WorldWideScience

Sample records for farnesyltransferase inhibitors reduce

  1. Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. I. Producing strain, fermentation, isolation, and biological activities.

    Science.gov (United States)

    Omura, S; Inokoshi, J; Uchida, R; Shiomi, K; Masuma, R; Kawakubo, T; Tanaka, H; Iwai, Y; Kosemura, S; Yamamura, S

    1996-05-01

    New protein farnesyltransferase inhibitors, andrastins A-C, have been discovered in the cultured broth of Penicillium sp. FO-3929. Andrastins extracted from broth supernatant were purified by silica gel chromatography, ODS chromatography and HPLC. The IC50 of andrastins A, B, and C against protein farnesyltransferase were 24.9, 47.1, and 13.3 microM, respectively.

  2. Identification and preliminary characterization of protein-cysteine farnesyltransferase

    International Nuclear Information System (INIS)

    Manne, V.; Roberts, D.; Tobin, A.; O'Rourke, E.; Barbacid, M.; De Virgilio, M.; Meyers, C.; Ahmed, N.; Kurz, B.; Resh, M.; Kung, Hsiang-Fu

    1990-01-01

    Ras proteins must be isoprenylated at a conserved cysteine residue near the carboxyl terminus in order to exert their biological activity. Previous studies indicate that an intermediate in the mevalonate pathway, most likely farnesyl pyrophosphate, is the donor of this isoprenyl group. Inhibition of mevalonate synthesis reverts the abnormal phenotypes induced by the mutant RAS2 Valendash19 gene in Saccharomyces cerevisiae and blocks the maturation of Xenopus oocytes induced by an onocogenic Ras p21 protein of human origin. These results have raised the possibility of using inhibitors of the mevalonate pathway to block the transforming properties of ras oncogenes. Unfortunately, mevalonate is a precursor of various end products essential to mammalian cells, such as dolichols, ubiquinones, heme A, and cholesterol. In this study, the authors describe an enzymatic activity(ies) capable of catalyzing the farnesylation of unprocessed Ras p21 proteins in vitro at the correct (Cys-186) residue. Gel filtration analysis of a partially purified preparation of protein farnesyltransferase revealed two peaks of activity at 250-350 kDa and 80-130 kDa. Availability of an in vitro protein farnesyltransferase assay should be useful in screening for potential inhibitors of ras oncogene function that will not interfere with other aspects of the mevalonate pathway

  3. Imidazole-containing farnesyltransferase inhibitors: 3D quantitative structure-activity relationships and molecular docking

    Science.gov (United States)

    Xie, Aihua; Odde, Srinivas; Prasanna, Sivaprakasam; Doerksen, Robert J.

    2009-07-01

    One of the most promising anticancer and recent antimalarial targets is the heterodimeric zinc-containing protein farnesyltransferase (FT). In this work, we studied a highly diverse series of 192 Abbott-initiated imidazole-containing compounds and their FT inhibitory activities using 3D-QSAR and docking, in order to gain understanding of the interaction of these inhibitors with FT to aid development of a rational strategy for further lead optimization. We report several highly significant and predictive CoMFA and CoMSIA models. The best model, composed of CoMFA steric and electrostatic fields combined with CoMSIA hydrophobic and H-bond acceptor fields, had r 2 = 0.878, q 2 = 0.630, and r pred 2 = 0.614. Docking studies on the statistical outliers revealed that some of them had a different binding mode in the FT active site based on steric bulk and available active site space, explaining why the predicted activities differed from the experimental activities.

  4. Virtual Lead Identification of Farnesyltransferase Inhibitors Based on Ligand and Structure-Based Pharmacophore Techniques

    Directory of Open Access Journals (Sweden)

    Nizar M. Mhaidat

    2013-05-01

    Full Text Available Farnesyltransferase enzyme (FTase is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor’s binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski’s “rule of five” and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774 were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection.

  5. Inhibition of protein geranylgeranylation and farnesylation protects against graft-versus-host disease via effects on CD4 effector T cells.

