WorldWideScience

Sample records for fast binding cement

  1. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  2. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  3. Prediction of chloride ingress and binding in cement paste

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Nielsen, Erik Pram; Herforth, Duncan

    2007-01-01

    This paper summarizes recent work on an analytical model for predicting the ingress rate of chlorides in cement-based materials. An integral part of this is a thermodynamic model for predicting the phase equilibria in hydrated Portland cement. The model’s ability to predict chloride binding...... in Portland cement pastes at any content of chloride, alkalis, sulfates and carbonate was verified experimentally and found to be equally valid when applied to other data in the literature. The thermodynamic model for predicting the phase equilibria in hydrated Portland cement was introduced into an existing...... Finite Difference Model for the ingress of chlorides into concrete which takes into account its multi-component nature. The “composite theory” was then used to predict the diffusivity of each ion based on the phase assemblage present in the hydrated Portland cement paste. Agreement was found between...

  4. Binding of chloride and alkalis in Portland cement systems

    International Nuclear Information System (INIS)

    Nielsen, Erik P.; Herfort, Duncan; Geiker, Mette R.

    2005-01-01

    A thermodynamic model for describing the binding of chloride and alkalis in hydrated Portland cement pastes has been developed. The model is based on the phase rule, which for cement pastes in aggressive marine environment predicts multivariant conditions, even at constant temperature and pressure. The effect of the chloride and alkalis has been quantified by experiments on cement pastes prepared from white Portland cements containing 4% and 12% C 3 A, and a grey Portland cement containing 7% C 3 A. One weight percent calcite was added to all cements. The pastes prepared at w/s ratio of 0.70 were stored in solutions of different Cl (CaCl 2 ) and Na (NaOH) concentrations. When equilibrium was reached, the mineralogy of the pastes was investigated by EDS analysis on the SEM. A well-defined distribution of chloride was found between the pore solution, the C-S-H phase, and an AFm solid solution phase consisting of Friedel's salt and monocarbonate. Partition coefficients varied as a function of iron and alkali contents. The lower content of alkalis in WPC results in higher chloride contents in the C-S-H phase. High alkali contents result in higher chloride concentrations in the pore solution

  5. Top-down cracking of rigid pavements constructed with fast setting hydraulic cement concrete

    CSIR Research Space (South Africa)

    Heath, AC

    2009-01-29

    Full Text Available Jointed plain concrete pavement (JPCP) test sections were constructed using fast setting hydrualic cement concrete (FSHCC) as part of the California accelerated pavement testing program (CAL/APT). Many of the longer slabs cracked under environmental...

  6. Chloride diffusivity in hardened cement paste from microscale analyses and accounting for binding effects

    OpenAIRE

    Carrara, P; De Lorenzis, L; Bentz, D P

    2016-01-01

    The diffusion of chloride ions in hardened cement paste (HCP) under steady-state conditions and accounting for the highly heterogeneous nature of the material is investigated. The HCP microstructures are obtained through segmentation of X-ray images of real samples as well as from simulations using the cement hydration model CEMHYD3D. Moreover, the physical and chemical interactions between chloride ions and HCP phases (binding), along with their effects on the diffusive process, are explicit...

  7. Strontium binding to cement paste cured at different temperature

    International Nuclear Information System (INIS)

    Peterson, V.K.; Ray, A.

    1999-01-01

    Concentration - depth profiles were measured using Proton Induced X-ray Emission (PIXE). These results were used as a measure of the Sr 2+ retention abilities of each matrix. Ordinary Portland cement (OPC) and cemented clinoptilolite samples were cured at 25 deg C, 60 deg C and 150 deg C. As expected, the Sr 2+ penetration depth increased with increasing OPC cure temperature, caused by an increase in sample permeability. Surprisingly, the penetration depths of Sr 2+ increased with the addition of clinoptilolite to the OPC, also thought to be caused by an increase in sample permeability. However, the increase in penetration depth was reduced in samples cured at higher temperatures

  8. Studies on potential of Portland cement mortar for binding of ...

    Indian Academy of Sciences (India)

    Paramalinggam Thanalechumi

    10%, and basic (pH [ 7) curing solution was found to be better than water for curing purposes. It is concluded ... regulations on waste management by the Department of. Environment [8]. .... cement, sand and sediment [16, 17]. The major ...

  9. Study irradiation damage by fast neutrons in Portland cement by means of ultra-sound

    International Nuclear Information System (INIS)

    Rosa Junior, A.A.

    1988-01-01

    The effect of neutron irradiation in samples of Portland cement paste was evaluated, using the resonance frequency method and pulse velocity of ultra-sound technique. The samples were divide in three groups: 1) Monitoring samples; 2) Samples to gamma heating simulation; 3) Fast neutron irradiated samples in reactor core. Santa Rita Portland cement was utilized for samples preparation with water-cement rate of 0,40 l/kg. The irradiation was performed in the research reactor IEA-R1, at IPEN-CNEN/SP, with an integrated flux of 7,2 X 10 sup(18) n/cm sup(2) (E approx. 1 Mev). The samples of group 2 were submitted to special micro-waves heat treatment-with the same number of cycles of the reactor-which allowed the detection of fast neutron radiation effects within the predominant thermal effects. (author)

  10. The impact of sulphate and magnesium on chloride binding in Portland cement paste

    Energy Technology Data Exchange (ETDEWEB)

    De Weerdt, K., E-mail: klaartje.d.weerdt@ntnu.no [Department of Structural Engineering, Norwegian University of science and Technology, Trondheim (Norway); SINTEF Building and Infrastructure, Trondheim (Norway); Orsáková, D. [Department of Civil Engineering, Technical University of Brno, Brno (Czech Republic); Geiker, M.R. [Department of Structural Engineering, Norwegian University of science and Technology, Trondheim (Norway)

    2014-11-15

    The effect of magnesium and sulphate present in sea water on chloride binding in Portland cement paste was investigated. Ground well hydrated cement paste was exposed to MgCl{sub 2}, NaCl, NaCl + MgCl{sub 2}, MgSO{sub 4} + MgCl{sub 2} and artificial sea water solutions with a range of concentrations at 20 °C. Chloride binding isotherms are determined and pH of the solutions were measured. A selection of samples was examined by SEM-EDS to identify phase changes upon exposure. The experimental data were compared with calculations of a thermodynamic model. Chloride binding from sea water was similar to chloride binding for NaCl solutions. The magnesium content in the sea water lead to a slight decrease in pH, but this did not result in a notable increase in chloride binding. The sulphate present in sea water reduces both chloride binding in C–S–H and AFm phases, as the C–S–H incorporates more sulphates instead of chlorides, and part of the AFm phases converts to ettringite.

  11. Impact of the associated cation on chloride binding of Portland cement paste

    International Nuclear Information System (INIS)

    De Weerdt, K.; Colombo, A.; Coppola, L.; Justnes, H.; Geiker, M.R.

    2015-01-01

    Well hydrated cement paste was exposed to MgCl 2 , CaCl 2 and NaCl solutions at 20 °C. The chloride binding isotherms for free chloride concentrations ranging up to 1.5 mol/l were determined experimentally. More chlorides were found to be bound when the associated cation was Mg 2 + or Ca 2 + compared to Na + . The chloride binding capacity of the paste appeared to be related to the pH of the exposure solution. In order to explain the cation dependency of the chloride binding a selection of samples was investigated in detail using experimental techniques such as TG, XRD and SEM–EDS to identify the phases binding the chlorides. The experimentally obtained data were compared with the calculations of a thermodynamic model, GEMS. It was concluded that the measured change in chloride binding depending on the cation was mainly governed by the pH of the exposure solution and thereby the binding capacity of the C-S-H

  12. Using the fast fourier transform in binding free energy calculations.

    Science.gov (United States)

    Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L

    2018-04-30

    According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Evaluation of the tissue reaction to fast endodontic cement (CER) and Angelus MTA.

    Science.gov (United States)

    Gomes-Filho, João Eduardo; Rodrigues, Guilherme; Watanabe, Simone; Estrada Bernabé, Pedro Felício; Lodi, Carolina Simonett; Gomes, Alessandra Cristina; Faria, Max Doulgas; Domingos Dos Santos, Alailson; Silos Moraes, João Carlos

    2009-10-01

    A new cement (CER; Cimento Endodôntico Rápido or fast endodontic cement) has been developed to improve handling properties. It is a formulation that has Portland cement in gel. However, there had not yet been any study evaluating its biologic properties. The purpose of this study was to evaluate the rat subcutaneous tissue response to CER and Angelus MTA. The materials were placed in polyethylene tubes and implanted into dorsal connective tissue of Wistar rats for 7, 30, and 60 days. The specimens were prepared to be stained with hematoxylin-eosin or von Kossa or not stained for polarized light. The presence of inflammation, predominant cell type, calcification, and thickness of fibrous connective tissue were recorded. Scores were defined as follows: 0, none or few inflammatory cells, no reaction; 1, 125 cells, severe reaction. Fibrous capsule was categorized as thin when thickness was 150 mum. Necrosis and formation of calcification were both recorded. Both materials Angelus MTA and CER caused moderate reactions at 7 days, which decreased with time. The response was similar to the control at 30 and 60 days with Angelus MTA and CER, characterized by organized connective tissue and presence of some chronic inflammatory cells. Mineralization and granulations birefringent to polarized light were observed with both materials. It was possible to conclude that CER was biocompatible and stimulated mineralization.

  14. Photochemical Microscale Electrophoresis Allows Fast Quantification of Biomolecule Binding.

    Science.gov (United States)

    Möller, Friederike M; Kieß, Michael; Braun, Dieter

    2016-04-27

    Intricate spatiotemporal patterns emerge when chemical reactions couple to physical transport. We induce electrophoretic transport by a confined photochemical reaction and use it to infer the binding strength of a second, biomolecular binding reaction under physiological conditions. To this end, we use the photoactive compound 2-nitrobenzaldehyde, which releases a proton upon 375 nm irradiation. The charged photoproducts locally perturb electroneutrality due to differential diffusion, giving rise to an electric potential Φ in the 100 μV range on the micrometer scale. Electrophoresis of biomolecules in this field is counterbalanced by back-diffusion within seconds. The biomolecule concentration is measured by fluorescence and settles proportionally to exp(-μ/D Φ). Typically, binding alters either the diffusion coefficient D or the electrophoretic mobility μ. Hence, the local biomolecule fluorescence directly reflects the binding state. A fit to the law of mass action reveals the dissociation constant of the binding reaction. We apply this approach to quantify the binding of the aptamer TBA15 to its protein target human-α-thrombin and to probe the hybridization of DNA. Dissociation constants in the nanomolar regime were determined and match both results in literature and in control experiments using microscale thermophoresis. As our approach is all-optical, isothermal and requires only nanoliter volumes at nanomolar concentrations, it will allow for the fast screening of biomolecule binding in low volume multiwell formats.

  15. Washout resistance of fast-setting pozzolan cement under various root canal irrigants

    Directory of Open Access Journals (Sweden)

    Ga-Yeon Jang

    2013-11-01

    Full Text Available Objectives Fast-setting pozzolan cement (Endocem, Maruchi was recently developed. The aim of this study was to investigate the effects of various root canal irrigants on the washout of Endocem in comparison to the previously marketed mineral trioxide aggregate (ProRoot; Dentsply in a furcal perforation model. Materials and Methods ProRoot and Endocem were placed into acrylic molds on moist Oasis. Each mold was then immediately exposed to either physiologic saline, 2.5% sodium hypochlorite (NaOCl, or 2% chlorhexidine (CHX under gentle shaking for five minutes. Washout testing was performed by scoring scanning electron microscope (SEM images. Results Endocem exhibited higher washout resistance compared to ProRoot, especially in the NaOCl group. Conclusions These results suggest that Endocem can be considered a useful repair material for furcal perforation, especially in a single-visit scenario.

  16. The effect of silica fume on early hydration of white Portland cement via fast field cycling-NMR relaxometry

    Science.gov (United States)

    Badea, Codruţa.; Bede, Andrea; Ardelean, Ioan

    2017-12-01

    Fast Field Cycling (FFC) nuclear magnetic resonance (NMR) relaxometry is used to monitor the influence introduced on the hydration process by the addition of silica fume in a cement paste mixture, prepared with white Portland cement. The FFC relaxometry technique was implemented due to its sensitivity to a wider range of molecular motions, which gives more information than other relaxometry techniques performed at a fixed frequency. This unique feature of FFC relaxometry allows better separation of the surface and bulk contributions from the global measured relaxation rate. The relaxation process is dominated by the interaction of water protons with the paramagnetic centers located on the surface of cement grains. In the frame of a two-phase exchange model, this allows the monitoring of the influence of an addition of silica fume on the evolution of surface-to-volume ratio during the early hydration stages.

  17. Study of irradiation damage by fast neutrons in samples of Portland cement

    International Nuclear Information System (INIS)

    Lucki, G.; Rosa Junior, A.A.

    1984-01-01

    The effect of neutron irradiation in samples of Portland cement was evaluated, using the resonance frequency method and pulse velocity of ultra-sound techniques. The samples were divided in three groups: 1) monitoring samples; 2) samples submitted to gamma heating; 3) Irradiated samples. In the sample preparation, it was used the Portland Santa Rita CP 320 cement, and water-cement rate of 0.40 l/Kg. The irradiation was done in the research reactor IEA-R1, at IPEN - CNEN/SP, with an integrated flux of 7.2 x 10 18 n/cm 2 (E approx. 1 MeV). Some damage were detected, due to the neutron flux, and by the thermal effect of gamma heating. (E.G.) [pt

  18. Research on preparation and performance of graphite cement-based materials used for fast neutron shielding

    International Nuclear Information System (INIS)

    Xu Jun; Kang Qing; Shen Zhiqiang; Wang Zhenggang; Wang Zhiqiang

    2014-01-01

    Measurements have been carried out to investigate the 14.8 MeV neutron attenuation properties for 3 kinds of cement-graphite composites. In comparison with the void group, the 14.8 MeV neutron attenuation properties of cement-graphite composites raised not clearly in 8 mm thickness, and drop not remarkably in 40 mm thickness; with the increase of graphite content and the thickness, the 14.8 MeV neutron attenuation properties were enhanced clearly. The data may be useful to the radiation shielding design of neutron. (authors)

  19. Fasting induces the generation of serum thyronine-binding globulin in Zucker rats

    International Nuclear Information System (INIS)

    Young, R.A.; Rajatanavin, R.; Moring, A.F.; Braverman, L.E.

    1985-01-01

    Five-month-old lean and obese Zucker rats were fasted for up to 7 days (lean rats) or 28 days (obese rats), and serum total and free T4 and T3 concentrations, percent free T4 and T3 by equilibrium dialysis, and the binding of [ 125 I] T4 to serum proteins by gel electrophoresis were measured. In the lean rats, a 4- or 7-day fast resulted in significant decreases in serum total and free T4 and T3 concentrations. There was a decrease in the percent free T3 after 7 days of starvation. In contrast, a 4- or 7-day fast did not alter any of these variables in the obese rats. However, after 14 or more days of starvation, serum total T4 and T3 concentrations increased, and the percent free T4 and T3 decreased, resulting in no change in the serum free T4 or T3 concentrations in the obese rats. The percent of [ 125 I]T4 bound to serum thyronine-binding globulin increased and the percent bound to thyronine-binding prealbumin decreased with the duration of the fast in both the lean and obese rats. The increase in serum thyronine-binding globulin binding of T4 can explain the increase in serum total T4 and T3 concentrations, the decrease in percent free T4 and T3, and the normal free hormone concentration in the long term fasted obese rats. The findings in the lean rats appear to be due to a combination of the known central hypothyroidism that occurs during 4-7 days of fasting and the fasting-induced changes in T4 binding in serum. Changes in T4 and T3 binding in serum during fasting in the rat must be considered when the effects of fasting on serum concentrations of the thyroid hormones, thyroid hormone kinetics, and the peripheral action of the thyroid hormones are evaluated

  20. Serum corticosteroid binding globulin expression is modulated by fasting in polar bears (Ursus maritimus).

    Science.gov (United States)

    Chow, Brian A; Hamilton, Jason; Cattet, Marc R L; Stenhouse, Gordon; Obbard, Martyn E; Vijayan, Mathilakath M

    2011-01-01

    Polar bears (Ursus maritimus) from several subpopulations undergo extended fasting during the ice-free season. However, the animals appear to conserve protein despite the prolonged fasting, though the mechanisms involved are poorly understood. We hypothesized that elevated concentrations of corticosteroid binding globulin (CBG), the primary cortisol binding protein in circulation, lead to cortisol resistance and provide a mechanism for protein conservation during extended fasting. The metabolic state (feeding vs. fasting) of 16 field sampled male polar bears was determined based on their serum urea to creatinine ratio (>25 for feeding vs. polar bears sampled. Serum CBG expression was greater in lactating females relative to non-lactating females and males. CBG expression was significantly higher in fasting males when compared to non-fasting males. This leads us to suggest that CBG expression may serve as a mechanism to conserve protein during extended fasting in polar bears by reducing systemic free cortisol concentrations. This was further supported by a lower serum glucose concentration in the fasting bears. As well, a lack of an enhanced adrenocortical response to acute capture stress supports our hypothesis that chronic hunger is not a stressor in this species. Overall, our results suggest that elevated serum CBG expression may be an important adaptation to spare proteins by limiting cortisol bioavailability during extended fasting in polar bears. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    International Nuclear Information System (INIS)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C.; Santos, A. D.; Moraes, J. C. S.

    2013-01-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10 −3 cm 2 /s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s 0.5 /cm 2 K and volume heat capacity (5.2 ± 0.7) J/cm 3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  2. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Science.gov (United States)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  3. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Energy Technology Data Exchange (ETDEWEB)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C., E-mail: acbento@uem.br [Departamento de Física, Grupo de Espectroscopia Fotoacústica e Fototérmica, Universidade Estadual de Maringá – UEM, Av. Colombo 5790, 87020-900 Maringá, Paraná (Brazil); Santos, A. D.; Moraes, J. C. S. [Departamento de Física e Química, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Av. Brasil 56, 15385-000 Ilha Solteira, SP (Brazil)

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  4. The rim zone of cement based materials - barrier or fast lane for chemical degradation?

    International Nuclear Information System (INIS)

    Schwotzer, M.; Kaltenbach, J.; Heck, P.F.; Konno, K.; Gerdes, A.

    2015-01-01

    This contribution focuses exemplarily on the chemical and mineralogical changes in the rim zone of cement paste samples exposed to different chloride solutions (NaCl, KCl, MgCl 2 and CaCl 2 ), to hard tap water and to demineralized water. The determination of the Ca(OH) 2 and Mg(OH) 2 content of the solid phases was performed by means of thermogravimetry with pulverized samples (TGA/SDTA 851, Mettler-Toledo). A potential relation between temperature and the time dependant development of the material due to reactive transport processes will also be addressed. The experiments with tap water showed that the contact between the cement paste samples and hard tap water did not lead to significant changes in the composition of the solid samples or of the reaction solution. This can be attributed to a rapid formation of a protective calcium carbonate layer on the surface of the cement paste. The slight decrease of the Ca 2+ content in the solution indicates that the growth of this layer occurs within the first few hours. In contrast to the tap water exposure, the results of the experiments with the MgCl 2 solutions show features of an intense attack despite the presence of crystalline covering layers. The quick formation of a thick and dense Mg(OH) 2 layer does not provide any protection against reactive transport processes. In this experiment, the degradation rate of Ca(OH) 2 as well as the Ca 2+ release was higher than in all other experiments. In addition the rapid formation of a Mg(OH) 2 layer starting already during the first hour of the experiment did not prevent the chloride ingress compared to the other experiments with chloride solutions. The pH value of the reaction solution remains stable and relatively low which indicates a crystallisation process. In the other experiments, performed with demineralized water, alkali chloride solutions, and the CaCl 2 solution, no significant formation of potentially protective covering layers and no development of transport

  5. Compound effect of CaCO3 and CaSO4·2H2O on the strength of steel slag: cement binding materials

    International Nuclear Information System (INIS)

    Qi, Liqian; Liu, Jiaxiang; Liu, Qian

    2016-01-01

    In this study, we replaced 30% of the cement with steel slag to prepare binding material; additionally, small amounts of CaCO 3 and CaSO 4 ·2H 2 O were added. This was done to study the compound effect of CaCO 3 and CaSO 4 ·2H 2 O on the strength of steel slag-cement binding materials. The hydration degree of the steel slag cementitious material was analyzed by XRD, TG and SEM. The results showed that the optimum proportions of CaCO 3 and CaSO 4 ·2H 2 O were 3% and 2%, respectively. Compared with the steel slag-cement binders without adding CaCO 3 and CaSO 4 ·2H 2 O, the compressive strength increased by 59.9% at 3 days and by 17.8% at 28 days. Acting as the nucleation matrix, CaCO 3 could accelerate the hydration of C 3 S. In addition, CaCO 3 was involved in the hydration reaction, generating a new hydration product, which could stably exist in a slurry. Meanwhile, CaSO 4 ·2H 2 O could increase the number of AFt. The compound effect of CaCO 3 and CaSO 4 ·2H 2 O enhanced the intensity of steel slag-cement binding materials and improved the whole hydration behavior. (author)

  6. Chloride-binding Effect of Blast Furnace Slag in Cement Pastes ...

    African Journals Online (AJOL)

    NICO

    2017-05-16

    May 16, 2017 ... ground granulated blast furnace slag (GGBS) and silica fume (SF), to concrete mixtures to increase the corrosion resistance of the reinforcement in the matrix and its subsequent design life span. Various investigations have reported on the effect of mineral admixtures and additions on chloride binding in ...

  7. Chloride-binding Effect of Blast Furnace Slag in Cement Pastes ...

    African Journals Online (AJOL)

    ... to concrete mixtures to increase the corrosion resistance of the reinforcement in the matrix and its subsequent design life span. Various investigations have reported on the effect of mineral admixtures and additions on chloride binding in cementitious matrices, and the current study contributes further to knowledge in this ...

  8. Effects of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement.

    Science.gov (United States)

    Takechi, M; Miyamoto, Y; Ishikawa, K; Nagayama, M; Kon, M; Asaoka, K; Suzuki, K

    1998-02-01

    The effect of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement (aw-FSCPC) was investigated in a preliminary evaluation of aw-FSCPC containing drugs. Flomoxef sodium was employed as the antibiotic and was incorporated into the powder-phase aw-FSCPC at up to 10%. The setting time, consistency, wet diametral tensile strength (DTS) value, and porosity were measured for aw-FSCPC containing various amounts of flomoxef sodium. X-ray diffraction (XRD) analysis was also conducted for the identification of products. To evaluate the drug-release profile, set aw-FSCPC was immersed in saline and the released flomoxef sodium was determined at regular intervals. The spread area of the cement paste as an index of consistency of the cement increased progressively with the addition of flomoxef sodium, and it doubled when the aw-FSCPC contained 8% flomoxef sodium. In contrast, the wet DTS value decreased with increase in flomoxef sodium content. Bulk density measurement and scanning electron microscopic observation revealed that the set mass was more porous with the amount of flomoxef sodium contained in the aw-FSCPC. The XRD analysis revealed that formation of hydroxyapatite (HAP) from aw-FSCPC was reduced even after 24 h, when the aw-FSCPC contained flomoxef sodium at > or = 6%. Therefore, the decrease of wet DTS value was thought to be partly the result of the increased porosity and inhibition of HAP formation in aw-FSCPC containing large amounts of flomoxef sodium. The flomoxef sodium release from aw-FSCPC showed the typical profile observed in a skeleton-type drug delivery system (DDS). The rate of drug release from aw-FSCPC can be controlled by changing the concentration of sodium alginate. Although flomoxef sodium addition has certain disadvantageous effects on the basic properties of aw-FSCPC, we conclude that aw-FSCPC is a good candidate for potential use as a DDS carrier that may be useful in surgical operations.

  9. Preparation of the fast setting and degrading Ca–Si–Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells

    International Nuclear Information System (INIS)

    Chen, Yi-Wen; Hsu, Tuan-Ti; Wang, Kan; Shie, Ming-You

    2016-01-01

    Develop a fast setting and controllable degrading magnesium–calcium silicate cement (Mg–CS) by sol–gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg–CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg–CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24 h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg–CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis. - Highlights: • The fast setting and degrading Mg–CS cement was synthesized by sol–gel. • Promoted proliferation of hPDLs on Mg–CS specimens • Mg–CS can degrade and release Si and Mg ions into SBF. • Up-regulation of odontogenic and angiogenic of hPDLs • Mg–CS may be good bone substitutes for hard tissue regeneration applications.

  10. Preparation of the fast setting and degrading Ca–Si–Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi-Wen [Graduate Institute of Clinical Medical Science, China Medical University, Taichung City, Taiwan (China); 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Hsu, Tuan-Ti [Institute of Oral Science, Chung Shan Medical University, Taichung City, Taiwan (China); Wang, Kan [H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Shie, Ming-You, E-mail: eviltacasi@gmail.com [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China)

    2016-03-01

    Develop a fast setting and controllable degrading magnesium–calcium silicate cement (Mg–CS) by sol–gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg–CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg–CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24 h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg–CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis. - Highlights: • The fast setting and degrading Mg–CS cement was synthesized by sol–gel. • Promoted proliferation of hPDLs on Mg–CS specimens • Mg–CS can degrade and release Si and Mg ions into SBF. • Up-regulation of odontogenic and angiogenic of hPDLs • Mg–CS may be good bone substitutes for hard tissue regeneration applications.

  11. Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin.

    Directory of Open Access Journals (Sweden)

    Guido C Faas

    2007-11-01

    Full Text Available Cooperativity is one of the most important properties of molecular interactions in biological systems. It is the ability to influence ligand binding at one site of a macromolecule by previous ligand binding at another site of the same molecule. As a consequence, the affinity of the macromolecule for the ligand is either decreased (negative cooperativity or increased (positive cooperativity. Over the last 100 years, O2 binding to hemoglobin has served as the paradigm for cooperative ligand binding and allosteric modulation, and four practical models were developed to quantitatively describe the mechanism: the Hill, the Adair-Klotz, the Monod-Wyman-Changeux, and the Koshland-Némethy-Filmer models. The predictions of these models apply under static conditions when the binding reactions are at equilibrium. However, in a physiological setting, e.g., inside a cell, the timing and dynamics of the binding events are essential. Hence, it is necessary to determine the dynamic properties of cooperative binding to fully understand the physiological implications of cooperativity. To date, the Monod-Wyman-Changeux model was applied to determine the kinetics of cooperative binding to biologically active molecules. In this model, cooperativity is established by postulating two allosteric isoforms with different binding properties. However, these studies were limited to special cases, where transition rates between allosteric isoforms are much slower than the binding rates or where binding and unbinding rates could be measured independently. For all other cases, the complex mathematical description precludes straightforward interpretations. Here, we report on calculating for the first time the fast dynamics of a cooperative binding process, the binding of Ca2+ to calretinin. Calretinin is a Ca2+-binding protein with four cooperative binding sites and one independent binding site. The Ca2+ binding to calretinin was assessed by measuring the decay of free Ca2

  12. Modified pavement cement concrete

    Science.gov (United States)

    Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.

    2018-03-01

    The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.

  13. Cermet cements.

    Science.gov (United States)

    McLean, J W

    1990-01-01

    Cermet ionomer cements are sintered metal/glass powders, which can be made to react with poly(acids). These new cements are significantly more resistant to abrasion than regular glass ionomer cements and are widely accepted as core build-up materials and lining cements. They can strengthen teeth and provide the clinician with an opportunity to treat early dental caries.

  14. Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton

    Science.gov (United States)

    Capitanio, Marco; Gardini, Lucia; Pavone, Francesco Saverio

    2014-02-01

    In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms1. Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only ~10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  15. Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding

    Science.gov (United States)

    Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.

    2013-01-01

    We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561

  16. Intraindividual variation of triiodothyronine, thyroxine, thyrotropin and thyroxine-binding globulin in fasting serum from healthy men

    International Nuclear Information System (INIS)

    Liappis, N.; Hoffmann, U.; Rao, M.L.

    1986-01-01

    The concentrations of triiodothyronine, thyroxine, thyrotropin and thyroxine-binding globulin were determined in fasting serum from 11 healthy men (age 18-25 years) by radioimmunoassays conducted over a period of 4 weeks on 5 consecutive days per week. The concentrations of thyroxine and thyroxine-binding globulin were very consistent intraindividually, with coefficients of variation of 7.84% and 9.37%, respectively. The triiodothyronine and thyrotropin levels showed significant intraindividual variability with coefficients of variation of 18.38% and 51.85%, respectively. These results point to the type of difficulties encountered in judging serum values, namely intraindividual variations over a given period of time. (orig.) [de

  17. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.

    Science.gov (United States)

    Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey

    2008-12-01

    Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.

  18. Compound effect of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O on the strength of steel slag: cement binding materials

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Liqian; Liu, Jiaxiang; Liu, Qian, E-mail: ljxpost@263.net [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, The State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing (China)

    2016-03-15

    In this study, we replaced 30% of the cement with steel slag to prepare binding material; additionally, small amounts of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O were added. This was done to study the compound effect of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O on the strength of steel slag-cement binding materials. The hydration degree of the steel slag cementitious material was analyzed by XRD, TG and SEM. The results showed that the optimum proportions of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O were 3% and 2%, respectively. Compared with the steel slag-cement binders without adding CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O, the compressive strength increased by 59.9% at 3 days and by 17.8% at 28 days. Acting as the nucleation matrix, CaCO{sub 3} could accelerate the hydration of C{sub 3}S. In addition, CaCO{sub 3} was involved in the hydration reaction, generating a new hydration product, which could stably exist in a slurry. Meanwhile, CaSO{sub 4}·2H{sub 2}O could increase the number of AFt. The compound effect of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O enhanced the intensity of steel slag-cement binding materials and improved the whole hydration behavior. (author)

  19. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    Science.gov (United States)

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  20. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid......−liquid reactions are discussed, as are the influences of particles sizes on clinker phase formation. Furthermore, a mechanism for clinker phase formation in an industrial rotary kiln reactor is outlined....

  1. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu...

  2. Natural cement as the precursor of Portland cement: Methodology for its identification

    International Nuclear Information System (INIS)

    Varas, M.J.; Alvarez de Buergo, M.; Fort, R.

    2005-01-01

    When cements appeared in the 19th century, they took the place of traditional binding materials (lime, gypsum, and hydraulic lime) which had been used until that time. Early cements can be divided into two groups, natural and artificial (Portland) cements. Natural cements were introduced first, but their widespread usage was short-lived as they were quickly replaced by artificial cements (Portland), still the most important and predominant today. The main differences between natural and artificial cements arise during the manufacturing process. The final properties of the cements are greatly influenced by differences in the raw materials and burning temperatures employed. The aim of this paper is to assess the efficiency of traditional analytical techniques (petrographic microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR)) used to differentiate natural and artificial cements

  3. Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity.

    Science.gov (United States)

    Valko, Klara; Nunhuck, Shenaz; Bevan, Chris; Abraham, Michael H; Reynolds, Derek P

    2003-11-01

    A fast gradient HPLC method (cycle time 15 min) has been developed to determine Human Serum Albumin (HSA) binding of discovery compounds using chemically bonded protein stationary phases. The HSA binding values were derived from the gradient retention times that were converted to the logarithm of the equilibrium constants (logK HSA) using data from a calibration set of molecules. The method has been validated using literature plasma protein binding data of 68 known drug molecules. The method is fully automated, and has been used for lead optimization in more than 20 company projects. The HSA binding data obtained for more than 4000 compounds were suitable to set up global and project specific quantitative structure binding relationships that helped compound design in early drug discovery. The obtained HSA binding of known drug molecules were compared to the Immobilized Artificial Membrane binding data (CHI IAM) obtained by our previously described HPLC-based method. The solvation equation approach has been used to characterize the normal binding ability of HSA, and this relationship shows that compound lipophilicity is a significant factor. It was found that the selectivity of the "baseline" lipophilicity governing HSA binding, membrane interaction, and octanol/water partition are very similar. However, the effect of the presence of positive or negative charges have very different effects. It was found that negatively charged compounds bind more strongly to HSA than it would be expected from the lipophilicity of the ionized species at pH 7.4. Several compounds showed stronger HSA binding than can be expected from their lipophilicity alone, and comparison between predicted and experimental binding affinity allows the identification of compounds that have good complementarities with any of the known binding sites. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:2236-2248, 2003

  4. Selecting for Fast Protein-Protein Association As Demonstrated on a Random TEM1 Yeast Library Binding BLIP.

    Science.gov (United States)

    Cohen-Khait, Ruth; Schreiber, Gideon

    2018-04-27

    Protein-protein interactions mediate the vast majority of cellular processes. Though protein interactions obey basic chemical principles also within the cell, the in vivo physiological environment may not allow for equilibrium to be reached. Thus, in vitro measured thermodynamic affinity may not provide a complete picture of protein interactions in the biological context. Binding kinetics composed of the association and dissociation rate constants are relevant and important in the cell. Therefore, changes in protein-protein interaction kinetics have a significant impact on the in vivo activity of the proteins. The common protocol for the selection of tighter binders from a mutant library selects for protein complexes with slower dissociation rate constants. Here we describe a method to specifically select for variants with faster association rate constants by using pre-equilibrium selection, starting from a large random library. Toward this end, we refine the selection conditions of a TEM1-β-lactamase library against its natural nanomolar affinity binder β-lactamase inhibitor protein (BLIP). The optimal selection conditions depend on the ligand concentration and on the incubation time. In addition, we show that a second sort of the library helps to separate signal from noise, resulting in a higher percent of faster binders in the selected library. Fast associating protein variants are of particular interest for drug development and other biotechnological applications.

  5. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Glasser, F.P.

    2013-01-01

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  6. Cements in Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, F. P. [University of Aberdeen, Scotland (United Kingdom)

    2013-09-15

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  7. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  8. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  9. A Critical Role of Fatty Acid Binding Protein 4 and 5 (FABP4/5) in the Systemic Response to Fasting

    Science.gov (United States)

    Syamsunarno, Mas Rizky A. A.; Iso, Tatsuya; Hanaoka, Hirofumi; Yamaguchi, Aiko; Obokata, Masaru; Koitabashi, Norimichi; Goto, Kosaku; Hishiki, Takako; Nagahata, Yoshiko; Matsui, Hiroki; Sano, Motoaki; Kobayashi, Masaki; Kikuchi, Osamu; Sasaki, Tsutomu; Maeda, Kazuhisa; Murakami, Masami; Kitamura, Tadahiro; Suematsu, Makoto; YoshitoTsushima; Endo, Keigo; Hotamisligil, Gökhan S.; Kurabayashi, Masahiko

    2013-01-01

    During prolonged fasting, fatty acid (FA) released from adipose tissue is a major energy source for peripheral tissues, including the heart, skeletal muscle and liver. We recently showed that FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipocytes and macrophages, are prominently expressed in capillary endothelial cells in the heart and skeletal muscle. In addition, mice deficient for both FABP4 and FABP5 (FABP4/5 DKO mice) exhibited defective uptake of FA with compensatory up-regulation of glucose consumption in these tissues during fasting. Here we showed that deletion of FABP4/5 resulted in a marked perturbation of metabolism in response to prolonged fasting, including hyperketotic hypoglycemia and hepatic steatosis. Blood glucose levels were reduced, whereas the levels of non-esterified FA (NEFA) and ketone bodies were markedly increased during fasting. In addition, the uptake of the 125I-BMIPP FA analogue in the DKO livers was markedly increased after fasting. Consistent with an increased influx of NEFA into the liver, DKO mice showed marked hepatic steatosis after a 48-hr fast. Although gluconeogenesis was observed shortly after fasting, the substrates for gluconeogenesis were reduced during prolonged fasting, resulting in insufficient gluconeogenesis and enhanced hypoglycemia. These metabolic responses to prolonged fasting in DKO mice were readily reversed by re-feeding. Taken together, these data strongly suggested that a maladaptive response to fasting in DKO mice occurred as a result of an increased influx of NEFA into the liver and pronounced hypoglycemia. Together with our previous study, the metabolic consequence found in the present study is likely to be attributed to an impairment of FA uptake in the heart and skeletal muscle. Thus, our data provided evidence that peripheral uptake of FA via capillary endothelial FABP4/5 is crucial for systemic metabolism and may establish FABP4/5 as potentially novel targets for the

  10. Oxalate Acid-Base Cements as a Means of Carbon Storage

    Science.gov (United States)

    Erdogan, S. T.

    2017-12-01

    Emission of CO2 from industrial processes poses a myriad of environmental problems. One such polluter is the portland cement (PC) industry. PC is the main ingredient in concrete which is the ubiquitous binding material for construction works. Its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. There have long been efforts to reduce the carbon footprint of concrete. Among the many ways, one is to bind CO2 to the phases in the cement-water paste, oxides, hydroxides, and silicates of calcium, during early hydration or while in service. The problem is that obtaining calcium oxide cheaply requires the decarbonation of limestone and the uptake of CO2 is slow and limited mainly to the surface of the concrete due to its low gas permeability. Hence, a faster method to bind more CO2 is needed. Acid-base (AB) cements are fast-setting, high-strength systems that have high durability in many environments in which PC concrete is vulnerable. They are made with a powder base such as MgO and an acid or acid salt, like phosphates. Despite certain advantages over PC cement systems, AB cements are not feasible, due to their high acid content. Also, the phosphoric acid used comes from non-renewable sources of phosphate. A potential way to reduce the drawbacks of using phosphates could be to use organic acids. Oxalic acid or its salts could react with the proper powder base to give concrete that could be used for infrastructure hence that would have very high demand. In addition, methods to produce oxalates from CO2, even atmospheric, are becoming widespread and more economical. The base can also be an industrial byproduct to further lower the environmental impact. This study describes the use of oxalic acid and industrial byproducts to obtain mortars with mechanical properties comparable to those of PC mortars. It is

  11. Modulation of enrofloxacin binding in OmpF by Mg2+ as revealed by the analysis of fast flickering single-porin current

    Science.gov (United States)

    Brauser, Annemarie; Schroeder, Indra; Gutsmann, Thomas; Cosentino, Cristian; Moroni, Anna; Winterhalter, Mathias

    2012-01-01

    One major determinant of the efficacy of antibiotics on Gram-negative bacteria is the passage through the outer membrane. During transport of the fluoroquinolone enrofloxacin through the trimeric outer membrane protein OmpF of Escherichia coli, the antibiotic interacts with two binding sites within the pore, thus partially blocking the ionic current. The modulation of one affinity site by Mg2+ reveals further details of binding sites and binding kinetics. At positive membrane potentials, the slow blocking events induced by enrofloxacin in Mg2+-free media are converted to flickery sojourns at the highest apparent current level (all three pores flickering). This indicates weaker binding in the presence of Mg2+. Analysis of the resulting amplitude histograms with β distributions revealed the rate constants of blocking (kOB) and unblocking (kBO) in the range of 1,000 to 120,000 s−1. As expected for a bimolecular reaction, kOB was proportional to blocker concentration and kBO independent of it. kOB was approximately three times lower for enrofloxacin coming from the cis side than from the trans side. The block was not complete, leading to a residual conductivity of the blocked state being ∼25% of that of the open state. Interpretation of the results has led to the following model: fast flickering as caused by interaction of Mg2+ and enrofloxacin is related to the binding site at the trans side, whereas the cis site mediates slow blocking events which are also found without Mg2+. The difference in the accessibility of the binding sites also explains the dependency of kOB on the side of enrofloxacin addition and yields a means of determining the most plausible orientation of OmpF in the bilayer. The voltage dependence suggests that the dipole of the antibiotic has to be adequately oriented to facilitate binding. PMID:22689827

  12. WHITE CEMENT IN SUSTAINABLE DEVELOPMENT

    OpenAIRE

    Y.C.P RAMANA BABU; B.SAI DOONDI; N. M .V .VAMSI KRISHNA; K.PRASANTHI

    2013-01-01

    India is one among the fast developing countries in the world in the areas of Infrastructure. Now a day, Carbon monoxide (CO) and carbon dioxide (CO2) are the temporary atmospheric pollutants in the environment chiefly emitted from the fuel burning vehicles and street lights which lead to global warming and pose a major threat tothe survival and sustainable development. This paper deals with the principal purpose of use of white cement in pavement design which will take care of the Green hous...

  13. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc.

    Science.gov (United States)

    Cao, Kun; Li, Nan; Wang, Hongcui; Cao, Xin; He, Jiaojiao; Zhang, Bing; He, Qing-Yu; Zhang, Gong; Sun, Xuesong

    2018-04-20

    Zinc is an essential metal in bacteria. One important bacterial zinc transporter is AdcA, and most bacteria possess AdcA homologs that are single-domain small proteins due to better efficiency of protein biogenesis. However, a double-domain AdcA with two zinc-binding sites is significantly overrepresented in Streptococcus species, many of which are major human pathogens. Using molecular simulation and experimental validations of AdcA from Streptococcus pyogenes , we found here that the two AdcA domains sequentially stabilize the structure upon zinc binding, indicating an organization required for both increased zinc affinity and transfer speed. This structural organization appears to endow Streptococcus species with distinct advantages in zinc-depleted environments, which would not be achieved by each single AdcA domain alone. This enhanced zinc transport mechanism sheds light on the significance of the evolution of the AdcA domain fusion, provides new insights into double-domain transporter proteins with two binding sites for the same ion, and indicates a potential target of antimicrobial drugs against pathogenic Streptococcus species. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. DPI-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro

    Directory of Open Access Journals (Sweden)

    Chaban Christina

    2010-11-01

    Full Text Available Abstract Background About 10% of all genes in eukaryote genomes are predicted to encode transcription factors. The specific binding of transcription factors to short DNA-motifs influences the expression of neighbouring genes. However, little is known about the DNA-protein interaction itself. To date there are only a few suitable methods to characterise DNA-protein-interactions, among which the EMSA is the method most frequently used in laboratories. Besides EMSA, several protocols describe the effective use of an ELISA-based transcription factor binding assay e.g. for the analysis of human NFκB binding to specific DNA sequences. Results We provide a unified protocol for this type of ELISA analysis, termed DNA-Protein-Interaction (DPI-ELISA. Qualitative analyses with His-epitope tagged plant transcription factors expressed in E. coli revealed that EMSA and DPI-ELISA result in comparable and reproducible data. The binding of AtbZIP63 to the C-box and AtWRKY11 to the W2-box could be reproduced and validated by both methods. We next examined the physical binding of the C-terminal DNA-binding domains of AtWRKY33, AtWRKY50 and AtWRKY75 to the W2-box. Although the DNA-binding domain is highly conserved among the WRKY proteins tested, the use of the DPI-ELISA discloses differences in W2-box binding properties between these proteins. In addition to these well-studied transcription factor families, we applied our protocol to AtBPC2, a member of the so far uncharacterised plant specific Basic Pentacysteine transcription factor family. We could demonstrate binding to GA/TC-dinucleotide repeat motifs by our DPI-ELISA protocol. Different buffers and reaction conditions were examined. Conclusions We successfully applied our DPI-ELISA protocol to investigate the DNA-binding specificities of three different classes of transcription factors from Arabidopsis thaliana. However, the analysis of the binding affinity of any DNA-binding protein to any given DNA

  15. Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry

    Science.gov (United States)

    Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2017-05-01

    We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.

