1.5). However, the moveout curve computed by Fermat's principle fits well to the physical data. The CP locations of P-SV waves are similar to those calculated by Fermat's principle and theoretical CP equation, which are verified by the physical modeling.
To Mars and beyond, fast! how plasma propulsion will revolutionize space exploration
Chang Díaz, Franklin
2017-01-01
As advanced space propulsion moves slowly from science fiction to achievable reality, the Variable Specific Impulse Magnetoplasma Rocket, or VASIMR, is a leading contender for making 'Mars in a month' a possibility. Developed by Ad Astra Rockets, which was founded by astronaut Franklin Chang-Diaz and backed by NASA, its first commercial tests are imminent. VASIMR heats plasma to extreme temperatures using radio waves. Strong magnetic fields then funnel this plasma out the back of the engine, creating thrust. The continuous propulsion may place long, fast interplanetary journeys within reach in the near future. While scientists dream of the possibilities of using fusion or well-controlled matter-antimatter interactions to propel spacecraft fast and far, that goal is still some way over the horizon. VASIMR provides a more attainable propulsion technology that is based on the matter-antimatter concept. The book describes a landmark technology grounded in plasma physics and offering a practical technological solu...
Shock and Rarefaction Waves in a Heterogeneous Mantle
Jordan, J.; Hesse, M. A.
2012-12-01
We explore the effect of heterogeneities on partial melting and melt migration during active upwelling in the Earth's mantle. We have constructed simple, explicit nonlinear models in one dimension to examine heterogeneity and its dynamic affects on porosity, temperature and the magnesium number in a partially molten, porous medium comprised of olivine. The composition of the melt and solid are defined by a closed, binary phase diagram for a simplified, two-component olivine system. The two-component solid solution is represented by a phase loop where concentrations 0 and 1 to correspond to fayalite and forsterite, respectively. For analysis, we examine an advective system with a Riemann initial condition. Chromatographic tools and theory have primarily been used to track large, rare earth elements as tracers. In our case, we employ these theoretical tools to highlight the importance of the magnesium number, enthalpy and overall heterogeneity in the dynamics of melt migration. We calculate the eigenvectors and eigenvalues in the concentration-enthalpy space in order to glean the characteristics of the waves emerging the Riemann step. Analysis on Riemann problems of this nature shows us that the composition-enthalpy waves can be represented by self-similar solutions. The eigenvalues of the composition-enthalpy system represent the characteristic wave propagation speeds of the compositions and enthalpy through the domain. Furthermore, the corresponding eigenvectors are the directions of variation, or ``pathways," in concentration-enthalpy space that the characteristic waves follow. In the two-component system, the Riemann problem yields two waves connected by an intermediate concentration-enthalpy state determined by the intersections of the integral curves of the eigenvectors emanating from both the initial and boundary states. The first wave, ``slow path," and second wave, ``fast path," follow the aformentioned pathways set by the eigenvectors. The slow path wave
Fast reactors and problems in their development. Chapter 6
International Nuclear Information System (INIS)
Dombey, N.
1980-01-01
The main differences between fast reactors, in particular the liquid-metal fast breeder reactor (LMFBR), and thermal reactors are discussed. The view is taken, based on the intrinsic physics of the systems, that fast reactors should be considered as a different genus from thermal reactors. Some conclusions are drawn for fast reactor development generally and for the British programme in particular. Physics, economics and safety aspects are covered. (U.K.)
Solitary wave and periodic wave solutions for Burgers, Fisher ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 1. Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (′/)-expansion method. Jalil Manafian Mehrdad Lakestani. Volume 85 Issue 1 July 2015 pp 31-52 ...
Validation and application of a physics database for fast reactor fuel cycle analysis
International Nuclear Information System (INIS)
McKnight, R.D.; Stillman, J.A.; Toppel, B.J.; Khalil, H.S.
1994-01-01
An effort has been made to automate the execution of fast reactor fuel cycle analysis, using EBR-II as a demonstration vehicle, and to validate the analysis results for application to the IFR closed fuel cycle demonstration at EBR-II and its fuel cycle facility. This effort has included: (1) the application of the standard ANL depletion codes to perform core-follow analyses for an extensive series of EBR-II runs, (2) incorporation of the EBR-II data into a physics database, (3) development and verification of software to update, maintain and verify the database files, (4) development and validation of fuel cycle models and methodology, (5) development and verification of software which utilizes this physics database to automate the application of the ANL depletion codes, methods and models to perform the core-follow analysis, and (6) validation studies of the ANL depletion codes and of their application in support of anticipated near-term operations in EBR-II and the Fuel Cycle Facility. Results of the validation tests indicate the physics database and associated analysis codes and procedures are adequate to predict required quantities in support of early phases of FCF operations
LTFR-4, Library Generated for Fast Reactor Design Program from JAERI Fast-Set Multigroup Constant
International Nuclear Information System (INIS)
Suzuki, Tomoo
1971-01-01
Nature of physical problem solved: The program processes JAERI-Fast group constants sets of less than 30-group and prepares a binary library tape for efficient usage by a series of related fast reactor design calculation programmes