    Science.gov (United States)

    Hechinger, Anne-Kathrin; Maas, Kristina; Dürr, Christoph; Leonhardt, Franziska; Prinz, Gabriele; Marks, Reinhard; Gerlach, Ulrike; Hofmann, Maike; Fisch, Paul; Finke, Jürgen; Pircher, Hanspeter; Zeiser, Robert

    2013-01-01

    Despite advances in immunosuppressive regimens, acute graft-versus-host disease remains a frequent complication of allogeneic hematopoietic cell transplantation. Pathogenic donor T cells are dependent on correct attachment of small GTPases to the cell membrane, mediated by farnesyl- or geranylgeranyl residues, which, therefore, constitute potential targets for graft-versus-host disease prophylaxis. A mouse model was used to study the impact of a farnesyl-transferase inhibitor and a geranylgeranyl-transferase inhibitor on acute graft-versus-host disease, anti-cytomegalovirus T-cell responses and graft-versus-leukemia activity. Treatment of mice undergoing allogeneic hematopoietic cell transplantation with farnesyl-transferase inhibitor and geranylgeranyl-transferase inhibitor reduced the histological severity of graft-versus-host disease and prolonged survival significantly. Mechanistically, farnesyl-transferase inhibitor and geranylgeranyl-transferase inhibitor treatment resulted in reduced alloantigen-driven expansion of CD4 T cells. In vivo treatment led to increased thymic cellularity and polyclonality of the T-cell receptor repertoire by reducing thymic graft-versus-host disease. These effects were absent when squalene production was blocked. The farnesyl-transferase inhibitor and geranylgeranyl-transferase inhibitor did not compromise CD8 function against leukemia cells or reconstitution of T cells that were subsequently responsible for anti-murine cytomegalovirus responses. In summary, we observed an immunomodulatory effect of inhibitors of farnesyl-transferase and geranylgeranyl-transferase on graft-versus-host disease, with enhanced functional immune reconstitution. In the light of the modest toxicity of farnesyl-transferase inhibitors such as tipifarnib in patients and the potent reduction of graft-versus-host disease in mice, farnesyl-transferase and geranylgeranyl-transferase inhibitors could help to reduce graft-versus-host disease significantly without

  6. Development of Radiosensitizer using farnesyltransferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Seok; Choe, Yong Kyung; Han, Mi Young; Kim, Kwang Dong [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    We selected some compounds that were reported to have an activity of farneyltransferase inhibitor and tested the hypothesis that they might be used to radiosensitize cells transformed by ras oncogenes. The inhibition of ras processing using some, but not all, inhibitors resulted in higher levels of cell death after {gamma}-irradiation and increased radiosensitivity in H-ras-transformed NIH3T3 cells and MCF-10A human tumor cells. They did not induce additional cell death in control cells that doe not have ras mutation. Furthermore, the treatment of inhibitors alone induced a weak G0/G1 block, whereas inhibitors in combination with {gamma}-irradiation induced an additional enrichment in the G2/M phase of the cell cycle that typically represents irradiation-induced growth arrest. At present, the underling mechanism by which the farnesylltransferase inhibitors exert radiosensitizing effect is not known. In summary, our results suggest and lead to the possibility that some of farnesylation inhibitors may prove clinically useful not only as antitumor agents, but also radiosensitizers of tumors whose growth is dependent on ras function. (author). 15 refs., 10 figs., 4 tabs.

  7. Two cytotoxic sesquiterpene lactones from the leaves of Xanthium strumarium and their in vitro inhibitory activity on farnesyltransferase.

    Science.gov (United States)

    Kim, Young Sup; Kim, Jeoung Seob; Park, Sung-Hee; Choi, Sang-Un; Lee, Chong Ock; Kim, Seong-Kie; Kim, Young-Kyoon; Kim, Sung Hoon; Ryu, Shi Yong

    2003-04-01

    Two xanthanolide sesquiterpene lactones, 8- epi-xanthatin (1) and 8- epi-xanthatin epoxide (2), isolated from the leaves of Xanthium strumarium (Compositae), demonstrated a significant inhibition on the proliferation of cultured human tumor cells, i. e., A549 (non-small cell lung), SK-OV-3 (ovary), SK-MEL-2 (melanoma), XF498 (central nervous system) and HCT-15 (colon) in vitro. They were also found to inhibit the farnesylation process of human lamin-B by farnesyltransferase (FTase), in a dose-dependent manner in vitro (IC 50 value was calculated as 64 and 58 microM, respectively). Due to the relatively high concentrations of 1 and 2 required to obtain an FTase inhibition as compared with those necessary for a cytotoxic effect on tumor cells, it remains unclear whether a relationship between these two activities exists.

  8. Farnesyltransferase inhibitor tipifarnib (R115777) preferentially inhibits in vitro autonomous erythropoiesis of polycythemia vera patient cells.