  16. Producing cement

    Energy Technology Data Exchange (ETDEWEB)

    Stone, E G

    1923-09-12

    A process and apparatus are described for producing Portland cement in which pulverized shale is successively heated in a series of inclined rotary retorts having internal stirrers and oil gas outlets, which are connected to condensers. The partially treated shale is removed from the lowermost retort by a conveyor, then fed separately or conjointly into pipes and thence into a number of vertically disposed retorts. Each of these retorts may be fitted interiorly with vertical arranged conveyors which elevate the shale and discharge it over a lip, from whence it falls to the bottom of the retorts. The lower end of each casing is furnished with an adjustable discharge door through which the spent shale is fed to a hopper, thence into separate trucks. The oil gases generated in the retorts are exhausted through pipes to condensers. The spent shale is conveyed to a bin and mixed while hot with ground limestone. The admixed materials are then ground and fed to a rotary kiln which is fired by the incondensible gases derived from the oil gases obtained in the previous retorting of the shale. The calcined materials are then delivered from the rotary kiln to rotary coolers. The waste gases from the kiln are utilized for heating the retorts in which the ground shale is heated for the purpose of extracting therefrom the contained hydrocarbon oils and gases.

  17. Potentiometric Determination of Free Chloride in Cement Paste – an ...

    African Journals Online (AJOL)

    ... cement paste.16 The accuracy and reliability of this analytical technique has been checked against a certified reference material, Merck sodium chloride solution. Confidence levels (CL0.95), of 0.03 and relative standard deviations of 0.2 % for chloride were determined for ordinary Portland cement (OPC) chloride binding ...

  18. Moisture desorption out of portland cement under irradiation

    International Nuclear Information System (INIS)

    Sugak, E.B.; Denisov, A.V.; Muzalevskij, L.P.

    1992-01-01

    The paper presents the results of measuring residual water content and water losses of the basic hydrated mine rals of clinker and cement stone irradiated at three different reactors. Structural parameters of the binding agent and binding water quantity are calculated on the basis of binding agent physical model and are compared with the experimental data

  19. Asphalt cement poisoning

    Science.gov (United States)

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  20. Radioactivity of bone cement

    International Nuclear Information System (INIS)

    Scherer, M.A.; Winkler, R.; Ascherl, R.; Lenz, E.

    1993-01-01

    A total of 14 samples of different types of bone cement from five different manufacturers were examined for their radioactivity. Each of the investigated bone cements showed a low radioactivity level, i.e. between [de

  1. Ultrafine portland cement performance

    Directory of Open Access Journals (Sweden)

    C. Argiz

    2018-04-01

    Full Text Available By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.

  2. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  3. Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration.

    Science.gov (United States)

    Lee, Tai-Sung; Hu, Yuan; Sherborne, Brad; Guo, Zhuyan; York, Darrin M

    2017-07-11

    We report the implementation of the thermodynamic integration method on the pmemd module of the AMBER 16 package on GPUs (pmemdGTI). The pmemdGTI code typically delivers over 2 orders of magnitude of speed-up relative to a single CPU core for the calculation of ligand-protein binding affinities with no statistically significant numerical differences and thus provides a powerful new tool for drug discovery applications.

  4. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    Science.gov (United States)

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  5. Formulating a low-alkalinity cement for radioactive waste repositories

    International Nuclear Information System (INIS)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X.

    2004-01-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  6. Formulating a low-alkalinity cement for radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X

    2004-07-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  7. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter

  8. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  9. A Simple, Fast, Low Cost, HPLC/UV Validated Method for Determination of Flutamide: Application to Protein Binding Studies.

    Science.gov (United States)

    Esmaeilzadeh, Sara; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2016-06-01

    The main goal of this study was development of a reverse phase high performance liquid chromatography (RP-HPLC) method for flutamide quantitation which is applicable to protein binding studies. Ultrafilteration method was used for protein binding study of flutamide. For sample analysis, flutamide was extracted by a simple and low cost extraction method using diethyl ether and then was determined by HPLC/UV. Acetanilide was used as an internal standard. The chromatographic system consisted of a reversed-phase C8 column with C8 pre-column, and the mobile phase of a mixture of 29% (v/v) methanol, 38% (v/v) acetonitrile and 33% (v/v) potassium dihydrogen phosphate buffer (50 mM) with pH adjusted to 3.2. Acetanilide and flutamide were eluted at 1.8 and 2.9 min, respectively. The linearity of method was confirmed in the range of 62.5-16000 ng/ml (r(2) > 0.99). The limit of quantification was shown to be 62.5 ng/ml. Precision and accuracy ranges found to be (0.2-1.4%, 90-105%) and (0.2-5.3 %, 86.7-98.5 %) respectively. Acetanilide and flutamide capacity factor values of 1.35 and 2.87, tailing factor values of 1.24 and 1.07 and resolution values of 1.8 and 3.22 were obtained in accordance with ICH guidelines. Based on the obtained results a rapid, precise, accurate, sensitive and cost-effective analysis procedure was proposed for quantitative determination of flutamide.

  10. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity.

    Science.gov (United States)

    Dunn, Julia P; Kessler, Robert M; Feurer, Irene D; Volkow, Nora D; Patterson, Bruce W; Ansari, Mohammad S; Li, Rui; Marks-Shulman, Pamela; Abumrad, Naji N

    2012-05-01

    Midbrain dopamine (DA) neurons, which are involved with reward and motivation, are modulated by hormones that regulate food intake (insulin, leptin, and acyl ghrelin [AG]). We hypothesized that these hormones are associated with deficits in DA signaling in obesity. We assessed the relationships between fasting levels of insulin and leptin, and AG, BMI, and insulin sensitivity index (S(I)) with the availability of central DA type 2 receptor (D2R). We measured D2R availability using positron emission tomography and [(18)F]fallypride (radioligand that competes with endogenous DA) in lean (n = 8) and obese (n = 14) females. Fasting hormones were collected prior to scanning and S(I) was determined by modified oral glucose tolerance test. Parametric image analyses revealed associations between each metabolic measure and D2R. The most extensive findings were negative associations of AG with clusters involving the striatum and inferior temporal cortices. Regional regression analyses also found extensive negative relationships between AG and D2R in the caudate, putamen, ventral striatum (VS), amygdala, and temporal lobes. S(I) was negatively associated with D2R in the VS, while insulin was not. In the caudate, BMI and leptin were positively associated with D2R availability. The direction of associations of leptin and AG with D2R availability are consistent with their opposite effects on DA levels (decreasing and increasing, respectively). After adjusting for BMI, AG maintained a significant relationship in the VS. We hypothesize that the increased D2R availability in obese subjects reflects relatively reduced DA levels competing with the radioligand. Our findings provide evidence for an association between the neuroendocrine hormones and DA brain signaling in obese females.

  11. Immobilization of spent Bentonite by using cement matrix

    International Nuclear Information System (INIS)

    Isman MT; Endro-Kismolo

    1996-01-01

    Investigation of spent bentonite immobilization by using cement was done. The purpose of the investigation was to know the performance of cement in binding bentonite waste. The investigation was done by adding cement, water, and bentonite waste into a container and string until the mixture became homogenous. The mixture was put into a polyethylene tube (3.5 cm in diameter and 4 cm high) and it was cured up to 28 days. The specific weight of the monolith block was then calculated, and the compressive strength and the leaching rate in ground water and sea water was tested. The mass ratio of water to cement was 0.4. The variable investigated was the mass ratio of bentonite to cement. The immobilized bentonite waste was natural bentonite waste and activated bentonite waste. The result of the investigation showed that cement was good for binding bentonite waste. The maximum binding mass ratio of bentonite to cement was 0.4. In this condition the specific weight of the monolith block was 2.177 gram/cm 3 , its compressive strength was 22.6 N/mm 2 , and the leaching rate for 90 days in ground water and sea water was 5.7 x 10 -4 gram cm -2 day -1

  12. Cementation of the solid radioactive waste with polymer-cement solutions using the method of impregnation

    International Nuclear Information System (INIS)

    Gorbunova, O.

    2015-01-01

    Cementation of solid radioactive waste (SRW), i.e. inclusion of solid radioactive waste into cement matrix without cavities - is one of the main technological processes used for conditioning low and intermediate level radioactive waste. At FSUE 'Radon' the industrialized method of impregnation has been developed and since 2003 has been using for cementation of solid radioactive waste. The technology is that the polymer-cement solution, having high penetrating properties, is supplied under pressure through a tube to the bottom of the container in which solid radioactive waste has preliminarily been placed. The polymer-cement solution is evenly moving upwards through the channels between the particles of solid radioactive waste, fills the voids in the bulk volume of the waste and hardens, forming a cement compound, the amount of which is equal to the original volume. The aim of the investigation was a selection of a cement solution suitable for SRW impregnation (including fine particles) without solution depletion and bottom layers stuffing. It has been chosen a polymer: PHMG (polyhexamethylene-guanidine), which is a stabilizing and water-retaining component of the cement solution. The experiments confirm that the polymer increases the permeability of the cement solution by a 2-2.5 factor, the viscosity by a 1.2 factor, the stability of the consistency by a 1.5-1.7 factor, and extends the operating range of the W/C ratio to 0.5-1.1. So it is possible to penetrate a volume of SRW bigger by a 1.5-2.0 factor. It has been proved, that PHMG polymer increases strength and frost-resistance of the final compounds by a 1.8-2.7 factor, and contributes to fast strength development at the beginning of hardening and it decreases Cs-137 leashing rate by a 1.5-2 factor

  13. Advanced cementation concepts

    International Nuclear Information System (INIS)

    Howard, C.G.

    1989-10-01

    The purpose of this programme of work was to investigate whether improvements could be made to existing formulations for cement suitable for the immobilization of intermediate level radioactive waste. Two additives were selected, microsilica and limestone flour. Improvements to the cement were only slight. (author)

  14. Preparation of hydraulic cement

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for the preparation of hydraulic cement by the use of oil-shale residues is characterized in that the oil-shale refuse is mixed with granular basic blast-furnace slag and a small amount of portland cement and ground together.

  15. Low force cementation.

    Science.gov (United States)

    Wilson, P R

    1996-07-01

    The marginal adaptation of full coverage restorations is adversely affected by the introduction of luting agents of various minimum film thicknesses during the cementation process. The increase in the marginal opening may have long-term detrimental effects on the health of both pulpal and periodontal tissues. The purpose of this study was to determine the effects of varying seating forces (2.5, 12.5, 25 N), venting, and cement types on post-cementation marginal elevation in cast crowns. A standardized cement space of 40 microns was provided between a machined gold crown and a stainless steel die. An occlusal vent was placed that could be opened or closed. The post-cementation crown elevation was measured, following the use of two commercially available capsulated dental cements (Phosphacap, and Ketac-cem Applicap). The results indicate that only the combination of Ketac-Cem Applicap and crown venting produced post-cementation crown elevation of less than 20 microns when 12.5 N seating force was used. Higher forces (25 N) and venting were required for comparable seating when using Phosphacap (19 microns). The amount of force required to allow maximum seating of cast crowns appears to be cement specific, and is reduced by effective venting procedures.

  16. Cementation process study

    International Nuclear Information System (INIS)

    Park, H.H.; Han, K.W.; Ahn, S.J.; Choi, K.S.; Lee, M.W.; Ryu, Y.K.

    1985-01-01

    In the cementation process study, in 1984, design of the waste treatment simulator was finished for the first step. We can experience not only the operation of solidification system but the design and construction of comming large scale plant through the design of cementation process. (Author)

  17. Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles.

    Science.gov (United States)

    Ackermann, Maegen A; Ward, Christopher W; Gurnett, Christina; Kontrogianni-Konstantopoulos, Aikaterini

    2015-08-19

    Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.

  18. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  19. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  20. Signal-inducing bone cements for MRI-guided spinal cementoplasty: evaluation of contrast-agent-based polymethylmethacrylate cements

    International Nuclear Information System (INIS)

    Bail, Hermann Josef; Tsitsilonis, Serafim; Wichlas, Florian; Sattig, Christoph; Papanikolaou, Ioannis; Teichgraeber, Ulf Karl Mart

    2012-01-01

    The purpose of this work is to evaluate two signal-inducing bone cements for MRI-guided spinal cementoplasty. The bone cements were made of polymethylmethacrylate (PMMA, 5 ml monomeric, 12 g polymeric) and gadoterate meglumine as a contrast agent (CA, 0-40 μl) with either saline solution (NaCl, 2-4 ml) or hydroxyapatite bone substitute (HA, 2-4 ml). The cement's signal was assessed in an open 1-Tesla MR scanner, with T1W TSE and fast interventional T1W TSE pulse sequences, and the ideal amount of each component was determined. The compressive and bending strength for different amounts of NaCl and HA were evaluated. The cement's MRI signal depended on the concentration of CA, the amount of NaCl or HA, and the pulse sequence. The signal peaks were recorded between 1 and 10 μl CA per ml NaCl or HA, and were higher in fast T1W TSE than in T1W TSE images. The NaCl-PMMA-CA cements had a greater MRI signal intensity and compressive strength; the HA-PMMA-CA cements had a superior bending strength. Concerning the MR signal and biomechanical properties, these cements would permit MRI-guided cementoplasty. Due to its higher signal and greater compressive strength, the NaCl-PMMA-CA compound appears to be superior to the HA-PMMA-CA compound. (orig.)

  1. Radioactive waste cementation

    International Nuclear Information System (INIS)

    Soriano B, A.

    1996-01-01

    This research was carried out to develop the most adequate technique to immobilize low and medium-activity radioactive waste. different brands of national cement were used, portland and pozzolanic cement. Prismatic and cylindrical test tubes were prepared with different water/cement (W/C) relationship. Additives such a as clay and bentonite were added in some other cases. Later, the properties of these test tubes were evaluated. Properties such as: mechanical resistance, immersion resistance, lixiviation and porosity resistance. Cement with the highest mechanical resistance values, 62,29 MPa was pozzolanic cement for a W/C relationship of 0,35. It must be mentioned that the other types of cements reached a mechanical resistance over 10 MPa, a value indicated by the international standards for transportation and storage of low and medium-activity radioactive waste at a superficial level. However, in the case of immersion resistance, Sol cement (portland type I) with a W/C relationship of 0,35 reached a compression resistance over 61,92 MPa; as in the previous cases, the other cements reached a mechanical resistance > 10 MPa. Regarding porosity, working with W/C relationships = 0,35 0,40 and 0,45, without additives and with additives, the percentage of porosity found for all cements is lower than 40% percentage indicated by international standards. With regard to the lixiviation test, pozzolanic cement best retained Cesium-137 and Cobalt-60, and increased its advantages when bentonite was added, obtaining a lixiviation rate of 2,02 x E-6 cm/day. Sol cement also improved its properties when bentonite was added and obtained a lixiviation rate of 2,84 x E-6 cm/day for Cesium-137. However, Cobalt-60 is almost completely retained with the 3 types of cement with or without additives, reaching the limits indicated by the international standards for the lixiviation rate of beta-gamma emitter < 5,00E-4 cm/day. Characterizing the final product involves the knowledge of its

  2. Tympanoplasty with ionomeric cement

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those...... of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy...

  3. the Danish cement industry

    OpenAIRE

    la Cour, Lisbeth Funding; Møllgård, Peter

    2001-01-01

    We test econometrically whether the sole Danish producer of cement holds a dominant position in the Danish market for (grey) cement. In import penetration tests, we find that its pricing and quantity decisions are independent of import price and quantity, implying that it can act to a considerable extent independently of its competitors. We also test whether it can act independently of its customers and find that its demand is inelastic with respect to its price. It thus holds a dominant posi...

  4. SYNTHESIS OF EXPANDER TO PREVENT CONTRACTION OF CEMENT STONE

    Directory of Open Access Journals (Sweden)

    Elenova Aurika Almazovna

    2017-03-01

    Full Text Available This article contains the results of studies of the use of additives containing crystallization components significantly affecting the curing of cement, improving the structure of cement stone and concrete. The crystalline component is obtained using the rotary-pulse unit, which provides not only the grinding of agents, but their interaction with each other as well in order to accelerate the hydration and structure formation in cement stone. The degree, and kinetics of hydration, the composition of hydrated phases, the structure of the additives and cement stone was studied using the following methods: x-ray diffraction (XRD, differential thermal analysis (DTA, scanning electron microscope (SEM. Mechanical properties of cement were determined by standard methods and techniques. The expander produced by means of hydrodynamic activation of the sulfoaluminate clinker (SAC consists of ettringite and hydrated calcium silicates, which are characterized by high dispersion rate (less than 10 µm and reactivity as the seed for the crystallization of hydrated compounds. The introduction of the ultrafine additives of the crystalline SAC (within 1-5% was discovered to cause expansion of the cement stone. Implementation of the additives increases cement hydration and contributes to the formation of active centers of crystallization that lead to the fast formation of ettringite, hydrated calcium aluminates and calcium silicates. The activated crystalline additive provides for significant reduction of porosity, initial curing, and high strength of cement stone. In addition, the additive is an expansive component, forming needle-like crystals of ettringite during hydration. These microcrystals grow in the capillaries of cement stone, filling them, and create conditions for improving the crack resistance of cement concrete.

  5. Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements

    Institute of Scientific and Technical Information of China (English)

    Yanhua GUAN; Ying GAO; Renjuan SUN; Moon C.WON; Zhi GE

    2017-01-01

    The fast-track repair of deteriorated concrete pavement requires materials that can be placed,cured,and opened to the traffic in a short period.Type Ⅲ cement and Calcium Sulfoaluminate (CSA) cement are the most commonly used fast-setting hydraulic cement (FSHC).In this study,the properties of Type Ⅲ and CSA cement concrete,including compressive strength,coefficient of thermal expansion (CTE) and shrinkage were evaluated.The test results indicate that compressive strength of FSHC concrete increased rapidly at the early age.CSA cement concrete had higher early-age and long term strength.The shrinkage of CSA cement concrete was lower than that of Type Ⅲ cement concrete.Both CSA and Type Ⅲ cement concrete had similar CTE values.Based on the laboratory results,the CSA cement was selected as the partial-depth rapid repair material for a distressed continuously reinforced concrete pavement.The data collected during and after the repair show that the CSA cement concrete had good short-term and long-term performances and,therefore,was suitable for the rapid repair of concrete pavement.

  6. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  7. Cement for Oil Well Cementing Operations in Ghana

    African Journals Online (AJOL)

    Michael

    For Portland cement to qualify as oil well cement, the chemical and physical properties must meet ..... Reservoir Engineering, Stanford University,. Stanford, California, pp. ... Construction”, PhD Thesis, Kwame Nkrumah. University of Science ...

  8. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT

    International Nuclear Information System (INIS)

    Butler, L.G.

    1999-01-01

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 microm; a search with EPMA for vesicles in the range of 1-20 microm proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from 29 Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, 2 H NMR of d 8 -toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste)

  9. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  10. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)

    International Nuclear Information System (INIS)

    Grimme, Stefan; Bannwarth, Christoph

    2016-01-01

    The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the well established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first

  11. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)

    Energy Technology Data Exchange (ETDEWEB)

    Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Bannwarth, Christoph [Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn (Germany)

    2016-08-07

    The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the well established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first

  12. Stabilization of marly soils with portland cement

    Science.gov (United States)

    Piskunov, Maksim; Karzin, Evgeny; Lukina, Valentina; Lukinov, Vitaly; Kholkin, Anatolii

    2017-10-01

    Stabilization of marlous soils with Portland cement will increase the service life of motor roads in areas where marl is used as a local road construction material. The result of the conducted research is the conclusion about the principal possibility of stabilization of marlous soils with Portland cement, and about the optimal percentage of the mineral part and the binding agent. When planning the experiment, a simplex-lattice plan was implemented, which makes it possible to obtain a mathematical model for changing the properties of a material in the form of polynomials of incomplete third order. Brands were determined for compressive strength according to GOST 23558-94 and variants of stabilized soils were proposed for road construction.

  13. Concrete = aggregate, cement, water?

    International Nuclear Information System (INIS)

    Jelinek, J.

    1990-01-01

    Concrete for the Temelin nuclear power plant is produced to about 70 different formulae. For quality production, homogeneous properties of aggregates, accurate proportioning devices, technological discipline and systematic inspections and tests should be assured. The results are reported of measuring compression strength after 28 days for different concrete samples. The results of such tests allow reducing the proportion of cement, which brings about considerable savings. Reduction in cement quantities can also be achieved by adding ash to the concrete mixes. Ligoplast, a plasticizer addition is used for improving workability. (M.D). 8 figs

  14. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  15. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  16. Cement Mason's Curriculum. Instructional Units.

    Science.gov (United States)

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  17. Cementation of liquid radioactive waste

    International Nuclear Information System (INIS)

    Efremenkov, V.

    2004-01-01

    The cementation methods for immobilisation of radioactive wastes are discussed in terms of methodology, chemistry and properties of the different types of cements as well as the worldwide experience in this field. Two facilities for cementation - DEWA and MOWA - are described in details

  18. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  19. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  20. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  1. Interfacial morphology and domain configurations in 0-3 PZT-Portland cement composites

    International Nuclear Information System (INIS)

    Jaitanong, N.; Zeng, H.R.; Li, G.R.; Yin, Q.R.; Vittayakorn, W.C.; Yimnirun, R.; Chaipanich, A.

    2010-01-01

    Cement-based piezoelectric composites have attracted great attention recently due to their promising applications as sensors in smart structures. Lead zirconate titanate (PZT) and Portland cement (PC) composite were fabricated using 60% of PZT by volume. Scanning Electron Microscope and piezoresponse force microscope were used to investigate the morphology and domain configurations at the interfacial zone of PZT-Portland cement composites. Angular PZT ceramic grains were found to bind well with the cement matrix. The submicro-scale domains were clearly observed by piezoresponse force microscope at the interfacial regions between the piezoelectric PZT phase and Portland cement phase, and are clearer than the images obtained for pure PZT. This is thought to be due to the applied internal stress of cement to the PZT ceramic particle which resulted to clearer images.

  2. Peculiarities of binding composition production in vortex jet mill

    Science.gov (United States)

    Zagorodnyuk, L. Kh; Lesovik, V. S.; Sumskoy, D. A.; Elistratkin, M. Yu; Makhortov, D. S.

    2018-03-01

    The article investigates the disintegration of perlite production waste in a vortex jet mill; the regularities of milling were established. Binding compositions were obtained at different ratios of cement vs. perlite sand production waste in the vortex jet mill in various milling regimes. The peculiarities of milling processes were studied, and technological and physicomechanical properties of the binding compositions were determined as well. The microstructure of the cement stones made of activated Portland cement and binding compositions in the vortex jet mill was elucidated by electron microscopy. The open pores of the cement-binding compositions prepared using perlite fillers were found to be filled by newgrowths at different stages of collective growth. The microstructure of the binding compositions is dense due to rationally proportioned composition, effective mineral filler— perlite waste — that creates additional substrates for internal composite microstructure formation, mechanochemical activation of raw mixture, which allows obtaining composites with required properties.

  3. Applications of radioactive methods in cement concrete testing

    International Nuclear Information System (INIS)

    Dinakaran, M.; Vijayaraghavan, S.R.

    1979-01-01

    Basic principles regarding the neutron moderation technique and the successful application of this technique for determining the moisture and cement content in hardened concrete are briefly discussed. Since fast neutrons are converted into slow thermal neutrons by elastic scattering in the presence of hydrogen nuclei, it is possible to determine the moisture content in hardened cement concrete using precalibrated relationships. Also since most of the hydrogenous matter in concrete pertains to non-fixed water and hydrated cement compounds, an analysis of slow neutron counts on a sample at different non-fixed moisture contents make the estimation of cement content possible using the mathematical relationship between cement content, degree of hydration and the equivalent moisture content. The method developed is quick, non-destructive, and repeatable at the same time giving better accuracy when compared to conventional chemical methods. Use was also made of gamma ray transmission method for determining the differential density at various depths in a cement concrete pavement making use of cores cut from the pavement. Further, development proposed for determination of density at different depths of pavement in situ is also discussed. (auth.)

  4. Cement manufacture and the environment - Part I: Chemistry and technology

    Science.gov (United States)

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  5. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  6. Cement-latex grouting mortar for cementing boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Kateev, I S; Golyshkina, L A; Gorbunova, I V; Kurochkin, B M; Vakula, Ya V

    1980-01-01

    The need for the development of cement-latex grouting mortar for the purpose of separating strata when reinforcing boreholes at deposits in the Tatar Associated SSR is evaluated. Results of studies of the physical and mechanical properties of cement-latex grouting mortar systems (mortar plus brick) are presented. Formulas for preparing cement-latex grouting mortor are evaluated and results of industrial tests of such mortars shown.

  7. US cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  8. Chemical environment in cements

    International Nuclear Information System (INIS)

    Glasser, F.B.; Angus, M.J.; McCulloch, C.E.; Macphee, D.; Rahman, A.A.

    1984-01-01

    The alkalinity of Portland cements is responsible for precipitation and low solubility of many radwastes species. The sources of alkalinity are evaluated and two chemical models, based on experimental and theoretical data presented enabling the effect of blending agents (PFA, silica fume, etc.) to be evaluated and the alkalinity of the system at longer ages predicted. The data take the form of a solubility model which is applicable to non-heat generating wastes. 7 refs., 10 figs

  9. Radiographic control of mineral fibre-reinforced cement plates

    International Nuclear Information System (INIS)

    Domanus, J.C.; Moeller Jensen, L.

    1980-03-01

    The usefulnes of the radiographic technique in the examination of Spinrock fibres reinforced cement plates was investigated with soft X-rays. A preliminary investigation has shown that soft X-rays are most suitable for radiography of cement plates, and therefore a 50 kV X-ray machine with a 0.5 mm focus and beryllium window X-ray tube was used througout the investigation. X-ray films of different speed and graininess were used, and it was proved that a relatively fast Kodak Industrex D film can produce radiographs of adequate quality. An Agfa-Gevaert Structurix IC paper can also be used. (author)

  10. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  11. Barium aluminate cement: its application

    International Nuclear Information System (INIS)

    Drozdz, M.; Wolek, W.

    1975-01-01

    The technology of manufacturing barium aluminate cement from barium sulfate and alumina, using a rotary kiln for firing the clinker is described. The method of granulation of the homogenized charge was used. Conditions of using the ''to mud'' method in industry were indicated. The physical and chemical properties of barium aluminate cement are determined and the quality of several batches of cement prepared on a semi-industrial scale and their suitability for making highly refractory concretes are tested. The optimal composition of the concretes is determined as a function of the mixing water and barium aluminate cement contents. Several experimental batches of concretes were used in the linings of furnaces in the steel industry. The suitability of these cements for use in fields other than steelmaking is examined. It is established that calcium aluminate cement has certain limited applications [fr

  12. Stability of reinforced cemented backfills

    International Nuclear Information System (INIS)

    Mitchell, R.J.; Stone, D.M.

    1987-01-01

    Mining with backfill has been the subject of several international meetings in recent years and a considerable research effort is being applied to improve both mining economics and ore recovery by using backfill for ground support. Classified mill tailings sands are the most commonly used backfill material but these fine sands must be stabilized before full ore pillar recovery can be achieved. Normal portland cement is generally used for stabilization but the high cost of cement prohibits high cement usage. This paper considers the use of reinforcements in cemented fill to reduce the cement usage. It is concluded that strong cemented layers at typical spacings of about 3 meters in a low cement content bulk fill can reinforce the fill and reduce the overall cement usage. Fibre reinforcements introduced into strong layers or into bulk fills are also known to be effective in reducing cement usage. Some development work is needed to produce the ideal type of anchored fibre in order to realize economic gains from fibre-reinforced fills

  13. Challenges of the growing African cement market – environmental issues, regulative framework, and quality infrastructure requirements

    Directory of Open Access Journals (Sweden)

    Schmidt Wolfram

    2018-01-01

    Full Text Available The African cement, concrete and construction business is growing at rapid pace. The cement sales are expected to grow rapidly until 2050. The number of newly built cement plants increases dramatically and in addition more cements are being imported from outside the continent, e.g. from Turkey, Pakistan, Indonesia, and China, driven by overcapacities in the countries of origin. This causes a high number of potentials and challenges at the same time. Newly built cement plants can operate directly at best technological state of the art and thus incorporate more sustainable technologies as well as produce new and more sustainable products such as cements blended with sustainable supplementary cementitious materials such as calcined clays, and industrial or agricultural by products. At the same time the new variety of binding agent as well as the international imports, which are driven by price considerations, make the cement market prone to quality scatter. This puts pressure on the quality control regulations and institutions to ensure safety of construction, healthy application, and environmental safety for the population. The paper presents possible solutions to build up the rapidly increasing African cement production more sustainably than in the rest of the world as well as the related challenges and obstacles that need to be overcome. Based on experiences with a series of pan-African cement testing laboratory proficiency schemes conclusions are made on technical, regulative and political level.

  14. Homozygous missense mutation (G56R in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1 in two siblings with fasting chylomicronemia (MIM 144650

    Directory of Open Access Journals (Sweden)

    Hegele Robert A

    2007-09-01

    Full Text Available Abstract Background Mice with a deleted Gpihbp1 gene encoding glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1 develop severe chylomicronemia. We screened the coding regions of the human homologue – GPIHBP1 – from the genomic DNA of 160 unrelated adults with fasting chylomicronemia and plasma triglycerides >10 mmol/L, each of whom had normal sequence of the LPL and APOC2 genes. Results One patient with severe type 5 hyperlipoproteinemia (MIM 144650, fasting chylomicronemia and relapsing pancreatitis resistant to standard therapy was found to be homozygous for a novel GPIHBP1 missense variant, namely G56R. This mutation was absent from the genomes of 600 control subjects and 610 patients with hyperlipidemia. The GPIHBP1 G56 residue has been conserved throughout evolution and the G56R mutation was predicted to have compromised function. Her homozygous brother also had refractory chylomicronemia and relapsing pancreatitis together with early coronary heart disease. G56R heterozygotes in the family had fasting mild hypertriglyceridemia. Conclusion Thus, a very rare GPIHBP1 missense mutation appears to be associated with severe hypertriglyceridemia and chylomicronemia.

  15. Fast ejendom III

    DEFF Research Database (Denmark)

    Munk-Hansen, Carsten

    Bogen er det tredje bind af tre planlagte bind om fast ejendom: I Overdragelsen, II Bolighandlen og III Ejerbeføjelsen. Fremstillingens giver et grundigt overblik over centrale områder af en omfattende regulering af fast ejendom, med angivelse af litteratur, hvor læseren kan søge yderligere...... oplysning. En ejer af fast ejendom er på særdeles mange områder begrænset i sin råden sammenlignet med ejeren af et formuegode i almindelighed. Fremstillingen tager udgangspunkt i ejerens perspektiv (fremfor samfundets eller myndighedernes). Både den privatretlige og offentligretlige regulering behandles......, eksempelvis ejendomsdannelsen, servitutter, naboretten, hævd, zoneinddelingen, den fysiske planlægning, beskyttelse af natur, beskyttelse af kultur, forurening fra fast ejendom, erstatning for forurening, jordforurening, ekspropriation, byggeri og adgang til fast ejendom....

  16. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    Le Saoût, Gwenn; Lothenbach, Barbara; Hori, Akihiro; Higuchi, Takayuki; Winnefeld, Frank

    2013-01-01

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  17. Using dehydrated cement paste as new type of cement additive

    NARCIS (Netherlands)

    Yu, R.; Shui, Z.H.; Dong, J

    2013-01-01

    This paper presents an experimental study, including evaluation and modification, on using dehydrated cement paste (DCP) as a new type of cement additive. After a series of processes, normal DCP (N-DCP) was produced as before and a modified form of DCP (M-DCP) was produced as well. The cementitious

  18. Explaining an Unusually Fast Parasitic Enzyme: Folate Tail-Binding Residues Dictate Substrate Positioning and Catalysis in Cryptosporidium hominis Thymidylate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Martucci,W.; Vargo, M.; Anderson, K.

    2008-01-01

    The essential enzyme TS-DHFR from Cryptosporidium hominis undergoes an unusually rapid rate of catalysis at the conserved TS domain, facilitated by two nonconserved residues, Ala287 and Ser290, in the folate tail-binding region. Mutation of these two residues to their conserved counterparts drastically affects multiple steps of the TS catalytic cycle. We have determined the crystal structures of all three mutants (A287F, S290G, and A287F/S290G) in complex with active site ligands dUMP and CB3717. The structural data show two effects of the mutations: an increased distance between the ligands in the active site and increased flexibility of the folate ligand in the partially open enzyme state that precedes conformational change to the active catalytic state. The latter effect is able to be rescued by the mutants containing the A287F mutation. In addition, the conserved water network of TS is altered in each of the mutants. The structural results point to a role of the folate tail-binding residues in closely positioning ChTS ligands and restricting ligand flexibility in the partially open state to allow for a rapid transition to the active closed state and enhanced rate of catalysis. These results provide an explanation on how folate tail-binding residues at one end of the active site affect long-range interactions throughout the TS active site and validate these residues as targets for species-specific drug design.

  19. Biomass for green cement

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, R. [Lafarge Canada Inc., Calgary, AB (Canada)

    2006-07-01

    Lafarge examined the use of waste biomass products in its building materials and provided background information on its operations. Cement kiln infrastructure was described in terms of providing access to shipping, rail and highways; conveying and off-loading equipment; having large storage facilities; and, offering continuous monitoring and stack testing. The presentation identified the advantages and disadvantages of a few different biomass cases such as coal; scrap tires; non-recyclable household waste; and processed biomass. A chart representing landfill diversion rates was presented and the presentation concluded with a discussion of energy recovery and recycling. 1 tab., figs.

  20. Shear-peel strength comparison of orthodontic band cements including novel calcium silicate

    DEFF Research Database (Denmark)

    Leo, Mariantonietta; Løvschall, Henrik

    calcium silicate with fluoride and fast-setting, Glass ionomer, and Zinc phosphate cement, used for luting of orthodontic bands on molars kept one month in phosphate buffering solution (PBS). Materials and methods: The roots of 35 extracted human molars were embedded in acryl. Three groups were allocated....... An orthodontic band (AO) was fitted on the free crown. Each group of the teeth (n>10) was cemented with novel calcium silicate (Protooth), Glass ionomer (Orthocem), or Zinc phosphate (DeTrey Zinc). The cements were mixed according to the manufacturers instructions. Samples were stored at 37ºC in humid chamber...... Silicate (Protooth) and Zinc phosphate cement (DeTrey Zinc) were significantly higher than Glass ionomer cement (Orthocem) when looking for the force (N, p

  1. Process of preparing hydraulic cement

    Energy Technology Data Exchange (ETDEWEB)

    1919-12-11

    A process of preparing hydraulic cement from oil shale or shale coke is characterized in that the oil shale or shale coke after the distillation is burned long and hot to liberate the usual amount of carbonic acid and then is fine ground to obtain a slow hardening hydraulic cement.

  2. Health hazards of cement dust

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)

  3. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2011-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  4. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2010-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  5. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2012-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  6. Processes and Equipment for the Cementation of Radioactive Waste

    International Nuclear Information System (INIS)

    Schaefer, S.; Studenski, J.

    2012-01-01

    In this article a short selection of different cement mixer types provided by NUKEM Technologies is given. The variety stems on one hand from historical development, but more especially from specific customer demands to meet their local and technical requirements. The Slant Batch Mixer is successfully installed in several Waste Treatment Centers (WTC). NUKEM Technologies set up these mixers with necessary auxiliary systems to facilitate all the cementation tasks of a WTC. By the slant design of the mixer a homogeneous intermixing and a rapid and comprehensive emptying is achieved. The High Shear Mixer is a batch mixer producing a thixotropic, fast flowing colloidal cement slurry. NUKEM Technologies uses this cement slurry to bubble-free/ empty space-free grouting of pre-packed solid waste items in container. The High Throughput Continuous Mixer is a continuously operating screw mixer that provides a high throughput. One or more dry components are continuously fed to the mixer where liquid waste or water is added. The High Performance In-Drum Mixer is a combination of planetary mixer with double helical mixer. NUKEM Technologies recently has developed a new High Capacity Mixer (HCM) based on a well proven conventional concrete mixer. The HCM is the successor of the slant mixer and will expend NUKEM Technologies' portfolio of cementation units. (A.C.)

  7. Evaluation of dynamic elasticity module in samples of Portland (type 1) cement paste exposed to neutronic irradiation

    International Nuclear Information System (INIS)

    Rosa Junior, A.A.; Lucki, G.

    1986-01-01

    The fast neutron radiation effects and temperature on Portland cement are studied. The Dynamic Elasticity Module (Ed) in samples of Portland cement paste was evaluated. Ultrassonic technics were applied (resonance frequency and pulse velocity). The samples were irradiated with fast neutrons to fluence of 7,2 x 10 18 n/cm 2 (E approx. 1 MeV), at temperature of 120 + - 5 0 C, due to gamma heating. This temperature was simulated in laboratory in a microwave oven. (Author) [pt

  8. The role of calcium ions and lignosulphonate plasticiser in the hydration of cement

    International Nuclear Information System (INIS)

    Grierson, L.H.; Knight, J.C.; Maharaj, R.

    2005-01-01

    Experiments involving equilibrium dialysis, conductivity, X-ray diffraction analysis (XRD), differential thermal analysis (DTA) and isothermal titration calorimetry (ITC) have been carried out to investigate the role of calcium ions and polymeric plasticisers in cement/admixture hydration. Results from a study of lignosulphonic acid, sodium salt, acetate as a plasticiser shows that a plasticiser has dual role; one mainly as a kinetic inhibitor (poison) in cement hydration mechanism and the other as a dispersant. Evidence of a weak Ca 2+ binding to lignosulphonate sulphonic moieties was found at low ionic strengths of 0.1 M using ITC. No evidence of formal Ca 2+ binding to lignosulphonate sulphonic acid moieties was found using equilibrium dialysis at higher ionic strength of 1 M (ionic strengths of 0.4 M are typically found in Portland cement pore solution), as is often suggested in cement/admixture literature

  9. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    International Nuclear Information System (INIS)

    Yoon, Seyoon; Moon, Juhyuk; Bae, Sungchul; Duan, Xiaonan; Giannelis, Emmanuel P.; Monteiro, Paulo M.

    2014-01-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g −1 and 257 mg g −1 , respectively) of the CLDHs were comparable to the theoretical capacity of Friedel's salt (2 mol mol −1 or 121 mg g −1 ), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. - Highlights: • We examine the adsorption equilibrium and kinetics of CLDH in the hydrated cement. • CLDH capacity to bind chloride ions in the hydrated cement paste is determined. • We model chloride adsorption by CLDH through the cement matrix. • CLDH reforms the layered structure with ion adsorption in the cement matrix

  10. Corrosion resistant cemented carbide

    International Nuclear Information System (INIS)

    Hong, J.

    1990-01-01

    This paper describes a corrosion resistant cemented carbide composite. It comprises: a granular tungsten carbide phase, a semi-continuous solid solution carbide phase extending closely adjacent at least a portion of the grains of tungsten carbide for enhancing corrosion resistance, and a substantially continuous metal binder phase. The cemented carbide composite consisting essentially of an effective amount of an anti-corrosion additive, from about 4 to about 16 percent by weight metal binder phase, and with the remaining portion being from about 84 to about 96 percent by weight metal carbide wherein the metal carbide consists essentially of from about 4 to about 30 percent by weight of a transition metal carbide or mixtures thereof selected from Group IVB and of the Periodic Table of Elements and from about 70 to about 96 percent tungsten carbide. The metal binder phase consists essentially of nickel and from about 10 to about 25 percent by weight chromium, the effective amount of an anti-corrosion additive being selected from the group consisting essentially of copper, silver, tine and combinations thereof

  11. Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data.

    Science.gov (United States)

    Peng, Chen; Frommlet, Alexandra; Perez, Manuel; Cobas, Carlos; Blechschmidt, Anke; Dominguez, Santiago; Lingel, Andreas

    2016-04-14

    NMR binding assays are routinely applied in hit finding and validation during early stages of drug discovery, particularly for fragment-based lead generation. To this end, compound libraries are screened by ligand-observed NMR experiments such as STD, T1ρ, and CPMG to identify molecules interacting with a target. The analysis of a high number of complex spectra is performed largely manually and therefore represents a limiting step in hit generation campaigns. Here we report a novel integrated computational procedure that processes and analyzes ligand-observed proton and fluorine NMR binding data in a fully automated fashion. A performance evaluation comparing automated and manual analysis results on (19)F- and (1)H-detected data sets shows that the program delivers robust, high-confidence hit lists in a fraction of the time needed for manual analysis and greatly facilitates visual inspection of the associated NMR spectra. These features enable considerably higher throughput, the assessment of larger libraries, and shorter turn-around times.

