WorldWideScience

Sample records for fast binding cement

  1. Fast Setting Cement - Literature Survey

    Science.gov (United States)

    1973-01-01

    materials does produce early set times and high strengths . It is re- ported, also, that the addition of 1.5 percent Ca"l 2 to clinkers contain- Ing more than...produce high strength concrete. They include addition of iron asggregate, physical treatment of clinker , ’ addition of highly reactive SiO2 or Ca0, and...Fast-Fix. The Western Co. has developed materials designated as Fast-Fix with rapid setting and high strength properties. Published data show i .1

  2. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, W.; Brouwers, H.J.H.

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  3. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  4. Prediction of chloride ingress and binding in cement paste

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Nielsen, Erik Pram; Herforth, Duncan

    2007-01-01

    This paper summarizes recent work on an analytical model for predicting the ingress rate of chlorides in cement-based materials. An integral part of this is a thermodynamic model for predicting the phase equilibria in hydrated Portland cement. The model’s ability to predict chloride binding...... in Portland cement pastes at any content of chloride, alkalis, sulfates and carbonate was verified experimentally and found to be equally valid when applied to other data in the literature. The thermodynamic model for predicting the phase equilibria in hydrated Portland cement was introduced into an existing...... Finite Difference Model for the ingress of chlorides into concrete which takes into account its multi-component nature. The “composite theory” was then used to predict the diffusivity of each ion based on the phase assemblage present in the hydrated Portland cement paste. Agreement was found between...

  5. Top-down cracking of rigid pavements constructed with fast setting hydraulic cement concrete

    CSIR Research Space (South Africa)

    Heath, AC

    2009-01-29

    Full Text Available Jointed plain concrete pavement (JPCP) test sections were constructed using fast setting hydrualic cement concrete (FSHCC) as part of the California accelerated pavement testing program (CAL/APT). Many of the longer slabs cracked under environmental...

  6. Cytotoxicity evaluation of a new fast set highly viscous conventional glass ionomer cement with L929 fibroblast cell line

    Directory of Open Access Journals (Sweden)

    Hany Mohamed Aly Ahmed

    2011-01-01

    Conclusions : This new fast set highly viscous conventional GIC showed low cytotoxicity to mouse fibroblast cells, and it can be suggested as a substitute for dental cements exhibiting a long setting time.

  7. Chloride diffusivity in hardened cement paste from microscale analyses and accounting for binding effects

    Science.gov (United States)

    Carrara, P.; De Lorenzis, L.; Bentz, D. P.

    2016-08-01

    The diffusion of chloride ions in hardened cement paste (HCP) under steady-state conditions and accounting for the highly heterogeneous nature of the material is investigated. The three-dimensional HCP microstructures are obtained through segmentation of x-ray images of real samples as well as from simulations using the cement hydration model CEMHYD3D. Moreover, the physical and chemical interactions between chloride ions and HCP phases (binding), along with their effects on the diffusive process, are explicitly taken into account. The homogenized diffusivity of the HCP is then derived through a least square homogenization technique. Comparisons between numerical results and experimental data from the literature are presented.

  8. The impact of sulphate and magnesium on chloride binding in Portland cement paste

    Energy Technology Data Exchange (ETDEWEB)

    De Weerdt, K., E-mail: klaartje.d.weerdt@ntnu.no [Department of Structural Engineering, Norwegian University of science and Technology, Trondheim (Norway); SINTEF Building and Infrastructure, Trondheim (Norway); Orsáková, D. [Department of Civil Engineering, Technical University of Brno, Brno (Czech Republic); Geiker, M.R. [Department of Structural Engineering, Norwegian University of science and Technology, Trondheim (Norway)

    2014-11-15

    The effect of magnesium and sulphate present in sea water on chloride binding in Portland cement paste was investigated. Ground well hydrated cement paste was exposed to MgCl{sub 2}, NaCl, NaCl + MgCl{sub 2}, MgSO{sub 4} + MgCl{sub 2} and artificial sea water solutions with a range of concentrations at 20 °C. Chloride binding isotherms are determined and pH of the solutions were measured. A selection of samples was examined by SEM-EDS to identify phase changes upon exposure. The experimental data were compared with calculations of a thermodynamic model. Chloride binding from sea water was similar to chloride binding for NaCl solutions. The magnesium content in the sea water lead to a slight decrease in pH, but this did not result in a notable increase in chloride binding. The sulphate present in sea water reduces both chloride binding in C–S–H and AFm phases, as the C–S–H incorporates more sulphates instead of chlorides, and part of the AFm phases converts to ettringite.

  9. Washout resistance of fast-setting pozzolan cement under various root canal irrigants

    Directory of Open Access Journals (Sweden)

    Ga-Yeon Jang

    2013-11-01

    Full Text Available Objectives Fast-setting pozzolan cement (Endocem, Maruchi was recently developed. The aim of this study was to investigate the effects of various root canal irrigants on the washout of Endocem in comparison to the previously marketed mineral trioxide aggregate (ProRoot; Dentsply in a furcal perforation model. Materials and Methods ProRoot and Endocem were placed into acrylic molds on moist Oasis. Each mold was then immediately exposed to either physiologic saline, 2.5% sodium hypochlorite (NaOCl, or 2% chlorhexidine (CHX under gentle shaking for five minutes. Washout testing was performed by scoring scanning electron microscope (SEM images. Results Endocem exhibited higher washout resistance compared to ProRoot, especially in the NaOCl group. Conclusions These results suggest that Endocem can be considered a useful repair material for furcal perforation, especially in a single-visit scenario.

  10. Binding Materials of Dehydrated Phases of Waste Hardened Cement Paste and Pozzolanic Admixture

    Institute of Scientific and Technical Information of China (English)

    LU Linnu; HE Yongjia; HU Shuguang

    2009-01-01

    Fly ash (FA) and ground granulated blast-furnace slag (GGBFS) were added to improve the performances of regenerated binding materials (RBM) which refer to dehydrated phases with rebinding ability of waste hardened cement paste. Flowability tests, compressive strength tests,SEM, TG-DSC, and non-evaporable water content tests were employed to study the performances of the combined binding materials and the interactions between RBM, FA, and GGBFS. Results show that adding FA or GGBFS can improve the workability of RBM paste, and GGBFS has positive effects on strength of RBM. Pozzolanic reactions happen between RBM, FA, and GGBFS. And the activation effect of RBM to FA and GGBFS is superior to that of P.O grade-32.5 cement, especially at earlier ages, because of the high reactive f-CaO existing in RBM. On the advantages of the synergetic effects of RBM and pozzolanic admixtures such as FA and GGBFS, new combined binding materials can be prepared by blending them together.

  11. Impact of the associated cation on chloride binding of Portland cement paste

    Energy Technology Data Exchange (ETDEWEB)

    De Weerdt, K., E-mail: klaartje.d.weerdt@ntnu.no [Department of Structural Engineering, Norwegian University of Science and Technology (Norway); Department of Engineering and Applied Sciences, University of Bergamo (Italy); Colombo, A. [Department of Structural Engineering, Norwegian University of Science and Technology (Norway); Department of Engineering and Applied Sciences, University of Bergamo (Italy); Coppola, L. [Department of Engineering and Applied Sciences, University of Bergamo (Italy); Justnes, H. [SINTEF Building and Infrastructure, Trondheim (Norway); Geiker, M.R. [Department of Structural Engineering, Norwegian University of Science and Technology (Norway)

    2015-02-15

    Well hydrated cement paste was exposed to MgCl{sub 2}, CaCl{sub 2} and NaCl solutions at 20 °C. The chloride binding isotherms for free chloride concentrations ranging up to 1.5 mol/l were determined experimentally. More chlorides were found to be bound when the associated cation was Mg{sup 2} {sup +} or Ca{sup 2} {sup +} compared to Na{sup +}. The chloride binding capacity of the paste appeared to be related to the pH of the exposure solution. In order to explain the cation dependency of the chloride binding a selection of samples was investigated in detail using experimental techniques such as TG, XRD and SEM–EDS to identify the phases binding the chlorides. The experimentally obtained data were compared with the calculations of a thermodynamic model, GEMS. It was concluded that the measured change in chloride binding depending on the cation was mainly governed by the pH of the exposure solution and thereby the binding capacity of the C-S-H.

  12. Photochemical Microscale Electrophoresis Allows Fast Quantification of Biomolecule Binding.

    Science.gov (United States)

    Möller, Friederike M; Kieß, Michael; Braun, Dieter

    2016-04-27

    Intricate spatiotemporal patterns emerge when chemical reactions couple to physical transport. We induce electrophoretic transport by a confined photochemical reaction and use it to infer the binding strength of a second, biomolecular binding reaction under physiological conditions. To this end, we use the photoactive compound 2-nitrobenzaldehyde, which releases a proton upon 375 nm irradiation. The charged photoproducts locally perturb electroneutrality due to differential diffusion, giving rise to an electric potential Φ in the 100 μV range on the micrometer scale. Electrophoresis of biomolecules in this field is counterbalanced by back-diffusion within seconds. The biomolecule concentration is measured by fluorescence and settles proportionally to exp(-μ/D Φ). Typically, binding alters either the diffusion coefficient D or the electrophoretic mobility μ. Hence, the local biomolecule fluorescence directly reflects the binding state. A fit to the law of mass action reveals the dissociation constant of the binding reaction. We apply this approach to quantify the binding of the aptamer TBA15 to its protein target human-α-thrombin and to probe the hybridization of DNA. Dissociation constants in the nanomolar regime were determined and match both results in literature and in control experiments using microscale thermophoresis. As our approach is all-optical, isothermal and requires only nanoliter volumes at nanomolar concentrations, it will allow for the fast screening of biomolecule binding in low volume multiwell formats.

  13. Odontogenic effects of a fast-setting calcium-silicate cement containing zirconium oxide.

    Science.gov (United States)

    Kim, Kyoung-A; Yang, Yeon-Mi; Kwon, Young-Sun; Hwang, Yun-Chan; Yu, Mi-Kyung; Min, Kyung-San

    2015-01-01

    A fast-setting calcium-silicate cement (Endocem) was introduced in the field of dentistry for use in vital pulp therapy. Similar to mineral trioxide aggregate (MTA), it contains bismuth oxide to provide radiopacity. Recently, another product, EndocemZr, which contains zirconium oxide (ZrO2) as a radiopacifier, was developed by the same company. In this study, the biological/odontogenic effects of EndocemZr were investigated in human primary dental pulp cells (hpDPCs) in vitro and on capped rat teeth in vivo. The biocompatibility of EndocemZr was similar to that of ProRoot and Endocem on the basis of cell viability tests and cell morphological analysis. The mineralization nodule formation, expression of odontogenic-related markers, and reparative dentin formation of EndocemZr group was similar to those of other material groups. Our results suggest that EndocemZr has the potential to be used as an effective material for vital pulp therapy, similar to ProRoot and Endocem.

  14. Influence of composition on setting kinetics of new injectable and/or fast setting tricalcium silicate cements.

    Science.gov (United States)

    Setbon, H M; Devaux, J; Iserentant, A; Leloup, G; Leprince, J G

    2014-12-01

    New commercial tricalcium silicate based cements were elaborated to improve handling properties and setting time. The goals of the present work were: (i) to determine the composition of the new injectable and/or fast setting calcium silicate based cements, and (ii) to investigate the impact of the differences in composition on their setting kinetics. The materials considered were Angelus MTA™, Biodentine™, MM-MTA™, MTA-Caps™, and ProRoot MTA™ as control. Elemental composition of materials was studied by Inductively Coupled Plasma-Atomic Emission Spectroscopy and X-ray Energy Dispersive analysis, whereas phases in presence were analyzed by Micro-Raman spectroscopy and X-ray Diffraction analysis and cement surface by Scanning Electron Microscope. Setting kinetics was evaluated using rheometry. Elemental analysis revealed, for all cements, the presence of three major components: calcium, silicon and oxygen. Chlorine was detected in MM-MTA, MTA-Caps and Biodentine. Different radio-opacifiers were identified: bismuth oxide in ProRoot MTA, Angelus MTA and MM-MTA, zirconium oxide in Biodentine and calcium tungstate (CaWO4) in MTA-Caps. All cements were composed of di- and tri-calcium silicate, except Biodentine for which only the latter was detected. Major differences in setting kinetics were observed: a modulus of 8×10(8)Pa is reached after 12min for Biodentine, 150min for MM-MTA, 230min for Angelus MTA and 320min for ProRoot MTA. The maximum modulus reached by MTA-Caps was 7×10(8)Pa after 150min. Even if these cements possess some common compounds, major differences in their composition were observed between them, which directly influence their setting kinetics. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles

    NARCIS (Netherlands)

    Lanao, R.P.; Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Jansen, J.A.

    2011-01-01

    Apatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microsph

  16. Characterization of chlorhexidine-releasing, fast-setting, brushite bone cements.

    Science.gov (United States)

    Young, Anne M; Ng, Poon Yun J; Gbureck, Uwe; Nazhat, Showan N; Barralet, Jake E; Hofmann, Michael P

    2008-07-01

    The effect of antibacterial chlorhexidine diacetate powder (CHX) on the setting kinetics of a brushite-forming beta-tricalcium phosphate/monocalcium phosphate monohydrate (beta-TCP/MCPM) cement was monitored using attenuated total reflection Fourier transform infrared spectroscopy. The final composition of the set cement with up to 12 wt.% CHX content before and after submersion in water for 24h, the kinetics of chlorhexidine release and the total sample mass change in water over four weeks was monitored using Raman mapping, UV spectroscopy and gravimetry, respectively. Below 9 wt.%, CHX content had no significant effect on brushite formation rate at 37 degrees C, but at 12 wt.% the half-life of the reaction decreased by one-third. Raman mapping confirmed that brushite was the main inorganic component of the set cements irrespective of CHX content, both before and after submersion in water. The CHX could be detected largely as discrete solid particles but could also be observed partially dispersed throughout the pores of the set cement. The percentage of CHX release was found to follow Fick's law of diffusion, being independent of its initial concentration, proportional to the square root of time and, with 1mm thick specimens, 60% was released at 24h. Total set cement mass loss rate was not significantly affected by CHX content. On average, cements exhibited a loss of 7 wt.% assigned largely to surface phosphate particle loss within the initial 8h followed by 0.36 wt.% per day.

  17. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Energy Technology Data Exchange (ETDEWEB)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C., E-mail: acbento@uem.br [Departamento de Física, Grupo de Espectroscopia Fotoacústica e Fototérmica, Universidade Estadual de Maringá – UEM, Av. Colombo 5790, 87020-900 Maringá, Paraná (Brazil); Santos, A. D.; Moraes, J. C. S. [Departamento de Física e Química, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Av. Brasil 56, 15385-000 Ilha Solteira, SP (Brazil)

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  18. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Science.gov (United States)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  19. Preparation of the fast setting and degrading Ca-Si-Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells.

    Science.gov (United States)

    Chen, Yi-Wen; Hsu, Tuan-Ti; Wang, Kan; Shie, Ming-You

    2016-03-01

    Develop a fast setting and controllable degrading magnesium-calcium silicate cement (Mg-CS) by sol-gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg-CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg-CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg-CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. SODIUM CITRATE INFLUENCE ON FORMATION OF CEMENT STONE IN THE ALUMINOUS BINDER

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2016-01-01

    Full Text Available The paper deals with the effect of sodium citrate on the formation of a cement stone in the aluminous binder. Formation of cement stone framework in cement hydraulic binder is accompanied with complicated physical and chemical processes of interphase interactions and dispersion, these processes are predicated on qualitative and quantitative composition of the cement mortar, continuous changes in its properties from preparation stage till curing. Addition of sodium citrate to tempering water enhances hydration of both Portland cement and calcium aluminate cement. Process pertaining to an increase of cement hydration rate is considered as a consequence of destruction in surface formations and exclusion of damping effect in respect of hydration rate and hydrolysis of products resulted from interaction of clinker material with tempering. It has been established that sodium citrate makes it possible to control processes of hydration, hydrolysis, binding and curing for cement mass. High degree of hydration of aluminous cement in the presence of sodium citrate provides fast binding and curing of binder, low porosity and rather high compression breaking strength of cement stone for all curing stages. An increase in concentration of sodium citrate in cement mixture up to 10 % of the cement mass exerts an influence not only on the process of cement mortar liquefaction, reduction of time for cement mass setting and hardening but also increases compression strength of cement stone. An analysis of the structure for cleavage surface of cement stone gives ground to declare that the addition of sodium citrate provides cement stone sealing and reduces its water absorption.

  1. Preparation of the fast setting and degrading Ca–Si–Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi-Wen [Graduate Institute of Clinical Medical Science, China Medical University, Taichung City, Taiwan (China); 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Hsu, Tuan-Ti [Institute of Oral Science, Chung Shan Medical University, Taichung City, Taiwan (China); Wang, Kan [H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Shie, Ming-You, E-mail: eviltacasi@gmail.com [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China)

    2016-03-01

    Develop a fast setting and controllable degrading magnesium–calcium silicate cement (Mg–CS) by sol–gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg–CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg–CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24 h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg–CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis. - Highlights: • The fast setting and degrading Mg–CS cement was synthesized by sol–gel. • Promoted proliferation of hPDLs on Mg–CS specimens • Mg–CS can degrade and release Si and Mg ions into SBF. • Up-regulation of odontogenic and angiogenic of hPDLs • Mg–CS may be good bone substitutes for hard tissue regeneration applications.

  2. Push-out Bond Strength of Fast-setting Mineral Trioxide Aggregate and Pozzolan-based Cements: ENDOCEM MTA and ENDOCEM Zr.

    Science.gov (United States)

    Silva, Emmanuel João Nogueira Leal; Carvalho, Nancy Kudsi; Guberman, Marta Reis da Costa Labanca; Prado, Marina; Senna, Plinio Mendes; Souza, Erick M; De-Deus, Gustavo

    2017-05-01

    The present study investigated the root canal dentin bond strength of 2 newly developed fast-setting mineral trioxide aggregate (MTA) and pozzolan-based cements: ENDOCEM MTA (Maruchi, Wonju, Korea) and ENDOCEM Zr (Maruchi). White MTA (Angelus, Londrina, Brazil) was used as the reference material for comparison. Root slices (1 mm ± 0.1 mm) were obtained from the middle third of 15 maxillary incisors previously selected. Three canal-like holes (0.8 diameter) were drilled perpendicularly on the axial surface of each root slice. A standardized irrigation protocol was applied for all samples, and after drying, each hole was filled with 1 of 3 test repair materials. Finally, slices were stored in contact with phosphate-buffered saline solution (pH = 7.2) for 7 days at 37°C before the push-out assay. Data were nonparametrically evaluated at α = 5%. The Friedman test was unable to confirm a significant dissimilarity in push-out ranks among the tested cements (P = .220). The new fast-setting MTA and pozzolan-based cements ENDOCEM MTA and ENDOCEM Zr present suitable bond strength performance, which is comparable with white MTA. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. In-capillary detection of fast antibody-peptide binding using fluorescence coupled capillary electrophoresis.

    Science.gov (United States)

    Qin, Yuqin; Qiu, Lin; Qin, Haifang; Ding, Shumin; Liu, Li; Teng, Yiwan; Chen, Yao; Wang, Cheli; Li, Jinchen; Wang, Jianhao; Jiang, Pengju

    2016-01-01

    Herein, we report a technique for detecting the fast binding of antibody-peptide inside a capillary. Anti-HA was mixed and interacted with FAM-labeled HA tag (FAM-E4 ) inside the capillary. Fluorescence coupled capillary electrophoresis (CE-FL) was employed to measure and record the binding process. The efficiency of the antibody-peptide binding on in-capillary assays was found to be affected by the molar ratio. Furthermore, the stability of anti-HA-FAM-E4 complex was investigated as well. The results indicated that E4 YPYDVPDYA (E4) or TAMRA-E4 YPYDVPDYA (TAMRA-E4) had the same binding priorities with anti-HA. The addition of excess E4 or TAMRA-E4 could lead to partial dissociation of the complex and take a two-step mechanism including dissociation and association. This method can be applied to detect a wide range of biomolecular interactions.

  4. Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin.

    Directory of Open Access Journals (Sweden)

    Guido C Faas

    2007-11-01

    Full Text Available Cooperativity is one of the most important properties of molecular interactions in biological systems. It is the ability to influence ligand binding at one site of a macromolecule by previous ligand binding at another site of the same molecule. As a consequence, the affinity of the macromolecule for the ligand is either decreased (negative cooperativity or increased (positive cooperativity. Over the last 100 years, O2 binding to hemoglobin has served as the paradigm for cooperative ligand binding and allosteric modulation, and four practical models were developed to quantitatively describe the mechanism: the Hill, the Adair-Klotz, the Monod-Wyman-Changeux, and the Koshland-Némethy-Filmer models. The predictions of these models apply under static conditions when the binding reactions are at equilibrium. However, in a physiological setting, e.g., inside a cell, the timing and dynamics of the binding events are essential. Hence, it is necessary to determine the dynamic properties of cooperative binding to fully understand the physiological implications of cooperativity. To date, the Monod-Wyman-Changeux model was applied to determine the kinetics of cooperative binding to biologically active molecules. In this model, cooperativity is established by postulating two allosteric isoforms with different binding properties. However, these studies were limited to special cases, where transition rates between allosteric isoforms are much slower than the binding rates or where binding and unbinding rates could be measured independently. For all other cases, the complex mathematical description precludes straightforward interpretations. Here, we report on calculating for the first time the fast dynamics of a cooperative binding process, the binding of Ca2+ to calretinin. Calretinin is a Ca2+-binding protein with four cooperative binding sites and one independent binding site. The Ca2+ binding to calretinin was assessed by measuring the decay of free Ca2

  5. A Study on Efficient Mobile IPv6 Fast Handover Scheme Using Reverse Binding Mechanism

    Science.gov (United States)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Sung-Gyu; Kim, Miso; Park, Byungjoo

    This paper proposes a solution for solving the packet handover issues of MIPv6. We propose an efficient scheme that can support fast handover effectively in standard Mobile IPv6 (MIPv6) by optimizing the associated data and the flow of signal during handover. A new signaling message Reverse Packet Binding Mechanism is defined and utilized to hasten the handover procedure by adding a buffer in access point (AP) and home agent (HA).

  6. Role of corticosteroid binding globulin in the fast actions of glucocorticoids on the brain.

    Science.gov (United States)

    Moisan, M P; Minni, A M; Dominguez, G; Helbling, J C; Foury, A; Henkous, N; Dorey, R; Béracochéa, D

    2014-03-01

    Corticosteroid binding globulin (CBG) is a glycoprotein synthesized in liver and secreted in the blood where it binds with a high affinity but low capacity glucocorticoid hormones, cortisol in humans and corticosterone in laboratory rodents. In mammals, 95% of circulating glucocorticoids are bound to either CBG (80%) or albumin (15%) and only the 5% free fraction is able to enter the brain. During stress, the concentration of glucocorticoids rises significantly and the free fraction increases even more because CBG becomes saturated. However, glucocorticoids unbound to CBG are cleared from the blood more quickly. Our studies on mice totally devoid of CBG (Cbg k.o.) showed that during stress these mutant mice display a lower rise of glucocorticoids than the wild-type controls associated with altered emotional reactivity. These data suggested that CBG played a role in the fast actions of glucocorticoids on behavior. Further analyses demonstrated that stress-induced memory retrieval impairment, an example of the fast action of glucocorticoids on the brain is abolished in the Cbg k.o. mice. This effect of stress on memory retrieval could be restored in the Cbg k.o. mice by infusing corticosterone directly in the hippocampus. The mechanisms explaining these effects involved an increased clearance but no difference in corticosterone production. Thus, CBG seems to have an important role in maintaining in blood a glucocorticoid pool that will be able to access the brain for the fast effects of glucocorticoids.

  7. Cement Conundrum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China aims to streamline the crowded cement industry Policymakers are looking to build a concrete wall around the cement-making industry as they seek to solidify the fluid cement market and cut excessive production.

  8. Lacosamide Inhibition of Nav1.7 Voltage-Gated Sodium Channels: Slow Binding to Fast-Inactivated States.

    Science.gov (United States)

    Jo, Sooyeon; Bean, Bruce P

    2017-04-01

    Lacosamide is an antiseizure agent that targets voltage-dependent sodium channels. Previous experiments have suggested that lacosamide is unusual in binding selectively to the slow-inactivated state of sodium channels, in contrast to drugs like carbamazepine and phenytoin, which bind tightly to fast-inactivated states. Using heterologously expressed human Nav1.7 sodium channels, we examined the state-dependent effects of lacosamide. Lacosamide induced a reversible shift in the voltage dependence of fast inactivation studied with 100-millisecond prepulses, suggesting binding to fast-inactivated states. Using steady holding potentials, lacosamide block was very weak at -120 mV (3% inhibition by 100 µM lacosamide) but greatly enhanced at -80 mV (43% inhibition by 100 µM lacosamide), where there is partial fast inactivation but little or no slow inactivation. During long depolarizations, lacosamide slowly (over seconds) put channels into states that recovered availability slowly (hundreds of milliseconds) at -120 mV. This resembles enhancement of slow inactivation, but the effect was much more pronounced at -40 mV, where fast inactivation is complete, but slow inactivation is not, than at 0 mV, where slow inactivation is maximal, more consistent with slow binding to fast-inactivated states than selective binding to slow-inactivated states. Furthermore, inhibition by lacosamide was greatly reduced by pretreatment with 300 µM lidocaine or 300 µM carbamazepine, suggesting that lacosamide, lidocaine, and carbamazepine all bind to the same site. The results suggest that lacosamide binds to fast-inactivated states in a manner similar to other antiseizure agents but with slower kinetics of binding and unbinding.

  9. Studies on potential of Portland cement mortar for binding of waterworks sludge to reduce heavy metal leaching

    Indian Academy of Sciences (India)

    PARAMALINGGAM THANALECHUMI; ABDULL RAHIM MOHD YUSOFF; MOHANADOSS PONRAJ; HANIM AWAB

    2016-03-01

    The investigation of heavy metal leaching and physicochemical properties of cement-solidified waterworks sludge (CMWWS) formed by incorporating waterworks sludge (WWS) into cement mortar was carried out. The chemical composition, compressive strength and other physicochemical properties of the CMWWS cube specimens were determined using field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD) and Fourier transform-infrared spectroscopy (FTIR). The major type of chemical components present in CMWWS was found to be Al and Fe. The increasing amount of WWS added to cement mortar resulted in the increasing of organic matter, urchin-like morphology and clear peak intensity. At the end of 28 days of curing, the soaking solution became strongly basic and CMWWS cube specimens leached out higher amount of heavy metals. The compressive strength of CMWWS increased up to a WWS percentage of 10%, and basic (pH [ 7) curing solution was found to be better than water for curing purposes. It is concluded that solidification–stabilisation (S/S) technique is able to effectively reduce the leaching of heavy metals from the WWS and CMWWS containing up to 10% WWS can be used as construction material.

  10. Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems.

    Directory of Open Access Journals (Sweden)

    Janarthanan Krishnamoorthy

    Full Text Available BACKGROUND: Nuclear Magnetic Resonance (NMR spectroscopy offers a variety of experiments to study protein-ligand interactions at atomic resolution. Among these experiments, 15N Heteronuclear Single Quantum Correlation (HSQCexperiment is simple, less time consuming and highly informative in mapping the binding site of the ligand. The interpretation of 15N HSQC becomes ambiguous when the chemical shift perturbations are caused by non-specific interactions like allosteric changes and local structural rearrangement. Under such cases, detailed chemical exchange analysis based on chemical shift perturbation will assist in locating the binding site accurately. METHODOLOGY/PRINCIPAL FINDINGS: We have automated the mapping of binding sites for fast chemical exchange systems using information obtained from 15N HSQC spectra of protein serially titrated with ligand of increasing concentrations. The automated program Auto-FACE (Auto-FAst Chemical Exchange analyzer determines the parameters, e.g. rate of change of perturbation, binding equilibrium constant and magnitude of chemical shift perturbation to map the binding site residues.Interestingly, the rate of change of perturbation at lower ligand concentration is highly sensitive in differentiating the binding site residues from the non-binding site residues. To validate this program, the interaction between the protein hBcl(XL and the ligand BH3I-1 was studied. Residues in the hydrophobic BH3 binding groove of hBcl(XL were easily identified to be crucial for interaction with BH3I-1 from other residues that also exhibited perturbation. The geometrically averaged equilibrium constant (3.0 x 10(4 calculated for the residues present at the identified binding site is consistent with the values obtained by other techniques like isothermal calorimetry and fluorescence polarization assays (12.8 x 10(4. Adjacent to the primary site, an additional binding site was identified which had an affinity of 3.8 times weaker

  11. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid...

  12. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu......ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold...

  13. Compound effect of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O on the strength of steel slag: cement binding materials

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Liqian; Liu, Jiaxiang; Liu, Qian, E-mail: ljxpost@263.net [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, The State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing (China)

    2016-03-15

    In this study, we replaced 30% of the cement with steel slag to prepare binding material; additionally, small amounts of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O were added. This was done to study the compound effect of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O on the strength of steel slag-cement binding materials. The hydration degree of the steel slag cementitious material was analyzed by XRD, TG and SEM. The results showed that the optimum proportions of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O were 3% and 2%, respectively. Compared with the steel slag-cement binders without adding CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O, the compressive strength increased by 59.9% at 3 days and by 17.8% at 28 days. Acting as the nucleation matrix, CaCO{sub 3} could accelerate the hydration of C{sub 3}S. In addition, CaCO{sub 3} was involved in the hydration reaction, generating a new hydration product, which could stably exist in a slurry. Meanwhile, CaSO{sub 4}·2H{sub 2}O could increase the number of AFt. The compound effect of CaCO{sub 3} and CaSO{sub 4}·2H{sub 2}O enhanced the intensity of steel slag-cement binding materials and improved the whole hydration behavior. (author)

  14. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    Science.gov (United States)

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  15. Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work.

    Science.gov (United States)

    Ngo, Son Tung; Hung, Huynh Minh; Nguyen, Minh Tho

    2016-12-05

    The fast pulling ligand (FPL) out of binding cavity using non-equilibrium molecular dynamics (MD) simulations was demonstrated to be a rapid, accurate and low CPU demand method for the determination of the relative binding affinities of a large number of HIV-1 protease (PR) inhibitors. In this approach, the ligand is pulled out of the binding cavity of the protein using external harmonic forces, and the work of pulling force corresponds to the relative binding affinity of HIV-1 PR inhibitor. The correlation coefficient between the pulling work and the experimental binding free energy of R=-0.95 shows that FPL results are in good agreement with experiment. It is thus easier to rank the binding affinities of HIV-1 PR inhibitors, that have similar binding affinities because the mean error bar of pulling work amounts to δW=7%. The nature of binding is discovered using the FPL approach. © 2016 Wiley Periodicals, Inc.

  16. Fast kinetics of nucleotide binding to Clostridium perfringens family II pyrophosphatase containing CBS and DRTGG domains.

    Science.gov (United States)

    Jämsen, J; Baykov, A A; Lahti, R

    2012-02-01

    We earlier described CBS-pyrophosphatase of Moorella thermoacetica (mtCBS-PPase) as a novel phosphohydrolase that acquired a pair of nucleotide-binding CBS domains during evolution, thus endowing the protein with the capacity to be allosterically regulated by adenine nucleotides (Jämsen, J., Tuominen, H., Salminen, A., Belogurov, G. A., Magretova, N. N., Baykov, A. A., and Lahti, R. (2007) Biochem. J., 408, 327-333). We herein describe a more evolved type of CBS-pyrophosphatase from Clostridium perfringens (cpCBS-PPase) that additionally contains a DRTGG domain between the two CBS domains in the regulatory part. cpCBS-PPase retained the ability of mtCBS-PPase to be inhibited by micromolar concentrations of AMP and ADP and activated by ATP and was additionally activated by diadenosine polyphosphates (AP(n)A) with n > 2. Stopped-flow measurements using a fluorescent nucleotide analog, 2'(3')-O-(N-methylanthranoyl)-AMP, revealed that cpCBS-PPase interconverts through two different conformations with transit times on the millisecond scale upon nucleotide binding. The results suggest that the presence of the DRTGG domain affords greater flexibility to the regulatory part, allowing it to more rapidly undergo conformational changes in response to binding.

  17. Fast Uptake and Long-Lasting Binding of Methamphetamine in the Human Brain

    Science.gov (United States)

    Fowler, Joanna S.; Volkow, Nora D.; Logan, Jean; Alexoff, David; Telang, Frank; Wang, Gene-Jack; Wong, Christopher; Ma, Yeming; Kriplani, Aarti; Pradhan, Kith; Schlyer, David; Jayne, Millard; Hubbard, Barbara; Carter, Pauline; Warner, Donald; King, Payton; Shea, Colleen; Xu, Youwen; Muench, Lisa; Apelskog, Karen

    2008-01-01

    Methamphetamine is one of the most addictive and neurotoxic drugs of abuse. It produces large elevations in extracellular dopamine in the striatum through vesicular release and inhibition of the dopamine transporter. In the U.S. abuse prevalence varies by ethnicity with very low abuse among African Americans relative to Caucasians, differentiating it from cocaine where abuse rates are similar for the two groups. Here we report the first comparison of methamphetamine and cocaine pharmacokinetics in brain between Caucasians and African Americans along with the measurement of dopamine transporter availability in striatum. Methamphetamine’s uptake in brain was fast (peak uptake at 9 minutes) with accumulation in cortical and subcortical brain regions and in white matter. Its clearance from brain was slow (except for white matter which did not clear over the 90 minutes) and there was no difference in pharmacokinetics between Caucasians and African Americans. In contrast cocaine’s brain uptake and clearance were both fast, distribution was predominantly in striatum and uptake was higher in African Americans. Among individuals, those with the highest striatal (but not cerebellar) methamphetamine accumulation also had the highest dopamine transporter availability suggesting a relationship between METH exposure and DAT availability. Methamphetamine’s fast brain uptake is consistent with its highly reinforcing effects, its slow clearance with its long lasting behavioral effects and its widespread distribution with its neurotoxic effects that affect not only striatal but also cortical and white matter regions. The absence of significant differences between Caucasians and African Americans suggests that variables other than methamphetamine pharmacokinetics and bioavailability account for the lower abuse prevalence in African Americans. PMID:18708148

  18. Control of neuronal excitability by calcium binding proteins : a new mathematical model for striatal fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Don Patrick eBischop

    2012-07-01

    Full Text Available Calcium binding proteins, such as parvalbumin, are abundantly expressed in very distinctive patterns in the central nervous system but their physiological function remains poorly understood. Notably, at the level of the striatum, parvalbumin is only expressed in the fast spiking (FS interneurons, which form a inhibitory network modulating the output of the striatum by synchronizing medium-sized spiny neurons (MSN. So far the existing conductance-based computational models for FS neurons did not allow the study of the the coupling between parvalbumin concentration and electrical activity. In the present paper, we propose a new mathematical model for the striatal FS interneurons that includes apamin-sensitive small conductance ca -dependent kk channels (SK and takes into account the presence of a calcium buffer. Our results demonstrate that a variation in the concentration of parvalbumin can modulate substantially the intrinsic excitability of the FS interneurons and therefore may be involved in the information processing at the striatal level.

  19. The case of Mugher cement facto

    African Journals Online (AJOL)

    Thomas

    based on emission test and mass balance performed. Yet it accounts for ... Hydraulic (chiefly portland) cement, the binding agent in concrete and most .... phenolphthalein were used for end-point detection of the acid-base titration. Materials.

  20. Study and application of fast harden single cement liquid with sulfur and aluminum salt%快硬硫铝盐水泥单液浆性能研究及应用

    Institute of Scientific and Technical Information of China (English)

    邓尤东; 帅建国; 罗光财

    2012-01-01

    以重庆市轨道交通一号线中梁山隧道工程岩溶高压富水段注浆堵水为工程实例,探讨快硬硫铝盐水泥单液浆的性能和在富水隧道注浆施工中的应用.通过研究,实现了科学、文明、高效、可控的帷幕注浆施工,可供类似工程参考.%Taking the Zhongliangshan Tunnel 1st line of trace traffic in Chongqing as an example, the plugging water problem was discussed. The fast harden single cement liquid with sulfur and aluminum salt was successfully was applied in tunnel grouting. The research will provide useful reference for similar engineering.

  1. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  2. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  3. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  4. Cementation of Loose Sand Particles based on Bio-cement

    Institute of Scientific and Technical Information of China (English)

    RONG Hui; QIAN Chunxiang

    2014-01-01

    Loose sand particles could be cemented to sandstone by bio-cement (microbial induced magnesium carbonate). The bio-sandstone was firstly prepared, and then the compressive strength and the porosity of the sandstone cemented by microbial induced magnesium carbonate were tested to characterize the cementation effectiveness. In addition, the formed mineral composition and the microstructure of bio-sandstone were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The experimental results show that the feasibility of binding loose sand particles using microbial induced magnesium carbonate precipitation is available and the acquired compressive strength of bio-sandstone can be excellent at certain ages. Moreover, the compressive strength and the porosity could be improved with the increase of microbial induced magnesium carbonate content. XRD results indicate that the morphology of magnesium carbonate induced by microbe appears as needles and SEM results show that the cementation of loose sand particles to sandstone mainly relies on the microbial induced formation of magnesium carbonate precipitation around individual particles and at particle-particle contacts.

  5. A Critical Role of Fatty Acid Binding Protein 4 and 5 (FABP4/5) in the Systemic Response to Fasting

    Science.gov (United States)

    Syamsunarno, Mas Rizky A. A.; Iso, Tatsuya; Hanaoka, Hirofumi; Yamaguchi, Aiko; Obokata, Masaru; Koitabashi, Norimichi; Goto, Kosaku; Hishiki, Takako; Nagahata, Yoshiko; Matsui, Hiroki; Sano, Motoaki; Kobayashi, Masaki; Kikuchi, Osamu; Sasaki, Tsutomu; Maeda, Kazuhisa; Murakami, Masami; Kitamura, Tadahiro; Suematsu, Makoto; YoshitoTsushima; Endo, Keigo; Hotamisligil, Gökhan S.; Kurabayashi, Masahiko

    2013-01-01

    During prolonged fasting, fatty acid (FA) released from adipose tissue is a major energy source for peripheral tissues, including the heart, skeletal muscle and liver. We recently showed that FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipocytes and macrophages, are prominently expressed in capillary endothelial cells in the heart and skeletal muscle. In addition, mice deficient for both FABP4 and FABP5 (FABP4/5 DKO mice) exhibited defective uptake of FA with compensatory up-regulation of glucose consumption in these tissues during fasting. Here we showed that deletion of FABP4/5 resulted in a marked perturbation of metabolism in response to prolonged fasting, including hyperketotic hypoglycemia and hepatic steatosis. Blood glucose levels were reduced, whereas the levels of non-esterified FA (NEFA) and ketone bodies were markedly increased during fasting. In addition, the uptake of the 125I-BMIPP FA analogue in the DKO livers was markedly increased after fasting. Consistent with an increased influx of NEFA into the liver, DKO mice showed marked hepatic steatosis after a 48-hr fast. Although gluconeogenesis was observed shortly after fasting, the substrates for gluconeogenesis were reduced during prolonged fasting, resulting in insufficient gluconeogenesis and enhanced hypoglycemia. These metabolic responses to prolonged fasting in DKO mice were readily reversed by re-feeding. Taken together, these data strongly suggested that a maladaptive response to fasting in DKO mice occurred as a result of an increased influx of NEFA into the liver and pronounced hypoglycemia. Together with our previous study, the metabolic consequence found in the present study is likely to be attributed to an impairment of FA uptake in the heart and skeletal muscle. Thus, our data provided evidence that peripheral uptake of FA via capillary endothelial FABP4/5 is crucial for systemic metabolism and may establish FABP4/5 as potentially novel targets for the

  6. Molecular characterization of the IgE-binding epitopes in the fast ω-gliadins of Triticeae in relation to wheat-dependent, exercise-induced anaphylaxis.

    Science.gov (United States)

    Du, Xuye; Tang, Heng; Li, Min; Ma, Xin; Yin, Huayan; Wang, Hongwei; Zhang, Xiaocun; Qiao, Xuguang; Li, Anfei; Kong, Lingrang

    2016-10-10

    Fast ω-gliadins were minor components of wheat storage proteins but a major antigen triggering allergy to wheat. Sixty-six novel full-length fast ω-gliadin genes with unique characteristics were cloned and sequenced from wheat and its relative species using a PCR-based strategy. Their coding regions ranged from 177bp to 987bp in length and encoded 4.28kDa to 37.56kDa proteins. On the base of first three deduced amino acids at the N-terminal, these genes could be classified into the six subclasses of SRL-, TRQ-, GRL-, NRL-, SRP- and SRM-type ω-gliadin genes. Compared by multiple alignments, these genes were significantly different from each other, due to the insertion or deletion at the repetitive domain. An analysis of the IgE-binding epitopes of the 66 deduced fast ω-gliadins demonstrated that they contained 0-24 IgE-binding epitopes. The phylogenetic tree demonstrated that the fast ω-gliadins and slow ω-gliadins were separated into two groups and their divergence time was 21.64millionyears ago. Sequence data of the fast ω-gliadin genes assist in the study of the origins and evolutions of the different types of ω-gliadins while also providing a basis for the synthesis of monoclonal antibodies to detect wheat antigen content.

  7. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  8. Postprandial changes in plasma growth hormone, insulin, insulin-like growth factor (IGF)-I, and IGF-binding proteins in coho salmon fasted for varying periods.

    Science.gov (United States)

    Shimizu, Munetaka; Cooper, Kathleen A; Dickhoff, Walton W; Beckman, Brian R

    2009-08-01

    We examined postprandial changes in circulating growth hormone (GH), insulin, insulin-like growth factor (IGF)-I, and IGF-binding proteins (IGFBPs) in yearling coho salmon under different feeding regimes. Fish were initially fasted for 1 day, 1 wk, or 3 wk. Fasted fish were then fed, and blood was collected at 4-h intervals over 26 h. After the various periods of fasting, basal levels of insulin were relatively constant, whereas those of IGF-I, IGFBPs and GH changed in proportion to the duration of the fast. A single meal caused a rapid, large increase in the circulating insulin levels, but the degree of the increase was influenced by the fasting period. IGF-I showed a moderate increase 2 h after the meal but only in the regularly fed fish. Plasma levels of 41-kDa IGFBP were increased in all groups within 6 h after the single meal. The fasting period did not influence the response of 41-kDa IGFBP to the meal. IGFBP-1 and GH decreased after the meal to the same extent among groups regardless of the fasting period. The present study shows that insulin and IGF-I respond differently to long (weeks)- and short (hours)-term nutritional changes in salmon; insulin maintains its basal level but changes acutely in response to food intake, whereas IGF-I adjusts its basal levels to the long-term nutritional status and is less responsive to acute nutritional input. IGFBPs maintain their sensitivity to food intake, even after prolonged fasting, suggesting their critical role in the nutritional regulation of salmon growth.

  9. Chloride ingress in cement paste and mortar

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, O.M.; Hansen, P.F.; Coats, A.M.; Glasser, F.P.

    1999-09-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature). The measurements are modelled on Fick's law modified by a term for chloride binding. Inclusion of chloride binding significantly improves the profile shape of the modelled ingress profiles. The presence of fine aggregate and formation of interfacial transition zones at paste-aggregate boundaries does not significantly affect diffusion rates.

  10. Alternative Fuels in Cement Production

    OpenAIRE

    2007-01-01

    Substitutionen af fossilt med alternativt brændsel i cement produktionen er steget betydeligt i den sidste dekade. Af disse nye alternative brændsler, udgør de faste brændsler p.t. den største andel, hvor kød- og benmel, plastic og dæk i særdeleshed har været de alternative brændsler der har bidraget med mest alternativ brændsels energi til den tyske cement industri. De nye alternative brændsler er typisk karakteriseret ved et højt indhold af flygtige bestanddele og adskiller sig typisk fra t...

  11. DPI-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro

    Directory of Open Access Journals (Sweden)

    Chaban Christina

    2010-11-01

    Full Text Available Abstract Background About 10% of all genes in eukaryote genomes are predicted to encode transcription factors. The specific binding of transcription factors to short DNA-motifs influences the expression of neighbouring genes. However, little is known about the DNA-protein interaction itself. To date there are only a few suitable methods to characterise DNA-protein-interactions, among which the EMSA is the method most frequently used in laboratories. Besides EMSA, several protocols describe the effective use of an ELISA-based transcription factor binding assay e.g. for the analysis of human NFκB binding to specific DNA sequences. Results We provide a unified protocol for this type of ELISA analysis, termed DNA-Protein-Interaction (DPI-ELISA. Qualitative analyses with His-epitope tagged plant transcription factors expressed in E. coli revealed that EMSA and DPI-ELISA result in comparable and reproducible data. The binding of AtbZIP63 to the C-box and AtWRKY11 to the W2-box could be reproduced and validated by both methods. We next examined the physical binding of the C-terminal DNA-binding domains of AtWRKY33, AtWRKY50 and AtWRKY75 to the W2-box. Although the DNA-binding domain is highly conserved among the WRKY proteins tested, the use of the DPI-ELISA discloses differences in W2-box binding properties between these proteins. In addition to these well-studied transcription factor families, we applied our protocol to AtBPC2, a member of the so far uncharacterised plant specific Basic Pentacysteine transcription factor family. We could demonstrate binding to GA/TC-dinucleotide repeat motifs by our DPI-ELISA protocol. Different buffers and reaction conditions were examined. Conclusions We successfully applied our DPI-ELISA protocol to investigate the DNA-binding specificities of three different classes of transcription factors from Arabidopsis thaliana. However, the analysis of the binding affinity of any DNA-binding protein to any given DNA

  12. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-04-15

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

  13. Formulating a low-alkalinity cement for radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X

    2004-07-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  14. Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite.

    Science.gov (United States)

    Horiuchi, Shinya; Asaoka, Kenzo; Tanaka, Eiji

    2009-01-01

    Synthetic bone cement that has zinc oxide core particles covered with hydroxyapatite (HAP) was developed; that is, the conversion of hopeite, the traditional zinc phosphate cement, into HAP was attempted. Here, hopeite is the final product of the reaction between powders and trituration liquid of the traditional zinc phosphate cement. This cement may have many advantages not only in terms of biological functions but also the setting process of the traditional cement and the mechanical properties of the developed compact if the hopeite can be converted into calcium phosphate (CP). In this study, calcium nitrate solutions of various concentrations were used for the conversion of hopeite crystals into CP. The products after the solution treatment were analyzed by X-ray diffractometry (XRD), Fourier transform infrared spectrometry (FTIR), and scanning electron microscope (SEM) observation. These results indicated that the converted scholzite crystals could be partially detected. Several types of set zinc phosphate cement with different P/L ratios were arranged. The surface products of the set cement after the solution treatment were analyzed by XRD. However, the crystal phase such as hopeite was not detected except for zinc oxide. The set cement, which was treated with the calcium nitrate solution, was immersed in simulated body fluid (SBF). HAP-like crystals on the set cement could be detected for the specimens immersed for 4 weeks. These findings suggested that the binding phase in the set cement could be converted into HAP by immersion in SBF.

  15. Simulating the slow to fast switch in cytochrome c oxidase catalysis by introducing a loop flip near to the enzyme's cytochrome c (substrate) binding site.

    Science.gov (United States)

    Alleyne, Trevor; Ignacio, Diane N; Sampson, Valerie B; Ashe, Damian; Wilson, Michael

    2016-08-04

    The mitochondrial enzyme cytochrome c oxidase catalyses the reduction of molecular oxygen in the critical step of oxidative phosphorylation that links the oxidation of food consumed to ATP production in cells. The enzyme catalyses the reduction of oxygen at two vastly different rates that are thought to be linked to two different conformations but the conformation of the 'fast enzyme' remains obscure. In this study we demonstrated how oxygen binding at haem a3 could trigger long distance conformational changes and then simulated a conformational change in an eight residue loop near to the enzyme's substrate (cytochrome c) binding site. We then used this modified COX to simulate a stable COX-cytochrome c ES-complex. Compared to ES-complexes formed in the absence of the conformation change, the distance between the redox centres of the two proteins was reduced by half and instead of nine, only four COX amino acid residues were found along the axis linking the electron entry point and the CuA redox centre of COX: We proposed that intramolecular electron transfer in COX occurs via a charge/hydrogen relay system involving these four residues. We suggest that the conformational change and resulting shortened electron pathway are features of fast-acting COX. This article is protected by copyright. All rights reserved.