    Science.gov (United States)

    Larghero, Jérôme; Gervais, Nathalie; Cassinat, Bruno; Rain, Jean-Didier; Schlageter, Marie-Hélène; Padua, Rose Ann; Chomienne, Christine; Rousselot, Philippe

    2005-05-01

    Polycythemia vera (PV) is an acquired myeloproliferative disorder with primary expansion of the red cell mass leading to an increased risk of thrombosis and less frequently to myelofibrosis and secondary acute leukemia. Standard therapies include cytoreduction with either phlebotomy or chemotherapeutic agents and antithrombotic drugs. Because long-term exposure to cytotoxic chemotherapy may increase the risk of acute transformation, new therapeutic options are needed. Tipifarnib is a nonpeptidomimetic inhibitor of farnesyl transferase that was developed as a potential inhibitor of RAS signaling. In the present study we report that tipifarnib used at pharmacologically achievable concentrations strongly inhibits the erythroid burst-forming unit (BFU-E) autonomous growth that characterizes patients with PV. Moreover, at low tipifarnib concentrations (0.15 muM), the inhibitory effect was preferentially observed in PV BFU-E progenitors and not in normal BFU-E progenitors and was not rescued by erythropoietin (EPO). Thus tipifarnib may specifically target PV stem cells and may be of clinical interest in the treatment of patients with PV.

  9. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Science.gov (United States)

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  10. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial

    DEFF Research Database (Denmark)

    Gullestad, Lars; Iversen, Martin; Mortensen, Svend-Aage

    2010-01-01

    The proliferation signal inhibitor everolimus offers the potential to reduce calcineurin inhibitor (CNI) exposure and alleviate CNI-related nephrotoxicity. Randomized trials in maintenance thoracic transplant patients are lacking.......The proliferation signal inhibitor everolimus offers the potential to reduce calcineurin inhibitor (CNI) exposure and alleviate CNI-related nephrotoxicity. Randomized trials in maintenance thoracic transplant patients are lacking....

  11. Absence of Protoheme IX Farnesyltransferase CtaB Causes Virulence Attenuation but Enhances Pigment Production and Persister Survival in MRSA.

    Science.gov (United States)

    Xu, Tao; Han, Jian; Zhang, Jia; Chen, Jiazhen; Wu, Nan; Zhang, Wenhong; Zhang, Ying

    2016-01-01

    The membrane protein CtaB in S. aureus is a protoheme IX farnesyltransferase involved in the synthesis of the heme containing terminal oxidases of bacterial respiratory chain. In this study, to assess the role of CtaB in S. aureus virulence, pigment production, and persister formation, we constructed a ctaB mutant in the methicillin-resistant Staphylococcus aureus (MRSA) strain USA500. We found that deletion of ctaB attenuated growth and virulence in mice but enhanced pigment production and formation of quinolone tolerant persister cells in stationary phase. RNA-seq analysis showed that deletion of ctaB caused decreased transcription of several virulence genes including RNAIII which is consistent with its virulence attenuation. In addition, transcription of 20 ribosomal genes and 24 genes involved in amino acid biosynthesis was significantly down-regulated in the ctaB knockout mutant compared with the parent strain. These findings suggest the importance of heme biosynthesis in virulence and persister formation of S. aureus .

  12. Development of a Novel Therapeutic Paradigm Utilizing a Mammary Gland-Targeted, Bin1-Knockout Mouse Model

    Science.gov (United States)

    2008-07-01

    genes in higher organisms— Homo sapiens gene INDO, encoding indole- amine-pyrrole 2,3 dioxygenase. Available from http://www.ncbi.nlm.nih.gov/IEB...Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. J Biol Chem 1997; 272:15591–4. 25. Routhier EL , Donover PS

  13. Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice.