  12. Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states

    Energy Technology Data Exchange (ETDEWEB)

    Rüger, Robert, E-mail: rueger@scm.com [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Lenthe, Erik van [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Heine, Thomas [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Visscher, Lucas [Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2016-05-14

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

  13. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027) into...

  14. Surface treatment of reinforced cement concrete mixtures of hpcm type

    OpenAIRE

    Vyrozhemsky, V.; Krayushkina, K.

    2006-01-01

    One of the most perspective ways of pavement roughness and durability improvement is the arrangement of thin cement concrete layer surface treatment reinforced with different types of fiber. The name of this material is known abroad as HPCM (High Performance Cementious Materials) durable thin layer concrete pavement in a thickness of 1 cm, dispersion-like reinforced with metal or polymer fibers. To enhance bind properties the stone material grade 3 7mm is applied on the top of concrete surfac...

  15. A cement based syntactic foam

    International Nuclear Information System (INIS)

    Li Guoqiang; Muthyala, Venkata D.

    2008-01-01

    In this study, a cement based syntactic foam core was proposed and experimentally investigated for composite sandwich structures. This was a multi-phase composite material with microballoon dispersed in a rubber latex toughened cement paste matrix. A trace amount of microfiber was also incorporated to increase the number of mechanisms for energy absorption and a small amount of nanoclay was added to improve the crystal structure of the hydrates. Three groups of cement based syntactic foams with varying cement content were investigated. A fourth group of specimens containing pure cement paste were also prepared as control. Each group contained 24 beam specimens. The total number of beam specimens was 96. The dimension of each beam was 30.5 cm x 5.1 cm x 1.5 cm. Twelve foam specimens from each group were wrapped with plain woven 7715 style glass fabric reinforced epoxy to prepare sandwich beams. Twelve cubic foam specimens, three from each group, with a side length of 5.1 cm, were also prepared. Three types of testing, low velocity impact test and four-point bending test on the beam specimens and compression test on the cubic specimens, were conducted to evaluate the impact energy dissipation, stress-strain behavior, and residual strength. Scanning electron microscope (SEM) was also used to examine the energy dissipation mechanisms in the micro-length scale. It was found that the cement based syntactic foam has a higher capacity for dissipating impact energy with an insignificant reduction in strength as compared to the control cement paste core. When compared to a polymer based foam core having similar compositions, it was found that the cement based foam has a comparable energy dissipation capacity. The developed cement based syntactic foam would be a viable alternative for core materials in impact-tolerant composite sandwich structures

  16. Crown and bridge cements: clinical applications.

    Science.gov (United States)

    Bunek, Sabiha S; Powers, John M

    2012-12-01

    Cement selection can be confusing because factors such as substrate, the type of restoration, and patient needs must be considered. Some substrates require additional treatment before cementation. This article describes the most commonly used traditional crown and bridge cements (GI and RMGI) used for metal and metal-ceramic restorations, and resin cements used for all-ceramic restorations. Advantages, disadvantages, indications, and contraindications of cements have been reviewed. Recommended uses of cements for metal, ceramic, and laboratory composite restorations have been presented. General guidelines for surface treatment ot silica- and zirconia-based restorations when using resin cements have been discussed.

  17. Cement/slag chemistry studies

    International Nuclear Information System (INIS)

    Glasser, F.P.; Macphee, D.; Atkins, M.; Beckley, N.; Carson, S.O.; Wilding, C.R.; McHugh, G.

    1988-01-01

    The performance of cement-based matrices intended for radwaste immobilization is assessed. The long-term performance of the matrix is characterized by thermodynamic evaluation of experimental data. The results are presented in a general form, amenable to a range of specific formulations. The interaction of specific radwaste components with cements has been studied, using Iodine as an example. It occurs as both I - and IO 3 - species, but these differ sharply in sorption characteristics. The effect of ionizing radiation of the pH and E h of cement matrices is reported. (author)

  18. Does cement mantle thickness really matter?

    OpenAIRE

    Caruana, J.

    2008-01-01

    The thickness of the cement mantle around the femoral component of total hip replacements is a contributing factor to aseptic loosening and revision. Nevertheless, various designs of stems and surgical tooling lead to cement mantles of differing thicknesses. This thesis is concerned with variability in cement thickness around the Stanmore Hip, due to surgical approach, broach size and stem orientation, and its effects on stress and cracking in the cement. The extent to which cement mantle thi...

  19. Molecular mechanism of crystallization impacting calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    {approx}10{sup -3} to 10{sup -4} for a pyrophosphate based cement (Grover et al., 2006). Where the in situ SPM approach provides unique insights is in providing details of where and how molecules inhibit or accelerate kinetics. This has the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. For example, it is unlikely that bulk techniques could deduce the simultaneous acceleration and inhibition effects of etidronate; or that citrate reduced growth rate by altering step density rather than step speed. In addition, SPM data translates to tractable questions for modelers. The questions changes from 'How does etidronate inhibit brushite growth?' to 'Why does etidronate bind strongly to the [101]{sub Cc} step while it doesn't to the [10-1]{sub Cc} step?' This is still a challenging question but it is far better defined. Given that step chemistries are generally different, it seems reasonable to expect that the greatest inhibition will be achieved not with one, but with several synergistically chosen additives. For example, the most effective growth inhibitors for brushite would target the two fast steps, namely the non-polar, [10-1]{sub Cc} and the polar, [101]{sub Cc} steps. Several molecules have been shown to slow the polar step, with etidronate as the most dramatic example. By contrast, only Mg was observed to slow the [10-1]{sub Cc} step. Thus, a combination of high concentrations of Mg to target the [10-1]{sub Cc} step with low concentrations of etidronate to target the polar steps, should be a more effective combination than either alone. However Mg is not a particularly good inhibitor in the sense that high concentrations are needed, and it is not specific. More ideally, an inhibitor would be designed to interact specifically with the [10-1] step, which would allow the two steps to be independently modified. Again, this provides an opportunity for tighter coupling with

  20. Compartmentalized self-replication under fast PCR cycling conditions yields Taq DNA polymerase mutants with increased DNA-binding affinity and blood resistance.

    Science.gov (United States)

    Arezi, Bahram; McKinney, Nancy; Hansen, Connie; Cayouette, Michelle; Fox, Jeffrey; Chen, Keith; Lapira, Jennifer; Hamilton, Sarah; Hogrefe, Holly

    2014-01-01

    Faster-cycling PCR formulations, protocols, and instruments have been developed to address the need for increased throughput and shorter turn-around times for PCR-based assays. Although run times can be cut by up to 50%, shorter cycle times have been correlated with lower detection sensitivity and increased variability. To address these concerns, we applied Compartmentalized Self Replication (CSR) to evolve faster-cycling mutants of Taq DNA polymerase. After five rounds of selection using progressively shorter PCR extension times, individual mutations identified in the fastest-cycling clones were randomly combined using ligation-based multi-site mutagenesis. The best-performing combinatorial mutants exhibit 35- to 90-fold higher affinity (lower Kd ) for primed template and a moderate (2-fold) increase in extension rate compared to wild-type Taq. Further characterization revealed that CSR-selected mutations provide increased resistance to inhibitors, and most notably, enable direct amplification from up to 65% whole blood. We discuss the contribution of individual mutations to fast-cycling and blood-resistant phenotypes.

  1. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  2. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  3. Rheological measurements on cement grouts

    International Nuclear Information System (INIS)

    Dalton, M.J.

    1986-06-01

    This report describes the techniques which have been developed at Winfrith for assessing the rheological properties of cement grouts. A discussion of the theory of rheology and its application to cement is given and the methodology for calibrating a special paddle measuring system for a commercial viscometer is described. The use of the system for determining flow curves, equilibrium viscosity, viscosity as a function of shearing time and structure changes is also discussed. (author)

  4. Cement pulmonary embolism after vertebroplasty.

    Science.gov (United States)

    Sifuentes Giraldo, Walter Alberto; Lamúa Riazuelo, José Ramón; Gallego Rivera, José Ignacio; Vázquez Díaz, Mónica

    2013-01-01

    In recent years, the use of vertebral cementing techniques for vertebroplasty and kyphoplasty has spread for the treatment of pain associated with osteoporotic vertebral compression fractures. This is also associated with the increased incidence of complications related with these procedures, the most frequent being originated by leakage of cementation material. Cement can escape into the vertebral venous system and reach the pulmonary circulation through the azygous system and cava vein, producing a cement embolism. This is a frequent complication, occurring in up to 26% of patients undergoing vertebroplasty but, since most patients have no clinical or hemodynamical repercussion, this event usually goes unnoticed. However, some serious, and even fatal cases, have been reported. We report the case of a 74-year-old male patient who underwent vertebroplasty for persistent pain associated with osteoporotic L3 vertebral fracture and who developed a cement leak into the cava vein and right pulmonary artery during the procedure. Although he developed a pulmonary cement embolism, the patient remained asymptomatic and did not present complications during follow-up. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  5. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  6. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio ≤ 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  7. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  8. Development of cement material using inorganic additives

    International Nuclear Information System (INIS)

    Toyohara, Masumitsu; Satou, Tatsuaki; Wada, Mikio; Ishii, Tomoharu; Matsuo, Kazuaki.

    1997-01-01

    Inorganic admixtures to enhance the fluidity of cement material was developed. These admixtures turned into easy to immobilize the miscellaneous radioactive waste using cement material. It was found that the ζ potential of cement particles was directly proportional to the content of the inorganic admixtures in cement paste and the particles of cement were dispersed at the high ζ potential. The condensed sodium phosphate, which was the main component of the inorganic admixtures, retarded the dissolution of Ca 2+ ion from the cement, and generated the colloids by incorporating dissolved Ca 2+ ion. The cement material containing the inorganic admixtures was found to have the same mechanical strength and adsorption potential of radionuclides in comparison to normal cement materials. It was confirmed that the cement material containing the inorganic admixture was effectively filled gaps of miscellaneous radioactive waste. (author)

  9. Development of high-performance blended cements

    Science.gov (United States)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  10. Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey Viktorovich

    2014-01-01

    Full Text Available This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

  11. Fast ejendom, I

    DEFF Research Database (Denmark)

    Munk-Hansen, Carsten

    , værdiforringende forhold, der ligger uden for ejendommen og andre særlige tilfælde. Bogen uddyber andre emner omtalt i 1. udgave, eksempelvis erhvervelsesbetingelser, købsoptioner, ansvarsfraskrivelse, licitationssalg mv. Bogen er det første af tre planlagte bind om fast ejendom: I Overdragelsen, II Bolighandlen...

  12. Polymer-cement interactions towards improved wellbore cement fracture sealants

    Science.gov (United States)

    Beckingham, B. S.; Iloejesi, C.; Minkler, M. J.; Schindler, A. K.; Beckingham, L. E.

    2017-12-01

    Carbon capture, utilization, and storage (CCUS) in deep geologic formations is a promising means of reducing point source emissions of CO2. In these systems, CO2 is captured at the source and then injected to be utilized (eg. in enhanced oil recovery or as a working fluid in enhanced geothermal energy plants) or stored in geologic formations such as depleted oil and gas reservoirs or saline aquifers. While CCUS in subsurface systems could aid in reducing atmospheric CO2 emissions, the potential for CO2 leakage from these systems to overlying formations remains a major limitation and poses a significant risk to the security of injected CO2. Thus, improved materials for both initial wellbore isolation and repairing leakage pathways that develop over time are sought. One approach for the repair of cement fractures in wellbore (and other) systems is the injection of polymer materials into the fracture with a subsequent environmentally dependent (temperature, pressure, pH, etc.) densification or solidification. Here, we aim to investigate novel polymer materials for use to repair leaking wellbores in the context of CCUS. We synthesize and fully characterize a series of novel polymer materials and utilize a suite of analysis techniques to examine polymer-cement interactions at a range of conditions (namely temperature, pressure and pH). Initial findings will be leveraged to design novel polymer materials for further evaluation in polymer-cement composite cores, cement fracture healing, and the aging behavior of healed cements.

  13. Reactivity of Ordinary Portland Cement (OPC) grout and various lithologies from the Harwell research site

    International Nuclear Information System (INIS)

    Milodowski, A.E.; George, I.A.; Bloodworth, A.J.; Robins, N.S.

    1985-08-01

    Ordinary Portland Cement (OPC) has been used in the completion of boreholes on the Harwell Research Site, AERE, Oxfordshire. The purpose of this study was to examine the effect of OPC and the alkaline pore fluids generated during its setting on the various lithological types encountered in the boreholes. To facilitate this, samples of core representing the various rock types were selected and cement-rock composites were prepared from these in the laboratory to simulate the borehole cements. After a curing period of 15 months the cores and associated cement plugs were examined for any signs of reactivity or bonding. The best cement-rock bonding was shown by naturally well-cemented sandstone and limestone lithologies. Although no significant chemical reaction was seen to have occurred between OPC and rock, the OPC appears able to bind onto the rock surface because of the rigidity of the rock surface. Therefore, the best cement rock bonding and seal with OPC may be expected in the limestones of the Great Oolite Group, Inferior Oolite Group and parts of the Corallian Beds. Because of the reactivity of OPC towards certain lithologies a better borehole seal in such a sedimentary sequence might be achieved using a bentonite backfill in those parts of the sequence which either react with or bond only weakly to OPC. (author)

  14. Effect of bioglass 45S5 addition on properties, microstructure and cellular response of tetracalcium phosphate/monetite cements

    Energy Technology Data Exchange (ETDEWEB)

    Stulajterova, R., E-mail: rstulajterova@saske.sk; Medvecky, L.; Giretova, M.; Sopcak, T.; Kovalcikova, A.

    2017-04-15

    Tetracalcium phosphate/nanomonetite (TTCPMH) cement composites with 7.5 and 15 wt% addition of melt-derived 45S5 bioactive glass were prepared by mechanical homogenization of powder components and 2% NaH{sub 2}PO{sub 4} solution was used as a hardening liquid. The properties of composites with the acidic (Ca/P ratio equal 1.5) or basic (Ca/P ratio equal 1.67) TTCPMH component were compared. Addition of glass component caused rapid rise in pH of composites up to 10. In microstructure of basic cement composite, the large bioglass particles weakly bounded to surrounding cement matrix were found contrary to a more compact microstructure of acidic cement composites with the high number of spherical silica particles. Both the significant refinement of hydroxyapatite particles and the change to needle-like morphology with rise in the content of bioglass were identified in hydroxyapatite coatings created during soaking of composites in phosphate buffered saline. In acidic cement mixtures, the increase of compressive strength with an amount of bioglass was found whereas the opposite tendency was revealed in the case of basic cement mixtures. The higher concentrations of ions were verified in solutions after immersion of acidic cement composites. The severe cytotoxicity of extracts and composite cement substrates containing 15 wt% of bioglass demonstrated adverse effects of both the ionic concentrations and unappropriate surface texture on proliferation of mesenchymal stem cells. The enhanced ALP activities of cells cultured on composite cements confirmed the positive effect of bioactive glass addition on differentiation of mesenchymal stem cells. - Highlights: • Novel B45S5 bioglass/tetracalcium phosphate/nanomonetite cement composites • Cement basicity negatively affected their microstructure. • Acid composite cements had higher compressive strengths than basic composites. • Fast differentiation of MSC to osteoblast line on composite with 7.5 wt% of bioglass

  15. Seepage/Cement Interactions

    International Nuclear Information System (INIS)

    Carpenter, D.

    2000-01-01

    The Development Plan (CRWMS M andO 1999a) pertaining to this task defines the work scopes and objectives for development of various submodels for the Physical and Chemical Environment Abstraction Model for TSPA-LA. The Development Plan (CRWMS M andO 1999a) for this specific task establishes that an evaluation be performed of the chemical reactions between seepage that has entered the drift and concrete which might be used in the repository emplacement drifts. The Development Plan (CRWMS M andO 1999a) then states that the potential effects of these water/grout reactions on chemical conditions in the drift be assessed factoring in the influence of carbonation and the relatively small amount of grout. This task is also directed at: (1) developing a conceptualization of important cement/seepage interactions and potential impacts on EBS performance, (2) performing a screening analysis to assess the importance of cement/seepage interactions. As the work progresses and evolves on other studies, specifically the Engineered Barrier System: Physical and Chemical Environment (P andCE) Model (in progress), many of the issues associated with items 1 and 2, above, will be assessed. Such issues include: (1) Describing the mineralogy of the specified cementitious grout and its evolution over time. (2) Describing the composition of the water before contacting the grout. (3) Developing reasonable upper-bound estimates for the composition of water contacting grout, emphasizing pH and concentrations for anions such as sulfate. (4) Evaluating the equilibration of cement-influenced water with backfill and gas-phase CO 2 . (5) Developing reasonable-bound estimates for flow rate of affected water into the drift. The concept of estimating an ''upper-bound'' range for reaction between the grout and the seepage, particularly in terms of pH is based on equilibrium being established between the seepage and the grout. For example, this analysis can be based on equilibrium being established as

  16. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    Science.gov (United States)

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  17. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Science.gov (United States)

    2011-12-08

    ... and Cement Clinker From Japan Determination On the basis of the record \\1\\ developed in the subject... duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... and Cement Clinker from Japan: Investigation No. 731- TA-461 (Third Review). By order of the...

  18. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  19. Cement radwaste solidification studies third annual report

    International Nuclear Information System (INIS)

    Brown, D.J.; James, J.M.; Lee, D.J.; Smith, D.L.; Walker, A.T.

    1982-03-01

    This report summarises cement radwaste studies carried out at AEE Winfrith during 1981 on the encapsulation of medium and low active waste in cement. During the year more emphasis has been placed on the work which is directly related to the solidification of SGHWR active sludge. Information has been obtained on the properties of 220 dm 3 drums of cemented waste. The use of cement grouts for the encapsulation of solid items has also been investigated during 1981. (U.K.)

  20. Characterization of cement-stabilized Cd wastes

    International Nuclear Information System (INIS)

    Maria Diez, J.; Madrid, J.; Macias, A.

    1996-01-01

    Portland cement affords both physical and chemical immobilization of cadmium. The immobilization has been studied analyzing the pore fluid of cement samples and characterizing the solid pastes by X-ray diffraction. The influence of cadmium on the cement hydration and on its mechanical properties has been also studied by isothermal conduction calorimetry and by the measure of strength and setting development. Finally, the effect of cement carbonation on the immobilization of cadmium has been analyzed

  1. Substantial global carbon uptake by cement carbonation

    OpenAIRE

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn

    2016-01-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 20131, 2. Considerable attention has been paid to quantifying these industrial process emissions from cement production2, 3, but the natural reversal of the process—carbonation—has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondar...

  2. Cementation unit for radioactive wastes

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto; Lima, Jose Rodrigues de

    2001-01-01

    This communication describes the waste cementation process and facility developed at Instituto de Pesquisas Energeticas e Nucleares - IPEN. The process is based on 200 litres batch operation, in drum mixing, with continuous cement feeding. The equipment is a single recoverable helicoidal mixer and a turning table that allows the drum to rotate during the mixing operation, simulating a planetary mixer. The facility was designed to treat contact handled liquids and wet solid wastes, but can be adapted for shielded equipment and remote operation. (author)

  3. 21 CFR 872.3275 - Dental cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns or...

  4. Cement production from coal conversion residues

    International Nuclear Information System (INIS)

    Brown, L.D.; Clavenna, L.R.; Eakman, J.M.; Nahas, N.C.

    1981-01-01

    Cement is produced by feeding residue solids containing carbonaceous material and ash constituents obtained from converting a carbonaceous feed material into liquids and/or gases into a cement-making zone and burning the carbon in the residue solids to supply at least a portion of the energy required to convert the solids into cement

  5. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  6. STUDY OF CHEMICAL INTERACTION OF MAGNESIA CEMENT WITH HIGH CONCENTRATION MAGNESIUM CHLORIDE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    DEREVIANKO V. N.

    2015-10-01

    Full Text Available Problem statement. In activating MgO by electrolyte salts, as a result of formation of non water-resist magnesium silicate hydrate are obtained the durable cement stone having the low water-resist. I. P. Vyrodov considers [9; 5], that magnesia cement curing in mixing with sufficiently concentrated (C > 20 % solutions MgCl2 is caused with the crystallization of oxyhydrochloride composition: 3MgO∙MgCl2∙11Н2О, 5MgO∙MgCl2∙13Н2О and 7MgO∙MgCl2∙15Н2О. In the lower concentration parts of MgCl2 solution is formed a transitional compound of Mg[(OHnCl2-n] with isomorphous Mg(OH2 structure. At very low Cl concentration only Mg(OH2 is practically formed. Purpose. The Formation of water-resist magnesium silicate hydrates for obtaining of fast curing and solid structure of the magnesia stone. Conclusion. The dependence of the formation of the magnesia stone from the ratio (MgO/MgCl2 of the magnesia cement (MgO and the magnesium chloride solution (MgCl2 of different density has been identified in order to obtain the best content for oxyhydrochloride 3MgO•MgCl2•11Н2О, 5MgO•MgCl2•13Н2О and magnesium hydroxide (Mg(OH2. In putting into the system MgO∙–∙H2О of the silicic acid or fine ground quartz grains with size of less than 20 – 30 microns, over 1 month for the magnesium silicate hydrates formation is needed, where from 2 to 5 % of the total number of newgrowths are created. The study is proved by the expert opinion, that magnesium silicate hydrates do not have binding properties, unlike calcium silicate hydrates, and the main role in the system curing is played with the Mg(OH2 gel recrystallization, which provides the acceptable stone strength (R ≈ 30MPa in a few years. It has been also established, that in mixing of cement with low concentration MgO solutions of less than 1,5 mol/l (or 13% 1,1g/sm3, the final product in the stone structure is Mg(OH2. With increasing the sealer (MgCl2 solution there is formed by turn in

  7. Studies on potential of Portland cement mortar for binding of ...

    Indian Academy of Sciences (India)

    Paramalinggam Thanalechumi

    management of WWS has become an environmental issue due to the enormous quantities .... over 2h from 2 to 6 °C at step width of 0.04 and step time of 0.5 s. Figure 1. ..... tional Conference on Industry Best Practice, 19–21 May. 2009.

  8. Electrically conductive Portland cement concrete.

    Science.gov (United States)

    1986-01-01

    There is a need for an effective, simple-to-install secondary anode system for use in the cathodic protection of reinforced concrete bridge decks. In pursuit of such a system, carbon fibers and carbon black were incorporated in portland cement concre...

  9. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  10. [Cement augmentation on the spine : Biomechanical considerations].

    Science.gov (United States)

    Kolb, J P; Weiser, L; Kueny, R A; Huber, G; Rueger, J M; Lehmann, W

    2015-09-01

    Vertebral compression fractures are the most common osteoporotic fractures. Since the introduction of vertebroplasty and screw augmentation, the management of osteoporotic fractures has changed significantly. The biomechanical characteristics of the risk of adjacent fractures and novel treatment modalities for osteoporotic vertebral fractures, including pure cement augmentation by vertebroplasty, and cement augmentation of screws for posterior instrumentation, are explored. Eighteen human osteoporotic lumbar spines (L1-5) adjacent to vertebral bodies after vertebroplasty were tested in a servo-hydraulic machine. As augmentation compounds we used standard cement and a modified low-strength cement. Different anchoring pedicle screws were tested with and without cement augmentation in another cohort of human specimens with a simple pull-out test and a fatigue test that better reflects physiological conditions. Cement augmentation in the osteoporotic spine leads to greater biomechanical stability. However, change in vertebral stiffness resulted in alterations with the risk of adjacent fractures. By using a less firm cement compound, the risk of adjacent fractures is significantly reduced. Both screw augmentation techniques resulted in a significant increase in the withdrawal force compared with the group without cement. Augmentation using perforated screws showed the highest stability in the fatigue test. The augmentation of cement leads to a significant change in the biomechanical properties. Differences in the stability of adjacent vertebral bodies increase the risk of adjacent fractures, which could be mitigated by a modified cement compound with reduced strength. Screws that were specifically designed for cement application displayed greatest stability in the fatigue test.

  11. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  12. Leaching of tritium from a cement composite

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Ito, Akihiko

    1978-10-01

    Leaching of tritium from cement composites into an aqueous phase has been studied to evaluate the safety of incorporation of the tritiated liquid waste into cement. Leaching tests were performed by the method recommended by the International Atomic Energy Agency. The Leaching fraction was measured as functions of waste-cement ratio (Wa/C), temperature of leachant and curing time. The tritium leachability of cement in the long term test follows the order: alumina cement portland cement slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than synthetic sea water. The amount leached of tritium from a 200 l drum size specimen was estimated on the basis of the above results. (author)

  13. Nanoscale Mobility of Aqueous Polyacrylic Acid in Dental Restorative Cements.

    Science.gov (United States)

    Berg, Marcella C; Benetti, Ana R; Telling, Mark T F; Seydel, Tilo; Yu, Dehong; Daemen, Luke L; Bordallo, Heloisa N

    2018-03-28

    Hydrogen dynamics in a time range from hundreds of femtoseconds to nanoseconds can be directly analyzed using neutron spectroscopy, where information on the inelastic and quasi-elastic scattering, hereafter INS and QENS, can be obtained. In this study, we applied these techniques to understand how the nanoscale mobility of the aqueous solution of polyacrylic acid (PAA) used in conventional glass ionomer cements (GICs) changes under confinement. Combining the spectroscopic analysis with calorimetric results, we were able to separate distinct motions within both the liquid and the GICs. The QENS analysis revealed that the self-diffusion translational motion identified in the liquid is also visible in the GIC. However, as a result of the formation of the cement matrix and its setting, both translational diffusion and residence time differed from the PAA solution. When comparing the local diffusion obtained for the selected GIC, the only noticeable difference was observed for the slow dynamics associated with the polymer chain. Additionally, over short-term aging, progressive water binding to the polymer chain occurred in one of the investigated GICs. Finally, a considerable change in the density of the GIC without progressive water binding indicates an increased polymer cross-linking. Taken together, our results suggest that accurate and deep understanding of polymer-water binding, polymer cross-linking, as well as material density changes occurring during the maturation process of GIC are necessary for the development of advanced dental restorative materials.

  14. Through BHA (Bottom Hole Assembly) cementing with proprietary cementing technology

    Energy Technology Data Exchange (ETDEWEB)

    Fanguy, Charles ' Joey' ; Mueller, Dan T. [BJ Services Company, Houston, TX (United States); Garrett, J.C. [Palm Energy Partners, LLC, Metairie, LA (United States)

    2004-07-01

    There are many problems that can arise when drilling into sub-normally pressured or naturally fractured zones. Lost circulation is one problem that is commonly encountered while drilling oil and gas wells. Lost circulation can lead to increased costs associated with drilling due to rig time, spreadsheet costs, and expensive mud system losses. Cement is one of the most effective treatment options, although it is not normally considered the first option because most operators are forced to trip out of the wellbore and utilize a squeeze packer. This is not always a viable option because of potential well control issues associated with the hydrostatic pressure reduction due to the losses of the whole mud. One treatment option that is commonly overlooked is pumping cement slurries through the bottom hole assembly and drill bit. This is generally not attempted for a variety of reasons. These reasons include: I Concern about 'squeezing off' of the cement in the bit II Lack of potential quality control associated with mixing 'on the fly' III Lack of the ability to test the actual mixed slurry samples The use of a pre-mixed, storable cement slurry has eliminated the concerns associated with pumping cement slurries through mud motors, MWD tools, BHA's, and drill bits. This advanced cement technology has been successfully utilized while reducing the risks associated with these lost circulation treatments. In addition, this technology has eliminated the costs associated with using a squeeze packer and the rig time required for several trips out of the wellbore. The paper will describe the premixed slurry properties and QA/QC procedures that are required for successful through the bit operations. This paper will also provide case histories of successful through the bit operation, as well as background information leading to the treatments. The case histories include successful through the bit remediation of severe lost circulation zones and as well the

  15. Analysis of cement-treated clay behavior by micromechanical approach

    OpenAIRE

    Zhang , Dong-Mei; Yin , Zhenyu; Hicher , Pierre Yves; Huang , Hong-Wei

    2013-01-01

    International audience; Experimental results show the significant influence of cement content on the mechanical properties of cement-treated clays. Cementation is produced by mixing a certain amount of cement with the saturated clay. The purpose of this paper is to model the cementation effect on the mechanical behavior of cement-treated clay. A micromechanical stress-strain model is developed considering explicitly the cementation at inter-cluster contacts. The inter-cluster bonding and debo...

  16. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    KAUST Repository

    Yoon, Seyoon

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g -1 and 257 mg g-1, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel\\'s salt (2 mol mol-1 or 121 mg g-1), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. © 2014 Published by Elsevier B.V. All rights reserved.

  17. Method for detecting cement voids or borehole washouts

    International Nuclear Information System (INIS)

    Smith, M.P.

    1978-01-01

    A fast neutron source is used to irradiate earth formations in the vicinity of a well borehole. Dual spaced epithermal neutron detectors are used to sample the epithermal neutron population at two different spaced distances from the source. A compensated formation porosity is obtained from the ratio of counting rates at the dual spaced detectors. An uncompensated porosity value is obtained from the count rate at the short spaced detector. Borehole washout or cement void regions are located by comparing the compensated and uncompensated values of formation porosity obtained in this manner

  18. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    Science.gov (United States)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate

  19. The cement recycling of the earthquake disaster debris by Hachinohe Cement Co., Ltd

    International Nuclear Information System (INIS)

    Kataoka, Masayuki

    2015-01-01

    A tremendous quantity of earthquake disaster debris and tsunami sediment was resulted by the Great East Japan Earthquake on March 11, 2011. Hachinohe Cement Co., Ltd., a Sumitomo Osaka Cement subsidiary, was the first cement industry company to receive and process such waste materials outside of their usual prefecture area, while the company is performing their treatment and recycling services locally in Hachinohe City and Aomori Prefecture. This report provides an explanation about the recycling mechanism of waste materials and by-products in cement manufacturing process, and introduces an example of actual achievements for the disaster debris treatment by utilizing the cement recycling technologies at the Hachinohe Cement Plant. (author)

  20. Peculiarities of the processes of hydration of binding substances in the arbolite mixture

    Science.gov (United States)

    Innokentieva, L. S.; Egorova, A. D.; Emelianova, Z. V.

    2017-09-01

    Cement and sand solution is traditionally used for production of wood concrete. But it is known that impact of water-soluble substances of wood on the hardening cement is shown in the stabilizing effect. The "Cement poisons" consisting generally of the HOCH carbohydrate groups, sedimented on a surface of particles of minerals of cement 3CaO.SiO2 (three-calcic silicate) and 3CaO.Al2O3 (three-calcic aluminate) form the thinnest covers which complicate the course of processes of hydration of cement. Plaster in comparison with cement is less sensitive to extractive substances of wood therefore their combination to wood (including waste of logging and a woodworking) both coniferous and deciduous species is allowed. Composite plaster binding with hongurin as active mineral additive agent are applied at selection of composition of arbolite, at the same time dependences of their physicomechanical properties on characteristics of filler are received.

  1. Use sulfoferritic cements in construction

    Science.gov (United States)

    Samchenko, Svetlana V.; Zorin, Dmitriy A.

    2018-03-01

    Currently, high-rise construction has received increasing attention around the world. In the big cities under construction is less space and one solution is the high-rise construction. However, high-rise buildings use special requirements, such as strength, thermal insulation, wind load and others. When concrete is exposed to continuous loads by wind or to mechanical loads, it undergoes abrasion. Resistance to this process depends on the characteristics of materials that the concrete and finishing seams are made of. Research on increasing impact and abrasion resistance of calcium sulfoferrite-based cement stone from the perspective of formation of cement stone structure will be instrumental in developing durable materials for application in high-rise construction.

  2. Concrete research using blended cements

    International Nuclear Information System (INIS)

    Butler, W.B.

    2001-01-01

    Concrete research increasingly involves the use of mixes containing one or more of the supplementary cementitious materials (SCMs), often in conjunction with chemical admixtures. The influence of materials is commonly evaluated on the basis of water/ cement or water/ binder ratio and SCM content as a percentage of total binder, with dosage level of chemical admixture varied to maintain workability. As a result, more than one variable is introduced at a time and the objectives of the research may not be achieved. The significance of water/ cement ratio and addition rates of admixtures are examined from a practical standpoint with suggestions for more appropriate means of evaluation of the influence of individual materials. Copyright (2001) The Australian Ceramic Society

  3. The density of cement phases

    International Nuclear Information System (INIS)

    Balonis, M.; Glasser, F.P.

    2009-01-01

    The densities of principal crystalline phases occurring in Portland cement are critically assessed and tabulated, in some cases with addition of new data. A reliable and self-consistent density set for crystalline phases was obtained by calculating densities from crystallographic data and unit cell contents. Independent laboratory work was undertaken to synthesize major AFm and AFt cement phases, determine their unit cell parameters and compare the results with those recorded in the literature. Parameters were refined from powder diffraction patterns using CELREF 2 software. A density value is presented for each phase, showing literature sources, in some cases describing limitations on the data, and the weighting attached to numerical values where an averaging process was used for accepted data. A brief discussion is made of the consequences of the packing of water to density changes in AFm and AFt structures.

  4. Glass ionomer cement: literature review

    OpenAIRE

    Sérgio Spezzia

    2017-01-01

    Introduction: In the dental area preventive actions occur in an attempt to avoid the installation of caries, a disease that has an increased prevalence in the population and which is a Public Health problem. Some resources are used for such, such as: performing early diagnosis and the option for conservative treatments of minimal intervention. The glass ionomer cement (CIV), coming from its beneficial characteristics that meet current trends, is closely related to the precepts of Preventive a...

  5. Modernization of Byuzmeyinsky Cement Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of saving energy and reducing greenhouse gas emission, investigations and discussions were given on a modernization project for Byuzmeyinsky Cement Factory, the only cement factory in Turkmenistan. Byuzmeyinsky Cement Factory uses the wet process which consumes a large amount of energy, is inferior in production efficiency and quality, and discharging a great amount of greenhouse effect gas. The present project will execute change of the raw material crusher into a vertical roll mill for one of the four wet kilns, and change of the facilities for raw material powder mixing and storing and clinker manufacturing into dry-type facilities using the NSP system. As a result of the discussions, the energy saving effect would be 86,321 tons of crude oil equivalent annually, and the greenhouse gas emission reducing effect would be 224,467 t-CO2 annually. The total fund amount required for the project is estimated to be 90,211,000 dollars. With regard to the profitability, the internal financial profit rate would be 9.71% after tax, and the ROE would be 18.62%, whereas the project is considered feasible. (NEDO)

  6. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation.

    Science.gov (United States)

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-12-15

    To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation.

  7. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    Science.gov (United States)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  8. Effects of cement particle size distribution on performance properties of Portland cement-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, D.P.; Garboczi, E.J.; Haecker, C.J.; Jensen, O.M.

    1999-10-01

    The original size, spatial distribution, and composition of Portland cement particles have a large influence on hydration kinetics, microstructure development, and ultimate properties of cement-based materials. In this paper, the effects of cement particle size distribution on a variety of performance properties are explored via computer simulation and a few experimental studies. Properties examined include setting time, heat release, capillary porosity percolation, diffusivity, chemical shrinkage, autogenous shrinkage, internal relative humidity evolution, and interfacial transition zone microstructure. The effects of flocculation and dispersion of the cement particles in the starting microstructures on resultant properties are also briefly evaluated. The computer simulations are conducted using two cement particle size distributions that bound those commonly in use today and three different water-to-cement ratios: 0.5, 0.3, and 0.246. For lower water-to-cement ratio systems, the use of coarser cements may offer equivalent or superior performance, as well as reducing production costs for the manufacturer.

  9. Cement replacement materials. Properties, durability, sustainability

    International Nuclear Information System (INIS)

    Ramezanianpour, Ali Akbar

    2014-01-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  10. The cement solidification systems at LANL

    International Nuclear Information System (INIS)

    Veazey, G.W.

    1990-01-01

    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cement type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing

  11. Characterization of experimental cements with endodontic goal

    International Nuclear Information System (INIS)

    Dantas, A.M.X.; Sousa, W.J.B.; Oliveira, E.D.C.; Carrodeguas, R.G.; Fook, M.V. Lia; Universidade Estadual da Paraiba

    2017-01-01

    The present study aimed to characterize experimental endodontic cements using as comparative parameter MTA cement. Two experimental endodontic cements were assessed: one based on 95% tri-strontium aluminate and 5% gypsum (CE1) and another based on 50% Sr_3Al_2O_6 and 50% non-structural white cement (CE2). Experimental cements were manipulated and characterized by scanning electron microscopy (SEM), coupled to EDS mode, X-ray diffractometer (XRD) and Thermogravimetric (TG) analysis. Data analysis demonstrated that the particles of the materials used presented varied shapes and sizes, with similar elements and crystalline behavior. However, CE1 presented increased mass loss. Experimental cements presents similarities to MTA, nevertheless, further studies are encourage to determinate comparative properties with the commercially material. (author)

  12. Modelling porewater chemistry in hydrated Portland cement

    International Nuclear Information System (INIS)

    Berner, U.R.

    1987-01-01

    Extensive employment of concrete is foreseen in radioactive waste repositories. A prerequisite for modelling the interactions between concrete and formation waters is characterization of the concrete system. Available experimental data from high pressure squeezing of cement pore-water indicate that, besides the high pH due to alkali hydroxide dissolution, cement composition itself influences the solubility determining solid phases. A model which simulates the hydration of Portland cement assuming complete hydration of the main clinker minerals is presented. The model also includes parameters describing the reactions between the cement and blending agents. Comparison with measured pore-water data generally gives a consistent picture and, as expected, the model gives correct predictions for pure Portland cements. For blended cements, the required additional parameters can, to some extent, be derived from pore-water analysis. 14 references, 1 figure, 4 tables

  13. Chemistry of cements for nuclear applications

    International Nuclear Information System (INIS)

    Barrett, P.; Glasser, F.P.

    1992-01-01

    In recent times the nuclear industry has thrown up challenges which cannot be met by the application of conventional civil and materials engineering knowledge. The contributions in this volume investigate all aspects of cement performance. The scope of the papers demonstrates the current balance of activities which have as their objective the elucidation of kinetics and immobilization, determining material interactions and of assessing future performance. The papers reflect the varied goals of the sponsors who include national governments, the Commission of the European Communities and the nuclear industries. In six parts attention is paid to the durability of cement and concrete in repository environment; interactions between cement, waste components and ground water; properties and performance of cement materials; leach behavior and mechanisms, diffusional properties of cement and concrete, including porosity-permeability relationships; and thermodynamics of cementitious systems and modelling of cement performance

  14. Energy efficiency improvement potentials for the cement industry in Ethiopia

    International Nuclear Information System (INIS)

    Tesema, Gudise; Worrell, Ernst

    2015-01-01

    The cement sector is one of the fast growing economic sectors in Ethiopia. In 2010, it consumed 7 PJ of primary energy. We evaluate the potential for energy savings and CO_2 emission reductions. We start by benchmarking the energy performance of 8 operating plants in 2010, and 12 plants under construction. The benchmarking shows that the energy intensity of local cement facilities is high, when compared to the international best practice, indicating a significant potential for energy efficiency improvement. The average electricity intensity and fuel intensity of the operating plants is 34% and 36% higher. For plants under construction, electricity use is 36% and fuel use 27% higher. We identified 26 energy efficiency measures. By constructing energy conservation supply curves, the energy-efficiency improvement potential is assessed. For the 8 operating plants in 2010, the cost-effective energy savings equal 11 GWh electricity and 1.2 PJ fuel, resulting in 0.1 Mt CO_2 emissions reduction. For the 20 cement plants expected to be in operation by 2020, the cost-effective energy saving potentials is 159 GWh for electricity and 7.2 PJ for fuel, reducing CO_2 emissions by about 0.6 Mt. We discuss key barriers and recommendations to realize energy savings. - Highlights: • The cement sector in Ethiopia is growing rapidly, using mainly imported fuels. • Benchmarking demonstrates a significant potential for energy efficiency improvement. • A large part of the energy efficiency potential can be achieved cost-effectively. • Ethiopia should ban the construction of obsolete vertical shaft kilns.

  15. Radiation effects on metals, alloys and cement

    International Nuclear Information System (INIS)

    Lucki, G.; Sciani, V.