  16. WHITE CEMENT IN SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Y.C.P RAMANA BABU

    2013-04-01

    Full Text Available India is one among the fast developing countries in the world in the areas of Infrastructure. Now a day, Carbon monoxide (CO and carbon dioxide (CO2 are the temporary atmospheric pollutants in the environment chiefly emitted from the fuel burning vehicles and street lights which lead to global warming and pose a major threat tothe survival and sustainable development. This paper deals with the principal purpose of use of white cement in pavement design which will take care of the Green house gases (i.e., CO and CO2 and also saves lot of money in the long run process. A small amount of these gases in environment can cause major problems over time. Use of white cement in composite pavement design where there is heavy traffic loads are acting as well as number of vehicles are more such as junctions, bus stops, check posts etc., can perform better and acts asenvironment friendly. Its light colour reflects more than bituminous pavement so that it can be easily identified and avoid accidents to some extent. White cement helps to lower the average bus stop, junction temperature providing comfort to the people because it has high solar reflectance there by reducing “urban heat island” effect. In addition to this it has some more advantages which increase the sustainability, durability and workability of the pavements.

  17. Myosin binding protein-C slow: a multifaceted family of proteins with a complex expression profile in fast and slow twitch skeletal muscles.

    Science.gov (United States)

    Ackermann, Maegen A; Kontrogianni-Konstantopoulos, Aikaterini

    2013-01-01

    Myosin Binding Protein-C slow (sMyBP-C) comprises a complex family of proteins expressed in slow and fast type skeletal muscles. Similar to its fast and cardiac counterparts, sMyBP-C functions to modulate the formation of actomyosin cross-bridges, and to organize and stabilize sarcomeric A- and M-bands. The slow form of MyBP-C was originally classified as a single protein, however several variants encoded by the single MYBPC1 gene have been recently identified. Alternative splicing of the 5' and 3' ends of the MYBPC1 transcript has led to the differential expression of small unique segments interspersed between common domains. In addition, the NH2-terminus of sMyBP-C undergoes complex phosphorylation. Thus, alternative splicing and phosphorylation appear to regulate the functional activities of sMyBP-C. sMyBP-C proteins are not restricted to slow twitch muscles, but they are abundantly expressed in fast twitch muscles, too. Using bioinformatic tools, we herein perform a systematic comparison of the known human and mouse sMyBP-C variants. In addition, using single fiber westerns and antibodies to a common region of all known sMyBP-C variants, we present a detailed and comprehensive characterization of the expression profile of sMyBP-C proteins in the slow twitch soleus and the fast twitch flexor digitorum brevis (FDB) mouse muscles. Our studies demonstrate for the first time that distinct sMyBP-C variants are co-expressed in the same fiber, and that their expression profile differs among fibers. Given the differential expression of sMyBP-C variants in single fibers, it becomes apparent that each variant or combination thereof may play unique roles in the regulation of actomyosin cross-bridges formation and the stabilization of thick filaments.

  18. Myosin Binding Protein-C Slow: a multifaceted family of proteins with a complex expression profile in fast and slow twitch skeletal muscles

    Directory of Open Access Journals (Sweden)

    Maegen A Ackermann

    2013-12-01

    Full Text Available Myosin Binding Protein-C slow (sMyBP-C comprises a complex family of proteins expressed in slow and fast type skeletal muscles. Similar to its fast and cardiac counterparts, sMyBP-C functions to modulate the formation of actomyosin cross-bridges, and to organize and stabilize sarcomeric A- and M-bands. The slow form of MyBP-C was originally classified as a single protein, however several variants encoded by the single MYBPC1 gene have been recently identified. Alternative splicing of the 5’ and 3’ ends of the MYBPC1 transcript has led to the differential expression of small unique segments interspersed between common domains. In addition, the NH2-terminus of sMyBP-C undergoes complex phosphorylation. Thus, alternative splicing and phosphorylation appear to regulate the functional activities of sMyBP-C. sMyBP-C proteins are not restricted to slow twitch muscles, but they are abundantly expressed in fast twitch muscles, too. Using bioinformatic tools, we herein perform a systematic comparison of the known human and mouse sMyBP-C variants. In addition, using single fiber westerns and antibodies to a common region of all known sMyBP-C variants, we present a detailed and comprehensive characterization of the expression profile of sMyBP-C proteins in the slow twitch soleus and the fast twitch flexor digitorum brevis (FDB mouse muscles. Our studies demonstrate for the first time that distinct sMyBP-C variants are co-expressed in the same fiber, and that their expression profile differs among fibers. Given the differential expression of sMyBP-C variants in single fibers, it becomes apparent that each variant or combination thereof may play unique roles in the regulation of actomyosin cross-bridges formation and the stabilization of thick filaments.

  19. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    Science.gov (United States)

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  20. Fatty acid binding protein 4 and 5 play a crucial role in thermogenesis under the conditions of fasting and cold stress.

    Directory of Open Access Journals (Sweden)

    Mas Rizky A A Syamsunarno

    Full Text Available Hypothermia is rapidly induced during cold exposure when thermoregulatory mechanisms, including fatty acid (FA utilization, are disturbed. FA binding protein 4 (FABP4 and FABP5, which are abundantly expressed in adipose tissues and macrophages, have been identified as key molecules in the pathogenesis of overnutrition-related diseases, such as insulin resistance and atherosclerosis. We have recently shown that FABP4/5 are prominently expressed in capillary endothelial cells in the heart and skeletal muscle and play a crucial role in FA utilization in these tissues. However, the role of FABP4/5 in thermogenesis remains to be determined. In this study, we showed that thermogenesis is severely impaired in mice lacking both FABP4 and FABP5 (DKO mice, as manifested shortly after cold exposure during fasting. In DKO mice, the storage of both triacylglycerol in brown adipose tissue (BAT and glycogen in skeletal muscle (SkM was nearly depleted after fasting, and a biodistribution analysis using 125I-BMIPP revealed that non-esterified FAs (NEFAs are not efficiently taken up by BAT despite the robustly elevated levels of serum NEFAs. In addition to the severe hypoglycemia observed in DKO mice during fasting, cold exposure did not induce the uptake of glucose analogue 18F-FDG by BAT. These findings strongly suggest that DKO mice exhibit pronounced hypothermia after fasting due to the depletion of energy storage in BAT and SkM and the reduced supply of energy substrates to these tissues. In conclusion, FABP4/5 play an indispensable role in thermogenesis in BAT and SkM. Our study underscores the importance of FABP4/5 for overcoming life-threatening environments, such as cold and starvation.

  1. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...... volume and threshold pore size were found when comparing with plain cement paste at the same curing conditions. The porosity methods MIP, LTC and SEM have been shown to be suitable to characterise pore parameters of the pastes. MIP is a simple and fast method which covers a large range of pore sizes...

  2. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  3. Regulation of jaw-specific isoforms of myosin-binding protein-C and tropomyosin in regenerating cat temporalis muscle innervated by limb fast and slow motor nerves.

    Science.gov (United States)

    Kang, Lucia H D; Hoh, Joseph F Y

    2010-11-01

    Cat jaw-closing muscles are a distinct muscle allotype characterized by the expression of masticatory-specific myofibrillar proteins. Transplantation studies showed that expression of masticatory myosin heavy chain (m-MyHC) is promoted by fast motor nerves, but suppressed by slow motor nerves. We investigated whether masticatory myosin-binding protein-C (m-MBP-C) and masticatory tropomyosin (m-Tm) are similarly regulated. Temporalis muscle strips were transplanted into limb muscle beds to allow innervation by fast or slow muscle nerve during regeneration. Regenerated muscles were examined postoperatively up to 168 days by peroxidase IHC using monoclonal antibodies to m-MyHC, m-MBP-C, and m-Tm. Regenerates in both muscle beds expressed fetal and slow MyHCs, m-MyHC, m-MBP-C, and m-Tm during the first 4 weeks. Longer-term regenerates innervated by fast nerve suppressed fetal and slow MyHCs, retaining m-MyHC, m-MBP-C, and m-Tm, whereas fibers innervated by slow nerve suppressed fetal MyHCs and the three masticatory-specific proteins, induced slow MyHC, and showed immunohistochemical characteristics of jaw-slow fibers. We concluded that expression of m-MBP-C and m-Tm is coregulated by m-MyHC and that neural impulses to limb slow muscle are capable of suppressing masticatory-specific proteins and to channel gene expression along the jaw-slow phenotype unique to jaw-closing muscle.

  4. Competitive binding-based optical DNA mapping for fast identification of bacteria--multi-ligand transfer matrix theory and experimental applications on Escherichia coli.

    Science.gov (United States)

    Nilsson, Adam N; Emilsson, Gustav; Nyberg, Lena K; Noble, Charleston; Stadler, Liselott Svensson; Fritzsche, Joachim; Moore, Edward R B; Tegenfeldt, Jonas O; Ambjörnsson, Tobias; Westerlund, Fredrik

    2014-09-01

    We demonstrate a single DNA molecule optical mapping assay able to resolve a specific Escherichia coli strain from other strains. The assay is based on competitive binding of the fluorescent dye YOYO-1 and the AT-specific antibiotic netropsin. The optical map is visualized by stretching the DNA molecules in nanofluidic channels. We optimize the experimental conditions to obtain reproducible barcodes containing as much information as possible. We implement a multi-ligand transfer matrix method for calculating theoretical barcodes from known DNA sequences. Our method extends previous theoretical approaches for competitive binding of two types of ligands to many types of ligands and introduces a recursive approach that allows long barcodes to be calculated with standard computer floating point formats. The identification of a specific E. coli strain (CCUG 10979) is based on mapping of 50-160 kilobasepair experimental DNA fragments onto the theoretical genome using the developed theory. Our identification protocol introduces two theoretical constructs: a P-value for a best experiment-theory match and an information score threshold. The developed methods provide a novel optical mapping toolbox for identification of bacterial species and strains. The protocol does not require cultivation of bacteria or DNA amplification, which allows for ultra-fast identification of bacterial pathogens.

  5. Competitive binding-based optical DNA mapping for fast identification of bacteria - multi-ligand transfer matrix theory and experimental applications on Escherichia coli

    Science.gov (United States)

    Nilsson, Adam N.; Emilsson, Gustav; Nyberg, Lena K.; Noble, Charleston; Stadler, Liselott Svensson; Fritzsche, Joachim; Moore, Edward R. B.; Tegenfeldt, Jonas O.; Ambjörnsson, Tobias; Westerlund, Fredrik

    2014-01-01

    We demonstrate a single DNA molecule optical mapping assay able to resolve a specific Escherichia coli strain from other strains. The assay is based on competitive binding of the fluorescent dye YOYO-1 and the AT-specific antibiotic netropsin. The optical map is visualized by stretching the DNA molecules in nanofluidic channels. We optimize the experimental conditions to obtain reproducible barcodes containing as much information as possible. We implement a multi-ligand transfer matrix method for calculating theoretical barcodes from known DNA sequences. Our method extends previous theoretical approaches for competitive binding of two types of ligands to many types of ligands and introduces a recursive approach that allows long barcodes to be calculated with standard computer floating point formats. The identification of a specific E. coli strain (CCUG 10979) is based on mapping of 50–160 kilobasepair experimental DNA fragments onto the theoretical genome using the developed theory. Our identification protocol introduces two theoretical constructs: a P-value for a best experiment-theory match and an information score threshold. The developed methods provide a novel optical mapping toolbox for identification of bacterial species and strains. The protocol does not require cultivation of bacteria or DNA amplification, which allows for ultra-fast identification of bacterial pathogens. PMID:25013180

  6. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  7. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  8. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  9. Cement and concrete

    Science.gov (United States)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  10. POZZOLAN AND CEMENTS WITH POZZOLAN

    OpenAIRE

    Hasan KAPLAN; Hanifi BİNİCİ

    1995-01-01

    Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, ce...

  11. Elucidating connectivity and metal-binding structures of unlabeled paramagnetic complexes by 13C and 1H solid-state NMR under fast magic angle spinning.

    Science.gov (United States)

    Wickramasinghe, Nalinda P; Shaibat, Medhat A; Ishii, Yoshitaka

    2007-08-23

    Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.

  12. Evaluation of a porosity measurement method for wet calcium phosphate cements.

    Science.gov (United States)

    Ajaxon, Ingrid; Maazouz, Yassine; Ginebra, Maria-Pau; Öhman, Caroline; Persson, Cecilia

    2015-11-01

    The porosity of a calcium phosphate cement is a key parameter as it affects several important properties of the cement. However, a successful, non-destructive porosity measurement method that does not include drying has not yet been reported for calcium phosphate cements. The aim of this study was to evaluate isopropanol solvent exchange as such a method. Two different types of calcium phosphate cements were used, one basic (hydroxyapatite) and one acidic (brushite). The cements were allowed to set in an aqueous environment and then immersed in isopropanol and stored under three different conditions: at room temperature, at room temperature under vacuum (300 mbar) or at 37℃. The specimen mass was monitored regularly. Solvent exchange took much longer time to reach steady state in hydroxyapatite cements compared to brushite cements, 350 and 18 h, respectively. Furthermore, the immersion affected the quasi-static compressive strength of the hydroxyapatite cements. However, the strength and phase composition of the brushite cements were not affected by isopropanol immersion, suggesting that isopropanol solvent exchange can be used for brushite calcium phosphate cements. The main advantages with this method are that it is non-destructive, fast, easy and the porosity can be evaluated while the cements remain wet, allowing for further analysis on the same specimen.

  13. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  14. An unusual case of extensive self-inflicted cement burn.

    Science.gov (United States)

    Catalano, F; Mariano, F; Maina, G; Bianco, C; Nuzzo, J; Stella, M

    2013-03-31

    Cement is a fine powder used to bind sand and stones into a matrix of concrete, making up the world's most frequently used building material in the construction industry. First described by Ramazzini in his book "De Morbis Artificia Diatriba" in 1700, the effect of cement on the skin was presumed to be due to contact dermatitis. The first cement burns case was published by Rowe and Williams in 1963. Cement handling has been found to be responsible for many cases of occupational burns (generally full-thickness) usually affecting a limited TBSA, rarely greater than 5%, with localization especially in the lower limbs. We describe an unusual case of a self-inflicted cement burn involving 75% TBSA. A 28-yr-old building worker attempted suicide by jumping into a cement mixer in a truck. Upon arrival at our burn centre, clinical examination revealed extensive burn (75% TBSA - 40% full-thickness) involving face, back, abdomen, upper limbs and circumferentially lower limbs, sparing the hands and feet. The patient was sedated, mechanically ventilated, and subjected to escharotomy of the lower limbs in the emergency room. The following day, the deep burns in the lower limbs were excised down to the fascia and covered with meshed allografts. Owing to probable intestinal and skin absorption of cement, metal toxicity was suspected and dialysis and forced diuresis were therefore initiated on day 3. The patient's clinical conditions gradually worsened and he died on day 13 from the multi-organ failure syndrome.

  15. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  16. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  17. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  18. Cement Mason's Curriculum. Instructional Units.

    Science.gov (United States)

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  19. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  20. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  1. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  2. Cementing a wellbore using cementing material encapsulated in a shell

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  3. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  4. Osteotransductive bone cements.

    Science.gov (United States)

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  5. Co元素对硬质合金基底金刚石涂层膜基界面结合强度的影响∗%The Influence of Co binding phase on adhesive strength of diamond coating with cemented carbide substrate

    Institute of Scientific and Technical Information of China (English)

    简小刚; 陈军

    2015-01-01

    Diamond coating has many excellent properties as the same as those of the natural diamond, such as extreme hard-ness, high thermal conductivity, low thermal expansion coefficient, high chemical stability, and good abrasive resistance, which is considered as the best tool coating material applied to the high-silicon aluminum alloy cutting. We can use the hot filament chemical vapor deposition method (HFCVD) to deposit a 2—20 µm diamond coating on the cemented carbide tool to improve the cutting performance and increase the tool life significantly. Many experiments have proved that the existence of cobalt phase can weaken the adhesive strength of diamond coating. However, we still lack a perfect theory to explain why the Co element can reduce the adhesive strength of diamond coating is still lacking. What we can do now is only to improve the adhesive strength of diamond coating by doing testing many times in experiments. Compared with these traditional experiments, the first principles simulation based on quantum mechanics can describe the microstructure property and electron density of materials. It is successfully used to investigate the surface, interface, electron component, and so on etc. We can also use this method to study the interface problem at an atomic level. So the first principles based upon density functional theory (DFT) is used to investigate the influence of cobalt binding phase in cemented carbide substrate on adhesive strength of diamond coating. In this article, we uses Material Studios software to build WC/diamond and WC-Co/diamond interface models to evaluate the influence of cobalt phase on the adhesive strength of diamond coating with CASTEP program which can calculate the most stablest structure of film-substrate interface. We use PBE functional form to obtain the exchange potential and relevant potential, and to solve the self-consistent Kohn-Sham equations. We calculate the interfacial bonding energy, analyse the electron density of

  6. The effect of composition on mechanical properties of brushite cements.

    Science.gov (United States)

    Engstrand, Johanna; Persson, Cecilia; Engqvist, Håkan

    2014-01-01

    Due to a fast setting reaction, good biological properties, and easily available starting materials, there has been extensive research within the field of brushite cements as bone replacing material. However, the fast setting of brushite cement gives them intrinsically low mechanical properties due to the poor crystal compaction during setting. To improve this, many additives such as citric acid, pyrophosphates, and glycolic acid have been added to the cement paste to retard the crystal growth. Furthermore, the incorporation of a filler material could improve the mechanical properties when used in the correct amounts. In this study, the effect of the addition of the two retardants, disodium dihydrogen pyrophosphate and citric acid, together with the addition of β-TCP filler particles, on the mechanical properties of a brushite cement was investigated. The results showed that the addition of low amounts of a filler (up to 10%) can have large effects on the mechanical properties. Furthermore, the addition of citric acid to the liquid phase makes it possible to use lower liquid-to-powder ratios (L/P), which strongly affects the strength of the cements. The maximal compressive strength (41.8MPa) was found for a composition with a molar ratio of 45:55 between monocalcium phosphate monohydrate and beta-tricalcium phosphate, an L/P of 0.25ml/g and a citric acid concentration of 0.5M in the liquid phase.

  7. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect

  8. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)

    Science.gov (United States)

    Grimme, Stefan; Bannwarth, Christoph

    2016-08-01

    The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the well established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H-Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first

  9. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  10. POZZOLAN AND CEMENTS WITH POZZOLAN

    Directory of Open Access Journals (Sweden)

    Hasan KAPLAN

    1995-02-01

    Full Text Available Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, cement with pozzolan is produced by adding the pozzolan, which has a large reservoir in the country, in cement in sertain amount. However this type of cement is consumed in the construction sector, sortage of scientific investigation and speculative news on the subject.are worried the users and producers. In this paper, prior to an experimental study on the cements having pozzolan additive, historical development of pozzolan, reservoir of Turkiye, and comparison with portland cement is carried out. Advantages and disadvantages of pozzolan are also discussed in some points.

  11. Cement from magnesium substituted hydroxyapatite.

    Science.gov (United States)

    Lilley, K J; Gbureck, U; Knowles, J C; Farrar, D F; Barralet, J E

    2005-05-01

    Brushite cement may be used as a bone graft material and is more soluble than apatite in physiological conditions. Consequently it is considerably more resorbable in vivo than apatite forming cements. Brushite cement formation has previously been reported by our group following the mixture of nanocrystalline hydroxyapatite and phosphoric acid. In this study, brushite cement was formed from the reaction of nanocrystalline magnesium-substituted hydroxyapatite with phosphoric acid in an attempt to produce a magnesium substituted brushite cement. The presence of magnesium was shown to have a strong effect on cement composition and strength. Additionally the presence of magnesium in brushite cement was found to reduce the extent of brushite hydrolysis resulting in the formation of HA. By incorporating magnesium ions in the apatite reactant structure the concentration of magnesium ions in the liquid phase of the cement was controlled by the dissolution rate of the apatite. This approach may be used to supply other ions to cement systems during setting as a means to manipulate the clinical performance and characteristics of brushite cements.

  12. US cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  13. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  14. Advances in Glass Ionomer Cements

    OpenAIRE

    KAYA, Dt. Tuğba; TİRALİ, Yard. Doç. Dr. Resmiye Ebru

    2013-01-01

    In recent years there have been a number of innovations and developments with respect to glass ionomer cements and their applications in clinical dentistry. This article considers some of the recent outstanding studies regarding the field of glass ionomer cement applications, adhesion and setting mechanisms, types, advantage and disadvantages among themselves and also to enhance the physical and antibacterial properties under the title of 'Advances in Glass Ionomer Cements'. As their biologic...

  15. Cement penetration after patella venting.

    Science.gov (United States)

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement.

  16. [Haemotoxicity of dental luting cements].

    Science.gov (United States)

    Anders, A; Welker, D

    1989-06-01

    A glass ionomer luting cement (AquaCem) shows a relatively low haemolytic activity in comparison with two zinc phosphate cements. Especially the initial irritation by this cement is smaller. Although it is possible that AquaCem particularly, in unfavourable cases, may damage the pulpa dentin system; this is due to the slowly decrease of the haemolytic activity with increasing of the probes. We found that Adhesor showed in dependence of the batches a varying quality.

  17. PHYSICO-CHEMICAL MODIFICATION OF MONOLITHIC CONCRETE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2015-10-01

    Full Text Available Purpose. The paper is aimed to the development of scientific bases of the technology of modified concrete of new generation for special facilities by managing the processes of structure formation of modified cement system in conditions of hardening. Methodology. For the achievement the goal: 1 the research of rheological characteristics of modified concrete mixes for special facilities purpose and processes of structure formation of modified cement system of natural curing concrete was conducted; 2 there were defined methods of reliable evaluation of concrete strength at the removal time of formwork and transmission of loads to the constructions where the concrete has not reached the designed strength. Findings. The author found that the structure formation process develops in the hydrating modified cement system as a result of interaction of various macroions. In this process its active parts prevail, which considerably exceed its dissipative part compared to normal conditions of hardening. Originality. There were established the regularities of structure formation of modified cement system, reinforced with synthesized, well crystallized helical filamentary crystals, mechanical grip of which is considered as a principal source of strength in combination with an additional coupling achieved due to cross-germination of crystals. Practical value. In the study the increased binding capacity of cement in high strength concretes and the use of modified cement systems in the special conditions of concreting were considered. The organo-mineral modifying complex that provides the dispersed reinforcement of concrete cement matrix which allows modifying the process of cement matrix structure formation by changing the nature of the surface of binder and modifier was developed. The temperature factor has no negative influence on the hardening concrete and complex modifier provides the improved physico-mechanical characteristics of cement matrix and concrete

  18. Fast ejendom III

    DEFF Research Database (Denmark)

    Munk-Hansen, Carsten

    Bogen er det tredje bind af tre planlagte bind om fast ejendom: I Overdragelsen, II Bolighandlen og III Ejerbeføjelsen. Fremstillingens giver et grundigt overblik over centrale områder af en omfattende regulering af fast ejendom, med angivelse af litteratur, hvor læseren kan søge yderligere...... oplysning. En ejer af fast ejendom er på særdeles mange områder begrænset i sin råden sammenlignet med ejeren af et formuegode i almindelighed. Fremstillingen tager udgangspunkt i ejerens perspektiv (fremfor samfundets eller myndighedernes). Både den privatretlige og offentligretlige regulering behandles......, eksempelvis ejendomsdannelsen, servitutter, naboretten, hævd, zoneinddelingen, den fysiske planlægning, beskyttelse af natur, beskyttelse af kultur, forurening fra fast ejendom, erstatning for forurening, jordforurening, ekspropriation, byggeri og adgang til fast ejendom....

  19. Hydration of Portland cement with additions of calcium sulfoaluminates

    Energy Technology Data Exchange (ETDEWEB)

    Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Hori, Akihiro [DENKA Chemicals GmbH, Wehrhahn-Center, Cantadorstr. 3, D-40211 Duesseldorf (Germany); Higuchi, Takayuki [Denki Kagaku Kogyo Kabushiki Kaisha (DENKA), Omi, Itoigawa, Niigata, 949-0393 (Japan); Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  20. A rapid cyclic voltammetric method for studying cement factors affecting the corrosion of reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Foulkes, F.R.; McGrath, P. (Univ. of Toronto, Ontario (Canada))

    1999-06-01

    A rapid cyclic voltammetric method for studying the influence of cement factors on the corrosion of embedded iron and steel in hardened cement paste is described. The technique employs a cement electrode'' consisting of an iron or steel wire embedded in a miniature cylinder of hardened cement paste. The rapid cyclic voltammetric method is fast, reproducible, and provides information on the corrosiveness of the pore solution environment surrounding the embedded metal. The usefulness of the method is demonstrated by showing how it can be used to evaluate the threshold chloride content of hardened ordinary portland cement paste at which corrosion begins and by using it to evaluate the relative efficacy of several admixed corrosion inhibitors.

  1. Phosphate based oil well cements

    Science.gov (United States)

    Natarajan, Ramkumar

    The main application of the cement in an oil well is to stabilize the steel casing in the borehole and protect it from corrosion. The cement is pumped through the borehole and is pushed upwards through the annulus between the casing and the formation. The cement will be exposed to temperature and pressure gradients of the borehole. Modified Portland cement that is being used presently has several shortcomings for borehole sealant. The setting of the Portland cement in permafrost regions is poor because the water in it will freeze even before the cement sets and because of high porosity and calcium oxide, a major ingredient it gets easily affected by the down hole gases such as carbon dioxide. The concept of phosphate bonded cements was born out of considerable work at Argonne National Laboratory (ANL) on their use in stabilization of radioactive and hazardous wastes. Novel cements were synthesized by an acid base reaction between a metal oxide and acid phosphate solution. The major objective of this research is to develop phosphate based oil well cements. We have used thermodynamics along with solution chemistry principles to select calcined magnesium oxide as candidate metal oxide for temperatures up to 200°F (93.3°C) and alumina for temperatures greater than 200°F (93.3°C). Solution chemistry helped us in selecting mono potassium phosphate as the acid component for temperatures less than 200°F (93.3°C) and phosphoric acid solution greater than 200°F (93.3°C). These phosphate cements have performance superior to common Portland well cements in providing suitable thickening time, better mechanical and physical properties.

  2. Thermal Shock-resistant Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  3. In-situ polymerization behaviour of bone cements.

    Science.gov (United States)

    Maffezzoli, A; Ronca, D; Guida, G; Pochini, I; Nicolais, L

    1997-02-01

    The polymerization behaviour of bone cements during total hip replacements is characterized by a fast and highly non-isothermal bulk reaction. In the first part of this paper the reaction kinetics are analysed by calorimetric analysis in order to determine the rates of polymerization in isothermal and non-isothermal conditions. A phenomenological kinetic model, accounting for the effects of autoacceleration and vitrification, is presented. This model, integrated with an energy balance, is capable of predicting the temperature across the prosthesis, the cement and the bone and the degree of reaction in the cement, during in situ polymerization. The temperature and the degree of reaction profiles are calculated, as a function of the setting time, taking into account the system geometry, the thermal diffusivity of bone, prosthesis and cement, and the heat rate generated by the reaction according to the kinetic model. Material properties, boundary and initial conditions are the input data of the heat transfer model. Kinetic and heat transfer models are coupled and a numerical solution method is used. The model is applied in order to study the effects of different application procedures on temperature and degree of reaction profiles across the bone-cement-prosthesis system.

  4. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    A K Misra; Renu Mathur

    2007-06-01

    The scope of magnesium oxychloride (MOC) cement in concrete works has been evaluated. MOC cement concrete compositions of varying strengths having good placing and finishing characteristics were prepared and investigated for their compressive and flexural strengths, -values, abrasion resistance etc. The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ratio of compressive to flexural strength varies between 6 and 8. The elastic moduli of the compositions studied are found to be 23–85 GPa and the abrasion losses between 0.11 and 0.20%. While alternate heating–cooling cycles have no adverse effect on MOC concrete, it can be made durable against freezing–thawing and the excessive exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution of the same concentration.

  5. Cemented total hip arthroplasty with Boneloc bone cement.

    Science.gov (United States)

    Markel, D C; Hoard, D B; Porretta, C A

    2001-01-01

    Boneloc cement (WK-345, Biomet Inc, Warsaw, Ind) attempted to improve cement characteristics by reducing exotherm during polymerization, lowering residual monomer and solubility, raising molecular weight, and lowering airborne monomer and aromatic amines. To study the efficacy of this cement, a selected group of 20 patients were prospectively enrolled and followed up after hip arthroplasty. All components were cemented. During the enrollment period, approximately 70 other hip arthroplasties were performed. Clinical evaluation was based on the Harris hip score. Radiographic evaluation was based on assessment of position of the components, subsidence, and/or presence of radiolucencies. Patients had follow-up for an average of 42 months (11 to 58 months); 1 was lost to follow-up. Of these, 7 (35%) had failure at last follow-up. Despite its initial promise, Boneloc cement had an unacceptably high failure rate over a relatively short follow-up period and is not recommended for use. Despite the longevity and odor toxicity problems with conventional bone cement, new cement technologies must be approached with caution.

  6. Grout cement. ; Grout cement to fill ground/grout cement to fill cracks. Chunyuyo cement. ; Jiban chunyuyo cement /hibiware chunyuyo cement

    Energy Technology Data Exchange (ETDEWEB)

    Okaue, H. (Nittetsu Cement Co. Ltd., Hokkaido (Japan))

    1991-09-01

    Ground grout cement is grouted into the ground under high pressure in high water ratio (100 to 1000%) in the form of milk differing from concrete in terms of the water-cement ratio. The grouted milk is governed by characteristics of the cement the milk itself possesses, resulting in variable grouting modes, which are divided in fracture grouting, permeation grouting and boundary grouting. Their applications include cutting off of water in dams, ground reinforcement, prevention of water gushing in tunnel excavation, natural ground reinforcement, improvement of sandy soil and prevention of its collapse, and stabilization of ground for urban civil engineering works such as subway, water supply and sewerage constructions. Grout cement to fill cracks in concrete structures is so grouted into cracks that the slurry fills up contiguous cracks to a certain level and goes upward while pushing out air or water existing in the cracks. The slurry filled into the cracks solidifies and hardens while being absorbed into the concrete, and finally integrates with the concrete. The grout cement is used to rework such concrete structures as dams, tunnels, and bridge bases. 6 figs., 4 tabs.

  7. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seyoon [School of Engineering, Kings College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Moon, Juhyuk, E-mail: juhyuk.moon@stonybrook.edu [Civil Engineering Program, Department of Mechanical Engineering, State University of New York at Stony Brook, New York 11794 (United States); Bae, Sungchul [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Duan, Xiaonan [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Giannelis, Emmanuel P. [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Center for Refining and Petrochemicals, The Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Monteiro, Paulo M. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g{sup −1} and 257 mg g{sup −1}, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel's salt (2 mol mol{sup −1} or 121 mg g{sup −1}), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. - Highlights: • We examine the adsorption equilibrium and kinetics of CLDH in the hydrated cement. • CLDH capacity to bind chloride ions in the hydrated cement paste is determined. • We model chloride adsorption by CLDH through the cement matrix. • CLDH reforms the layered structure with ion adsorption in the cement matrix.

  8. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  9. Homozygous missense mutation (G56R in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1 in two siblings with fasting chylomicronemia (MIM 144650

    Directory of Open Access Journals (Sweden)

    Hegele Robert A

    2007-09-01

    Full Text Available Abstract Background Mice with a deleted Gpihbp1 gene encoding glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1 develop severe chylomicronemia. We screened the coding regions of the human homologue – GPIHBP1 – from the genomic DNA of 160 unrelated adults with fasting chylomicronemia and plasma triglycerides >10 mmol/L, each of whom had normal sequence of the LPL and APOC2 genes. Results One patient with severe type 5 hyperlipoproteinemia (MIM 144650, fasting chylomicronemia and relapsing pancreatitis resistant to standard therapy was found to be homozygous for a novel GPIHBP1 missense variant, namely G56R. This mutation was absent from the genomes of 600 control subjects and 610 patients with hyperlipidemia. The GPIHBP1 G56 residue has been conserved throughout evolution and the G56R mutation was predicted to have compromised function. Her homozygous brother also had refractory chylomicronemia and relapsing pancreatitis together with early coronary heart disease. G56R heterozygotes in the family had fasting mild hypertriglyceridemia. Conclusion Thus, a very rare GPIHBP1 missense mutation appears to be associated with severe hypertriglyceridemia and chylomicronemia.

  10. Cements containing by-product gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Bensted, J. [University of Greenwich, London (United Kingdom). School of Biological and Chemical Sciences

    1995-12-31

    Chemical by-product gypsum can readily replace natural gypsum in Portland cements and in blended cements like Portland pfa cement and Portland blast furnace cement without technical detriment in many instances. Indeed, sometimes the technical performance of the cement can be enhanced. The hydration chemistry is often changed, in that where there is at least some retardation of setting, more AFT phase (ettringite) is formed during early hydration at the expense of calcium silicate hydrates. By-product gypsum can also replace natural gypsum in speciality products like calcium aluminate cement-Portland cement mixes for producing quick setting cements and in calcium sulphoaluminate-type expansive cements. However, by-products gypsum have proved to be less successful for utilization in API Classes of oilwell cements, because of the greater difficulty in obtaining batch-to-batch consistency in properties like thickening time and slurry rheology. 11 refs., 3 figs., 5 tabs.

  11. Use of ancient copper slags in Portland cement and alkali activated cement matrices.

    Science.gov (United States)

    Nazer, Amin; Payá, Jordi; Borrachero, María Victoria; Monzó, José

    2016-02-01

    Some Chilean copper slag dumps from the nineteenth century still remain, without a proposed use that encourages recycling and reduces environmental impact. In this paper, the copper slag abandoned in landfills is proposed as a new building material. The slags studied were taken from Playa Negra and Púquios dumps, both located in the region of Atacama in northern Chile. Pozzolanic activity in lime and Portland cement systems, as well as the alkali activation in pastes with copper slag cured at different temperatures, was studied. The reactivity of the slag was measured using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), electrical conductivity and pH in aqueous suspension and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, copper slag-Portland cement mortars with the substitution of 25% (by weight) of cement by copper slag and alkali-activated slag mortars cured at 20 and 65 °C were made, to determine the compressive strength. The results indicate that the ancient copper slags studied have interesting binding properties for the construction sector.

  12. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements.

    Science.gov (United States)

    An, Jie; Wolke, Joop G C; Jansen, John A; Leeuwenburgh, Sander C G

    2016-03-01

    To expand the clinical applicability of calcium phosphate cements (CPCs) to load-bearing anatomical sites, the mechanical and setting properties of CPCs need to be improved. Specifically, organic additives need to be developed that can overcome the disintegration and brittleness of CPCs. Hence, we compared two conventional polymeric additives (i.e. carboxylmethylcellulose (CMC) and hyaluronan (HA)) with a novel organic additive that was designed to bind to calcium phosphate, i.e. hyaluronan-bisphosphonate (HABP). The unmodified cement used in this study consisted of a powder phase of α-tricalcium phosphate (α-TCP) and liquid phase of 4% NaH2PO4·2H2O, while the modified cements were fabricated by adding 0.75 or 1.5 wt% of the polymeric additive to the cement. The cohesion of α-TCP was improved considerably by the addition of CMC and HABP. None of the additives improved the compression and bending strength of the cements, but the addition of 0.75% HABP resulted into a significantly increased cement toughness as compared to the other experimental groups. The stimulatory effects of HABP on the cohesion and toughness of the cements is hypothesized to derive from the strong affinity between the polymer-grafted bisphosphonate ligands and the calcium ions in the cement matrix.

  13. The biocompatibility of porous vs non-porous bone cements: a new methodological approach

    Directory of Open Access Journals (Sweden)

    C. Dall'Oca

    2014-06-01

    Full Text Available Composite cements have been shown to be biocompatible, bioactive, with good mechanical properties and capability to bind to the bone. Despite these interesting characteristic, in vivo studies on animal models are still incomplete and ultrastructural data are lacking. The acquisition of new ultrastructural data is hampered by uncertainties in the methods of preparation of histological samples due to the use of resins that melt methacrylate present in bone cement composition. A new porous acrylic cement composed of polymethylmetacrylate (PMMA and β-tricalciumphosphate (β-TCP was developed and tested on an animal model. The cement was implanted in femurs of 8 New Zealand White rabbits, which were observed for 8 weeks before their sacrifice. Histological samples were prepared with an infiltration process of LR white resin and then the specimens were studied by X-rays, histology and scanning electron microscopy (SEM. As a control, an acrylic standard cement, commonly used in clinical procedures, was chosen. Radiographic ultrastructural and histological exams have allowed finding an excellent biocompatibility of the new porous cement. The high degree of osteointegration was demonstrated by growth of neo-created bone tissue inside the cement sample. Local or systemic toxicity signs were not detected. The present work shows that the proposed procedure for the evaluation of biocompatibility, based on the use of LR white resin allows to make a thorough and objective assessment of the biocompatibility of porous and non-porous bone cements.

  14. Cement for Oil Well Cementing Operations in Ghana

    African Journals Online (AJOL)

    Michael

    This research evaluates the ... The paper details results of API specification tests and the physical ... Keywords: Compressive strength, Free fluid, Portland cement, Rheology, Thickening time ..... Geothermal Well Cementing” Proceedings of.

  15. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.

    Science.gov (United States)

    Liberman, Joseph A; Suddala, Krishna C; Aytenfisu, Asaminew; Chan, Dalen; Belashov, Ivan A; Salim, Mohammad; Mathews, David H; Spitale, Robert C; Walter, Nils G; Wedekind, Joseph E

    2015-07-07

    PreQ1-III riboswitches are newly identified RNA elements that control bacterial genes in response to preQ1 (7-aminomethyl-7-deazaguanine), a precursor to the essential hypermodified tRNA base queuosine. Although numerous riboswitches fold as H-type or HLout-type pseudoknots that integrate ligand-binding and regulatory sequences within a single folded domain, the preQ1-III riboswitch aptamer forms a HLout-type pseudoknot that does not appear to incorporate its ribosome-binding site (RBS). To understand how this unusual organization confers function, we determined the crystal structure of the class III preQ1 riboswitch from Faecalibacterium prausnitzii at 2.75 Å resolution. PreQ1 binds tightly (KD,app 6.5 ± 0.5 nM) between helices P1 and P2 of a three-way helical junction wherein the third helix, P4, projects orthogonally from the ligand-binding pocket, exposing its stem-loop to base pair with the 3' RBS. Biochemical analysis, computational modeling, and single-molecule FRET imaging demonstrated that preQ1 enhances P4 reorientation toward P1-P2, promoting a partially nested, H-type pseudoknot in which the RBS undergoes rapid docking (kdock ∼ 0.6 s(-1)) and undocking (kundock ∼ 1.1 s(-1)). Discovery of such dynamic conformational switching provides insight into how a riboswitch with bipartite architecture uses dynamics to modulate expression platform accessibility, thus expanding the known repertoire of gene control strategies used by regulatory RNAs.

  16. Molecular mechanism of crystallization impacting calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    {approx}10{sup -3} to 10{sup -4} for a pyrophosphate based cement (Grover et al., 2006). Where the in situ SPM approach provides unique insights is in providing details of where and how molecules inhibit or accelerate kinetics. This has the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. For example, it is unlikely that bulk techniques could deduce the simultaneous acceleration and inhibition effects of etidronate; or that citrate reduced growth rate by altering step density rather than step speed. In addition, SPM data translates to tractable questions for modelers. The questions changes from 'How does etidronate inhibit brushite growth?' to 'Why does etidronate bind strongly to the [101]{sub Cc} step while it doesn't to the [10-1]{sub Cc} step?' This is still a challenging question but it is far better defined. Given that step chemistries are generally different, it seems reasonable to expect that the greatest inhibition will be achieved not with one, but with several synergistically chosen additives. For example, the most effective growth inhibitors for brushite would target the two fast steps, namely the non-polar, [10-1]{sub Cc} and the polar, [101]{sub Cc} steps. Several molecules have been shown to slow the polar step, with etidronate as the most dramatic example. By contrast, only Mg was observed to slow the [10-1]{sub Cc} step. Thus, a combination of high concentrations of Mg to target the [10-1]{sub Cc} step with low concentrations of etidronate to target the polar steps, should be a more effective combination than either alone. However Mg is not a particularly good inhibitor in the sense that high concentrations are needed, and it is not specific. More ideally, an inhibitor would be designed to interact specifically with the [10-1] step, which would allow the two steps to be independently modified. Again, this provides an opportunity for tighter coupling with

  17. Magnesium substitution in brushite cements.

    Science.gov (United States)

    Alkhraisat, Mohammad Hamdan; Cabrejos-Azama, Jatsue; Rodríguez, Carmen Rueda; Jerez, Luis Blanco; Cabarcos, Enrique López

    2013-01-01

    The use of magnesium-doped ceramics has been described to modify brushite cements and improve their biological behavior. However, few studies have analyzed the efficiency of this approach to induce magnesium substitution in brushite crystals. Mg-doped ceramics composed of Mg-substituted β-TCP, stanfieldite and/or farringtonite were reacted with primary monocalcium phosphate (MCP) in the presence of water. The cement setting reaction has resulted in the formation of brushite and newberyite within the cement matrix. Interestingly, the combination of SAED and EDX analyses of single crystal has indicated the occurrence of magnesium substitution within brushite crystals. Moreover, the effect of magnesium ions on the structure, and mechanical and setting properties of the new cements was characterized as well as the release of Ca(2+) and Mg(2+) ions. Further research would enhance the efficiency of the system to incorporate larger amounts of magnesium ions within brushite crystals.

  18. Portland cement-blast furnace slag blends in oilwell cementing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.T.; DiLullo, G.; Hibbeler, J. [and others

    1995-12-31

    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  19. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  20. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  1. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  2. Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data.

    Science.gov (United States)

    Peng, Chen; Frommlet, Alexandra; Perez, Manuel; Cobas, Carlos; Blechschmidt, Anke; Dominguez, Santiago; Lingel, Andreas

    2016-04-14

    NMR binding assays are routinely applied in hit finding and validation during early stages of drug discovery, particularly for fragment-based lead generation. To this end, compound libraries are screened by ligand-observed NMR experiments such as STD, T1ρ, and CPMG to identify molecules interacting with a target. The analysis of a high number of complex spectra is performed largely manually and therefore represents a limiting step in hit generation campaigns. Here we report a novel integrated computational procedure that processes and analyzes ligand-observed proton and fluorine NMR binding data in a fully automated fashion. A performance evaluation comparing automated and manual analysis results on (19)F- and (1)H-detected data sets shows that the program delivers robust, high-confidence hit lists in a fraction of the time needed for manual analysis and greatly facilitates visual inspection of the associated NMR spectra. These features enable considerably higher throughput, the assessment of larger libraries, and shorter turn-around times.

  3. Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey Viktorovich

    2014-01-01

    Full Text Available This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

  4. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  5. Study of Ingress and Binding of Cl-ions in the Cement Concrete%Cl-在水泥混凝土中的迁移及固化研究

    Institute of Scientific and Technical Information of China (English)

    张永义; 夏大庆

    2014-01-01

    The free form of chloride may cause corrosion of steel in the reinforce concrete,and as a result,the structure will damage.In order to predict the service life of the concrete structure,it is significant to understand the ingress mechanism and the form of chloride in the concrete.In this work,the mechanism of steel corrosion and chloride ingress is analyzed,and the binding of chloride by the cementitious materials is also discussed.The results showed that the chloride ingress in the concrete both under capillary pressure of the surface and diffusion at the internal.The chloride binding capacity of cementitious material depends both on its mineral phase and the admixture.Generally,the increasing addition of admixture can improve the chloride binding.It is hoped to give an idea to improve the durability of the reinforced concrete.%混凝土中的游离态氯离子可使钢筋发生锈蚀,最终导致混凝土结构的破坏,Cl-在混凝土中的迁移及存在形态对钢筋混凝土的结构寿命的预测具有重要的意义。分析和总结了钢筋在氯离子作用下发生锈蚀的机理,及氯离子在混凝土中迁移及固化。结果表明氯离子在混凝土中迁移方式以表层的毛细管作用和深层的扩散作用同时进行;水泥基材料的矿物组成与其固化氯离子能力有关,通常加入辅助胶凝材料可提高氯离子固化量,增加抗渗性。文章为提高钢筋混凝土结构耐久性提供一个思路。

  6. Tight-Binding Approximations to Time-Dependent Density Functional Theory - a fast approach for the calculation of electronically excited states

    CERN Document Server

    Rüger, Robert; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We propose a new method of calculating electronically excited states that combines a density functional theory (DFT) based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive time-dependent density functional theory (TD-DFT) calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

  7. Loading and release of doxycycline hyclate from strontium-substituted calcium phosphate cement.

    Science.gov (United States)

    Alkhraisat, M Hamdan; Rueda, C; Cabrejos-Azama, J; Lucas-Aparicio, J; Mariño, F Tamimi; Torres García-Denche, J; Jerez, L Blanco; Gbureck, U; Cabarcos, E Lopez

    2010-04-01

    Novel Sr-substituted calcium phosphate cement (CPC) loaded with doxycycline hyclate (DOXY-h) was employed to elucidate the effect of strontium substitution on antibiotic delivery. The cement was prepared using as reactants Sr-substituted beta-tricalcium phosphate (Sr-beta-TCP) and acidic monocalcium phosphate monohydrate. Two different methods were used to load DOXY-h: (i) the adsorption on CPC by incubating the set cement in drug-containing solutions; and (ii) the use of antibiotic solution as the cement liquid phase. The results revealed that the Sr-substituted cement efficiently adsorbs the antibiotic, which is attributed to an enhanced accessibility to the drug-binding sites within this CPC. DOXY-h desorption is influenced by the initial adsorbed amount and the cement matrix type. Furthermore, the fraction of drug released from CPCs set with DOXY-h solution was higher, and the release rate was faster for the CPC prepared with 26.7% Sr-beta-TCP. The analysis of releasing profiles points to Fickian diffusion as the mechanism responsible for antibiotic delivery. We can conclude that Sr substitution in secondary calcium phosphate cements improves their efficiency for DOXY-h adsorption and release. The antibiotic loading method provides a way to switch from rapid and complete to slower and prolonged drug release. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Compartmentalized self-replication under fast PCR cycling conditions yields Taq DNA polymerase mutants with increased DNA-binding affinity and blood resistance.

    Science.gov (United States)

    Arezi, Bahram; McKinney, Nancy; Hansen, Connie; Cayouette, Michelle; Fox, Jeffrey; Chen, Keith; Lapira, Jennifer; Hamilton, Sarah; Hogrefe, Holly

    2014-01-01

    Faster-cycling PCR formulations, protocols, and instruments have been developed to address the need for increased throughput and shorter turn-around times for PCR-based assays. Although run times can be cut by up to 50%, shorter cycle times have been correlated with lower detection sensitivity and increased variability. To address these concerns, we applied Compartmentalized Self Replication (CSR) to evolve faster-cycling mutants of Taq DNA polymerase. After five rounds of selection using progressively shorter PCR extension times, individual mutations identified in the fastest-cycling clones were randomly combined using ligation-based multi-site mutagenesis. The best-performing combinatorial mutants exhibit 35- to 90-fold higher affinity (lower Kd ) for primed template and a moderate (2-fold) increase in extension rate compared to wild-type Taq. Further characterization revealed that CSR-selected mutations provide increased resistance to inhibitors, and most notably, enable direct amplification from up to 65% whole blood. We discuss the contribution of individual mutations to fast-cycling and blood-resistant phenotypes.

  9. Compartmentalized Self-Replication under fast PCR cycling conditions yields Taq DNA polymerase mutants with increased DNA-binding affinity and blood resistance

    Directory of Open Access Journals (Sweden)

    Bahram eArezi

    2014-08-01

    Full Text Available Faster-cycling PCR formulations, protocols, and instruments have been developed to address the need for increased throughput and shorter turn-around times for PCR-based assays. Although run times can be cut by up to 50%, shorter cycle times have been correlated with lower detection sensitivity and increased variability. To address these concerns, we applied Compartmentalized Self Replication (CSR to evolve faster-cycling mutants of Taq DNA polymerase. After five rounds of selection using progressively shorter PCR extension times, individual mutations identified in the fastest-cycling clones were randomly combined using ligation-based multi-site mutagenesis. The best-performing combinatorial mutants exhibit 35- to 90-fold higher affinity (lower Kd for primed template and a moderate (2-fold increase in extension rate compared to wild-type Taq. Further characterization revealed that CSR-selected mutations provide increased resistance to inhibitors, and most notably, enable direct amplification from up to 65% whole blood. We discuss the contribution of individual mutations to fast-cycling and blood-resistant phenotypes.