    1988-12-01

    High - energy particle irradiation of materials brings as a consequence changes in their atomic structures that alter the electrical, magnetic and mechanical properties which are the most important characteristics for practical applications of metals and alloys. A review is made on experimental results of in-pile (IEA-RI reactor) and CV-28 cyclotron irradiated materials. Resistivity measurements on CuPd and FeNi alloys showed different behaviour during fast neutron irradiation. While CuPd had almost coincidental relaxation curves, FeNi presented a distinguishable short and long-range ordering with the critical order-disorder temperature at 515 0 C. Vacancy supersaturation curves of FeNiSi (49-49-2 at %), FeNiCr (49-95-49, 95-0,1 at. %), FeNiMo (50-50 at.% + 50 ppm) and pure FeNi (50-50 at.%), determined by means of the Magnetic After Effect are presented as an effective pre-selection method of nuclear materials before the destructive stage of void formation and swelling. A displacement of damage peak from 480 to 500 and 570 0 C was detected on pure AISI 321 stainless steel and with 0,05 wt.% and 0,10 wt.% of Nb additions by means of resistivity and micro-hardness. Ultrasound techniques applied to fast neutron irradiated portland cement paste (fluence 7,2 x 10 18 n/cm 2 ) showed a 24% decrease in its dynamic elasticity modulus. Helium diffusion on Au, Ag and Al foils irradiated in cyclotron was studied, suggesting a vacancy mechanism for single He atom diffusion. Embrittlement by Alpha particle implantation in cyclotron to simulate in-pile (n,α) reaction-was measured by high temperature creep on AISI 316 stainles steel. (author) [pt

  16. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    Science.gov (United States)

    Keeling, Parnell; Lennon, Alexander B; Kenny, Patrick J; O'Reilly, Peter; Prendergast, Patrick J

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct. Primary cement mantles were formed by cementing a polished stem into sections of tubular steel. If in the test group, the mantle underwent conditioning in saline to simulate ageing and was subject to a fatigue of 1 million cycles. If in the control group no such conditioning or fatigue was carried out. The cement-in-cement procedure was then undertaken. Both groups underwent a fatigue of 1 million cycles subsequent to the revision procedure. Application of a Mann-Whitney test on the recorded subsidence (means: 0.51, 0.46, n=10+10, P=0.496) and inducible displacement (means: 0.38, 0.36, P=0.96) revealed that there was no statistical difference between the groups. This study represents further biomechanical investigation of the mechanical behaviour of cement-in-cement revision constructs. Results suggest that pre-revision fatigue and ageing of the cement may not be deleterious to the mechanical performance of the revision construct. Thus, this study provides biomechanical evidence to back-up recent successes with this useful revision technique. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Sobolev, Konstantin

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  18. Pulmonary Cement Embolism following Percutaneous Vertebroplasty

    Directory of Open Access Journals (Sweden)

    Ümran Toru

    2014-01-01

    Full Text Available Percutaneous vertebroplasty is a minimal invasive procedure that is applied for the treatment of osteoporotic vertebral fractures. During vertebroplasty, the leakage of bone cement outside the vertebral body leads to pulmonary cement embolism, which is a serious complication of this procedure. Here we report a 48-year-old man who was admitted to our hospital with dyspnea after percutaneous vertebroplasty and diagnosed as pulmonary cement embolism.

  19. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Tanaka, S.; Yamawaki, M.

    1994-01-01

    In a fusion reactor or tritium handling facilities, contamination of concrete by tritium and subsequent release from it to the reactor or experimental rooms is a matter of problem for safety control of tritium and management of operational environment. In order to evaluate these tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were studied by combining various experimental methods. From the basic studies on tritium-cement interactions, it has become possible to evaluate tritium uptake by cement or concrete and subsequent tritium release behavior as well as tritium removing methods from them

  20. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-09-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% ordinary Portland cement 84% gg blast furnace slag, 6% microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. (author)

  1. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-09-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% ordinary Portland cement, 84% gg blast furnace slag, 6% microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the products' properties. (author)

  2. Use of rubber crumbs in cement concrete

    Science.gov (United States)

    Longvinenko, A. A.

    2018-03-01

    Rubber crumb obtained from worn out tires has been increasingly used over the last 15-20 years, especially in manufacture of asphalt and cement concrete mixtures. This review pays principal attention to application of the rubber crumb to cement concrete mixtures. Use of the rubber crumb in cement concrete is not as successful as in asphalt concrete mixtures, due to incompatibility problems linked to chemical composition and a significant difference in rigidity between the rubber crumb and concrete mixture aggregates. Different methods are proposed and studied to mitigate the adverse influence and increase the beneficial effects of the rubber crumb when added to cement concrete.

  3. Controls on Cementation in a Chalk Reservoir

    DEFF Research Database (Denmark)

    Meireles, Leonardo Teixeira Pinto; Hussein, A.; Welch, M.J.

    2017-01-01

    In this study, we identify different controls on cementation in a chalk reservoir. Biot’s coefficient, a measure of cementation, stiffness and strength in porous rocks, is calculated from logging data (bulk density and sonic Pwave velocity). We show that Biot’s coefficient is correlated...... that some degree of pore filling cementation occurred in Kraka (Alam, 2010). Lack of correlation between Biot’s coefficient and Gamma Ray (GR) indicates that the small amount of clay present is generally located in the pore space, thus not contributing to frame stiffness. While there was no compositional...... control on cementation via clay, we could infer that stratigraphy impacts on the diagenetic process....

  4. Immobilisation of radwaste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Macphee, D.; Atkins, M.; Pointer, C.; Cowie, J.; Wilding, C.R.; Mattingley, N.J.; Evans, P.A.

    1989-01-01

    The solubilities and influence on cement pH are reported for calcium aluminate and aluminosulphate hydrates. The solubility of Ca(OH) 2 is reported to 700 bars. Polymerization of C-S-H is investigated by NMR. Specific interactions of U 6+ and iodine (I - , IO 3 - ) with cement components are described. The impact of radiation on cements and the influence of higher temperature are documented. The role of dissolved Ca and CO 2 in groundwaters as dissolution media for cements are reported. (author)

  5. Integer programming of cement distribution by train

    Science.gov (United States)

    Indarsih

    2018-01-01

    Cement industry in Central Java distributes cement by train to meet daily demand in Yogyakarta and Central Java area. There are five destination stations. For each destination station, there is a warehouse to load cements. Decision maker of cement industry have a plan to redesign the infrastructure and transportation system. The aim is to determine how many locomotives, train wagons, and containers and how to arrange train schedules with subject to the delivery time. For this purposes, we consider an integer programming to minimize the total of operational cost. Further, we will discuss a case study and the solution the problem can be calculated by LINGO software.

  6. Prediction of hydroxyl concentrations in cement pore water using a numerical cement hydration model

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    2000-01-01

    In this paper, a 3D numerical cement hydration model is used for predicting alkali and hydroxyl concentrations in cement pore water. First, this numerical model is calibrated for Dutch cement employing both chemical shrinkage and calorimetric experiments. Secondly, the strength development of some

  7. Evaluation of cement thixotropy for the cement of oil wells in areas ...

    African Journals Online (AJOL)

    ... economical for cementing job operations in wells with loss zones. The results also show that the effect of LHF is positive, since in addition to his contribution to long term performances, especially the durability of hardened concrete, it improves the thixotropy of cement made of plaster. Keywords: cementing; lost circulation; ...

  8. Geotechnical Properties of Clayey Soil Stabilized with Cement ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-31

    Dec 31, 2017 ... ... to investigate the different effects of cement-sawdust ash and cement on a ... Keywords: Cement, Saw dust, strength test subgrade material, highway construction ... characteristics of lateritic soil stabilized with sawdust ash.

  9. Rietveld analysis, powder diffraction and cement

    International Nuclear Information System (INIS)

    Peterson, V.

    2002-01-01

    Full text: Phase quantification of cement is essential in its industrial use, however many methods are inaccurate and/or time consuming. Powder diffraction is one of the more accurate techniques used for quantitative phase analysis of cement. There has been an increase in the use of Rietveld refinement and powder diffraction for the analysis and phase quantification of cement and its components in recent years. The complex nature of cement components, existence of solid solutions, polymorphic variation of phases and overlapping phase peaks in diffraction patterns makes phase quantification of cements by powder diffraction difficult. The main phase in cement is alite, a solid solution of tricalcium silicate. Tricalcium silicate has been found to exist in seven modifications in three crystal systems, including triclinic, monoclinic, and rhombohedral structures. Hence, phase quantification of cements using Rietveld methods usually involves the simultaneous modelling of several tricalcium silicate structures to fit the complex alite phase. An industry ordinary Portland cement, industry and standard clinker, and a synthetic tricalcium silicate were characterised using neutron, laboratory x-ray and synchrotron powder diffraction. Diffraction patterns were analysed using full-profile Rietveld refinement. This enabled comparison of x-ray, neutron and synchrotron data for phase quantification of the cement and examination of the tricalcium silicate. Excellent Rietveld fits were achieved, however the results showed that the quantitative phase analysis results differed for some phases in the same clinker sample between various data sources. This presentation will give a short introduction about cement components including polymorphism, followed by the presentation of some problems in phase quantification of cements and the role of Rietveld refinement in solving these problems. Copyright (2002) Australian X-ray Analytical Association Inc

  10. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    OpenAIRE

    Auday A Mehatlaf

    2017-01-01

    Cement Klin Dust (CKD) was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40) had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28) d...

  11. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    OpenAIRE

    Choi, Yun-Wang; Oh, Sung-Rok; Choi, Byung-Keol

    2017-01-01

    We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite m...

  12. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    OpenAIRE

    Bediako, Mark; Amankwah, Eric Opoku

    2015-01-01

    The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC) and Portland limestone cement (PLC), CSIR-BRRI Pozzomix, Dangote OPC, a...

  13. Influence of Cements Containing Calcareous Fly Ash as a Main Component Properties of Fresh Cement Mixtures

    Science.gov (United States)

    Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja

    2017-10-01

    The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.

  14. Feasibility of producing nano cement in a traditional cement factory in Iraq

    Directory of Open Access Journals (Sweden)

    Sada Abdalkhaliq Hasan Alyasri

    2017-12-01

    Full Text Available This study investigates the economic feasibility of producing nano cement through the establishment of a production line within an existing cement factory. Creating a nano cement production line within the Alkufa Cement factory in Iraq is selected as a case study. Evaluation measures including internal rate of return (IRR, net present value (NPV and breakeven point (BEP are used to evaluate the possible gain that can be achieved from this option. The results demonstrated a positive NPV. The IRR is found to be 26.8% and BEP is reached within 3 years after the establishment of the line. This indicates that producing nano cement in the existing cement factory is economically feasible and can be more advantageous than the ordinary cement.

  15. Is it cement to be? Downhole cement that uses zeolite additive may offer lightweight alternative

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-05-01

    C2C Zeolite Corporation produces zeolites from a large deposit near Cache Creek, British Columbia, and processes them for use as an additive in downhole cement well casings. Early research indicates that zeolites can significantly improve the way downhole cement is made in the oil industry. Zeolites are made up mostly of silicates of aluminum and calcium. They have a great ability to absorb water, resulting in a lighter and more fluid cement than is currently available. C2C claims that zeolites will reduce cement weight, column pressure and operator costs. The cost benefits of using lighter cement downhole includes easier moving, processing and handling of the mix. Initial research suggests that zeolites might prove to be viable alternatives to other cement lighteners such as silica fumes or flyash. Zeolite-based cement also performed reasonably well in freeze-thaw tests and showed good adhesion and no evidence of shrinkage in downhole tests. 3 figs.

  16. Cements in radioactive waste management. Characterization requirements of cement products for acceptance and quality assurance purposes

    International Nuclear Information System (INIS)

    Rahman, A.A.; Glasser, F.P.

    1987-01-01

    Cementitious materials are used as immobilizing matrices for low (LLW) and medium-level wastes (MLW) and are also components of the construction materials in the secondary barriers and the repositories. This report has concerned itself with a critical assessment of the quality assurance aspects of the immobilization and disposal of MLW and LLW cemented wastes. This report has collated the existing knowledge of the use and potential of cementitious materials in radioactive waste immobilization and highlighted the physico-chemical parameters. Subject areas include an assessment of immobilization objectives and cement as a durable material, waste stream and matrix characterization, quality assurance concepts, nature of cement-based systems, chemistry and modelling of cement hydration, role and effect of blending agents, radwaste-cement interaction, assessment of durability, degradative and radiolytic processes in cements and the behaviour of cement-based matrices and their near-field interactions with the environment and the repository conditions

  17. Shrinkage Properties of Cement Stabilized Gravel

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard

    2014-01-01

    Cement stabilized gravel is an attractive material in road construction because its strength prop-erties are accommodating the increasingly higher requirements to the bearing capacity of a base course. However, reflection cracking of cement stabilized gravel is a major concern. In this pa...

  18. Development and design of a cementation process

    International Nuclear Information System (INIS)

    Vicente, R.

    1986-01-01

    The conceptual design of a facility for the immobilization of intermediate level liquid waste in cement is presented. The cementation process adopted a vibration assisted mixing process. The solidified waste is packed in 200 litres drum with barite concrete lining. The waste package is classified as Type A package for transport. (Author) [pt

  19. Development and design of a cementation process

    International Nuclear Information System (INIS)

    Vicente, R.

    1987-01-01

    The conceptual design of a facility for the immobilization of intermediate-level liquid wastes in cement is presented. The cementation process adopted a vibration assisted mixing process. The solidified waste is packed in 200 litres drum with barite concrete lining. The waste package is classified as Type A package for transport. (Author) [pt

  20. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  1. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  2. Basic Chemistry for the Cement Industry.

    Science.gov (United States)

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  3. Facial skeletal augmentation using hydroxyapatite cement.

    Science.gov (United States)

    Shindo, M L; Costantino, P D; Friedman, C D; Chow, L C

    1993-02-01

    This study investigates the use of a new calcium phosphate cement, which sets to solid, microporous hydroxyapatite, for facial bone augmentation. In six dogs, the supraorbital ridges were augmented bilaterally with this hydroxyapatite cement. On one side, the hydroxyapatite cement was placed directly onto the bone within a subperiosteal pocket. On the opposite side, the cement was contained within a collagen membrane tubule and then inserted into a subperiosteal pocket. The use of collagen tubules facilitated easy, precise placement of the cement. All implants maintained their original augmented height throughout the duration of the study. They were well tolerated without extrusion or migration, and there was no significant sustained inflammatory response. Histologic studies, performed at 3, 6, and 9 months revealed that when the cement was placed directly onto bone, progressive replacement of the implant by bone (osseointegration of the hydroxyapatite with the underlying bone) without a loss of volume was observed. In contrast, when the cement-collagen tubule combination was inserted, primarily a fibrous union was noted. Despite such fibrous union, the hydroxyapatite-collagen implant solidly bonded to the underlying bone, and no implant resorption was observed. Hydroxyapatite cement can be used successfully for the experimental augmentation of the craniofacial skeleton and may be applicable for such uses in humans.

  4. Elaborating the History of Our Cementing Societies

    DEFF Research Database (Denmark)

    Cao, Zhi; Shen, Lei; Løvik, Amund N.

    2017-01-01

    Modern cities and societies are built fundamentally based on cement and concrete. The global cement production has risen sharply in the past decades due largely to urbanization and construction. Here we deployed a top-down dynamic material flow analysis (MFA) model to quantify the historical deve...

  5. TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.

    Science.gov (United States)

    WESSON, CARL E.

    THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

  6. Pre-portland cements and geopolymers

    Czech Academy of Sciences Publication Activity Database

    Hanzlíček, Tomáš; Perná, Ivana; Ertl, Z.; Miller, S.M.

    2012-01-01

    Roč. 9, č. 1 (2012), s. 57-62 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : caementum * cement itious * calcareous cement Subject RIV: JN - Civil Engineering Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_01/5_Hanzlicek.pdf

  7. Contact dermatitis in cement workers in Isfahan

    Directory of Open Access Journals (Sweden)

    Iraji Fariba

    2006-01-01

    Full Text Available BACKGROUND: Due to recent industrialization and inadequately protected workers or in other words poor supervision on constructive workers habits in our large city of Isfahan cement contact dermatitis is relatively high especially among cement factory workers and constructive personnel. PURPOSES: To investigate the prevalence rate of cement contact dermatitis in cement factory workers in Isfahan. METHODS: A case-control clinical study was carried out by randomly selecing 150 factory workders and 150 official clerks in a cement factory in Isfahan in 2001. After a complete physical examination, data was recorded in observational checklists. FINDINGS: The percentages of contact dermatitis prevalences in the first and the second groups were 22% and 5.3% respectively. About 60% of cement workers with contact dermatitis were between 30-40 years of age. There was a direct relationship with age in both groups of the workers. In the high-exposure group, the hand eczema along was 70% but in the other group the percentage of involvement was the same in exposed and unexposed anatomical areas. CONCLUSIONS: There was a direct relationship between occurrence and the severity of involvement and duration of contact in the first group. Cent percent of cement workers had contact dermatitis after 10 or less years, but the percentage among the other group was 35%. LIMITATION: Irritant contact dermatitis to cement has not been detected.

  8. Evolution of cement based materials in a repository for radioactive waste and their chemical barrier function

    International Nuclear Information System (INIS)

    Kienzler, Bernhard; Metz, Volker; Schlieker, Martina; Bohnert, Elke

    2015-01-01

    The use of cementitious materials in nuclear waste management is quite widespread. It covers the solidification of low/intermediate-level liquid as well as solid wastes (e.g. laboratory wastes) and serves as shielding. For both high-level and intermediate-low level activity repositories, cement/concrete likewise plays an important role. It is used as construction material for underground and surface disposals, but more importantly it serves as barrier or sealing material. For the requirements of waste conditioning, special cement mixtures have been developed. These include special mixtures for the solidification of evaporator concentrates, borate binding additives and for spilling solid wastes. In recent years, low-pH cements were strongly discussed especially for repository applications, e.g. (Celine CAU DIT COUMES 2008; Garcia-Sineriz, et al. 2008). Examples for relevant systems are Calcium Silicate Cements (ordinary Portland cement (OPC) based) or Calcium Aluminates Cements (CAC). Low-pH pore solutions are achieved by reduction of the portlandite content by partial substitution of OPC by mineral admixtures with high silica content. The blends follow the pozzolanic reaction consuming Ca(OH) 2 . Potential admixtures are silica fume (SF) and fly ashes (FA). In these mixtures, super plasticizers are required, consisting of polycarboxilate or naphthalene formaldehyde as well as various accelerating admixtures (Garcia-Sineriz, et al. 2008). The pH regime of concrete/cement materials may stabilize radionuclides in solution. Newly formed alteration products retain or release radionuclides. An important degradation product of celluloses in cement is iso-saccharin acid. According to Glaus 2004 (Glaus and van Loon 2004), it reacts with radionuclides forming dissolved complexes. Apart from potentially impacting radionuclide solubility limitations, concrete additives, radionuclides or other strong complexants compete for surface sites for sorbing onto cement phases. In

  9. A New Type of Biphasic Calcium Phosphate Cement as a Gentamicin Carrier for Osteomyelitis

    Directory of Open Access Journals (Sweden)

    Wen-Yu Su

    2013-01-01

    Full Text Available Osteomyelitis therapy is a long-term and inconvenient procedure for a patient. Antibiotic-loaded bone cements are both a complementary and alternative treatment option to intravenous antibiotic therapy for the treatment of osteomyelitis. In the current study, the biphasic calcium phosphate cement (CPC, called α-TCP/HAP (α-tricalcium phosphate/hydroxyapatite biphasic cement, was prepared as an antibiotics carrier for osteomyelitis. The developed biphasic cement with a microstructure of α-TCP surrounding the HAP has a fast setting time which will fulfill the clinical demand. The X-ray diffraction and Fourier transform infrared spectrometry analyses showed the final phase to be HAP, the basic bone mineral, after setting for a period of time. Scanning electron microscopy revealed a porous structure with particle sizes of a few micrometers. The addition of gentamicin in α-TCP/HAP would delay the transition of α-TCP but would not change the final-phase HAP. The gentamicin-loaded α-TCP/HAP supplies high doses of the antibiotic during the initial 24 hours when they are soaked in phosphate buffer solution (PBS. Thereafter, a slower drug release is produced, supplying minimum inhibitory concentration until the end of the experiment (30 days. Studies of growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa in culture indicated that gentamicin released after 30 days from α-TCP/HAP biphasic cement retained antibacterial activity.

  10. Leach characterization of cement encapsulated wastes

    International Nuclear Information System (INIS)

    Roy, D.M.; Scheetz, B.E.; Wakeley, L.D.; Barnes, M.W.

    1982-01-01

    Matrix encapsulation of defense nuclear waste as well as intermediate-level commercial wastes within a low-temperature cementitious composite were investigated. The cements for this study included both as-received and modified calcium silicate and calcium aluminate cements. Specimens were prepared following conventional formulation techniques designed to produce dense monoliths, followed by curing at 60 0 C. An alternative preparation procedure is contrasted in which the specimens were ''warm'' pressed in a uniaxial press at 150 0 C at 50,000 psi for 0.5 h. Specimens of the waste/cement composites were leached in deionized water following three different procedures which span a wide range of temperatures and solution saturation conditions. Aluminate and compositionally adjusted silicate cements exhibited a better retentivity for Cs and Sr than did the as-received silicate cement. 15 refs

  11. Conditioning of radioactive waste solutions by cementation

    International Nuclear Information System (INIS)

    Vejmelka, P.; Rudolph, G.; Kluger, W.; Koester, R.

    1992-02-01

    For the cementation of the low and intermediate level evaporator concentrates resulting from the reprocessing of spent fuel numerous experiments were performed to optimize the waste form composition and to characterize the final waste form. Concerning the cementation process, properties of the waste/cement suspension were investigated. These investigations include the dependence of viscosity, bleeding, setting time and hydration heat from the waste cement slurry composition. For the characterization of the waste forms, the mechanical, thermal and chemical stability were determined. For special cases detailed investigations were performed to determine the activity release from waste packages under defined mechanical and thermal stresses. The investigations of the interaction of the waste forms with aqueous solutions include the determination of the Cs/Sr release, the corrosion resistance and the release of actinides. The Cs/Sr release was determined in dependence of the cement type, additives, setting time and sample size. (orig./DG) [de

  12. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  13. Cement analysis using d + D neutrons

    International Nuclear Information System (INIS)

    Womble, Phillip C.; Paschal, Jon; Moore, Ryan

    2005-01-01

    In the cement industry, the primary concern is quality control. The earlier the cement industry can institute quality control upon their product, the more significant their savings in labor, energy and material. We are developing a prototype cement analyzer using pulsed neutrons from a d-D electronic neutron generator with the goal of ensuring quality control of cement in an on-line manner. By utilizing a low intensity d-D neutron source and a specially-designed moderator assembly, we are able to produce one of the safest neutron-based systems in the market. Also, this design includes some exciting new methods of data acquisition which may substantially reduce the final installation costs. In our proof-of-principle measurements, we were able to measure the primary components of cement (Al, Si, Ca and Fe) to limits required for the raw materials, the derived mixes and the clinkers utilizing this neutron generator

  14. Dentin-cement Interfacial Interaction

    Science.gov (United States)

    Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline caustic effect of the calcium silicate cement’s hydration products degrades the collagenous component of the interfacial dentin. This degradation leads to the formation of a porous structure which facilitates the permeation of high concentrations of Ca2+, OH-, and CO32- ions, leading to increased mineralization in this region. Comparison of the dentin-restorative interfaces shows that there is a dentin-mineral infiltration with the Biodentine, whereas polyacrylic and tartaric acids and their salts characterize the penetration of the GIC. A new type of interfacial interaction, “the mineral infiltration zone”, is suggested for these calcium-silicate-based cements. PMID:22436906

  15. Cement and concrete options paper

    International Nuclear Information System (INIS)

    1999-10-01

    Greenhouse gas emissions associated with the production of concrete are projected to increase from 10.5 million tonnes in 1990 to almost 14 million tonnes in 2010. Over half of this amount will be non-energy related emissions of carbon dioxide resulting from the conversion of limestone to lime. According to this report by industry experts, the industry has an excellent record of improving energy efficiency and there are few easy gains remaining. Nevertheless, improvements in energy efficiency and fuel use, increased use of concrete where it can be shown to result in net reduction of GHG emissions, and partial replacement of cement by supplementary cementitious materials that involve no additional generation of GHGs, could yield an approximate reduction in carbon dioxide emissions of nearly seven million tons in 2010. The industry proposes three measures to realise these benefits: (1) encouraging replacement of fossil fuels by otherwise waste material, (2) encouraging increased use of concrete in constructing houses and roads, and (3) encouraging increased use of supplementary cementing materials. The industry is opposed to carbon or energy taxes that increase the cost of doing business, on the grounds that such taxes would adversely affect the industry's competitive position internationally. tabs

  16. Chemical alteration of cement hydrates by dissolution

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Nakanishi, Kiyoshi

    2000-01-01

    Cementitious material is a potential waste packaging and backfilling material for the radioactive waste disposal, and is expected to provide both physical and chemical containment. In particular, the sorption of radionuclides onto cementitious material and the ability to provide a high pH condition are very important parameters when considering the release of radionuclides from radioactive wastes. For the long term, in the geological disposal environment, cement hydrates will be altered by, for example, dissolution, chemical reaction with ions in the groundwater, and hydrothermal reaction. Once the composition or crystallinity of the constituent minerals of a cement hydrate is changed by these processes, the pH of the repository buffered by cementitious material and its sorption ability might be affected. However, the mechanism of cement alteration is not yet fully understood. In this study, leaching experiments of some candidate cements for radioactive waste disposal were carried out. Hydrated Ordinary Portland Cement (OPC), Blast Furnace Slag blended cement (OPC/BFS) and Highly containing Flyash and Silicafume Cement (HFSC) samples were contacted with distilled water at liquid:solid ratios of 10:1, 100:1 and 1000:1 at room temperature for 200 days. In the case of OPC, Ca(OH) 2 dissolved at high liquid:solid ratios. The specific surface area of all cement samples increased by leaching process. This might be caused by further hydration and change of composition of constituent minerals. A model is presented which predicts the leaching of cement hydrates and the mineral composition in the hydrated cement solid phase, including the incongruent dissolution of CSH gel phases and congruent dissolution of Ca(OH) 2 , Ettringite and Hydrotalcite. Experimental results of dissolution of Ca-O-H and Ca-Si-O-H phases were well predicted by this model. (author)

  17. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-08-01

    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  18. Statistical analysis of electrical resistivity as a tool for estimating cement type of 12-year-old concrete specimens

    NARCIS (Netherlands)

    Polder, R.B.; Morales-Napoles, O.; Pacheco, J.

    2012-01-01

    Statistical tests on values of concrete resistivity can be used as a fast tool for estimating the cement type of old concrete. Electrical resistivity of concrete is a material property that describes the electrical resistance of concrete in a unit cell. Influences of binder type, water-to-binder

  19. Microscale Investigation of Arsenic Distribution and Species in Cement Product from Cement Kiln Coprocessing Wastes

    Directory of Open Access Journals (Sweden)

    Yufei Yang

    2013-01-01

    Full Text Available To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As in the cement product from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale investigation methods, including electron probe microanalysis (EPMA and X-ray absorption spectroscopy. In this study, sodium arsenate crystals (Na3AsO412H2O were mixed with cement production raw materials and calcined to produce cement clinker. Then, clinker was mixed water to prepare cement paste. EPMA results showed that As was generally distributed throughout the cement paste. As content in calcium silicate hydrates gel (C-S-H was in low level, but higher than that in other cement mineral phases. This means that most of As is expected to form some compounds that disperse on the surfaces of cement mineral phases. Linear combination fitting (LCF of the X-ray absorption near edge structure spectra revealed that As in the cement paste was predominantly As(V and mainly existed as Mg3(AsO42, Ca3(AsO42, and Na2HAsO4.

  20. Cement-in-cement acetabular revision with a constrained tripolar component.

    Science.gov (United States)

    Leonidou, Andreas; Pagkalos, Joseph; Luscombe, Jonathan

    2012-02-17

    Dislocation of a total hip replacement (THR) is common following total hip arthroplasty (THA). When nonoperative management fails to maintain reduction, revision surgery is considered. The use of constrained acetabular liners has been extensively described. Complete removal of the old cement mantle during revision THA can be challenging and is associated with significant complications. Cement-in-cement revision is an established technique. However, the available clinical and experimental studies focus on femoral stem revision. The purpose of this study was to present a case of cement-in-cement acetabular revision with a constrained component for recurrent dislocations and to investigate the current best evidence for this technique. This article describes the case of a 74-year-old woman who underwent revision of a Charnley THR for recurrent low-energy dislocations. A tripolar constrained acetabular component was cemented over the primary cement mantle following removal of the original liner by reaming, roughening the surface, and thoroughly irrigating and drying the primary cement. Clinical and radiological results were good, with the Oxford Hip Score improving from 11 preoperatively to 24 at 6 months postoperatively. The good short-term results of this case and the current clinical and biomechanical data encourage the use of the cement-in-cement technique for acetabular revision. Careful irrigation, drying, and roughening of the primary surface are necessary. Copyright 2012, SLACK Incorporated.

  1. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.; Patzek, Tadeusz; van Oort, Eric

    2017-01-01

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  2. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    Directory of Open Access Journals (Sweden)

    Konstantin Sobolev

    2003-01-01

    Full Text Available The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and - at the same time - uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  3. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.

    2017-10-02

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  4. Parameters of Alumina Cement and Portland Cement with Addition of Chalcedonite Meal

    Science.gov (United States)

    Kotwa, Anna

    2017-10-01

    Aluminous cement is a quick binder with special properties. It is used primarily to make non-standard monolithic components exposed to high temperatures, + 1300°C. It is also a component of adhesives and mortars. It has a very short setting time. It is characterized by rapid increase in mechanical strength and resistance to aggressive sulphates. It can be used in reinforced concrete structures. Laying of concrete, construction mortar made of alumina cement can be carried out even at temperatures of -10°C. This article discusses a comparison of the parameters of hardened mortar made of alumina cement GÓRKAL 40 and Portland cement CEM I 42.5R. The mortars contain an addition of chalcedonite meal with pozzolanic properties, with particle size of less than 0.063μm. The meal was added in amounts of 5% and 20% of cement weight. Chalcedonite meal used in the laboratory research is waste material, resulting from chalcedonite aggregate mining. It has the same properties as the rock from which it originates. We have compared the parameters of hardened mortar i.e. compressive strength, water absorption and capillarity. The addition of 20% chalcedonite meal to mortars made from aluminous cement will decrease durability by 6.1% relative to aluminous cement mortar without addition of meal. Considering the results obtained during the absorbency tests, it can be stated that the addition of chalcedonite meal reduces weight gains in mortars made with cement CEM I 42.5 R and alumina cement. Use of alumina cement without addition of meal in mortars causes an increase of mass by 248% compared to Portland cement mortars without additions, in the absorption tests. The addition of chalcedonite meal did not cause increased weight gain in the capillary action tests. For the alumina cement mortars, a lesser weight gains of 24.7% was reported, compared to the Portland cement mortar after 28 days of maturing.

  5. Environmental Assessment of Different Cement Manufacturing ...

    Science.gov (United States)

    Due to its high environmental impact and energy intensive production, the cement industry needs to adopt more energy efficient technologies to reduce its demand for fossil fuels and impact on the environment. Bearing in mind that cement is the most widely used material for housing and modern infrastructure, the aim of this paper is to analyse the Emergy and Ecological Footprint of different cement manufacturing processes for a particular cement plant. There are several mitigation measures that can be incorporated in the cement manufacturing process to reduce the demand for fossil fuels and consequently reduce the CO2 emissions. The mitigation measures considered in this paper were the use of alternative fuels and a more energy efficient kiln process. In order to estimate the sustainability effect of the aforementioned measures, Emergy and Ecological Footprint were calculated for four different scenarios. The results show that Emergy, due to the high input mass of raw material needed for clinker production, stays at about the same level. However, for the Ecological Footprint, the results show that by combining the use of alternative fuels together with a more energy efficient kiln process, the environmental impact of the cement manufacturing process can be lowered. The research paper presents an analysis of the sustainability of cement production , a major contributor to carbon emissions, with respect to using alternative fuels and a more efficient kiln. It show

  6. Correlating cement characteristics with rheology of paste

    International Nuclear Information System (INIS)

    Vikan, H.; Justnes, H.; Winnefeld, F.; Figi, R.

    2007-01-01

    The influence of cement characteristics such as cement fineness and clinker composition on the 'flow resistance' measured as the area under the shear stress-shear rate flow curve has been investigated. Three different types of plasticizers namely naphthalene sulphonate-formaldehyde condensate, polyether grafted polyacrylate, and lignosulphonate have been tested in this context on 6 different cements. The flow resistance correlated well with the cement characteristic (Blaine.{d.cC 3 A + [1 - d].C 3 S}) where the factor d represents relative reactivity of cubic C 3 A and C 3 S while cC 3 A and C 3 S represent the content of these minerals. It was found to be either a linear or exponential function of the combined cement characteristic depending on plasticizer type and dosage. The correlation was valid for a mix of pure cement and cement with fly ash, limestone filler (4%), as well as pastes with constant silica fume dosage, when the mineral contents were determined by Rietveld analysis of X-ray diffractograms

  7. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.” [67 FR 46855, July 17, 2002] ...

  8. Effect of Cement Grades on some properties of Sandcrete ...

    African Journals Online (AJOL)

    The purpose of this study is to investigate the effects of cement grade on some properties of sandcrete. The cement used for this work was Ordinary Portland cement (Dangote brand) of grade 42.5 and 32.5 meeting the requirement of ASTM C150 type 1 cement. Three types of fine aggregate was also used to produce ...

  9. Energy economy and industrial ecology in the Brazilian cement sector

    International Nuclear Information System (INIS)

    Tavares, Marina Elisabete Espinho; Schaeffer, Roberto

    1999-01-01

    The article discusses the following issues of the Brazilian cement sector: the Brazilian cement main types specification, cement quantities evolution produced in Brazil from 1987 to 1997, energy conservation in the cement production process with additives, energy economy cost estimates from the utilization of additives, and several technologies energy economy cost used in the industrial sector

  10. Thermal behavior of asphalt cements

    International Nuclear Information System (INIS)

    Claudy, P.M.; Letoffe, J.M.; Martin, D.; Planche, J.P.

    1998-01-01

    Asphalt cements are highly complex mixtures of hydrocarbon molecules whose thermal behavior is of prime importance for petroleum and road industry. From DSC, the determination of several thermal properties of asphalts is given, e.g. glass-transition temperature and crystallized fraction content.The dissolution of a pure n-paraffin C n H 2n+2 in an asphalt, as seen by DSC, should be a single peak. For 20 g of these glasses change with time and temperature. The formation of the crystallized phases is superposed to the enthalpic relaxation of the glasses, making a kinetic study very difficult. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Operating experience with KRAFTWERK UNION cementation line

    International Nuclear Information System (INIS)

    Podmaka, L.; Tomik, L.

    1988-01-01

    A facility is described designed for fixation in a cement matrix of the radioactive concentrate produced by thickening waste water from the Bohunice nuclear power plant. The cementation line output is 0.6 m 3 concentrate/h. The concentrate is put in 200 l drums. The individual operating units, cement management, air conditioning, dosimetric monitoring and the building part are described. The requirements for the operators and the assessment of the quality of raw materials and the product are discussed. (M.D.). 3 figs., 4 refs

  12. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  13. Estimation and measurement of porosity change in cement paste

    International Nuclear Information System (INIS)

    Lee, Eunyong; Jung, Haeryong; Kwon, Ki-jung; Kim, Do-Gyeum

    2011-01-01

    Laboratory-scale experiments were performed to understand the porosity change of cement pastes. The cement pastes were prepared using commercially available Type-I ordinary Portland cement (OPC). As the cement pastes were exposed in water, the porosity of the cement pastes sharply increased; however, the slow decrease of porosity was observed as the dissolution period was extended more than 50 days. As expected, the dissolution reaction was significantly influenced by w/c ratio and the ionic strength of solution. A thermodynamic model was applied to simulate the porosity change of the cement pastes. It was highly influenced by the depth of the cement pastes. There was porosity increase on the surface of the cement pastes due to dissolution of hydration products, such as portlandite, ettringite, and CSH. However, the decrease of porosity was estimated inside the cement pastes due to the precipitation of cement minerals. (author)

  14. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    Directory of Open Access Journals (Sweden)

    Auday A Mehatlaf

    2017-12-01

    Full Text Available Cement Klin Dust (CKD was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40 had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28 day. In addition, mechanical properties included the coefficient of thermal conductivity and compressive strength had also observed with different age (3,7, and 28 for all prepared specimens. From the obtained the experimental results and their discussion, it was clear that the addition (20% of CKD had the good results in cement mortars.  

  15. Characterisation of cemented/bituminized LAW and MAW waste products

    International Nuclear Information System (INIS)

    Vejmelka, P.; Johnsen, P.; Kluger, W.; Koester, R.

    1987-01-01

    In the context of work for characterising low and medium activity waste products, investigations were carried out to determine the release of radioactivity from binding waste in given accidents, such as mechanical and thermal loading for the operating phase of a final store. The effects of mechanical loads on MAW cement products and the effects of thermal laods on MAW cement and MAW bitumen products were examined. The release of fine dust reaching the lungs, with a particle size of ≤10 μm from a 200 litre roller seam cement binder with a maximum mechanical load of 3x10 5 Nm covering the accident case is about 1.5 g and therefore corresponds to ≅ 10 -4 % of the total radio-activity inventory for homogeneous products. With thermal loading (60 minute oil fire, 800 0 C) ≅ 10 -3 % of the radioactivity inventory is released via the release of water from the waste binder. The activity release of MAW bitumen products containing NaNO 3 (175 litre drum) with thermal load is considerably higher, as due to the NaNO 3 content of the products, after an induction period of about 20 minutes there is an exothermal reaction between the bitumen and the NaNO 3 , which leads to burning of the bitumen with considerable aerosol formation. The Na losses are about 32% and the Pu losses, derived from the results of laboratory experiments with samples containing Eu and Pu and samples containing Eu on the original size, are only 15% maximum, even with complete burn up. It was shown for all the investigations with samples of the original size that the effects of the load cases considered can be reduced or completely avoided by additional packing (concrete shielding). (orig./RB) [de

  16. Characterization and chemical activity of Portland cement and two experimental cements with potential for use in dentistry.

    Science.gov (United States)

    Camilleri, J

    2008-09-01

    To evaluate the chemical activity of Portland cement and two other cement types with similar chemical composition to mineral trioxide aggregate with the aim of developing these cements for further applications in dentistry. The chemical composition of the three cement types namely Portland cement, calcium sulpho-aluminate cement and calcium fluoro-aluminate cement was evaluated by elemental analysis using energy dispersive analysis with X-ray under the scanning electron microscope and by X-ray diffraction analysis (XRD) to determine the phases. The constituents of the hydration reaction by-products were evaluated by XRD analysis of the set cements at 1, 7, 28 and 56 days and by analysis of the leachate by ion chromatography. The pH of both cements and leachate was determined at different time intervals. Cements admixed with micro-silica were also tested to determine the effect of micro-silica on the reaction by-products. All three cement types were composed of tricalcium silicate as the main constituent phase. The hydration reaction of Portland cement produced calcium hydroxide. However, this was not present in the other cements tested at all ages. Admixed micro-silica had little or no effect on the cements with regard to reaction by-products. The pH of all cements tested was alkaline. Both the experimental calcium sulpho-aluminate cement and calcium fluoro-aluminate cement had different hydration reactions to that of Portland cement even though calcium silicate was the major constituent element of both cement types. No calcium hydroxide was produced as a by-product to cement hydration. Micro-silica addition to the cement had no effect on the hydration reaction.

  17. 76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...

    Science.gov (United States)

    2011-08-12

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-461 (Third Review)] Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United States International...

  18. Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Jensen, Ole Mejlhede; Hansen, Kurt Kielsgaard

    2001-01-01

    The influence of cement particle-size distribution on autogenous strains and stresses in cement pastes of identical water-to-cement ratios is examined for cement powders of four different finenesses. Experimental measurements include chemical shrinkage, to quantify degree of hydration; internal r...

  19. Effect of Abutment Modification and Cement Type on Retention of Cement-Retained Implant Supported Crowns

    OpenAIRE

    Farzin, Mitra; Torabi, Kianoosh; Ahangari, Ahmad Hasan; Derafshi, Reza

    2014-01-01

    Objective: Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations. Materials and Method: Two prefabricated abutments were attached to their corresponding analogs and embedded in an ac...

  20. Foamed cement for squeeze cementing low-pressure, highly permeable reservoirs

    International Nuclear Information System (INIS)

    Chmllowski, W.; Kondratoff, L.B.

    1992-01-01

    Four different cement squeezing techniques have been used on wells producing from the Keg River formation in the Rainbow Lake area of Alberta, Canada. This paper evaluates 151 cement squeeze treatments performed at 96 wellsites and compares the use of foam cement vs. conventional squeeze treatments and techniques. Discussion includes key aspects, such as candidate selection, slurry design, treatment design, economic evaluation, and operational considerations

  1. Hydration of fly ash cement and microstructure of fly ash cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, H.

    1981-01-01

    The strength development and hydration of fly ash cement and the influence of addition of gypsum on those were studied at normal and elevated temperatures. It was found that an addition of a proper amount of gypsum to fly ash cement could accelerate the pozzolanic reaction between CH and fly ash, and as a result, increase the strength of fly ash cement pastes after 28 days.

  2. Electrocoagulation improving bone cement use in middle-ear surgery: short-term and middle-term results.

    Science.gov (United States)

    Galy-Bernadoy, C; Akkari, M; Mondain, M; Uziel, A; Venail, F

    2016-12-01

    Bone cement is used for ossicular chain repair and revision stapes surgery. Its efficient use requires cautious removal of mucosa from the ossicles. This paper reports a technique for easy, fast and safe removal of this mucosa prior to cement application. It consists of the application of monopolar electrocoagulation on the ossicles prior to bone cement application. The outcomes of six cases of revision stapes surgery and seven cases of partial ossiculoplasty, conducted between 2007 and 2012 using this new technique, were evaluated. Intra-operative reports and audiometric data were collected. During the last assessment, reconstruction using bone cement resulted in mean post-operative air-bone gaps of 4.1 ± 6.5 dB in revision stapes surgery cases and 5.7 ± 5.5 dB in partial ossiculoplasty cases, reflecting a significant hearing improvement (p = 0.03). No complications were observed. Electrocoagulation allows the removal of mucosa from the ossicles in an easy, fast and safe manner, enabling the use of bone cement for ossicular chain reconstruction.

  3. Nanofunctionalized zirconia and barium sulfate particles as bone cement additives

    Directory of Open Access Journals (Sweden)

    Riaz Gillani

    2009-12-01

    Full Text Available Riaz Gillani1, Batur Ercan1, Alex Qiao3, Thomas J Webster1,21Division of Engineering, 2Department of Orthopaedics, Brown University, Providence, RI, USA; 3G3 Technology Innovations, LLC, Pittsford, NY, USAAbstract: Zirconia (ZrO2 and barium sulfate (BaSO4 particles were introduced into a methyl methacrylate monomer (MMA solution with polymethyl methacrylate (PMMA beads during polymerization to develop the following novel bone cements: bone cements with unfunctionalized ZrO2 micron particles, bone cements with unfunctionalized ZrO2 nanoparticles, bone cements with ZrO2 nanoparticles functionalized with 3-(trimethoxysilylpropyl methacrylate (TMS, bone cements with unfunctionalized BaSO4 micron particles, bone cements with unfunctionalized BaSO4 nanoparticles, and bone cements with BaSO4 nanoparticles functionalized with TMS. Results demonstrated that in vitro osteoblast (bone-forming cell densities were greater on bone cements containing BaSO4 ceramic particles after four hours compared to control unmodified bone cements. Osteoblast densities were also greater on bone cements containing all of the ceramic particles after 24 hours compared to unmodified bone cements, particularly those bone cements containing nanofunctionalized ceramic particles. Bone cements containing ceramic particles demonstrated significantly altered mechanical properties; specifically, under tensile loading, plain bone cements and bone cements containing unfunctionalized ceramic particles exhibited brittle failure modes whereas bone cements containing nanofunctionalized ceramic particles exhibited plastic failure modes. Finally, all bone cements containing ceramic particles possessed greater radio-opacity than unmodified bone cements. In summary, the results of this study demonstrated a positive impact on the properties of traditional bone cements for orthopedic applications with the addition of unfunctionalized and TMS functionalized ceramic nanoparticles

  4. Cement stabilization of hazardous and radioactive electroplating sludge

    International Nuclear Information System (INIS)

    Langton, C.A.; Pickett, J.B.; Martin, M.L.

    1991-01-01

    Cement stabilization was evaluated for treatment of nickel and uranium in electroplating sludge at the Savannah River Site. Waste forms were prepared by pretreating the sludge and the solidifying it in a variety of cement, cement plus flyash, and cement-flyash-slag mixes. The sludge was also treated by one-step filtration-solidification. Leaching results and processing data indicate the cement solidification is an effective method of treating hazardous-low-level electroplating waste

  5. experimental study of cement grout: rheological behavior and sedimentation

    OpenAIRE

    Rosquoët , Frédéric; Alexis , Alain ,; Khelidj , Abdelhafid; Phelipot-Mardelé , Annabelle

    2002-01-01

    International audience; Three basic elements (cement, water and admixture) usually make up injectable cement grouts used for prestressed cable coating, repair and consolidation of masonry, soil grouting, etc... The present study was divided into two parts. First, in order to characterize rheologically fresh cement paste with W/C ratios (water/cement ratio) varying between 0.35 and 1, an experimental study was carried out and has revealed that the cement past behaves like a shear-thinning mate...

  6. Nanoscaled Mechanical Properties of Cement Composites Reinforced with Carbon Nanofibers

    OpenAIRE

    Barbhuiya, Salim; Chow, PengLoy

    2017-01-01

    This paper reports the effects of carbon nanofibers (CNFs) on nanoscaled mechanical properties of cement composites. CNFs were added to cement composites at the filler loading of 0.2 wt % (by wt. of cement). Micrographs based on scanning electron microscopy (SEM) show that CNFs are capable of forming strong interfacial bonding with cement matrices. Experimental results using nanoindentation reveal that the addition of CNFs in cement composites increases the proportions of high-density calcium...

  7. Effect of Cement Composition in Lampung on Concrete Strength

    OpenAIRE

    Riyanto, Hery

    2014-01-01

    The strength and durability of concrete depends on the composition of its constituent materials ie fine aggregate, coarse aggregate, cement, water and other additives. The cement composition is about 10% acting as a binder paste material fine and coarse aggregates. In the Lampung market there are several brands of portland cement used by the community to make concrete construction. Although there is a standard of the government of portland cement composition, yet each brand of cement has diff...

  8. INFLUENCE OF WINE ACID ON RHEOLOGICAL PROPERTIES OF WELL BORE CEMENT SLURRIES AND HARDENED CEMENT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1989-12-01

    Full Text Available Adaptation of commercial types of domestic cements for use in cementing the deep wells is a process by which Yugoslav oil industry tends to solve problems of completion of those wells independently. In order to design a domestic, cheep and effective retarder, tests of applicability of wine acid on cement slurries have been carried out. Besides examining the necessary wine acid content to achieve desirable Theological properties, the influence of this additive on properties of hardened cement samples has been tested too (the paper is published in Croatian.

  9. A comparison of resistance to fracture among four commercially available forms of hydroxyapatite cement.

    Science.gov (United States)

    Miller, Lee; Guerra, Aldo Benjamin; Bidros, Rafi Sirop; Trahan, Christopher; Baratta, Richard; Metzinger, Stephen Eric

    2005-07-01

    Hydroxyapatite cement is a relatively new biomaterial that has found widespread use in craniomaxillofacial surgery. Despite its common usage, complication rates as high as 32% have been reported. When failed implants are removed, implant fracture has been cited as a potential cause of failure. The purpose of this study was to evaluate resistance to fracture among 4 commercially available hydroxyapatite cement formulations. The materials tested included Norian Craniofacial Repair System (carbonated apatite cement) (AO North America, Devon, PA), Norian CRS Fast Set Putty (carbonated apatite cement) (AO North America), BoneSource (hydroxyapatite cement) (Stryker Leibinger, Portage, MI), and Mimix (hydroxyapatite cement) (Walter Lorenz Surgical, Inc, Jacksonville, FL). To ensure consistency, all materials were embedded in acrylic wells. Each material was placed into a well 2.54 cm in diameter and 0.953 cm in thickness. The materials were prepared per manufacturer specifications. All materials were incubated at 37.0 degrees C, in 6% CO2, 100% humidity for 36 hours. Using the Bionix MTS Test System, a 12-mm-diameter probe applied incremental force to the center of the disk at a rate of 0.1 mm per second. The transmitted force was measured using a Bionix MTS Axial-Torsional Load Transducer for each disk. The force which resulted in fracture was recorded for each material. Ten disks of each material were processed by this method, for a total of 40 disks. The significance of resistance to fracture for the 4 compounds was analyzed using 1-way analysis of variance with post hoc Scheffe method. Mean fracture force with related P values was plotted for direct comparison of group outcomes. Material type contributed significantly to variance in fracture force for the biomaterials studied. Norian CRS required the greatest mean fracture force (1385 N, SD+/-292 N), followed by Norian CRS Fast Set Putty (1143 N, SD+/-193 N). Mimix required a mean fracture force of 740 N, SD+/-79 N

  10. Synthesis of transfer-free graphene on cemented carbide surface.

    Science.gov (United States)

    Yu, Xiang; Zhang, Zhen; Liu, Fei; Ren, Yi

    2018-03-19

    Direct growth of spherical graphene with large surface area is important for various applications in sensor technology. However, the preparation of transfer-free graphene on different substrates is still a challenge. This study presents a novel approach for the transfer-free graphene growth directly on cemented carbide. The used simple thermal annealing induces an in-situ transformation of magnetron-sputtered amorphous silicon carbide films into the graphene matrix. The study reveals the role of Co, a binding phase in cemented carbides, in Si sublimation process, and its interplay with the annealing temperature in development of the graphene matrix. A detailed physico-chemical characterisation was performed by structural (XRD analysis and Raman spectroscopy with mapping studies), morphological (SEM) and chemical (EDS) analyses. The optimal bilayer graphene matrix with hollow graphene spheres on top readily grows at 1000 °C. Higher annealing temperature critically decreases the amount of Si, which yields an increased number of the graphene layers and formation of multi-layer graphene (MLG). The proposed action mechanism involves silicidation of Co during thermal treatment, which influences the existing chemical form of Co, and thus, the graphene formation and variations in a number of the formed graphene layers.

  11. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  12. Subgrade stabilization alternatives to lime and cement.

    Science.gov (United States)

    2010-04-15

    This project involved four distinct research activities, (1) the influence of temperature on lime-stabilized soils, (2) the influence of temperature on cement-stabilized soils (3) temperature modeling of stabilized subgrade and (4) use of calcium chl...

  13. Cement materials for cesium and iodine confinement

    International Nuclear Information System (INIS)

    Nicolas, G.; Lequeux, N.; Boch, P.; Prene, S.

    2001-01-01

    The following topics were dealt with: radioactive waste storage, cement materials reacting with radioactive cesium and iodine, chemical barrier formation against radioactive pollution, ceramization, long term stability, XRD, PIXE analysis

  14. Recycled concrete aggregate in portland cement concrete.

    Science.gov (United States)

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  15. Recycled materials in Portland cement concrete

    Science.gov (United States)

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  16. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained by...... on assumptions of degree of reaction and product densities gave for plain cement pastes results comparable to MIP data.......Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...

  17. High performance concrete with blended cement

    International Nuclear Information System (INIS)

    Biswas, P.P.; Saraswati, S.; Basu, P.C.

    2012-01-01

    Principal objectives of the proposed project are two folds. Firstly, to develop the HPC mix suitable to NPP structures with blended cement, and secondly to study its durability necessary for desired long-term performance. Three grades of concrete to b considered in the proposed projects are M35, M50 and M60 with two types of blended cements, i.e. Portland slag cement (PSC) and Portland pozzolana cement (PPC). Three types of mineral admixtures - silica fume, fly ash and ground granulated blast furnace slag will be used. Concrete mixes with OPc and without any mineral admixture will be considered as reference case. Durability study of these mixes will be carried out

  18. Effects of the super plasticizers and the water/cement ratio on the mini-slump of Portland cement pastes

    International Nuclear Information System (INIS)

    Meirelles, J.R.; Morelli, A.C.; Baldo, J.B.

    1998-01-01

    The rheology of Portland cement concrete is dominated by the cement paste rheology. In general the rheological behavior of cement pastes is evaluated by means of the mini-slump test. In the present paper it was investigated the effect of the water/cement ratio was as of two types of superplasticizers (melamine and naftalen based) on the mini-slump of pastes of common cement pastes. (author)

  19. Mechanical characterization of sisal reinforced cement mortar

    OpenAIRE

    R. Fujiyama; F. Darwish; M.V. Pereira

    2014-01-01

    This work aims at evaluating the mechanical behavior of sisal fiber reinforced cement mortar. The composite material was produced from a mixture of sand, cement, and water. Sisal fibers were added to the mixture in different lengths. Mechanical characterization of both the composite and the plain mortar was carried out using three point bend, compression, and impact tests. Specimens containing notches of different root radii were loaded in three point bending in an effort to determine the eff...

  20. Topics in cement and concrete research

    OpenAIRE

    Brouwers, Jos; Russel, M.I.; Basheer, P.A.M.

    2007-01-01

    The present paper addresses several topics in regard to the sustainable design and use of concrete. First, major features concerning the sustainable aspects of the material concrete are summarised. Then the major constituent, from an environmental point of view, cement is discussed in detail, particularly the hydration and application of slag cement. The intelligent combining of mineral oxides, which are found in clinker, slag, fly ashes etc., is designated as mineral oxide engineering. It re...

  1. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  2. Fast ejendom

    DEFF Research Database (Denmark)

    Pagh, Peter

    Bogen omfatter en gennemgang af lovgivning, praksis og teori vedrørende køb af fast ejendom og offentligretlig og privatretlig regulering. Bogen belyser bl.a. de privatretlige emner: købers misligholdelsesbeføjelser, servitutter, naboret, hævd og erstatningsansvar for miljøskader samt den...

  3. Study on properties and testing methods of thermo-responsive cementing system for well cementing in heavy oil thermal recovery

    Science.gov (United States)

    Li, Lianjiang

    2017-08-01

    In this paper, thermo-responsive cement slurry system were being developed, the properties of conventional cement slurry, compressive strength high temperature of cement sheath, mechanical properties of cement sheath and thermal properties of cement sheath were being tested. Results were being used and simulated by Well-Life Software, Thermo-responsive cement slurry system can meet the requirements of heavy oil thermal recovery production. Mechanical and thermal properties of thermo-responsive cement sheath were being tested. Tensile fracture energy of the thermo-responsive cement sheath is larger than conventional cement. The heat absorption capacity of conventional cement sheath is larger than that of thermo-responsive cement sheath, this means more heat is needed for the unit mass once increasing 1.0 °C, which also indicates that thermo-responsive cement own good heat insulating and preservation effects. The heat conductivity coefficient and thermal expansion coefficient of thermo-responsive cement is less than and conventional cement, this means that thermo-responsive cement have good heat preservation and insulation effects with good thermal expansion stabilities.

  4. Photoactive glazed polymer-cement composite

    Science.gov (United States)

    Baltes, Liana; Patachia, Silvia; Tierean, Mircea; Ekincioglu, Ozgur; Ozkul, Hulusi M.

    2018-04-01

    Macro defect free cements (MDF), a kind of polymer-cement composites, are characterized by remarkably high mechanical properties. Their flexural strengths are 20-30 times higher than those of conventional cement pastes, nearly equal to that of an ordinary steel. The main drawback of MDF cements is their sensitivity to water. This paper presents a method to both diminish the negative impact of water on MDF cements mechanical properties and to enlarge their application by conferring photoactivity. These tasks were solved by glazing MDF cement with an ecological glaze containing nano-particles of TiO2. Efficiency of photocatalytic activity of this material was tested against methylene blue aqueous solution (4.4 mg/L). Influence of the photocatalyst concentration in the glaze paste and of the contact time on the photocatalysis process (efficiency and kinetic) was studied. The best obtained photocatalysis yield was of 97.35%, after 8 h of exposure to 254 nm UV radiation when used an MDF glazed with 10% TiO2 in the enamel paste. Surface of glazed material was characterized by optic microscopy, scratch test, SEM, XRD, and EDS. All these properties were correlated with the aesthetic aspect of the glazed surface aiming to propose using of this material for sustainable construction development.

  5. Pre-cementation of deep shaft

    Science.gov (United States)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  6. Analysis of rheological properties of bone cements.

    Science.gov (United States)

    Nicholas, M K D; Waters, M G J; Holford, K M; Adusei, G

    2007-07-01

    The rheological properties of three commercially available bone cements, CMW 1, Palacos R and Cemex ISOPLASTIC, were investigated. Testing was undertaken at both 25 and 37 degrees C using an oscillating parallel plate rheometer. Results showed that the three high viscosity cements exhibited distinct differences in curing rate, with CMW 1 curing in 8.7 min, Palacos R and Cemex ISOPLASTIC in 13 min at 25 degrees C. Furthermore it was found that these curing rates were strongly temperature dependent, with curing rates being halved at 37 degrees C. By monitoring the change of viscosity with time over the entire curing process, the results showed that these cements had differing viscosity profiles and hence exhibit very different handling characteristics. However, all the cements reached the same maximum viscosity of 75 x 10(3) Pa s. Also, the change in elastic/viscous moduli and tan delta with time, show the cements changing from a viscous material to an elastic solid with a clear peak in the viscous modulus during the latter stages of curing. These results give valuable information about the changes in rheological properties for each commercial bone cement, especially during the final curing process.

  7. Development of a biodegradable bone cement

    International Nuclear Information System (INIS)

    Yusof Abdullah; Nurhaslinda Ee Abdullah; Wee Pee Chai; Norita Mohd Zain

    2002-01-01

    Biodegradable bone cement is a newly developed bone repair material, which is able to give immediate support to the implant area, and does not obstruct the bone repairing and regeneration process through appropriate biodegradation rate, which is synchronized with the mechanical load it should bear. The purpose of this study is to locally produce biodegradable bone cement using HA as absorbable filler. The cement is composed of an absorbable filler and unsaturated polyester for 100% degradation. Cross-linking effect is achieved through the action of poly (vinyl pyrrol lidone) (PVP) and an initiator. On the other hand, PPF was synthesized using direct esterification method. Characteristics of the bone cement were studied; these included the curing time, cross-linking effect and curing temperature. The products were characterized using X-Ray diffraction (XRD) to perform phase analysis and Scanning Electrons Microscopes to determine the morphology. The physical and mechanical properties of the bone cement were also investigated. The biocompatibility of the bone cement was tested using simulated body physiological solution. (Author)

  8. Evaluation of the amount of excess cement around the margins of cement-retained dental implant restorations: the effect of the cement application method.

    Science.gov (United States)

    Chee, Winston W L; Duncan, Jesse; Afshar, Manijeh; Moshaverinia, Alireza

    2013-04-01

    Complete removal of excess cement from subgingival margins after cementation of implant-supported restorations has been shown to be unpredictable. Remaining cement has been shown to be associated with periimplant inflammation and bleeding. The purpose of this study was to investigate and compare the amount of excess cement after cementation with 4 different methods of cement application for cement-retained implant-supported restorations. Ten implant replicas/abutments (3i) were embedded in acrylic resin blocks. Forty complete veneer crowns (CVCs) were fabricated by waxing onto the corresponding plastic waxing sleeves. The wax patterns were cast and the crowns were cemented to the implant replicas with either an interim (Temp Bond) or a definitive luting agent (FujiCEM). Four methods of cement application were used for cementation: Group IM-Cement applied on the internal marginal area of the crown only; Group AH-Cement applied on the apical half of the axial walls of the crown; Group AA-Cement applied to all axial walls of the interior surface of the crown, excluding the occlusal surface; and Group PI-Crown filled with cement then seated on a putty index formed to the internal configuration of the restoration (cementation device) (n=10). Cement on the external surfaces was removed before seating the restoration. Cement layers were applied on each crown, after which the crown was seated under constant load (80 N) for 10 minutes. The excess cement from each specimen was collected and measured. One operator performed all the procedures. Results for the groups were compared, with 1 and 2-way ANOVA and the Tukey multiple range test (α=.05). No significant difference in the amount of excess/used cement was observed between the 2 different types of cements (P=.1). Group PI showed the least amount of excess cement in comparison to other test groups (P=.031). No significant difference was found in the amount of excess cement among groups MI, AH, and AA. Group AA showed the

  9. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions

    Directory of Open Access Journals (Sweden)

    S. P. Dunuweera

    2018-01-01

    Full Text Available We first discuss cement production and special nomenclature used by cement industrialists in expressing the composition of their cement products. We reveal different types of cement products, their compositions, properties, and typical uses. Wherever possible, we tend to give reasons as to why a particular cement type is more suitable for a given purpose than other types. Cement manufacturing processes are associated with emissions of large quantities of greenhouse gases and environmental pollutants. We give below quantitative and qualitative analyses of environmental impact of cement manufacturing. Controlling pollution is a mandatory legal and social requirement pertinent to any industry. As cement industry is one of the biggest CO2 emitters, it is appropriate to discuss different ways and means of CO2 capture, which will be done next. Finally, we give an account of production of nanocement and advantages associated with nanocement. Nanofillers such as nanotitania, nanosilica, and nanoalumina can be produced in large industrial scale via top-down approach of reducing size of naturally available bulk raw materials to those in the nanorange of 1 nm–100 nm. We mention the preparation of nanotitania and nanosilica from Sri Lankan mineral sands and quartz deposits, respectively, for the use as additives in cement products to improve performance and reduce the amount and cost of cement production and consequent environmental impacts. As of now, mineral sands and other treasures of minerals are exported without much value addition. Simple chemical modifications or physical treatments would add enormous value to these natural materials. Sri Lanka is gifted with highly pure quartz and graphite from which silica and graphite nanoparticles, respectively, can be prepared by simple size reduction processes. These can be used as additives in cements. Separation of constituents of mineral sands is already an ongoing process.

  10. High-gravity combustion synthesis and in situ melt infiltration: A new method for preparing cemented carbides

    International Nuclear Information System (INIS)

    Liu, Guanghua; Li, Jiangtao; Yang, Zengchao; Guo, Shibin; Chen, Yixiang

    2013-01-01

    A new method of high-gravity combustion synthesis and in situ melt infiltration is reported for preparing cemented carbides, where hot nickel melt is in situ synthesized from a highly exothermic combustion reaction and then infiltrated into tungsten carbide powder compacts. The as-prepared sample showed a homogeneous microstructure, and its relative density, hardness and flexural strength were 94.4%, 84 HRA and 1.49 GPa, respectively. Compared with conventional powder metallurgy approaches, high-gravity combustion synthesis offers a fast and furnace-free way to produce cemented carbides

  11. In vitro tensile strength of luting cements on metallic substrate.

    Science.gov (United States)

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.

  12. Fasting and feeding variations of insulin requirements and insulin binding to erythrocytes at different times of the day in insulin dependent diabetics--assessed under the condition of glucose-controlled insulin infusion.

    Science.gov (United States)

    Hung, C T; Beyer, J; Schulz, G

    1986-07-01

    Nine insulin-dependent diabetic patients were examined for insulin requirement, counterregulatory hormones, and receptor binding during their connection to glucose-controlled insulin infusion system. They were of 103% ideal body weight. A diet of 45% carbohydrate, 20% protein and 35% fat was divided into three meals and three snacks averaging the daily calorie intake of 1859 kcal. Following an equilibrating phase of 14 hours after the connection to the glucose-controlled insulin infusion system the blood samples were taken at 0800, 1200 and 1800. The insulin infusion rate increased at 0300 in the early morning from 0.128 mU/kg/min to 0.221 mU/kg/min (P less than 0.02). The postprandial insulin infusion rate jumped from 0.7 U/h (0700-0800) to 7.5 U/h (0800-0900). The calorie related and carbohydrate related insulin demands after breakfast were also highest and declined after lunch respectively (1.16 uU/kg/min kj vs. 0.61 uU/kg/min kj, P less than 0.05 and 236 mU/g CHO vs. 129 mU/g CHO and 143 mU/g CHO). Of the counterregulatory hormones the cortisol showed a significant diurnal rhythm to insulin demands. The insulin tracer binding was higher at 0800 before breakfast than that at 1200 before lunch (P less than 0.05). The increased binding could be better attributed to receptor concentration change than to affinity change. The cause of insulin relative insensitivity in the morning could be due to altered liver response to the cortisol peak in type 1 diabetics. The preserved variation of insulin binding in our patients might be referred to feeding.

  13. Study on Cr(VI) Leaching from Cement and Cement Composites

    Science.gov (United States)

    Palascakova, Lenka; Kanuchova, Maria

    2018-01-01

    This paper reports an experimental study on hexavalent chromium leaching from cement samples and cement composites containing silica fume and zeolite additions that were subjected to various leaching agents. The water-soluble Cr(VI) concentrations in cements ranged from 0.2 to 3.2 mg/kg and represented only 1.8% of the total chromium content. The presence of chromium compounds with both chromium oxidation states of III and VI was detected in the cement samples by X-ray photoelectron spectroscopy (XPS). Leaching tests were performed in a Britton-Robinson buffer to simulate natural conditions and showed increased dissolution of Cr(VI) up to 6 mg/kg. The highest amount of leached hexavalent chromium was detected after leaching in HCl. The findings revealed that the leaching of chromium from cements was higher by 55–80% than that from the cement composites. A minimum concentration was observed for all cement samples when studying the relationship between the soluble Cr(VI) and the cement storage time. PMID:29690550

  14. Sulphur cement pre-composition and process for preparing such sulphur cement pre-composition

    NARCIS (Netherlands)

    2013-01-01

    The invention provides a process for the preparation of a sulphur cement pre-composition comprising reacting sulphur modifier with polysulphide-containing organosilane to obtain in the presence of sulphur the sulphur cement pre-composition, wherein the organosilane has the general molecular formula:

  15. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  16. Ceramic residue for producing cements, method for the production thereof, and cements containing same

    OpenAIRE

    Sánchez de Rojas, María Isabel; Frías, Moisés; Asensio, Eloy; Medina Martínez, César

    2014-01-01

    [EN] The invention relates to a ceramic residue produced from construction and demolition residues, as a puzzolanic component of cements. The invention also relates to a method for producing said ceramic residues and to another method of producing cements using said residues. This type of residue is collected in recycling plants, where it is managed. This invention facilitates a potential commercial launch.

  17. Analysis of CCRL proficiency cements 151 and 152 using the Virtual Cement and Concrete Testing Laboratory

    International Nuclear Information System (INIS)

    Bullard, Jeffrey W.; Stutzman, Paul E.

    2006-01-01

    To test the ability of the Virtual Cement and Concrete Testing Laboratory (VCCTL) software to predict cement hydration properties, characterization of mineralogy and phase distribution is necessary. Compositional and textural characteristics of Cement and Concrete Reference Laboratory (CCRL) cements 151 and 152 were determined via scanning electron microscopy (SEM) analysis followed by computer modeling of hydration properties. The general procedure to evaluate a cement is as follows: (1) two-dimensional SEM backscattered electron and X-ray microanalysis images of the cement are obtained, along with a measured particle size distribution (PSD); (2) based on analysis of these images and the measured PSD, three-dimensional microstructures of various water-to-cement ratios are created and hydrated using VCCTL, and (3) the model predictions for degree of hydration under saturated conditions, heat of hydration (ASTM C186), setting time (ASTM C191), and strength development of mortar cubes (ASTM C109) are compared to experimental measurements either performed at NIST or at the participating CCRL proficiency sample evaluation laboratories. For both cements, generally good agreement is observed between the model predictions and the experimental data

  18. The effect of sand/cement ratio on radon exhalation from cement specimens containing 226Ra

    International Nuclear Information System (INIS)

    Takriti, S.; Shweikani, R.; Ali, A. F.; Rajaa, G.

    2002-09-01

    Portland cement was mixed with different kind of sand (calcite and silica) in different ratio to produce radioactive specimens with radium chloride. The release of radon from these samples was studied. The results showed that radon release from the calcite-cement samples increased with the increases of the sand mixed ratio until fixed value (about 20%) then decreased to less than its release from the beginning, and the release changed with the sand size also. Radon release from silica-cement samples had the same observations of calcite-cement samples. It was found that calcite-cement reduced the radon exhalation quantity rather than the silica-cement samples. The decreases of the radon exhalation from the cement-sand may be due to the creation of free spaces in the samples, which gave the possibility to radon to decay into these free spaces rather than radon exhalation. The daughters of the radon decay 214 Bi and 214 Pb reported by gamma measurements of the cement-sand samples. (author)

  19. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    International Nuclear Information System (INIS)

    Skibsted, Jorgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly

  20. Glass ionomer cement: literature review

    Directory of Open Access Journals (Sweden)

    Sérgio Spezzia

    2017-12-01

    Full Text Available Introduction: In the dental area preventive actions occur in an attempt to avoid the installation of caries, a disease that has an increased prevalence in the population and which is a Public Health problem. Some resources are used for such, such as: performing early diagnosis and the option for conservative treatments of minimal intervention. The glass ionomer cement (CIV, coming from its beneficial characteristics that meet current trends, is closely related to the precepts of Preventive and Minimally Invasive Dentistry and the new preservative techniques recommended. Objective: The objective of the present article was to carry out a literature review study, to determine the characteristics of CIV that has a prominent role in the Minimally Invasive Dentistry profile. Results: The dentist surgeon must be aware of the classification, according to its composition and physical-chemical nature: conventional ionomers; ionomers reinforced by metals; high viscosity and various types of resin modified glass ionomers to correctly choose the CIV that will be used in their clinical interventions, which should occur based on the properties of the material and its clinical indication. Conclusion: It was concluded that the implementation of preventive techniques with CIV in public health care, tend to minimize curative treatments, concurrently valuing the low complexity dental procedures performed in Primary Care, avoiding referrals for treatment of cases of greater complexity at the level Secondary and tertiary care, saving resources.

  1. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  2. Cement for oil well developed from ordinary cement: characterization physical, chemical and mineralogical

    International Nuclear Information System (INIS)

    Oliveira, D.N.S.; Neves, G. de A.; Chaves, A.C.; Mendonca, A.M.G.D.; Lima, M.S. de; Bezerra, U.T.

    2012-01-01

    This work aims to characterize a new type of cement produced from the mixture of ordinary Portland cement, which can be used as an option in the cementing of oil wells. To enable this work we used the method of lineal programming for the new cement composition, then conducted tests to characterize through particle size analysis by laser diffraction, chemical analysis by EDX, TGA, X-ray diffraction, time grip, resistance to compression. The overall result showed that the new cement had made low-C3A, takes more time to the CPP, thermal stability up to 500 ° C, the kinetics of hydration and low levels of major components consistent with the specifications of ABNT. (author)

  3. Effect of Cement Type on Autogenous Deformation of Cement-Based Materials

    DEFF Research Database (Denmark)

    Pietro, Lura; Ye, Guang; van Breugel, Klaas

    2004-01-01

    In this paper, measurements of non-evaporable water content, chemical shrinkage, autogenous deformation, internal relative humidity (RH), pore solution composition, and early-age elastic modulus are presented and discussed. All experiments were performed on Portland cement and blast-furnace slag...... (BFS) cement pastes. Self-desiccation shrinkage of the BFS cement paste was modeled based on the RH measurements, following the capillary-tension approach. The main findings of this study are: 1) self-desiccation shrinkage can be related to self-desiccation both for Portland and for BFS cement pastes......, taking into account the influence of the dissolved salts in the pore solution, 2) the BFS cement paste studied shows pronounced self-desiccation and self-desiccation shrinkage, mainly caused by its very fine pore structure....

  4. Petroleum Sludge as gypsum replacement in cement plants: Its Impact on Cement Strength

    Science.gov (United States)

    Benlamoudi, Ali; Kadir, Aeslina Abdul; Khodja, Mohamed

    2017-08-01

    Due to high cost of cement manufacturing and the huge amount of resources exhaustion, companies are trying to incorporate alternative raw materials or by-products into cement production so as to produce alternative sustainable cement. Petroleum sludge is a dangerous waste that poses serious imparts on soil and groundwater. Given that this sludge contains a high percentage of anhydrite (CaSO4), which is the main component of gypsum (CaSO4.2H2O), it may play the same gypsum role in strength development. In this research, a total replacement of gypsum (100%) has been substituted by petroleum sludge in cement production and has led to an increase of 28.8% in UCS values after 28 curing days. Nevertheless, the burning of this waste has emitted a considerable amount of carbon monoxide (CO) gas that needs to be carefully considered prior to use petroleum sludge within cement plants.

  5. STRUCTURAL MODIFICATION OF NEW FORMATIONS IN CEMENT MATRIX USING CARBON NANOTUBE DISPERSIONS AND NANOSILICA

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2017-01-01

    Full Text Available Complex nanodispersed systems with multi-walled carbon nanotubes and nanodispersed silica have a significant impact on the processes of hydration, hardening and strength gain of construction composites predetermining their durability. While using a scanning electron microscope with an attachment for X-ray microanalysis and a device for infrared spectral analysis investigations have shown that the main effect of the cement matrix modification in the case of adding complex nanodispersed systems is provided by direct influence of hydration processes with subsequent crystallization of new formations. It has been noted that while adding carbon nanotube dispersion and nanosized silica a binding matrix is structured in the form of an extremely dense shell from crystalline hydrate new formations on the surface of solid phases that provides strong binding matrix in cement concrete. The addition effect of carbon nanotubes has been analyzed and quantitatively assessed through an investigation for every case of one sample with nanotubes and one sample without them with the help of a nanoindenter and scanning electron microscope. It is necessary to solve rather complicated challenging task in order to assess quantitatively the addition effect of CNT on material characteristics at a micromechanical level. At the same time it is possible to investigate surface of a concrete sample with one-micron resolution. In this case it is necessary to prepare samples for nanoindentation with exclusion of all CNT defectable effects that have been shown by a SEM. So in this case more adequate method for assessment must be a picoindenter , which combines a test method for nanoindentation with an optical SEM potential. Such equipment is in the stage of in-situ testing process at the Vienna University of Technology. The investigation is based on the fact that the main modification effect of mineral binding matrix while using incorporated complex nanodispersed systems and

  6. Comparative study on strength properties of cement mortar by partial replacement of cement with ceramic powder and silica fume

    Science.gov (United States)

    Himabindu, Ch.; Geethasri, Ch.; Hari, N.

    2018-05-01

    Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.

  7. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...... and unexposed skin was observed, despite a more permeable skin barrier at the alkaline pH of the cement suspensions, i.e., pH 12.5. Increased chromium levels in epidermis and dermis were seen when ordinary Portland cement was applied as a suspension with added sodium sulphate (20%) on the skin surface for 96 h...

  8. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, S.; Atkins, M.; Beckley, N.; Carson, S.

    1986-11-01

    Experimental and theoretical studies of hydrated cement systems are described. The behaviour of slag-based cement is described with a view to predicting their long term pH, Esub(n) and mineralogical balance. Modelling studies which enable the prediction at long ages of cement composites are advanced and a base model of the CaO-SiO 2 -H 2 O system presented. The behaviour of U and I in cements is explored. The tolerance of cement systems for a wide range of miscellaneous waste stream components and environmental hazards is described. The redox potential in cements is effectively lowered by irradiation. (author)

  9. Colorectal cancer and non-malignant respiratory disease in asbestos cement and cement workers

    International Nuclear Information System (INIS)

    Jacobsson, K.

    1993-09-01

    Radiologically visible parenchymal changes (small opacities >= 1/0;ILO 1980 classification) were present in 20% of a sample of workers (N=174), employed for 20 years (median) in an asbestos cement plant. Exposure-response relationships were found, after controlling for age and smoking habits. In a sample of asbestos cement workers with symptoms and signs suggestive of pulmonary disease (N=33), increased lung density measured by x-ray computed tomography, and reduced static lung volumes and lung compliance was found. In a cohort of asbestos cement workers (N=1.929) with an estimated median exposure of 1.2 fibres/ml, the mortality from non-malignant respiratory disease was increased in comparison to a regional reference cohort (N=1.233). A two-to three-fold increase of non-malignant respiratory mortality was noted among workers employed for more than a decade in the asbestos cement plant, compared to cement workers (N=1.526), who in their turn did not experience and increased risk compared to the general population. In the cohorts of asbestos cement and cement workers, there was a tow-to three-fold increased incidence of cancer in the right part of the colon, compared to the general population as well as to external reference cohorts of other industrial workers (N=3.965) and fishermen (N=8.092). A causal relation with the exposure to mineral dust and fibres was supported by the findings of higher risk estimated in subgroups with high cumulated asbestos doses or longer duration of cement work. The incidence of cancer in the left part of the colon was not increased. Morbidity data, but not mortality data, disclosed the subsite-specific risk pattern. Both asbestos cement workers and cement workers has an increased incidence of rectal cancer, compared with the general population, and with the fishermen. The risk was, however, of the same magnitude among the other industrial workers. 181 refs

  10. Experimental Study on Artificial Cemented Sand Prepared with Ordinary Portland Cement with Different Contents

    Directory of Open Access Journals (Sweden)

    Dongliang Li

    2015-07-01

    Full Text Available Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08 under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa were obtained. Based on the test results, the effect of the cementing agent content (Cv on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using Cv. The research reveals that when Cv is high (e.g., Cv = 0.03, 0.05 or 0.08, the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as Cv increases, both the peak strength and residual strength of the samples show a significant increase. When Cv is low (e.g., Cv = 0.01, the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of Cv (the cementing agent content with c′ (the cohesion force of the sample and Δϕ′ (the increment of the angle of shearing resistance is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.

  11. Experimental Study on Artificial Cemented Sand Prepared with Ordinary Portland Cement with Different Contents.

    Science.gov (United States)

    Li, Dongliang; Liu, Xinrong; Liu, Xianshan

    2015-07-02

    Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC) as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08) under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa) were obtained. Based on the test results, the effect of the cementing agent content ( C v ) on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using C v . The research reveals that when C v is high (e.g., C v = 0.03, 0.05 or 0.08), the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as C v increases, both the peak strength and residual strength of the samples show a significant increase. When C v is low (e.g., C v = 0.01), the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of C v (the cementing agent content) with c ' (the cohesion force of the sample) and Δϕ' (the increment of the angle of shearing resistance) is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.

  12. Push-out bond strengths of different dental cements used to cement glass fiber posts.

    Science.gov (United States)

    Pereira, Jefferson Ricardo; Lins do Valle, Accácio; Ghizoni, Janaina Salomon; Lorenzoni, Fábio César; Ramos, Marcelo Barbosa; Barbosa, Marcelo Ramos; Dos Reis Só, Marcus Vinícius

    2013-08-01

    Since the introduction of glass fiber posts, irreversible vertical root fractures have become a rare occurrence; however, adhesive failure has become the primary failure mode. The purpose of this study was to evaluate the push-out bond strength of glass fiber posts cemented with different luting agents on 3 segments of the root. Eighty human maxillary canines with similar root lengths were randomly divided into 8 groups (n=10) according to the cement assessed (Rely X luting, Luting and Lining, Ketac Cem, Rely X ARC, Biscem, Duo-link, Rely X U100, and Variolink II). After standardized post space preparation, the root dentin was pretreated for dual-polymerizing resin cements and untreated for the other cements. The mixed luting cement paste was inserted into post spaces with a spiral file and applied to the post surface that was seated into the canal. After 7 days, the teeth were sectioned perpendicular to their long axis into 1-mm-thick sections. The push-out test was performed at a speed of 0.5 mm/min until extrusion of the post occurred. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (α=.05). ANOVA showed that the type of interaction between cement and root location significantly influenced the push-out strength (Pcements and glass ionomer cements showed significantly higher values compared to dual-polymerizing resin cements. In all root segments, dual-polymerizing resin cements provided significantly lower bond strength. Significant differences among root segments were found only for Duo-link cement. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  13. The differences between soil grouting with cement slurry and cement-water glass slurry

    Science.gov (United States)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  14. Effect of wet curing duration on durability parameters of hydraulic cement concretes.

    Science.gov (United States)

    2010-01-01

    Hydraulic cement concrete slabs were cast and stored outdoors in Charlottesville, Virginia, to study the impact of wet curing duration on durability parameters. Concrete mixtures were produced using portland cement, portland cement with slag cement, ...

  15. Influence of temporary cement contamination on the surface free energy and dentine bond strength of self-adhesive cements.

    Science.gov (United States)

    Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi

    2012-02-01

    The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Sealing of exploratory boreholes in clay reactivity of ordinary portland cement (OPC) grouts and various lithologies from the Harwell research site. Volume 1

    International Nuclear Information System (INIS)

    Milodowski, A.E.; George, I.A.; Bloodworth, A.J.; Robins, N.S.

    1986-01-01

    As part of a research programme on the disposal of radioactive wastes in clay, Ordinary Portland Cement (OPC) has been used in the completion of boreholes on the Harwell Research Site, AERE, Oxfordshire. The purpose of this study was to examine the effect of OPC and the alkaline pore fluids generated during its setting on the various lithological types encountered in the boreholes. To facilitate this, samples of core representing the various rock types were selected and cement-rock composites were prepared from these in the laboratory to simulate the borehole cements. After a curing period of 15 months the cores and associated cement plugs were examined for any signs of reactivity or bonding. The best cement-rock bonding was shown by naturally well-cemented sandstone and limestone lithologies. Although no significant chemical reaction was seen to have occurred between OPC and rock, the OPC appears able to bind onto the rock surface because of the rigidity of the rock surface. Therefore, the best cement rock bonding and seal with OPC may be expected in the limestones of the Great Oolite Group, Inferior Oolite Group and parts of the Corallian beds. Because of the reactivity of OPC towards certain lithologies a better borehole seal in such a sedimentary sequence might be achieved using a bentonite backfill in those parts of the sequence which either react with or bond only weakly to OPC

  17. Improved cement solidification of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    1993-01-01

    Cementation was the first and is still the most widely applied technique for the conditioning of low and intermediate level radioactive wastes. Compared with other solidification techniques, cementation is relatively simple and inexpensive. However, the quality of the final cemented waste forms depends very much on the composition of the waste and the type of cement used. Different kinds of cement are used for different kinds of waste and the compatibility of a specific waste with a specific cement type should always be carefully evaluated. Cementation technology is continuously being developed in order to improve the characteristics of cemented waste in accordance with the increasing requirements for quality of the final solidified waste. Various kinds of additives and chemicals are used to improve the cemented waste forms in order to meet all safety requirements. This report is meant mainly for engineers and designers, to provide an explanation of the chemistry of cementation systems and to facilitate the choice of solidification agents and processing equipment. It reviews recent developments in cementation technology for improving the quality of cemented waste forms and provides a brief description of the various cement solidification processes in use. Refs, figs and tabs

  18. Alpha radioactivity in Indian cement samples

    International Nuclear Information System (INIS)

    Nain, M.; Chauhan, R. P.; Chakarvarti, S. K.

    2006-01-01

    The essential constituents of radioactive and each of cements like lime, silica and alumina are derived from earth's crust in which radioactive elements like uranium, thorium etc are also present in varying amounts almost everywhere. These two elements are considered as the parent elements of uranium and thorium radioactive decay series in which radon and thoron are produced respectively as decay products. In the present study the samples of ordinary Portland cement , Portland pozzolana cement and some other cementious finishing materials like white cement, Plaster of Paris , cement putty etc were collected and analysed for radium and radon concentrations along with radon exhalation rates. Materials and Methods: Alpha sensitive LR-115 Type II plastic track detectors commonly known as S olid State Nuclear Track Detectors w ere used to measure the radium and radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The Chemical etching in NaOH at 60 C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon and radium concentrations along with exhalation rate of radon, were determined using required formulae. Results: The radon and radium concentration in various brands of cements found to vary from 333±9.9 to 506±13.3 Bq m-3 and from 3.7±0.1 to 5.6±0.2 Bq k g-1 while in various cementious finishing materials used in the construction, these were found to vary from 378±19.7 to 550±9.8 Bq m-3 and from 4.2±0.2 to 6.1±0.1 Bq Kg-1, respectively. Based on the data the mass and surface exhalation rates were also calculated Conclusion: The measurements indicate that there is marginal variation of the concentration of radium and radon in various brands of cements in India with lower levels in the cement samples having red oxide and higher levels in fly ash based cement

  19. Stimuli-responsive cement-reinforced rubber.

    Science.gov (United States)

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef

    2014-05-14

    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.

  20. Microbial-influenced cement degradation: Literature review

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; McConnell, J.W. Jr.