  10. Hydration of fly ash cement

    Energy Technology Data Exchange (ETDEWEB)

    Etsuo Sakai; Shigeyoshi Miyahara; Shigenari Ohsawa; Seung-Heun Lee; Masaki Daimon [Tokyo Institute of Technology, Tokyo (Japan). Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering

    2005-06-01

    It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO{sub 2} generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage.

  11. Biodeterioration of the Cement Composites

    Science.gov (United States)

    Luptáková, Alena; Eštoková, Adriana; Mačingová, Eva; Kovalčíková, Martina; Jenčárová, Jana

    2016-10-01

    The destruction of natural and synthetic materials is the spontaneous and irreversible process of the elements cycling in nature. It can by accelerated or decelerated by physical, chemical and biological influences. Biological influences are represented by the influence of the vegetation and microorganisms (MO). The destruction of cement composites by different MO through the diverse mechanisms is entitled as the concrete biodeterioration. Several sulphur compounds and species of MO are involved in this complex process. Heterotrophic and chemolithotrophic bacteria together with fungi have all been found in samples of corroding cement composites. The MO involved in the process metabolise the presented sulphur compounds (hydrogen sulphide, elemental sulphur etc.) to sulphuric acid reacting with concrete. When sulphuric acid reacts with a concrete matrix, the first step involves a reaction between the acid and the calcium hydroxide forming calcium sulphate. This is subsequently hydrated to form gypsum, the appearance of which on the surface of concrete pipes takes the form of a white, mushy substance which has no cohesive properties. In the continuing attack, the gypsum would react with the calcium aluminate hydrate to form ettringite, an expansive product. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to biodeterioration. The aim of this work was the study of the cement composites biodeterioration by the bacteria Acidithiobacillus thiooxidans. Experimental works were focused on the comparison of special cement composites and its resistance affected by the activities of used sulphur-oxidising

  12. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  13. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Science.gov (United States)

    2011-12-08

    ... Portland Cement and Cement Clinker From Japan Determination On the basis of the record \\1\\ developed in the... antidumping duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... the Commission are contained in USITC Publication 4281 (December 2011), entitled Gray Portland...

  14. Freezing resistance of high iron phoasphoaluminate cement

    Science.gov (United States)

    Zhang, S. X.; Lu, L. C.; Wang, S. D.; Zhao, P. Q.; Gong, C. C.

    2017-03-01

    The influence of freeze-thaw cycle on the mechanical properties of high iron phoasphoaluminate cement was investigated in the present study. The visual examination was conducted to evaluate the surface damage. The deterioration considering the weight loss, modulus loss of relative dynamic elastic and strength loss of mortar were also investigated. The morphology of hydration products were analysed by SEM. Compared with ordinary Portland cement and sulphoaluminate cement, the frost resistance of high iron phosphoraluminate cement is better. Hydration products of high iron phoasphoaluminate cement contain sheet crystals, and a lot of gel form a dense three-dimensional network structure, which results in a lower porosity. Different from ordinary Portland cement, the hydration product of high iron phoasphoaluminate cement does not contain Ca(OH)2, and low alkalinity reduces its osmotic pressure. The lower porosity and osmotic pressure are the two main reasons which causes in the higher frost resistance of high iron phoasphoaluminate cement.

  15. Antibacterial potential of contemporary dental luting cements.

    Science.gov (United States)

    Daugela, Povilas; Oziunas, Rimantas; Zekonis, Gediminas

    2008-01-01

    The aims of this investigation were to evaluate the antibacterial activities of different types of dental luting cements and to compare antibacterial action during and after setting. Agar diffusion testing was used to evaluate the antibacterial properties of seven types of dental luting cements (glass ionomer cements (GICs), resin modified GICs, resin composite, zinc oxide eugenol, zinc oxide non-eugenol, zinc phosphate, zinc polycarboxylate cements) on Streptococcus mutans bacteria. Instantly mixed zinc phosphate cements showed the strongest antibacterial activity in contrast to the non-eugenol, eugenol and resin cements that did not show any antibacterial effects. Non-hardened glass ionomer, resin modified and zinc polycarboxylate cements exhibited moderate antibacterial action. Hardened cements showed weaker antibacterial activities, than those ones applied right after mixing.

  16. CNDOL: A fast and reliable method for the calculation of electronic properties of very large systems. Applications to retinal binding pocket in rhodopsin and gas phase porphine.

    Science.gov (United States)

    Montero-Cabrera, Luis Alberto; Röhrig, Ute; Padrón-Garcia, Juan A; Crespo-Otero, Rachel; Montero-Alejo, Ana L; Garcia de la Vega, José M; Chergui, Majed; Rothlisberger, Ursula

    2007-10-14

    Very large molecular systems can be calculated with the so called CNDOL approximate Hamiltonians that have been developed by avoiding oversimplifications and only using a priori parameters and formulas from the simpler NDO methods. A new diagonal monoelectronic term named CNDOL/21 shows great consistency and easier SCF convergence when used together with an appropriate function for charge repulsion energies that is derived from traditional formulas. It is possible to obtain a priori molecular orbitals and electron excitation properties after the configuration interaction of single excited determinants with reliability, maintaining interpretative possibilities even being a simplified Hamiltonian. Tests with some unequivocal gas phase maxima of simple molecules (benzene, furfural, acetaldehyde, hexyl alcohol, methyl amine, 2,5 dimethyl 2,4 hexadiene, and ethyl sulfide) ratify the general quality of this approach in comparison with other methods. The calculation of large systems as porphine in gas phase and a model of the complete retinal binding pocket in rhodopsin with 622 basis functions on 280 atoms at the quantum mechanical level show reliability leading to a resulting first allowed transition in 483 nm, very similar to the known experimental value of 500 nm of "dark state." In this very important case, our model gives a central role in this excitation to a charge transfer from the neighboring Glu(-) counterion to the retinaldehyde polyene chain. Tests with gas phase maxima of some important molecules corroborate the reliability of CNDOL/2 Hamiltonians.

  17. 76 FR 24519 - Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning...

    Science.gov (United States)

    2011-05-02

    ... COMMISSION Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United States... determine whether revocation of the antidumping duty order on gray portland cement and cement clinker...

  18. 76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...

    Science.gov (United States)

    2011-08-12

    ... COMMISSION Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United... cement and cement clinker from Japan would be likely to lead to continuation or recurrence of...

  19. PERFORMANCE OF PULVERIZED SLAG-SUBSTITUTED CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The Portland cement is equivalently substituted by slag micropowders with various specific areas. The workability,activity and acid-corrosion resistance of the slag-substituted cements are investigated,the activation of gypsum is discussed,also the porosity and pore distribution of mortars of the slag micropowders cement are determined by mercury intrusion porosimetry.

  20. Cementation in adhesive dentistry: the weakest link

    NARCIS (Netherlands)

    Jongsma, L.A.

    2012-01-01

    Het succesvol bevestigen van tandrestauraties is een belangrijke en veeleisende procedure. Met behulp van cement wordt het restauratiemateriaal aan de tandstructuur verbonden. Op die manier worden twee hechtvlakken gecreëerd: het raakvlak tussen tand en cement, en het raakvlak tussen cement en resta

  1. 21 CFR 872.3275 - Dental cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns or...

  2. Characterization of environmentally-friendly alkali activated slag cements and ancient building materials

    Science.gov (United States)

    Sakulich, Aaron Richard

    Alternative cement technologies are an area of increasing interest due to growing environmental concerns and the relatively large carbon footprint of the cement industry. Many new cements have been developed, but one of the most promising is that made from granulated, ground blast furnace slag activated by a high-pH solution. Another is related to the discovery that some of the pyramid limestone blocks may have been cast using a combination of diatomaceous earth activated by lime which provides the high pH needed to dissolve the diatomaceous earth and bind the limestone aggregate together. The emphasis of this thesis is not on the latter---which was explored elsewhere---but on the results supplying further evidence that some of the pyramid blocks were indeed reconstituted limestone. The goal of this work is to chemically and mechanically characterize both alkali-activated slag cements as well as a number of historic materials, which may be ancient analogues to cement. Alkali activated slag cements were produced with a number of additives; concretes were made with the addition of a fine limestone aggregate. These materials were characterized mechanically and by XRD, FTIR, SEM, and TGA. Samples from several Egyptian pyramids, an 'ancient floor' in Colorado, and the 'Bosnian Pyramids' were investigated. In the cements, it has been unequivocally shown that C-S-H, the same binding phase that is produced in ordinary portland cement, has been produced, as well as a variety of mineral side products. Significant recarbonation occurs during the first 20 months, but only for the Na2CO3-activated formulae. Radiocarbon dating proves that the 'Bosnian Pyramids' and 'ancient floors' are not made from any type of recarbonated lime; however, Egyptian pyramid limestones were finite, thus suggesting that they are of a synthetic nature. XRD and FTIR results were inconclusive, while TGA results indicate the limestones are identical to naturally occurring limestones, and SEM

  3. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well

  4. Binding Capacity and Mechanism of Chloride Ion in Activated Coal Gangue Dosage and Cement System%活化煤矸石-水泥凝胶体系对氯离子的结合能力和结合机理

    Institute of Scientific and Technical Information of China (English)

    刘杰

    2012-01-01

    采用化学滴定法系统研究了水胶比为0.4煤矸石掺量分别为0%、20%、30%和40%的水泥-煤矸石凝胶体系对氯离子结合能力的影响规律.通过XRD、DSC和TG-DTG方法,研究其结合机理.结果表明:随煤矸石掺量的增大,结合能力呈现先增加后降低趋势,最佳掺量为30%o超过此值,经DSC和XRD微观分析表明,Friedel盐(简称F盐)含量因水泥浆体的初级水化产物CH含量不足,影响了煤矸石的二次水化反应的发挥而下降.活化煤矸石对氯离子的结合能力一方面因其高铝酸盐含量稀释了硫酸盐,增加AFm相生成,另一方面因其比表面积较大,结构疏松对氯离子有一定吸附作用,同时火山灰效应的发挥生成较多的C-S-H凝胶和水化铝酸盐相,进而促进F盐的形成.%The binding capacity and mechanisms of chloride ion in hydrated cementitious paste ( w/b = 0. 4) with 0% ,20% , 30% and 40% mass fraction of activated coal gangue is respectively investigated by chemical titration analysis, X-Ray Diffractometry ( XRD) , Differential Scanning Calorimetry ( DSC ) and Thermo-gravimetry-Differential Thermogravimetry (TG-DTG). Results indicate that chloride binding capacity of cement-based materials is increased initially and then decreased with increasing of activated coal gangue dosage. Friedel' salt content is dropped due to lack of portlandite in the number of initial hydrated products of cement paste so that influenced second hydration reaction of coal gangue . The reason of activated coal gangue bound chloride ion is as follows. Firstly, coal gangue with higher aluminates content dilutes sulphates and then adds the formation of AFm phase. Secondly, part of chloride ion is absorbed for its higher specific surface area and loose structure. C-S-H gel and hydrated aluminates phase content is enhanced with the pozzolanic effect of activated coal gangue,which is the last, and also the most important for the formation of Friedel' s salt.

  5. Corrosion inhibitor mechanisms on reinforcing steel in Portland cement pastes

    Science.gov (United States)

    Martin, Farrel James

    2001-07-01

    The mechanisms of corrosion inhibitor interaction with reinforcing steel are investigated in the present work, with particular emphasis on effects associated with corrosion inhibitors admixed into Portland cement paste. The principal objective in reinforcing steel corrosion inhibition for Portland cement concrete is observed to be preservation of the naturally passive steel surface condition established by the alkaline environment. Introduction of chloride ions to the steel surface accelerates damage to the passive film. Excessive damage to the passive film leads to loss of passivity and a destabilization of conditions that facilitate repair of the passive film. Passive film preservation in presence of chloride ions is achieved either through stabilization of the passive film or by modification of the chemical environment near the steel surface. Availability of inhibitors to the steel surface and their tendency to stabilize passive film defects are observed to be of critical importance. Availability of admixed corrosion inhibitors to the passive film is affected by binding of inhibitors during cement paste hydration. It is determined that pore solution concentrations of inorganic admixed inhibitors tend to be lower than the admixed concentration, while pore solution concentrations of organic admixed inhibitors tend to be higher than the admixed concentration. A fundamental difference of inhibitor function is observed between film-forming and defect stabilizing corrosion inhibitors. Experiments are conducted using coupons of reinforcing steel that are exposed to environments simulating chloride-contaminated Portland cement concrete. A study of the steel/cement paste interface is also performed, and compounds forming at this interface are identified using X-Ray diffraction.

  6. STUDY OF CHEMICAL INTERACTION OF MAGNESIA CEMENT WITH HIGH CONCENTRATION MAGNESIUM CHLORIDE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    DEREVIANKO V. N.

    2015-10-01

    Full Text Available Problem statement. In activating MgO by electrolyte salts, as a result of formation of non water-resist magnesium silicate hydrate are obtained the durable cement stone having the low water-resist. I. P. Vyrodov considers [9; 5], that magnesia cement curing in mixing with sufficiently concentrated (C > 20 % solutions MgCl2 is caused with the crystallization of oxyhydrochloride composition: 3MgO∙MgCl2∙11Н2О, 5MgO∙MgCl2∙13Н2О and 7MgO∙MgCl2∙15Н2О. In the lower concentration parts of MgCl2 solution is formed a transitional compound of Mg[(OHnCl2-n] with isomorphous Mg(OH2 structure. At very low Cl concentration only Mg(OH2 is practically formed. Purpose. The Formation of water-resist magnesium silicate hydrates for obtaining of fast curing and solid structure of the magnesia stone. Conclusion. The dependence of the formation of the magnesia stone from the ratio (MgO/MgCl2 of the magnesia cement (MgO and the magnesium chloride solution (MgCl2 of different density has been identified in order to obtain the best content for oxyhydrochloride 3MgO•MgCl2•11Н2О, 5MgO•MgCl2•13Н2О and magnesium hydroxide (Mg(OH2. In putting into the system MgO∙–∙H2О of the silicic acid or fine ground quartz grains with size of less than 20 – 30 microns, over 1 month for the magnesium silicate hydrates formation is needed, where from 2 to 5 % of the total number of newgrowths are created. The study is proved by the expert opinion, that magnesium silicate hydrates do not have binding properties, unlike calcium silicate hydrates, and the main role in the system curing is played with the Mg(OH2 gel recrystallization, which provides the acceptable stone strength (R ≈ 30MPa in a few years. It has been also established, that in mixing of cement with low concentration MgO solutions of less than 1,5 mol/l (or 13% 1,1g/sm3, the final product in the stone structure is Mg(OH2. With increasing the sealer (MgCl2 solution there is formed by turn in

  7. Thoughts on the Current Cement Industry Development

    Institute of Scientific and Technical Information of China (English)

    Gan Zhihe

    2003-01-01

    According to the analysis of cement capacity andits relations with macro economy running index, the mainreasons for the present rapid development of cement capacityare the rapid development of economy and the shot up ofwhole society fixed asset investment. According to the presentspeed of economy development, cement still enjoys a po-tential increase, So here has not been an overall excessivepopularity of cement industry. The best way to prevent lowlevel repeated construction is to promote the development ofnew dry- process cement as well as try to get rid of blindness.

  8. Immobilization of Fast Reactor First Cycle Raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Langley, K. F.; Partridge, B. A.; Wise, M.

    2003-02-26

    This paper describes the results of work to bring forward the timing for the immobilization of first cycle raffinate from reprocessing fuel from the Dounreay Prototype Fast Reactor (PFR). First cycle raffinate is the liquor which contains > 99% of the fission products separated from spent fuel during reprocessing. Approximately 203 m3 of raffinate from the reprocessing of PFR fuel is held in four tanks at the UKAEA's site at Dounreay, Scotland. Two methods of immobilization of this high level waste (HLW) have been considered: vitrification and cementation. Vitrification is the standard industry practice for the immobilization of first cycle raffinate, and many papers have been presented on this technique elsewhere. However, cementation is potentially feasible for immobilizing first cycle raffinate because the heat output is an order of magnitude lower than typical HLW from commercial reprocessing operations such as that at the Sellafield site in Cumbria, England. In fact, it falls within the upper end of the UK definition of intermediate level waste (ILW). Although the decision on which immobilization technique will be employed has yet to be made, initial development work has been undertaken to identify a suitable cementation formulation using inactive simulant of the raffinate. An approach has been made to the waste disposal company Nirex to consider the disposability of the cemented product material. The paper concentrates on the process development work that is being undertaken on cementation to inform the decision making process for selection of the immobilization method.

  9. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  10. Understanding cement mechanical behavior in SAGD wells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Zahacy, T. A. [C-FER Technologies (Canada)

    2011-07-01

    In the heavy oil industry, the steam assisted gravity drainage process is often used to enhance oil recovery but it can cause cracks in the cement sheath. These cracks are the result of high steam temperatures and thermal expansion. In order to mitigate this risk, improved well designs are required. The aim of this paper is to present the mechanical behavior of the cement sheath during the heating phase. An analysis of the impact of design and operating parameters was conducted through thermal hydraulic and thermal mechanical analyses to assess cement integrity. These analyses were then performed on an example of an SAGD project in the southern part of the Athabasca oilsands region to assess the performance of the cement sheath. Results showed that potential damage to the cement can be reduced by slow heating and a lower Young's modulus cement blend. This paper makes recommendations for optimizing cement design in thermal recovery wells.

  11. Novel magnesium phosphate cements with high early strength and antibacterial properties.

    Science.gov (United States)

    Mestres, Gemma; Ginebra, Maria-Pau

    2011-04-01

    Magnesium phosphate cements (MPCs) have been extensively used as fast setting repair cements in civil engineering. They have properties that are also relevant to biomedical applications, such as fast setting, early strength acquisition and adhesive properties. However, there are some aspects that should be improved before they can be used in the human body, namely their highly exothermic setting reaction and the release of potentially harmful ammonia or ammonium ions. In this paper a new family of MPCs was explored as candidate biomaterials for hard tissue applications. The cements were prepared by mixing magnesium oxide (MgO) with either sodium dihydrogen phosphate (NaH(2)PO(4)) or ammonium dihydrogen phosphate (NH(4)H(2)PO(4)), or an equimolar mixture of both. The exothermia and setting kinetics of the new cement formulations were tailored to comply with clinical requirements by adjusting the granularity of the phosphate salt and by using sodium borate as a retardant. The ammonium-containing MPC resulted in struvite (MgNH(4)PO(4)·6H(2)O) as the major reaction product, whereas the MPC prepared with sodium dihydrogen phosphate resulted in an amorphous product. Unreacted magnesium oxide was found in all the formulations. The MPCs studied showed early compressive strengths substantially higher than that of apatitic calcium phosphate cements. The Na-containing MPCs were shown to have antibacterial activity against Streptococcus sanguinis, which was attributed to the alkaline pH developed during the setting reaction.

  12. Piezoresistive Response Extraction for Smart Cement-based Composites/Sensors

    Institute of Scientific and Technical Information of China (English)

    HAN Baoguo; QIAO Guofu; JIANG Haifeng

    2012-01-01

    A kind of piezoresistive response extraction method for smart cement-based composites/sensors was proposed.Two kinds of typical piezoresistive cement-based composites/sensors were fabricated by respectively adding carbon nanotubes and nickel powders as conductive fillers into cement paste or cement mortar.The variation in measured electrical resistance of such cement-based composites/sensors was explored without loading and under repeated compressive loading and impulsive loading.The experimental results indicate that the measured electrical resistance of piezoresistive cement-based composites/sensors exhibits a two-stage variation trend of fast increase and steady increase with measurement time without loading,and an irreversible increase after loading.This results from polarization caused by ionic conduction in these composites/sensors.After reaching a plateau,the measured electrical resistance can be divided into an electrical resistance part and an electrical capacity part.The piezoresistive responses of electrical resistance part in measured electrical resistance to loading can be extracted by eliminating the linear electrical capacity part in measured electrical resistance.

  13. Some durability aspects of hybrid alkaline cements

    Directory of Open Access Journals (Sweden)

    Donatello S.

    2014-04-01

    Full Text Available Blended cements that contain a high content of fly ash and a low content of Portland cement typically suffer from low early strength development and long setting times. Recently, one method of overcoming these problems has been to use an alkali activator to enhance the reactivity of fly ash particles at early ages. Such cements can be grouped under the generic term “hybrid alkaline cements”, where both cement clinker and fly ash, encouraged by the presence of alkalis, are expected to contribute to cementitious gel formation. The work presented here examines some of the durability aspects of high fly ash content hybrid alkaline cement. Specifically, the aspects investigated were: exposure at high temperatures (up to 1000°C, resistance to immersion in aggressive solutions and susceptibility to the alkali aggregate reaction. All tests were repeated with a commercially available sulfate resistant Portland cement for comparison. When exposed to high temperatures, the hybrid alkaline cement showed strikingly different behaviour compared to the control Portland cement, showing fewer micro-cracks and maintaining residual compressive strengths at least equal to original strengths. Beyond 700°C, the hybrid alkaline cement began to sinter, which resulted in shrinkage of around 5% and a 100% increase in residual compressive strengths. No such sintering event was noted in the control Portland cement, which showed a drastic loss in residual compressive strengths upon heating. In immersion tests, the hybrid alkaline cement possessed excellent resistance to sulfate and seawater attack, similar to the control sulfate resistant cement. Both cements were however severely degraded by immersion in 0.1M HCl for 90 days. Both binders complied with the accelerated alkali-aggregate test but when this test was extended, the hybrid alkaline binder showed much greater dimensional stability. Possible reasons for the differences in durability behaviour in both cements

  14. TECHNOLOGY AND EFFICIENCY IN USAGE OF BROWN COAL ASH FOR CEMENT AND CONCRETE MIXTURES AT THE LELCHITSKY DEPOSIT

    Directory of Open Access Journals (Sweden)

    G. D. Lyahevich

    2017-01-01

    Full Text Available Modern visions on the role of high-dispersity additives in concrete mixtures reflect a positive effect of optimal amount of ash left after combustion of solid fuel on structure and physico-mechanical characteristics of cement compositions: hardening of contact zone between cement stone and aggregates with formation of “binder – aggregate” clusters due to high surface energy of aggregate particles; reduction of total cement stone porosity in concrete while increasing volumetric concentration and aggregate dispersion; binding of calcium hydroxide by amorphized silicon of pozzolanic aggregates; increase in pozzolanic aggregate activity with its fine grinding, etc. Experimental investigations have ascertained that usage of portland cement clinker ash samples left after brown coal burning at the Lelchitsky deposit contributed to an increase of cement working life and activity. Concrete samples have been obtained that have improved physico-mechanical properties owing to introduction the following components in their composition: 2–14 % (of cement mass of ash left after brown coal burning and 1.6–2.1 % of sodium salt that is a condensation product of sulfur oxidate in aromatic hydrocarbons with formaldehyde. Efficiency of the executed work has been proved by solution of the problems pertaining to an increase of neat cement working life, cement activity, concrete strength. The paper also considers no less important problem concerning protection of the environment from contamination with ash left after burning of high-ash brown coal. 

  15. Impact of cellulose ethers on the cement paste microstructure

    OpenAIRE

    Pourchez, Jérémie; Grosseau, Philippe; Rouèche-Pourchez, Emilie; Debayle, Johan; Pinoli, Jean-Charles; Maire, Eric; Boller, Elodie; Parra-Denis, Estelle

    2007-01-01

    ISBN = 3-87264-022-4 7 pages; International audience; Complementary investigation tools (2D and 3D observations by optical microscopy and fast X-ray microtomography and then image analysis) were developed in order to examine the effects of cellulose ethers on the cement paste microstructure. The obtained results show that the presence of cellulose ether may induce an increase of both 50-250 µm-diameter air voids. The chemistry of the cellulose ethers appears as a main controlling factor of th...

  16. DEVELOPMENT OF HYDRAULIC GYPSUM THAT CONTAINS CEMENTS THAT HAVE SULPHATED CLINKER PHASES

    Directory of Open Access Journals (Sweden)

    Mikheenkov Mikhail Arkad'evich

    2012-10-01

    Full Text Available In the article, the authors consider the feasibility of development of water-hardened gypsum that is capable of hardening in the water. The gypsum in question is made of the gypsum binding material, sulphated Portland cement, and granulated blast-furnace slag. The gypsum developed hereunder has a softening coefficient over 1 while the building gypsum content exceeds 75 %.

  17. Applied technique of the cemented fill with fly ash and fine-sands

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Traditional stabilization of backfilling material is done by using Portland cement. However, the high price of cement forced mining engineers to seek cheaper binding materials. Fly ash, which is the industrial waste from thermal power plant, possess the potential activity of jellification, and can be used in cemented fill as a partial substitute for cement to reduce the fill cost. Tests were done during the past few years in Xinqiao Pyrite Mine and Phoenix Copper Mine to determine the technology parameters and the suitable content of fly ash. Specimens with different cement/fly/ash tailings (sands) ratios were tested to obtain the strength values of the fill mass based on the analyses of both the chemical composition and physical and mechanical properties of fly ash. The compressive strength of specimens with a ratio of 1: 2: 8 (cement to fly ash to tailings)can reach 2 MPa after 90 d curing, totally meeting the requirement of artificial pillar and reducing the fill cost by 20%-30%.

  18. Research of magnesium phosphosilicate cement

    Science.gov (United States)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  19. Occupational hand dermatitis among cement workers in Taiwan

    Directory of Open Access Journals (Sweden)

    Bour-Jr Wang

    2011-12-01

    Conclusion: We conclude that occupational cement hand dermatitis among cement workers is an important and severe issue in Taiwan, and the most common allergens among cement workers are potassium dichromate, thiuram mix, fragrance mix and cobalt chloride. The high positive rate of chromium hypersensitivity among cement workers reflects the urgency to regulate the addition of ferrous sulfate to cement in Taiwan.

  20. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    KAUST Repository

    Yoon, Seyoon

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g -1 and 257 mg g-1, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel\\'s salt (2 mol mol-1 or 121 mg g-1), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. © 2014 Published by Elsevier B.V. All rights reserved.

  1. A review of binders used in cemented paste tailings for underground and surface disposal practices.

    Science.gov (United States)

    Tariq, Amjad; Yanful, Ernest K

    2013-12-15

    Increased public awareness of environmental issues coupled with increasingly stringent environmental regulations pertaining to the disposal of sulphidic mine waste necessitates the mining industry to adopt more competent and efficient approaches to manage acid rock drainage. Cemented paste tailings (CPT) is an innovative form of amalgamated material currently available to the mining industry in developed countries. It is made usually from mill tailings mingled with a small amount of binder (customarily Portland cement) and water. The high cost associated with production and haulage of ordinary Portland cement and its alleged average performance as a sole binder in the long term (due to vulnerability to internal sulphate attack) have prompted users to appraise less expensive and technically efficient substitutes for mine tailings paste formulations. Generally, these binders include but are not limited to sulphate resistant cements, and/or as a partial replacement for Portland cement by artificial pozzolans, natural pozzolans, calcium sulphate substances and sodium silicates. The approach to designing environmentally efficient CPT is to ensure long-term stability and effective control over environmental contaminants through the use of composite binder systems with enhanced engineering properties to cater for inherit deficiencies in the individual constituents. The alkaline pore solution created by high free calcium rich cement kiln dust (CKD) (byproduct of cement manufacturing) is capable of disintegrating the solid glassy network of artificial pozzolans to produce reactive silicate and aluminate species when attacked by (OH(-)) ions. The augmented pozzolanic reactivity of CKD-slag and CKD-fly ash systems may produce resilient CPT. Since cemented paste comprising mine tailings and binders is a relatively new technology, a review of the binding materials used in such formulations and their performance evaluation in mechanical fill behaviour was considered pertinent in

  2. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation

    Science.gov (United States)

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-01-01

    AIM: To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. MATERIALS AND METHOD: The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. RESULTS: GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. CONCLUSION: It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation. PMID:28028417

  3. Influence of the temperature on the cement disintegration in cement-retained implant restorations.

    Science.gov (United States)

    Linkevicius, Tomas; Vindasiute, Egle; Puisys, Algirdas; Linkeviciene, Laura; Svediene, Olga

    2012-01-01

    The aim of this study was to estimate the average disintegration temperature of three dental cements used for the cementation of the implant-supported prostheses. One hundred and twenty metal frameworks were fabricated and cemented on the prosthetic abutments with different dental cements. After heat treatment in the dental furnace, the samples were set for the separation to test the integration of the cement. Results have shown that resin-modified glass-ionomer cement (RGIC) exhibited the lowest disintegration temperature (pcement (ZPC) and dual cure resin cement (RC) (p>0.05). Average separation temperatures: RGIC - 306 ± 23 °C, RC - 363 ± 71 °C, it could not be calculated for the ZPC due to the eight unseparated specimens. Within the limitations of the study, it could be concluded that RGIC cement disintegrates at the lowest temperature and ZPC is not prone to break down after exposure to temperature.

  4. ROTARY SCREW SYSTEMS IN CEMENT

    OpenAIRE

    2016-01-01

    The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometr...

  5. Center for Cement Composite Materials

    Science.gov (United States)

    1990-01-31

    pastes have shown that the matrix is microporous; mesopores are absent unless the material is allowed to dry out. This results in water adsorption at low...only to water. When subsequently dried a portion of3 the porosity is converted to larger mesopores . • Only about one third of the cement reacts in a...Frictional sliding, in this case was characterized by a decreasing slope in the loading curve followed by hysteresis in the unload/reloading curves

  6. The Chloride Permeability of Persulphated Phosphogypsum-Slag Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    HUANG Youqiang; LU Jianxin; CHEN Feixiang; SHUI Zhonghe

    2016-01-01

    The chloride permeability and microstructure of persulphated phosphogypsum-slag cement concrete (PPSCC), the Portland slag cement concrete (PSCC) and ordinary Portland cement concrete (OPCC) were investigated comparatively. Some test methods were used to evaluate the chloride permeability and explain the relationship between the permeability and microstructure of concrete. The results show that the resistance to chloride penetration in PPSCC is signiifcantly better than that in OPCC, the reasons are as follows: 1) the slag in PPSCC is activated by clinker (alkali activation) and phosphogypsum (sulfate activation), forming more low Ca/Si C-S-H gel and gel pores below 10 nm than OPCC, improving the resistance to chloride penetration; 2) the hydration products of PPSCC have a much stronger binding capacity for chloride ions; and 3) in the same mix proportion, PPSCC has a better workability without large crystals calcium hydroxide in the hydration products, the interfacial transition zone (ITZ) is smoother and denser, which can cut off the communicating pores between the pastes and aggregates.

  7. The cement solidification systems at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Veazey, G.W.

    1990-01-01

    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cement type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.

  8. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Konstantin Sobolev

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  9. Water dynamics in glass ionomer cements

    Science.gov (United States)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  10. Pulmonary Cement Embolism following Percutaneous Vertebroplasty

    Directory of Open Access Journals (Sweden)

    Ümran Toru

    2014-01-01

    Full Text Available Percutaneous vertebroplasty is a minimal invasive procedure that is applied for the treatment of osteoporotic vertebral fractures. During vertebroplasty, the leakage of bone cement outside the vertebral body leads to pulmonary cement embolism, which is a serious complication of this procedure. Here we report a 48-year-old man who was admitted to our hospital with dyspnea after percutaneous vertebroplasty and diagnosed as pulmonary cement embolism.

  11. Experimental determination of carbonation rate in Portland cement at 25°C and relatively high CO2 partial pressure

    Science.gov (United States)

    Hernández-Rodríguez, Ana; Montegrossi, Giordano; Huet, Bruno; Virgili, Giorgio; Orlando, Andrea; Vaselli, Orlando; Marini, Luigi

    2016-04-01

    The aim of this work is to study the alteration of Portland class G Cement at ambient temperature under a relatively high CO2 partial pressure through suitably designed laboratory experiments, in which cement hydration and carbonation are taken into account separately. First, the hydration process was carried out for 28 days to identify and quantify the hydrated solid phases formed. After the completion of hydration, accompanied by partial carbonation under atmospheric conditions, the carbonation process was investigated in a stirred micro-reactor (Parr instrument) with crushed cement samples under 10 bar or more of pure CO2(g) and MilliQ water adopting different reaction times. The reaction time was varied to constrain the reaction kinetics of the carbonation process and to investigate the evolution of secondary solid phases. Chemical and mineralogical analyses (calcimetry, chemical composition, SEM and X-ray Powder Diffraction) were carried out to characterize the secondary minerals formed during cement hydration and carbonation. Water analyses were also performed at the end of each experimental run to measure the concentrations of relevant solutes. The specific surface area of hydrated cement was measured by means of the BET method to obtain the rates of cement carbonation. Experimental outcomes were simulated by means of the PhreeqC software package. The obtained results are of interest to understand the comparatively fast cement alteration in CO2 production wells with damaged casing.

  12. Effects of cement flue dusts from a Nigerian cement plant on air, water and planktonic quality.

    Science.gov (United States)

    Olaleye, Victor F; Oluyemi, Emmanuel A

    2010-03-01

    Effects of cement flue dust from Ewekoro cement Kilns were monitored at some aquatic receptor locations. High levels of total suspended particulates (TSPs) and atmospheric deposition rates (ADRs) were recorded within the factory compared to ancillary locations outside the factory. The TSP and ADR levels which were location dependent were significantly higher (P cement factory catchment areas.

  13. The mechanical effects of different levels of cement penetration at the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The mechanical effects of varying the depth of cement penetration in the cement-bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement-bone interface were created from micro-computed tomography data and the p

  14. The influence of ultrasound on removal of prefabricated metal post cemented with different resin cements

    Directory of Open Access Journals (Sweden)

    Atiyeh Feiz

    2013-01-01

    Conclusion: Ultrasonic energy did not decrease the retention of posts cemented with Panavia or Maxcem Elite cements. Furthermore, it seems that there is no significant difference between removal force of self-etch (Panavia and the self-etch self-adhesive (Maxcem Elite resin cements.

  15. Frozen delivery of brushite calcium phosphate cements.

    Science.gov (United States)

    Grover, Liam M; Hofmann, Michael P; Gbureck, Uwe; Kumarasami, Balamurgan; Barralet, Jake E

    2008-11-01

    Calcium phosphate cements typically harden following the combination of a calcium phosphate powder component with an aqueous solution to form a matrix consisting of hydroxyapatite or brushite. The mixing process can be very important to the mechanical properties exhibited by cement materials and consequently when used clinically, since they are usually hand-mixed their mechanical properties are prone to operator-induced variability. It is possible to reduce this variability by pre-mixing the cement, e.g. by replacing the aqueous liquid component with non-reactive glycerol. Here, for the first time, we report the formation of three different pre-mixed brushite cement formulations formed by freezing the cement pastes following combination of the powder and liquid components. When frozen and stored at -80 degrees C or less, significant degradation in compression strength did not occur for the duration of the study (28 days). Interestingly, in the case of the brushite cement formed from the combination of beta-tricalcium phosphate with 2 M orthophosphoric acid solution, freezing the cement paste had the effect of increasing mean compressive strength fivefold (from 4 to 20 MPa). The increase in compression strength was accompanied by a reduction in the setting rate of the cement. As no differences in porosity or degree of reaction were observed, strength improvement was attributed to a modification of crystal morphology and a reduction in damage caused to the cement matrix during manipulation.

  16. Substantial global carbon uptake by cement carbonation

    Science.gov (United States)

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn; Galan, Isabel; Andrade, Carmen; Zhang, Ying; Liu, Zhu

    2016-12-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 2013. Considerable attention has been paid to quantifying these industrial process emissions from cement production, but the natural reversal of the process--carbonation--has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondary use of concrete waste to estimate regional and global CO2 uptake between 1930 and 2013 using an analytical model describing carbonation chemistry. We find that carbonation of cement materials over their life cycle represents a large and growing net sink of CO2, increasing from 0.10 GtC yr-1 in 1998 to 0.25 GtC yr-1 in 2013. In total, we estimate that a cumulative amount of 4.5 GtC has been sequestered in carbonating cement materials from 1930 to 2013, offsetting 43% of the CO2 emissions from production of cement over the same period, not including emissions associated with fossil use during cement production. We conclude that carbonation of cement products represents a substantial carbon sink that is not currently considered in emissions inventories.

  17. Hidration kinetics study of tlie mixed cements

    OpenAIRE

    Duque Fernández, Gabriel . L; Díaz Quintanilla, David; Zapata Sierra, Manuel; Rubio Frías, Ester

    1993-01-01

    A study of the hydration process of cements with 10% and 20% addition of a tuff from "Las Carolinas" quarry (Cienfuegos, Cuba) by different methods was done. The results obtained by different methods showed a good agreement. It was proved an increment of the hydration products, an acceleration of alite hydration and a swelling of the fixed water in mixed cements. The resistance of the cement with 10% addition is similar to that of the pure cement for ages of 28 days, whereas with 20% addition...

  18. A study on provisional cements, cementation techniques, and their effects on bonding of porcelain laminate veneers.

    Science.gov (United States)

    Vinod Kumar, G; Soorya Poduval, T; Bipin Reddy; Shesha Reddy, P

    2014-03-01

    Minimal tooth preparation is required for porcelain laminate veneers, but interim restorations are a must to protect their teeth against thermal insult, chemical irritation, and to provide aesthetics. Cement remaining after the removal of the provisional restoration can impair the etching quality of the tooth surface and fit and final bonding of the porcelain laminate veneer. This in vitro study examined the tooth surface for remaining debris of cement after removal of a provisional restoration. Determine the presence of cement debris on prepared tooth surface subsequent to the removal of provisional restoration. Determine the cement with the least residue following the cleansing procedures. Determine the effect of smear layer on the amount of residual luting cement. Eighty-four extracted natural anterior teeth were prepared for porcelain laminate veneers. For half of the teeth, the smear layer was removed before luting provisional restorations. Veneer provisional restorations were fabricated and luted to teeth with six bonding methods: varnish combined with glass ionomer cement (GIC), varnish combined with resin modified GIC, varnish, spot etching combined with dual-cure luting cement, adhesive combined with GIC, adhesive combined with resin modified GIC, and adhesive, spot etching combined with dual-cure luting cement. After removal of provisional restorations 1 week later, the tooth surface was examined for residual luting material with SEM. Traces of cement debris were found on all the prepared teeth surfaces for all six groups which were cemented with different methods. Cement debris was seen on teeth subsequent to the removal of provisional's. Dual-cure cement had the least residue following the cleansing procedures. Presence of smear layer had no statistical significance in comparison with cement residue. With the use of adhesive the cement debris was always found to be more than with the use of varnish. GIC showed maximum residual cement followed by dual-cure.

  19. Combustion of large solid fuels in cement rotary kilns

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Rooma

    2012-03-15

    The cement industry has a significant interest in replacing fossil fuels with alternative fuels in order to minimize production costs and reduce CO{sub 2} emissions. These new alternative fuels are in particular solid fuels such as refuse derived fuel (RDF), tire-derived fuel (TDF), meat and bone meal (MBM), waste wood, sewage sludge, paper and plastics. This thesis provides an insight into the utilization of solid alternative fuels in the material inlet end of rotary kilns. This position is interesting because it allows utilization of large fuel particles, thereby eliminating the need for an expensive shredding of the fuels. The challenge, however, is that the solid fuels will be mixed into the cement raw materials, which is likely to affect process stability and clinker quality, as described above. The mixing of fuels and raw materials was studied experimentally in a pilot-scale rotary drum and was found to be a fast process, reaching steady state within few drum revolutions. Thus, heat transfer by conduction from the cement raw materials to the fuel particles is a major heat transfer mechanism rather than convection or radiation from the freeboard gas above the material bed. Consequently, the temperature of the cement raw materials becomes a factor of great importance for heating the fuel particles. Combustion of different alternative fuels has been investigated experimentally in a pilot-scale rotary furnace under conditions similar to those in the material inlet end of cement rotary kilns. The main focus was on tire rubber and pine wood which are relevant fuels in this context. Heating, drying and devolatilization of alternative fuels are fast processes that primarily depend on heat transfer and fuel particle size. Devolatilization of a large wood or tire particle with a thickness of 20 mm at 900 deg. C is for example around 2 minutes. By contrast, char oxidation is a slow process which may greatly reduce the amounts of solid fuels to be utilized in the

  20. Antibacterial activity of selected glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Elżbieta Łuczaj-Cepowicz

    2014-01-01

    Full Text Available Introduction: The aim of the paper was to determine the antibacterial activity of four glass ionomer cements against bacteria of the genera Streptococcus and Lactobacillus.Material and methods: Four capsulated glass ionomer cements were applied in the study: Fuji Triage (GC, Fuji IX (GC, Ketac Molar (3M Espe and Ketac Silver (3M Espe. Four standard bacterial strains were used to assess the antibacterial activity of the studied cements: Streptococcus mutans, S. sanguis, S. salivarius and Lactobacillus casei. The antibacterial activity was determined by the agar diffusion method. The bacterial suspension was spread with a cotton swab on TSA plates. For each material six wells (7 mm diameter, 5 mm deep were made with a cork borer. Each well was then filled with freshly prepared cements. The results were obtained by measuring the bacterial growth inhibition zone after 1, 2, 3 and 7 days. Results: Fuji Triage cement inhibited the growth of all bacterial strains. Fuji IX cement demonstrated the most potent antibacterial activity against S. sanguis. Ketac Molar showed antibacterial activity against S. sanguis and S. salivarius, whereas Ketac Silver was efficient against S. mutans as well. Neither of the Ketac cements inhibited growth of the standard L. casei strain. Discussion: Antibacterial activity of glass ionomer cements has attracted the interest of scientists in recent years. Most authors, including us, carried out experiments using the agar diffusion method and demonstrated antibacterial activity of glass ionomer cements. Different antibacterial activity of glass ionomer cements, observed in our study and studies of other authors, depended on the evaluated cement, bacterial strain and period of evaluation.

  1. Antibacterial activity of selected glass ionomer cements.

    Science.gov (United States)

    Luczaj-Cepowicz, Elżbieta; Marczuk-Kolada, Grażyna; Zalewska, Anna; Pawińska, Małgorzata; Leszczyńska, Katarzyna

    2014-01-22

    The aim of the paper was to determine the antibacterial activity of four glass ionomer cements against bacteria of the genera Streptococcus and Lactobacillus. Four capsulated glass ionomer cements were applied in the study: Fuji Triage (GC), Fuji IX (GC), Ketac Molar (3M Espe) and Ketac Silver (3M Espe). Four standard bacterial strains were used to assess the antibacterial activity of the studied cements: Streptococcus mutans, S. sanguis, S. salivarius and Lactobacillus casei. The antibacterial activity was determined by the agar diffusion method. The bacterial suspension was spread with a cotton swab on TSA plates. For each material six wells (7 mm diameter, 5 mm deep) were made with a cork borer. Each well was then filled with freshly prepared cements. The results were obtained by measuring the bacterial growth inhibition zone after 1, 2, 3 and 7 days. Fuji Triage cement inhibited the growth of all bacterial strains. Fuji IX cement demonstrated the most potent antibacterial activity against S. sanguis. Ketac Molar showed antibacterial activity against S. sanguis and S. salivarius, whereas Ketac Silver was efficient against S. mutans as well. Neither of the Ketac cements inhibited growth of the standard L. casei strain. Antibacterial activity of glass ionomer cements has attracted the interest of scientists in recent years. Most authors, including us, carried out experiments using the agar diffusion method and demonstrated antibacterial activity of glass ionomer cements. Different antibacterial activity of glass ionomer cements, observed in our study and studies of other authors, depended on the evaluated cement, bacterial strain and period of evaluation.

  2. Microbial analysis of biofilms on cement surfaces: An investigation in cement-associated peri-implantitis.

    Science.gov (United States)

    Korsch, Michael; Walther, Winfried; Marten, Silke-Mareike; Obst, Ursula

    2014-09-05

    The cementation of implant-supported restorations always poses the risk of excess cement retained in the peri-implant sulcus despite careful clinical control. Excess cement can become the basis of colonization by oral microorganisms. As a result of the biofilm formation peri-mucositis or peri-implantitis may develop. Complications were observed in the routine prosthetic restoration of implants when a methacrylate-based cement was used. These developed a few weeks after cementation of the suprastructure and caused bleeding on probing as well as suppuration from the peri-implant tissue. In the revision therapy, excess cement in the peri-implant sulcus was found in many cases. This excess cement was sampled from ten patients and investigated for biofilm formation. For this purpose, the cement samples were collected and analyzed for bacterial in situ colonization by 16S rDNA-based methods. In laboratory experiments, the methacrylate-based cement and two other dental cements were then investigated for their proneness to form biofilm. The results of the in situ and in vitro investigations revealed a strong tendency towards bacterial invasion of the methacrylate-based cement by opportunistic species and pathogens.

  3. A New Type of Biphasic Calcium Phosphate Cement as a Gentamicin Carrier for Osteomyelitis

    Directory of Open Access Journals (Sweden)

    Wen-Yu Su

    2013-01-01

    Full Text Available Osteomyelitis therapy is a long-term and inconvenient procedure for a patient. Antibiotic-loaded bone cements are both a complementary and alternative treatment option to intravenous antibiotic therapy for the treatment of osteomyelitis. In the current study, the biphasic calcium phosphate cement (CPC, called α-TCP/HAP (α-tricalcium phosphate/hydroxyapatite biphasic cement, was prepared as an antibiotics carrier for osteomyelitis. The developed biphasic cement with a microstructure of α-TCP surrounding the HAP has a fast setting time which will fulfill the clinical demand. The X-ray diffraction and Fourier transform infrared spectrometry analyses showed the final phase to be HAP, the basic bone mineral, after setting for a period of time. Scanning electron microscopy revealed a porous structure with particle sizes of a few micrometers. The addition of gentamicin in α-TCP/HAP would delay the transition of α-TCP but would not change the final-phase HAP. The gentamicin-loaded α-TCP/HAP supplies high doses of the antibiotic during the initial 24 hours when they are soaked in phosphate buffer solution (PBS. Thereafter, a slower drug release is produced, supplying minimum inhibitory concentration until the end of the experiment (30 days. Studies of growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa in culture indicated that gentamicin released after 30 days from α-TCP/HAP biphasic cement retained antibacterial activity.

  4. Synkinematic quartz cementation in partially open fractures in sandstones

    Science.gov (United States)

    Ukar, Estibalitz; Laubach, Stephen E.; Fall, Andras; Eichhubl, Peter

    2014-05-01

    have recorded opening histories that lasted several tens of millions of years. Quartz bridges will form when the increase in fracture aperture is small for single fracture events, the rate of precipitation is greater than the rate of fracture aperture, and fresh non-euhedral nucleation surfaces continue to be created by fracturing. Because of the vast difference in growth rates between the c-axis (fast) and the a-axis (slow) of quartz crystals, the crystallographic orientation of quartz may play a role on the morphology and size of such bridges, and therefore degree of cement infill in fractures. SEM-based backscattered electron diffraction (EBSD) was used to explore the effect of the crystallographic orientation of quartz on the growth of quartz bridges in fractures from the Jurassic-Cretaceous Nikanassin Formation, northwestern Alberta Foothills, the Travis Peak Formation, East Texas, and the Cretaceous Mesaverde Group, Piceance Basin, Colorado. We find that, in all samples, most c-axes are oblique rather than perpendicular to the fracture wall, and well-developed bridges that are oriented at a low angle to the fracture wall are widespread. We conclude that precipitation on anhedral (fractured) surfaces exerts a larger control on the growth of quartz bridges than the orientation of the crystallographic c-axis.

  5. Copper Slag Blended Cement: An Environmental Sustainable Approach for Cement Industry in India

    Directory of Open Access Journals (Sweden)

    Jagmeet Singh

    2016-04-01

    Full Text Available Indian cement industry is facing environmental issue of emission of carbon dioxide (CO2, a greenhouse gas. Blended cements including supplementary cementitious materials are substitute of Portland cement to reduce CO2 emission. The present paper investigates theappropriateness of copper slag (CS as supplementary cementitious material. Strength properties and hydration of mixes were determined at different replacement levels of CS with cement. Compressive, flexural and tensile strength of each mix was found out at different curing periods. The hydration of cement was investigated through X-ray diffraction (XRD. The strength test results showed that substitution of up to 20% of CS can significantly replace Portland cement.XRD test results were corresponding to strength test results. The present study encourages the utilization of CS as supplementary cementitious material to make economical and environmentally sustainable blended cement

  6. A Pause for China's Cement Industry

    Institute of Scientific and Technical Information of China (English)

    Li Zhen

    2009-01-01

    @@ Cement industry suffers excess productionWith the advent of global financial crisis,the Chinese government has laid out a stimulus package on infrastructure construction.Driven by the investment spree,China's cement makers are flocking to expand output capacity,which is now leading the industry into a much-higher-thanneeded state.