    1993-03-01

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews literature which addresses the effect of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are identified, which are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with concrete and can ultimately lead to structural failure. Mechanisms inherent in microbial-influenced degradation of cement-based material are the focus of this report. This report provides sufficient evidence of the potential for microbial-influenced deterioration of cement-solidified LLW to justify the enumeration of the conditions necessary to support the microbiological growth and population expansion, as well as the development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbiological-induced degradation that could impact the stability of the waste form

  1. Possibilities of special cements in ceramic applications

    International Nuclear Information System (INIS)

    Capmas, A.; Bier, T.A.

    1993-01-01

    About 25 years ago, the only way to have confinement material for high temperature applications was to prepare a ceramic by sintering or fusion at high temperature. A new technology came, with the production of Low Cement Castables. This new product was obtained by a careful choice of the granulometry of the aggregates, an optimization of the defloculation of fine particles, including the cement (Calcium Aluminate Cement) and the addition of silica fume. Silica fume brought two improvements: a) a fluidifying effect, due partly to the low sensitivity of viscosity to pH, and partly to the geometric effect of the nicely spherical particle, b) a chemical effect, brought by the reaction of silica and Calcium Aluminate Cement to give a coherent zeolithic structure, through which water could escape during the first firing. From a ceramist point of view, it is interesting to understand how this components, nearly colloidal system mixed in water can be heated up to ceramization without any noticeable change in mechanical characteristics and shrinkage. From a more practical point of view, it is also interesting to realize that some characteristics, usually attributed only to ceramics, also apply with low cement castables technology: high compressive strength, flexural strength, corrosion resistance, abrasion resistance, impact resistance. (orig.)

  2. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  3. Reinforcing of Cement Composites by Estabragh Fibres

    Science.gov (United States)

    Merati, A. A.

    2014-04-01

    The influence of Estabragh fibres has been studied to improve the performance characteristics of the reinforced cement composites. The concrete shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of concrete specimens. Although, the Estabragh fibres lose their strength in an alkali environment of cement composites, but, the ability of Estabragh fibres to bridge on the micro cracks in the concrete matrix causes to decrease the width of the cracks on the surface of the concrete samples in comparison with the plain concrete. However, considering the mechanical properties of specimens such as bending strength and impact resistance, the specimens with 0.25 % of Estabragh fibre performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of concrete. Consequently, by adding 0.25 % of Estabragh fibres to the cement composite of concrete, a remarkable improvement in physical and mechanical properties of fibre-containing cement composite is achieved.

  4. Plug cementing: Horizontal to vertical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Calvert, D.G.; Heathman, J.F.; Griffith, J.E.

    1995-12-31

    This paper presents an in-depth study of cement plug placement that was conducted with large-scale models for the improvement of plug cementing practices and plug integrity. Common hole and workstring geometries were examined with various rheology and density ratios between the drilling fluid and cement. The critical conditions dictating the difference between success and failure for various wellbore angles and conditions were explored, and the mechanisms controlling slurry movement before and after placement are now better understood. An understanding of these mechanisms allows the engineer to better tailor a design to specific hole conditions. Controversial concepts regarding plug-setting practices have been examined and resolved. The cumulative effects of density, rheology, and hole angle are major factors affecting plug success. While the Boycott effect and an extrusion effect were observed to be predominant in inclined wellbores, a spiraling or {open_quotes}roping{close_quotes} effect controls slurry movement in vertical wellbores. Ultimate success of a cement plug can be obtained if allowances are made for these effects in the job design, provided all other previously published recommended placement practices are followed. Results of this work can be applied to many sidetracking and plug-to-abandon operations. Additionally, the understanding of the fluid movement (creep) mechanisms holds potential for use in primary and remedial cementing work, and in controlling the placement of noncementitious fluids in the wellbore.

  5. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    Science.gov (United States)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also

  6. Fast tomosynthesis

    International Nuclear Information System (INIS)

    Klotz, E.; Linde, R.; Tiemens, U.; Weiss, H.

    1978-01-01

    A system has been constructed for fast tomosynthesis, whereby X-ray photographs are made of a single layer of an object. Twenty five X-ray tubes illuminate the object simultaneously at different angles. The resulting coded image is decoded by projecting it with a pattern of lenses that have the same form as the pattern of X-ray tubes. The coded image is optically correlated with the pattern of the sources. The scale of this can be adjusted so that the desired layer of the object is portrayed. Experimental results of its use in a hospital are presented. (C.F.)

  7. Effect of temporary cements on the microtensile bond strength of self-etching and self-adhesive resin cement.

    Science.gov (United States)

    Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José

    2014-11-01

    The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p cements reduced the bond strength to Panavia self-etching resin cements only (p cements did not interfere in the bond strength to dentin of self-adhesive resin cements.

  8. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    Directory of Open Access Journals (Sweden)

    Weijing Yao

    2018-04-01

    Full Text Available Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry injected into sand and sandy soil were explored. The investigated parameters were the dry density, wet density, moisture content, internal friction angle, and cohesion force. The results show that the consolidation effect of superfine cement is better than that of Portland cement due to the small size of superfine cement particles. The superfine cement can diffuse into the sand by infiltration, extrusion, and splitting. When the water–cement ratio of superfine cement slurry is less than 2:1 grouting into loose sand, the dry and wet density decrease with the increase in the water–cement ratio, while the moisture content and cohesive force gradually increase. When the water–cement ratio of superfine cement slurry is 1:1 grouting into loose sand and sandy soil, the dry density, wet density, and cohesive force of loose sand are larger than those of sandy soil. The results of the experiment may be relevant for engineering applications.

  9. Heat of hydration measurements on cemented radioactive wastes. Part 1: cement-water pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1983-12-01

    This report describes the hydration of cement pastes in terms of chemical and kinetic models. A calorimetric technique was used to measure the heat of hydration to develop these models. The effects of temperature, water/cement ratio and cement replacements, ground granulated blast furnace slag (BFS) and pulverised fuel ash (PFA) on the hydration of ordinary Portland cement (OPC) is reported. The incorporation of BFS or PFA has a marked effect on the hydration reaction. The effect of temperature is also important but changing the water/cement ratio has little effect. Results from cement pastes containing only water and cement yield total heats of reaction of 400, 200 and 100 kJ/kg for OPC, BFS and PFA respectively. Using the results from the models which have been developed, the effect of major salts present in radioactive waste streams can be assessed. Values of the total heat of reaction, the time to complete 50 percent reaction, and the energy of activation, can be compared for different waste systems. (U.K.)

  10. Preparing hydraulic cement from oil-shale residue

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for preparation of hydraulic cement from oil-shale residue is characterized in that, as flux is used, rich-in-lime poor-in-sulfur portland-cement clinker, by which the usual gypsum addition, is avoided.

  11. compaction delay versus properties of cement-bound lateritic soil

    African Journals Online (AJOL)

    hp

    hour intervals on soil-cement mixes 3,5,8; and 1, 3, 5 percent cement contents by weight of dry soils, for ... stabilized soils were the Compaction test (Standard Proctor), the Unconfined Compressive. Strength .... Plastic limit (%). % passing BS ...

  12. Diffusion of radon through varying depths of cement

    International Nuclear Information System (INIS)

    Takriti, S.; Shweikani, R.; Ali, A.F.; Hushari, M.; Kheitou, M.

    2001-01-01

    Portland cement was mixed with different concentrations of radium chloride (1200, 2400 and 3600 Bq) to produce radioactive sources. These sources were surrounded with cement of different thickness (1, 2 and 4 cm). The release of radon from these sources (before and after being surrounded) was studied. The results showed that radon release from the sources itself was less then its release from the same source after being surrounded by cement, and the release did not change with the thickness of cement. Samples were covered with a thin layer of polyethylene before being surrounded with cement. It was found that this additional layer reduced the radon exhalation. This thin layer stopped any reaction between the source and the surrounding cement during solidification of the cement layers. These reactions are thought to be the reason for the increase of radon exhalation from the sources surrounded by cement

  13. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    Laterite obtained from Ikpayongo was stabilized with 2-10 % cement and 2-10 % Calcium Carbide waste, for use .... or open dumping which have effect on surface and ... Table 1: Chemical Composition of Calcium Carbide Waste and Cement.

  14. Study on cementation of simulated radioactive borated liquid wastes

    International Nuclear Information System (INIS)

    Sun Qina; Li Junfeng; Wang Jianlong

    2010-01-01

    To compare sulfoaluminate cement with ordinary Portland cement on their cementation of radioactive borated liquid waste and to provide more data for formula optimization, simulated radioactive borated liquid waste were solidified by the two cements. 28 d compressive strength and strength losses after water/freezing/irradiation resistance tests were investigated. Leaching test and X-ray diffraction analysis were also conducted. The results show that it is feasible to solidify borated liquid wastes with sulfoaluminate cement and ordinary Portland cement with formulas used in the study. The 28 d compressive strengths, strength losses after tests and simulated nuclides leaching rates of the solidified waste forms meet the demand of GB 14569.1-93. The sulfoaluminate cement formula show better retention of Cs + than ordinary Portland cement formula. Boron, in form of B (OH) 4 - , incorporate in ettringite as solid solutions. (authors)

  15. Influence of different degrees of acetylation in the physical and mechanical properties of particleboards and wood-cement composites

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2014-12-01

    Full Text Available Chemical modified wood particles used to particleboards manufacture may, at the same time, improve the dimensional stability and damage the internal bond. The aim of this research was find the optimal point of acetylation for particleboards. Pinus taeda particles with different degrees of acetylation, 8, 15 and 20% of weight percentage gain (WGP, were used in the production of particleboards with urea-formaldehyde resin and wood-cement composites produced by mechanical and vibratory compaction. It was evaluated the water absorption, thickness swelling and internal bind of the particleboards according to the European standards EN 317 and EN 319. Particleboards produced with 15 WPG showed the lowest water absorption and thickness swelling values. However, the use of chemically modified wood had a negative influence in the internal bind of the boards. This phenomenon can be explain due to the similar behavior between resin and water, that way, the high degree acetylation stops the adhesive and adherent bind. In the case of wood-cement composites, the internal bind improves as the acetylation degrees get higher. Nevertheless the inhibition of acetylated wood particles to the cement hydration got higher when the WPG was higher than 8%.

  16. Interface conditions for fast-reaction fronts in wet porous mineral materials: the case of concrete carbonation

    NARCIS (Netherlands)

    Muntean, A.; Böhm, M.

    2009-01-01

    Reaction–diffusion processes, where slow diffusion balances fast reaction, usually exhibit internal loci where the reactions are concentrated. Some modeling and simulation aspects of using kinetic free-boundary conditions to drive fast carbonation reaction fronts into unsaturated porous cement-based

  17. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  18. Transportation of ions through cement based materials

    International Nuclear Information System (INIS)

    Chatterji, S.

    1994-01-01

    Transportation of ions, both anions and cations, through cement based materials is one of the important processes in their durability and as such has been studied very extensively. It has been studied from the point of view of the reinforcement corrosion, alkali-silica reaction, sulfate attack on cement and concrete, as well as in the context of the use of the cement based materials in the disposal of nuclear waste. In this paper the fundamental equations of diffusion, i.e. Fick's two equations, Nernst and Nernst-Planck equations have been collected. Attention has been drawn to the fact that Fick's two equations are valid for non-ionic diffusants and that for ions the relevant equations are those of Nernst and Nernst-Planck. The basic measurement techniques have also been commented upon

  19. Heavy cement slurries; Pastas pesadas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Francisco Avelar da; Conceicao, Antonio C. Farias [PETROBRAS, XX (Brazil). Distrito de Perfuracao do Nordeste. Div. de Tecnicas de Perfuracao; Marins, Carlos Cesar Silva [PETROBRAS, XX (Brazil). Dept. de Perfuracao. Div. de Revestimento e Cimentacao

    1990-12-31

    When going deeper in a high pressure well, the only way to successfully cement your casing or linear is through the use of heavy cement slurry. In 1987 PETROBRAS geologists presented to the Drilling Department a series of deep, hot and high pressure wells to be drilled. The Casing and Cement Division of this department then started a program to face this new challenge. This paper introduces the first part of this program and shows how PETROBRAS is dealing with heavy weight slurries. We present the slurry formulations tested in laboratory, the difficulties found in mixing them in the field, rheology measurements, API free water and API fluid loss from both laboratory and field samples. (author) 3 tabs.

  20. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-02-01

    Over the last seven years, Low Oxidation State Metal Ion reagents (LOMI) have been used to decontaminate the 100 MW(e) Steam Generating Heavy Water Ractor (SGHWR) at Winfrith. The use of these reagents has resulted in a dilute ionic solution containing activation products which are produced by corrosion of metallic components in the reactor. It has been demonstrated that the amount of activity in the solution can be reduced using organic ion exchanger resins. These resins consist of a cross linked polystyrene with sulphonic acid or quaternary ammonium function groups and can be successfully immobilised in blended cement systems. The formulation which has been developed is produced from a 9 to 1 blend of ground granulated blast furnace slag (BFS) and ordinary Portland cement (OPC) containing 28% ion exchange resin in the water saturated form. If 6% Microsilica is added to the blended cement the waste loading can be increased to 36 w/o. (author)

  1. Application of Carbonate Looping to Cement Industry

    DEFF Research Database (Denmark)

    Lin, Weigang; Illerup, Jytte Boll; Dam-Johansen, Kim

    2012-01-01

    In the present work, cycle experiments of different types of limestone, cement raw meal and a mixture of limestone and clay were carried out in laboratory scale setups at more realistic conditions (i.e. calcination temperature is 950°C and CO2 concentration is 80%) to simulate the performance...... with an increase in the CO2 partial pressure during calcination, indicating enhancement of sintering by the presence of CO2. As sorbents, cement raw meal and the mixture of limestone and clay show a similar trend as limestone with respect to the decay of the CO2 carrying capacity and this capacity is lower than...... that of limestone at the same conditions in most cases. SEM and XRD analyses indicate that a combination of severe sintering and formation of calcium silicates attributes to the poor performance of the cement raw meal....

  2. Mechanical characterization of sisal reinforced cement mortar

    Directory of Open Access Journals (Sweden)

    R. Fujiyama

    2014-01-01

    Full Text Available This work aims at evaluating the mechanical behavior of sisal fiber reinforced cement mortar. The composite material was produced from a mixture of sand, cement, and water. Sisal fibers were added to the mixture in different lengths. Mechanical characterization of both the composite and the plain mortar was carried out using three point bend, compression, and impact tests. Specimens containing notches of different root radii were loaded in three point bending in an effort to determine the effect of the fibers on the fracture toughness of the material. The results obtained indicate that, while fiber reinforcement leads to a decrease in compressive strength, J-integral calculations at maximum load for the different notch root radii have indicated, particularly for the case of long fibers, a significant superiority of the reinforced material in comparison with the plain cement mortar, in consistence with the impact test data.

  3. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    , whereas in a normal cement plant, it is 0.9 kg/ kg cl. However the thermal energy demand in the integrated plant increases from 3.9 MJ/ kg cl to 5.6 MJ/ kg cl. But on the other side this additional energy spent can be recovered as a high quality heat to generate electricity. The potential to generate...... electricity depends on the scale of the plant, the bigger the production capacity of cement plant the better, with capacity higher than 3400 tons of clinker/day is required to produce captive electricity to meet the demand both from the cement plant operations and from the CO2 capture system operations....

  4. Hospital waste ashes in Portland cement mortars

    International Nuclear Information System (INIS)

    Genazzini, C.; Zerbino, R.; Ronco, A.; Batic, O.; Giaccio, G.

    2003-01-01

    Nowadays, most concretes incorporate mineral additions such as pozzolans, fly ash, silica fume, blast furnace slag, and calcareous filler among others. Although the technological and economical benefits were the main reasons for the use of mineral additions, the prevention of environmental contamination by means of proper waste disposal becomes a priority. The chance of incorporating hospital waste ashes in Portland cement-based materials is presented here. Ash characterization was performed by chemical analysis, X-ray diffraction, radioactive material detection, and fineness and density tests. Conduction calorimetry and setting time tests were developed on pastes including ash contents from 0% to 100%. Mortars were prepared including ash contents up to 50% of cement. The results of setting time, temperature development, flexural and compressive strengths, water absorption, density, and leachability are analyzed. Results indicate that Portland cement systems could become an alternative for the disposal of this type of ashes

  5. Cementation of wastes with boric acid

    International Nuclear Information System (INIS)

    Tello, Cledola C.O.; Haucz, Maria Judite A.; Alves, Lilian J.L.; Oliveira, Arno H.

    2000-01-01

    In nuclear power plants (PWR) are generated wastes, such as concentrate, which comes from the evaporation of liquid radioactive wastes, and spent resins. Both have boron in their composition. The cementation process is one of the options to solidify these wastes, but the boron has a negative effect on the setting of the cement mixture. In this paper are presented the experiments that are being carried out in order to overcome this problem and also to improve the efficiency of the process. Simulated wastes were cemented using additives (clays, admixtures etc.). In the process and product is being evaluated the effect of the amount, type and addition order of the materials. The mixtures were selected in accordance with their workability and incorporated waste. The solidified products are monolithic without free water with a good mechanical resistance. (author)

  6. Hydration kinetics of cement composites with varying water-cement ratio using terahertz spectroscopy

    Science.gov (United States)

    Ray, Shaumik; Dash, Jyotirmayee; Devi, Nirmala; Sasmal, Saptarshi; Pesala, Bala

    2015-03-01

    Cement is mixed with water in an optimum ratio to form concrete with desirable mechanical strength and durability. The ability to track the consumption of major cement constituents, viz., Tri- and Dicalcium Silicates (C3S, C2S) reacting with water along with the formation of key hydration products, viz., Calcium-Silicate-Hydrate (C-S-H) which gives the overall strength to the concrete and Calcium Hydroxide (Ca(OH)2), a hydration product which reduces the strength and durability, using an efficient technique is highly desirable. Optimizing the amount of water to be mixed with cement is one of the main parameters which determine the strength of concrete. In this work, THz spectroscopy has been employed to track the variation in hydration kinetics for concrete samples with different water-cement ratios, viz., 0.3, 0.4, 0.5 and 0.6. Results show that for the sample with water-cement ratio of 0.3, significant amount of the C3S and C2S remain unreacted even after the initial hydration period of 28 days while for the cement with water-cement ratio of 0.6, most of the constituents get consumed during this stage. Analysis of the formation of Ca(OH)2 has been done which shows that the concrete sample with water-cement ratio of 0.6 produces the highest amount of Ca(OH)2 due to higher consumption of C3S/C2S in presence of excess water which is not desirable. Samples with water-cement ratio of 0.4 and 0.5 show more controlled reaction during the hydration which can imply formation of an optimized level of desired hydration products resulting in a more mechanically strong and durable concrete.

  7. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. Because hydraulic cement requires a chemical hydration reaction for setting and hardening, it is subject to potential interactions between elements in the waste and binder that can retard or prevent solidification. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above its melting point, combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991

  8. Effects of obesity, total fasting and re-alimentation on L-thyroxine (T4), 3,5,3'-L-triiodothyronine (T3), 3,3',5'-L-triiodothyronine (rT3), thyroxine binding globulin (TBG), cortisol, thyrotrophin, cortisol binding globulin (CBG), transferrin, alpha 2-haptoglobin and complement C'3 in serum.

    Science.gov (United States)

    Scriba, P C; Bauer, M; Emmert, D; Fateh-Moghadam, A; Hofmann, G G; Horn, K; Pickardt, C R

    1979-08-01

    The effects of total fasting for 31 +/- 10 days followed by re-alimentation with an 800 calorie diet on thyroid function, i.e. T4,T3,rT3,RT3U (resin T3 uptake), and TSH, and on TBG levels in serum were studied sequentially in obese hospitalized patients (N=18). Additionally, cortisol, growth hormone, prolactin, parathyrin and free fatty acids were followed as hormonal and metabolic parameters, respectively. Further, CBG, transferrin, alpha 2-haptoglobin and complement C'3 were measured as representatives of other serum proteins. Results before fasting: T4, T3, TBG, cortisol, CBG, alpha 2-haptoglobin and complement C'3 of the obese patients were elevated when compared with healthy normal weight controls, whereas rT3, T4/TBG ratio, T3/TBG ratio, TSH, coritsol/cbg ratio, growth hormone, prolactin, parathyrin and transferrin of the obese group were normal. RT3U and fT4 index were decreased in the obese patients. Results during fasting: Significant decreases were observed during fasting for the following parameters -- T3, TBG, T3/TBG ratio, transferrin, alpha 2-haptoglobin complement C'3. rT3, T4/TBG ratio, RT3U, fT4 index and FFA increased. T4, tsh response to TRH stimulation, cortisol, CBG, cortisol/cbg ratio, parathyrin, growth hormone and prolactin did not change. Results during re-alimentation: T3, TBG, T3/TBG ratio, TSH response to TRH, transferrin, alpha 2-haptoglobin and complement C'3 increased. Conversely, fT3, RT3U, FFA, cortisol and cortisol/cbg ratio decreased whereas the other parameters did not change. 1) There is no evidence for primary hypothyroidism in obese patients during prolonged fasting and re-alimentation. 2) The rapid decrease of T3 and increase of RT3U after initiation of fasting are not fully explained by the observed slower decreases in TBG. 3) The alterations of T3, rT3 and RT3U resemble in their kinetics the changes in FFA levels. 4) Fasting reduced the levels of only certain serum proteins, interestingly TBG, transferrin, alpha 2

  9. The helical structure of DNA facilitates binding

    International Nuclear Information System (INIS)

    Berg, Otto G; Mahmutovic, Anel; Marklund, Emil; Elf, Johan

    2016-01-01

    The helical structure of DNA imposes constraints on the rate of diffusion-limited protein binding. Here we solve the reaction–diffusion equations for DNA-like geometries and extend with simulations when necessary. We find that the helical structure can make binding to the DNA more than twice as fast compared to a case where DNA would be reactive only along one side. We also find that this rate advantage remains when the contributions from steric constraints and rotational diffusion of the DNA-binding protein are included. Furthermore, we find that the association rate is insensitive to changes in the steric constraints on the DNA in the helix geometry, while it is much more dependent on the steric constraints on the DNA-binding protein. We conclude that the helical structure of DNA facilitates the nonspecific binding of transcription factors and structural DNA-binding proteins in general. (paper)

  10. Density and mechanical properties of calcium aluminate cement

    Science.gov (United States)

    Ahmed, Syed Taqi Uddin; Ahmmad, Shaik Kareem

    2018-04-01

    Calcium aluminate cements are a special type of cements which have their composition mainly dominated by the presence of Monocalcium Aluminates. In the present paper for the first time we have shown theoretical density and elastic constants for various calcium aluminate cements. The density of the present CAS decrease with aluminates presents in the cement. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter.

  11. Comparison of creep of the cement pastes included fly ash

    Directory of Open Access Journals (Sweden)

    Padevět Pavel

    2017-01-01

    Full Text Available The paper is devoted to comparison of creep of cement pastes containing fly ash admixture. The size of creep in time depends on the amount of components of the cement paste. Attention is paid to the content of classical fly ash in cement paste and its impact on the size of creep. The moisture of cement pastes is distinguished because it significantly affects the rheological properties of the material.

  12. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  13. Fabrication of Phosphate Cement with High Integrity

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Lee, Chang Hwa; Heo, Cheol Min; Jeon, Min Ku; Kang, Kweon Ho

    2011-01-01

    As the development of industrial society has accelerated, hazardous wastes are generated as well. According to the 1986 statistics of U.S.A, each person made 40 tons of waste in America that year. Treatment of radioactive waste is one of the most important and serious problems related to waste treatments, because its radioactivity and decaying heat have harmful effects to human and environment for a long time. Nuclear developed countries have used conventional method of treatment such as vitrification or cementation in order to stabilize and solidify radioactive waste. Although the former guarantees the formation of high leaching resistant and durable waste form, it requires several hundred (or even more than one thousand) temperature to melt glass frit. This process generates secondary waste volatilized, as well as being non-economical. Cement technology played a role of immobilizing low and middle class wastes. It has advantages of low temperature setting, low cost, easy process, etc. The alkalinity of ordinary cement, however, constrains the utility of cement to the solidification of alkaline waste. In addition, leachability and mechanical strength of cements are not quite appropriate for the stabilization of high level waste. In this regard, chemically bonded phosphate cement(CBPC), which sets by an acid-base reaction, is a potentially expectable material for immobilization of radioactive waste. CBPC not only sets at room temperature, but also encapsulates various isotopes chemically. The performance of CBPC can be enhanced by the addition of fly ash, sand, wollastonite, etc. This study aims at fabricating the CBPC containing fly ash with high integrity. Morphology, microstructure, and compressive strength are evaluated using SEM, and digital compressing machine

  14. Study of chloride ion transport of composite by using cement and starch as a binder

    Energy Technology Data Exchange (ETDEWEB)

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,; Reski, Nurhadi; Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are depending on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.

  15. Pore volume and pore size distribution of cement samples measured by a modified mercury intrusion porosimeter

    International Nuclear Information System (INIS)

    Zamorani, E.; Blanchard, H.

    1987-01-01

    Important parameters for the characterization of cement specimens are mechanical properties and porosity. This work is carried out at the Ispra Establishment of the Joint Research Centre in the scope of the Radioactive Waste Management programme. A commercial Mercury Intrusion Porosimeter was modified in an attempt to improve the performance of the instrument and to provide fast processing of the recorded values: pressure-volume of pores. The dead volume of the instrument was reduced and the possibility of leakage from the moving parts eliminated. In addition, the modification allows an improvement of data acquisition thus increasing data accuracy and reproducibility. In order to test the improved performance of the modified instrument, physical characterizations of cement forms were carried out. Experimental procedures and results are reported

  16. Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.

    Science.gov (United States)

    Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo

    2017-05-01

    Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Solid recovered fuels in the cement industry with special respect to hazardous waste.

    Science.gov (United States)

    Thomanetz, Erwin

    2012-04-01

    Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.

  18. Controls on Cementation in a Chalk Reservoir

    DEFF Research Database (Denmark)

    Meireles, Leonardo Teixeira Pinto; Hussein, A.; Welch, M.J.

    In this study, we identify different controls on cementation in a chalk reservoir. Biot’s coefficient, a measure of cementation, stiffness and strength in porous rocks, is calculated from logging data (bulk density and sonic Pwave velocity). We show that Biot’s coefficient is correlated...... to the water saturation of the Kraka reservoir and is partly controlled by its stratigraphic sub-units. While the direct causal relationship between Biot’s coefficient and water saturation cannot be extended for Biot’s coefficient and porosity, a correlation is also identified between the two, implying...

  19. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...... are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root...

  20. Characterization of monolith block of spent resin cementation

    International Nuclear Information System (INIS)

    Prayitno; Endro-Kismolo; Isman MT

    1996-01-01

    Spent resin immobilization process with cement was done to prevent release of radionuclide in the ultimate storage or disposal. The varied Composition of water/cement ratio in the cementation process were 0.3; 0.4; 0.5 and the various weight of resin waste are 25 g, 37.5 g and 50 gram. The compressive strength of the various water/cement ratio without spent resin was bigger than 0.3. This investigation proved that the compressive strength of Tiga Roda cement was bigger than those of Gresik cement or Nusantara cement. The compressive of the cement block of were the spent resin cementation was influenced by the water/cement ratio and the total spent resin addition. The best condition reached at the water/cement ratio of 0.3 and 25 gram spent resin, was compressive strength of 17.86 N/mm 2 . Leaching rate of the various weight composition of spent resin cementation for 91 days were between 10 -2 - 10 -4 gram.cm -2 .day -1

  1. Immobilisation of shredded waste in a cement monolith

    International Nuclear Information System (INIS)

    James, J.M.; Smith, D.L.

    1987-11-01

    During 1983/84 work was continued on the development of the process for the encapsulation of shredded waste in cement. Using simulant shredded waste the conditions for operating the process on the 500 litres scale have been established. Evaluation of the cemented product showed that it was satisfactorily infilled with cement grout with no significant voidage. (author)

  2. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  3. LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS

    Science.gov (United States)

    Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...

  4. 21 CFR 888.4230 - Cement ventilation tube.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted into...

  5. 21 CFR 888.4210 - Cement mixer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...

  6. Geotechnical properties of clayey soil stabilized with cement ...

    African Journals Online (AJOL)

    The study was conducted to investigate the different effects of cement-sawdust ash and cement on a clayey soil sampled from Mandate Lodge, Landmark University, Omu-Aran, Nigeria. The binder mix of cementsawdust ash (CSDA) was mixed in a ratio of 1:1. The CSDA and cement were added to the soil samples at ...

  7. the effect of cement dust exposure on haematological and liver

    African Journals Online (AJOL)

    Daniel Owu

    LIVER FUNCTION PARAMETERS OF CEMENT FACTORY WORKERS IN. SOKOTO ... to cement dust. (mean years of exposure = 9.6± 1.5 years) and 46 matched unexposed controls. ... was assessed by measuring serum liver function tests. .... of cement, may increase the risk of autoimmune disease. ... Mosby's Manual of.

  8. Optimization of mix design by using superplasticized cement

    International Nuclear Information System (INIS)

    Khaskheli, G.B.; Kumar, A.; Umrani, A.N.

    2009-01-01

    Superplasticizers are high range water reducers which are capable of producing high-strength concrete with low permeability. Recently a cement factory in Sindh has launched SPC (Superplasticized Cement) which contains the required amount of superplasticizers. It is needed to investigate its performance compared to that of OPC (Ordinal-Y Portland Cement). This study is framed to optimize various strengths of structural concrete through the use of SPC of the cement factory. In total 288 cubes (6x6x6) were cast and tested for four different compressive strength of concrete (8000, 6000, 5000 and 4000 psi) manufactured with two brands of cement (OPC and SPC) of the cement factory and two different coarse aggregate sizes (40 and 20 mm) at three different curing ages (7,14 and 28 days). The effect on compressive strength of structural concrete was also observed by adopting 5 and 10% reduction in cement content of the superplasticized cement. Results have indicated that structural concrete made with superplasticized cement could give higher compressive strength than that of OPC at all the curing ages, and 10% saving in cement content could be achieved by using superplasticized cement. Structural concrete made with superplasticized cement could attain higher strength in a shorter period of time, and workability of structural concrete could be increased by using SPC. (author)

  9. Computation of X-ray powder diffractograms of cement components ...

    Indian Academy of Sciences (India)

    Computation of X-ray powder diffractograms of cement components and its application to phase analysis and hydration performance of OPC cement. Rohan Jadhav N C Debnath. Volume 34 Issue 5 August 2011 pp 1137- ... Keywords. Portland cement; X-ray diffraction; crystal structure; characterization; Rietveld method.

  10. Assessment of Pollution Potentialities of some Portland Cement ...

    African Journals Online (AJOL)

    Chemical analysis of some Portland cement commonly used in Nigeria was carried out. All the cement studies were found to be good for concrete work especially where no special property is required. The concentration levels of heavy metals in all the cement samples were above the tolerance limit and therefore need to ...

  11. Radiopacity of portland cement associated with different radiopacifying agents.

    Science.gov (United States)

    Húngaro Duarte, Marco Antonio; de Oliveira El Kadre, Guâniara D'arc; Vivan, Rodrigo Ricci; Guerreiro Tanomaru, Juliane Maria; Tanomaru Filho, Mário; de Moraes, Ivaldo Gomes

    2009-05-01

    This study evaluated the radiopacity of Portland cement associated with the following radiopacifying agents: bismuth oxide, zinc oxide, lead oxide, bismuth subnitrate, bismuth carbonate, barium sulfate, iodoform, calcium tungstate, and zirconium oxide. A ratio of 20% radiopacifier and 80% white Portland cement by weight was used for analysis. Pure Portland cement and dentin served as controls. Cement/radiopacifier and dentin disc-shaped specimens were fabricated, and radiopacity testing was performed according to the ISO 6876/2001 standard for dental root sealing materials. Using Insight occlusal films, the specimens were radiographed near to a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The radiographs were digitized and radiopacity compared with the aluminum stepwedge using Digora software (Orion Corporation Soredex, Helsinki, Finland). The radiographic density data were converted into mmAl and analyzed statistically by analysis of variance and Tukey-Kramer test (alpha = 0.05). The radiopacity of pure Portland cement was significantly lower (p cement/radiopacifier mixtures were significantly more radiopaque than dentin and Portland cement alone (p cement/bismuth oxide and Portland cement/lead oxide presented the highest radiopacity values and differed significantly from the other materials (p cement/zinc oxide presented the lowest radiopacity values of all mixtures (p cement as radiopacifying agents. However, the possible interference of the radiopacifiers with the setting chemistry, biocompatibility, and physical properties of the Portland cement should be further investigated before any clinical recommendation can be done.

  12. Automated system for management of cementation line at Kursk NPP

    International Nuclear Information System (INIS)

    Petukhov, K.S.; Troshchenko, V.G.; Osintsev, V.V.; Molotkov, V.P.

    2005-01-01

    At Kursk NPP technological scheme of radioactive wastes tempering by dry cement mixture in continuously working mixer with continuous dosing of cement mixture components is accepted. The automated system designed for control and management of liquid radioactive wastes cementation in real time is represented [ru

  13. Substitution of strontium for calcium in glass ionomer cements (Part ...

    African Journals Online (AJOL)

    Substitution of strontium for calcium in glass ionomer cements (Part 1): Glass synthesis and characterisation, and the effects on the cement handling variables and ... acid to form glass ionomer cements, whose properties were investigated at different time points: working and setting times were determined by rheometry; and, ...

  14. CEMENT KILN DUST AS A MATERIAL FOR BUILDING BLOCKS ...

    African Journals Online (AJOL)

    This paper presents the results of a study on the properties of hollow sandcrete blocks with cement kiln dust (CKD) as an additive and as a replacement for ordinary portland cement (OPC). When CKD was used as a replacement for cement, the compressive strength and density of blocks generally decreased with higher ...

  15. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    OpenAIRE

    Weijing Yao; Jianyong Pang; Yushan Liu

    2018-01-01

    Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry inject...

  16. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    International Nuclear Information System (INIS)

    Wong, H.S.; Buenfeld, N.R.

    2009-01-01

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  17. Influence of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials

    NARCIS (Netherlands)

    Yu, R.; Shui, Z.H.

    2013-01-01

    This paper presents a study, including experimental and mechanism analysis, on investigating the effect of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials. The recycled additive is firstly produced form waste hardened cement paste

  18. Comparative evaluation of marginal leakage of provisional crowns cemented with different temporary luting cements: In vitro study

    Directory of Open Access Journals (Sweden)

    Sheen Juneja Arora

    2016-01-01

    Conclusion: The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage.

  19. Dose response effect of cement dust on respiratory muscles competence in cement mill workers.

    Science.gov (United States)

    Meo, Sultan A; Azeem, Muhammad A; Qureshi, Aijaz A; Ghori, G Moinudin; Al-Drees, Abdul Majeed; Feisal Subhan, Mirza Muhammad

    2006-12-01

    Electromyography (EMG) of respiratory muscles is a reliable method of assessing the ventilatory muscle function, but still its use has not been fully utilized to determine the occupational and environmental hazards on respiratory muscles. Therefore, EMG of intercostal muscles was performed to determine the dose response effect of cement dust on respiratory muscles competence. Matched cross-sectional study of EMG in 50 non-smoking cement mill workers with an age range of 20 - 60 years, who worked without the benefit of cement dust control ventilation or respiratory protective devices. EMG was performed by using surface electrodes and chart recorder. Significant reduction was observed in number of peaks (p competence and stratification of results shows a dose-effect of years of exposure in cement mill.

  20. Micropore characteristics of organic matter pools in cemented and non-cemented podzolic horizons

    NARCIS (Netherlands)

    Catoni, M.; D'amico, M.E.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.; Bonifacio, E.

    2014-01-01

    In Podzols, organic matter (OM) is stabilized mainly by interaction with minerals, as a direct consequence of pedogenic processes. Metal-organic associations strongly affect OM surface features, particularly microporosity. Cemented ortstein horizons (CM) may form during podzolization, accompanied by

  1. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Influence of Superplasticizer-Microsilica Complex on Cement Hydration, Structure and Properties of Cement Stone

    Science.gov (United States)

    Ivanov, I. M.; Kramar, L. Ya; Orlov, A. A.

    2017-11-01

    According to the study results, the influence of complex additives based on microsilica and superplasticizers on the processes of the heat release, hydration, hardening, formation of the structure and properties of cement stone was determined. Calorimetry, derivatography, X-ray phase analysis, electronic microscopy and physical-mechanical methods for analyzing the properties of cement stone were used for the studies. It was established that plasticizing additives, in addition to the main water-reducing and rheological functions, regulate cement solidification and hardening while polycarboxylate superplasticizers even contribute to the formation of a special, amorphized microstructure of cement stone. In a complex containing microsilica and a polycarboxylate superplasticizer the strength increases sharply with a sharp drop in the capillary porosity responsible for the density, permeability, durability, and hence, the longevity of concrete. All this is a weighty argument in favor of the use of microsilica jointly with a polycarboxylate superplasticizer in road concretes operated under aggressive conditions.

  3. The suitability of a supersulfated cement for nuclear waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  4. The suitability of a supersulfated cement for nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Collier, N.C.; Milestone, N.B.; Gordon, L.E.; Ko, S.-C.

    2014-01-01

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste

  5. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  6. Properties and durability of metakaolin blended cements: mortar and concrete

    Directory of Open Access Journals (Sweden)

    Abbas, Rafik

    2010-12-01

    Full Text Available This article explores the effect of metakaolin, a pozzolan, on concrete performance. Compressive and splitting tensile strength were found for specimens cured for up to 360 and 90 days, respectively. Changes were recorded in the compressive strength of specimens exposed to salt (chloride and sulfatechloride solutions, and chloride penetration and binding capacity were measured. The findings were compared to the results for concrete prepared with ordinary Portland (OPC and moderate heat of hydration (Type II cement. MK was found to have a very positive effect on 28-day concrete strength, due to microstructure improvement of the hydrated cement. Replacing cement with metakaolin effectively raised concrete resistance to chloride attack. Concrete containing metakaolin proved to be substantially more durable in sulfate-chloride environment.

    En este trabajo se estudia el efecto del metacaolín sobre las prestaciones del hormigón. Las probetas curadas a 360 y 90 días se sometieron a ensayos de resistencia a compresión y de tracción indirecta respectivamente. Se hizo un seguimiento de la resistencia a la compresión de los materiales ante el ataque de sales (soluciones de cloruro y de sulfato-cloruro y, se midió la penetración de cloruros y la capacidad de los hormigones de inmovilizar estos iones. Los resultados se compararon con los obtenidos con hormigones elaborados con cemento pórtland ordinario (OPC y, con cemento de calor de hidratación moderado (tipo II. El MK resultó influir muy positivamente en la resistencia del hormigón a 28 días debido a la mejora de la microestructura del cemento hidratado. La sustitución de cemento por metacaolín aumentó la resistencia del hormigón al ataque de cloruros. El hormigón con metacaolín demostró ser más duradero en entornos de sulfato-cloruro que los hormigones elaborados con OPC o con cemento de tipo II. Los perfiles de concentración de cloruros a distintas profundidades y la

  7. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    Science.gov (United States)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  8. Peat Soil Stabilization using Lime and Cement

    Directory of Open Access Journals (Sweden)

    Mohd Zambri Nadhirah

    2018-01-01

    Full Text Available This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  9. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Yamawaki, M.

    1995-01-01

    In a fusion reactor or tritium-handling facilities, contamination of concrete by tritium and subsequent release from it to the reator or experimental room is a matter of problem for safe control of tritium and management of operational environment. In order to evaluate this tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were experimentally studied.(1)Sorption experiments were conducted using columns packed with cement particles of different sizes. From the analysis of the breakthrough curve, tritium diffusivity in macropores and microparticles were evaluated.(2)From the short-term tritium release experiments, effective desorption rate constants were evaluated and the effects of temperature and moisture were studied.(3)In the long-term tritium release experiments to 6000h, the tritium release mechanism was found to be composed of three kinds of water: initially from capillary water, and in the second stage from gel water and from the water in the cement crystal.(4)Tritium release behavior by heat treatment to 800 C was studied. A high temperature above 600 C was required for the tritium trapped in the crystal water to be released. (orig.)

  10. Kinetics of strength gain of biocidal cements

    Directory of Open Access Journals (Sweden)

    Rodin Aleksandr Ivanovich

    Full Text Available Biocorrosion becomes the determinative durability factor of buildings and constructions. Damages of construction materials caused by bacteria, filamentous fungi, actinomycetes constitute a serious danger to the constructions of a building or a structure and to the health of people. Biodeteriorations are typical both in old and new constructions. A great quantity of destruction factors of industrial and residential buildings under the influence of microorganisms was established in practice. Providing products and constructions based on concretes fungicidal and bactericidal properties is an important direction of modern construction material science. The most efficient way to solve this task is creation of biocidal cements. The article presents the results of experimental studies of kinetic dependences of strength gain by biocidal cements by physico-mechanical and physico-chemical analysis methods. The identical velocity character of initial hydration of the developed compositions of biocidal cements is set, as well as a more calm behavior of hardening processes at later terms. It has been established that the compositions of biocidal cements modified by sodium sulfate and sodium fluoride possess the greatest strength.

  11. The fixation of radioactive wastes in cement

    International Nuclear Information System (INIS)

    Kulichenko, V.V.; Dukhovich, F.S.; Volkova, O.I.; Boyarinova, M.V.