  7. Contact dermatitis in cement workers in Isfahan

    Directory of Open Access Journals (Sweden)

    Iraji Fariba

    2006-01-01

    Full Text Available BACKGROUND: Due to recent industrialization and inadequately protected workers or in other words poor supervision on constructive workers habits in our large city of Isfahan cement contact dermatitis is relatively high especially among cement factory workers and constructive personnel. PURPOSES: To investigate the prevalence rate of cement contact dermatitis in cement factory workers in Isfahan. METHODS: A case-control clinical study was carried out by randomly selecing 150 factory workders and 150 official clerks in a cement factory in Isfahan in 2001. After a complete physical examination, data was recorded in observational checklists. FINDINGS: The percentages of contact dermatitis prevalences in the first and the second groups were 22% and 5.3% respectively. About 60% of cement workers with contact dermatitis were between 30-40 years of age. There was a direct relationship with age in both groups of the workers. In the high-exposure group, the hand eczema along was 70% but in the other group the percentage of involvement was the same in exposed and unexposed anatomical areas. CONCLUSIONS: There was a direct relationship between occurrence and the severity of involvement and duration of contact in the first group. Cent percent of cement workers had contact dermatitis after 10 or less years, but the percentage among the other group was 35%. LIMITATION: Irritant contact dermatitis to cement has not been detected.

  8. Basic Chemistry for the Cement Industry.

    Science.gov (United States)

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  9. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  10. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  11. TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.

    Science.gov (United States)

    WESSON, CARL E.

    THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

  12. A note on cement in asteroids

    CERN Document Server

    Bilalbegovic, G

    2016-01-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 microns were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 microns.

  13. A note on cement in asteroids

    Science.gov (United States)

    Bilalbegović, G.

    2016-09-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 μm were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 μm.

  14. Stabilization of chromium salt in ordinary portland cement

    Indian Academy of Sciences (India)

    Damir Barbir; Pero Dabić; Petar Krolo

    2012-12-01

    Ordinary Portland cement (OPC) samples containing the chromium salt have been investigated using differential microcalorimetry, conductometry and Fourier transform infrared spectroscopic analysis. The effect of chromium on OPC hydration was evaluated by continuous observing of early hydration. The microcalorimetrical results show that with increasing the share of chromium salt, heat maximums assume lower values and the occurrence of the maximum registered in the earlier hydration times. Conductometrical measurements show that with increasing addition of chromium salt, curve did not show any specific shape, immediate drop in specific conductivity is noticed and the maximum is reached earlier. This coincides with microcalorimetrical results. It can be concluded that the addition of chromium does not affect the mechanism of the hydration process, but it does affect the kinetic parameters and dynamics of the cement hydration process. It was found that chromium salt addition to the cement–water system is acceptable up to 2 wt.%. According to standard EN 196-3 for OPC, the beginning of binding time should occur after 60 minutes. Increased amount of chromium over 2 wt.% significantly accelerate the beginning of binding time and for the system it is not acceptable.

  15. Effect of hydrogen sulfide emissions on cement mortar specimens

    Energy Technology Data Exchange (ETDEWEB)

    Idriss, A. F. [Alberta Environment, Science and Technology Branch, Edmonton, AB (Canada); Negi, S. C.; Jofriet, J. C.; Haywoard, G. L. [Guelph Univ., Guelph, ON (Canada)

    2001-07-01

    Six different cement mortar specimens used in animal buildings, where they were exposed to hydrogen sulfide generated from anaerobic fermentation of manure during a period of one year, were investigated. Primary interest was on comparing the corrosion resistance of different cement mortar specimens under long term exposure to hydrogen sulfide. The impressed voltage technique was used to test the specimens in the laboratory. Results revealed that test specimens made with eight per cent silica fume cement replacement performed best and similar Portland cement mortar specimens with a water-cement ratio of 0.55 (PC55) the poorest. All other treatments, (Portland cement with a water to cement ratio of 045, Portland cement Type 50, Portland cement with fibre mesh and Portland cement Type 10 coated with linseed oil) all with water-cement ratios of 0.45, were less effective in preventing corrosion than silica fume replacement.

  16. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  17. Shrinkage Properties of Cement Stabilized Gravel

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard

    2014-01-01

    Cement stabilized gravel is an attractive material in road construction because its strength prop-erties are accommodating the increasingly higher requirements to the bearing capacity of a base course. However, reflection cracking of cement stabilized gravel is a major concern. In this pa......-per the shrinkage properties of cement stabilized gravel have been documented under various temperature and relative humidity conditions. Two cement contents corresponding to a 28-days compressive strength of 6.2 MPa and 12.3 MPa have been tested and compared. It is found that the coefficient of linear expansion...... for the two cement contents is 9.9 × 10-6 ⁰C-1 and 11.3 × 10-6 ⁰C-1, respectively. Furthermore, it is found that reflecting cracking can mainly be explained by temperature dependent shrinkage rather than moisture dependent shrinkage....

  18. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  19. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  20. Evolution of cement based materials in a repository for radioactive waste and their chemical barrier function

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard; Metz, Volker; Schlieker, Martina; Bohnert, Elke [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Nukleare Entsorgung (INE)

    2015-07-01

    The use of cementitious materials in nuclear waste management is quite widespread. It covers the solidification of low/intermediate-level liquid as well as solid wastes (e.g. laboratory wastes) and serves as shielding. For both high-level and intermediate-low level activity repositories, cement/concrete likewise plays an important role. It is used as construction material for underground and surface disposals, but more importantly it serves as barrier or sealing material. For the requirements of waste conditioning, special cement mixtures have been developed. These include special mixtures for the solidification of evaporator concentrates, borate binding additives and for spilling solid wastes. In recent years, low-pH cements were strongly discussed especially for repository applications, e.g. (Celine CAU DIT COUMES 2008; Garcia-Sineriz, et al. 2008). Examples for relevant systems are Calcium Silicate Cements (ordinary Portland cement (OPC) based) or Calcium Aluminates Cements (CAC). Low-pH pore solutions are achieved by reduction of the portlandite content by partial substitution of OPC by mineral admixtures with high silica content. The blends follow the pozzolanic reaction consuming Ca(OH){sub 2}. Potential admixtures are silica fume (SF) and fly ashes (FA). In these mixtures, super plasticizers are required, consisting of polycarboxilate or naphthalene formaldehyde as well as various accelerating admixtures (Garcia-Sineriz, et al. 2008). The pH regime of concrete/cement materials may stabilize radionuclides in solution. Newly formed alteration products retain or release radionuclides. An important degradation product of celluloses in cement is iso-saccharin acid. According to Glaus 2004 (Glaus and van Loon 2004), it reacts with radionuclides forming dissolved complexes. Apart from potentially impacting radionuclide solubility limitations, concrete additives, radionuclides or other strong complexants compete for surface sites for sorbing onto cement phases. In

  1. Statistical analysis of electrical resistivity as a tool for estimating cement type of 12-year-old concrete specimens

    NARCIS (Netherlands)

    Polder, R.B.; Morales-Napoles, O.; Pacheco, J.

    2012-01-01

    Statistical tests on values of concrete resistivity can be used as a fast tool for estimating the cement type of old concrete. Electrical resistivity of concrete is a material property that describes the electrical resistance of concrete in a unit cell. Influences of binder type, water-to-binder rat

  2. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-08-01

    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  3. The effect of sulfate activation on the early age hydration of BFS:PC composite cement

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk; Li, X.; Bai, Y.; Milestone, N.B.

    2015-09-15

    Blast furnace slag/Portland cement composites are routinely used for immobilising intermediate level nuclear wastes in the UK. Using high cement replacement levels reduces hydration exotherm and lowers pH. Although a lower grout pH will be beneficial in reducing the corrosion of certain encapsulated reactive metals such as aluminium, the degree of slag reaction will also be lower which may result in the formation of less hydration products and which in turn may reduce the capacity to immobilise waste ions. Adding neutral salts such as calcium and sodium sulfate to the composite cement can potentially increase slag activation without significantly altering the pH of the cement matrix. Thus the corrosion of any encapsulated metals would not be affected. This paper describes some of the properties of a hydrated 9:1 blast furnace slag:Portland cement matrix containing added sulfates of calcium and sodium. The findings show that all additives caused an increase in the amount of slag that reacted when cured for up to 28 days. This produced more material able to chemically bind waste ions. Activation with gypsum produced the highest rate of slag reaction.

  4. Macro- and microspectroscopic study of Nd (III) uptake mechanisms in hardened cement paste.

    Science.gov (United States)

    Mandaliev, Peter; Dähn, Rainer; Wehrli, Bernhard; Wieland, Erich

    2009-11-01

    Cement is an important component in repositories for low-level and intermediate-level radioactive waste. Nd uptake by hardened cement paste (HCP) has been investigated with the aim of developing a mechanistic understanding of the immobilization processes of trivalent lanthanides and actinides in HCP on the molecular level. Information on the microstructure of HCP, the Nd distribution in the cement matrix, and the coordination environment of Nd in these matrices was gained from the combined use of scanning electron microscopy (SEM), synchrotron-based micro-X-ray fluorescence (micro-XRF), micro-X-ray (micro-XAS), and bulk-X-ray absorption spectroscopy (bulk-XAS) on Nd doped cement samples. The samples were reacted over periods of time between 15 min and 200 days. SEM and micro-XRF investigations suggest preferential Nd accumulation in rims around "inner"-calcium silicate hydrates (C-S-H). The EXAFS data indicate that the coordination environment of Nd taken up by HCP was dependent on reaction time. Changes in the structural parameters derived from EXAFS support the idea of Nd incorporation into the structure of C-S-H phases. The Nd binding mechanisms proposed in this study have implication for an overall assessment of the safe disposal of trivalent actinides in cement-based repositories for radioactive waste.

  5. Application of alkaliphilic biofilm-forming bacteria to improve compressive strength of cement-sand mortar.

    Science.gov (United States)

    Park, Sung-Jin; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-03-01

    The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.

  6. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  7. Cements with low Clinker Content

    Science.gov (United States)

    García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.

    2015-11-01

    Hybrid alkaline cements are multi-component systems containing a high percentage of mineral additions (fly ash, blast furnace slag), low proportions (clinker and scarce amounts of alkaline activators. The substantially lower amount of clinker needed to manufacture these binders in comparison to ordinary Portland cement is both economically and ecologically beneficial. Their enormous versatility in terms of the raw materials used has made them the object of considerable interest. The present study explored the mechanical strength of binary blends mixes; B1= 20% clinker (CK) + 80% fly ash (FA) and B2=20% clinker + 80% blast furnace slag (BFS), both hydrated in the presence and absence of an alkaline activator specifically designed for this purpose. The use of the activator enhanced the development of early age strength considerably. All the hydrated matrices were characterised with XRD, SEM/EDX and (29Si and 27Al) NMR. The use of the alkaline activator generated reaction products consisting primarily of a mix of gels ((N,C)-A-S-H and C-A-S-H) whose respective proportions were found to depend upon system composition and initial reactivity.

  8. Dentin-cement Interfacial Interaction

    Science.gov (United States)

    Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline caustic effect of the calcium silicate cement’s hydration products degrades the collagenous component of the interfacial dentin. This degradation leads to the formation of a porous structure which facilitates the permeation of high concentrations of Ca2+, OH-, and CO32- ions, leading to increased mineralization in this region. Comparison of the dentin-restorative interfaces shows that there is a dentin-mineral infiltration with the Biodentine, whereas polyacrylic and tartaric acids and their salts characterize the penetration of the GIC. A new type of interfacial interaction, “the mineral infiltration zone”, is suggested for these calcium-silicate-based cements. PMID:22436906

  9. Cement compositions for cementing wells, allowing pressure gas-channeling in the cemented annulus to be controlled

    Energy Technology Data Exchange (ETDEWEB)

    Parcevaux, P.A.; Piot, B.M.; Vercaemer, C.J.

    1987-01-27

    The invention relates to cement compositions for cementing oil and geothermal wells. These compositions allow pressure gas-channeling to be effectively controlled up to more than about 485/sup 0/F. The compositions according to the invention comprise four essential constituents: a cement, a styrene-butadiene latex, a latex stabilizer, and water. The cement is a hydraulic cement belonging to any class among those currently used for cementing oil wells. The useful stabilizers according to the invention are anionic polyelectrolytes such as lignosulfanates and their desulfonated and/or resulfonated derivatives; sulfonated lignin-Kraft products; melamine-formaldehyde resins modified by a sulfonic acid or sulfite; formaldehyde/sulfonated naphthalene resins; or the condensation products of bi-nuclear sulfonated phenols and of formaldehyde. Preferred are the sodium salts of the condensation product of mononaphthalenesulfonic acid and of formaldehyde. The patent also includes a description of tests of various cement compositions of the invention, plus scanning electron microscope observations. 10 figs., 7 tabs.

  10. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    Directory of Open Access Journals (Sweden)

    Konstantin Sobolev

    2003-01-01

    Full Text Available The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and - at the same time - uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  11. Sustainable development of the cement industry and blended cements to meet ecological challenges.

    Science.gov (United States)

    Sobolev, Konstantin

    2003-05-05

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and--at the same time--uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  12. Clinical Evaluation of Indirect Composite Resin Restorations Cemented with Different Resin Cements.

    Science.gov (United States)

    Marcondes, Maurem; Souza, Niélli; Manfroi, Fernanda Borguetti; Burnett, Luiz Henrique; Spohr, Ana Maria

    2016-01-01

    To clinically evaluate the performance of indirect composite resin restorations cemented with conventional and self-adhesive resin cements over a 12-month period. Ten patients fulfilled all the inclusion criteria. Twenty-four composite resin restorations were performed using an indirect technique and cemented with a resin cement (RelyX ARC) or a self-adhesive resin cement (RelyX U100). Two independent evaluators analyzed the restorations using modified USPHS criteria after periods of two weeks and 6 and 12 months. Statistical significance between the cements at each timepoint was evaluated with the Wilcoxon test and between timepoints with the Mann-Whitney test, both at a significance level of 5%. Fisher's exact test was used to assess the occurrence of absolute failures. No statistically significant differences were found between the groups at the same timepoint nor between groups at different timepoints. The only significant difference was found for color match for both groups after 12 months. After 12 months, indirect composite resin restorations cemented with self-adhesive resin cement performed similarly to those cemented with conventional resin cement.

  13. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus.

    Science.gov (United States)

    Camilleri, Josette; Sorrentino, François; Damidot, Denis

    2013-05-01

    calcium silicate was higher for Biodentine™ than for TCS-20-Z owing to its optimized particle size distribution, the presence of CaCO₃ and the use of CaCl₂. Tricalcium calcium silicate in MTA hydrated even more slowly than TCS-20-Z as evident from the size of reaction rim representative of calcium silicate hydrate (C-S-H) around tricalcium silicate grains and the calorimetry measurements. On the other hand, calcium oxide contained in MTA Angelus™ hydrated very fast inducing an intense exothermic reaction. Calcium hydroxide was produced as a by-product of reaction in all hydrated cements but in greater quantities in MTA due to the hydration of calcium oxide. This lead to less dense microstructure than the one observed for both Biodentine™ and TCS-20-Z. All the materials were bioactive and allowed the deposition of hydroxyapatite on the cement surface in the presence of simulated body fluid and the radiopacity was greater than 3mm aluminum thickness. All the cement pastes tested were composed mainly of tricalcium silicate and a radiopacifier. The laboratory manufactured cement contained no other additives. Biodentine™ included calcium carbonate which together with the additives in the mixing liquid resulted in a material with enhanced chemical properties relative to TCS-20-Z prototype cement. On the other hand MTA Angelus™ displayed the presence of calcium, aluminum and silicon oxides in the un-hydrated powder. These phases are normally associated with the raw materials indicating that the clinker of MTA Angelus™ is incompletely sintered leading to a potential important variability in its mineralogy depending on the sintering conditions. As a consequence, the amount of tricalcium silicate is less than in the two other cements leading to a slower reaction rate and more porous microstructure. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Dehydration kinetics of Portland cement paste at high temperature

    NARCIS (Netherlands)

    Zhang, Q.; Ye, G.

    2012-01-01

    Portland cement paste is a multiphase compound mainly consisting of calcium-silicate-hydrate (CSH) gel, calcium hydroxide (CH) crystal, and unhydrated cement core. When cement paste is exposed to high temperature, the dehydration of cement paste leads to not only the decline in strength, but also

  15. Dehydration kinetics of Portland cement paste at high temperature

    NARCIS (Netherlands)

    Zhang, Q.; Ye, G.

    2012-01-01

    Portland cement paste is a multiphase compound mainly consisting of calcium-silicate-hydrate (CSH) gel, calcium hydroxide (CH) crystal, and unhydrated cement core. When cement paste is exposed to high temperature, the dehydration of cement paste leads to not only the decline in strength, but also th

  16. Friedel's salt formation in sulfoaluminate cements: A combined XRD and {sup 27}Al MAS NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Paul, G. [Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale A. Avogadro, Viale T. Michel 11, 15121 Alessandria (Italy); Boccaleri, E., E-mail: enrico.boccaleri@mfn.unipmn.it [Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale A. Avogadro, Viale T. Michel 11, 15121 Alessandria (Italy); Buzzi, L.; Canonico, F. [Buzzi Unicem S.p.A., Via L. Buzzi 6, 15033 Casale Monferrato (Italy); Gastaldi, D., E-mail: dgastaldi@buzziunicem.it [Buzzi Unicem S.p.A., Via L. Buzzi 6, 15033 Casale Monferrato (Italy)

    2015-01-15

    Four different binders based on calcium sulfoaluminate cements have been submitted to accelerated chlorination through ionic exchange on hydrated pastes, in order to investigate their ability to chemically bind chloride ions that might reduce chloride penetration. The composition of hydrated cements before and after the treatment was evaluated by means of an X-Ray Diffraction–{sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy combined study, allowing to take into account even partially amorphous phases and to make quantitative assumption on the relative abundance of the different aluminium-containing phases. It was found that low SO{sub 3} Sulfoaluminate–Portland ternary systems are the most effective in binding chloride ions and the active role played by different members of the AFm family in chloride uptake was confirmed. Moreover, a peculiar behavior related to the formation of Friedel's salt in different pH conditions was also established for the different cements.

  17. 投稿须知%Construction Technology for Fast-Track Concrete Pavement

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper, one of new contents: construction technology for fast-track concrete pavement is introduced in 《Technical Specification for Construction of Highway Cement Concrete Pavements》 (JTG F30) which is revised in 2010 in order to not only provide high-quality and long-lasting life, but also reduce the time of engineering in the new construction, reconstruction and resurfacing maintain of cement concrete pavements, to quickly and early open public traffic, and to reduce traffic interruptions.

  18. Environmental Assessment of Different Cement Manufacturing ...

    Science.gov (United States)

    Due to its high environmental impact and energy intensive production, the cement industry needs to adopt more energy efficient technologies to reduce its demand for fossil fuels and impact on the environment. Bearing in mind that cement is the most widely used material for housing and modern infrastructure, the aim of this paper is to analyse the Emergy and Ecological Footprint of different cement manufacturing processes for a particular cement plant. There are several mitigation measures that can be incorporated in the cement manufacturing process to reduce the demand for fossil fuels and consequently reduce the CO2 emissions. The mitigation measures considered in this paper were the use of alternative fuels and a more energy efficient kiln process. In order to estimate the sustainability effect of the aforementioned measures, Emergy and Ecological Footprint were calculated for four different scenarios. The results show that Emergy, due to the high input mass of raw material needed for clinker production, stays at about the same level. However, for the Ecological Footprint, the results show that by combining the use of alternative fuels together with a more energy efficient kiln process, the environmental impact of the cement manufacturing process can be lowered. The research paper presents an analysis of the sustainability of cement production , a major contributor to carbon emissions, with respect to using alternative fuels and a more efficient kiln. It show

  19. Dermatoses in cement workers in southern Taiwan.

    Science.gov (United States)

    Guo, Y L; Wang, B J; Yeh, K C; Wang, J C; Kao, H H; Wang, M T; Shih, H C; Chen, C J

    1999-01-01

    Construction workers are known to have occupational dermatoses. The prevalence of such dermatoses was unknown in Taiwanese construction workers. The objective of this study was to determine the work exposure, prevalence of skin manifestations, and sensitivity to common contact allergens in cement workers of southern Taiwan. A total of 1147 current regular cement workers were telephone-interviewed about skin problems during the past 12 months, work exposure, and personal protection. Among those interviewed, 166 were examined and patch tested with common contact allergens. A high % of cement workers reported skin problems in the past 12 months. More men (13.9%) reported skin problems possibly related to work than women (5.4%). Prevalence was associated with lower use of gloves, duration of work as cement worker, and more time in jobs involving direct manual handling of cement, especially tiling. A high % of dermatitis was noted in the 166 workers examined, which correlated with reported skin problems. On patch testing, construction workers had a high frequency of sensitivity to chromate. Sensitivity to chromate or cobalt was associated with reported skin problems, or dorsal hand dermatitis on examination. These workers' dermatitis was under-diagnosed and inadequately managed. It is concluded that cement workers in southern Taiwan had a high prevalence of skin problems related to cement use. Protective measures, work practice, and physician education should be improved to prevent or manage such problems.

  20. International development trends in low-energy cements

    Energy Technology Data Exchange (ETDEWEB)

    Stark, J.; Mueller, A.

    1988-04-01

    Besides the currently dominant tendency to increase the proportion of interground additive in cement, the following development trends are internationally emerging in the material composition of so-called low-energy cements with a view to minimizing energy input for cement manufacture: (1) active belite cement with the principal clinker minerals a'C/sub 2/S and C/sub 3/S; (2) belite sulphoaluminate cement (..beta.. C/sub 2/S, C/sub 4/A/sub 3/S); (3) belite sulphoferrite cement (..beta.. C/sub 2/S, C/sub 4/AF, C/sub 4/A/sub 3/S); (4) NTS cement (alinite).

  1. Holocene cemented beach deposits in Belize

    Science.gov (United States)

    Gischler, Eberhard; Lomando, Anthony J.

    1997-06-01

    Two types of cemented beach deposits occur on reef islands off the coast of Belize. These are (1) intertidal beachrock that is dominantly cemented by marine aragonite and high-magnesium-calcite cements, and (2) supratidal cayrock that is cemented mainly by vadose low-magnesium-calcite cements. Besides differences in position relative to present sea level and resulting early diagenesic features, beachrock and cayrock can be distinguished on the basis of differences in composition, texture, geographical position, and age. Whereas the composition of beachrock is similar to that of the adjacent marginal reef sediments, cayrock is enriched in benthic foraminifera. Intertidal beachrock is moderately to well sorted and well cemented, while supratidal cayrock is very well sorted, poorly cemented and friable. Beachrock occurs preferentially on windward beaches of sand-shingle Gays on the middle and southern barrier reefs and on the isolated platforms Glovers and Lighthouse Reefs. Cayrock only occurs on larger mangrove-sand Gays of the isolated platforms Turneffe Islands, Lighthouse Reef, and the northern barrier reef. 14C-dating of ten whole-rock and mollusk shell samples produced calibrated dates between AD 345 and AD 1435 for beachrock and between BC 1085 and AD 1190 for cayrock. The large-scale distribution of beachrock in Belize supports the contention that physical processes such as water agitation rather than biological processes control beachrock formation and distribution. Only on windward sides of cays that are close to the reef crest, where large amounts of seawater flush the beaches, considerable amounts of cements can be precipitated to produce beachrock. Cayrock forms due to cementation in the vadose zone and is only preserved on larger, stable mangrove-sand cays.

  2. Comparison of Temperature Field Distribution between Cement Preclinkering Technology and Cement Precalcining Technology

    Institute of Scientific and Technical Information of China (English)

    XU Xun; WANG Lan

    2016-01-01

    Through the comparison of calcination conditions between cement preclinkering technology and cement precalcining technology, we studied the characteristics of temperature ifeld distribution of cement preclinkering technology systems including cyclone preheater, preclinkering furnace, and rotary kiln. We used numerical simulation method to obtain data of temperature ifeld distribution.Some results are found by system study. The ratio of tail coal of cement preclinkering technology is about 70%, and raw meal temperature can reach 1070℃. ShorterL/D kiln type of preclinkering technology can obtain more stable calcining zone temperature. The highest solid temperature of cement preclinkering technology is higher than 80℃, and high temperature region (>1450℃) length is 2 times, which is beneifcial for calcining clinker and higher clinker quality. So cement preclinkering technology can obtain more performance temperature ifled, which improves both the solid-phase reaction and liquid-phase reaction.

  3. The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2011-01-01

    In the current study, the effects of different ways to implement the complex micro-mechanical behavior of the cement-bone interface on the fatigue failure of the cement mantle were investigated. In an FEA-model of a cemented hip reconstruction the cement-bone interface was modeled and numerically im

  4. Effect of cementing technique and cement type on thermal necrosis in hip resurfacing arthroplasty - a numerical study

    NARCIS (Netherlands)

    Janssen, D.; Srinivasan, P.; Scheerlinck, T.; Verdonschot, N.J.J.

    2012-01-01

    Femoral fractures within resurfacing implants have been associated with bone necrosis, possibly resulting from heat generated by cement polymerization. The amount of heat generated depends on cement mantle volume and type of cement. Using finite element analysis, the effect of cement type and volume

  5. In vitro fluoride release from a different kind of conventional and resin modified glass-ionomer cements.

    Science.gov (United States)

    Selimović-Dragaš, Mediha; Hasić-Branković, Lajla; Korać, Fehim; Đapo, Nermin; Huseinbegović, Amina; Kobašlija, Sedin; Lekić, Meliha; Hatibović-Kofman, Šahza

    2013-08-01

    Fluoride release is important characteristic of glass-ionomer cements. Quantity of fluoride ions released from the glass-ionomer cements has major importance in definition of their biological activity. The objectives of this study were to define the quantity of fluoride ions released from the experimental glass-ionomer cements and to define the effect of fluoride ions released from the experimental glass-ionomer cements on their cytotoxicity. Concentrations of the fluoride ions released in the evaluated glass-ionomer cements were measured indirectly, by the fluoride-selective WTW, F500 electrode potential, combined with reference R503/D electrode. Statistical analyses of F-ion concentrations released by all glass-ionomers evaluated at two time points, after 8 and after 24 hours, show statistically higher fluoride releases from RMGICs: Vitrebond, Fuji II LC and Fuji Plus, when compared to conventional glass-ionomer cements: Fuji Triage, Fuji IX GP Fast and Ketac Silver, both after 8 and after 24 hours. Correlation coefficient between concentrations of fluoride ion released by evaluated glass-ionomer cements and cytotoxic response of UMR-106 osteoblast cell-line are relatively high, but do not reach levels of biological significance. Correlation between concentrations of fluoride ion released and cytotoxic response of NIH3T3 mouse fibroblast cell line after 8 hours is high, positive and statistically significant for conventional GICs, Fuji Triage and Fuji IX GP Fast, and RMGIC, Fuji II LC. Statistically significant Correlation coefficient between concentrations of fluoride ion released and cytotoxic response of NIH3T3 cell line after 24 hours is defined for RMGIC Fuji II LC only.

  6. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  7. INFLUENCE OF GLASS CULLET IN CEMENT PASTES

    Institute of Scientific and Technical Information of China (English)

    A.Karamberi; E.Chaniotakis; D.Papageorgiou; A.Moutsatsou

    2006-01-01

    The present study investigates glass and cement compatibility with a view to use glass as a cement replacement. Amber, flint and green glasses were chosen due to their prevalence in the Greek market as packaging materials. The factors under investigation were the pozzolanicity of the glass cullet, the hydration rate and the mechanical strength development of the cement pastes, as well as the expansion of the specimens due to alkali-silica reaction.Moreover, the potential enhancement of glass pozzolanic activity was examined. The results of the study were encouraging to show the potentiality of utilising glass cullet in cementitious products.

  8. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... of the fuel heating value. In addition, the devolatilization time of alternative fuels cannot be neglected in kiln system process analyses, as these fuels are typically in the cm-size with devolatilization times in the order of minutes. The devolatilization characteristics of large particles of tyre rubber...... time, where increased particle size increased the devolatilization time. Model analyses demonstrated that the overall devolatilization kinetics of large particles of tyre rubber is mainly controlled by heat transfer and intrinsic pyrolysis kinetics, whereas mass transfer has negligible influence...

  9. Cement Manufacturing Plant Guidelines: An Approach to Reconciling the Financing of Cement with Climate Change Objectives

    OpenAIRE

    2010-01-01

    Cement manufacturing is an energy-intensive process, requiring high fuel consumption to operate cement kilns, which in turn generates carbon dioxide (CO2). These Guidelines aim to provide clear and quantitative Minimum Climate Change Performance Criteria necessary for IDB to support projects, as well as guidance on assessing and reducing the greenhouse gas (GHG) emissions of projects. The purpose of the Cement Manufacturing Plant guidelines is to set forth an approach for the financing of new...

  10. The mineralogy and chemistry of cement and cement raw materials In the united arab emirates

    OpenAIRE

    Nasir, Sobhi J. [صبحي جابر نصر; El Etr, H.

    1996-01-01

    The raw materials, clinkers and cements from different cement factories in the United Arab Emirates have been investigated using polarizing microscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and chemical analyses. The chemical and mineralogical analyses indicate that the local raw materials are suitable for cement industry. Geological review shows that there is a good potential for industrial-grade local occurrences of limestone, marl, gypsum and iron oxide, that may be ...

  11. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...

  12. Radiographic appearance of commonly used cements in implant dentistry.

    Science.gov (United States)

    Pette, Gregory A; Ganeles, Jeffrey; Norkin, Frederic J

    2013-01-01

    Cement-retained restorations allow for a conventional fixed partial denture approach to restoring dental implants. However, inadequate removal of excess cement at the time of cementation may introduce a severe complication: cement-induced peri-implantitis. Radiopaque cements are more easily detected on radiographs and should improve the recognition of extravasated cement at the time of insertion. The purpose of this study was to evaluate the radiopacity of commercially available cements in vitro. Eighteen different cements commonly used for luting restorations to implants were tested at both 0.5- and 1.0-mm thicknesses. The cements examined were zinc oxide eugenol, zinc oxide, zinc polycarboxylate, zinc phosphate, resin-reinforced glass ionomer, urethane resin, resin, and composite resin. Two samples of each cement thickness underwent standardized radiography next to an aluminum step wedge as a reference. The mean grayscale value of each of the nine 1-mm steps in the step wedge were used as reference values and compared to each of the cement samples. Temp Bond Clear (resin), IMProv (urethane resin), Premier Implant Cement (resin), and Temrex NE (resin) were not radiographically detectable at either sample thickness. Cements containing zinc were the most detectable upon radiographic analysis. There are significant differences in the radiopacity of many commonly used cements. Since cementinduced peri-implantitis can lead to late implant failure, cements that can be visualized radiographically may reduce the incidence of this problem.

  13. Slagment Cement Improve the Cement Resistance Toward Acids Attack During Acidizing Treatment

    Directory of Open Access Journals (Sweden)

    Nik Khairul Irfan Bin Nik Ab. Lah.

    2013-05-01

    Full Text Available Acidizing treatment in past experience shows several zonal isolation problems after the treatment. This study presents the effect of the acid treatment toward class G cement and slagment cement as the improvement method to improve the cement resistance toward the acid. Lab experiments were conducted by immerge the respective cement cubes into 12% HCl/3% HF solution for 40 min before several analysis were conducted. Based on the result, the mass loss and compressive strength loss of the cement cubes decrease as the curing temperature and pressure increase due to more evenly distributed cement chemical composition crystal in high curing condition as shown in Scanning Electron Microscopy (SEM analysis. From X-Ray Diffraction (XRD and X-Ray Fluorescence (XRF analysis, only the first layer of the cement cubes shows chemical component change due to the reaction between the acid. This study found that, replacing class G cement to slagment cement can reduce the mass loss and compressive strength loss up to 72% and 82%, respectively.

  14. Effect of Cement Type on Autogenous Deformation of Cement-Based Materials

    DEFF Research Database (Denmark)

    Pietro, Lura; Ye, Guang; van Breugel, Klaas

    2004-01-01

    (BFS) cement pastes. Self-desiccation shrinkage of the BFS cement paste was modeled based on the RH measurements, following the capillary-tension approach. The main findings of this study are: 1) self-desiccation shrinkage can be related to self-desiccation both for Portland and for BFS cement pastes......, taking into account the influence of the dissolved salts in the pore solution, 2) the BFS cement paste studied shows pronounced self-desiccation and self-desiccation shrinkage, mainly caused by its very fine pore structure....

  15. Laboratory development and field application of novel cement system for cementing high-temperature oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, X.; Zhang, H.; Li, Y.; Yang, Y. [SINOPEC, Beijing (China); Shan, H.; Xiao, Z. [OPT, Beijing (China)

    2010-07-01

    The challenges that oil and gas well engineers face when cementing mid-to-high temperature exploration oil and gas wells were discussed. A newly developed cement system with an effective laminar-flow spacer was presented along with case histories that document the system's effectiveness for cementing high temperature exploration wells. The problems associated with cementing high temperature exploration wells include high bottom hole static temperature; very low pump rates; and very long job times. These challenges contribute to the operational risks during cement slurry placement in the wellbore as well as during cement sheath setting during the life of the well. The new cement formulation presented in this paper addresses these challenges. Eight jobs have been completed in the field with much success. The combination of a new retarder and fluid loss control additive improves the system performance considerably in terms of low fluid loss rate, minimal free water, proper rheology, predictable thickening time, high resistance to salt contaminations and no adverse effect on set cement strength. The drilling muds are effectively displaced by the laminar flow spacer, thus improving the cementing bond. 9 refs., 5 tabs., 6 figs.

  16. INFLUENCE OF WINE ACID ON RHEOLOGICAL PROPERTIES OF WELL BORE CEMENT SLURRIES AND HARDENED CEMENT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1989-12-01

    Full Text Available Adaptation of commercial types of domestic cements for use in cementing the deep wells is a process by which Yugoslav oil industry tends to solve problems of completion of those wells independently. In order to design a domestic, cheep and effective retarder, tests of applicability of wine acid on cement slurries have been carried out. Besides examining the necessary wine acid content to achieve desirable Theological properties, the influence of this additive on properties of hardened cement samples has been tested too (the paper is published in Croatian.

  17. Treatment and recycling of asbestos-cement containing waste

    Energy Technology Data Exchange (ETDEWEB)

    Colangelo, F. [Department of Technology, University Parthenope, Naples (Italy); Cioffi, R., E-mail: raffaele.cioffi@uniparthenope.it [Department of Technology, University Parthenope, Naples (Italy); Lavorgna, M.; Verdolotti, L. [Institute for Biomedical and Composite Materials - CNR, Naples (Italy); De Stefano, L. [Institute for Microelectronics and Microsystems - CNR, Naples (Italy)

    2011-11-15

    Highlights: {yields} Asbestos-cement wastes are hazardous. {yields} High energy milling treatment at room temperature allows mineralogical and morphological transformation of asbestos phases. {yields} The obtained milled powders are not-hazardous. {yields} The inert powders can be recycled as pozzolanic materials. {yields} The hydraulic mortars containing the milled inert powders are good building materials. - Abstract: The remediation of industrial buildings covered with asbestos-cement roofs is one of the most important issues in asbestos risk management. The relevant Italian Directives call for the above waste to be treated prior to disposal on landfill. Processes able to eliminate the hazard of these wastes are very attractive because the treated products can be recycled as mineral components in building materials. In this work, asbestos-cement waste is milled by means of a high energy ring mill for up to 4 h. The very fine powders obtained at all milling times are characterized to check the mineralogical and morphological transformation of the asbestos phases. Specifically, after 120 min of milling, the disappearance of the chrysotile OH stretching modes at 3690 cm{sup -1}, of the main crystalline chrysotile peaks and of the fibrous phase are detected by means of infrared spectroscopy and X-ray diffraction and scanning electron microscopy analyses, respectively. The hydraulic behavior of the milled powders in presence of lime is also tested at different times. The results of thermal analyses show that the endothermic effects associated to the neo-formed binding phases significantly increase with curing time. Furthermore, the technological efficacy of the recycling process is evaluated by preparing and testing hydraulic lime and milled powder-based mortars. The complete test set gives good results in terms of the hydration kinetics and mechanical properties of the building materials studied. In fact, values of reacted lime around 40% and values of compressive

  18. High stenghth concrete with high cement substitution by adding fly ash, CaCO3, silica sand, and superplasticizer

    Science.gov (United States)

    Wicaksono, Muchammad Ridho Sigit; Qoly, Amelia; Hidayah, Annisaul; Pangestuti, Endah Kanti

    2017-03-01

    Concrete is a mixture of cement, fine aggregate, coarse aggregate and water with or without additives. Concrete can be made with substitution of cement with materials like Fly Ash, CaCO3 and silica sand that can increase the binding on pasta and also increase the compressive strength of concrete. The Superplasticizer on a mixture is used to reduce the high water content, improve concrete durability, low permeability concrete by making it more resilient, and improve the quality of concrete. The combination between Fly Ash (30% of cement required), CaCO3 (10% of cement required) and silica sand (5% of cement required) with added MasterGlenium ACE 8595 as much as 1,2% from total cement will produces compressive strength of up to 1080 kN/cm2 or 73,34 Mpa when the concrete is aged at 28 day. By using this technique and innovation, it proves that the cost reduction is calculated at 27%, which is much more efficient. While the strength of the concrete is increased at 5% compared with normal mixture.

  19. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  20. The Setting Chemistry of Glass Ionomer Cement

    Institute of Scientific and Technical Information of China (English)

    CHENG Hanting; LIU Hanxing; ZHANG Guoqing

    2005-01-01

    The setting chemistry of glass ionomer cement was investigated by using mechanical determination of compressive strength at predetermined intervals, and measurement of structure changes of corresponding fracture sample by means of IR spectra and differential scanning calorimetry ( DSC). Zinc polycarboxylate cement was used as a comparison sample. The compressive strength of glass ionomer cement (GIC) increases with aging. IR spectra and DSC of corresponding fracture sample show the structure changes of the matrix and interface layer comprising of silica gel during the predetermined intervals studied, however, no significant changes occur in the zinc polycarxyolate cement. Hence the structure changes of the matrix and/or interface layer are responsible for compressive strength increasing with aging. The structure changes include the crosslink density, the ratio of complex form to ionic form, the content ratio of Al-PAA to Ca-PAA, the forming and mauring process of the interface layer comprising of silica gel.

  1. Dicalcium phosphate cements: brushite and monetite.

    Science.gov (United States)

    Tamimi, Faleh; Sheikh, Zeeshan; Barralet, Jake

    2012-02-01

    Dicalcium phosphate cements were developed two decades ago and ever since there has been a substantial growth in research into improving their properties in order to satisfy the requirements needed for several clinical applications. The present paper presents an overview of the rapidly expanding research field of the two main dicalcium phosphate bioceramics: brushite and monetite. This review begins with a summary of all the different formulae developed to prepare dicalcium phosphate cements, and their setting reaction, in order to set the scene for the key cement physical and chemical properties, such as compressive and tensile strength, cohesion, injectability and shelf-life. We address the issue of brushite conversion into either monetite or apatite. Moreover, we discuss the in vivo behavior of the cements, including their ability to promote bone formation, biodegradation and potential clinical applications in drug delivery, orthopedics, craniofacial surgery, cancer therapy and biosensors.

  2. Laser-radiation scattering by cement in the process of hydration: simulation of the dynamics and experiment.

    Science.gov (United States)

    Gorsky, M P; Maksimyak, P P; Maksimyak, A P

    2012-04-01

    This paper discusses simulation of speckle-field dynamics during coherent light scattering by a cement surface in the process of hydration. Cement particles are represented by the spheres whose sizes and reflection indices are changing during the hydration process. The study of intensity fluctuations of scattered coherent radiation is a suitable technique for the analysis of both fast and slow processes of mineral binder hydration and formation of polycrystalline structures in the process of hardening. The results of simulation are in good agreement with the experimental data.

  3. Low-cycle fatigue of surgical cements

    Directory of Open Access Journals (Sweden)

    A. Balin

    2007-01-01

    Full Text Available Purpose: In case when surgical cement is used to fix endoprostheses of joints the fatigue character of mechanicalinterraction in the cement seems to be a significant importance. The paper suggests to adapt the research methodof low cycle fatigue for modelling the loads on surgical cements in an artificial hip joint. Surgical cements havealso been modified in order to improve their functional properties.Design/methodology/approach: Low cycle fatigue tests were conducted on samples made from Palamedcement without an addition and on samples modified with glassy carbon and titanium. The tests were conductedon a servohydraulic fatigue testing machine, MTS-810, with displacement control.Findings: Fatigue tests proved viscoelastic character of all the tested materials. During the fatigue tests, thephenomenon of stress cyclic relaxation was observed.Research limitations/implications: Modelling the loadings of cement in endoprostheses of joints with the lowcycle fatigue method takes into account all high value stresses, while cement is being used for endoprosthesesfor many years in the conditions of random stress and deformation courses. Therefore the obtained stress anddeformation values are bigger than those which would have been obtained in real conditions in the same time.Practical implications: The low cycle fatigue tests carried out showed how important is the factor of timefor the behavior of surgical cement in the conditions of changeable loadings. This fact is essential to assessits usability for endoprosthesoplasty of joints, specially of a hip joint. Post deformation return which is acharacteristic feature for material viscoelasticity enables its regeneration conditioning expected durability ofendoprosthesis of joints.Originality/value: Low cycle fatigue testing method for modelling of loads on surgical cement in artificial hipjoint enables to carry out the tests in a shorter period of time.

  4. Continued stabilization of Triathlon cemented TKA

    OpenAIRE

    Molt, Mats; Ryd, Leif; Toksvig-Larsen, Sören

    2016-01-01

    Background and purpose There is a general call for phased introduction of new implants, and one step in the introduction is an early evaluation of micromotion. We compared the micromotion in the Triathlon and its predecessor, the Duracon total knee prosthesis, concentrating especially on continuous migration over 5 years of follow-up. Patients and methods 60 patients were randomized to receive either a cemented Triathlon total knee prosthesis or a cemented Duracon total knee prosthesis. 3-D t...

  5. Cement stratigraphy: Image probes of cathodoluminescent facies.

    OpenAIRE

    Vuillemin, Aurèle; Ndiaye, Mapathe; Martini, Rossana; Davaud, Eric Jean

    2011-01-01

    Cement stratigraphy of carbonates aims to establish the chronology of processes involved in the rock diagenesis. Regional cement stratigraphy allows correlations and understanding of the petrological heterogeneities in reservoirs and aquifers, but is a long and rigorous approach. This article exposes a methodology of image analysis that facilitates the spatial correlation of diagenetic events in carbonate rocks. Based on the statistical comparison of signals extracted from the red spectrum em...

  6. Physical Properties of Acidic Calcium Phosphate Cements

    OpenAIRE

    2014-01-01

    The gold standard for bone replacement today, autologous bone, suffers from several disadvantages, such as the increased risk of infection due to the need for two surgeries. Degradable synthetic materials with properties similar to bone, such as calcium phosphate cements, are a promising alternative. Calcium phosphate cements are suited for a limited amount of applications and improving their physical properties could extend their use into areas previously not considered possible. For example...

  7. Dynamic properties of composite cemented clay

    Institute of Scientific and Technical Information of China (English)

    蔡袁强; 梁旭

    2004-01-01

    In this work,the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.

  8. Case Study of the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

    2005-05-01

    California is the largest cement producing state in theU.S., accounting for between 10 percent and 15 percent of U.S. cementproduction and cement industry employment. The cement industry inCalifornia consists of 31 sites that consume large amounts of energy,annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3million tons of coal, 0.25 tons of coke, and smaller amounts of wastematerials, including tires. The case study summarized in this paperfocused on providing background information, an assessment ofenergy-efficiency opportunities and barriers, and program recommendationsthat can be used by program planners to better target products to thecement industry. The primary approach to this case study involvedwalk-through surveys of customer facilities and in depth interviews withcustomer decision makers and subsequent analysis of collected data. Inaddition, a basic review of the cement production process was developed,and summary cement industry energy and economic data were collected, andanalyzed. The analysis of secondary data provides background informationon the cement industry and identification of potential energy-efficiencyopportunities. The interviews provide some understanding of the customerperspective about implementation of energy-efficiencyprojects.

  9. Influence of Cellulose Ethers on Hydration Products of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; OU Zhihua; JIAN Shouwei; XU Rulin

    2011-01-01

    Cellulose ethers are widely used to mortar formulations, and it is significant to understand the interaction between cellulose ethers and cement pastes. FT-IR spectra, thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article. The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste, but the major hydration products, such as CH (calcium hydroxide), ettringite and C-S-H, appeared later in the modified cement pastes than in the unmodified cement paste. The cellulose ethers decrease the outer products and increase inner products of C-S-H gels. Compared to unmodified cement pastes, no new products are found in the modified cement pastes in the present experiment. The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.

  10. Iron and Sulfur Geochemistry in Class H Wellbore Cements Exposed to CO2 and H2S

    Science.gov (United States)

    Lopano, C. L.; Webb, S. M.; Kutchko, B. G.; Strazisar, B. R.; Hawthorne, S. B.; Miller, D. J.; Guthrie, G.; Hakala, A.

    2013-12-01

    potentially amorphous Fe-S. In a similar manner, S was evaluated by collecting multiple energy maps through the S-edge using beamline 14-3 at SSRL. The S ME maps revealed much broader reaction fronts as revealed by the iron mapping alone. Analysis of S XANES spectra is ongoing, but preliminary results indicate that possibly 6 different binding environments are likely in the cements depending on the H2S concentration: FeS, FeS2, S, a sulfite phase, and potentially two different sulfates (gypsum and ettringite). The results indicate that S oxidation state likely grades from S+6 in the core of the cement to S-1 in the rim of the cement, with S oxidation states ranging from S4+ to S0 in zones in between. This work will serve to better understand the geochemical reactions in the cement upon addition of S co-constituents in order to better assess potential impacts on long-term cement integrity.

  11. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  12. Color difference of composite resins after cementation with different shades of resin luting cement.

    Science.gov (United States)

    Cengiz, Esra; Kurtulmus-Yilmaz, Sevcan; Karakaya, Izgen; Aktore, Huseyin

    2017-07-26

    The purpose of this study was to evaluate the color difference of nanohybrid and ormocer-based composite resins with different thicknesses when 4 different shades of resin luting cement were used. 56 disc specimens of each composite resin (Aelite aesthetic enamel, Ceram-X mono) with 0.5 and 1 mm thicknesses were fabricated. Baseline color measurements were performed using a clinical spectrophotometer. The specimens of each thicknesses of each resin were randomly divided into 4 groups according to the shades of resin luting cement (white/A1, yellow/universal/A3, transparent and white opaque) (n = 7). Mixed resin cement was applied onto the resin specimens using a Teflon mold in 0.1 mm thickness. Color measurements of cemented composite resin specimens were repeated and color difference (∆E) between baseline and after cementation measurements was calculated. ANOVA and Tukey's test were used for statistical analysis. The opaque shade had significantly increased ∆E values as compared to the other shades (p resins in terms of ∆E values. The shade of resin cement and the type of the resin affected the final color; however, the thickness of composite resin had no influence on the final color of restoration. Selecting the shade of resin luting cement before cementation of indirect composite laminate restoration is important to achieve final color match.

  13. Revision Total Hip Arthroplasty Using the Cement-in-Cement Technique.

    Science.gov (United States)

    Amanatullah, Derek F; Pallante, Graham D; Floccari, Lorena V; Vasileiadis, George I; Trousdale, Robert T

    2017-03-01

    The cement-in-cement technique is useful in the setting of revision total hip arthroplasty (THA), especially to gain acetabular exposure, change a damaged or loose femoral component, or change the version, offset, or length of a fixed femoral component. The goal of this retrospective study was to assess the clinical and radiographic characteristics of revision THA using the cement-in- cement technique. Between 1971 and 2013, a total of 63 revision THAs used an Omnifit (Osteonics, Mahwah, New Jersey) or Exeter (Howmedica, Mahwah, New Jersey) stem and the cement-in-cement technique at the senior author's institution. Aseptic loosening (74%) was the predominant preoperative diagnosis followed by periprosthetic fracture (14%), instability (8%), and implant fracture (6%). Mean clinical follow-up was 5.5±3.8 years. The Harris Hip Score had a statistically significant increase of 18.5 points (Pfracture, or circumferential lucent lines at final follow-up. The patients who underwent cement-in-cement revision THA at the senior author's institution had good restoration of function but a high complication rate. [Orthopedics. 2017; 40(2):e348-e351.]. Copyright 2016, SLACK Incorporated.