    1976-01-01

    The authors study the leaching behaviour of the main long-lived fission products 90 Sr and 137 Cs. It is found that 90 Sr and 137 Cs have high elution values, namely (2-12) x 10 -2 resp. (2-6) x 10 -2 g/cm 2 /24h, independently of the type of waste. On the basis of these results, maximum concentrations for the solutions in the cement/solution mixtures are proposed. Further studies relate to the formation of radiolysis gas in the waste fixed to cement. Experiments are described to make use of the empty space in the containers, filled with solid waste by filling them with mixtures of cement and liquid radioactive waste of 10 -4 to 1- 6 Ci. The ratio solution/cement should amount to 0.5. The containers are then buried underground. This method of combined waste storage helped to reduce the cost for the storage of liquid waste by about 40-50%. (RB) [de

  12. Consolidation behavior of cement-based systems

    DEFF Research Database (Denmark)

    Kjeldsen, Ane Mette

    2007-01-01

    partikler på pakning og middelporestørrelse i frisk beton. Modellen er beskrevet og eftervist for Portland cement pasta med og uden silicastøv og såkaldte superplastificerende stoffer. Superplastificerende stoffer anvendes for at mindske de attraktive kræfter mellem de fine partikler og dermed øge...

  13. Topics in cement and concrete research

    NARCIS (Netherlands)

    Brouwers, Jos; Russel, M.I.; Basheer, P.A.M.

    2007-01-01

    The present paper addresses several topics in regard to the sustainable design and use of concrete. First, major features concerning the sustainable aspects of the material concrete are summarised. Then the major constituent, from an environmental point of view, cement is discussed in detail,

  14. Calcium phosphate cement scaffolds with PLGA fibers.

    Science.gov (United States)

    Vasconcellos, Letícia Araújo; dos Santos, Luís Alberto

    2013-04-01

    The use of calcium phosphate-based biomaterials has revolutionized current orthopedics and dentistry in repairing damaged parts of the skeletal system. Among those biomaterials, the cement made of hydraulic grip calcium phosphate has attracted great interest due to its biocompatibility and hardening "in situ". However, these cements have low mechanical strength compared with the bones of the human body. In the present work, we have studied the attainment of calcium phosphate cement powders and their addition to poly (co-glycolide) (PLGA) fibers to increase mechanical properties of those cements. We have used a new method that obtains fibers by dripping different reagents. PLGA fibers were frozen after lyophilized. With this new method, which was patented, it was possible to obtain fibers and reinforcing matrix which furthered the increase of mechanical properties, thus allowing the attainment of more resistant materials. The obtained materials were used in the construction of composites and scaffolds for tissue growth, keeping a higher mechanical integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Portland cement concrete air content study.

    Science.gov (United States)

    1987-04-20

    This study took the analysis of Portland cement concrete air content. Based on the information gathered, this study hold the results were : 1) air-entrained concrete was more durable than non-air entrained concrete all other factors being equal; 2) A...

  16. CEMENT BONDED COMPOSITES – A MECHANICAL REVIEW

    Directory of Open Access Journals (Sweden)

    Stephan Frybort

    2008-05-01

    Full Text Available Over the last years promising cement bonded wood composites for structural purposes have evolved. Durability, toughness, high dimen-sional stability, resistance against environmental influences such as biodegradation or weathering but also availability of the raw material as well as economic factors are features which can make cement-bonded composites superior to conventionally bonded composites. This paper reviews the relationship of diverse parameters, including density and particle size on mechanical and physical properties of cement bonded composites, based on published sources from the last 60 years. For general and recent information about bonding mechanisms, compatibility and setting problems, determination and improvement of compatibility, the used raw materials as well as accelerators are discussed. The main part deals with failure mechanisms in connection with several production parameters. Furthermore, the influence of particle size and geometry, orientation of the particles, cement-wood ratio and the effect of accelerators and treatment of the particles on modulus of elasticity, modulus of rupture as well as thickness swelling are discussed.

  17. Remediation of contaminated soil by cement treatment

    International Nuclear Information System (INIS)

    Dimovic, S.

    2004-01-01

    This manuscript presents the most applicable remedial technologies for contaminated soil with focus on cement stabilisation/solidification treatment. These technologies are examined in the light of soil contamination with depleted uranium in the large area of south Serbia,after Nato bombing 1999. (author) [sr

  18. European cement conference and exhibition. Proceedings volume

    Energy Technology Data Exchange (ETDEWEB)

    McCaffrey, R. (ed.)

    2004-07-01

    Topics covered various aspects of the European cement industry including trends, market, emissions trading, environment, state-of-the-art technology, kilns and dedusting solutions. Two papers have been abstracted separately. A CD-ROM of the conference papers, including additional papers not in the printed volume, is also available.

  19. Environmental interactions of cement-based products

    NARCIS (Netherlands)

    Florea, M.V.A.; Schmidt, W.; Msinjili, N.S.

    2016-01-01

    The environmental interactions of concrete and other cement-based products encompasses both the influence of such materials on their environment, as well as the effects of the environment on the materials in time. There are a number of ways in which the environmental impact of concrete can be

  20. Peat Soil Stabilization using Lime and Cement

    Science.gov (United States)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  1. The AFm phase in Portland cement

    International Nuclear Information System (INIS)

    Matschei, T.; Lothenbach, B.; Glasser, F.P.

    2007-01-01

    The AFm phase of Portland cements refers to a family of hydrated calcium aluminates based on the hydrocalumite-like structure of 4CaO.Al 2 O 3 .13-19 H 2 O. However OH - may be replaced by SO 4 2- and CO 3 2- . Except for limited replacement (50 mol%, maximum) of sulfate by hydroxide, these compositions do not form solid solutions and, from the mineralogical standpoint, behave as separate phases. Therefore many hydrated cements will contain mixtures of AFm phases. AFm phases have been made from precursors and experimentally-determined phase relationships are depicted at 25 deg. C. Solubility data are reported and thermodynamic data are derived. The 25 deg. C stability of AFm phases is much affected by the nature of the anion: carbonate stabilises AFm and displaces OH and SO 4 at species activities commonly encountered in cement systems. However in the presence of portlandite, and as carbonate displaces sulfate in AFm, the reaction results in changes in the amount of both portlandite and ettringite: specimen calculations are presented to quantify these changes. The scheme of phase balances enables calculation of the mineralogical balances of a hydrated cement paste with greater accuracy than hitherto practicable

  2. Experimental study of cement grout : Rheological behavior and sedimentation

    OpenAIRE

    ROSQUOET, F; ALEXIS, A; KHELIDJ, A; PHELIPOT, A

    2003-01-01

    Three basic elements (cement, water and admixture) usually make up injectable cement grouts used for prestressed cable coating, repair and consolidation of masonry, soil grouting, etc. The present study was divided into two parts. First, in order to characterize rheologically fresh cement paste with water/cement ratios (W/C) varying between 0,35 and 1, an expeirmental study was carried out and has revealed that the cement past behaves like a shear-thinning material, whatever is the W/C ratio....

  3. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G.

    1990-01-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  4. Absorption Characteristics of Cement Combination Concrete Containing Portland Cement, fly ash, and Metakaolin

    Directory of Open Access Journals (Sweden)

    Folagbade S.O.

    2016-03-01

    Full Text Available The resistance to water penetration of cement combination concretes containing Portland cement (PC, fly ash (FA, and metakaolin (MK have been investigated at different water/cement (w/c ratios, 28-day strengths, and depths of water penetration using their material costs and embodied carbon-dioxide (eCO2 contents. Results revealed that, at equal w/c ratio, eCO2 content reduced with increasing content of FA and MK. MK contributed to the 28-day strengths more than FA. Compared with PC, FA reduced cost and increased the depth of water penetration, MK increased cost and reduced the depth of water penetration, and their ternary combinations become beneficial. At equal strengths and levels of resistance to water penetration, most of the cement combination concretes are more environmentally compatible and costlier than PC concrete. Only MK binary cement concretes with 10%MK content or more and ternary cement concretes at a total replacement level of 55% with 10%MK content or more have higher resistance to water penetration than PC concrete.

  5. Portland cement hydration and early setting of cement stone intended for efficient paving materials

    Science.gov (United States)

    Grishina, A.

    2017-10-01

    Due to the growth of load on automotive roads, modern transportation engineering is in need of efficient paving materials. Runways and most advanced highways require Portland cement concretes. This makes important the studies directed to improvement of binders for such concretes. In the present work some peculiarities of the process of Portland cement hydration and early setting of cement stone with barium hydrosilicate sol were examined. It was found that the admixture of said sol leads to a shift in the induction period to later times without significant change in its duration. The admixture of a modifier with nanoscale barium hydrosilicates increases the degree of hydration of the cement clinker minerals and changes the phase composition of the hydration products; in particular, the content of portlandite and tricalcium silicate decreases, while the amount of ettringite increases. Changes in the hydration processes of Portland cement and early setting of cement stone that are caused by the nanoscale barium hydrosilicates, allow to forecast positive technological effects both at the stage of manufacturing and at the stage of operation. In particular, the formwork age can be reduced, turnover of molds can be increased, formation of secondary ettringite and corrosion of the first type can be eliminated.

  6. Sustainable Blended Cements-Influences of Packing Density on Cement Paste Chemical Efficiency.

    Science.gov (United States)

    Knop, Yaniv; Peled, Alva

    2018-04-18

    This paper addresses the development of blended cements with reduced clinker amount by partial replacement of the clinker with more environmentally-friendly material (e.g., limestone powders). This development can lead to more sustainable cements with reduced greenhouse gas emission and energy consumption during their production. The reduced clicker content was based on improved particle packing density and surface area of the cement powder by using three different limestone particle diameters: smaller (7 µm, 3 µm) or larger (70 µm, 53 µm) than the clinker particles, or having a similar size (23 µm). The effects of the different limestone particle sizes on the chemical reactivity of the blended cement were studied by X-ray diffraction (XRD), thermogravimetry and differential thermogravimetry (TG/DTG), loss on ignition (LOI), isothermal calorimetry, and the water demand for reaching normal consistency. It was found that by blending the original cement with limestone, the hydration process and the reactivity of the limestone itself were increased by the increased surface area of the limestone particles. However, the carbonation reaction was decreased with the increased packing density of the blended cement with limestone, having various sizes.

  7. Can free energy calculations be fast and accurate at the same time? Binding of low-affinity, non-peptide inhibitors to the SH2 domain of the src protein

    Science.gov (United States)

    Chipot, Christophe; Rozanska, Xavier; Dixit, Surjit B.

    2005-11-01

    The usefulness of free-energy calculations in non-academic environments, in general, and in the pharmaceutical industry, in particular, is a long-time debated issue, often considered from the angle of cost/performance criteria. In the context of the rational drug design of low-affinity, non-peptide inhibitors to the SH2 domain of the pp60src tyrosine kinase, the continuing difficulties encountered in an attempt to obtain accurate free-energy estimates are addressed. free-energy calculations can provide a convincing answer, assuming that two key-requirements are fulfilled: (i) thorough sampling of the configurational space is necessary to minimize the statistical error, hence raising the question: to which extent can we sacrifice the computational effort, yet without jeopardizing the precision of the free-energy calculation? (ii) the sensitivity of binding free-energies to the parameters utilized imposes an appropriate parametrization of the potential energy function, especially for non-peptide molecules that are usually poorly described by multipurpose macromolecular force fields. Employing the free-energy perturbation method, accurate ranking, within ±0.7 kcal/mol, is obtained in the case of four non-peptide mimes of a sequence recognized by the pp60src SH2 domain.

  8. Effects of Coal Gangue on Cement Grouting Material Properties

    Science.gov (United States)

    Liu, J. Y.; Chen, H. X.

    2018-05-01

    The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.

  9. Assessment of cement durability in repository environment

    International Nuclear Information System (INIS)

    Ferreira, E.G.A.; Vicente, R.; Isiko, V.L.K.; Miyamoto, H.; Marumo, J.T.; Gobbo, L.A.

    2015-01-01

    The present research aimed at investigating the durability of cement paste under nuclear waste repository conditions using accelerated tests. Cement paste samples are examined after being exposed to the environmental conditions that are expected to prevail in the repository environment and the results are compared with those obtained with unexposed specimens or specimens exposed to reference conditions. The following exposure conditions were selected: a) Immersion in salt solution, distilled water, or kept in dry storage; b) Room temperature (20 C. degrees) or high temperature (60 C. degrees); c) Immersion time of 30 days or 60 days (not for dry storage); d) Irradiation to a dose of (400 kGy) or background radiation (0 kGy). After exposure to the stressing conditions, the effects of each factor on the cement paste samples were observed by changes in their characteristics. Compressive strength tests were performed on all samples and some of them were investigated in terms of changes in mineralogy by X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). With the results obtained so far it was possible to point out the following conclusions. First, after a period of immersion in water, cement paste samples further hydrated and presented higher mechanical resistance, as expected. Secondly, dry storage did not allow a complete hydration as a consequence of pore water evaporation. High temperatures intensified this process and led to the ettringite decomposition to meta-ettringite. Thirdly, higher temperature accelerated hydration kinetics and promoted higher mechanical resistance in samples kept under immersion. Fourthly, the irradiation dose applied was unable to change the mineralogy of cement paste samples and fifthly, no statistically significant differences were observed between 30 or 60 days exposure time, for the test conditions

  10. Cementation of Nuclear Graphite Using Geopolymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H-J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2016-01-01

    Geopolymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geopolymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geopolymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated on how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfil the necessary specifications best. As a result, geopolymers have been identified as a promising matrix for graphite containing nuclear wastes. With geopolymers, both favourable properties in the cementation process and a high long time structural stability of the products can be achieved. Investigations include: • direct mixing of graphite with geopolymers with or without sand as a mechanically stabilizing medium; • production of cement-graphite granulates as intermediate products and embedding of these granulates in geopolymer; • coating of formed graphite pieces with geopolymer.The report shows that carbon in the form of graphite can both be integrated with different grain size spectra as well as shaped in the hydraulic binder geopolymer and meets the requirements for a stable long-term immobilisation. (author)

  11. Cementation and solidification of Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Phillips, J.A.; Semones, G.B.

    1994-01-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes

  12. Leaching behaviour of tritium from a hardened cement paste

    International Nuclear Information System (INIS)

    Matsuzuru, H.; Moriyama, N.; Ito, A.

    1979-01-01

    Leaching of tritium from a hardened cement paste into an aqueous phase has been studied to assess the safety of solidification of the tritiated liquid waste with cement. Leaching tests were carried out in accordance with the method recommended by the International Atomic Energy Agency. The leaching fraction was measured as functions of the waste-cement wt ratio (Wa/C), temperature of leachant and curing time. the tritium leachability of cements follows the order: alumina cement > Portland cement > slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than the synthetic sea water. The coating of the specimen surface with bitumen reduces the leachability to about 5% of its value for the specimen without coating. (author)

  13. Studies of the setting behavior of cement suspensions

    International Nuclear Information System (INIS)

    Rudolph, G.; Luo, S.; Vejmelka, P.; Koester, R.

    1983-10-01

    The design of process for cementation of radioactive waste solutions is determined not only by the quality of the final product but also by the behavior of the cement grout before and during setting. For these reasons quantitative investigations were performed on the characteristics of the cement suspensions considered for solidification of intermediate-level liquid wastes which are composed mainly of cement, bentonite, simulated waste solution, and water. Particular interest was given to the differences in behavior of the various types of cement. The parameters investigated include viscosity, bleeding, volume change during setting, influence of compacting by vibration, time of setting, heat of hydration. At the end of the report the merits and drawbacks of the different cements are tabulated. These data may serve as a decision aid in selecting an appropriate type of cement

  14. Mechanical Properties and Decay Resistance of Hornbeam Cement Bonded Particleboards

    Directory of Open Access Journals (Sweden)

    Antonios N. Papadopoulos

    2008-01-01

    Full Text Available Cement bonded particleboards were manufactured from hornbeam (Carpinus betulus L. wood particles. Hydration tests were carried out to determine the inhibitory index in order to characterise wood-cement compatibility. The results revealed that the mixture of hornbeam-cement can be classified as moderate inhibition. Two wood: cement ratios were applied in this study, namely, 1 : 3 and 1 : 4, for the board manufacture. It was found that an increase of cement-wood ratio resulted in an improvement in all properties examined, except MOR. All properties of the boards made from 1 : 4 wood: cement ratio surpassed the minimum requirements set forth by the building type HZ code. Boards were exposed to brown and white rot fungi, Coniophora puteana, and Trametes versicolor, respectively. Overall, both fungi failed to attack the cement-bonded boards.

  15. Studies on diffusion of 137Cs in cement mortar

    International Nuclear Information System (INIS)

    Takebe, Shinichi; Shimooka, Kenji; Wadachi, Yoshiki; Kuramoto, Yuzuru.

    1989-12-01

    Penetration experiment of 137 Cs into the impermeable cement mortar which has been treated by the impermeable reagent (XYPEX reagent) was carried out in order to advance the performance of engineered barrier for Low Level Radioactive Waste. The result showed that the radioactive concentration at deeper region in the impermeable cement mortar specimen was decreased about 1 order of magnitude below that in the untreated specimen. Diffusion coefficient calculated from the radioactive concentration of 137 Cs in the cement mortar specimen was 9.1 x 10 -5 cm 2 /day for untreated cement mortar specimen and 4.0 x 10 -5 cm 2 /day for the impermeable cement mortar specimen, respectively. Treatment of cement mortar by the impermeable reagent was found to be effective to reduce the value of appearent diffusion coefficient for 137 Cs in the cement mortar. (author)

  16. Diagraphies de cimentation : vers une analyse de la qualité du contact ciment-formation Cement Logging: Toward an Analysis of the Quality of Cement-Formation Bonding

    Directory of Open Access Journals (Sweden)

    Isambourg P.

    2006-11-01

    specialists (VDL tool. The greatest progress that could be made with cementing logs was to detect defects in the cement-formation interface. This is what we have done within the framework of a project financed by ARTEP (Association de Recherche sur les Techniques d'Exploitation du Pétrole, made up of Total, Gaz de France (GDF, Institut Français du Pétrole (IFP and Elf Aquitaine Production (EAP. Laboratory experiments performed in the Fluid Analysis Service at Boussens involved the injecting of cement between a casing and a simulated formation, with or without the presence of mud having varying thicknesses. Fast or slow formations as well as fast or slow cements were used. The ultrasonic echoes obtained by a ceramic CET sonde were recorded and analyzed. Both theory and the experiments showed that ultrasonic echoes are modified in the presence of mud and/or gas. The relations between the shape of the ultrasonic wave and presence of mud and gas between the cement and the formation were determined. A processing procedure is proposed with its limitations. Cementing Quality : If we had to set forth a quality criterion for cementing, we would say: For cementing to be considered as being of good quality, the cement sheath must be at least as leakproof as the formation it replaces. When a borehole is drilled, different zones are effectively brought into communication. The initial isolation will be established by the casing + cement sheath. This function will thus be correctly ensured if this combination lets pass only the start of a fluid leak (water, oil, gas that is less than or equal to what is allowed by an equivalent section of formation drilled through. Naturally, this concept is mainly applied to sensitive zones, e. g. such as the overburden of a reservoir. However, it should be noted that this concept is also applied to the reservoir itself and not only to the overburden. Indeed, a leaky cement sheath at the level of a reservoir with relatively low permeability could, for

  17. The effects of cement-based and cement-ash-based mortar slabs on indoor air quality

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Wargocki, Pawel

    2018-01-01

    The effects of emissions from cement-based and cement-ash-based mortar slabs were studied. In the latter, 30% of the cement content had been replaced by sewage sludge ash. They were tested singly and together with either carpet or linoleum. The air exhausted from the chambers was assessed by means...... of odour intensity and chemical characterization of emissions. Odour intensity increased with the increased exposed area of the slabs. It did not differ significantly between cement-based or cement-ash-based mortar and neither did the chemical composition of the exhaust air. A significant sink effect...

  18. The influence of clay drilling grout on the quality of well cementation

    Energy Technology Data Exchange (ETDEWEB)

    Romic, L; Martinko, B

    1979-01-01

    The influence of clay drilling grout on the behavior of the cement mixture during the cementing of casings is described. Experimental results are given which demonstrate that clay drill grout slows down the setting of the cement mixture, lowers the durability of cement stone and its adherence to the well's walls, and changes the rheological properties and viscosity of the cement mixture. Separating devices, which prevent the mixing of the clay drilling grout and the cement solutions during the cementation process, are recommended.

  19. Armouring of well cement in H2S–CO2 saturated brine by calcite coating – Experiments and numerical modelling

    International Nuclear Information System (INIS)

    Jacquemet, Nicolas; Pironon, Jacques; Lagneau, Vincent; Saint-Marc, Jérémie

    2012-01-01

    The active acid gas (H 2 S–CO 2 mixture) injection operations in North America provide practical experience for the operators in charge of industrial scale CO 2 geological storage sites. Potential leakage via wells and their environmental impacts make well construction durability an issue for efficiency/safety of gas geological storage. In such operations, the well cement is in contact with reservoir brines and the injected gas, meaning that gas–water–solid chemical reactions may change the physical properties of the cement and its ability to confine the gas downhole. The cement-forming Calcium silicate hydrates carbonation (by CO 2 ) and ferrite sulfidation (by H 2 S) reactions are expected. The main objective of this study is to determine their consequences on cement mineralogy and transfer ability. Fifteen and 60 days duration batch experiments were performed in which well cement bars were immersed in brine itself caped by a H 2 S–CO 2 phase at 500 bar–120 °C. Scanning electron microscopy including observations/analyses and elemental mapping, mineralogical mapping by micro-Raman spectroscopy, X-ray diffraction and water porosimetry were used to characterize the aged cement. Speciation by micro-Raman spectroscopy of brine trapped within synthetic fluid inclusions were also performed. The expected calcium silicate hydrates carbonation and ferrite sulfidation reactions were evidenced. Furthermore, armouring of the cement through the fast creation of a non-porous calcite coating, global porosity decrease of the cement (clogging) and mineral assemblage conservation were demonstrated. The low W/R ratio of the experimental system (allowing the cement to buffer the interstitial and external solution pH at basic values) and mixed species diffusion and chemical reactions are proposed to explain these features. This interpretation is confirmed by reactive transport modelling performed with the HYTEC code. The observed cement armouring, clogging and mineral

  20. Evaluation of stainless steel crowns cemented with glass-ionomer and resin-modified glass-ionomer luting cements.

    Science.gov (United States)

    Yilmaz, Yucel; Simsek, Sera; Dalmis, Anya; Gurbuz, Taskin; Kocogullari, M Elcin

    2006-04-01

    To evaluate in vitro and in vivo conditions of stainless steel crowns (SSC) cemented using one luting glass-ionomer cement (Aqua Meron) and one luting resin-modified glass-ionomer cement (Vitremer). In the in vitro part of this study, retentive properties of SSCs cemented using Aqua Meron and Vitremer on extracted primary first molars were tested. In addition, two specimens of each group were used to evaluate the tooth hard tissue-cement, within the cement itself, cement-SSC, and tooth hard tissue-cement-SSC under scanning electron microscope (SEM). In the in vivo part of this study, 152 SSCs were placed on the first or second primary molars of 86 children, and cemented using either Aqua Meron or Vitremer. The crowns were examined for retention. In addition, the clinical views of the crowns were recorded with an intraoral camera. No significant difference was found between the mean retentive forces of Aqua Meron and Vitremer (P> 0.05). SSCs cemented with Aqua Meron and Vitremer had an average lifespan of 26.44 and 24.07 months respectively. Only one (0.66%) of 152 SSCs was lost from the Aqua Meron group during post-cementation periods. Nineteen of the 152 SSCs (12.5%) had dents or perforations.

  1. Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber-cement composites.

    Science.gov (United States)

    Hamzeh, Yahya; Ziabari, Kamran Pourhooshyar; Torkaman, Javad; Ashori, Alireza; Jafari, Mohammad

    2013-03-15

    This work assesses the effects of white rice husk ash (WRHA) as pozzolanic material, virgin kraft pulp (VKP), old corrugated container (OCC) and fibers derived from fiberboard (FFB) as reinforcing agents on some properties of blended cement composites. In the sample preparation, composites were manufactured using fiber-to-cement ratio of 25:75 by weight and 5% CaCl(2) as accelerator. Type II Portland cement was replaced by WRHA at 0%, 25% and 50% by weight of binder. A water-to-binder ratio of 0.55 was used for all blended cement paste mixes. For parametric study, compressive strength, water absorption and density of the composite samples were evaluated. Results showed that WRHA can be applied as a pozzolanic material to cement and also improved resistance to water absorption. However, increasing the replacement level of WRHA tends to reduce the compressive strength due to the low binding ability. The optimum replacement level of WRHA in mortar was 25% by weight of binder; this replacement percentage resulted in better compressive strengths and water absorption. OCC fiber is shown to be superior to VKF and FFB fibers in increasing the compressive strength, due to its superior strength properties. As expected, the increase of the WRHA content induced the reduction of bulk density of the cement composites. Statistical analysis showed that the interaction of above-mentioned variable parameters was significant on the mechanical and physical properties at 1% confidence level. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Simplified cementation of lithium disilicate crowns: Retention with various adhesive resin cement combinations.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Patterson, Amanda; Schäfer, Oliver

    2017-09-27

    A composite resin cement and matching self-etch adhesive was developed to simplify the dependable retention of lithium disilicate crowns. The efficacy of this new system is unknown. The purpose of this in vitro study was to determine whether lithium disilicate crowns cemented with a new composite resin and adhesive system and 2 other popular systems provide clinically acceptable crown retention after long-term aging with monthly thermocycling. Extracted human molars were prepared with a flat occlusal surface, 20-degree convergence, and 4 mm axial length. The axio-occlusal line angle was slightly rounded. The preparation surface area was determined by optical scanning and the analysis of the standard tessellation language (STL) files. The specimens were distributed into 3 cement groups (n=12) to obtain equal mean surface areas. Lithium disilicate crowns (IPS e.max Press) were fabricated for each preparation, etched with 9.5% hydrofluoric acid for 15 seconds, and cleaned. Cement systems were RelyX Ultimate with Scotch Bond Universal (3M Dental Products); Monobond S, Multilink Automix with Multilink Primer A and B (Ivoclar Vivadent AG); and NX3 Nexus with OptiBond XTR (Kerr Corp). Each adhesive provided self-etching of the dentin. Before cementation, the prepared specimens were stored in 35°C water. A force of 196 N was used to cement the crowns, and the specimens were polymerized in a 35°C oven at 100% humidity. After 24 hours of storage at 100% humidity, the cemented crowns were thermocycled (5°C to 55°C) for 5000 cycles each month for 6 months. The crowns were removed axially at 0.5 mm/min. The removal force was recorded and the dislodgement stress calculated using the preparation surface area. The type of cement failure was recorded, and the data were analyzed by 1-way ANOVA and the chi-square test (α=.05) after the equality of variances had been assessed with the Levene test. The Levene test was nonsignificant (P=.936). The ANOVA revealed the mean removal

  3. Composite cements benefit from light-curing.

    Science.gov (United States)

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To investigate the effect of curing of composite cements and a new ceramic silanization pre-treatment on the micro-tensile bond strength (μTBS). Feldspathic ceramic blocks were luted onto dentin using either Optibond XTR/Nexus 3 (XTR/NX3; Kerr), the silane-incorporated 'universal' adhesive Scotchbond Universal/RelyX Ultimate (SBU/RXU; 3M ESPE), or ED Primer II/Panavia F2.0 (ED/PAF; Kuraray Noritake). Besides 'composite cement', experimental variables were 'curing mode' ('AA': complete auto-cure at 21°C; 'AA*': complete auto-cure at 37°C; 'LA': light-curing of adhesive and auto-cure of cement; 'LL': complete light-curing) and 'ceramic surface pre-treatment' ('HF/S/HB': hydrofluoric acid ('HF': IPS Ceramic Etching Gel, Ivoclar-Vivadent), silanization ('S': Monobond Plus, Ivoclar-Vivadent) and application of an adhesive resin ('HB': Heliobond, Ivoclar-Vivadent); 'HF/SBU': 'HF' and application of the 'universal' adhesive Scotchbond Universal ('SBU'; 3M ESPE, only for SBU/RXU)). After water storage (7 days at 37°C), ceramic-dentin sticks were subjected to μTBS testing. Regarding the 'composite cement', the significantly lowest μTBSs were measured for ED/PAF. Regarding 'curing mode', the significantly highest μTBS was recorded when at least the adhesive was light-cured ('LA' and 'LL'). Complete auto-cure ('AA') revealed the significantly lowest μTBS. The higher auto-curing temperature ('AA*') increased the μTBS only for ED/PAF. Regarding 'ceramic surface pre-treatment', only for 'LA' the μTBS was significantly higher for 'HF/S/HB' than for 'HF/SBU'. Complete auto-cure led to inferior μTBS than when either the adhesive (on dentin) or both adhesive and composite cement were light-cured. The use of a silane-incorporated adhesive did not decrease luting effectiveness when also the composite cement was light-cured. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Fast Convolution Module (Fast Convolution Module)

    National Research Council Canada - National Science Library

    Bierens, L

    1997-01-01

    This report describes the design and realisation of a real-time range azimuth compression module, the so-called 'Fast Convolution Module', based on the fast convolution algorithm developed at TNO-FEL...

  5. Personal exposure to inhalable cement dust among construction workers

    International Nuclear Information System (INIS)

    Peters, Susan; Kromhout, Hans; Thomassen, Yngvar; Fechter-Rink, Edeltraud

    2009-01-01

    A case study was carried out in 2006-2007 to assess the actual cement dust exposure among construction workers involved in a full-scale construction project and as a comparison among workers involved in various stages of cement and concrete production. Full-shift personal exposure measurements were performed for several job types. Inhalable dust and cement dust (based on analysis of elemental calcium) concentrations were determined. Inhalable dust exposures at the construction site ranged from 0.05 to 34 mg/m3, with a mean concentration of 1.0 mg/m3. For inhalable cement dust mean exposure was 0.3 mg/m3 (range 0.02-17 mg/m3). Reinforcement and pouring workers had the lowest average concentrations. Inhalable dust levels in the ready-mix and pre-cast concrete plants were, on average, below 0.5 mg/m3 for inhalable dust and below 0.2 mg/m3 for inhalable cement dust. Highest dust concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM=55 mg/m3; inhalable cement dust GM=33 mg/m3) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages of cement during reinforcement work and pouring.

  6. The contemporary cement cycle of the United States

    Science.gov (United States)

    Kapur, A.; Van Oss, H. G.; Keoleian, G.; Kesler, S.E.; Kendall, A.

    2009-01-01

    A country-level stock and flow model for cement, an important construction material, was developed based on a material flow analysis framework. Using this model, the contemporary cement cycle of the United States was constructed by analyzing production, import, and export data for different stages of the cement cycle. The United States currently supplies approximately 80% of its cement consumption through domestic production and the rest is imported. The average annual net addition of in-use new cement stock over the period 2000-2004 was approximately 83 million metric tons and amounts to 2.3 tons per capita of concrete. Nonfuel carbon dioxide emissions (42 million metric tons per year) from the calcination phase of cement manufacture account for 62% of the total 68 million tons per year of cement production residues. The end-of-life cement discards are estimated to be 33 million metric tons per year, of which between 30% and 80% is recycled. A significant portion of the infrastructure in the United States is reaching the end of its useful life and will need to be replaced or rehabilitated; this could require far more cement than might be expected from economic forecasts of demand for cement. ?? 2009 Springer Japan.

  7. Laboratory Electrical Resistivity Studies on Cement Stabilized Soil

    Science.gov (United States)

    Lokesh, K. N.; Jacob, Jinu Mary

    2017-01-01

    Electrical resistivity measurement of freshly prepared uncured and cured soil-cement materials is done and the correlations between the factors controlling the performance of soil-cement and electrical resistivity are discussed in this paper. Conventional quality control of soil-cement quite often involves wastage of a lot of material, if it does not meet the strength criteria. In this study, it is observed that, in soil-cement, resistivity follows a similar trend as unconfined compressive strength, with increase in cement content and time of curing. Quantitative relations developed for predicting 7-day strength of soil-cement mix, using resistivity of the soil-cement samples at freshly prepared state, after 1-hour curing help to decide whether the soil-cement mix meets the desired strength and performance criteria. This offers the option of the soil-cement mix to be upgraded (possibly with additional cement) in its fresh state itself, if it does not fulfil the performance criteria, rather than wasting the material after hardening. PMID:28540364

  8. Alkali-slag cements for the immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Shi, C.; Day, R.L.

    1996-01-01

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH) 2 , Al (OH) 3 and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs + from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes

  9. Development of fluorapatite cement for dental enamel defects repair.

    Science.gov (United States)

    Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.

  10. Polypropylene fumarate/phloroglucinol triglycidyl methacrylate blend for use as partially biodegradable orthopaedic cement.

    Science.gov (United States)

    Jayabalan, M; Thomas, V; Rajesh, P N

    2001-10-01

    Polypropylene fumarate/phloroglucinol triglycidyl methacrylate oligomeric blend-based bone cement was studied. Higher the percentage of phloroglucinol triglycidyl methacrylate, lesser the setting time. An optimum setting time could be arrived with 50:50 blend composition of the two oligomers. Composite cement of 50:50 blend prepared with hydroxyapatite granules of particle size 125 microm binds bovine rib bones. The tensile strength of this adhesive bond was found to be 1.11 kPa. The thermal studies suggest the onset of cross-linking reaction in the cured blend if the blend is heated. The absence of softening endotherm in the cured blend shows the thermosetting-like amorphous nature of blend system, which may restrict the changes in creep properties. The in vitro biodegradation studies reveal possible association of calcium ions with negatively charged units of degrading polymer chain resulting in slow down of degradation. Relatively slow degradation was observed in Ringer's solution. The study reveals the potential use of polypropylene fumarate/phloroglucinol triglycidyl methacrylate as partially degradable polymeric cement for orthopaedic applications.

  11. The Estimation of Compaction Parameter Values Based on Soil Properties Values Stabilized with Portland Cement

    Science.gov (United States)

    Lubis, A. S.; Muis, Z. A.; Pasaribu, M. I.

    2017-03-01

    The strength and durability of pavement construction is highly dependent on the properties and subgrade bearing capacity. This then led to the idea of the selection methods to estimate the density of the soil with the proper implementation of the system, fast and economical. This study aims to estimate the compaction parameter value namely the maximum dry unit weight (γd max) and optimum moisture content (wopt) of the soil properties value that stabilized with Portland Cement. Tests conducted in the laboratory of soil mechanics to determine the index properties (fines and liquid limit) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) between 0-15% then mixed with Portland Cement (PC) with variations of 2%, 4%, 6%, 8% and 10%, each 10 samples. The results showed that the maximum dry unit weight (γd max) and wopt has a significant relationship with percent fines, liquid limit and the percentation of cement. Equation for the estimated maximum dry unit weight (γd max) = 1.782 - 0.011*LL + 0,000*F + 0.006*PS with R2 = 0.915 and the estimated optimum moisture content (wopt) = 3.441 + 0.594*LL + 0,025*F + 0,024*PS with R2 = 0.726.

  12. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    Directory of Open Access Journals (Sweden)

    Maximilian eFuchs

    2015-10-01

    Full Text Available Bioactive glasses (BG are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid, ions were released fast (up to 90% within 15 minutes at pH 1, which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa, staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid, which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  13. VUJE experience with cementation of liquid and wet radioactive waste

    International Nuclear Information System (INIS)

    Kravarik, Kamil; Holicka, Zuzana; Pekar, Anton; Zatkulak, Milan

    2011-01-01

    Liquid and wet LLW generated during operation as well as decommissioning of NPPs is treated with different methods and fixed in a suitable fixation matrix so that a final product meets required criteria for its disposal in a final repository. Cementation is an important process used for fixation of liquid and wet radioactive waste such as concentrate, spent resins and sludge. Active cement grout is also used for fixation of low level solid radioactive waste loaded in final packing containers. VUJE Inc. has been engaged in research of cementation for long. The laboratory for analyzing radioactive waste properties, prescription of cementation formulation and estimation of final cement product properties has been established. Experimental, semi-production cementation plant has been built to optimize operation parameters of cementation. VUJE experience with cementation of liquid and wet LLW is described in the presented paper. VUJE has assisted in commissioning of Jaslovske Bohunice Treatment Centre. Cement formulations for treatment of concentrate, spent resins and sludge have been developed. Research studies on the stability of a final concrete packaging container for disposal in repository have been performed. Gained experience has been further utilized for design and manufacture of several cementation plants for treatment of various liquid and wet LLW. Their main technological and technical parameters as well as characterization of treated waste are described in the paper. Applications include the Mochovce Final Treatment Centre, Movable Cementation Facility utilizing in-drum mixing for treatment of sludge, Cementation Facility for treatment of tritiated water in Latvia and Cementation Facility for fixation of liquid and solid institutional radioactive waste in Bulgaria, which utilizes lost stirrer mixer. (author)

  14. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust.

    Science.gov (United States)

    Moon, Deok Hyun; Grubb, Dennis G; Reilly, Trevor L

    2009-09-15

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO(3)(2-)) and selenate (SeO(4)(2-)). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO(3).H(2)O) and selenate substituted ettringite (Ca(6)Al(2)(SeO(4))(3)(OH)(12).26H(2)O), respectively.

  15. High temperature cement raw meal flowability

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Dam-Johansen, Kim

    2014-01-01

    The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated by incre......The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated...

  16. DESIGN OF CEMENT COMPOSITES WITH INCREASED IMPERMEABILITY

    Directory of Open Access Journals (Sweden)

    Fedyuk Roman Sergeevich

    2016-05-01

    Full Text Available The paper deals with the development of composite binders for producing concrete with improved characteristics of gas, water and vapor permeability. The authors investigate the processes of composite materials formation in order of decreasing scale levels from macro to nanostructures. The criteria for optimization of the volume of dispersed additives in concrete are offered. The authors theoretically studied the technological features of the formation of hydrated cement stone structure. A positive effect of nanodispersed additives on the structure and physico-mechanical properties of cement composite materials are predicted. Thanks to its improved features, such as good ratio of strength and body density, high density and lifetime, the modified concrete may be used when solving various practical tasks of the construction branch.

  17. Radiopacity of dental restorative materials and cements

    International Nuclear Information System (INIS)

    Kang, Byung Chul; Yang, Hong So; Chung, Hyun Ju; Oh, Won Mann

    1994-01-01

    The radiopacity of six composite resins, three resin luting cements and ten filling materials were studied. The purpose was to obtain an indication of radiopacity value of different brands within each of these groups of materials and to show differences in radiopacities of filling materials and natural tooth structures. On radiographs, the optimal densities of standardized samples were determined by computer imaging system and radiopacity values of the materials were expressed in millimeter equivalent aluminum. Within to groups of materials studied, there was considerable variation in radiopacity. The composite resins of P-50, Zl00 and prisma AP. H displayed much higher radiopacities than aluminum. Panavia resin cement was shown to be similarly radiopaque to aluminum. Generally, the radiopacity of base and filling materials appeared to combined applications for restorative treatment of teeth, lower radiopacity can interfere with the diagnosis and detection of gaps near the restoration.

  18. Exploratory characterization of volcanic ash sourced from Uganda as a pozzolanic material in portland cement concrete

    NARCIS (Netherlands)

    Buregyeya, A.; Quercia Bianchi, G.; Spiesz, P.R.; Florea, M.V.A.; Nassingwa, R.; Uzoegbo, H.C.; Schmidt, W.

    2013-01-01

    The need for alternative cementing materials to ordinary Portland cement (OPC) has promoted characterization research on pozzolana as an important ingredient in cement production. In Uganda, natural pozzolana application in cement production is done by only two producers of Portland cement and at a

  19. 40 CFR 427.20 - Applicability; description of the asbestos-cement sheet subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos-cement sheet subcategory. 427.20 Section 427.20 Protection of Environment ENVIRONMENTAL PROTECTION... Asbestos-Cement Sheet Subcategory § 427.20 Applicability; description of the asbestos-cement sheet... asbestos, Portland cement, silica, and other ingredients are used in the manufacturing of asbestos-cement...

  20. 40 CFR 427.10 - Applicability; description of the asbestos-cement pipe subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos-cement pipe subcategory. 427.10 Section 427.10 Protection of Environment ENVIRONMENTAL PROTECTION... Asbestos-Cement Pipe Subcategory § 427.10 Applicability; description of the asbestos-cement pipe... asbestos. Portland cement, silica and other ingredients are used in the manufacturing of asbestos-cement...

  1. 76 FR 28318 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2011-05-17

    ... Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants AGENCY... Emission Standards for Hazardous Air Pollutants from the Portland Cement Manufacturing Industry Response to... by the Portland Cement Industry and the New Source Performance Standards for Portland Cement Plants...

  2. 76 FR 2832 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2011-01-18

    ... Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants AGENCY...) from the Portland Cement Manufacturing Industry and Standards of Performance (NSPS) for Portland Cement... Standards for Hazardous Air Pollutant From the Portland Cement Manufacturing Industry Docket, Docket ID No...

  3. A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength

    Science.gov (United States)

    Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin

    2017-12-01

    The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.

  4. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  5. Cementation Analysis by Eddy Current Method

    OpenAIRE

    M. Zergoug; H. Oubouchou; N. Amimeur

    2009-01-01

    Increase the hardness, the endurance and the life time of material can be realised by surface treatments and remetallings, the electromagnetic properties of steels depend on their composition, their microstructures and constraints applied. We can use the electric and magnetic parameters to evaluate their microstructure. The object of this work is the characterization of cementation by the non-destructive methods and the determination of physicochemical parameters. Samples of low carbon tenor ...

  6. Estimating the chloride transport in cement paste

    Directory of Open Access Journals (Sweden)

    Princigallo, A.

    2012-06-01

    Full Text Available A method was developed to measure the diffusion coefficient of chloride ions in cement paste based on an analytical solution to Fick’s 2nd law in a cylindrical coordinate system. This natural method yielded diffusivity results within as little as a month. Testing time was reduced by exploiting the three-dimensional inward flux in the specimen. In an attempt to determine the saturation concentration, dense portland cement pastes were exposed to a concentrated chloride solution. The method proved to be useful for exploring cement hydration-induced changes in the diffusion coefficient of cement paste.