  14. [Burns caused by cement mortar (based on expert opinion)].

    Science.gov (United States)

    Kleinhans, D

    1984-01-01

    A 35-year-old farmer with scars on his right arm, following erosion obviously due to wet cement (case of an expert opinion), was examined. Cement water had continuously soaked his shirt while he was planing a freshly applied wet cement ceiling with his right arm upwards. The cement did not contain special additives, so the normal alkalinity of wet cement and occlusion effects caused the erosion. The farmer sued the manufacturer of the cement for damages because of missing warning notices. The court decided in his favor.

  15. A Blended Cement Containing Blast Furnace Slag and Phosphorous Slag

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Blended cement containing blast furnace slag(BFS) and phosphorous slag(PS) is a new kind of cement.The total content of blended materials could increase if two additives were used. Using the same admixtures, the properties of the blended cement with 70% additives could reach the standard of 525-grade slag cement according to GB.The strength of cement with 80% additives could reach the standard of 425-grade slag cement.The tests of strength, pore structure,hydration products,inhibiting alkali-aggregate reaction, resistance to sulfate corrosion of BFS-PSC were performed.

  16. Carbonation Resistance of Sulphoaluminate Cement-based High Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    ZHANG Decheng; XU Dongyu; CHENG Xin; CHEN Wen

    2009-01-01

    The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete(HPC)were investigated.The experimental results show that with the decreasing water/cement ratio,the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably,and the carbonation resistance capability is also improved with the adding admixtures.The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD.The analysis results reveal that the main hydration product of sulphoaluminate cement,that is ettringite(AFt),de-composes after carbonation.

  17. Petroleum Sludge as gypsum replacement in cement plants: Its Impact on Cement Strength

    Science.gov (United States)

    Benlamoudi, Ali; Kadir, Aeslina Abdul; Khodja, Mohamed

    2017-08-01

    Due to high cost of cement manufacturing and the huge amount of resources exhaustion, companies are trying to incorporate alternative raw materials or by-products into cement production so as to produce alternative sustainable cement. Petroleum sludge is a dangerous waste that poses serious imparts on soil and groundwater. Given that this sludge contains a high percentage of anhydrite (CaSO4), which is the main component of gypsum (CaSO4.2H2O), it may play the same gypsum role in strength development. In this research, a total replacement of gypsum (100%) has been substituted by petroleum sludge in cement production and has led to an increase of 28.8% in UCS values after 28 curing days. Nevertheless, the burning of this waste has emitted a considerable amount of carbon monoxide (CO) gas that needs to be carefully considered prior to use petroleum sludge within cement plants.

  18. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  19. Thermal reactions of brushite cements.

    Science.gov (United States)

    Bohner, M; Gbureck, U

    2008-02-01

    The thermal reactions of a brushite cement made of beta-tricalcium phosphate (beta-TCP), monocalcium phosphate monohydrate (MCPM), and an aqueous solution were followed in situ with an isothermal calorimeter at 37 degrees C. The investigated parameters were the beta-TCP/MCPM weight ratio, the liquid-to-powder ratio, the synthesis route and milling duration of the beta-TCP powder, as well as the presence of sulfate, citrate, and pyrophosphate ions in the mixing liquid. The thermograms were complex, particularly for mixtures containing an excess of MCPM or additives in the mixing solution. Results suggested that the endothermic MCPM dissolution and the highly exothermic beta-TCP dissolution occurred simultaneously, thereby leading to the formation of a large exothermic peak at early reaction time. Both reactions were followed by the exothermic crystallization of brushite and in the presence of an excess of MCPM by the endothermic crystallization of monetite. Additives generally widened the main exothermic reaction peak, or in some cases with pyrophosphate ions postponed the main exothermic peak at late reaction time. Generally, the results could be well explained and understood based on thermodynamic and solubility data.

  20. Quality control of cemented waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Slate, L.J.

    1994-12-31

    To insure that cemented radwaste remains immobilized after disposal, certain standards have been set in Europe by the Commission of the European Communities. One such standard is compressive strength. If the compressive strength can be predicted during the early curing stages, time and money can be saved and the quality of the final waste form guaranteed. It was determined that the 7- and 28-day compressive strength from radwaste cementation can be predicted during the mixing and early curing stages by at least three methods. The three that were studied were maturity, rheology, and impedance. Maturity is a temperature-to-time measurement, rheology is a shear stress-to-shear rate measurement, and impedance is the opposition offered to the flow of alternating current. These three methods were employed on five different cemented radwaste concentrations with three different water-to-cement ratios; thus, a total of 15 different mix designs were considered. The results showed that the impedance was the easiest to employ for an on-line process. The results of the impedance method showed a very good relationship between impedance and water-to-cement ratio; therefore, an accurate prediction of compressive strength of cemented radwaste can be drawn from this method. The results of the theology method were very good. The method showed that concrete conforms to the Bingham plastic rheologic model, and the theology method can be used to predict the compressive strength of cemented radwaste, but may be too cumbersome. The results of the maturity method were shown to be limited in accuracy for determining compressive strength.

  1. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic

    Directory of Open Access Journals (Sweden)

    Adriana Eštoková

    2013-12-01

    Full Text Available The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in the cements ranged from 8.58–19.1 Bq·kg−1, 9.78–26.3 Bq·kg−1 and 156.5–489.4 Bq·kg−1 for 226Ra, 232Th and 40K, respectively. The radiological parameters in cement samples were calculated as follows: mean radium equivalent activity Raeq = 67.87 Bq·kg−1, gamma index Iγ = 0.256, alpha index Iα = 0.067, the absorbed gamma dose rate D = 60.76 nGy·h−1, external hazard index Hex = 0.182 and internal hazard index Hin was 0.218. The radionuclide activity in composites ranged from 6.84–10.8 Bq·kg−1 for 226Ra, 13.1–20.5 Bq·kg−1 for 232Th and 250.4–494.4 Bq·kg−1 for 40K. The calculated radiological parameters of cements were lower than calculated radiological parameters of cement composites.

  2. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    Science.gov (United States)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  3. The fluid-compensated cement bond log

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, T.H.; Leslie, H.D.; Wheelis, W.B.

    1984-09-01

    An experimental and numerical wave mechanics study of cement bond logs demonstrated that wellsite computer processing can now segregate wellbore fluid effects from the sonic signal response to changing cement strength. Traditionally, cement logs have been interpreted as if water were in the wellbore, without consideration of wellbore fluid effects. These effects were assumed to be negligible. However, with the increasing number of logs being run in completion fluids such as CaCl/sub 2/, ZnBr/sub 2/, and CaBr/sub 2/, large variations in cement bond logs became apparent. A Schlumberger internal paper showing that bond log amplitude is related to the acoustic impedance of the fluid in which the tool is run led to a comprehensive study of wellbore fluid effects. Numerical and experimental models were developed simulating wellbore geometry. Measurements were conducted in 5-, 7-, and 95/8-in. casings by varying the wellbore fluid densities, viscosities, and fluid types (acoustic impedance). Parallel numerical modeling was undertaken using similar parameters. The results showed that the bond log amplitude varied dramatically with the wellbore fluid's acoustic impedance; for example, there was a 70 percent increase in the signal amplitude for 11.5-lb/ gal CaCl/sub 2/ over the signal amplitude in water. This led to the development of a Fluid-Compensated Bond log that corrects the amplitude for acoustic impedance of varying wellbore fluids, thereby making the measurements more directly related to the cement quality.

  4. EFFECT OF NANOMATERIALS IN CEMENT MORTAR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    WAIL N. AL-RIFAIE

    2016-09-01

    Full Text Available Concrete is considered as brittle materials and widely used due to high compressive strength but unfortunately having and has low tensile strength that has a numerous negative impacts on the lifespan of concrete made structures. Therefore, mechanical properties of cement mortar have been investigated experimentally using different types and ratios of nano material to improve the properties. Since the strength of the concrete is of high importance, different materials have been used to enhance the compressive and the tensile characteristics of the cement mortar compressive and tensile strength. Mainly, this objective has been implemented through using micro cement, micro sand, nano silica, and nano clay in developing a nano-cement mortar which can to improve the concrete for the constructional applications. The samples were prepared and tested under tensile and compressive mode according to ASTM-2011 regulations for concrete. The parameters that are taken consideration during the investigation were micro sand, micro cement, nano silica, developed nano clay, and naphthalene sulphonate as super- plasticizers. In general, it has been observed that the results showed a significant increase in both compressive and tensile strength of the mortar at early stages of hardening, where a maximum increase of 22% in the compressive strength was achieved , whereas 3.7 time increase in the compressive strength was recorded over the tradition levels of the concrete strength.

  5. Clinical applications of glass-ionomer cements.

    Science.gov (United States)

    McLean, J W

    1992-01-01

    The use of glass-ionomer cements in clinical dentistry is now well established. They have a number of unique properties, including adhesion to moist tooth structure, biological compatibility, and anticariogenic properties due to their fluoride release. Their use in treating early carious or erosion lesions has been widely investigated. Established techniques include fissure filling and sealing, restoration of class 5 erosion lesions without cavity preparation, and the internal occlusal fossa or tunnel restoration. The "sandwich" technique using glass-ionomer cements as "dentin substitutes" has enabled composite restorations to be used with greater safety where pulpal damage may occur. The future probably lies in using a laminate technique where materials that attach to dentin and form a biological seal can be covered by tougher and harder enamel veneers, thus mimicking the structure of the tooth. The deficiencies of glass-ionomer cements are well known, including lack of toughness, early water sensitivity, low abrasion resistance, and porosity leading to poor surface polish. Solving these problems is formidable, since inherently the strength of these cements is related to their water content. The clinician should be aware of these deficiencies and stay within the parameters of the techniques outlined in this paper. In particular, clinical success depends upon early protection of the cement from hydration or dehydration, and the current use of light-cured bonding agents has largely solved this problem.

  6. Stimuli-responsive cement-reinforced rubber.

    Science.gov (United States)

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef

    2014-05-14

    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.

  7. STRUCTURAL MODIFICATION OF NEW FORMATIONS IN CEMENT MATRIX USING CARBON NANOTUBE DISPERSIONS AND NANOSILICA

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2017-01-01

    Full Text Available Complex nanodispersed systems with multi-walled carbon nanotubes and nanodispersed silica have a significant impact on the processes of hydration, hardening and strength gain of construction composites predetermining their durability. While using a scanning electron microscope with an attachment for X-ray microanalysis and a device for infrared spectral analysis investigations have shown that the main effect of the cement matrix modification in the case of adding complex nanodispersed systems is provided by direct influence of hydration processes with subsequent crystallization of new formations. It has been noted that while adding carbon nanotube dispersion and nanosized silica a binding matrix is structured in the form of an extremely dense shell from crystalline hydrate new formations on the surface of solid phases that provides strong binding matrix in cement concrete. The addition effect of carbon nanotubes has been analyzed and quantitatively assessed through an investigation for every case of one sample with nanotubes and one sample without them with the help of a nanoindenter and scanning electron microscope. It is necessary to solve rather complicated challenging task in order to assess quantitatively the addition effect of CNT on material characteristics at a micromechanical level. At the same time it is possible to investigate surface of a concrete sample with one-micron resolution. In this case it is necessary to prepare samples for nanoindentation with exclusion of all CNT defectable effects that have been shown by a SEM. So in this case more adequate method for assessment must be a picoindenter , which combines a test method for nanoindentation with an optical SEM potential. Such equipment is in the stage of in-situ testing process at the Vienna University of Technology. The investigation is based on the fact that the main modification effect of mineral binding matrix while using incorporated complex nanodispersed systems and

  8. Durability of Alite-calcium Barium Sulphoaluminate Cement

    Institute of Scientific and Technical Information of China (English)

    LU Lingchao; LU Zeye; LIU Shiquan; WANG Shoude; CHENG Xin

    2009-01-01

    The durability of the cement was mainly studied.Under 1.0 MPa of hydraulic pressure for 8 hours,water could penetrate completely through the sample made by portland cement,but could not penetrate through that by alite-barium sulphoaluminate cement.Under the condition of freezing and thawing cycle,the loss ratio of compressive strength of the cement was only about 17.3%at curing 28 d ages,but the loss of portland cement was as high as 29.5%.Alite-calcium bar-ium sulphoaluminate cement also has an excellent resistance to sulfate attack.The coefficients of resistance to sulfate attack of the cement exceeded 1.0.Meanwhile,the composition and microstructure of the hardened paste of alite-calcium barium sulphoaluminate cement were analyzed by XRD and SEM.

  9. Migration of ions in cement paste as studied by SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Prince, K.E.; Aldridge, L.P. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia); Rougeron, P. [Electricite de France Direction des Etudes et Recherches, Les Renardiers (France)

    1998-06-01

    Cement is often used to condition and encapsulate low level radioactive waste before it is disposed of in a repository. Ground water can attack these waste-forms by transporting aggressive ions into the cement paste and by removing radioactive ions from the paste. The extent of the attack will be governed by the diffusion of the ions in the cement paste. In this study we examine the migration of aggressive carbonate ions and inactive Cs and Sr through cement pastes. The use of SIMS for establishing the penetration depths and diffusion profiles for Cs and Sr in cement will be explored. The penetration profiles of Cs and Sr in a non-zeolite cement paste were examined and compared to those of a paste made with zeolite. The effects of the non-homogeneous nature of the cement was most pronounced in the study of the zeolite rich cement; Cs being preferentially accumulated in the zeolite material. (authors). 4 refs., 2 figs.

  10. Effect of aluminium phosphate as admixture on oxychloride cement

    Indian Academy of Sciences (India)

    M P S Chandrawat; R N Yadav

    2000-02-01

    The effect of admixing of aluminium phosphate on oxychloride cement in the matrix has been investigated. It is shown that aluminium phosphate retards the setting process of the cement and improves water-tightness.

  11. The use of limestone powder as an alternative cement replacement ...

    African Journals Online (AJOL)

    The use of limestone powder as an alternative cement replacement material: An ... The laboratory test results revealed that up to 15% replacement of clinker by fine ... Early strength, Limestone filler, Loss on ignition, Portland limestone cement ...

  12. Assessment of Pollution Potentialities of some Portland Cement 1H ...

    African Journals Online (AJOL)

    ABSTRACT: Chemical analysis of some Portland cement commonly used in Nigeria was carried out. All the cement studies ... Determination of Loss on Ignition. 1g of each ... the specifications of American Standard for testing materials (ASTM ...

  13. Present Situation and Perspective of Chinese Cement Industry

    Institute of Scientific and Technical Information of China (English)

    Gao Changming

    2003-01-01

    @@ Totally, there are 12 types of cement kiln pro-duction lines in China and running with a quite differenttechnical- economical levels. The cement productionof different types product lines in 1997 ~ 2002 is shownin Table 1.

  14. the use of limestone powder as an alternative cement replacement ...

    African Journals Online (AJOL)

    user

    properties of cement paste and hardened mortar in two ranges of blain fineness .... shrinkage as compared to siliceous additives. It is ... 100LSF (Lime. Saturation Factor) ..... production of Portland limestone cement were free from impurities or ...

  15. Strength development characteristics of concrete produced with blended cement using ground granulated blast furnace slag (GGBS) under various curing conditions

    Indian Academy of Sciences (India)

    SHAHAB SAMAD; ATTAULLAH SHAH; MUKESH C LIMBACHIYA

    2017-07-01

    To reduce the embodied carbon dioxide of structural concrete, Portland cement (PC) in concrete can be partially replaced with ground granulated blast furnace slag (GGBS). In this research effect of partial replacement of cement with GGBS on strength development of concrete and cured under summer and wintercuring environments is established. Three levels of cement substitution i.e., 30%, 40% and 50% have been selected. Early-age strength of GGBS concrete is lower than the normal PC concrete which limits its use in the fast-track construction and post-tensioned beams which are subjected to high early loads. The strength gainunder winter curing condition was observed as slower. By keeping the water cement ratio low as 0.35, concrete containing GGBS up to 50% can achieve high early-age strength. GGBS concrete gains more strength than the PC concrete after the age of 28 day till 56 day. The mechanical properties of blended concrete for various levels of cement replacement have been observed as higher than control concrete mix having no GGBS.

  16. Conservative approach of a symptomatic carious immature permanent tooth using a tricalcium silicate cement (Biodentine: a case report

    Directory of Open Access Journals (Sweden)

    Cyril Villat

    2013-11-01

    Full Text Available The restorative management of deep carious lesions and the preservation of pulp vitality of immature teeth present real challenges for dental practitioners. New tricalcium silicate cements are of interest in the treatment of such cases. This case describes the immediate management and the follow-up of an extensive carious lesion on an immature second right mandibular premolar. Following anesthesia and rubber dam isolation, the carious lesion was removed and a partial pulpotomy was performed. After obtaining hemostasis, the exposed pulp was covered with a tricalcium silicate cement (Biodentine, Septodont and a glass ionomer cement (Fuji IX extra, GC Corp. restoration was placed over the tricalcium silicate cement. A review appointment was arranged after seven days, where the tooth was asymptomatic with the patient reporting no pain during the intervening period. At both 3 and 6 mon follow up, it was noted that the tooth was vital, with normal responses to thermal tests. Radiographic examination of the tooth indicated dentin-bridge formation in the pulp chamber and the continuous root formation. This case report demonstrates a fast tissue response both at the pulpal and root dentin level. The use of tricalcium silicate cement should be considered as a conservative intervention in the treatment of symptomatic immature teeth.

  17. Conservative approach of a symptomatic carious immature permanent tooth using a tricalcium silicate cement (Biodentine): a case report.

    Science.gov (United States)

    Villat, Cyril; Grosgogeat, Brigitte; Seux, Dominique; Farge, Pierre

    2013-11-01

    The restorative management of deep carious lesions and the preservation of pulp vitality of immature teeth present real challenges for dental practitioners. New tricalcium silicate cements are of interest in the treatment of such cases. This case describes the immediate management and the follow-up of an extensive carious lesion on an immature second right mandibular premolar. Following anesthesia and rubber dam isolation, the carious lesion was removed and a partial pulpotomy was performed. After obtaining hemostasis, the exposed pulp was covered with a tricalcium silicate cement (Biodentine, Septodont) and a glass ionomer cement (Fuji IX extra, GC Corp.) restoration was placed over the tricalcium silicate cement. A review appointment was arranged after seven days, where the tooth was asymptomatic with the patient reporting no pain during the intervening period. At both 3 and 6 mon follow up, it was noted that the tooth was vital, with normal responses to thermal tests. Radiographic examination of the tooth indicated dentin-bridge formation in the pulp chamber and the continuous root formation. This case report demonstrates a fast tissue response both at the pulpal and root dentin level. The use of tricalcium silicate cement should be considered as a conservative intervention in the treatment of symptomatic immature teeth.

  18. Characteristics of Portland blast-furnace slag cement containing cement kiln dust and active silica

    Directory of Open Access Journals (Sweden)

    A. Abdel Rahman

    2016-09-01

    Full Text Available This investigation dealt with the effect of active silica, silica fume (SF or rice husk ash (RHA, on the mechanical and physico-chemical characteristics of the hardened blended cement pastes made of Portland blast-furnace slag cement (PSC containing cement kiln dust (CKD cured under normal conditions. Two blends made of PSC and CKD, improved by SF and two blends made of PSC and CKD improved by RHA were investigated. Hardened blended cement pastes were prepared from each cement blend by using water/cement ratio (W/C of 0.30 by weight and hydrated for various curing ages of 1, 3, 7, 28 and 90 days at the normal curing conditions under tap water at room temperature. Each cement paste was tested for its physico-chemical and mechanical characteristics; these characteristics include: compressive strength and kinetics of hydration. The phase composition of the formed hydration products was identified using X-ray diffraction (XRD and differential thermal analysis (DTA. It was found that the partial substitution of PSC by 10% and 15% of CKD is associated with an increase in the rate of hydration and a subsequent improvement of compressive strength of hardened PSC–CKD pastes. In addition, the replacement of PSC, in PSC–CKD blends, by 5% active silica was accompanied by further improvement of the physico-mechanical characteristics of the hardened PSC–CKD pastes.

  19. Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill

    Institute of Scientific and Technical Information of China (English)

    WU Di; CAI Si-jing

    2015-01-01

    Cemented tailings backfill (CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic, thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures.

  20. Exposure to cement dust at a Portland cement factory and the risk of cancer.

    Science.gov (United States)

    Vestbo, J; Knudsen, K M; Raffn, E; Korsgaard, B; Rasmussen, F V

    1991-01-01

    The relation between exposure to cement dust and cancer was examined in a population of 546 cement workers and a reference population of 858 randomly sampled men of similar age and area of residence. In 1974 all men gave lifelong occupational and smoking histories; information on incidence of cancer in the period 1974-85 was obtained from the Danish Cancer Registry. No increased risk of overall cancer was found among cement workers. Among men with more than 20 years exposure to cement dust, 14 cases of respiratory cancer were observed (observed/expected (O/E) 1.52, 95% confidence interval (95% CI) 0.90-2.57) when compared with all Danish men. Men with 1-20 years exposure had O/E 1.14 (95% CI 0.59-2.19) based on nine cases of cancer. After excluding all men with documented exposure to asbestos during employment in an asbestos cement factory no increased risk of overall cancer or respiratory cancer was found among cement workers compared with white collar workers from the local reference population, using a Cox regression model controlling for age and smoking habits. Relative risks were 0.5 (95% CI 0.1-1.5) and 1.0 (95% CI 0.4-2.6) for men with 1-20 and more than 20 years of exposure to cement dust respectively compared with white collar workers. PMID:1772795

  1. Calcium phosphate bone cement containing ABK and PLLA. Sustained release of ABK, the BMD of the femur in rats, and histological examination

    Energy Technology Data Exchange (ETDEWEB)

    Kusaka, T.; Tanaka, A.; Sasaki, S.; Takano, I.; Tahara, Y.; Ishii, Y. [Kyorin Univ., Tokyo (Japan). Dept. of Orhtopaedic Surgery

    2001-07-01

    Bone cement was prepared by mixing CPC95 (Mitsubishi Material Co., Ltd.), ABK, and PLLA at a ratio of 14 : 1 : 2. In vitro, Antibiotic sustained release tests were performed by the total amount exchange method. In animal experiments, the bone cement was infused into the right femur of 18-month-old female SD rats. After 1, 2, 4, or 6 months, the BMD was determined by DXA in the bilateral femoral bones. In addition, hard tissue specimens were prepared, and the state of bone formation was observed. The release of the antibiotic was 1.73 {mu}g/ml until 18 days after administration, maintaining a concentration over the MIC80 for MRSA. In the animal experiments, the BMD significantly increased after 2 - 4 months. In the hard tissue specimens, direct binding on the bone-cement interface and bone formation in the cement were observed after 1 month. (orig.)

  2. Self-cementing Mechanism of CFBC Coal Ashes at Early Ages

    Institute of Scientific and Technical Information of China (English)

    SONG Yuanming; QIAN Jueshi; WANG Zhi; WANG Zhijuan

    2008-01-01

    The self-cementing mechanism at early ages of circulating fluidized bed combustion (CFBC) coal ashes was studied by X-ray diffraction (XRD), infrared (IR) spectroscopy and chemical method. The results indicate that the amorphous phase is predominant in CFBC coal ashes. The polymerization degree of [SiO4] and [AlO6] of CFBC desulphurization coal ashes is lower than that of those without desulphurization. The contents of the components with fast hydration rate of CFBC desulphurization coal ashes are significantly greater than those of the ashes without desulphurization. This work confirms that the amorphous minerals with high chemical activity are the main causes of the self-cementing property of CFBC desulphurization coal ashes at early ages.

  3. Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.

    Science.gov (United States)

    Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo

    2017-05-01

    Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes.

  4. STUDY ON HIGH CONTENT OF BLENDS IN CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The technology of activation by a]dding few activators(<1%) to increase the amount of blends in cement was investigated.The results show that outer activation has a remarkable effect on improving the physical properties of slag cement,flyash cement and volcanic cement.For example,the compressive strength was increased by 5-10 MPa.Morever,the application of activation is beneficial to grind-aiding,early strength and water-reducing etc.

  5. Comparison of creep of the cement pastes included fly ash

    Directory of Open Access Journals (Sweden)

    Padevět Pavel

    2017-01-01

    Full Text Available The paper is devoted to comparison of creep of cement pastes containing fly ash admixture. The size of creep in time depends on the amount of components of the cement paste. Attention is paid to the content of classical fly ash in cement paste and its impact on the size of creep. The moisture of cement pastes is distinguished because it significantly affects the rheological properties of the material.

  6. Heavy cement slurries; Pastas pesadas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Francisco Avelar da; Conceicao, Antonio C. Farias [PETROBRAS, XX (Brazil). Distrito de Perfuracao do Nordeste. Div. de Tecnicas de Perfuracao; Marins, Carlos Cesar Silva [PETROBRAS, XX (Brazil). Dept. de Perfuracao. Div. de Revestimento e Cimentacao

    1989-12-31

    When going deeper in a high pressure well, the only way to successfully cement your casing or linear is through the use of heavy cement slurry. In 1987 PETROBRAS geologists presented to the Drilling Department a series of deep, hot and high pressure wells to be drilled. The Casing and Cement Division of this department then started a program to face this new challenge. This paper introduces the first part of this program and shows how PETROBRAS is dealing with heavy weight slurries. We present the slurry formulations tested in laboratory, the difficulties found in mixing them in the field, rheology measurements, API free water and API fluid loss from both laboratory and field samples. (author) 3 tabs.

  7. Performance of cemented coal gangue backfill

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qin-li; WANG Xin-min

    2007-01-01

    Possibility of cemented gangue backfill was studied with gangue of Suncun Coal Mine, Xinwen Coal Group, Shandong,and fly ash of nearby thermal power plant, in order to treat enormous coal gangue on a large scale and to recovery safety coal pillars.The results indicate that coal gangue is not an ideal aggregate for pipeline gravity flow backfill, but such disadvantages of gangue as bad fluidity and serious pipe wear can be overcome by addition of fly ash. It is approved that quality indexes such as strength and dewatering ratio and piping feature of slurry can satisfy requirement of cemented backfill if mass ratio of cement to fly ash to gangue higher middle and long term comprehensive strength.

  8. Cementing Properties of Oil Shale Ash

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The oil crisis has prompted renewed interest in direct burning of oil shale as an alternative energy source.A major problem in this process is the large portion of ash produced.The cementing properties of this ash were investigated to determine its applicability as a building material.By means of XRD, IR, NMR and ICP, we have studied the effects of burning temperature on the reactivity of ash.Maximum reactivity was obtained with ash samples produced at 700 °C to 900 °C.In this range, the strength of oil-shale-based material, with properties similar to cement, which is composed of oil shale and several other kinds of solid wastes, can achieve the standard of 42.5# cement.Our study has provided an experimental foundation and theoretical base for a massive utilization of oil shale.

  9. Microstructure and Properties of Activated Slag Cement

    Institute of Scientific and Technical Information of China (English)

    GUO Jun-cai; XIANG Xin; XU Yan-wu

    2004-01-01

    Activation of theslag cement was performed using a composite activator. Experimental resultsshow that the performance of the cement is remarkably improved. The fineness and specific surface area of the ce-ment are increased by 23.7% and 1.4% , and 3d flexural strength and compressive strength are enhanced by20.9% and 22.9% , respectively. Microstructure and phase composition of the hydrates were analysed by X- raydiffraction(XRD) and scanning electron microscopy(SEM). The results indicate that Ca( OH)2 in the hydratesdecrease obviously. The morphology of the other hydrates appears to be flocculent, with a dense structure. The im-provements of the properties is related to the microstructural changes.

  10. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  11. Application of Carbonate Looping to Cement Industry

    DEFF Research Database (Denmark)

    Lin, Weigang; Illerup, Jytte Boll; Dam-Johansen, Kim

    2012-01-01

    In the present work, cycle experiments of different types of limestone, cement raw meal and a mixture of limestone and clay were carried out in laboratory scale setups at more realistic conditions (i.e. calcination temperature is 950°C and CO2 concentration is 80%) to simulate the performance...... with an increase in the CO2 partial pressure during calcination, indicating enhancement of sintering by the presence of CO2. As sorbents, cement raw meal and the mixture of limestone and clay show a similar trend as limestone with respect to the decay of the CO2 carrying capacity and this capacity is lower than...... that of limestone at the same conditions in most cases. SEM and XRD analyses indicate that a combination of severe sintering and formation of calcium silicates attributes to the poor performance of the cement raw meal....

  12. Organic Additive Implantation onto Cement Hydration Products

    Institute of Scientific and Technical Information of China (English)

    ZHU Jipeng; LI Zongjin; YANG Ruochong; ZHANG Yamei

    2014-01-01

    In polymer modified cementitious materials, it is hard to set up a chemical connection between the added polymer and the cement moiety. In this study FS (functional silane) was adopted to form this connection as a bridge component which has the functional group forming bonds with polymer. To testify the connection between FS and cement moiety, Q2/Q1 ratio (Qx:intensity ratio) investigation was carried out by the means of quantitative solid state 29Si MAS NMR. The results show that the Q2/Q1 ratio has increased with the addition of FS which indicates that the silicon chain length has increased, and the quantity of silicon atoms at site of Q2, chain site, has enhanced, showing that the silicon atom of FS has connected to the silicon chain of cement moiety by the bond“-Si-O-Si-”formation.

  13. Influence of Calcium Sulfate State and Fineness of Cement on Hydration of Portland Cements Using Electrical Measurement

    Institute of Scientific and Technical Information of China (English)

    WEI Xiaosheng; LI Zongjin; XIAO Lianzhen; THONG Wangfai

    2006-01-01

    The influence of calcium sulfate state and fineness of cement on hydration of Portland cement was studied using electrical resistivity measurement. The bulk resistivity curve of the paste from the abnormal cement mainly with hemihydrate had a characteristic abnormal peak and rapid increase in early period. The resistivity measurement technique can be used to discriminate abnormal setting. For normal cement with gypsum, the increase in fineness of the Portland cement decreases the minimum resistivity due to a higher ionic concentration and increases the 24 hour resistivity due to a reduction in macroscopic pore size. Thesetting time, compressive strength, pore structure of pastes made from different cements were carried out to compare the influence of water to cement ratio, calcium sulfate state and fineness. It is found that the electrical and mechanical properties are strongly affected by the initial porosity, the presence of hemihydrate or gypsum, and the fineness of cement.

  14. The influence of energy mixing in pastes of Portland cement used in well cementing; Influencia da energia de mistura em pastas de cimento Portland utilizadas em cimentacao de pocos petroliferos

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Flank M.; Oliveira, Valeska G.; Martinelli, Antonio E.; Melo, Dulce M.A.; Cachina, Gustavo H.A.B. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    Portland cement is by far the most important binding material used in oil well cementing. Its mixture process in field is one of the most important problems in well cementing practices. The objective of that process is to prepare the cement slurry with similar properties those found in preliminaries laboratory tests. That objective should be found, or else, the relevance of the calculations and tests accomplished to determine the displacement flow, friction pressure, thickening time and the fluid loss rate of cement slurry. It was verified that the mixture time increases significantly the energy of mixture of the pastes, provoking changes in the plastic viscosity, yield point and forces gel of pastes. The hydration rates of slurries were affected for the mixture conditions, causing a decrease of about 40% in thickening time. Measures of fluid loss evidenced that for larger mixture times happened a reduction of the percentile of free water of 4,2% to 0,0%, provoked by the increase of the reaction of the system. (author)

  15. The influence of energy mixing in pastes of Portland cement used in well cementing; Influencia da energia de mistura em pastas de cimento Portland utilizadas em cimentacao de pocos petroliferos

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Flank M.; Oliveira, Valeska G.; Martinelli, Antonio E.; Melo, Dulce M.A.; Cachina, Gustavo H.A.B. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    Portland cement is by far the most important binding material used in oil well cementing. Its mixture process in field is one of the most important problems in well cementing practices. The objective of that process is to prepare the cement slurry with similar properties those found in preliminaries laboratory tests. That objective should be found, or else, the relevance of the calculations and tests accomplished to determine the displacement flow, friction pressure, thickening time and the fluid loss rate of cement slurry. It was verified that the mixture time increases significantly the energy of mixture of the pastes, provoking changes in the plastic viscosity, yield point and forces gel of pastes. The hydration rates of slurries were affected for the mixture conditions, causing a decrease of about 40% in thickening time. Measures of fluid loss evidenced that for larger mixture times happened a reduction of the percentile of free water of 4,2% to 0,0%, provoked by the increase of the reaction of the system. (author)

  16. ASSESSMENT OF DEFORMATION AND STRENGTH OF SOILS STRENGTHENED BY CEMENTING

    Directory of Open Access Journals (Sweden)

    Sainov Mihail Petrovich

    2014-09-01

    Full Text Available Currently there are few studies of deformation and strength properties of loose soils strengthened by cementing. Based on the data of already arranged grout curtains it was determined that in cemented gravel-pebble soil there are 7...9 % of cement, which is less than in concrete. To assess deformation and strength of such soils it is possible to use the data of tests conducted by other authors, where the effect of cement contents on sand-cement mix properties was studied. Analysis of experimental data showed that cemented soil may be identified with concrete only with high content of cement (more than 10 %. At cement content 7...9 % in soil the strength deformation of cemented soil varies to a small extent. Its deformation becomes 2-3 times less. It greatly depends on compression stresses. The formulae are proposed which permit assessing the effect of compression and cement content on deformation of cemented soil. It is shown that strength of cemented soil is less than that even of the weakest concrete. It has a sufficiently high cohesion, but the friction angle is approximately the same as that of the initial soil.

  17. Glass Ionomer Cements with Improved Bioactive and Antibacterial Properties

    OpenAIRE

    2016-01-01

    Dental restorative cements are placed in a harsh oral environment where they are subjected to thermal shock, chemical degradation, and repeating masticatory force. The ideal restorative dental cements should have superior mechanical properties, chemical stability, aesthetic, good handling properties, biocompatibility, antibacterial properties, and preferably bioactivity. This thesis presents research on dental restorative cements with enhanced properties. The overall aim was to increase the b...

  18. The suitability of a supersulfated cement for nuclear waste immobilisation

    Science.gov (United States)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  19. Control of in vivo mineral bone cement degradation.

    Science.gov (United States)

    Kanter, Britta; Geffers, Martha; Ignatius, Anita; Gbureck, Uwe

    2014-07-01

    The current study aimed to prevent the formation of hydroxyapatite reprecipitates in brushite-forming biocements by minimizing the availability of free Ca(2+) ions in the cement matrix. This was achieved by both maximizing the degree of cement setting to avoid unreacted, calcium-rich cement raw materials which can deliver Ca(2+) directly to the cement matrix after dissolution, and by a reduction in porosity to reduce Ca(2+) diffusion into the set cement matrix. In addition, a biocement based on the formation of the magnesium phosphate mineral struvite (MgNH4PO4·6H2O) was tested, which should prevent the formation of low-solubility hydroxyapatite reprecipitates due to the high magnesium content. Different porosity levels were fabricated by altering the powder-to-liquid ratio at which the cements were mixed and the materials were implanted into mechanically unloaded femoral defects in sheep for up to 10 months. While the higher-porosity brushite cement quantitatively transformed into crystalline octacalcium phosphate after 10 months, slowing down cement resorption, a lower-porosity brushite cement modification was found to be chemically stable with the absence of reprecipitate formation and minor cement resorption from the implant surface. In contrast, struvite-forming cements were much more degradable due to the absence of mineral reprecipitates and a nearly quantitative cement degradation was found after 10 months of implantation.

  20. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or...

  1. Experimental Investigation of Second Interface Cement Bond Evaluation

    Institute of Scientific and Technical Information of China (English)

    Che Xiaohua; Qiao Wenxiao

    2007-01-01

    Cement bond model wells (1:10 scaled-down) were made with a gradually degrading cement annulus for cement bond evaluation of the first interface (between the casing and the cement annulus) and the second interface (between the cement annulus and the formation).Experimental simulation on cement bond logging was carried out with these model wells.The correlation of acoustic waveforms,casing wave energy and free casing area before and after cement bonding of the second interface was established.The experimental results showed that the arrival of the casing waves had no relationship with the cement bonding of the second interface,but the amplitude of the casing head wave decreased obviously after the second interface was bonded.So,cement bonding of the second interface had little effect on the evaluation of the cement bond quality of the first interface by using casing head wave arrivals.Strong cement annulus waves with early arrivals were observed before the second interface was bonded,while obvious "formation waves" instead of cement annulus waves were observed after the second interface was bonded.

  2. 21 CFR 888.4230 - Cement ventilation tube.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted...

  3. Research of dynamic mechanical performance of cement rock

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; WANG Tong; WANG Xiang-lin

    2007-01-01

    As Daqing Oilfield is developing oil layer with a big potential, the requirement for the quality of well cementation is higher than ever before. Cement rock is a brittle material containing a great number of microcracks and defects. In order to reduce the damage to cement ring and improve sealed cementing property at the interface, it is necessary to conduct research on the modification of the cement rock available. According to the principle of super mixed composite materials, various fillers are added to the ingredients of cement rock. Dynamic fracture toughness of cement rock will be changed under the influence of filler. In order to study the damage mechanism of the cement circle during perforation and carry out comprehensive experiments on preventing and resisting connection, a kind of comprehensive experiment equipment used to simulate perforation and multifunctional equipment for testing the dynamic properties of the material are designed. Experimental study of the dynamical mechanical performance of original and some improved cement rock and experiment used to simulate the well cementation and perforation are carried out. Standard for dynamical mechanical performance of the cement rock with fine impact resistance and mechanical properties of some improved cement rock are also given.

  4. 21 CFR 888.4210 - Cement mixer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in...

  5. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  6. Influence of surface pretreatment of fiber posts on cement delamination

    NARCIS (Netherlands)

    Jongsma, L.A.; Kleverlaan, C.J.; Feilzer, A.J.

    2010-01-01

    Objectives To evaluate the influence of post surface pretreatment on the delamination strength of different cements from a prefabricated FRC post tested in a three-point bending test. Methods Three cements were tested; RelyX Unicem, DC Core Automix, and Panavia F2.0. Per cement, 40 posts (D.T. Light

  7. Chloride Transport of High Alumina Cement Mortar Exposed to a Saline Solution

    Directory of Open Access Journals (Sweden)

    Hee Jun Yang

    2016-01-01

    Full Text Available Chloride transport in different types of high alumina cement (HAC mortar was investigated in this study. Three HAC cement types were used, ranging from 52.0 to 81.1% of aluminum oxides in clinker. For the development of the strength, the setting time of fresh mortar was measured immediately after mixing and the mortar compressive strength was cured in a wet chamber at 25 ± 2°C and then measured at 1–91 days. Simultaneously, to assess the rate of chloride transport in terms of diffusivity, the chloride profile was performed by an exposure test in this study, which was supported by further experimentation including an examination of the pore structure, chloride binding, and chemical composition (X-ray diffraction analysis. As a result, it was found that an increase in the Al2O3 content in the HAC clinker resulted in an increase in the diffusion coefficient and concentration of surface chloride due to increased binding of chloride. However, types of HAC did not affect the pore distribution in the cement matrix, except for macro pores.

  8. CO2 Capture for Cement Technology

    OpenAIRE

    2013-01-01

    Production of cement is an energy intensive process and is the source of considerable CO2emissions. Itis estimated that the cement industry contributes around 8% of total global CO2emissions. CO2is oneof the major greenhouse gases. In the atmosphere, the CO2concentration has increased from 310 ppmvin 1960 to 390 ppmv in 2012, probably due to human activity. A lot of research is being carried out forreducing CO2emissions from large stationary sources. Ofwhich, the carbonate looping process is ...

  9. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...... are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root...

  10. Cement Formation:A Success Story in a Black Box: High Temperature Phase Formation of Portland Cement Clinker

    OpenAIRE

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledgeabout the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in ...

  11. Solid recovered fuels in the cement industry with special respect to hazardous waste.

    Science.gov (United States)

    Thomanetz, Erwin

    2012-04-01

    Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.

  12. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  13. Binding Procurement

    Science.gov (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  14. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    Directory of Open Access Journals (Sweden)

    Mark Bediako

    2015-01-01

    Full Text Available The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC and Portland limestone cement (PLC, CSIR-BRRI Pozzomix, Dangote OPC, and Diamond PLC. The chemical compositions were analyzed with X-Ray Fluorescence (XRF spectrometer. Student’s t-test was used to test the significance of the variation in chemical composition between standard literature values and each of the commercial cement brands. Analysis of variance (ANOVA was also used to establish the extent of variations between chemical compositions and brand name of the all commercial Portland cement brands. Student’s t-test results showed that there were no significant differences between standard chemical composition values and that of commercial Portland cement. The ANOVA results also indicated that each brand of commercial Portland cement varies in terms of chemical composition; however, the specific brands of cement had no significant differences. The study recommended that using any brand of cement in Ghana was good for any construction works be it concrete or mortar formation.

  15. The suitability of a supersulfated cement for nuclear waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  16. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  17. Study of chloride ion transport of composite by using cement and starch as a binder

    Energy Technology Data Exchange (ETDEWEB)

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,; Reski, Nurhadi; Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are depending on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.

  18. Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation

    Science.gov (United States)

    Dioguardi, M; Perrone, D; Troiano, G; Laino, L; Ardito, F; Lauritano, F; Cicciù, M; Muzio, L Lo

    2015-01-01

    Custom-cast posts and cores are usually used to treat endodontically treated teeth. However, several researches have underlined how these devices may be a much higher elastic modulus than the supporting dentine and the difference in the modulus could lead to stress concentrating in the cement lute, leading to failure. The role of the cement seems to play a fundamental role in order to transfer the strength during the chewing phases. Aim of this research is to record the rate of cytotoxicity of five different dual-cured resin cements used for fiber posts cementation. We tested the cytotoxicity of this five materials on MG63 osteoblast-like cells through two different methods: MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide succinate) assay which tests for mitochondrial enzyme activity6 and xCELLigence® system. PMID:26309592

  19. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    Science.gov (United States)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  1. Development of Clinical Cement of Nanoapatite and Polyamide Composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new type of inorganicorganic biomimetic bone cement consisting of nanohydroxyapatite and polyamide 66 composite was investigated. This cement can be handled as paste and easily shaped into any contour. Nanoapatite and polyamide composite cement has a reasonable setting time, excellent washout resistance, high mechanical strength and bioactivity, and it is easily handled and shaped, which can be developed as a clinical cement. It can be predicted that nanoapatite/polymer composite cement would be a new trend of biomedical material, showing a promising prospect.

  2. Serviceability and Reinforcement of Low Content Whisker in Portland Cement

    Institute of Scientific and Technical Information of China (English)

    CAO Mingli; WEI Jianqiang; WANG Lijiu

    2011-01-01

    In order to explore the serviceability and reinforcement of CaCO3 whisker in portland cement matrix,the durability of CaCO3 whisker and effect of low whisker content(0%-4.0%)on the working performance and mechanical properties of portland cement were investigated.The experimental results show that CaCO3 whiskers have a good stability and serviceability in cement,and should not significantly alter the rheological properties of the cement paste.The flexural and compressive strength of portland cement reinforced by CaCO3 whiskers was increased by 33.3% and 12.83%,respectively.

  3. A Study on Provisional Cements, Cementation Techniques, and Their Effects on Bonding of Porcelain Laminate Veneers

    OpenAIRE

    Vinod Kumar, G.; Soorya Poduval, T.; Bipin Reddy; Shesha Reddy, P.

    2013-01-01

    Minimal tooth preparation is required for porcelain laminate veneers, but interim restorations are a must to protect their teeth against thermal insult, chemical irritation, and to provide aesthetics. Cement remaining after the removal of the provisional restoration can impair the etching quality of the tooth surface and fit and final bonding of the porcelain laminate veneer. This in vitro study examined the tooth surface for remaining debris of cement after removal of a provisional restorati...

  4. Influence of different degrees of acetylation in the physical and mechanical properties of particleboards and wood-cement composites

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2014-12-01

    Full Text Available Chemical modified wood particles used to particleboards manufacture may, at the same time, improve the dimensional stability and damage the internal bond. The aim of this research was find the optimal point of acetylation for particleboards. Pinus taeda particles with different degrees of acetylation, 8, 15 and 20% of weight percentage gain (WGP, were used in the production of particleboards with urea-formaldehyde resin and wood-cement composites produced by mechanical and vibratory compaction. It was evaluated the water absorption, thickness swelling and internal bind of the particleboards according to the European standards EN 317 and EN 319. Particleboards produced with 15 WPG showed the lowest water absorption and thickness swelling values. However, the use of chemically modified wood had a negative influence in the internal bind of the boards. This phenomenon can be explain due to the similar behavior between resin and water, that way, the high degree acetylation stops the adhesive and adherent bind. In the case of wood-cement composites, the internal bind improves as the acetylation degrees get higher. Nevertheless the inhibition of acetylated wood particles to the cement hydration got higher when the WPG was higher than 8%.

  5. [Study on the Interface Characteristics of Cemented Carbide after Stripping Ti Department Coatings].

    Science.gov (United States)

    Yan, Qiang; Liang, Zheng; Song, Hui-jin; Wu, Tao; Wu, Jun

    2015-04-01

    TiAlN Coatings were stripped by chemical method, which were deposited on Y WZ Alloy by arc ion plating. The surface morphology and composition of the cemented carbide after stripping TiAlN coatings by chemistry method were analyzed. It was found that TiA1N coatings on the cemented carbide substrates could be removed by being taken in 30% of hydrogen peroxide and potassium oxalate in alkaline mixed solution (V(NaOH so1ution):V(3O%H2O2):V(COOK solution) = 1:1:1) at 45 °C for 45 minutes. The surface of the cemented carbide substrate was bright, and the color was the same as that before depositing TiA1N coatings. The surface of the substrate after removing was studied by X-ray photoelectron spectrum (XPS). The results showed that binding energies of the W element and the main peak of N element on the substrate surface were much close to the criterion binding energy in the XPS data-base; and the valence of the element on the YW2 alloy changed little. The Al, Ti and N elements diffusing into the superficial zone of the sample during the coating depositing process made their contents increase and the band energy location offset after stripping the coating. TiN and A1N were formed, which benefit to increase the film-substrate cohesion during re-preparing coatings. The influence of stripping solution on the corrosion degree of cemented carbide substrate was small.

  6. Diagraphies de cimentation : vers une analyse de la qualité du contact ciment-formation Cement Logging: Toward an Analysis of the Quality of Cement-Formation Bonding

    Directory of Open Access Journals (Sweden)

    Isambourg P.

    2006-11-01

    specialists (VDL tool. The greatest progress that could be made with cementing logs was to detect defects in the cement-formation interface. This is what we have done within the framework of a project financed by ARTEP (Association de Recherche sur les Techniques d'Exploitation du Pétrole, made up of Total, Gaz de France (GDF, Institut Français du Pétrole (IFP and Elf Aquitaine Production (EAP. Laboratory experiments performed in the Fluid Analysis Service at Boussens involved the injecting of cement between a casing and a simulated formation, with or without the presence of mud having varying thicknesses. Fast or slow formations as well as fast or slow cements were used. The ultrasonic echoes obtained by a ceramic CET sonde were recorded and analyzed. Both theory and the experiments showed that ultrasonic echoes are modified in the presence of mud and/or gas. The relations between the shape of the ultrasonic wave and presence of mud and gas between the cement and the formation were determined. A processing procedure is proposed with its limitations. Cementing Quality : If we had to set forth a quality criterion for cementing, we would say: For cementing to be considered as being of good quality, the cement sheath must be at least as leakproof as the formation it replaces. When a borehole is drilled, different zones are effectively brought into communication. The initial isolation will be established by the casing + cement sheath. This function will thus be correctly ensured if this combination lets pass only the start of a fluid leak (water, oil, gas that is less than or equal to what is allowed by an equivalent section of formation drilled through. Naturally, this concept is mainly applied to sensitive zones, e. g. such as the overburden of a reservoir. However, it should be noted that this concept is also applied to the reservoir itself and not only to the overburden. Indeed, a leaky cement sheath at the level of a reservoir with relatively low permeability could, for

  7. Advances in glass-ionomer cements

    OpenAIRE

    Davidson, Carel Leon

    2006-01-01

    This article describes the properties, advances and shortcomings of glass-ionomer cement as a restorative material. The adhesion of glass-ionomer to tooth structure is less technique sensitive than composite resins and its quality increases with time. Therefore glass-ionomer might turn out to the more reliable restorative material in minimal invasive dentistry based on adhesive techniques.

  8. Formulation of an injectable phosphocalcium cement

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, S. [CIRIMAT Equipe de Physico-Chimie des Phosphates ENSCT INP, Toulouse (France); TEKNIMED, Vic en Bigorre (France); Brouchet, A.; Delisle, B. [CHU Rangueil, Toulouse (France). Service d' Anatomie Pathologie; Freche, M.; Lacout, J.L. [CIRIMAT Equipe de Physico-Chimie des Phosphates ENSCT INP, Toulouse (France); Rodriguez, F. [Lab. de Galenique, Chmin des Maraichers, Toulouse (France)

    2001-07-01

    In orthopedic surgery, the loss or the reinforcement of osseous substance often requires filling of the defective part. In order to make the surgical operations easier we sought to make an injectable form. This study examined the effect of silicone and polyglycol on the injectability, setting time and mechanical properties of the cement. The basic solid phase was composed of a mixture of tetracalcium phosphate (Ca{sub 4}(PO{sub 4}){sub 2}O), {alpha}-tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) and sodium glycerophosphate. The basic liquid phase was made up of lime, orthophosphoric acid and water. Silicone was previously dissolved in cyclohexane and introduced in the solid phase. Polyglycol is a water-soluble compound so it is introduced in the liquid phase. For the mechanical properties, the strong increase in the percentage of additives decreased the compressive strength. Silicone and polyglycol made it possible to improve viscosity without modifying the basic setting time. The rate of evolution was different with the two different additives. From the data it was possible to optimize the formulation of cements to give predicted properties. Testing the in vivo implantation of the cement has already started. Preliminary results show the perfect osteointegration of the new cements without reactions to the foreign body in spite of the presence of silicone. (orig.)

  9. [A new hydroxyapatite cement for craniofacial surgery].

    Science.gov (United States)

    Pistner, H; Reuther, J; Reinhart, E; Kübler, N; Priessnitz, B

    1998-05-01

    A new stoechiometric mixture of 27% dicalcium-phosphate (DCPA) and 73% tetra-calcium-phosphate (TTCP) can be prepared with water intraoperatively to a paste that subsequently sets to a structurally stabile implant composed of hydroxyapatite (HA). Primary setting time is about 20 min; pH during setting ranges from 6.5 to 8.5. There is no relevant curing heat or expansion or contraction. Compressive strength is about 50 MPa, tensile strength about 8 MPa. Over a period of about 4 h in physiological milieu, the cement converts to hydroxyapatite. This product is no longer redissolvable in normal body fluid. This cement can be used for non-load-bearing applications especially in craniofacial bone surgery. Cranial defects due to tumour or trauma as well as deficits in the facial skeleton may be reconstructed using this new biomaterial. In nine of ten patients we used the hydroxyapatite cement successfully for reconstructions in the craniofacial area. Fluid control of the operation field and implant site is extremely important and sometimes difficult to achieve. Further applications could be all non-load-bearing augmentations such as filling of blocked paranasal sinuses, of dentoalveolar cysts and defects following dental apectomy or fixation of implanted hearing-aid electrodes. The perspectives for the hydroxyapatite cement include its application as a carrier for osteogenic protein preparations, especially because of its isothermic reaction and intrinsic osteoconductive characteristics.

  10. [New hydroxylapatite cement for craniofacial surgery].

    Science.gov (United States)

    Pistner, H; Reuther, J; Reinhart, E; Kübler, N; Priessnitz, B

    1998-05-01

    A new stoechiometric mixture of 27% dicalcium-phosphate (DCPA) and 73% tetra-calcium-phosphate (TTCP) can be prepared with water intraoperatively to a paste that subsequently sets to a structurally stabile implant composed of hydroxyapatite (HA). Primary setting time is about 20 min; pH during setting ranges from 6.5 to 8.5. There is no relevant curing heat or expansion or contraction. Compressive strength is about 50 MPa, tensile strength about 8 MPa. Over a period of about 4 h in physiological milieu, the cement converts to hydroxyapatite. This product is no longer redissolvable in normal body fluid. This cement can be used for non-load-bearing applications especially in craniofacial bone surgery. Cranial defects due to tumour or trauma as well as deficits in the facial skeleton may be reconstructed using this new biomaterial. In nine of ten patients we used the hydroxyapatite cement successfully for reconstructions in the craniofacial area. Fluid control of the operation field and implant site is extremely important and sometimes difficult to achieve. Further applications could be all non-load-bearing augmentations such as filling of blocked paranasal sinuses, of dentoalveolar cysts and defects following dental apectomy or fixation of implanted hearing-aid electrodes. The perspectives for the hydroxyapatite cement include its application as a carrier for osteogenic protein preparations, especially because of its isothermic reaction and intrinsic osteoconductive characteristics.

  11. Advances in glass-ionomer cements.

    Science.gov (United States)

    Davidson, Carel Leon

    2006-01-01

    This article describes the properties, advances and shortcomings of glass-ionomer cement as a restorative material. The adhesion of glass-ionomer to tooth structure is less technique sensitive than composite resins and its quality increases with time. Therefore glass-ionomer might turn out to the more reliable restorative material in minimal invasive dentistry based on adhesive techniques.

  12. Hidration kinetics study of tlie mixed cements

    Directory of Open Access Journals (Sweden)

    Duque Fernández, Gabriel . L

    1993-09-01

    Full Text Available A study of the hydration process of cements with 10% and 20% addition of a tuff from "Las Carolinas" quarry (Cienfuegos, Cuba by different methods was done. The results obtained by different methods showed a good agreement. It was proved an increment of the hydration products, an acceleration of alite hydration and a swelling of the fixed water in mixed cements. The resistance of the cement with 10% addition is similar to that of the pure cement for ages of 28 days, whereas with 20% addition they were similar only after 180 days.

    Se hizo un estudio por diferentes métodos de la hidratación de cementos con 10% y 20% de adición de una toba del yacimiento "Las Carolinas", en la provincia de Cien fuegos (Cuba. Hubo una buena correspondencia entre las diferentes técnicas de análisis utilizadas, comprobándose que en los cementos mezclados se incrementan los productos de hidratación, se acelera la hidratación de la alita, aumenta el contenido de agua fija, así como que la resistencia del cemento, con hasta 10% de adición, es similar al cemento puro para tiempos de curado de 3 y 28 días, mientras que con 20% de adición sólo se igualan después de los 180 días.

  13. [Pain after cementation of cast restorations

    NARCIS (Netherlands)

    Gerritsen, A.E.

    2004-01-01

    Some patients experience pain after cementation of a cast restoration on a vital tooth. Limited data are available on the prevalence of this pain. In many cases the pain disappears within two weeks. The major cause of the pain might be attributed to more permeability of the dentine after

  14. Marginal adaptation of ceramic inserts after cementation

    NARCIS (Netherlands)

    Ozcan, M; Pfeiffer, P; Nergiz, [No Value

    2002-01-01

    The advantage of using ceramic inserts is to prevent major drawbacks of composite resins such as polymerization shrinkage, wear and microleakage. This in vitro study evaluated the marginal adaptation of two approximal ceramic insert systems after cementation to the cavities opened with ultrasonic ti

  15. Kinetics of strength gain of biocidal cements

    Directory of Open Access Journals (Sweden)

    Rodin Aleksandr Ivanovich

    Full Text Available Biocorrosion becomes the determinative durability factor of buildings and constructions. Damages of construction materials caused by bacteria, filamentous fungi, actinomycetes constitute a serious danger to the constructions of a building or a structure and to the health of people. Biodeteriorations are typical both in old and new constructions. A great quantity of destruction factors of industrial and residential buildings under the influence of microorganisms was established in practice. Providing products and constructions based on concretes fungicidal and bactericidal properties is an important direction of modern construction material science. The most efficient way to solve this task is creation of biocidal cements. The article presents the results of experimental studies of kinetic dependences of strength gain by biocidal cements by physico-mechanical and physico-chemical analysis methods. The identical velocity character of initial hydration of the developed compositions of biocidal cements is set, as well as a more calm behavior of hardening processes at later terms. It has been established that the compositions of biocidal cements modified by sodium sulfate and sodium fluoride possess the greatest strength.

  16. FAST: FAST Analysis of Sequences Toolbox.

    Science.gov (United States)

    Lawrence, Travis J; Kauffman, Kyle T; Amrine, Katherine C H; Carper, Dana L; Lee, Raymond S; Becich, Peter J; Canales, Claudia J; Ardell, David H

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  17. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  18. The effect of hyaluronic acid on brushite cement cohesion.

    Science.gov (United States)

    Alkhraisat, M H; Rueda, C; Mariño, F T; Torres, J; Jerez, L B; Gbureck, U; Cabarcos, E L

    2009-10-01

    The improvement of calcium phosphate cement (CPC) cohesion is essential for its application in highly blood perfused regions. This study reports the effectiveness of hyaluronic acids of different molecular weights in the enhancement of brushite cement cohesion. The cement was prepared using a powder phase composed of a mixture of beta-tricalcium phosphate and monocalcium phosphate monohydrate, whereas the liquid phase was formed by 0.5M citric acid solution modified by the addition of hyaluronic acid of different molecular weights. It was found that medium and high molecular weight hyaluronic acid enhances the cement cohesion and scarcely affects the cement mechanical properties. However, concentrations >0.5% (w/v) were less efficient to prevent the cement disintegration. It is concluded that hyaluronic acid could be applied efficiently to reduce brushite cement disintegration.

  19. Mechanical Properties and Decay Resistance of Hornbeam Cement Bonded Particleboards

    Directory of Open Access Journals (Sweden)

    Antonios N. Papadopoulos

    2008-01-01

    Full Text Available Cement bonded particleboards were manufactured from hornbeam (Carpinus betulus L. wood particles. Hydration tests were carried out to determine the inhibitory index in order to characterise wood-cement compatibility. The results revealed that the mixture of hornbeam-cement can be classified as moderate inhibition. Two wood: cement ratios were applied in this study, namely, 1 : 3 and 1 : 4, for the board manufacture. It was found that an increase of cement-wood ratio resulted in an improvement in all properties examined, except MOR. All properties of the boards made from 1 : 4 wood: cement ratio surpassed the minimum requirements set forth by the building type HZ code. Boards were exposed to brown and white rot fungi, Coniophora puteana, and Trametes versicolor, respectively. Overall, both fungi failed to attack the cement-bonded boards.

  20. Constitutive Response of Microbial Induced Calcite Precipitation Cemented Sands

    Science.gov (United States)

    Feng, Kai

    In the last decade, microbial induced calcite precipitation (MICP) emerged as a novel technique for implementing soil improvement in an environmentally-friendly and economically beneficial manner. However, the mechanical behavior and constitutive response of these materials are still not fully explored by researchers. In this dissertation, the characteristics of MICP cemented sands are investigated through numerical modelling and experimental tests, including macro and micro tests under both static and dynamic loading. In the first part, the mechanical behavior of MICP cemented sands were probed using monotonic load testing and the existence of calcite precipitation was verified by scanning electron microscopy, with this behavior compared to traditionally cemented soil and naturally cemented soil. Both MICP cementation and traditional cementation were verified to be effective in the increase of stiffness and strength, and unique characteristic of MICP cemented soil was highlighted.

  1. Properties and durability of metakaolin blended cements: mortar and concrete

    Directory of Open Access Journals (Sweden)

    Abbas, Rafik

    2010-12-01

    Full Text Available This article explores the effect of metakaolin, a pozzolan, on concrete performance. Compressive and splitting tensile strength were found for specimens cured for up to 360 and 90 days, respectively. Changes were recorded in the compressive strength of specimens exposed to salt (chloride and sulfatechloride solutions, and chloride penetration and binding capacity were measured. The findings were compared to the results for concrete prepared with ordinary Portland (OPC and moderate heat of hydration (Type II cement. MK was found to have a very positive effect on 28-day concrete strength, due to microstructure improvement of the hydrated cement. Replacing cement with metakaolin effectively raised concrete resistance to chloride attack. Concrete containing metakaolin proved to be substantially more durable in sulfate-chloride environment.

    En este trabajo se estudia el efecto del metacaolín sobre las prestaciones del hormigón. Las probetas curadas a 360 y 90 días se sometieron a ensayos de resistencia a compresión y de tracción indirecta respectivamente. Se hizo un seguimiento de la resistencia a la compresión de los materiales ante el ataque de sales (soluciones de cloruro y de sulfato-cloruro y, se midió la penetración de cloruros y la capacidad de los hormigones de inmovilizar estos iones. Los resultados se compararon con los obtenidos con hormigones elaborados con cemento pórtland ordinario (OPC y, con cemento de calor de hidratación moderado (tipo II. El MK resultó influir muy positivamente en la resistencia del hormigón a 28 días debido a la mejora de la microestructura del cemento hidratado. La sustitución de cemento por metacaolín aumentó la resistencia del hormigón al ataque de cloruros. El hormigón con metacaolín demostró ser más duradero en entornos de sulfato-cloruro que los hormigones elaborados con OPC o con cemento de tipo II. Los perfiles de concentración de cloruros a distintas profundidades y la

  2. 53rd Cement Technical Conference. The property of cement and mortar 2; Dai 53 kai semento gijutsu taikai. Semento, morutaru noseishitsu 2

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Naohiro [Nagoya Institute of Technology, Nagoya (Japan)

    1999-08-10

    Shin et al examined the neutralization phenomena in the placing joint part of mortar in the relation the placing joint time and the pore structure. Especially, it was concluded that pores more than 0.1{mu}m increased in the placing joint part by the influence of the freezing water and neutralization was promoted with an increasing of the placing joint time. Kawabe et al measured the radio wave absorption characteristics by mixing the conductive carbon fiber into mortar to be used as an electromagnetic wave absorption wall. Tokawa et al evaluated the flowability of concrete by separation of mortar from high flow concrete. Kojima et al. examined the reuse to lightweight mortar to be an aggregate of the discarded epoxy resin chip. Kawano et al. adjusted the clinker containing several percent crystals as the super fast-strong cement. The hydration reaction of alite from the initial age was promoted in addition of sodium sulfate anhydride, and high compress strength more than that in the fast-strong cement hardening body was obtained regardless of age. (NEDO)

  3. Treatment and recycling of asbestos-cement containing waste.

    Science.gov (United States)

    Colangelo, F; Cioffi, R; Lavorgna, M; Verdolotti, L; De Stefano, L

    2011-11-15

    The remediation of industrial buildings covered with asbestos-cement roofs is one of the most important issues in asbestos risk management. The relevant Italian Directives call for the above waste to be treated prior to disposal on landfill. Processes able to eliminate the hazard of these wastes are very attractive because the treated products can be recycled as mineral components in building materials. In this work, asbestos-cement waste is milled by means of a high energy ring mill for up to 4h. The very fine powders obtained at all milling times are characterized to check the mineralogical and morphological transformation of the asbestos phases. Specifically, after 120 min of milling, the disappearance of the chrysotile OH stretching modes at 3690 cm(-1), of the main crystalline chrysotile peaks and of the fibrous phase are detected by means of infrared spectroscopy and X-ray diffraction and scanning electron microscopy analyses, respectively. The hydraulic behavior of the milled powders in presence of lime is also tested at different times. The results of thermal analyses show that the endothermic effects associated to the neo-formed binding phases significantly increase with curing time. Furthermore, the technological efficacy of the recycling process is evaluated by preparing and testing hydraulic lime and milled powder-based mortars. The complete test set gives good results in terms of the hydration kinetics and mechanical properties of the building materials studied. In fact, values of reacted lime around 40% and values of compressive strength in the range of 2.17 and 2.29 MPa, are measured.

  4. Influence of Portland Cement Class on the Corrosion Rate of Steel Reinforcement in Cement Mortar Caused by Penetrating Chloride and Sulfate from the Environment

    OpenAIRE

    Bikić, F.; Cacan, M.; Rizvanović, M.

    2013-01-01

    The influence of portland cement class on the corrosion rate of steel reinforcement in cement mortar caused by penetrating chloride or sulfate from the environment in already hardened cement mortar is investigated in this paper. Three classes of portland cement have been used for the tests, PC 35, PC 45 and PC 55. Cylindrical samples of cement mortar with steel reinfor- cement in the middle were treated 6 months at room temperature in the follow...

  5. Vacuum-mixing cement does not decrease overall porosity in cemented femoral stems: AN IN VITRO LABORATORY INVESTIGATION

    Science.gov (United States)

    Messick, K. J.; Miller, M. A.; Damron, L. A.; Race, A.; Clarke, M. T.; Mann, K. A.

    2008-01-01

    The role of vacuum mixing on the reduction of porosity and on the clinical performance of cemented total hip replacements remains uncertain. We have used paired femoral constructs prepared with either hand-mixed or vacuum-mixed cement in a cadaver model which simulated intra-operative conditions during cementing of the femoral component. After the cement had cured, the distribution of its porosity was determined, as was the strength of the cement-stem and cement-bone interfaces. The overall fraction of the pore area was similar for both hand-mixed and vacuum-mixed cement (hand 6%; vacuum 5.7%; paired t-test, p = 0.187). The linear pore fractions at the interfaces were also similar for the two techniques. The pore number-density was much higher for the hand-mixed cement (paired t-test, p = 0.0013). The strength of the cement-stem interface was greater with the hand-mixed cement (paired t-test, p = 0.0005), while the strength of the cement-bone interface was not affected by the conditions of mixing (paired t-test, p = 0.275). The reduction in porosity with vacuum mixing did not affect the porosity of the mantle, but the distribution of the porosity can be affected by the technique of mixing used. PMID:17785755

  6. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    Science.gov (United States)

    Fuchs, Maximilian; Gentleman, Eileen; Shahid, Saroash; Hill, Robert; Brauer, Delia

    2015-10-01

    Bioactive glasses (BG) are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC) are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO) with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid), ions were released fast (up to 90% within 15 minutes at pH 1), which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa), staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid), which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  7. The Estimation of Compaction Parameter Values Based on Soil Properties Values Stabilized with Portland Cement

    Science.gov (United States)

    Lubis, A. S.; Muis, Z. A.; Pasaribu, M. I.

    2017-03-01

    The strength and durability of pavement construction is highly dependent on the properties and subgrade bearing capacity. This then led to the idea of the selection methods to estimate the density of the soil with the proper implementation of the system, fast and economical. This study aims to estimate the compaction parameter value namely the maximum dry unit weight (γd max) and optimum moisture content (wopt) of the soil properties value that stabilized with Portland Cement. Tests conducted in the laboratory of soil mechanics to determine the index properties (fines and liquid limit) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) between 0-15% then mixed with Portland Cement (PC) with variations of 2%, 4%, 6%, 8% and 10%, each 10 samples. The results showed that the maximum dry unit weight (γd max) and wopt has a significant relationship with percent fines, liquid limit and the percentation of cement. Equation for the estimated maximum dry unit weight (γd max) = 1.782 - 0.011*LL + 0,000*F + 0.006*PS with R2 = 0.915 and the estimated optimum moisture content (wopt) = 3.441 + 0.594*LL + 0,025*F + 0,024*PS with R2 = 0.726.

  8. Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber-cement composites.

    Science.gov (United States)

    Hamzeh, Yahya; Ziabari, Kamran Pourhooshyar; Torkaman, Javad; Ashori, Alireza; Jafari, Mohammad

    2013-03-15

    This work assesses the effects of white rice husk ash (WRHA) as pozzolanic material, virgin kraft pulp (VKP), old corrugated container (OCC) and fibers derived from fiberboard (FFB) as reinforcing agents on some properties of blended cement composites. In the sample preparation, composites were manufactured using fiber-to-cement ratio of 25:75 by weight and 5% CaCl(2) as accelerator. Type II Portland cement was replaced by WRHA at 0%, 25% and 50% by weight of binder. A water-to-binder ratio of 0.55 was used for all blended cement paste mixes. For parametric study, compressive strength, water absorption and density of the composite samples were evaluated. Results showed that WRHA can be applied as a pozzolanic material to cement and also improved resistance to water absorption. However, increasing the replacement level of WRHA tends to reduce the compressive strength due to the low binding ability. The optimum replacement level of WRHA in mortar was 25% by weight of binder; this replacement percentage resulted in better compressive strengths and water absorption. OCC fiber is shown to be superior to VKF and FFB fibers in increasing the compressive strength, due to its superior strength properties. As expected, the increase of the WRHA content induced the reduction of bulk density of the cement composites. Statistical analysis showed that the interaction of above-mentioned variable parameters was significant on the mechanical and physical properties at 1% confidence level.

  9. Environmental CRIteria for CEMent based products, ECRICEM. Phase I. Ordinary Portland Cements. Phase II. Blended Cements. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H.A.; Van Zomeren, A. [ECN Biomass, Coal and Environmetal Research, Petten (Netherlands); Stenger, R. [Holcim Group Support Ltd, Holderbank (Switzerland); Schneider, M.; Spanka, G. [VDZ, Duesseldorf (Germany); Stoltenberg-Hansson, A. [NORCEM, HeidelbergCement Group, Brevik (Norway); Dath, P. [Holcim Belgium, Obourg (Belgium)

    2008-01-15

    The protection of the immediate environment of structural works is one of the essential requirements of the European Construction Products Directive (CPD). According to the CPD, construction products can only be put on the market, if the structural works built with them fulfil the relevant requirements for hygiene, and the protection of health and the environment. These essential requirements in the respective standards are specified at the national level by the individual member states. Cement and cementitious materials are considered to fulfil the fundamental requirements of the European Construction Products Directive and the corresponding national regulations. Therefore a technical regulation like the cement standard EN 197 in general does not cover separate requirements for determining compliance of cementitious materials with criteria on hygiene, health and environmental protection. Further regulations are laid down in cases where it appears necessary for constructive applications requiring a particular protection of water, soil and air.

  10. Contamination effects of drilling fluid additives on cement slurry

    Directory of Open Access Journals (Sweden)

    Youzhi Zheng

    2015-10-01

    Full Text Available During the cementation of deep wells, contamination at the contact surface between cement slurry and drilling fluid will present a technical challenge, which may threaten operation safety. To deal with the problem, lab tests and analysis were performed specifically on the compatibility of fluids during cementation in Sichuan and Chongqing gas fields. Impacts of commonly used additives for drilling fluids were determined on fluidity and thickening time of conventional cement slurry. Through the infrared spectrum analysis, SEM and XRD, infrared spectrum data of kalium polyacrylamide (KPAM and bio-viscosifier were obtained, together with infrared spectrum, SEM and XRD data of cement slurry with additives. Contamination mechanisms of the cement slurry by conventional additives for drilling fluid were reviewed. Test results show that both KPAM and bio-viscosifier are such high-molecular materials that the long chains in these materials may easily absorb cement particles in the slurry to form mixed network structures; as a result, cement particles were prone to agglomeration and eventually lost their pumpability. Finally, assessment of and testing methods for the contamination effects of drilling fluid additives on cement slurry were further improved to form standards and codes that may help solve the said problems. This study will provide technological supports for the preparation of drilling fluids with desirable properties prior to cementation, the selection of optimal drilling fluids additives, and the development of innovative drilling fluids additives.

  11. Development of monetite-nanosilica bone cement: a preliminary study.

    Science.gov (United States)

    Zhou, Huan; Luchini, Timothy J F; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2014-11-01

    In this paper, we reported the results of our efforts in developing DCPA/nanosilica composite orthopedic cement. It is motivated by the significances of DCPA and silicon in bone physiological activities. More specifically, this paper examined the effects of various experimental parameters on the properties of such composite cements. In this work, DCPA cement powders were synthesized using a microwave synthesis technique. Mixing colloidal nanosilica directly with synthesized DCPA cement powders can significantly reduce the washout resistance of DCPA cement. In contrast, a DCPA-nanosilica cement powder prepared by reacting Ca(OH)2 , H3 PO4 and nanosilica together showed good washout resistance. The incorporation of nanosilica in DCPA can improve compressive strength, accelerate cement solidification, and intensify surface bioactivity. In addition, it was observed that by controlling the content of NaHCO3 during cement preparation, the resulting composite cement properties could be modified. Allowing for the development of different setting times, mechanical performance and crystal features. It is suggested that DCPA-nanosilica composite cement can be a potential candidate for bone healing applications.

  12. Development of fluorapatite cement for dental enamel defects repair.

    Science.gov (United States)

    Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.

  13. The contemporary cement cycle of the United States

    Science.gov (United States)

    Kapur, A.; Van Oss, H. G.; Keoleian, G.; Kesler, S.E.; Kendall, A.

    2009-01-01

    A country-level stock and flow model for cement, an important construction material, was developed based on a material flow analysis framework. Using this model, the contemporary cement cycle of the United States was constructed by analyzing production, import, and export data for different stages of the cement cycle. The United States currently supplies approximately 80% of its cement consumption through domestic production and the rest is imported. The average annual net addition of in-use new cement stock over the period 2000-2004 was approximately 83 million metric tons and amounts to 2.3 tons per capita of concrete. Nonfuel carbon dioxide emissions (42 million metric tons per year) from the calcination phase of cement manufacture account for 62% of the total 68 million tons per year of cement production residues. The end-of-life cement discards are estimated to be 33 million metric tons per year, of which between 30% and 80% is recycled. A significant portion of the infrastructure in the United States is reaching the end of its useful life and will need to be replaced or rehabilitated; this could require far more cement than might be expected from economic forecasts of demand for cement. ?? 2009 Springer Japan.

  14. The Influence of C3A Content in Cement on the Chloride Transport

    Directory of Open Access Journals (Sweden)

    Min Jae Kim

    2016-01-01

    Full Text Available The present study concerns the influence of C3A in cement on chloride transport in reinforced concrete. Three modified cement was manufactured in the variation of the C3A content, ranging from 6.0 and 10.5 up to 16.9%. The setting time of fresh concrete was measured immediately after mixing, together with the temperature at the time of initial set. For properties of hardened concrete in the variation in the C3A, a development of the compressive strength and chloride permeation were measured using mortar specimens. Simultaneously, chloride binding capacity was measured by the water extraction method. To ensure the influence of pore structure on chloride transport, the pore structure was examined by the mercury intrusion porosimetry. As a result, it was found that an increase in the C3A content resulted in an increase in chloride binding capacity. However, it seemed that increased binding of chlorides is related to the higher ingress of chlorides, despite denser pore structure. It may be attributed to the higher surface chloride, which could increase the gradient of chloride concentration from the surface, thereby leading to the higher level of chloride profiles. Substantially, the benefit of high C3A in resisting corrosion, arising from removal of free chlorides in the pore solution, would be offset by increased chloride ingress at a given duration, when it comes to the corrosion-free service life.

  15. Autopsy studies of the bone-cement interface in well-fixed cemented total hip arthroplasties.

    Science.gov (United States)

    Schmalzried, T P; Maloney, W J; Jasty, M; Kwong, L M; Harris, W H

    1993-04-01

    Although knowledge of the clinical status of the implant is important, only instrumented mechanical testing of retrieved specimens provides quantitative assessment of implant fixation. This measurement allows placement of the implant along a continuum of loosening and is the foundation for the interpretation of subsequent findings. Analysis of implants that have been proven to be well fixed by instrumented testing reveals significant differences in the initial events in the loosening of femoral and acetabular components. Although radiolucencies were observed around all of these well-fixed femoral and acetabular components, the histology (and therefore the etiology) of the radiolucency is different and variable on the two sides of the articulation. The majority of femoral radiolucencies appear to be due to age and stress-related remodeling while particulate-induced bone resorption plays an important role in acetabular radiolucencies. A finding common to both sides of the articulation in these stable components, however, was intimate contact of bone with cement without any interposed soft tissue even after 17.5 years of service. Primary incompatibility and/or failure of the cement was not identified as a factor in initiating either femoral or acetabular component loosening. These studies document the long-term compatibility of bone with cement in bulk form. Improvements in cemented femoral component fixation should focus on stem design and cementing technique. Long-term acetabular component fixation can be improved by reduction or elimination of polyethylene wear and optimization of the bone-implant interface.

  16. Cement clinker structure during plasma-chemical synthesis and its influence on cement properties

    Science.gov (United States)

    Sazonova, N.; Skripnikova, N.; Lucenko, A.; Novikova, L.

    2015-01-01

    The aim of this study was to determine the degree of influence of cement clinker cooling modes, synthesized in a low-temperature plasma, its structure and physico-mechanical properties. The raw mixture consisting of marble, sand, ash from thermal power plants and py- rite cinders were used, which are characterized by saturation factor (1,045); silicate (2,35) and alumina (1,22) modules. It was found that the use of different cooling rates of fused cement clinker entails changes associated with the mineralogical composition (increase of alite of 8.719,2 %), morphology (variation of the mineral alite aspect ratio of 6,7-17,5), density of the structure (change in distance between the minerals from 1 to 7,5 microns), grindability, specific surface area (2600-3650 cm2/g) and, in consequence, the activity of cement (56,973,2 MPa). Disorientation of alite mineral blocks against each other, a significant amount of microcracks, affect the increase in cement specific surface area of 14,3-21,6 %, which leads to activity growth of the system. Along with this, with the rapid cooling of the samples, alite 54CaO- 16SiO2-Al2O3 MgO is formed, with single units of the structure, more deformed relatively to C3S, which has a positive effect on the hydraulic cement activity.

  17. Hydrothermal Characteristics of Blended Cement Pastes Containing Silica Sand Using Cement Kiln Dust as an Activator

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The hydrothermal reactivity of silica sand was studied using cement kiln dust (CKD) as an activator in addition to the Portlandcement fraction of El-Karnak cement (a blend of ordinary Portland cement and ground sand). Autoclaved El-Karnak cementpastes were studied at pressures of 0.507, 1.013 and 1.520 MPa of saturated steam with respect to their compressive strength,kinetics of hydrothermal reaction and the phase composition of the formed hydrates. The role of CKD in affecting thephysicochemical and mechanical properties of El-Karnak cement pastes was studied by autoclaving of several pastes containing5, 7.5, 10 and 20% CKD at a pressure of 1.013 MPa of saturated steam. CKD was added either as a raw CKD (unwashed) orafter washing with water (washed CKD). The results of these physicochemical studies obtained could be related as much aspossible to the role of CKD (raw or washed) in affecting the hydrothermal reactivity of silica sand in El-Karnak cement pastes.

  18. Glass ionomer restorative cement systems: an update.

    Science.gov (United States)

    Berg, Joel H; Croll, Theodore P

    2015-01-01

    Glass ionomer cements have been used in pediatric restorative dentistry for more than two decades. Their usefulness in clinical dentistry is preferential to other materials because of fluoride release from the glass component, biocompatibility, chemical adhesion to dentin and enamel, coefficient of thermal expansion similar to that of tooth structure, and versatility. The purpose of this paper was to review the uses of glass ionomer materials in pediatric dentistry, specifically as pit and fissure sealants, dentin and enamel replacement repair materials, and luting cements, and for use in glass ionomer/resin-based composite stratification tooth restoration (the sandwich technique). This article can also be used as a guide to research and clinical references regarding specific aspects of the glass ionomer systems and how they are used for young patients.

  19. Scrap tire ashes in portland cement production

    Directory of Open Access Journals (Sweden)

    Mónica Adriana Trezza

    2009-01-01

    Full Text Available Scrap tires are not considered harmful waste, but their stocking and disposal are a potential health and environmental risk. Properly controlled calcinations at high temperatures make tire combustion an interesting alternative due to its high calorific power, comparable to that of fuel-oil. Consequently, using them as an alternative combustible material in cement kilns makes it possible to give it a valuable use. However, it remains to be assured whether the impurities added to the clinker through these fuels do not affect its structure or properties.This paper shows the studies carried out on different clinkers under laboratory conditions with different levels of addition of scrap tire ashes, added by partially replacing traditional fuel in cement kilns.

  20. Underground void filling by cemented mill tailings

    Institute of Scientific and Technical Information of China (English)

    Choudhary Bhanwar Singh; Kumar Santosh

    2013-01-01

    Underground mining always create voids. These voids can cause subsidence of surface. So it is always a demand to fill the void in such a manner that the effect of underground mining can be minimized. Void filling using mill tailings especially in metal mining is one of the best techniques. The tailings produced in milling process have traditionally been disposed in tailing ponds creating a waste disposal and environ-mental problems in terms of land degradation, air and water pollution, etc. This disposal practice is more acute in the metal milling industry where the fine grinding, required for value liberation, results in the production of very fine tailings in large percentage. This paper includes discussions on the effectiveness of different paste mixes with varying cement contents in paste backfilling operations. The results revealed that material composition and use of super plasticizer strongly influenced the strength of cemented backfill.

  1. [Environment load from China's cement production].

    Science.gov (United States)

    Zhu, Tian-le; He, Wei; Zeng, Xiao-lan; Huang, Xin; Ma, Bao-guo

    2006-10-01

    Based on the life-cycle theory, a quantitative evaluation of the environment load caused by cement manufacturing in China was carried out with the application of the CML. environmental impact assessment method. The results show that global warming potential, energy depletion potential and abiotic depletion potential make the main contribution to the environment impact, their environmental loads corresponding to identical environmental impact sorts being 2.76%, 2.34% and 1.39% of the overall load of the whole world, respectively. In 2004, the environment load from cement manufacturing in China is roughly 1.28% of the overall load of the whole world, in which the environmental loads from the shaft kiln processing, wet rotary processing and new-type dry processing being 0.84%, 0.12% and 0.32%, respectively. And it can be reduced to about 1% by replacing backward production processes with the dry method production process.

  2. High temperature cement raw meal flowability

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Dam-Johansen, Kim

    2014-01-01

    The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated by incre......The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated...

  3. DESIGN OF CEMENT COMPOSITES WITH INCREASED IMPERMEABILITY

    Directory of Open Access Journals (Sweden)

    Fedyuk Roman Sergeevich

    2016-05-01

    Full Text Available The paper deals with the development of composite binders for producing concrete with improved characteristics of gas, water and vapor permeability. The authors investigate the processes of composite materials formation in order of decreasing scale levels from macro to nanostructures. The criteria for optimization of the volume of dispersed additives in concrete are offered. The authors theoretically studied the technological features of the formation of hydrated cement stone structure. A positive effect of nanodispersed additives on the structure and physico-mechanical properties of cement composite materials are predicted. Thanks to its improved features, such as good ratio of strength and body density, high density and lifetime, the modified concrete may be used when solving various practical tasks of the construction branch.

  4. Understanding acoustic methods for cement bond logging.

    Science.gov (United States)

    Wang, Hua; Tao, Guo; Shang, Xuefeng

    2016-05-01

    Well cementation is important for oil/gas production, underground gas storage, and CO2 storage, since it isolates the reservoir layers from aquifers to increase well integrity and reduce environmental footprint. This paper analyzes wave modes of different sonic/ultrasonic methods for cement bonding evaluation. A Two dimensional finite difference method is then used to simulate the wavefield for the ultrasonic methods in the cased-hole models. Waveforms of pulse-echo method from different interfaces in a good bonded well are analyzed. Wavefield of the pitch-catch method for free casing, partial or full bonded models with ultra-low density cement are studied. Based on the studies, the modes in different methods are considered as follows: the zero-order symmetric Leaky-Lamb mode (S0) for sonic method, the first-order symmetric Leaky-Lamb mode (S1) for the pulse-echo method, and the zero-order anti-symmetric Leaky-Lamb mode (A0) for the pitch-catch method. For the sonic method, a directional transmitter in both the azimuth and axial directions can generate energy with a large incidence angle and azimuth resolution, which can effectively generate S0 and break out the azimuth limitation of the conventional sonic method. Although combination of pulse-echo and pitch-catch methods can determine the bonding condition of the third interface for the ultra-low density cement case, the pitch-catch cannot tell the fluid annulus thickness behind casing for the partial bonded cased-hole.

  5. Polypropylene Fibers in Portland Cement Concrete Pavements.

    Science.gov (United States)

    1992-08-01

    Bibliography on Fiber- Reinforced Cement and Concrete," Miscellaneous Paper C-76-6, with supplements 1, 2, 3, and 4 ( 1977 , 1979, 1980, and 1982), US Army... Mindess , S., Bentur, A., Yan, C., and Vondran, G., "Impact Resistance of Concrete Containing Both Conventional Steel Reinforcement and Fibrillated...Roads, Streets, Walks, and Open Storage Areas," TM 5-822-6/AFM 88-7, Chap. 7, Washington, DC, 1977 . 18. __ , "Concrete Floor Slabs on Grade Subjected

  6. Estimating the chloride transport in cement paste

    Directory of Open Access Journals (Sweden)

    Princigallo, A.

    2012-06-01

    Full Text Available A method was developed to measure the diffusion coefficient of chloride ions in cement paste based on an analytical solution to Fick’s 2nd law in a cylindrical coordinate system. This natural method yielded diffusivity results within as little as a month. Testing time was reduced by exploiting the three-dimensional inward flux in the specimen. In an attempt to determine the saturation concentration, dense portland cement pastes were exposed to a concentrated chloride solution. The method proved to be useful for exploring cement hydration-induced changes in the diffusion coefficient of cement paste.

    Se ha desarrollado un método para medir el coeficiente de difusión de los iones cloruro en la pasta de cemento, partiendo de una aplicación analítica de la segunda ley de Fick en un sistema de coordinadas cilíndrico. Este método, que es natural, demostró ser capaz de producir resultados de difusividad en tan solo un mes. Se consiguió reducir el tiempo de ensayo mediante el aprovechamiento de la tridimensionalidad del flujo desde el exterior al interior de la probeta. A fin de determinar la concentración de saturación, se sometieron las pastas de cemento Portland a una disolución de cloruros concentrada. Este método resultó ser útil en el estudio de los cambios del coeficiente de difusión de la pasta de cemento provocados por las reacciones de hidratación que tienen lugar en esta.

  7. Application of Magnetic Force Generator in Cementation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper introduces a new behavior of the heat treatment technique that is cementation with magnetic force generator (MFHS). The result shows that due to the strong magnetic field action of MFHS on seep means, the energy and activity of active atom are increased, which accelerates interface activating and atoms diffusing, forms action of speed-up seeping. This technique features are Iow in energy consuming, and high in seeping efficiency.

  8. EQUIVALENT MODEL OF EXPANSION OF CEMENT MORTAR UNDER SULPHATE EROSION

    Institute of Scientific and Technical Information of China (English)

    Jue Zhu; Minqiang Jiaug; Jiankang Chen

    2008-01-01

    The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods.First,cement mortars are fabricated with the ratio of water to cement of 0.4,0.6,and 0.8.Secondly,the expansion of specimen immerged in sulphate solution is measured at different times.Thirdly,a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method.In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account.Finally,the numerical calculation is performed.The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.

  9. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration.

    Science.gov (United States)

    Wu, Fan; Su, Jiacan; Wei, Jie; Guo, Han; Liu, Changsheng

    2008-12-01

    Novel injectable and degradable calcium-magnesium phosphate cement (CMPC) with rapid-setting characteristic was developed by the introduction of magnesium phosphate cement (MPC) into calcium phosphate cement (CPC). The calcium-magnesium phosphate cement prepared under the optimum P/L ratio exhibited good injectability and desired workability. It could set within 10 min at 37 degrees C in 100% relative humidity and the compressive strength could reach 47 MPa after setting for 48 h, indicating that the prepared cement has relatively high initial mechanical strength. The results of in vitro degradation experiments demonstrated the good degradability of the injectable CMPC, and its degradation rate occurred significantly faster than that of pure CPC in simulated body fluid (SBF) solution. It can be concluded that the novel injectable calcium-magnesium phosphate cement is highly promising for a wide variety of clinical applications, especially for the development of minimally invasive techniques.

  10. Test on Sensor Effect of Cement Matrix Piezoelectric Composite

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoming; LI Zhongxian; DING Yang; LI Zongjin

    2005-01-01

    A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.

  11. Solidification of Spent Ion Exchange Resin Using ASC Cement

    Institute of Scientific and Technical Information of China (English)

    周耀中; 云桂春; 叶裕才

    2002-01-01

    Ion exchange resins (IERs) have been widely used in nuclear facilities. However, the spent radioactive IERs result in major quantities of low and intermediate level radioactive wastes. This article describes a laboratory experimental study on solidification processing of IERs using a new type of cement named ASC cement. The strength of the cementation matrix is in the range of 18-20 MPa (28 d); the loading of the spent IER in the cement-resin matrix is over 45% and leaching rates of 137Cs, 90Sr and 60Co are 7.92×10-5, 5.7×10-6, and 1.19×10-8 cm/d. The results show that ASC cement can be a preferable cementation material for immobilization of radioactive spent IER.

  12. Utilization of red mud in cement production: a review.

    Science.gov (United States)

    Liu, Xiaoming; Zhang, Na

    2011-10-01

    Red mud is a solid waste residue of the digestion of bauxite ores with caustic soda for alumina production. Its disposal remains a worldwide issue in terms of environmental concerns. During the past decades, extensive work has been done by a lot of researchers to develop various economic ways for the utilization of red mud. One of the economic ways is using red mud in cement production, which is also an efficient method for large-scale recycling of red mud. This paper provides a review on the utilization of red mud in cement production, and it clearly points out three directions for the use of red mud in cement production, namely the preparation of cement clinkers, production of composite cements as well as alkali-activated cements. In the present paper, the chemical and mineralogical characteristics of red mud are summarized, and the current progresses on these three directions are reviewed in detail.

  13. Chemical and physical properties of bone cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    Po-Liang Lai

    2013-08-01

    Full Text Available Vertebral compression fracture is the most common complication of osteoporosis. It may result in persistent severe pain and limited mobility, and significantly impacts the quality of life. Vertebroplasty involves a percutaneous injection of bone cement into the collapsed vertebrae by fluorescent guide. The most commonly used bone cement in percutaneous vertebroplasty is based on the polymerization of methylmethacrylate monomers to polymethylmethacrylate (PMMA polymers. However, information on the properties of bone cement is mostly published in the biomaterial sciences literature, a source with which the clinical community is generally unfamiliar. This review focuses on the chemistry of bone cement polymerization and the physical properties of PMMA. The effects of altering the portions and contents of monomer liquid and polymer powders on the setting time, polymerization temperature, and compressive strength of the cement are also discussed. This information will allow spine surgeons to manipulate bone cement characteristics for specific clinical applications and improve safety.

  14. Injectable Premixed Cement of Nanoapatite and Polyamide Composite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new type of injectable premixed bone cement consisting of nano-hydroxyapatite (n-HA) and polyamide 66(PA66) composite is investigated. This cement can be handled as paste and easily shaped, which can set in air, in physiological saline solution and in blood. The setting time, injectability and compressive strength of the cement largely depend on the ratio of liquid to powder (L/P). Moreover, the content of n-HA in composite also affects the compressive strength and injectability of the cement. The premixed composite cement can remain stable in the package for a long period and harden only after delivery to the defects site. The results suggest that injectable premixed cement has a reasonable setting time, reasonable viscosity for injecting, excellent washout resistance and high mechanical strength, which can be developed for root canal filling, sealing and various bone defects augmentation.

  15. The Pore Structure and Hydration Performance of Sulphoaluminate MDF Cement

    Institute of Scientific and Technical Information of China (English)

    HUANG Cong-yun; YUAN Run-zhang; LONG Shi-zong

    2004-01-01

    The hydration and pore structure of sulphoaluminate MDF cement were studied by X-ray diffractometer ( XRD ), scanning electron microscope (SEM) and mercury intrusion porosimeter ( MIP ) etc. The ex-perimental results indicate that hydration products of the materials are entringites ( Aft ), aluminium hydroxide andCSH (Ⅰ) gel etc. Due to its very low water-cement ratio, hydration function is only confined to the surfaces of ce-ment grains, and there is a lot of sulphoaluminate cement in the hardenite which is unhydrated yet. Hydration re-action was rapidly carried under the condition of the heat-pressing. Therefore cement hydrates Aft, CSH (Ⅰ) andaluminium hydroxide gel fill in pores. The expansibility of Aft makes the porosity of MDF cement lower ( less than1 percent ) and the size of pore smaller (80 percent pore was less than 250A), and enhances its strength.

  16. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  17. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron

  18. Cements and adhesives for all-ceramic restorations.

    Science.gov (United States)

    Manso, Adriana P; Silva, Nelson R F A; Bonfante, Estevam A; Pegoraro, Thiago A; Dias, Renata A; Carvalho, Ricardo M

    2011-04-01

    Dental cements are designed to retain restorations, prefabricated or cast posts and cores, and appliances in a stable, and long-lasting position in the oral environment. Resin-based cements were developed to overcome drawbacks of nonresinous materials, including low strength, high solubility, and opacity. Successful cementation of esthetic restorations depends on appropriate treatment to the tooth substrate and intaglio surface of the restoration, which in turn, depends on the ceramic characteristics. A reliable resin cementation procedure can only be achieved if the operator is aware of the mechanisms involved to perform the cementation and material properties. This article addresses current knowledge of resin cementation concepts, exploring the bonding mechanisms that influence long-term clinical success of all-ceramic systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The fluid-compensated cement bond log

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, T.H.; Wheelis, W.B. Jr.; Leslie, H.D.

    1986-08-01

    Simulations of cement bond logging (CBL) have shown that wellbore fluid effects can be segregated from sonic-signal response to changing cement strengths. Traditionally, the effects have been considered negligible and the CBL's have been interpreted as if water were in the wellbore. However, large variations in CBL's have become apparent with the increasing number of logs run in completion fluids, such as CaCl/sub 2/, ZnBr/sub 2/, and CaBr/sub 2/. To study wellbore fluid effects, physical and numerical models were developed that simulated the wellbore geometry. Measurements were conducted in 5-, 7-, and 9 5/8-in. casings for a range of wellbore fluid types and for both densities and viscosities. Parallel numerical modeling used similar parameters. Results show that bond-log amplitudes varied dramatically with the wellbore fluid acoustic impedance-i.e., there was a 70% increase in signal amplitudes for 11.5 lbm/gal (1370-kg/m/sup 3/) CaCl/sub 2/ over the signal amplitude in water. This led to the development of a fluid-compensated bond log that corrects the amplitude for acoustic impedance of various wellbore fluids, thereby making the measurements more directly related to the cement quality.

  20. Tunisian gypsums: Characteristics and use in cement

    Science.gov (United States)

    Mahmoudi, Salah; Bennour, Ali; Chalwati, Youssef; Souidi, Khouloud; Thabet, Manel; Srasra, Ezzedine; Zargouni, Fouad

    2016-09-01

    Gypsum materials of hundred meters thickness and interbedded with marine claystones and limestones from different paleogeographic sectors in the Tunisian territory are studied to assess their suitability for cement production. For this reason, thirty representative samples are analysed by chemical, physical and geotechnical tests. The obtained results for the studied gypsum materials are compared to Tunisian and European norms and with the local cements, currently marketed and which obey international norms. Indeed, for all samples hydraulic modulus HM, silica modulus SM and alumina modulus AM vary from (2.37-2.44), (2.48-2.68) and (1.45-2.5), respectively; whereas the required values for these modulus are (1.5-2.5), (2-3) and (1.5-2.5). The same behavior is observed for mineralogical analyses of C3S, C2S, C3A and C4AF and compressive strength at different ages. Briefly, Tunisia contains important reserves of gypsum scattered and spread over the Tunisian territory and can be used for cement production.

  1. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration.

    Science.gov (United States)

    Wu, Fan; Wei, Jie; Guo, Han; Chen, Fangping; Hong, Hua; Liu, Changsheng

    2008-11-01

    Calcium phosphate cement (CPC) has been successfully used in clinics as bone repair biomaterial for many years. However, poor mechanical properties and a low biodegradation rate limit any further applications. Magnesium phosphate cement (MPC) is characterized by fast setting, high initial strength and relatively rapid degradation in vivo. In this study, MPC was combined with CPC to develop novel calcium-magnesium phosphate cement (CMPC). The setting time, compressive strength, phase composition of hardened cement, degradation in vitro, cells responses in vitro by MG-63 cell culture and tissue responses in vivo by implantation of CMPC in bone defect of rabbits were investigated. The results show that CMPC has a shorter setting time and markedly better mechanical properties than either CPC or MPC. Moreover, CMPC showed significantly improved degradability compared to CPC in simulated body fluid. Cell culture results indicate that CMPC is biocompatible and could support cell attachment and proliferation. To investigate the in vivo biocompatibility and osteogenesis, the CMPC samples were implanted into bone defects in rabbits. Histological evaluation showed that the introduction of MPC into CPC enhanced the efficiency of new bone formation. CMPC also exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results obtained suggest that CMPC, having met the basic requirements of bone tissue engineering, might have a significant clinical advantage over CPC, and may have the potential to be applied in orthopedic, reconstructive and maxillofacial surgery.