    Se ha desarrollado un método para medir el coeficiente de difusión de los iones cloruro en la pasta de cemento, partiendo de una aplicación analítica de la segunda ley de Fick en un sistema de coordinadas cilíndrico. Este método, que es natural, demostró ser capaz de producir resultados de difusividad en tan solo un mes. Se consiguió reducir el tiempo de ensayo mediante el aprovechamiento de la tridimensionalidad del flujo desde el exterior al interior de la probeta. A fin de determinar la concentración de saturación, se sometieron las pastas de cemento Portland a una disolución de cloruros concentrada. Este método resultó ser útil en el estudio de los cambios del coeficiente de difusión de la pasta de cemento provocados por las reacciones de hidratación que tienen lugar en esta.

  7. Preparation of cement from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1922-08-24

    A process for preparing cement from oil shale is described. The simultaneous recovery of shale oil by heating the oil shale formed into briquets with finely ground lime or limestone in a stream of hot gases is characterized by the fact that live steam or fine drops of water as preserving and carbonization means is introduced into the furnace, at the place, where the temperature of the briquet reaches about 500 to 600/sup 0/ C.

  8. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  9. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2017-01-01

    Full Text Available We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite materials because they are protected from moisture by the wall material. Therefore, the untreated cement is present in the form of a capsule within the cement composite, and hydration can be induced by moisture penetrating the crack surface in the event of cracking. In the process of granulating the cement, it is important to obtain a suitable consistency through the kneading agent and to maintain the moisture barrier performance of the wall material. We can utilize the results of this study as a basis for advanced self-healing capsule technology for cement composites.

  10. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    Science.gov (United States)

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  11. Retention of metal-ceramic crowns with contemporary dental cements.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Zhang, Hai; Wataha, John C

    2009-09-01

    New types of crown and bridge cement are in use by practitioners, and independent studies are needed to assess their effectiveness. The authors conducted a study in three parts (study A, study B, and study C) and to determine how well these new cements retain metal-ceramic crowns. The authors prepared teeth with a 20-degree taper and a 4-millimeter length. They cast high-noble metal-ceramic copings, then fitted and cemented them with a force of 196 newtons. The types of cements they used were zinc phosphate, resin-modified glass ionomer, conventional resin and self-adhesive modified resin. They thermally cycled the cemented copings, then removed them. They recorded the removal force and calculated the stress of dislodgment by using the surface area of each preparation. They used a single-factor analysis of variance to analyze the data (alpha = .05). The mean stresses necessary to remove crowns, in megapascals, were 8.0 for RelyX Luting (3M ESPE, St. Paul, Minn.), 7.3 for RelyX Unicem (3M ESPE), 5.7 for Panavia F (Kuraray America, New York) and 4.0 for Fuji Plus (GC America, Alsip, Ill.) in study A; 8.1 for RelyX Luting, 2.6 for RelyX Luting Plus (3M ESPE) and 2.8 for Fuji CEM (GC America) in study B; and 4.9 for Maxcem (Kerr, Orange, Calif.), 4.0 for BisCem (Bisco, Schaumburg, Ill.), 3.7 for RelyX Unicem Clicker (3M ESPE), 2.9 for iCEM (Heraeus Kulzer, Armonk, N.Y.) and 2.3 for Fleck's Zinc Cement (Keystone Industries, Cherry Hill, N.J.) in study C. Powder-liquid versions of new cements were significantly more retentive than were paste-paste versions of the same cements. The mean value of crown removal stress for the new self-adhesive modified-resin cements varied appreciably among the four cements tested. All cements retained castings as well as or better than did zinc phosphate cement. Powder-liquid versions of cements, although less convenient to mix, may be a better clinical choice when crown retention is an issue. All cements tested will retain castings

  12. Extrapolations of nuclear binding energies from new linear mass relations

    DEFF Research Database (Denmark)

    Hove, D.; Jensen, A. S.; Riisager, K.

    2013-01-01

    We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...

  13. Low level radwaste packaging: why not cement

    International Nuclear Information System (INIS)

    Wilson, R.B.

    1978-01-01

    Over the past several years many words have been expended in a quest to define a variety of competing radioactive waste immobilization technologies. With the more recent recognition of the technical pitfalls of urea-formaldehyde (UF) a liquid chemical binder considered as optimum less than two years ago, utilities, architect-engineers and systems vendors find themselves in a technology void, awaiting the inevitable breakthrough which will identify the perfect immobilization agent. The culmination of these pressures has brought about the introduction of new immobilization technologies including: one which offers both volume reduction and immobilization in yet another new binder agent; the costly development of highly sophisticated volume reduction systems, the highly-concentrated products from which may pose as-yet unknown immobilization problems; and, the marketing of several new more expensive liquid chemical binders which are reputed to have eliminated the kinds of problems associated with urea-formaldehyde. This paper addresses these issues by coming full circle and arriving back at the initial approach employed for low level radwaste immobilization, the use of cement. Based on an evaluation of the three principal competing immobilization approaches, liquid chemical, bitumen and cement, the merits and drawbacks of each is examined. As will be described, an objective assessment of these competing technologies has resulted in a somewhat surprising conclusion that, while none of the approaches is without disadvantages, cement can be shown to offer the most reliable, versatile long-term solution to today's needs

  14. Tunisian gypsums: Characteristics and use in cement

    Science.gov (United States)

    Mahmoudi, Salah; Bennour, Ali; Chalwati, Youssef; Souidi, Khouloud; Thabet, Manel; Srasra, Ezzedine; Zargouni, Fouad

    2016-09-01

    Gypsum materials of hundred meters thickness and interbedded with marine claystones and limestones from different paleogeographic sectors in the Tunisian territory are studied to assess their suitability for cement production. For this reason, thirty representative samples are analysed by chemical, physical and geotechnical tests. The obtained results for the studied gypsum materials are compared to Tunisian and European norms and with the local cements, currently marketed and which obey international norms. Indeed, for all samples hydraulic modulus HM, silica modulus SM and alumina modulus AM vary from (2.37-2.44), (2.48-2.68) and (1.45-2.5), respectively; whereas the required values for these modulus are (1.5-2.5), (2-3) and (1.5-2.5). The same behavior is observed for mineralogical analyses of C3S, C2S, C3A and C4AF and compressive strength at different ages. Briefly, Tunisia contains important reserves of gypsum scattered and spread over the Tunisian territory and can be used for cement production.

  15. Application of tracer technique in cement industry

    International Nuclear Information System (INIS)

    Baran'ai, L.

    1979-01-01

    Application is stated of the radioisotope indication method in the cement industry. The method was applied in three directions. In the first direction, by means of labelling of 300 steel mill balls by cobalt-60, wear of them was examined. The degree of wear of milling balls in the process of milling was determined according to the decrease of their weight. Radioactive label served only for tracing controll balls. In the second direction, according to the natural radioactivity being presented in ashes by radioisotopes radium-226 and thorium-229, amount of ashes in the products of cement milling was determined (in the mill product, cement product, flying dust and back loading groats). In the third direction, by means of labelling of definite fractions of mille by radioisotope gold-198, optimization of technological parameters of silos were raw meal is homogenization. The following technological parameters have been established: amount of homogenized material; time of homogenization and frequency of intensity changing of supplied compressed air jet [ru

  16. Global CO2 emissions from cement production

    Science.gov (United States)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  17. Shrinkage deformation of cement foam concrete

    Science.gov (United States)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  18. Leaching tests of cemented organic radioactive waste

    International Nuclear Information System (INIS)

    Calabria, Jaqueline A. Almeida; Haucz, Maria Judite A.; Tello, Cledola Cassia O.

    2011-01-01

    The use of radioisotopes in research, medical and industrial activities generates organic liquid radioactive wastes. At Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) are produced organic liquid wastes from different sources, one of these are the solvent extraction activities, whose the waste volume is the largest one. Therefore a research was carried out to treat them. Several techniques to treat organic liquid radioactive wastes have been evaluated, among them incineration, oxidation processes, alkaline hydrolysis, distillation, absorption and cementation. Laboratory experiments were accomplished to establish the most adequate process in order to obtain qualified products for storage and disposal. Absorption followed by cementation was the procedure used in this study, i.e. absorbent substances were added to the organic liquid wastes before mixing with the cement. Initially were defined the absorbers, and evaluated the formulation in relation to the compressive strength of its products. Bentonite from different suppliers (B and G) and vermiculite in two granulometries (M - medium and F - small) were tested. In order to assess the product quality the specimens were submitted to the leaching test according the Standard ISO 6961 and its results were evaluated. Then they were compared with the values established by Standard CNEN NN 6.09 A cceptance criteria for waste products to be disposed , to verify if they meet the requirements for safely storage and disposal. Through this study the best formulations to treat the organic wastes were established. (author)

  19. STOCHASTIC MODELING OF COMPRESSIVE STRENGTH OF PHOSPHORUS SLAG CONTENT CEMENT

    Directory of Open Access Journals (Sweden)

    Ali Allahverdi

    2016-07-01

    Full Text Available One of the common methods for quick determination of compressive strength as one of the most important properties for assessment of cement quality is to apply various modeling approaches. This study is aimed at finding a model for estimating the compressive strength of phosphorus slag content cements. For this purpose, the compressive strengths of chemically activated high phosphorus slag content cement prepared from phosphorus slag (80 wt.%, Portland cement (14 wt.% and a compound chemical activator containing sodium sulfate and anhydrite (6 wt.% were measured at various Blaine finenesses and curing times. Based on the obtained results, a primary stochastic model in terms of curing time and Blaine fineness has been developed. Then, another different dataset was used to incorporate composition variable including weight fractions of phosphorus slag, cement, and activator in the model. This model can be effectively used to predict the compressive strength of phosphorus slag content cements at various Blaine finenesses, curing times, and compositions.

  20. Solidification and performance of cement doped with phenol

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Krishnan, S.

    1991-01-01

    Treating mixed hazardous wastes using the solidification/stabilization technology is becoming a critical element in waste management planning. The effect of phenol, a primary constituent in many hazardous wastes, on the setting and solidification process of Type I Portland cement was evaluated. The leachability of phenol from solidified cement matrix (TCLP test) and changes in mechanical properties were studied after curing times up to 28 days. The changes in cement hydration products due to phenol were studied using the X-ray diffraction (XRD) powder technique. Results show that phenol interferes with initial cement hydration by reducing the formation of calcium hydroxide and also reduces the compressive strength of cement. A simple model has been proposed to quantify the phenol leached from the cement matrix during the leachate test

  1. Possibilities of using aluminate cements in high-rise construction

    Science.gov (United States)

    Kaddo, Maria

    2018-03-01

    The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.

  2. Chemical and physical properties of bone cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    Po-Liang Lai

    2013-08-01

    Full Text Available Vertebral compression fracture is the most common complication of osteoporosis. It may result in persistent severe pain and limited mobility, and significantly impacts the quality of life. Vertebroplasty involves a percutaneous injection of bone cement into the collapsed vertebrae by fluorescent guide. The most commonly used bone cement in percutaneous vertebroplasty is based on the polymerization of methylmethacrylate monomers to polymethylmethacrylate (PMMA polymers. However, information on the properties of bone cement is mostly published in the biomaterial sciences literature, a source with which the clinical community is generally unfamiliar. This review focuses on the chemistry of bone cement polymerization and the physical properties of PMMA. The effects of altering the portions and contents of monomer liquid and polymer powders on the setting time, polymerization temperature, and compressive strength of the cement are also discussed. This information will allow spine surgeons to manipulate bone cement characteristics for specific clinical applications and improve safety.

  3. Safety evaluation of the radioactive waste-cement composites, (4)

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Wadachi, Yoshiki; Ito, Akihiko

    1976-10-01

    The leaching behavior of 137 Cs has been studied to evaluate safety of sea and ground disposal of the cement composites. The rate depends on flow rate of the external solution, particle radius and composition of the cement composite. The rate-determining step of the leaching in the dynamic condition is the internal diffusion through the matrix cement composite. The rate in the static condition, on the other hand is controlled by external diffusion through the interface layer between solid and liquid. The cement composites containing mineral zeolite(25%) give very low leachability; the leaching fraction is 0.001 - 0.02 for the portland cement and 0.001 - 0.002 for the slag cement. (auth.)

  4. Settlement Control of Soft Ground using Cement-Ricehusk Stabilization

    Directory of Open Access Journals (Sweden)

    Mokhtar M.

    2012-01-01

    Full Text Available Cement is widely used for improvement of soft soils, but financial and environmental concerns are causing genuine concerns to all parties, leading to the quest for alternative and effective stabilizers. Ricehusk is an agricultural waste in Malaysia, commonly disposed of by open burning or dumping in landfills. Considering that the ashes derived from ricehusk are pozzolanic in nature, there is a possibility that a cement-ricehusk mixture could effectively improve soft soils with reduced cement dosage. This study examines the mixture’s effectiveness by monitoring the settlement reduction in a clay soil. Standard oedometer tests were carried out on a soft marine clay sample admixed with cement-ricehusk. Test specimens contained 0-10% cement and 0-5% of ricehusk respectively, and were left to cure for either seven or 28 days. The stabilized specimens were observed to undergo significant reduction in compressibility, verifying the potential of cement-ricehusk as an alternative soft soil stabilizer.

  5. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; McCulloch, C.E.; Angus, M.J.

    1985-06-01

    The kinetics of reaction between cement and clinoptilolite are elucidated and rate equations containing temperature dependent constants derived for this reaction. Variations in clinoptilolite particle size and their consequences to reactivity are assessed. The presence of pozzolanic agents more reactive than clinoptilolite provides sacrificial agents which are partially effective in lowering the clinoptilolite reactivity. Blast furnace slag-cements have been evaluated and the background literature summarized. Experimental studies of the pore fluid in matured slag-cements show that they provide significantly more immobilization for Cs than Portland cement. The distribution of Sr in cemented waste forms has been examined, and it is shown that most of the chemical immobilization potential in the short term is likely to be associated with the aluminate phases. The chemical and structural nature of these are described. Carbonation studies on real cements are summarized. (author)

  6. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Crawford, R.W.; McCulloch, C.E.; Angus, M.J.

    1984-01-01

    Tobermorite and xonotlite, two synthetic calcium silicate hydrates, improve the Cs retention of cement matrices for Cs, when incorporated at the 6 to 10% level. A kinetic and mechanistic scheme is presented for the reaction of fine grained, Cs-loaded clinoptilolite with cement. The Magnox waste form reacts quickly with cement, leading to an exchange of carbonate between waste form and cement components. Carbonation of cements leads to a marked improvement in their physical properties of Cs retentivity. Diffusion models are presented for cement systems whose variable parameters can readily be derived from experimental measurements. Predictions about scaled-up behaviour of large immobilized masses are applied to extrapolation of laboratory scale results to full-size masses. (author)

  7. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; McCulloch, C.E.; Angus, M.J.

    1984-01-01

    Model studies of the behaviour of cement systems have been advanced by considering the nature of the phases formed during hydration and deriving pH-composition models for the CaO-SiO 2 -H 2 O system. Preliminary results of Esub(h) measurements are also reported. Leach tests on Sr from cements are interpreted in terms of Sr retention mechanisms. Present results indicate that the aluminate phases in OPC contribute to the chemical retentivity. Studies on cement-clinoptilolite reactions, made using coarse grained clinoptilolite are reported: ferrierite also reacts chemically with cement. Two critical surveys are presented, together with new data: one on the potential of blended cements, the other on cement durability in CO 2 -containing environments. (author)

  8. Portland-pfa cement: a comparison between intergrinding and blending

    Energy Technology Data Exchange (ETDEWEB)

    Monk, M

    1983-09-01

    Portland-pfa cements containing 20-40% (by weight) pfa have been prepared in the laboratory both by intergrinding the ashes with clinker and by blending with cement. Cement properties have been assessed according to BS 4550 and scanning electron microscopy was used to examine the effects of grinding upon the pfa particles. The work has shown that intergrinding leads to an improvement in the water-reducing properties of coarse pfas and also in their pozzolanic activity as indicated by compressive strength development at later ages. Setting times have been found to be essentially the same for blended and interground cements, both being considerably longer than for typical ordinary Portland cements. Thus the results of this investigation indicate that, provided pfa's are chemically acceptable, they can be used for Portland-pfa cement manufacture by intergrinding irrespective of their coarseness.

  9. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  10. A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Chang, Yi-Lin; Fleiter, Tobias

    2016-01-01

    The cement industry is the second most energy-intensive sector in Taiwan, which underlines the need to understand its potential for energy efficiency improvement. A bottom-up model-based assessment is utilized to conduct a scenario analysis of energy saving opportunities up to the year 2035. The analysis is supported by detailed expert interviews in all cement plants of Taiwan. The simulation results reveal that by 2035, eighteen energy efficient technologies could result in 25% savings for electricity and 9% savings for fuels under the technical diffusion scenario. This potential totally amounts to about 5000 TJ/year, of which 91% can be implemented cost-effectively assuming a discount rate of 10%. Policy makers should support a fast diffusion of these technologies. Additionally, policy makers can tap further saving potentials. First, by decreasing the clinker share, which is currently regulated to a minimum of 95%. Second, by extending the prohibition to build new cement plants by allowing for replacement of existing capacity with new innovative plants in the coming years. Third, by supporting the use of alternative fuels, which is currently still a niche in Taiwan. - Highlights: •We analyze energy efficiency improvement potentials in Taiwan's cement industry. •Eighteen process-specific technologies are analyzed using a bottom-up model. •Our model systematically reflects the diffusion of technologies over time. •We find energy-saving potentials of 25% for electricity and 9% for fuels in 2035. •91% of the energy-saving potentials can be realized cost-effectively.

  11. [Significance of bone mineral density and modern cementing technique for in vitro cement penetration in total shoulder arthroplasty].

    Science.gov (United States)

    Pape, G; Raiss, P; Kleinschmidt, K; Schuld, C; Mohr, G; Loew, M; Rickert, M

    2010-12-01

    Loosening of the glenoid component is one of the major causes of failure in total shoulder arthroplasty. Possible risk factors for loosening of cemented components include an eccentric loading, poor bone quality, inadequate cementing technique and insufficient cement penetration. The application of a modern cementing technique has become an established procedure in total hip arthroplasty. The goal of modern cementing techniques in general is to improve the cement-penetration into the cancellous bone. Modern cementing techniques include the cement vacuum-mixing technique, retrograde filling of the cement under pressurisation and the use of a pulsatile lavage system. The main purpose of this study was to analyse cement penetration into the glenoid bone by using modern cement techniques and to investigate the relationship between the bone mineral density (BMD) and the cement penetration. Furthermore we measured the temperature at the glenoid surface before and after jet-lavage of different patients during total shoulder arthroplasty. It is known that the surrounding temperature of the bone has an effect on the polymerisation of the cement. Data from this experiment provide the temperature setting for the in-vitro study. The glenoid surface temperature was measured in 10 patients with a hand-held non-contact temperature measurement device. The bone mineral density was measured by DEXA. Eight paired cadaver scapulae were allocated (n = 16). Each pair comprised two scapulae from one donor (matched-pair design). Two different glenoid components were used, one with pegs and the other with a keel. The glenoids for the in-vitro study were prepared with the bone compaction technique by the same surgeon in all cases. Pulsatile lavage was used to clean the glenoid of blood and bone fragments. Low viscosity bone cement was applied retrogradely into the glenoid by using a syringe. A constant pressure was applied with a modified force sensor impactor. Micro-computed tomography

  12. Arsenic content in Portland cement: A literature review

    Directory of Open Access Journals (Sweden)

    Tenorio de Franca Talita

    2010-01-01

    Full Text Available Portland cement (PC is a hydraulic binding material widely used in the building industry. The main interest in its use in dentistry is focused on a possible alternative to mineral trioxide aggregate (MTA because PC is less expensive and is widely available. In dentistry, PC has been used in dental procedures such as pulpotomy, pulp capping, repair of root perforation and root-end filling. The purpose of this article is review the dental literature about the PC, its composition with special attention to arsenic content, properties, and application in dentistry. A bibliographic research was performed in Bireme, PubMed, LILACS and Scopus data bases looking for national and international studies about the PC composition, properties and clinical use. It was observed that PC has favorable biological properties very similar to those of MTA. The PC has shown good cell proliferation induction with formation of a monolayer cell, satisfactory inflammatory response, inhibitory effect of prostaglandin and antimicrobial effect. Studies have shown that PC is not cytotoxic, stimulates the apposition of reparative dentin and permits cellular attachment and growth. Regarding arsenic presence, its levels and release are low. PC has physical, chemical and biological properties similar to MTA. Arsenic levels and release are low, therefore, unable to cause toxic effects.

  13. Arsenic content in Portland cement: a literature review.

    Science.gov (United States)

    Tenório de Franca, Talita Ribeiro; da Silva, Raphaela Juvenal; Sedycias de Queiroz, Michellini; Aguiar, Carlos Menezes

    2010-01-01

    Portland cement (PC) is a hydraulic binding material widely used in the building industry. The main interest in its use in dentistry is focused on a possible alternative to mineral trioxide aggregate (MTA) because PC is less expensive and is widely available. In dentistry, PC has been used in dental procedures such as pulpotomy, pulp capping, repair of root perforation and root-end filling. The purpose of this article is review the dental literature about the PC, its composition with special attention to arsenic content, properties, and application in dentistry. A bibliographic research was performed in Bireme, PubMed, LILACS and Scopus data bases looking for national and international studies about the PC composition, properties and clinical use. It was observed that PC has favorable biological properties very similar to those of MTA. The PC has shown good cell proliferation induction with formation of a monolayer cell, satisfactory inflammatory response, inhibitory effect of prostaglandin and antimicrobial effect. Studies have shown that PC is not cytotoxic, stimulates the apposition of reparative dentin and permits cellular attachment and growth. Regarding arsenic presence, its levels and release are low. PC has physical, chemical and biological properties similar to MTA. Arsenic levels and release are low, therefore, unable to cause toxic effects.

  14. Norm in coal, fly ash and cement

    International Nuclear Information System (INIS)

    Kant, K.; Upadhyay, S.B.; Sharma, G.S.

    2006-01-01

    Coal is technologically important materials being used for power generation and its cinder (fly ash) is used in manufacturing of bricks, sheets, cement, land filling etc. 222 Rn (radon) and its daughters are the most important radioactive and potentially hazardous elements, which are released in the environment from the naturally occurring radioactive material (NORM) present in coal, fly ash and cement. Thus it is very important to carry out radioactivity measurements in coal, fly ash and cement from the health and hygiene point of view. Samples of coal and fly ash from different thermal power stations in northern India and various fly ash using establishments and commercially available cement samples (O.P.C. and P.P.C.) were collected and analyzed for radon concentration and exhalation rates. For the measurements, alpha sensitive LR-115 type II plastic track detectors were used. The radon concentration varied from 147 Bq/m 3 to 443 Bq/m 3 , the radium concentration varied from 1.5 to 4.5 Bq/kg and radon exhalation rate varied from 11.8 mBq.kg -1 .h -1 to 35.7 mBq.kg -1 .h -1 for mass exhalation rate and from 104.5 mBq.m -2 .h -1 to 314.8 mBq.m -2 .h -1 for surface exhalation rate in coal samples. The radon concentration varied from 214 Bq/m 3 to 590 Bq/m 3 , the radium concentration varied from 1.0 to 2.7 Bq/kg and radon exhalation rate varied from 7.8 mBq.kg -1 .h -1 to 21.6 mBq.kg -1 .h -1 for mass exhalation rate and from 138 mBq m -2 h -1 to 380.6 mBq.m -2 .h -1 for surface exhalation rate in fly ash samples. The radon concentration varied from 157.62 Bq/m 3 to 1810.48 Bq/m 3 , the radium concentration varied from 0.76 Bq/kg to 8.73 Bq/kg and radon exhalation rate varied from 6.07 mBq.kg -1 .hr -1 to 69.81 mBq.kg -1 .hr -1 for mass exhalation rate and from 107.10 mBq.m -2 .hr -1 to 1230.21 mBq.m -2 .hr -1 for surface exhalation rate in different cement samples. The values were found higher in P.P.C. samples than in O.P.C. samples. (authors)

  15. [Comparative studies on fissure sealing: composite versus Cermet cement].

    Science.gov (United States)

    Hickel, R; Voss, A

    1989-06-01

    Fifty two molars sealed with either composite or Cermet cement were compared. The composite sealant was applied after enamel etching using a rubber dam. Before sealing with Cermet cement the enamel was only cleaned with pumice powder and sodium hypochlorie and the material was applied without enamel etching. After an average follow-up of 1.6 years composite sealants proved to be significantly more reliable. Cermet cement sealings showed defects more frequently.

  16. Radioactive Wastes Cementation during Decommissioning Of Salaspils Research Reactor

    International Nuclear Information System (INIS)

    Abramenkova, G.; Klavins, M.; Abramenkovs, A.

    2009-01-01

    This paper deals with information on the radioactive wastes cementation technology for decommissioning of Salaspils Research Reactor (SRR). Dismantled radioactive materials were cemented in concrete containers using tritiated water-cement mortar. The laboratory tests system was developed to meet the waste acceptance criteria for disposal of containers with cemented radioactive wastes in near-surface repository 'Radons'. The viscosity of water-cement mortar, mechanical tests of solidified mortar's samples, change of temperature of the samples during solidification time and leakage of Cs-137 and T-3 radionuclides was studied for different water-cement compositions with different additives. The pH and electro conductivity of the solutions during leakage tests were controlled. It was shown, that water/cement ratio significantly influences on water-cement mortar's viscosity and solidified samples mechanical stability. Increasing of water ratio from 0.45 up to 0.62 decreases water-cement mortar's viscosity from 1100 mPas up to 90 mPas and decreases mechanical stability of water-cement samples from 23 N/mm 2 to the 12 N/mm 2 . The role of additives - fly ash and Penetron admix in reduction of solidification temperature is discussed. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature from 81 deg. C up to 62 deg. C. The optimal interval of water ratio in cement mortar is discussed. Tritium and Cs-137 leakage tests show, that radionuclides release curves has a complicate structure. The possible radionuclides release mechanisms are discussed. Experimental results indicated that addition of fly ash result in facilitation of tritium and cesium leakage in water phase. Further directions of investigations are drafted. (authors)

  17. Deflection hardening of sustainable fiber–cement composites

    OpenAIRE

    Lima, P. R. L.; Santos, D. O. J.; Fontes, C. M. A.; Barros, Joaquim A. O.; Toledo Filho, R. D.

    2016-01-01

    In the present study sisal fiber–cement composites reinforced with 4% and 6% of short fibers were developed and their physical–mechanical behavior was characterized. To ensure the composite sustainability and durability, the ordinary Portland cement matrix was modified by adding fly ash and metakaolin, and the natural aggregate was substituted by 10% and 20% of recycled concrete aggregate. Flat sheets were cast in a self-compacted cement matrix and bending tests were performed ...

  18. Strength properties of sandy soil-cement admixtures

    OpenAIRE

    Sara Rios; António Joaquim Pereira Viana Da Fonseca

    2009-01-01

    This paper will focus on the sensitivity of strength and stiffness properties of silty-sands, from granitic residual soil, which can be converted to a highly improved material if stabilized with cement. The study of soil stabilization with cement demands to quantify the influence of the cement percentage, porosity and water content adopted in the admixing process for different stresses and physical states. Firstly, this influence was quantified in terms of the unconfined strength and maximum ...

  19. Behaviour of soil-cement specimens in unconfined dynamic compression

    Science.gov (United States)

    Davies, J.; Fendukly, L. M.

    1994-06-01

    The response of the cement-stabilized red marl to dynamic loading in compression has been investigated over a range of cement contents and curing times. Specimens were subjected to different stress levels below unconfined compressive strength, at a frequency of 5 Hz, and a fatigue relationship for the material was developed. The value of resilient modulus was found to be greater than the modulus of elasticity for the same cement content and curing time.

  20. Macro-defect free cements. State of art

    International Nuclear Information System (INIS)

    Holanda, J.N.F.; Povoa, G.E.A.M.; Souza, G.P.; Pinatti, D.G.

    1998-01-01

    The purpose of this work is to prevent a state of art about macro-defect-free cement pastes (MDF cement ) of high mechanical strength. This new type of cement paste is obtained through addition of a water-soluble polymer, followed by intense shear mixing and application of low compacting pressure. It is presented fundamental aspects related to the processing of this MDF paste, as well as its main properties and applications are discussed. (author)

  1. Use of antibiotic-loaded cement in total knee arthroplasty.

    OpenAIRE

    Hinarejos Gómez, Pedro Angel; Guirro Castellnou, Pau; Puig Verdié, Luís; Torres Claramunt, Raúl; Leal Blanquet, Joan; Sánchez Soler, JF.; Monllau García, Juan Carlos

    2015-01-01

    Bone cement has the capacity to release antibiotic molecules if any antibiotic is included in it, and these elution properties are improved as cement porosity is increased. In vitro studies have shown high local antibiotic concentration for many hours or few days after its use. Antibiotic loaded bone cement (ALBC) is helpful when treating an infection in total knee arthroplasty (TKA) revision surgery. The purpose of this paper was to review the evidence for the routine use of ALBC in TKA in t...

  2. Expansive cements for the manufacture of the concrete protective bandages

    Science.gov (United States)

    Yakymechko, Yaroslav; Voloshynets, Vladyslav

    2017-12-01

    One of the promising directions of the use of expansive cements is making the protective bandages for the maintenance of pipelines. Bandages expansive application of the compositions of the pipeline reinforce the damaged area and reduce stress due to compressive stress in the cylindrical area. Such requirements are best suited for expansive compositions obtained from portland cement and modified quicklime. The article presents the results of expansive cements based on quick lime in order to implement protective bandages pipelines.

  3. Personal exposure to inhalable cement dust among construction workers.

    Science.gov (United States)

    Peters, Susan; Thomassen, Yngvar; Fechter-Rink, Edeltraud; Kromhout, Hans

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and its cement content. Exposure variability was modelled with linear mixed models.Results- Inhalable dust concentrations at the construction site ranged from 0.05 to 34 mg/m(3), with a mean of 1.0 mg/m(3). Average concentration for inhalable cement dust was 0.3 mg/m(3) (GM; range 0.02-17 mg/m(3)). Levels in the ready-mix and pre-cast concrete plants were on average 0.5 mg/m(3) (GM) for inhalable dust and 0.2 mg/m(3) (GM) for inhalable cement dust. Highest concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM = 55 mg/m(3); inhalable cement dust GM = 33 mg/m(3)) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages during reinforcement work and pouring. Most likely other sources were contributing to dust concentrations, particularly at the construction site. Within job groups, temporal variability in exposure concentrations generally outweighed differences in average concentrations between workers. 'Using a broom', 'outdoor wind speed' and 'presence of rain' were overall the most influential factors affecting inhalable (cement) dust exposure.Conclusion- Job type appeared to be the main predictor of exposure to inhalable (cement) dust at the construction site. Inhalable dust concentrations in cement production plants, especially during cleaning tasks, are usually considerably higher than at the construction site.

  4. Small angle neutron scattering from hydrated cement pastes

    International Nuclear Information System (INIS)

    Sabine, T.M.; Bertram, W.K.; Aldridge, L.P.

    1996-01-01

    Small angle neutron scattering (SANS) was used to study the microstructure of hydrating cement made with, and without silica fume. Some significant differences were found between the SANS spectra of pastes made from OPC (ordinary Portland cement) and DSP (made with silica fume and superplasticiser). The SANS spectra are interpreted in terms of scattering from simple particles. Particle growth was monitored during hydration and it was found that the growth correlated with the heat of hydration of the cement

  5. Microstructure and durability of Portland cement-carbon nanotube composites

    OpenAIRE

    MacLeod, Alastair James Neil

    2017-01-01

    The incorporation of carbon nanotubes (CNTs), fibres with diameters less than 100 nanometres that exhibit a tensile strength in excess of ten times greater than steel, into Portland cement (OPC) is a relatively novel, yet promising, development for next-generation construction materials exhibiting enhanced strength and ductility, even multifunctionality. When added to Portland cement, creating a Portland cement-CNT nanocomposite material (OPC-CNT), CNTs promote the nucleation of the princi...

  6. A positron annihilation study on the hydration of cement pastes

    International Nuclear Information System (INIS)

    Consolati, G.; Quasso, F.

    2007-01-01

    Positron annihilation lifetime spectroscopy experiments were carried out in various ordinary Portland cement pastes, in an attempt to monitor the porosity of the pastes. It is found that positronium intensity is well correlated to the time evolution of the total porosity and it is influenced by the water-to-cement ratio. This parameter is also sensitive to the delayed hydration process induced by adding methanol to the water-cement mixture

  7. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt

    Science.gov (United States)

    Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong

    2018-01-01

    Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl2 deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl2 solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases. PMID:29758008

  8. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt.

    Science.gov (United States)

    Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong; Ryou, Jae-Suk

    2018-05-14

    Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl₂ deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl₂ solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.

  9. Applicability of low alkalinity cement for construction and alteration of bentonite in the cement

    International Nuclear Information System (INIS)

    Iriya, K.; Fujii, K.; Kubo, H.; Uegaki, Y.

    2002-02-01

    A concept of radioactive waste repository in which both bentonite and cementitious materials exist in deep cavern as engineered barriers is proposed. It is pointed out that pore water of cement is approximately 12.0 to 13.0 of pH and that it maintains for a long period. Therefore alteration of bentonite and rocks should be studied. Mixing test upon some interaction between modeled cement water and bentonite and rocks have been carried out since 1995 as a part of TRU repository's study. And low alkalinity of cement has been studied as parallel to study on alteration of bentonite. HFSC which has high fly ash content and which shows approximately 10.5 to 11.0 of pH of pore water was developed. Cementitious materials are generally use as a combination with steel, since its tensile strength is low. The corrosion of steel in concrete becomes a big problem in case of decreasing pH of cement. There is little available reference, since low alkalinity cement is quite new and special ordered one. Accelerating test for corrosion in low alkalinity concrete were carried out in order to collect data of corrosion. Although alteration of bentonite by several types of modeled cement water was tested. Long term test by actual cement pore water has not carried out. The alteration in 360 days was investigated. Conclusion obtained in this study is following. Corrosion of steel (re-bar) 1) Re-bar in HFSC with 60% of W/C is significantly corroded. The corrosion rate is bigger than the rate of ordinary used cement. 2) Diffusivity of Cl - ion in HFSC is similar to it in OPC comparing by the same water powder ratio. 3) Corrosion rate of HFSC 30 is similar to OPC60. However corrosion is progressed in HFSC 30 without Cl - ion due to lower alkalinity, but it isn't done in OPC within a certain amount of Cl - ion. Alteration of bentonite and rocks 1) Although no secondary minerals was observed in HFSC, monmorironite is gradually lost by increasing calcite. 2) Secondary minerals were observed in

  10. Influence of relationship water/cement upon the processing of cements with pozzolana in standard mortar

    Directory of Open Access Journals (Sweden)

    Gener Rizo, M.

    2002-03-01

    Full Text Available The processing of standard mortar is completed following different methods in accordance with the country, but they exist two fundamental tendecies, the ISO and the ASTM. The cuban norm for mechanic-physic tests is based in ISO, and so they use a constant relationship water/cement in the processing of standard mortar a great problem concerning the cement users when they tested those mixed with puzzolanes, because they don't take care of the bigger water needs of those materials. In this work we present an study of the behaviour of Pozzolanic Portland cements (PP-250 elaborates with a fix and changeable relationship water/cement, obtained starting from the fluidity of the pure Portland cement. (P-350 The results obtained shows that the mechanical resistance decreased in cement mortars PP-250 realised with changeable relationship water/cement. So we recommend the adoption of an optional procedure to elaborate a quality mortar with pozzolana cements.

    La elaboración del mortero normalizado se realiza internacionalmente por diferentes métodos, pero existen dos tendencias fundamentales, la enunciada por ISO y por ASTM. La norma cubana de ensayos físico-mecánicos de cemento se basa en la norma ISO, por lo que para la elaboración del mortero normalizado se utiliza una relación agua/cemento constante. Esto ha provocado discrepancias con los usuarios del cemento, especialmente cuando se ensayan los cementos que contienen puzolanas, ya que se plantea que no se tiene en cuenta la mayor demanda de agua de estos materiales. En el presente trabajo se presenta un estudio del comportamiento de cementos Portland Puzolánicos (PP-250 elaborados con una relación agua/ cemento fija y variable, lograda a partir de la fluidez de la pasta de cemento Portland puro (P-350. Los resultados obtenidos indican que se producen disminuciones en la resistencia mecánica en los morteros de cemento PP-250 elaborados con agua/ cemento variable y recomienda la

  11. Feasibility of backfilling mines using cement kiln dust, fly ash, and cement blends

    OpenAIRE

    Beltagui, Hoda; Sonebi, Mohammed; Maguire, K.; Taylor, Susan

    2018-01-01

    Cement kiln dust (CKD) is an industrial by-product of the cement manufacturing process, the composition of which can vary widely. Recent years of using alternative fuels have resulted in higher chloride and alkali contents within CKDs; as such, this limits the applications in which CKDs can be utilised. Using a CKD containing a high free lime content of 29.5%, it is shown that this CKD is capable of activating pulverized fuel ash (PFA) due to its high alkalinity, which can be utilised in low ...

  12. Soft sensor for real-time cement fineness estimation.

    Science.gov (United States)

    Stanišić, Darko; Jorgovanović, Nikola; Popov, Nikola; Čongradac, Velimir

    2015-03-01

    This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Characteristics of Cement Solidification of Metal Hydroxide Waste

    Directory of Open Access Journals (Sweden)

    Dae-Seo Koo

    2017-02-01

    Full Text Available To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  14. Bone cement allocation analysis in artificial cancellous bone structures

    Directory of Open Access Journals (Sweden)

    Ivan Zderic

    2017-01-01

    Conclusion: The simulated leakage path seemed to be the most important adverse injection factor influencing the uniformity of cement distribution. Another adverse factor causing dispersion of this distribution was represented by the simulated bone marrow. However, the rather uniform distribution of the totally injected cement amount, considered as one unit, could be ascribed to the medium viscosity of the used cement. Finally, with its short waiting time of 45 s, the stepwise injection procedure was shown to be ineffective in preventing cement leakage.

  15. Centralized cement solidification technique for low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuda, Masami; Nishi, Takashi; Izumida, Tatsuo; Tsuchiya, Hiroyuki.

    1996-01-01

    A centralized cement solidification system has been developed to enable a single facility to solidify such low-level radioactive wastes as liquid waste, spent ion exchange resin, incineration ash, and miscellaneous solid wastes. Since the system uses newly developed high-performance cement, waste loading is raised and deterioration of waste forms after land burial prevented. This paper describes the centralized cement solidification system and the features of the high-performance cement. Results of full-scale pilot plant tests are also shown from the viewpoint of industrial applicability. (author)

  16. The Mechanism of Disintegration of Cement Concrete at High Temperatures

    Directory of Open Access Journals (Sweden)

    Jocius Vytautas

    2016-10-01

    Full Text Available Concrete is a composite material composed of a binder, aggregates, water and additives. Mixing of cement with water results in a number of chemical reactions known as cement hydration. Heating of concrete results in dehydration processes of cement minerals and new hydration products, which disintegrate the microstructure of concrete. This article reviews results of research conducted with Portland and alumina cement with conventional and refractory concrete aggregates. In civic buildings such common fillers as gravel, granite, dolomite or expanded clay are usually used. It is important to point out the differences between fillers because they constitute the majority of the concrete volume.

  17. Solidification of liquid radioactive concentrates by fixation with cement

    International Nuclear Information System (INIS)

    Pekar, A.; Breza, M.; Timulak, J.; Krajc, T.

    1985-01-01

    In testing the technology of liquid radioactive wastes cementation, the effect was mainly studied of the content of boric acid and its salts on cement solidification, the effect of additives on radionuclide leachability and the effect of the salt content on the cementation product. On the basis of experimental work carried out on laboratory scale with model samples and samples of radioactive concentrate from the V-1 nuclear power plant, the following suitable composition of the cementation mixture was determined: 40% Portland cement, 40% zeolite containing material and 20% power plant ash. The most suitable ratio of liquid radioactive wastes and the cementation mixture is 0.5. As long as in such case the salt content of the concentrate ranges between 20 and 25%, the cementation product will have a maximum salt content of 10% and a leachability of the order of 10 -3 to 10 -4 g/cm 2 per day with a mechanical strength allowing safe handling. It was also found that the quality processing of the cement paste with degassing, e.g., by vibration, is more effective for the production of a pore-free cementation product than the application of various additives which are supposed to eliminate pore formation. (Z.M.)

  18. Durability of cermet ionomer cement conditioned in different media.

    Science.gov (United States)

    el-Din, I M

    1992-01-01

    The glass ionomer cement has exhibited significant adhesion to hard tooth structures, and good cariostatic properties. The sintering of the silver alloy powder and glass ionomer cement "cermet cement" has provided additional improvement in the physical properties of the restorative material. These were flexural resistance, wear resistance, increased radio-opacity, hardness and porosity. The improvement in the physical properties of the cermet glass cements has provided an extension in their clinical use as core build up, lining for inlays, amalgam and composite restoratives, fissure filling, restoration of primary teeth, class II tunnel preparation, treatment of root caries and repair of defective metal margins in crown and inlays.

  19. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Science.gov (United States)

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  20. Microindentation of Polymethyl Methacrylate (PMMA Based Bone Cement

    Directory of Open Access Journals (Sweden)

    F. Zivic

    2011-12-01

    Full Text Available Characterization of polymethyl methacrylate (PMMA based bone cement subjected to cyclical loading using microindentation technique is presented in this paper. Indentation technique represents flexible mechanical testing due to its simplicity, minimal specimen preparation and short time needed for tests. The mechanical response of bone cement samples was studied. Realised microindentation enabled determination of the indentation testing hardness HIT and indentation modulus EIT of the observed bone cement. Analysis of optical photographs of the imprints showed that this technique can be effectively used for characterization of bone cements.