  2. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  3. Carbonate Looping for De-Carbonization of Cement Plants

    OpenAIRE

    2011-01-01

    Cement industry is one of the largest emitter of CO2 other than power generation plants, which includes the emissions from combustion of fuel and also from calcination of limestone for clinker production. In order to reduce CO2 emissions from the cement industry an effective an economically feasible technology is to be developed. The carbonate looping process is a promising technology, which is particularly suitable for the cement industry as limestone could be used for capture and release of...

  4. Personal exposure to inhalable cement dust among construction workers.

    Science.gov (United States)

    Peters, Susan; Thomassen, Yngvar; Fechter-Rink, Edeltraud; Kromhout, Hans

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and its cement content. Exposure variability was modelled with linear mixed models.Results- Inhalable dust concentrations at the construction site ranged from 0.05 to 34 mg/m(3), with a mean of 1.0 mg/m(3). Average concentration for inhalable cement dust was 0.3 mg/m(3) (GM; range 0.02-17 mg/m(3)). Levels in the ready-mix and pre-cast concrete plants were on average 0.5 mg/m(3) (GM) for inhalable dust and 0.2 mg/m(3) (GM) for inhalable cement dust. Highest concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM = 55 mg/m(3); inhalable cement dust GM = 33 mg/m(3)) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages during reinforcement work and pouring. Most likely other sources were contributing to dust concentrations, particularly at the construction site. Within job groups, temporal variability in exposure concentrations generally outweighed differences in average concentrations between workers. 'Using a broom', 'outdoor wind speed' and 'presence of rain' were overall the most influential factors affecting inhalable (cement) dust exposure.Conclusion- Job type appeared to be the main predictor of exposure to inhalable (cement) dust at the construction site. Inhalable dust concentrations in cement production plants, especially during cleaning tasks, are usually considerably higher than at the construction site.

  5. Beta-tricalcium phosphate release from brushite cement surface.

    Science.gov (United States)

    Alkhraisat, M Hamdan; Mariño, F Tamimi; Retama, J Rubio; Jerez, L Blanco; López-Cabarcos, E

    2008-03-01

    Different in vivo studies demonstrated that brushite cements are biocompatible, bioresorbable, and osteoconductive. However, the decay of brushite cements has been scarcely studied even though it may be of great concern for clinical applications in highly blood-perfused regions. This work was elaborated to elucidate factors that determine brushite cement surface disintegration. For that, brushite cements were modified using in their preparation different aqueous solutions of phosphoric, glycolic, tartaric, and citric acids in concentrations that were reported to improve the cement properties. Two-viscosity enhancing polysaccharides, chondroitin-4 sulfate and hyaluronic acid, were also assayed. Thereafter, pre- and set cement samples were immersed in distilled water for 24 h. The cement-solid weight loss, microstructure, liquid phase viscosity, mean size of the released particles, and zeta potential were analyzed using X-ray diffraction, FTIR spectroscopy, light scattering, scanning electron microscopy and optical microscopy. It was found that the particles released from the cement surface were beta-TCP, and their amount depends on the carboxylic acid used in the preparation of the cement. The addition of hyaluronic acid and chondroitin-4 sulfate decreased the amount of released particles from the surface of the set brushite cement made with citric acid. Furthermore, the hyaluronic acid increased significantly the viscosity of the citric acid solution and the cement paste prepared with this liquid phase showed a pronounced step down in particle release. In this study, we showed that the water solubility of calcium carboxylate and the viscosity of mixing liquid may dictate the superficial disintegration of brushite cements.

  6. Bone cement flow analysis by stepwise injection through medical cannulas.

    Science.gov (United States)

    Zderic, Ivan; Steinmetz, Philipp; Windolf, Markus; Richards, R Geoff; Boger, Andreas; Gueorguiev, Boyko

    2016-12-01

    Cement leakage is a serious adverse event potentially occurring during vertebroplasty. Pre-operative in-silico planning of the cement filling process can help reducing complication rates related to leakage. This requires a better understanding of the cement flow along the whole injection path. Therefore, the aim of the present study was to analyze bone cement flow behavior by stepwise injections through medical cannulas. Sixteen cannulas were assigned to four groups for stepwise injection of differently colored cement portions of 1ml volume. Each group differed in the amount of injected cement portions with a range of 1-4ml. After cement curing longitudinal cross-sections of the cannulas were performed and high-resolution pictures taken. Based on these pictures, quadratic polynomial interpolation was applied to the marked intersections between the last two injected cement portions to calculate the leading coefficients. Leading coefficients in the groups with three cement portions (0.287 ± 0.078), four portions (0.243 ± 0.041) and two portions (0.232 ± 0.050) were comparable and significantly higher than the group with one cement portion (0.0032 ± 0.0004), p ≤ 0.016. Based on these findings, cement flow through medical cannulas can be considered as predictable and can therefore be excluded as a source of risk for possible cement leakage complications during vertebroplasty procedures. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. High Water Content Material Based on Ba-Bearing Sulphoaluminate Cement

    Institute of Scientific and Technical Information of China (English)

    CHANG Jun; CHENG Xin; LU Lingchao; HUANG Shifeng; YE Zhengmao

    2005-01-01

    A new type of high water content material which is made up of two pastes is prepared, one is made from lime and gypsum, and another is based on Ba-bearing stdphoaluminate cement. It has excellent properties such as slow single paste solidifing,fast double pastes solidifing,fast coagulating and hardening, high early strength, good suspension property at high W/C ratio and low cost. Meanwhile, the properties and hydration mechanism of the material were analyzed by using XRD , DTA- TG and SEM. The hydrated products of new type of high water content material are Ba-bearing ettringite, BaSO4 , aluminum gel and C-S-H gel.

  8. Copper(II) complexes of salicylic acid combining superoxide dismutase mimetic properties with DNA binding and cleaving capabilities display promising chemotherapeutic potential with fast acting in vitro cytotoxicity against cisplatin sensitive and resistant cancer cell lines.

    Science.gov (United States)

    O'Connor, Mark; Kellett, Andrew; McCann, Malachy; Rosair, Georgina; McNamara, Mary; Howe, Orla; Creaven, Bernadette S; McClean, Siobhán; Kia, Agnieszka Foltyn-Arfa; O'Shea, Denis; Devereux, Michael

    2012-03-08

    The complexes [Cu(salH)(2)(H(2)O)] (1), [Cu(dipsH)(2)(H(2)O)] (2), {Cu(3-MeOsal)(H(2)O)(0.75)}(n) (3), [Cu(dipsH)(2)(BZDH)(2)] (4), [Cu(dipsH)(2)(2-MeOHBZDH)(2)]·EtOH (5), [Cu(sal)(phen)] (6), [Cu(dips)(phen)]·H(2)O (7), and [Cu(3-MeOsal)(phen)]·H(2)O (8) (salH(2) = salicylic acid; dipsH(2) = 3,5-diisopropylsalicylic acid; 3-MeOsalH(2) = 3-methoxysalicylic acid; BZDH = benzimidazole; 2-MeOHBZDH = 2 methanolbenzimidazole and phen =1,10-phenanthroline) were prepared and characterized. Structures of 4, 5, and 8 were determined by X-ray crystallography. Compounds 1-8 are potent superoxide dismutase mimetics, and they are inactive as inhibitors of COX-2 activity. Compounds 1, 4, and 5 exhibit moderate inhibition of COX-1. Complexes 6-8 display rapid micromolar cytotoxicity against cisplatin sensitive (breast (MCF-7), prostate (DU145), and colon (HT29)) and cisplatin resistant (ovarian (SK-OV-3)) cell lines compared to 1-5, and they exhibit potent in vitro DNA binding and cleavage capabilities.

  9. Physical, mechanical, and durability properties of gypsum-Portland cement-natural pozzolan blends

    National Research Council Canada - National Science Library

    Colak A

    2001-01-01

    This paper deals with the effect of gypsum Portland cement and gypsum Portland cement natural pozzolan ratios on the physical, mechanical, and durability properties of gypsum Portland cement natural pozzolan blends...

  10. Correlation between the cytotoxicity of self-etching resin cements and the degree of conversion

    Directory of Open Access Journals (Sweden)

    Luís FSA Morgan

    2015-01-01

    Conclusion: These results indicate that photopolymerization of dual cure self-etching resin cements decrease toxic effects on cell culture. Adequate photopolymerization should be considered during cementation when using dual polymerization self-etching resin cements.

  11. A prospective clinical study of polycarboxylate cement in periapical surgery

    National Research Council Canada - National Science Library

    Peñarrocha-Diago, M-A; Ortega-Sánchez, B; García-Mira, B; Maestre-Ferrín, L; Peñarrocha-Oltra, D; Gay-Escoda, C

    .... A prospective clinical study was made of 25 patients subjected to periapical surgery with ultrasound and magnifying loupes, in which polycarboxylate cement was used as retrograde filling material...

  12. Leaching of metals from cement under simulated environmental conditions.

    Science.gov (United States)

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment.

  13. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  14. Development and clinical trial of a novel bioactive bone cement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Strontium(Sr)and related compounds have become more attractive in the prevention and treatment of osteoporosis.Previously,we developed a novel bioactive bone cement which is mainly composed of strontium-containing hydroxyapatite(Sr-HA)filler and bisphenol A diglycidylether dimethacrylate(Bis-GMA)resin.This bone cement is superior to conventional polymethylmethacrylate (PMMA)bone cement in bioactivity,biocompatibility,and osseointegration.It also has shown sufficient mechanical strength properties for its use in percutaneous vertebroplasty(PVP)and total hip replacement(THR).In this paper,we review the in vitro,in vivo and clinical evidence for the effectiveness of this bioactive bone cement.

  15. Development of nanosilica bonded monetite cement from egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement.

  16. Accuracy of Image Analysis in Quantitative Study of Cement Paste

    Directory of Open Access Journals (Sweden)

    Feng Shu-Xia

    2016-01-01

    Full Text Available Quantitative study on cement paste especially blended cement paste has been a hot and difficult issue over the years, and the technique of backscattered electron image analysis showed unique advantages in this field. This paper compared the test results of cement hydration degree, Ca(OH2 content and pore size distribution in pure pastes by image analysis and other methods. Then the accuracy of qualitative study by image analysis was analyzed. The results showed that image analysis technique had displayed higher accuracy in quantifying cement hydration degree and Ca(OH2 content than non-evaporable water test and thermal analysis respectively.

  17. Hydration process in Portland cement blended with activated coal gangue

    Institute of Scientific and Technical Information of China (English)

    Xian-ping LIU; Pei-ming WANG; Min-ju DING

    2011-01-01

    This paper deals with the hydration of a blend of Portland cement and activated coal gangue in order to determine the relationship between the degree of hydration and compressive strength development.The hydration process was investigated by various means:isothermal calorimetry,thermal analysis,non-cvaporable water measurement,and X-ray diffraction analysis.The results show that the activated coal gangue is a pozzolanic material that contributes to the hydration of the cement blend.The pozzolanic reaction occurs over a period of between 7 and 90 d,consuming portlandite and forming both crystal hydrates and ill-crystallized calcium silicate hydrates.These hydrates are similar to those found in pure Portland cement.The results show that if activated coal gangue is substituted for cement at up to 30% (w/w),it does not significantly affect the final compressive strength of the blend.A long-term compressive strength improvement can in fact be achieved by using activated coal gangue as a supplementary cementing material.The relationship between compressive strength and degree of hydration for both pure Portland cement and blended cement can be described with the same equation.However,the parameters are different since blended cement produces fewer calcium silicate hydrates than pure Portland cement at the same degree of hydration.

  18. Production of cement requiring low energy expenditure. An industrial test

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, S.; Blanco, M.T.; Palomo, A.; Puertas, F. (Instituto de Ciencias de la Construccion, Madrid (Spain))

    1991-01-01

    A new method for making cement is proposed. It is based on the use of CaF{sub 2} and CaSO{sub 4} for partial replacement of the usual raw materials in cement manufacturing. This paper shows the feasibility of the proposed method on an industrial scale. A test carried out in a Spanish cement factory (1500 t yield of the new cement) has revealed that the mehtod can not only be adapted to the current technology but also requires a much lower energy expenditure. The final product is shown to have excellent properties in comparison with OPC. (orig.).

  19. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  20. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2006-01-01

    Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... of the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the volumetric...... on the same cement pastes....

  1. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2007-01-01

    Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... of the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the volumetric...... on the same cement pastes....

  2. Study on the hardening mechanism of cement asphalt binder

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hydration and hardening mechanism of cement asphalt binder(CAB) was studied.The early hydration process,hydration products and paste microstructure of CAB made by Portland cement and anionic asphalt emulsion were investigated by calorimetry,X-ray diffraction,and environmental scanning electron microscopy.The early hydration process of CAB can be characterized as 5 stages similar to those of Portland cement.There is no chemical reaction detected between cement and asphalt,hence no new hydration products other than those of Portland cement are produced.The hardening of CAB begins with the hydration of cement.When the hydration of cement comes into the acceleration period and its exothermic rate comes to the maximum,the coalescence of asphalt particles in asphalt emulsion is triggered.In the hardened system of CAB,it was found that the hydration products of cement form the skeleton and are covered by the continuous asphalt film.They formed an interpenetrating network system.The emulsifiers in the asphalt emulsion may retard the hydration process of cement.

  3. Sodium diethyldithiocarbamate as accelerator of the rate of copper cementation

    Directory of Open Access Journals (Sweden)

    Abeer A. El-Saharty

    2015-12-01

    Full Text Available The effects of Cu2+ ion concentration and temperature on the cementation rate of copper from copper sulphate on zinc and the effect of additives of the organic compound “sodium diethyldithiocarbamate” (NaDDC were studied. It was noticed that the cementation increases significantly by increasing the concentrations of NaDDC. The rate of cementation increased by 58.58−100.31%. Our data showed that sodium diethyldithiocarbamate reacts with the Cu2+ solution giving a complex of copper diethyldithiocarbamate, which enhances the rate of cementation.

  4. Statistical Study on Cement-Soil Mixture Strength

    Institute of Scientific and Technical Information of China (English)

    YU Zhiqiang; CAO Yonghua; YAN Shuwang

    2005-01-01

    This paper presents an investigation on strength of cement deep mixing (CDM) mixture. Four typical works of offshore or land-based projects are introduced. With samples from these projects and laboratory tests, statistical analysis is made on the increment law of the strength of cement-soil mixture with different amount of cement, and strengths under different working conditions are compared. It is found that the amount of cement in the cement-soil mixture is closely related to the unconfined compressive strength of the mixture. At the age of 90 d,the unconfined compressive strength of the cement-soil mixture increased by 0.054 Mpa-0.124 Mpa with each cement increasing 10 kg/m3 in the cement-soil mixture, averagely increased by 0.085 Mpa, while that at the age of 120 d increased by 11% in comparison.The quality of the cement-soil mixture should be comprehensively evaluated in accordance with the trimmed average of strength, coefficient of variation and rock quality designation (RQD) indicators of sampling ratio.

  5. DEVELOPING A NEW GENERATION OF HIGH PERFORMANCE COMPOSITE CEMENT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper proposed a new generation of high performance composite cement which is designed according to the optimization of composition and structure of cement paste and is manufactured by blending the different components with special composite techniques. Each of these components has its different special property, and should be compatible with each other and match each other, and the properties of them are complementary mutually. At present, such kind of high performance composite cement can be manufactured with high reactivity cement clinker, ground granulated blast-furnace slag, high grade fly ash, silica fume etc.

  6. Magnesia Modification of Alkali-Activated Slag Fly Ash Cement

    Institute of Scientific and Technical Information of China (English)

    SHEN Weiguo; WANG Yiheng; ZHANG Tao; ZHOU Mingkai; LI Jiasheng; CUI Xiaoyu

    2011-01-01

    A new type of magnesia modification alkali-activated cement was prepared, the strength, setting time, shrinkage ratio and cracking behavior, as well as the composition and structure of the hydration product were investigated. The results indicate that the setting time of this cement is similar to that of the ordinary commercial cements; its strength reaches the standard of 42.5 degree cement, its cracking resistance has been remarkably improved because of the micro-aggregate effect of fly ash and shrinkage compensating of magnesia.

  7. Microindentation of Polymethyl Methacrylate (PMMA Based Bone Cement

    Directory of Open Access Journals (Sweden)

    F. Zivic

    2011-12-01

    Full Text Available Characterization of polymethyl methacrylate (PMMA based bone cement subjected to cyclical loading using microindentation technique is presented in this paper. Indentation technique represents flexible mechanical testing due to its simplicity, minimal specimen preparation and short time needed for tests. The mechanical response of bone cement samples was studied. Realised microindentation enabled determination of the indentation testing hardness HIT and indentation modulus EIT of the observed bone cement. Analysis of optical photographs of the imprints showed that this technique can be effectively used for characterization of bone cements.

  8. Minerals of expansive and non-shrinkage sulfomineral cements

    Directory of Open Access Journals (Sweden)

    Samchenko Svetlana V.

    2017-01-01

    Full Text Available Usually to obtain expansive cements sulfoaluminate clinker or mix aluminate clinker with calcium sulfates (gypsum, hemihydrate, anhydrate are used. For these cements ettringite is an important hydration product and kinetic reaction of this phase plays an important role in determinаting performance. The alternative aluminate phases may be ferrite containing ones. This article deals with the composition and properties of solid solution of calcium sulfoaluminate, sulfoferrite and sulfoaluminoferrite cements. It was studied an influence of calcium sulfate on structure and properties of calcium aluminate and ferrite phases, and their stability under high temperatures. Beside that the properties of cements containing these phases were studied. The investigation of hydration and properties of sulfomineral cements shows that ettringite and its analogies are formed in such way to provide expansion and compression of cement stone. Degree of expansion and self-stressing of cement stone depends not only on composition of sulfated minerals but on ratio and types of clinkers. The higher expansion is reached by the use of high alite containing Portland cement clinker together with sulfoaluminate or sulfoalumoferrite one, the lower expansion is reached by addition of sulfoalumoferrite and sulfoferrite clinkers. These cements are classified as self-stressing, expansive or shrinkage-compensating ones depend on the degree of their expansion after 28 days of curing.

  9. Cementing and formation damage; Cimentacao e dano a formacao

    Energy Technology Data Exchange (ETDEWEB)

    Souza, David Soares de [PETROBRAS, BA (Brazil). Distrito de Perfuracao da Bahia. Div. de Tecnicas e Operacoes

    1994-07-01

    This work presents a general perspective on cementing and formation damage. Few relative experiments to the damage to the formation, that they involve the casing activity and cementing, consider all the factors that affect these operations. So that she can analyze the contribution of a primary cementing has in the formation damage , it should be considered, also, the contribution of the drilling fluid and of the operation of the perforation. With base in experimental data of several accomplished studies, it can be concluded that a primary cementing has small, or any, contribution in the decrease of the productivity of an oil well.

  10. Influence of relationship water/cement upon the processing of cements with pozzolana in standard mortar

    Directory of Open Access Journals (Sweden)

    Gener Rizo, M.

    2002-03-01

    Full Text Available The processing of standard mortar is completed following different methods in accordance with the country, but they exist two fundamental tendecies, the ISO and the ASTM. The cuban norm for mechanic-physic tests is based in ISO, and so they use a constant relationship water/cement in the processing of standard mortar a great problem concerning the cement users when they tested those mixed with puzzolanes, because they don't take care of the bigger water needs of those materials. In this work we present an study of the behaviour of Pozzolanic Portland cements (PP-250 elaborates with a fix and changeable relationship water/cement, obtained starting from the fluidity of the pure Portland cement. (P-350 The results obtained shows that the mechanical resistance decreased in cement mortars PP-250 realised with changeable relationship water/cement. So we recommend the adoption of an optional procedure to elaborate a quality mortar with pozzolana cements.

    La elaboración del mortero normalizado se realiza internacionalmente por diferentes métodos, pero existen dos tendencias fundamentales, la enunciada por ISO y por ASTM. La norma cubana de ensayos físico-mecánicos de cemento se basa en la norma ISO, por lo que para la elaboración del mortero normalizado se utiliza una relación agua/cemento constante. Esto ha provocado discrepancias con los usuarios del cemento, especialmente cuando se ensayan los cementos que contienen puzolanas, ya que se plantea que no se tiene en cuenta la mayor demanda de agua de estos materiales. En el presente trabajo se presenta un estudio del comportamiento de cementos Portland Puzolánicos (PP-250 elaborados con una relación agua/ cemento fija y variable, lograda a partir de la fluidez de la pasta de cemento Portland puro (P-350. Los resultados obtenidos indican que se producen disminuciones en la resistencia mecánica en los morteros de cemento PP-250 elaborados con agua/ cemento variable y recomienda la

  11. Conduction calorimetric studies of ternary binders based on Portland cement, calcium aluminate cement and calcium sulphate

    OpenAIRE

    Torrens Martín, David; Fernández Carrasco, Lucía; Blanco Varela, M.Teresa

    2013-01-01

    Different binders of Portland cement, calcium aluminate cement and calcium sulphate (PC/CAC/CS) have been investigated to determinate the in¿uence the CAC and CS amount in the reactions mechanism. Several mixtures were studied, ratios of 100, 85/15 and 75/25 of PC/CAC with 0, 3 and 5 % of CS. Conduction calorimetric technique was used to follow the hydration during 100 h. The XRD and FTIR techniques were used as support in the analysis of the hydration products. The results have shown tha...

  12. Resistance of Phosphogypsum Cement Pozzolanic Compositions against the Influence of Water

    Directory of Open Access Journals (Sweden)

    Sergejus GAIDUČIS

    2011-09-01

    Full Text Available The reprocessing of freshly removed extractive hemihydrate phosphogypsum into hydraulic composite phosphogypsum cement pozzolana (PGCP binder using mechanical activation is analyzed in this work. In order to increase the effectiveness of the dealing with phosphogypsum reprocessing problem and to lower the energy consumption required for the production of binding materials from phosphogypsum, physical mechanical and water resistance properties of the PGCP binder with less amount (10 % of cement (PGCP(10 were analyzed and compared with the properties of conventional PGCP binder, where the amount of cement is 20 % (PGCP(20. The PGCP binder with pozzolana additives of two types - carbonate opoka and microsilica are analysed. Fresh wet hemihydrate phosphogypsum, cement and pozzolana additive were mechanically activated together and from resulting mixture the samples were formed by vibrating. Compressive strength of PGCP(10 samples after 28 days was 26 MPa - 29 MPa, after 4 months - 30 MPa - 32 MPa, PGCP(20 - 32 MPa - 35 MPa and 36 MPa - 42 MPa accordingly. It is found, that hardened PGCP(10 are also quite resistant to short-term (2 days impact of water (softening coefficient was 0.91 - 0.94, however, its resistance to long-term impact of water is significantly less than PGCP(20. PGCP with microsilica is more strength and more resistant to impact of water than PGCP with opoka. Both, PGCP with opoka, as well as the ones with microsilica, are resistant to the formation of ettringite. However, the primary ettringite and high amount of carbonates, found in the PGCP with opoka, stimulates the formation of thaumasite at low positive temperature and humidity.http://dx.doi.org/10.5755/j01.ms.17.3.599

  13. Valorisation of electric arc furnace steel slag as raw material for low energy belite cements.

    Science.gov (United States)

    Iacobescu, R I; Koumpouri, D; Pontikes, Y; Saban, R; Angelopoulos, G N

    2011-11-30

    In this paper, the valorisation of electric arc furnace steel slag (EAFS) in the production of low energy belite cements is studied. Three types of clinkers were prepared with 0 wt.% (BC), 5 wt.% (BC5) and 10 wt.% (BC10) EAFS, respectively. The design of the raw mixes was based on the compositional indices lime saturation factor (LSF), alumina ratio (AR) and silica ratio (SR). The clinkering temperature was studied for the range 1280-1400°C; firing was performed at 1380°C based on the results regarding free lime and the evolution of microstructure. In order to activate the belite, clinkers were cooled fast by blown air and concurrent crushing. The results demonstrate that the microstructure of the produced clinkers is dominated by belite and alite crystals, with tricalcium aluminate and tetracalcium-alumino-ferrite present as micro-crystalline interstitial phases. The prepared cements presented low early strength development as expected for belite-rich compositions; however the 28-day results were 47.5 MPa, 46.6 MPa and 42.8 MPa for BC, BC5 and BC10, respectively. These values are comparable with OPC CEMI 32.5 N (32.5-52.5 MPa) according to EN 197-1. A fast setting behaviour was also observed, particularly in the case of BC10, whereas soundness did not exceed 1mm.

  14. Influence of Temporary Cements on the Bond Strength of Self-Adhesive Cement to the Metal Coronal Substrate.

    Science.gov (United States)

    Peixoto, Raniel Fernandes; De Aguiar, Caio Rocha; Jacob, Eduardo Santana; Macedo, Ana Paula; De Mattos, Maria da Gloria Chiarello; Antunes, Rossana Pereira de Almeida

    2015-01-01

    This research evaluated the influence of temporary cements (eugenol-containing [EC] or eugenol-free [EF]) on the tensile strength of Ni-Cr copings fixed with self-adhesive resin cement to the metal coronal substrate. Thirty-six temporary crowns were divided into 4 groups (n=9) according to the temporary cements: Provy, Dentsply (eugenol-containing), Temp Cem, Vigodent (eugenol-containing), RelyX Temp NE, 3M ESPE (eugenol-free) and Temp Bond NE, Kerr Corp (eugenol-free). After 24 h of temporary cementation, tensile strength tests were performed in a universal testing machine at a crosshead speed of 0.5 mm/min and 1 kN (100 kgf) load cell. Afterwards, the cast metal cores were cleaned by scraping with curettes and air jet. Thirty-six Ni-Cr copings were cemented to the cast metal cores with self-adhesive resin cement (RelyX U200, 3M ESPE). Tensile strength tests were performed again. In the temporary cementation, Temp Bond NE (12.91 ± 2.54) and Temp Cem (12.22 ± 2.96) presented the highest values of tensile strength and were statistically similar to each other (p>0.05). Statistically significant difference (pcementation of Ni-Cr copings with self-adhesive resin cement. In addition, Temp Cem (120.68 ± 48.27) and RelyX Temp NE (103.04 ± 26.09) showed intermediate tensile strength values. In conclusion, the Provy eugenol-containing temporary cement was associated with the highest bond strength among the resin cements when Ni-Cr copings were cemented to cast metal cores. However, the eugenol cannot be considered a determining factor in increased bond strength, since the other tested cements (1 eugenol-containing and 2 eugenol-free) were similar.

  15. Arsenic content in Portland cement: A literature review

    Directory of Open Access Journals (Sweden)

    Tenorio de Franca Talita

    2010-01-01

    Full Text Available Portland cement (PC is a hydraulic binding material widely used in the building industry. The main interest in its use in dentistry is focused on a possible alternative to mineral trioxide aggregate (MTA because PC is less expensive and is widely available. In dentistry, PC has been used in dental procedures such as pulpotomy, pulp capping, repair of root perforation and root-end filling. The purpose of this article is review the dental literature about the PC, its composition with special attention to arsenic content, properties, and application in dentistry. A bibliographic research was performed in Bireme, PubMed, LILACS and Scopus data bases looking for national and international studies about the PC composition, properties and clinical use. It was observed that PC has favorable biological properties very similar to those of MTA. The PC has shown good cell proliferation induction with formation of a monolayer cell, satisfactory inflammatory response, inhibitory effect of prostaglandin and antimicrobial effect. Studies have shown that PC is not cytotoxic, stimulates the apposition of reparative dentin and permits cellular attachment and growth. Regarding arsenic presence, its levels and release are low. PC has physical, chemical and biological properties similar to MTA. Arsenic levels and release are low, therefore, unable to cause toxic effects.

  16. Percutaneous bone cement refixation of aseptically loose hip prostheses: the effect of interface tissue removal on injected cement volumes

    Energy Technology Data Exchange (ETDEWEB)

    Malan, Daniel F. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands); Delft University of Technology, Department of Intelligent Systems, Delft (Netherlands); Valstar, Edward R. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands); Delft University of Technology, Department of Biomechanical Engineering, Delft (Netherlands); Nelissen, Rob G.H.H. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands)

    2014-11-15

    To quantify whether injected cement volumes differed between two groups of patients who underwent experimental minimally invasive percutaneous cement injection procedures to stabilize aseptically loose hip prostheses. One patient group was preoperatively treated using gene-directed enzyme prodrug therapy to remove fibrous interface tissue, while the other group received no preoperative treatment. It was hypothesized that cement penetration may have been inhibited by the presence of fibrous interface tissue in periprosthetic lesions. We analyzed 17 patients (14 female, 3 male, ages 72-91, ASA categories 2-4) who were treated at our institution. Osteolytic lesions and injected cement were manually delineated using 3D CT image segmentation, and the deposition of injected cement was quantified. Patients who underwent preoperative gene-directed enzyme therapy to remove fibrous tissue exhibited larger injected cement volumes than those who did not. The observed median increase in injected cement volume was 6.8 ml. Higher cement leakage volumes were also observed for this group. We conclude that prior removal of periprosthetic fibrous interface tissue may enable better cement flow and penetration. This might lead to better refixation of aseptically loosened prostheses. (orig.)

  17. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Science.gov (United States)

    Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin

    2017-04-10

    Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  18. HCUP Fast Stats

    Data.gov (United States)

    U.S. Department of Health & Human Services — HCUP Fast Stats provides easy access to the latest HCUP-based statistics for health information topics. HCUP Fast Stats uses visual statistical displays in...

  19. Fast food (image)

    Science.gov (United States)

    Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated ...

  20. Fast food tips (image)

    Science.gov (United States)

    ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ...

  1. Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: A comparative study between cannulated screws with cement injection and solid screws with cement pre-filling

    Directory of Open Access Journals (Sweden)

    Lee Yen-Chen

    2011-02-01

    Full Text Available Abstract Background Pedicle screws with PMMA cement augmentation have been shown to significantly improve the fixation strength in a severely osteoporotic spine. However, the efficacy of screw fixation for different cement augmentation techniques, namely solid screws with retrograde cement pre-filling versus cannulated screws with cement injection through perforation, remains unknown. This study aimed to determine the difference in pullout strength between conical and cylindrical screws based on the aforementioned cement augmentation techniques. The potential loss of fixation upon partial screw removal after screw insertion was also examined. Method The Taguchi method with an L8 array was employed to determine the significance of design factors. Conical and cylindrical pedicle screws with solid or cannulated designs were installed using two different screw augmentation techniques: solid screws with retrograde cement pre-filling and cannulated screws with cement injection through perforation. Uniform synthetic bones (test block simulating severe osteoporosis were used to provide a platform for each screw design and cement augmentation technique. Pedicle screws at full insertion and after a 360-degree back-out from full insertion were then tested for axial pullout failure using a mechanical testing machine. Results The results revealed the following 1 Regardless of the screw outer geometry (conical or cylindrical, solid screws with retrograde cement pre-filling exhibited significantly higher pullout strength than did cannulated screws with cement injection through perforation (p = 0.0129 for conical screws; p = 0.005 for cylindrical screws. 2 For a given cement augmentation technique (screws without cement augmentation, cannulated screws with cement injection or solid screws with cement pre-filling, no significant difference in pullout strength was found between conical and cylindrical screws (p >0.05. 3 Cement infiltration into the open cell of

  2. Cementing mechanism of algal crusts from desert area

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    34-, 17-, 4-, 1.5-year old natural algal crusts were collected from Shapotou Scientific Station of the Chinese Academy of Sciences, 40-day old field and greenhouse artificial algal crusts were in situ developed in the same sandy soil and the same place (37°27′N, 104°57′E). Their different cohesions both against wind force and pressure were measured respectively by a sandy wind-tunnel experiment and a penetrometer. On the basis of these algal crusts, the cementing mechanism was revealed from many subjects and different levels. The results showed that in the indoor artificial crusts with the weakest cohesion bunchy algal filaments were distributed in the surface of the crusts, produced few extracellular polymers (EPS), the binding capacity of the crusts just accomplished by mechanical bundle of algal filaments. For field crusts, most filaments grew toward the deeper layers of algal crusts, secreted much more EPS, and when organic matter content was more than 2.4 times of chlorophyll a, overmuch organic matter (primarily is EPS) began to gather onto the surface of the crusts and formed an organic layer in the relatively lower micro-area, and this made the crust cohesion increase 2.5 times. When the organic layer adsorbed and intercepted amounts of dusts, soil particles and sand grains scattered down from wind, it changed gradually into an inorganic layer in which inorganic matter dominated, and this made the crusts cohesion further enhanced 2-6 times. For crust-building species Microcoleus vaginatus, 88.5% of EPS were the acidic components, 78% were the acidic proteglycan of 380 kD. The uronic acid content accounted for 8% of proteglycan, and their free carboxyls were important sites of binding with metal cations from surrounding matrix.

  3. Is fast food addictive?

    Science.gov (United States)

    Garber, Andrea K; Lustig, Robert H

    2011-09-01

    Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations.

  4. Performance of Fiber Cement Slurry in the Oil and Gas Well Cementation

    Institute of Scientific and Technical Information of China (English)

    BuYuhuan; WangRuihe; ChengRongchao; LiYuhai

    2005-01-01

    Based on a carbon fiber cement slurry system developed in the previous work, the relationship between the carbon fiber and the performance of the cement slurry was experimentally investigated. Results show that the use of fiber has no effect on the slurry theological mode, but influences its rheological behavior. When the fiber proportion ranges from 0.12% to 0.19% and the fiber length from 400 to 1,400 μm the slurry rheological behavior can be improved. Under the normalpressure, the use of fiber can shorten the thickening time of the cement slurry. When the proportion of the constant-length fiber increases, the water loss of the cement slurry decreases first and then increases, and when the fiber length increases (the fiber proportion being kept constant), the water loss shows the same trend. This indicates that there are optimal values for the fiber length and proportion, which vary under the experimental conditions in the following respective ranges: 0.12%-0.37% and 700-1,400 μm.

  5. Influence of CG With High Content of Metallic Particles as a Cement Admixture on Cement Strength

    Institute of Scientific and Technical Information of China (English)

    WAN Hui-wen; LIN Zong-shou; ZHAO Qian; HUANG Yun

    2003-01-01

    Copper gangue (CG), containing a large amount of water with grain sizes of 0.037 to 0.10mm,is an inactive industrial waste generated from copper refineries. When it is dried and used as a cement admixture, the influence of the presence of finely dispersed metallic particles in CG on the microstructure and compressive strength of cement paste has been studied.The results show that the higher the replacement of CG is,the lower the compressive strength of cement mortar is.However,the long-term strength of the specimens with 10% CG,especially after being cured for 3 months,approached to that of the plain mortar.Its mechanism was studied by an electron probe X-ray microanalyzer (EPXMA).The results indicate that a small quantity of Fe(OH)3·nH2O slowly formed from Fe2O3 in the presence of Ca(OH)2, free CaO and MgO of the clinker also slowly hydrated and formed Ca(OH)2 and Mg(OH)2 respectively,so the hardened cement paste became more compact.

  6. [Release amount of heavy metals in cement product from co-processing waste in cement kiln].

    Science.gov (United States)

    Yang, Yu-Fei; Huang, Qi-Fei; Zhang, Xia; Yang, Yu; Wang, Qi

    2009-05-15

    Clinker was produced by Simulating cement calcination test, and concrete samples were also prepared according to national standard GB/T 17671-1999. Long-term cumulative release amount of heavy metals in cement product from co-processing waste in cement kiln was researched through leaching test which refers to EA NEN 7371 and EA NEN 7375, and one-dimensional diffusion model which is on the base of Fick diffusion law. The results show that availabilities of heavy metals are lower than the total amounts in concrete. The diffusion coefficients of heavy metals are different (Cr > As > Ni > Cd). During 30 years service, the cumulative release amounts of Cr, As, Ni and Cd are 4.43 mg/kg, 0.46 mg/kg, 1.50 mg/kg and 0.02 mg/kg, respectively, and the ratios of release which is the division of cumulative release amount and availability are 27.0%, 18.0%, 3.0% and 0.2%, respectively. The most important influence factor of cumulative release amount of heavy metal is the diffusion coefficient, and it is correlative to cumulative release amount. The diffusion coefficient of Cr and As should be controlled exactly in the processing of input the cement-kiln.

  7. The participation ratios of cement matrix and latex network in latex cement co-matrix strength

    Directory of Open Access Journals (Sweden)

    Ahmed M. Diab

    2014-06-01

    Full Text Available This investigation aims to determine the participation ratio of cement matrix and latex network in latex cement co-matrix strength. The first stage of this study was carried out to investigate the effect of styrene butadiene rubber (SBR on cement matrix participation ratio by measuring degree of hydration and compressive strength. The second stage in this study shows an attempt to evaluate the latex participation ratio in mortar and concrete strength with different latex chemical bases. Effect of latex particle size on latex network strength was studied. The test results indicated that the latex participation ratio in co-matrix strength is influenced by type of cement matrix, type of curing, latex type, latex solid/water ratio, strength type and age. For modified concrete, when the SBR solid/water ratio increases the latex participation ratio in flexural and pull out bond strength increases. The latex participation ratio in co-matrix strength decreases as latex particle size increases.

  8. CEMENT. "A Concrete Experience." A Curriculum Developed for the Cement Industry.

    Science.gov (United States)

    Taylor, Mary Lou

    This instructor's guide contains 11 lesson plans for inplant classes on workplace skills for employees in a cement plant. The 11 units cover the following topics: goals; interpreting memoranda; applying a standard set of work procedures; qualities of a safe worker; accident prevention; insurance forms; vocabulary development; inventory control…

  9. Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F

    Directory of Open Access Journals (Sweden)

    Tatiana Pyatina

    2016-05-01

    Full Text Available An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder.

  10. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per

  11. [Removal of bone cement with laser].

    Science.gov (United States)

    Scholz, C; Matthes, M; Kar, H; Boenick, U

    1991-05-01

    In operations requiring replacement of cemented endoprothesis, the removal of both the prosthesis and the cement is often difficult as the cement adheres strongly to the bone. Mechanical removal frequently results in fenestration or traumatisation of the bone. The aim of non-contact removal of polymethylmethacrylate (PMMA) with the laser, is to access normally inaccessible regions while inflicting a minimum amount of damage to the bone substance. The much cited cw or superpulsed CO2-laser cannot be used clinically, due to the thermal stressing of the bone. The paper shows spectra of PMMA with and without dopants, e.g. Tinuvin as UV absorber, optical staining with a high-pressure mercury lamp at lambda = 275 +/- 25 nm, lambda = 350 +/- 25 nm and various radiation times, as well as with an excimer laser lambda = 248 nm, FWHM 20 ns, and ablation measurements were made with the following lasers: excimer laser, Lambda Physics, EMG 102, FWHM 25 ns, lambda = 351 nm, excimer laser, Technolas, MAX 10, FWHM 60 ns, lambda = 308 nm, and a pulsed CO2 laser from PSI, lambda = 9.2 and 10.6 microns, FWHM 130 and 65 microseconds, pulse peak power 3.8 and 7.7 kW. The excimer laser, pulse length less than 100 ns, is unsuitable for clinical use because the required removal rate cannot be achieved either with doped PMMA or with pure PMMA. More promising results have been obtained with the pulsed (microseconds range) CO2 laser which has a removal rate of up to 30 times that of the above-mentioned excimer laser, with significantly lower thermal stressing of the bone than with the cw or super pulsed CO2 laser.

  12. Intracoronal sealing ability of two dental cements.

    Science.gov (United States)

    Wells, John D; Pashley, David H; Loushine, Robert J; Weller, R Norman; Kimbrough, W Frank; Pereira, Patricia N

    2002-06-01

    The purpose of this study was to compare the efficacy of sealing the coronal 2-mm of the root canals versus covering the entire pulpal floor with one of two dental-resin cements (Principle or C&B Metabond). Sixty-two molars with the occlusal half of the crowns and the apical half of the roots removed were used. Each canal was enlarged by using a #3 Gates Glidden bur and obturated with unsealed gutta-percha cones. The teeth were randomly assigned to four groups, each containing 15 teeth, plus a negative and a positive control. In group 1, 2 mm of Principle were placed over the entire pulpal floor. In group 2, Principle was placed 2 mm into each canal orifice. Groups 3 and 4 were the same as groups 1 and 2, except C&B Metabond cement was used. After the cement set, the gutta-percha was removed and the integrity of the seal was tested by fluid filtration at a pressure of 20 cm H2O at 1 h and at 1, 2, and 4 weeks. The data were analyzed by a three-way ANOVA and the Student-Newman-Keuls tests at alpha = 0.05. The controls behaved as expected. Results showed that there were no statistically significant differences among the materials used or the location (p > 0.05), but there was a significant difference with respect to time. Principle leaked significantly more than C&B Metabond at 1 h (p < 0.05), but the seal became tighter over time. C&B Metabond leaked less early (p < 0.05) but increased in leakage at 4 weeks. Both materials sealed well over the 4-week study. Principle was easier to use, and sealing the entire pulpal floor was easier than sealing only the canal orifice.

  13. The influence of clay additives in Portland cement on the compressive strength of the cement stone

    Directory of Open Access Journals (Sweden)

    A.R. Gaifullin

    2015-11-01

    Full Text Available The introduction of mineral additives to binders, especially to Portland cement, is one of the promising trends for solving the resource and energy saving problems, as well as problems of environmental protection during production and application. Expanding the supplementary cementitious materials resource base can be achieved through the use of natural pozzolans and thermally activated polymineral clays(commonly known as glinites in Russia. One type of glinite is metakaolin, which is obtained by calcination of kaolin clays. Metakaolin is widely and effectively used as a pozzolanic additive due to its beneficial effect on the physical and mechanical properties of Portland cement-based materials. The obstacle to its wide production and use are the limited deposits of pure kaolin clays in many countries, including the Russian Federation. In this respect, the studies of pozzolanic activity of the most common mineral clays and their use in some countries have significantly advanced. Similar studies were widely performed in the 1940s in USSR. It seems reasonable to renew this trend to provide a scientific base for the production of local pozzolans made of clays commonly used in different regions. Comparative studies of the effect of 5 clays differing in mineral and chemical composition, calcination temperature and specific surface area, and high-quality metakaolin, on the strength of hardened Portland cement paste have been performed. It has been established that introducing 5…10 % of composite clays calcined at 400…8000 C° and milled to a specific surface area of 290…800 m2/kg into Portland cement enhanced the strength of the hardened cement paste considerably better than the introduction of metakaolin with a specific surface area of 1200 m2/kg. The findings of the study suggest that many kinds of commonly used polymineral clays have a specific calcination temperature and dispersity, which results in a higher pozzolanic activity compared with

  14. Enhancement of cemented waste forms by supercritical CO{sub 2} carbonation of standard portland cements

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Carey, J.; Taylor, C.M.V.

    1997-08-01

    We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous or radioactive waste requiring transport and long-term storage. The standard practice for the stabilization of radioactive salts and residues is to mix them with cements, which may include additives to enhance immobilization. Many of these wastes do not qualify for underground disposition, however, because they do not meet disposal requirements for free liquids, decay heat, head-space gas analysis, and/or leachability. The treatment method alters the bulk properties of a cemented waste form by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced free liquids, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as the reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories. Simultaneously, the treatment process removes a majority of the hydrogenous material from the cement. The treatment method allows for on-line process monitoring of leachates and can be transported into the field. We will describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of solid and semi-solid waste forms. some of the issues concerning the economic feasibility of industrial scale-up will be addressed, with particular attention to the engineering requirements for the establishment of on-site processing facilities. Finally, the initial results of physical property measurements made on portland cements before and after supercritical fluid processing will be presented.

  15. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Deok Hyun, E-mail: dmoon10@hotmail.com [W.M. Keck Geoenvironmental Laboratory, Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Department of Environmental Engineering, Chosun University, Gwangju 501-759 (Korea, Republic of); Grubb, Dennis G. [W.M. Keck Geoenvironmental Laboratory, Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Schnabel Engineering, LLC, 510 East Gay Street, West Chester, PA 19380 (United States); Reilly, Trevor L. [W.M. Keck Geoenvironmental Laboratory, Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2009-09-15

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO{sub 3}{sup 2-}) and selenate (SeO{sub 4}{sup 2-}). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10 mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration <10 mg/L. Several treatments satisfied the USEPA TCLP best demonstrated available technology (BDAT) limits (5.7 mg/L) for selenium at pozzolan doses up to 10 times less than the treatments that established the BDAT. Neither pozzolan was capable of reducing the TCLP-Se(VI) concentrations below 25 mg/L. Se-soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO{sub 3}.H{sub 2}O) and selenate substituted ettringite (Ca{sub 6}Al{sub 2}(SeO{sub 4}){sub 3}(OH){sub 12}.26H{sub 2}O), respectively.

  16. Cementation Mechanism of Microbe Cement%微生物水泥胶结机理

    Institute of Scientific and Technical Information of China (English)

    荣辉; 钱春香; 李龙志

    2013-01-01

    采用X射线衍射、扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究了微生物水泥的胶结机理.SEM分析表明:微生物法诱导形成的方解石形貌呈球形或球状聚集体;化学法形成的方解石形貌呈斜方六面体;微生物法浇注的砂柱和化学法浇注的砂柱内部微观结构相近.TEM分析表明:微生物诱导形成的方解石晶体颗粒尺寸小,能把松散颗粒胶结在一起;化学法形成的方解石颗粒尺寸大,不能把松散颗粒连接在一起.%Cementation mechanism of microbe cement was investigated by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. SEM results showed that the morphology of microbially induced formation calcite was sphere and spherical aggregate, but that of chemical formation calcite was oblique hexagonal body. In addition, the microstructure of sandstone cemented by the above methods was similar. TEM results indicated that the crystal particles of microbially induced formation calcite was smaller than that of chemical formation calcite and the loose particles could be cemented by microbially induced formation calcite, however, it could not be cemented by chemical formation calcite.

  17. Amino acid containing glass-ionomer cement for orthopedic applications

    Science.gov (United States)

    Wu, Wei

    Amino acid containing glass-ionomer cements were synthesized, formulated, and evaluated for orthopedic application. The formulation of different amino acid containing glass-ionomer bone cements was optimized, and conventional and resin-modified glass-ionomer bone cements were compared. Properties of interest included handling characteristics, physical and chemical properties, and mechanical strength of the bone cement. The study was based on the synthesis of different vinyl containing amino acids, different polyelectrolytes containing these amino acid residues, and different resin-modified polyelectrolytes, as well as formulation and evaluation of conventional and resin-modified glass-ionomer bone cements using these polyelectrolytes. Systematic preparation of polyelectrolytes and formulation of glass-ionomer bone cements were essential features of this work, since we anticipated that the mechanical properties of the glass-ionomer bone cements could be strongly affected by the nature of the polyelectrolytes and formulation. Mechanical properties were evaluated in a screw driven mechanical testing machine, and structure-property relationships were determined by scanning electron microscopic (SEM) observation of the fracture surface of the specimens. How the structure of polyelectrolytes, such as different amino acid residues, molecular weight, different modifying resin, and formulation of glass-ionomer bone cement, affected the mechanical properties was also studied.

  18. Cytotoxicity of commonly used luting cements -An in vitro study.

    Science.gov (United States)

    Trumpaite-Vanagiene, Rita; Bukelskiene, Virginija; Aleksejuniene, Jolanta; Puriene, Alina; Baltriukiene, Daiva; Rutkunas, Vygandas

    2015-01-01

    The study aimed to 1) evaluate the cytotoxicity of luting cements: Hoffmann's Zinc Phosphate (Hoffmann's ZP), GC Fuji Plus Resin Modified Glass Ionomer (Fuji Plus RMGI) and 3M ESPE RelyX Unicem Resin Cement (RelyX Unicem RC) and 2) test if pre-washing reduces the cements' cytotoxicity. In vitro human gingival fibroblast (HGF) culture model was chosen. The cytotoxicity was evaluated by MTT test, the cell viability -by staining the cells with AO/EB dye mixture. The means±SD of Cell Survival Ratio (CSR%) were compared among different cement types under two testing conditions, with or without cement pre-washing. The CSR%s were compared by ANOVA and linear multiple regression (LMR). Hoffmann's ZPC was less cytotoxic, while Fuji Plus RMGIC and RelyX Unicem RC were more cytotoxic (ANOVA, ptype of cement and cement pre-washing jointly explained 90% of cell survival (LMR, p<0.001, adjusted squared R=0.889). The commonly used luting cements such as Hoffmann's ZP, Fuji Plus RMGI and RelyX Unicem RC may have a cytotoxic potential.

  19. Preparation and mechanical properties of graphene oxide: cement nanocomposites.

    Science.gov (United States)

    Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi

    2014-01-01

    We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1-2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.

  20. Transport Properties of Carbon-Nanotube/Cement Composites

    NARCIS (Netherlands)

    Han, B.; Yang, Z.; Shi, X.; Yu, X.

    2012-01-01

    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) rei

  1. Radiopacity of portland cement associated with different radiopacifying agents.

    Science.gov (United States)

    Húngaro Duarte, Marco Antonio; de Oliveira El Kadre, Guâniara D'arc; Vivan, Rodrigo Ricci; Guerreiro Tanomaru, Juliane Maria; Tanomaru Filho, Mário; de Moraes, Ivaldo Gomes

    2009-05-01

    This study evaluated the radiopacity of Portland cement associated with the following radiopacifying agents: bismuth oxide, zinc oxide, lead oxide, bismuth subnitrate, bismuth carbonate, barium sulfate, iodoform, calcium tungstate, and zirconium oxide. A ratio of 20% radiopacifier and 80% white Portland cement by weight was used for analysis. Pure Portland cement and dentin served as controls. Cement/radiopacifier and dentin disc-shaped specimens were fabricated, and radiopacity testing was performed according to the ISO 6876/2001 standard for dental root sealing materials. Using Insight occlusal films, the specimens were radiographed near to a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The radiographs were digitized and radiopacity compared with the aluminum stepwedge using Digora software (Orion Corporation Soredex, Helsinki, Finland). The radiographic density data were converted into mmAl and analyzed statistically by analysis of variance and Tukey-Kramer test (alpha = 0.05). The radiopacity of pure Portland cement was significantly lower (p oxide and Portland cement/lead oxide presented the highest radiopacity values and differed significantly from the other materials (p oxide presented the lowest radiopacity values of all mixtures (p < 0.05). All tested substances presented higher radiopacity than that of dentin and may potentially be added to the Portland cement as radiopacifying agents. However, the possible interference of the radiopacifiers with the setting chemistry, biocompatibility, and physical properties of the Portland cement should be further investigated before any clinical recommendation can be done.

  2. Modeling and analyzing autogenous shrinkage of hardening cement paste

    NARCIS (Netherlands)

    Lu, T.; Koenders, E.A.B.

    2014-01-01

    In this paper, a conceptual model for analyzing the plastic part of autogenous deformation of cement paste based on the Arrhenius rate theory will be presented. The autogenous deformation will be calculated from the elastic deformations with inclusion of creep. Different kinds of cement paste with a

  3. Densified ultra-light cement-based materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro

    2015-01-01

    be used as a “clean technology” in the production of cement-based materials for structural applications with a low carbon footprint. This paper describes the principles of this concept coupled with experimental results on the basic properties of this enhanced type of cement-based materials with combined...

  4. Spalling Resistant Bauxite Based Bricks for Cement Kiln

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Peng Xigao

    2011-01-01

    @@ 1.Scope This standard specifies the term,definition,classification,labeling,technical requirements,test methods,inspection rules,packing,marking,transportation,storage,and quality certificate of spalling resistant bauxite based bricks for cement kiln.This standard is applicable to the spalling resistant bauxite based bricks for cement kiln.

  5. Bond Mechanisms in Fiber Reinforced Cement-Based Composites

    Science.gov (United States)

    1989-08-01

    Symposium on "Cement Based Composites: Bonding in Cementitious Composites," S. Mindess and S. Shah, Editors. 44. Nilson, A. H., "Bond Stress-Slip...Society Symposium on "Cement Based Composites: Bonding in Cementitious Composites," held in Boston, December 2 to 4, 1987, S. Mindess and S. Shah, 0

  6. Porosity prediction of calcium phosphate cements based on chemical composition.

    Science.gov (United States)

    Öhman, Caroline; Unosson, Johanna; Carlsson, Elin; Ginebra, Maria Pau; Persson, Cecilia; Engqvist, Håkan

    2015-07-01

    The porosity of calcium phosphate cements has an impact on several important parameters, such as strength, resorbability and bioactivity. A model to predict the porosity for biomedical cements would hence be a useful tool. At the moment such a model only exists for Portland cements. The aim of this study was to develop and validate a first porosity prediction model for calcium phosphate cements. On the basis of chemical reaction, molar weight and density of components, a volume-based model was developed and validated using calcium phosphate cement as model material. 60 mol% β-tricalcium phosphate and 40 mol% monocalcium phosphate monohydrate were mixed with deionized water, at different liquid-to-powder ratios. Samples were set for 24 h at 37°C and 100% relative humidity. Thereafter, samples were dried either under vacuum at room temperature for 24 h or in air at 37 °C for 7 days. Porosity and phase composition were determined. It was found that the two drying protocols led to the formation of brushite and monetite, respectively. The model was found to predict well the experimental values and also data reported in the literature for apatite cements, as deduced from the small absolute average residual errors (brushite, monetite and apatite cements. The model gives a good estimate of the final porosity and has the potential to be used as a porosity prediction tool in the biomedical cement field.

  7. Biologically mediated resorption of brushite cement in vitro.

    Science.gov (United States)

    Grover, Liam M; Gbureck, Uwe; Wright, Adrian J; Tremayne, Maryjane; Barralet, Jake E

    2006-04-01

    A new calcium phosphate cement is reported, which sets to form a matrix consisting of brushite, dicalcium pyrophosphate dihydrate and an amorphous phase following the mixture of beta-tricalcium phosphate with an aqueous pyrophosphoric acid solution. This reactant combination set within a clinically relevant time-frame (approximately 10 min) and exhibited a higher compressive strength (25 MPa) than previously reported brushite cements. The in vitro degradation of the beta-tricalcium phosphate-pyrophosphoric acid cement was tested in both phosphate buffered saline and bovine serum. The pyrophosphate ion containing cement reported here was found not to be hydrolysed to form hydroxyapatite in vitro like beta-tricalcium phosphate-orthophosphoric acid solution cements. This finding is significant since the formation of hydroxyapatite by hydrolysis is thought to retard in vivo degradation of brushite cements. When aged in bovine serum, the cement lost considerably more mass than when aged in phosphate buffered saline, indicating that proteins, most likely phosphatase enzymes played an important role in the degradation. As pyrophosphate ions are thought to be the source of orthophosphate ions during bone mineralisation, this new class of bone cement offers a route to new degradable synthetic bone grafting materials.

  8. Acoustic response of cemented granular sedimentary rocks: molecular dynamics modeling.

    Science.gov (United States)

    García, Xavier; Medina, Ernesto

    2007-06-01

    The effect of cementation processes on the acoustical properties of sands is studied via molecular dynamics simulation methods. We propose numerical methods where the initial uncemented sand is built by simulating the settling process of sediments. Uncemented samples of different porosity are considered by emulating natural mechanical compaction of sediments due to overburden. Cementation is considered through a particle-based model that captures the underlying physics behind the process. In our simulations, we consider samples with different degrees of compaction and cementing materials with distinct elastic properties. The microstructure of cemented sands is taken into account while adding cement at specific locations within the pores, such as grain-to-grain contacts. Results show that the acoustical properties of cemented sands are strongly dependent on the amount of cement, its stiffness relative to the hosting medium, and its location within the pores. Simulation results are in good correspondence with available experimental data and compare favorably with some theoretical predictions for the sound velocity within a range of cement saturation, porosity, and confining pressure.

  9. Use of rapidly hardening hydroxyapatite cement for facial contouring surgery.

    Science.gov (United States)

    Lee, Dong Won; Kim, Ji Ye; Lew, Dae Hyun

    2010-07-01

    Hydroxyapatite cement is an ideal alloplastic material to replace the autogenous bone grafts in craniofacial surgery. Hydroxyapatite cement is advantageous because it can be easily molded by hand unlike other alloplastic materials such as silicone and high-density polyethylene. For aesthetic applications of hydroxyapatite cement, we evaluated the efficacy and safety of the rapidly hardening hydroxyapatite cement used in facial contour augmentation, especially for the forehead and the malar area. A total of 18 cases of facial skeleton augmentation or contouring surgery using rapidly hardening hydroxyapatite cement (Mimix; Biomet, Warsaw, IN) were examined, and the long-term cosmetic results and any complications were also analyzed. The aims of facial contouring surgeries were to correct the following conditions: hemifacial microsomia, craniosynostosis, posttraumatic facial deformity, deformity after tumor resection, dentofacial deformity, and Romberg disease. The application sites of hydroxyapatite cement were the forehead, malar area, chin, and paranasal area. A mean of 16 g (range, 5-50 g) of the hydroxyapatite cement was used. Postoperative infection, seroma, and migration of the implant were not observed during the follow-up period of 23 months. Rapidly hardening hydroxyapatite cement, Mimix, is easy to manipulate, promptly sclerotized, and can be replaced by living bone tissue, with a low complication rate. Therefore, it can be an optimal treatment that can be used instead of other conventional types of alloplastic materials used in facial contouring surgery.

  10. Chronic lower respiratory diseases among demolition and cement workers

    DEFF Research Database (Denmark)

    Mølgaard, Ellen Fischer; Hannerz, Harald; Tüchsen, Finn

    2013-01-01

    To estimate standardised hospitalisation ratios (SHR) for chronic lower respiratory diseases among demolition and cement workers in Denmark, 1995-2009.......To estimate standardised hospitalisation ratios (SHR) for chronic lower respiratory diseases among demolition and cement workers in Denmark, 1995-2009....

  11. Application of multi-block methods in cement production

    DEFF Research Database (Denmark)

    Svinning, K.; Høskuldsson, Agnar

    2008-01-01

    Compressive strength at 1 day of Portland cement as a function of the microstructure of cement was statistically modelled by application of multi-block regression method. The observation X-matrix was partitioned into four blocks, the first block representing the mineralogy, the second particle size...

  12. Macrodefect-free cements: chemistry and impact of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, M.; Galikova, L.; Mojumdar, S.C. [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Inorganic Chemistry

    2002-07-01

    To control and improve the moisture resistance is a long felt necessity of the MDF cements, chemical approaches together with material science contribute to the progress. Present results support our previous hypothesis about the impregnation or barier effect of poly-P on the MDF cements and enlarge the validity of this hypothesis to the blends of SAFB clinker, Portland cement and HPMC or poly-P. Compactness of Al(Fe)-O-P cross-links increases the intrinsic density and, consequently, impregnates the system against the uptake of moisture. In a sense of the theory of functional polymers, the intensity of grafting of polymer chains to the surface of grains increases if poly-P is used and with the prolonged processing. The scope of moisture attack on MDF cements synthesized from the blends of SAFB clinker, Portland cement and HPMC or poly-P, as quantified using mass changes as measure of moisture resistance, is strongly affected by the nature of polymer. The addition of Portland cement in the raw mix improves the moisture resistance of MDF cements. Thermal analysis shows: (i) the irreversible mass gain of 3 - 10% is arisen from carbonation and secondary hydration of cement grains and (ii) the Al(Fe)-O-C(P) cross-links remain intact in the moist environment at either ambient or extreme levels of humidity. (orig.)

  13. Cement dust exposure-related emphysema in a construction worker

    Directory of Open Access Journals (Sweden)

    V Karkhanis

    2011-01-01

    Full Text Available Although, smoking is considered the most important predisposing factor in development of emphysema; environmental exposures also play an important role. There have been several studies on work related respiratory symptoms and ventilatory disorders among employees of cement industry. We report a case of cement exposure related emphysema in 75 years old woman construction worker.

  14. Personal exposure to inhalable cement dust among construction workers.

    NARCIS (Netherlands)

    Peters, S.M.; Thomassen, Y.; Fechter-Rink, E.; Kromhout, H.

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and

  15. Tooth sensitivity associated with the use of luting cements.

    Science.gov (United States)

    Trowbridge, H O

    1995-01-01

    Luting Cements are still a source of frustration to the dentist. None of the cements currently available satisfies everyone, including the patient. The problems encountered when trying to obtain adhesion to a wet substance such as dentin are well-known (Christensen, 1994). The cause of postcementation sensitivity continues to a perplexing problem.

  16. Experimental micromechanics of the cement-bone interface.

    NARCIS (Netherlands)

    Mann, K.A.; Miller, M.A.; Cleary, R.J.; Janssen, D.; Verdonschot, N.J.J.

    2008-01-01

    Despite the widespread use of cement as a means of fixation of implants to bone, surprisingly little is known about the micromechanical behavior in terms of the local interfacial motion. In this work, we utilized digital image correlation techniques to quantify the micromechanics of the cement-bone

  17. Modelling the effects of waste components on cement hydration

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    2001-01-01

    Ordinary Portland Cement (OPC) is often used for the solidification/stabilization (S/S) of waste containing heavy metals and salts. These waste components will precipitate in the form of insoluble compounds on to unreacted cement clinker grains preventing further hydration. In this study the long te

  18. Modelling the effects of waste components on cement hydration

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    2000-01-01

    Ordinary Portland Cement (OPC) is often used for the Solidification/Stabilization (S/S) of waste containing heavy metals and salts. These waste componenents will precipitate in the form of insoluble compounds onto unreacted cement clinker grains preventing further hydration. In this study the long t

  19. Cementing all-ceramic restorations: recommendations for success.

    Science.gov (United States)

    Vargas, Marcos A; Bergeron, Cathia; Diaz-Arnold, Ana

    2011-04-01

    Several all-ceramic restorative systems of various compositions, properties and indications are available to the dental practitioner. Because of the large number of systems, the dental team faces questions and decisions when choosing the appropriate system and the appropriate means of cementation. The authors present a brief overview of the cementation options for various types of all-ceramic restorations. In this article, they discuss the cementation of current all-ceramic restorations and make clinical recommendations tailored to each type of ceramic. The clinician must have a good understanding of the ceramic type to determine whether a restoration should be cemented adhesively or nonadhesively. Other variables, such as isolation and preparation design, also influence the cementation choice. Various ceramic types demand different surface treatments before cementation. Choosing and applying the appropriate surface treatment and cementation procedure will contribute to long-lasting restorations. The literature is lacking in clinical trial results that validate current in vitro data regarding cementation of all-ceramic restorations.

  20. Biocompatibility of alendronate-loaded acrylic cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    T Calvo-Fernández

    2010-10-01

    Full Text Available This paper reports a biological evaluation of a non-resorbable acrylic cement loaded with alendronate for the treatment of osteoporotic vertebral compression fractures. The cement formulation was based on polymethyl methacrylate and acrylic monomers; one of these had covalently linked vitamin E residues. The same cement in the absence of alendronate was used as a control. The setting of the charged cement presented a maximum polymerization temperature of 44ºC, a setting time of 24 min, a residual monomer content lower than 3 wt.%, a compressive strength of 99±10 MPa and an elastic modulus of 1.2±0.2 GPa. Cytotoxicity studies using human osteoblast cultures revealed that the leachable substances of the alendronate loaded cement collected between 1 and 7 days decreased cell viability to values lower than 80%. However, morphological changes and cellular damage in cells produced by the extracts decreased with the leak time. Cell adhesion and growth on charged cement was significantly lower than on the control. Implantation of the cement paste in the intra-femoral cavity of rabbits showed that initially the osteogenic activity was evident for the cement charged with alendronate, and the osteosynthesis process took place mainly in the trabeculae and was manifested by the presence of a non-mineralised osseous spicule. The interface between material and adjacent bone tissue was initially characterized by a variable fibrous response that in many cases it appeared reduced to thin connective tissue after a 24-week-period.

  1. Secondary fuels and raw materials in the Spanish cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Gordobil, J.C.U.; Guede, Elena [Cementos Lemona s.a. (Spain)

    1997-03-01

    The growing environmental and energy concern are having an impact on the Spanish cement industry. This article describes the impact on waste management, the operation of cement kilns and the possibility for recycling. Current projects and future prospects are described. (UK)

  2. Modeling and analyzing autogenous shrinkage of hardening cement paste

    NARCIS (Netherlands)

    Lu, T.; Koenders, E.A.B.

    2014-01-01

    In this paper, a conceptual model for analyzing the plastic part of autogenous deformation of cement paste based on the Arrhenius rate theory will be presented. The autogenous deformation will be calculated from the elastic deformations with inclusion of creep. Different kinds of cement paste with a

  3. Modeling the influence of limestone addition on cement hydration

    Directory of Open Access Journals (Sweden)

    Ashraf Ragab Mohamed

    2015-03-01

    Full Text Available This paper addresses the influence of using Portland limestone cement “PLC” on cement hydration by characterization of its microstructure development. The European Standard EN 197-1:2011 and Egyptian specification ESS 4756-1/2009 permit the cement to contain up to 20% ground limestone. The computational tools assist in better understanding the influence of limestone additions on cement hydration and microstructure development to facilitate the acceptance of these more economical and ecological materials. μic model has been developed to enable the modeling of microstructural evolution of cementitious materials. In this research μic model is used to simulate both the influence of limestone as fine filler, providing additional surfaces for the nucleation and growth of hydration products. Limestone powder also reacts relatively slow with hydrating cement to form monocarboaluminate (AFmc phase, similar to the mono-sulfoaluminate (AFm phase formed in ordinary Portland cement. The model results reveal that limestone cement has accelerated cement hydration rate, previous experimental results and computer model “cemhyd3d” are used to validate this model.

  4. Cement plant gaseous pollutant emission reduction technologies

    Directory of Open Access Journals (Sweden)

    Andrés Emilio Hoyos Barreto

    2010-10-01

    Full Text Available A brief description of SOX, NOX and CO2 formation is presented, these being the main pollutants emitted in the cement industry gas stream Several technologies for reducing NOX, SOX and CO2 emissions in long wet kilns are introduced: primary measures preventing contaminant formation and secondary/tube end emission reduction measures. Strategies for preventing CO2 (green-house effect gas formation are also addressed, such as fuel and raw material substitution and CO2 capture technologies which are still being developed.

  5. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  6. Static Model of Cement Rotary Kiln

    Directory of Open Access Journals (Sweden)

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available In this paper, a static model of cement rotary kilns is proposed. The system model is obtained through polynomial series. The proposed model is contrasted with data of a real plant, where optimal results are obtained. Expected results are measured with respect to the clinker production and the combustible consumption is measured in relation with the consumption calorific. The expected result of the approach is the increase of the profitability of the factory through the decrease of the consumption of the combustible.

  7. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    performed recently has focused on CO2capture from fossil fuel-based power plants. Inherently,this process is especially suitablefor cement plants, as CaO used for CO2capture is also a majoringredient for clinker production. Thus, a detailed investigation was carried outto study the applicationof......% of the inlet CO2 was captured by highly deactivated limestone, which had a maximum CO2 capture capacity of 11.5%, with an inlet Ca/C ratio of 13. So, the performance of the carbonator can be defined by the inlet Ca/C ratio, which can be estimated if the maximum capture capacity of limestone is known...

  8. Ramadan, fasting and pregnancy

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    In Islam, the month of Ramadan is a period of fasting lasting 29 or 30 days. Epidemiological studies among Muslims in Denmark have not been conducted, but studies show, that fasting among pregnant Muslim women is common. Fasting does not increase the risk of growth restriction or preterm delivery......, but there are reports of decreased foetal movements. Furthermore, the fasting may have long-term health consequences for the offspring, especially when they reach their middle age. According to Islam and the interpretation, pregnant and breast-feeding women are allowed to postpone the fasting of the month of Ramadan...

  9. Use of Cement Gun for Fixation of Tibia Component in Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    R Yoga

    2009-05-01

    Full Text Available We evaluated the efficacy of a cement gun to improve the depth of cement penetration in total knee arthroplasty. Ninety-one consecutive patients from two hospitals were recruited for this study. For Group I cement was applied to the tibial baseplate and the proximal tibia with fingers. Group 2 had similar application of cement to the tibial baseplate but cement was pressurized into the proximal tibia using a cement gun.. The knee was kept extended until the cement hardened. Standard post-operative x-rays were reviewed to assess cement penetration into the proximal tibia. The mean cement penetration was 2.1 mm in Group 1 and 3.1 mm in Group 2 and the difference was statistically significant. The use of the cement gun improves cement penetration into the proximal tibia and facilitates early stability of the implant fixation to the bone.

  10. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  11. Integrative Physiology of Fasting.

    Science.gov (United States)

    Secor, Stephen M; Carey, Hannah V

    2016-03-15

    Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting.

  12. Influence of pore structure on compressive strength of cement mortar.

    Science.gov (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  13. Cement Industry Overview and Market Price Forecasting In Azerbaijan

    Directory of Open Access Journals (Sweden)

    Latafat Gardashova

    2016-10-01

    Full Text Available Global economic situation and energy resources’ prices influence local economic trends, investment of capital, status of financial institutions and cement industry in Azerbaijan in whole. These trends influence demand and activities of cement business communities which start to optimize expenses and find new priority decisions in business. Moreover some independent economic analysts refer to forecasts that since 2016 yearly demand will increase 4-5% in Azerbaijan. Objectives are to forecast cement price in the market using Fuzzy c-means (together with Fuzzy Inference System and ANFIS which are entered MATLAB mathematical packet and to compare the results of these methods.Taking into consideration the results of research and applied forecast models the cement price can show the stable slow increasing in the market even there is probability of some periodic fluctuations and regulating actions by the state authorities. Therefore it is high probability that the cement price will increase next 1-2 years.

  14. Salt zone cementing; Cimentacao em zonas de sal

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Fernando Jose Parente Neiva; Miranda, Cristiane Richard de; Martins, Andre Leibsohn [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1994-07-01

    This work introduces new concepts in the proposal of NaCl concentrations i cement slurry and operational parameters for cementing halite salt zones. Experiments carried out in the laboratory and in the Surface Hydraulic Simulator using real halite coring allowed the determination of halite dissolution rates in relation to flow, contact time, and initial Na Cl concentration in the cement slurries. An experimental procedure was developed to measure the adherence strength of hardened cement on halite formations. A Computer Simulator was developed with the adjustment of a model representing the physical phenomenon of mass transfer to the experimental results obtained, which enable us to calculate the Na Cl concentration profile on cement slurry after its positioning in the well's annular region, as well as the total mass of dissolved salt. Employment of the methodology developed in this work shall reduce risk of collapsed casing as well as the cost of the slurry. (author)

  15. Structure and Property Characterization of Oyster Shell Cementing Material

    Institute of Scientific and Technical Information of China (English)

    钟彬杨; 周强; 单昌锋; 于岩

    2012-01-01

    Oyster shell powder was used as the admixture of ordinary portland cement.The effects of different addition amounts and grinding ways on the strength and stability of cement mortar were discussed and proper addition amount of oyster shell powder was determined.The structure and property changes of cementing samples with different oyster shell powder contents were tested by XRD and SEM means.The results revealed that compressive and rupture strengths of the sample with 10% oyster shell powder was close to those of the original one without addition.Stability experiment showed that the sample prepared by pat method had smooth surface without crack and significant expansion or shrinkage after pre-curing and boiling,which indicated that cementing material dosed with oyster shell powder had fine stability.XRD and SEM observation showed that oyster shell independently exists in the cementing material.

  16. EFFECT OF PORTLAND-POZZOLAN CEMENTS ON CONCRETE MATURITY

    Directory of Open Access Journals (Sweden)

    Arın YILMAZ

    2004-03-01

    Full Text Available The maturity concept expressed by the combined effect of time and temperature on the concrete is a useful technique for prediction of the strength gain of concrete. According to maturity concept, samples of the same concrete at same maturity whatever combination of temperature and time, have approximately the same strength. Many maturity functions have been proposed for the last 50 years. The validity of these functions are only for ordinary portland cements. In this study, the suitable of traditional maturity functions for different types of Portland-pozzolan cements were investigated and a new maturity-strength relationship was tried to be established. For this purpose, four different pozzolans and one Portland cement was selected. Portland-pozzolan cements were prepared by using three different replacement amounts of % 5, % 20 and 40 % by weight of cement.

  17. Adhesion of different resin cements to enamel and dentin.

    Science.gov (United States)

    Naumova, Ella A; Ernst, Saskia; Schaper, Katharina; Arnold, Wolfgang H; Piwowarczyk, Andree

    2016-01-01

    The purpose of this in vitro study was to compare the shear bond strength (SBS) of five different resin cements to human enamel and dentin under different storage conditions. Five resin cements and their dedicated systems were tested. Teeth were embedded, ground flat to expose enamel or dentin and polished with sandpaper. Adhesive systems were applied according to the manufacturers'instructions. V2A steel cylinders with were silicated, coated, and cemented onto the teeth. Specimens were stored at three different conditions and subsequently thermocycled. SBS was measured. Significant differences were observed between the tested resin cements depending on the tooth surface. Different storage conditions influenced the bond strength, independent of the tooth surface, in all test cements. The bond strength of all experimental materials to enamel is higher than that to dentin surfaces. Furthermore, the adhesiveness decreases after wetness (hydro-) and hydrothermal stress, regardless of the tooth surface.

  18. Carbonate Looping for De-Carbonization of Cement Plants

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Andersen, Maria Friberg; Lin, Weigang

    2011-01-01

    Cement industry is one of the largest emitter of CO2 other than power generation plants, which includes the emissions from combustion of fuel and also from calcination of limestone for clinker production. In order to reduce CO2 emissions from the cement industry an effective an economically...... feasible technology is to be developed. The carbonate looping process is a promising technology, which is particularly suitable for the cement industry as limestone could be used for capture and release of CO2. Integration of carbonate looping process into cement pyroprocess has two advantages: 1...... integrated into cement pyro-process. The energy required for regeneration in the calciner increases with increase in average conversion of calcined limestone and energy that can be extracted from carbonator decreases with increasing average conversion. Further the influence of type of limestone...

  19. Effect of supplementary cementing materials on the concrete corrosion control

    Energy Technology Data Exchange (ETDEWEB)

    Mejia de Gutierrez, R.

    2003-07-01

    Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnaces slag (GGBS), silica fume (SF), meta kaolin (MK), fly ash (FA) and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete: (Author) 11 refs.

  20. Preparation of sulphoaluminate belite cement from fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, S.; Majling, J. (Slovak Technical Univ., Bratislava (Slovakia). Dept. of Ceramics, Glass and Cement)

    1994-01-01

    Sulphoaluminate belite cements containing the phases C[sub 2]S, C[sub 4]A[sub 3][bar S], C[sub 4]AF, C[bar S] were synthesized from limestone, fly ash and gypsum at 1,200 C. The correspondence between the predicted phase composition and real phase composition were checked. The influence of quantities of different phases in the hydration behavior and strength development were verified. Results show that an optimum proportion of phase quantities help in high strength development in early age. These cements fulfill all the requirement of Portland cement and have very high early strength. Porosity measurements show that the total pore volume in early period is comparatively less than that of Ordinary Portland Cement. Thus these cements can be usable for special purposes.

  1. Foamed Cement Interactions with CO2

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Montross, Scott [National Energy Technology Lab. (NETL), Albany, OR (United States). Oak Ridge Inst. for Science and Education (ORISE); Spaulding, Richard [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Dalton, Laura [National Energy Technology Lab. (NETL), Albany, OR (United States). Oak Ridge Inst. for Science and Education (ORISE); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Crandall, Dustin [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Moore, Jonathan [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Huerta, Nicolas [National Energy Technology Lab. (NETL), Albany, OR (United States); Kutchko, Barbara [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-01-23

    Geologic carbon storage (GCS) is a potentially viable strategy to reduce greenhouse emissions. Understanding the risks to engineered and geologic structures associated with GCS is an important first step towards developing practices for safe and effective storage. The widespread utilization of foamed cement in wells may mean that carbon dioxide (CO2)/brine/foamed cement reactions may occur within these GCS sites. Characterizing the difference in alteration rates as well as the physical and mechanical impact of CO2/brine/foamed cement is an important preliminary step to ensuring offshore and onshore GCS is a prudent anthropogenic CO2 mitigation choice. In a typical oil and gas well, cement is placed in the annulus between the steel casing and formation rock for both zonal isolation and casing support. The cement must have sufficient strength to secure the casing in the hole and withstand the stress of drilling, perforating, and fracturing (e.g. API, 1997, 2010 Worldwide Cementing Practices). As such, measuring the mechanical and properties of cement is an important step in predicting cement behavior under applied downhole stresses (Nelson, 2006). Zonal isolation is the prevention of fluids migrating to different zones outside of the casing and is strongly impacted by the permeability of the wellbore cement (Nelson, 2006). Zonal isolation depends on both the mechanical behavior and permeability (a physical property) of the cement (Mueller and Eid, 2006; Nelson, 2006). Long-term integrity of cement depends on the mechanical properties of the cement sheath, such as Young’s Modulus (Griffith et al., 2004). The cement sheath’s ability to withstand the stresses from changes in pressure and temperature is predominantly determined by the mechanical properties, including Young’s modulus, Poisson’s ratio, and tensile strength. Any geochemical alteration may impact both the mechanical and physical properties of the cement, thus

  2. FAST User Guide

    Science.gov (United States)

    Walatka, Pamela P.; Clucas, Jean; McCabe, R. Kevin; Plessel, Todd; Potter, R.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The Flow Analysis Software Toolkit, FAST, is a software environment for visualizing data. FAST is a collection of separate programs (modules) that run simultaneously and allow the user to examine the results of numerical and experimental simulations. The user can load data files, perform calculations on the data, visualize the results of these calculations, construct scenes of 3D graphical objects, and plot, animate and record the scenes. Computational Fluid Dynamics (CFD) visualization is the primary intended use of FAST, but FAST can also assist in the analysis of other types of data. FAST combines the capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one environment with modules that share data. Sharing data between modules eliminates the drudgery of transferring data between programs. All the modules in the FAST environment have a consistent, highly interactive graphical user interface. Most commands are entered by pointing and'clicking. The modular construction of FAST makes it flexible and extensible. The environment can be custom configured and new modules can be developed and added as needed. The following modules have been developed for FAST: VIEWER, FILE IO, CALCULATOR, SURFER, TOPOLOGY, PLOTTER, TITLER, TRACER, ARCGRAPH, GQ, SURFERU, SHOTET, and ISOLEVU. A utility is also included to make the inclusion of user defined modules in the FAST environment easy. The VIEWER module is the central control for the FAST environment. From VIEWER, the user can-change object attributes, interactively position objects in three-dimensional space, define and save scenes, create animations, spawn new FAST modules, add additional view windows, and save and execute command scripts. The FAST User Guide uses text and FAST MAPS (graphical representations of the entire user interface) to guide the user through the use of FAST. Chapters include: Maps, Overview, Tips, Getting Started Tutorial, a separate chapter for each module, file formats, and system

  3. Innovative cement plug setting process reduces risk and lowers NPT

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, T.; Rogers, H.; Lloyd, S.; Quinton, C. [Halliburton Energy Services, Calgary, AB (Canada); Tetrault, N. [Apache Canada, Calgary, AB (Canada)

    2006-07-01

    With increased drilling in mature fields and unconventional reservoirs, Canadian operators are experiencing a higher rate of lost circulation events. When drilling into lower fracture-gradient zones, operators face the risk of drilling through shallower depleted zones. The unique challenges associated with setting cement plugs in such open hole wells were described. The best solution to address lost circulation events is a properly designed cement slurry where cement can be squeezed into the lost circulation zones to strengthen the wellbore when set. The cement plug is drilled through, leaving the residual cement setting inside the problem zones. Since cement plugs are used for a wide range of reasons, such as healing losses, abandonment, and directional drilling, it is important that a competent cement plug is placed the first time. This paper presented a newly developed tool and a special process designed to meet the challenges associated with setting cement plugs. It is based on a tubing-release tool (TRT) in which a sacrificial tubing is placed into the lost circulation zone to balance the cement plug. The sacrificial tubing is released from the drillstring and remains in the wellbore. The TRT has been used as a plug-setting aid for lost-circulation plugs; shallow-water shut-off; kick-off plug placement; and multizone plugs to abandon. An overview of the TRT features was presented. The tool and process has been used by more than 20 operating companies around the world to successfully place cement plugs downhole on the first attempt. The disconnect has been used successfully in more than 120 wells throughout North and South America, Europe, the Middle East, and Australia. It has proven to lower the risk and non-productive time associated with drilling in mature fields and unconventional reservoirs. 7 refs., 5 figs.

  4. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available BACKGROUND: Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. MATERIALS AND METHODS: The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests. RESULTS: The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony

  5. Global warming impact on the cement and aggregates industries

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, J. (Cordi-Geopolymere SA, Saint-Quentin (France). Geopolymer Inst.)

    1994-06-01

    CO[sub 2] related energy taxes are focusing essentially on fuel consumption, not on actual CO[sub 2] emission measured at the chimneys. Ordinary Portland cement, used in the aggregates and industries, results from the calcination of limestone and silica. The production of 1 ton of cement directly generates 0.55 tons of chemical-CO[sub 2] and requires the combustion of carbon-fuel to yield an additional 0.40 tons of CO[sub 2]. The 1987 1 billion metric tons world production of cement accounted for 1 billion metric tons of CO[sub 2], i.e., 5% of the 1987 world CO[sub 2] emission. A world-wide freeze of CO[sub 2] emission at the 1990 level as recommended by international institutions, is incompatible with the extremely high cement development needs of less industrialized countries. Present cement production growth ranges from 5% to 16% and suggests that in 25 years from now, world cement CO[sub 2] emissions could equal 3,500 million tons. Eco-taxes when applied would have a spectacular impact on traditional Portland cement based aggregates industries. Taxation based only on fuel consumption would lead to a cement price increase of 20%, whereas taxation based on actual CO[sub 2] emission would multiply cement price by 1.5 to 2. A 25--30% minor reduction of CO[sub 2] emissions may be achieved through the blending of Portland cement with replacement materials such as coal-fly ash and iron blast furnace slag.

  6. Fluoride ion release and solubility of fluoride enriched interim cements.

    Science.gov (United States)

    Lewinstein, Israel; Block, Jonathan; Melamed, Guy; Dolev, Eran; Matalon, Shlomo; Ormianer, Zeev

    2014-08-01

    Interim and definitive restorations cemented with interim cements for a prolonged interval are susceptible to bacterial infiltration and caries formation. The purpose of this in vitro study was to evaluate the long-term fluoride release and solubility of aged ZnO-based interim cements enriched separately with 0.4% NaF and SnF2. Four different brands of cements (Tempbond, Tempbond NE, Procem, and Freegenol) were tested for fluoride release and solubility. For every test, 6 disk specimens of each cement with NaF and SnF2, and 6 with no fluoride enrichment (control) were fabricated, for a total of 72 specimens. The disks were incubated in deionized water. Fluoride ion release was recorded at 1, 7, 14, 21, 63, 91, and 182 days. Solubility was calculated as weight percent after 90 days of incubation. The data were analyzed by analysis of variance with repeated measures and the Tukey honestly significant difference post hoc test (Pfluorides released fluoride ions for at least 182 days. Cements mixed with NaF released more fluoride ions than those mixed with SnF2 (P.97), indicating a diffusion-controlled fluoride release. Cement and fluoride types were the main affecting factors in fluoride ion release. The addition of fluorides slightly increased the solubility of the cements. Given their long-term sustained and diffusive controlled release, these fluorides, particularly NaF when mixed with ZnO-based interim cements, may be useful for caries prevention under provisionally cemented restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. The helical structure of DNA facilitates binding

    Science.gov (United States)

    Berg, Otto G.; Mahmutovic, Anel; Marklund, Emil; Elf, Johan

    2016-09-01

    The helical structure of DNA imposes constraints on the rate of diffusion-limited protein binding. Here we solve the reaction-diffusion equations for DNA-like geometries and extend with simulations when necessary. We find that the helical structure can make binding to the DNA more than twice as fast compared to a case where DNA would be reactive only along one side. We also find that this rate advantage remains when the contributions from steric constraints and rotational diffusion of the DNA-binding protein are included. Furthermore, we find that the association rate is insensitive to changes in the steric constraints on the DNA in the helix geometry, while it is much more dependent on the steric constraints on the DNA-binding protein. We conclude that the helical structure of DNA facilitates the nonspecific binding of transcription factors and structural DNA-binding proteins in general.

  8. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system.

    Science.gov (United States)

    Huan, Zhiguang; Chang, Jiang

    2009-05-01

    Bioactive composite bone cements were obtained by incorporation of tricalcium silicate (Ca3SiO5, C3S) into a brushite bone cement composed of beta-tricalcium phosphate [beta-Ca3(PO4)2, beta-TCP] and monocalcium phosphate monohydrate [Ca(H2PO4)2.H2O, MCPM], and the properties of the new cements were studied and compared with pure brushite cement. The results indicated that the injectability, setting time and short- and long-term mechanical strength of the material are higher than those of pure brushite cement, and the compressive strength of the TCP/MCPM/C3S composite paste increased with increasing aging time. Moreover, the TCP/MCPM/C3S specimens showed significantly improved in vitro bioactivity in simulated body fluid and similar degradability in phosphate-buffered saline as compared with brushite cement. Additionally, the reacted TCP/MCPM/C3S paste possesses the ability to stimulate osteoblast proliferation and promote osteoblastic differentiation of the bone marrow stromal cells. The results indicated that the TCP/MCPM/C3S cements may be used as a bioactive material for bone regeneration, and might have significant clinical advantage over the traditional beta-TCP/MCPM brushite cement.

  9. In vivo behavior of a novel injectable calcium phosphate cement compared with two other commercially available calcium phosphate cements.

    NARCIS (Netherlands)

    Hannink, G.; Wolke, J.G.C.; Schreurs, B.W.; Buma, P.

    2008-01-01

    The aim of this study was to investigate the physicochemical and biological properties of a newly developed calcium phosphate cement (CPC). The novel cement was compared with two other commercially available CPCs. After mixing the powder and liquid phase, the CPCs were injected as a paste into a rab

  10. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  11. [Comparison of fixation effects of heavy metals between cement rotary kiln co-processing and cement solidification/stabilization].

    Science.gov (United States)

    Zhang, Jun-li; Liu, Jian-guo; Li, Cheng; Jin, Yi-ying; Nie, Yong-feng

    2008-04-01

    Both cement rotary kiln co-processing hazardous wastes and cement solidification/stabilization could dispose heavy metals by fixation. Different fixation mechanisms lead to different fixation effects. The same amount of heavy metal compounds containing As, Cd, Cr, Cu, Pb, Zn were treated by the two kinds of fixation technologies. GB leaching test, TCLP tests and sequential extraction procedures were employed to compare the fixation effects of two fixation technologies. The leached concentration and chemical species distribution of heavy metals in two grounded mortar samples were analyzed and the fixation effects of two kinds of technologies to different heavy metals were compared. The results show the fixation effect of cement rotary kiln co-processing technology is better than cement solidification/stabilization technology to As, Pb, Zn. Calcinations in cement rotary kiln and then hydration help As, Pb, Zn contained in hazardous wastes transform to more steady chemical species and effectively dispose these heavy metals compounds. Cr3+ is liable to be converted to much more toxic and more mobile Cr6+ state in cement rotary kiln. And so Cr wastes are more fit for treatment by cement solidification/stabilization technology. The work could provide a basis when choosing disposal technologies for different heavy metals and be helpful to improve the application and development of cement rotary kiln co-processing hazardous wastes.

  12. Effect of duration of exposure to cement dust on respiratory function of non-smoking cement mill workers.

    Science.gov (United States)

    Meo, Sultan Ayoub; Al-Drees, Abdul Majeed; Al Masri, Abeer A; Al Rouq, Fawzia; Azeem, Muhammad Abdul

    2013-01-16

    This study aimed to determine the effect of long term exposure to cement dust on lung function in non-smoking cement mill workers. This is a cross-sectional study of respiratory functions. Spirometry was performed in 100 apparently healthy volunteers; 50 non-smoking cement mill workers and 50 non-smoking un-exposed subjects. Based on the duration of exposure, cement mill workers were divided into three groups, less than 5, 5-10 and greater than 10 years. All subjects were individually matched for age, height, weight, and socioeconomic status. Pulmonary function test was performed by using an electronic spirometer. Significant reduction was observed in the mean values of Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV(1)), Peak Expiratory Flow (PEF) and Maximal Voluntary Ventilation in cement mill workers who had been working in the cement industry for more than 10 years compared to their matched un-exposed group. Lung functions in cement mill workers were significantly impaired and results show a long term duration response effect of years of exposure to cement dust on lung functions.

  13. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Haneefa, K., E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2014-08-15

    Highlights: • Limestone mortars were exposed to liquid sodium exposure at 550 °C. • Micro-analytical techniques were used to characterize the exposed specimens. • The performance of limestone mortar was greatly influenced by w/c. • The fundamental degradation mechanisms of limestone mortars were identified. - Abstract: Hot liquid sodium at 550 °C can interact with concrete in the scenario of an accidental spillage of sodium in liquid metal cooled fast breeder reactors. To protect the structural concrete from thermo-chemical degradation, a sacrificial layer of limestone aggregate concrete is provided over it. This study investigates the fundamental mechanisms of thermo-chemical interaction between the hot liquid sodium and limestone mortars at 550 °C for a duration of 30 min in open air. The investigation involves four different types of cement with variation of water-to-cement ratios (w/c) from 0.4 to 0.6. Comprehensive analysis of experimental results reveals that the degree of damage experienced by limestone mortars displayed an upward trend with increase in w/c ratios for a given type of cement. Performance of fly ash based Portland pozzolana cement was superior to other types of cements for a w/c of 0.55. The fundamental degradation mechanisms of limestone mortars during hot liquid sodium interactions include alterations in cement paste phase, formation of sodium compounds from the interaction between solid phases of cement paste and aggregate, modifications of interfacial transition zone (ITZ), decomposition of CaCO{sub 3}, widening and etching of rhombohedral cleavages, and subsequent breaking through the weakest rhombohedral cleavage planes of calcite, staining, ferric oxidation in grain boundaries and disintegration of impurity minerals in limestone.

  14. Reaction Mechanisms of Magnesium Potassium Phosphate Cement and its Application

    Science.gov (United States)

    Qiao, Fei

    Magnesium potassium phosphate cement (MKPC) is a kind of cementitious binder in which the chemical bond is formed via a heterogeneous acid-base reaction between dead burned magnesia powder and potassium phosphate solution at room temperature. Small amount of boron compounds can be incorporated in the cement as a setting retarder. The final reaction product of MgO-KH2PO4-H 2O ternary system is identified as magnesium potassium phosphate hexahydrate, MgKPO4·6H2O. However, the mechanisms and procedures through which this crystalline product is formed and the conditions under which the crystallization process would be influenced are not yet clear. Understanding of the reaction mechanism of the system is helpful for developing new methodologies to control the rapid reaction process and furthermore, to adjust the phase assemblage of the binder, and to enhance the macroscopic properties. This study is mainly focused on the examination of the reaction mechanism of MKPC. In addition, the formulation optimization, microstructure characterization and field application in rapid repair are also systematically studied. The chemical reactions between magnesia and potassium dihydrogen phosphate are essentially an acid-base reaction with strong heat release, the pH and temperature variation throughout the reaction process could provide useful information to disclose the different stages in the reaction. However, it would be very difficult to conduct such tests on the cement paste due to the limited water content and fast setting. In the current research, the reaction mechanism of MKPC is investigated on the diluted MKPC system through monitoring the pH and temperature development, identification of the solid phase formed, and measurement of the ionic concentration of the solution. The reaction process can be explained as follows: when magnesia and potassium phosphate powder are mixed with water, phosphate is readily dissolved, which is instantly followed by the dissociation of

  15. Antibiotic-loaded acrylic cement: current concepts.

    Science.gov (United States)

    Buchholz, H W; Elson, R A; Heinert, K

    1984-11-01

    Antibiotic-loaded acrylic cement has been used routinely since 1972 at the authors' hospitals, where a series of some 22,000 joint arthroplasty operations was performed from 1964-1983. The current status of the material is presented with up-to-date follow-up statistics on prophylactic therapy and on established deep infections. The results of 869 exchange arthroplasties are compared with results published in 1981. In the future, results will be presented in the form of survival curves. The method by which survival tables and curves are constructed is critical. Investigators should use survival curves for ease of comparison and because of the wide range of possibilities in an analysis of covariable factors. A retrospective actuarial analysis was made of 825 one-stage reimplantations in which antibiotic-loaded acrylic cement was used for infected total hip arthroplasties. Staphylococcus aureus was the most commonly encountered organism. Failure rates of prostheses infected by S. aureus, S. species, and anaerobic corynebacteria did not differ statistically. A factor that significantly contributed to failure of this method of treatment was Pseudomonas infection. By actuarial analysis five years after operation, a success (survival) rate of 77% was calculated.

  16. Radioactive wastes dispersed in stabilized ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  17. Continued stabilization of Triathlon cemented TKA

    Science.gov (United States)

    Molt, Mats; Ryd, Leif; Toksvig-Larsen, Sören

    2016-01-01

    Background and purpose There is a general call for phased introduction of new implants, and one step in the introduction is an early evaluation of micromotion. We compared the micromotion in the Triathlon and its predecessor, the Duracon total knee prosthesis, concentrating especially on continuous migration over 5 years of follow-up. Patients and methods 60 patients were randomized to receive either a cemented Triathlon total knee prosthesis or a cemented Duracon total knee prosthesis. 3-D tibial component migration was measured by radiostereometric analysis (RSA) at 3 months and at 1, 2, and 5 years. Results There was no statistically significant difference in maximum total point motion (MTPM) between the 2 groups (p = 0.1). The mean MTPM at 5 years for the Duracon was 1.10 (SD 1.21) mm and for the Triathlon it was 0.66 (SD 0.38) mm. The numbers of continuously migrating prostheses were similar in the groups at the fifth year of follow-up; 6 of 21 prostheses in the Duracon group and 3 of 21 in the Triathlon group had migrated more than 0.3 mm between the second year and the fifth year of follow-up (p = 0.2). Interpretation The Triathlon has a micromotion pattern similar to that of the Duracon total knee system at both short-term and medium-term follow-up, and may therefore, over time, show the same good long-term mechanical stability. PMID:27088580

  18. Do cement nanoparticles exist in space ?

    CERN Document Server

    Bilalbegovic, G; Mohacek-Grosev, V

    2014-01-01

    The calcium-silicate-hydrate is used to model properties of cement on Earth. We study cementitious nanoparticles and propose these structures as components of cosmic dust grains. Quantum density functional theory methods are applied for the calculation of infrared spectra of Ca4Si4O14H4, Ca6Si3O13H2, and Ca12Si6O26H4 clusters. We find bands distributed over the near, mid and far-infrared region. A specific calcium-silicate-hydrate spectral feature at 14 microns, together with the bands at 10 and 18 microns which exist for other silicates as well, could be used for a detection of cosmic cement. We compare calculated bands with the 14 microns features in the spectra of HD 45677, HD 44179, and IRC+10420 which were observed by Infrared Space Observatory and classified as remaining. High abundance of oxygen atoms in cementitious nanoparticles could partially explain observed depletion of this element from the interstellar medium into dust grains.

  19. Radioactive wastes dispersed in stabilized ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  20. Rheology of cement mixtures with dolomite filler

    Directory of Open Access Journals (Sweden)

    Martínez de la Cuesta, P. J.

    2000-06-01

    Full Text Available This experimental program has studied the behavior of fresh paste made up from cements mixed with dolomite filler. Through prior experiments the starting point is obtained for the designs 22 and 23 factorials. With these designs the governing equations are established that influence the specific surface of the filler, the filler percentage and the ratio water/(cement + filler, used as objective functions: test probe penetration, flow on table and shear stress in viscometer. Also the type of rheological conduct is determined and the influence over initial and final setting is observed.

    Este programa experimental estudia el comportamiento de las pastas frescas fabricadas a partir de cementos mezclados con filler dolomítico. En los experimentos previos se obtiene el punto central para los diseños 22 y 23 factoriales. Con estos diseños se establecen las ecuaciones que rigen la influencia de la superficie específica del filler, el porcentaje de filler y la relación agua/(cemento + filler, utilizando como funciones objetivos la penetración de sonda, la mesa de sacudidas y la tensión de corte en el viscosímetro. También se determina el tipo de conducta reológica y la influencia sobre el principio y fin de fraguado.