    Science.gov (United States)

    Jamil, Muhammad; Charnikhova, Tatsiana; Verstappen, Francel; Bouwmeester, Harro

    2010-12-01

    The strigolactones are internal and rhizosphere signalling molecules in plants that are biosynthesised through carotenoid cleavage. They are secreted by host roots into the rhizosphere where they signal host-presence to the symbiotic arbuscular mycrorrhizal (AM) fungi and the parasitic plants of the Orobanche, Phelipanche and Striga genera. The seeds of these parasitic plants germinate after perceiving these signalling molecules. After attachment to the host root, the parasite negatively affects the host plant by withdrawing water, nutrients and assimilates through a direct connection with the host xylem. In many areas of the world these parasites are a threat to agriculture but so far very limited success has been achieved to minimize losses due to these parasitic weeds. Considering the carotenoid origin of the strigolactones, in the present study we investigated the possibilities to reduce strigolactone production in the roots of plants by blocking carotenoid biosynthesis using carotenoid inhibitors. Hereto the carotenoid inhibitors fluridone, norflurazon, clomazone and amitrole were applied to rice either through irrigation or through foliar spray. Irrigation application of all carotenoid inhibitors and spray application of amitrole significantly decreased strigolactone production, Striga hermonthica germination and Striga infection, also in concentrations too low to affect growth and development of the host plant. Hence, we demonstrate that the application of carotenoid inhibitors to plants can affect S. hermonthica germination and attachment indirectly by reducing the strigolactone concentration in the rhizosphere. This finding is useful for further studies on the relevance of the strigolactones in rhizosphere signalling. Since these inhibitors are available and accessible, they may represent an efficient technology for farmers, including poor subsistence farmers in the African continent, to control these harmful parasitic weeds. Copyright © 2010 Elsevier Inc

  14. Loss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short-term facilitation at mossy fibre to CA3 pyramidal cell synapses.

    Science.gov (United States)

    Booker, Sam A; Campbell, Graham R; Mysiak, Karolina S; Brophy, Peter J; Kind, Peter C; Mahad, Don J; Wyllie, David J A

    2017-03-15

    Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity. Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low-frequency dentate to CA3 glutamatergic synaptic transmission. High-frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase-deficient mice. Intact presynaptic mitochondrial function is critical for the short-term dynamics of mossy fibre to CA3 synaptic function. Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole-cell patch-clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV-deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy-fibre synapse because the amplitude, input-output relationship and 50 ms paired-pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short-term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired-pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect observed was not restricted to synapses

  15. Reduced-Amide Inhibitor of Pin1 Binds in a Conformation Resembling a Twisted-Amide Transition State†

    Science.gov (United States)

    Xu, Guoyan G.; Zhang, Yan; Mercedes-Camacho, Ana Y.; Etzkorn, Felicia A.

    2011-01-01

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R–pSer–Ψ[CH2N]–Pro–2-(indol-3-yl)-ethylamine, 1 (R = fluorenylmethoxycarbonyl, Fmoc), and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC50 value of 6.3 μM, which is 4.5-fold better inhibition for Pin1 than our comparable ground state analogue, a cis-amide alkene isostere containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination, and resulted in an IC50 value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser, and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1. PMID:21980916

  16. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    Science.gov (United States)

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  17. Hsp90 inhibitors reduce influenza virus replication in cell culture

    International Nuclear Information System (INIS)

    Chase, Geoffrey; Deng, Tao; Fodor, Ervin; Leung, B.W.; Mayer, Daniel; Schwemmle, Martin; Brownlee, George

    2008-01-01

    The viral RNA polymerase complex of influenza A virus consists of three subunits PB1, PB2 and PA. Recently, the cellular chaperone Hsp90 was shown to play a role in nuclear import and assembly of the trimeric polymerase complex by binding to PB1 and PB2. Here we show that Hsp90 inhibitors, geldanamycin or its derivative 17-AAG, delay the growth of influenza virus in cell culture resulting in a 1-2 log reduction in viral titre early in infection. We suggest that this is caused by the reduced half-life of PB1 and PB2 and inhibition of nuclear import of PB1 and PA which lead to reduction in viral RNP assembly. Hsp90 inhibitors may represent a new class of antiviral compounds against influenza viruses

  18. Radiation-induced G/sub 2/-arrest is reduced by inhibitors of poly(adenosine diphosphoribose) synthetase

    International Nuclear Information System (INIS)

    Rowley, R.

    1985-01-01

    Experiments are in progress to test whether poly(adenosine diphosphoribose) synthesis is required for the induction of G/sub 2/-arrest in growing mammalian cells following X-irradiation. A variety of poly(ADPR) synthetase inhibitors have been tested to determine: 1) whether addition of an inhibitor to X-irradiated CHO cells reduces G/sub 2/-arrest; 2) whether compounds structurally similar to poly-(ADPR) synthetase inhibitors but inactive against this enzyme affect radiation-induced G/sub 2/-arrest and 3) whether the concentration dependence for poly(ADPR) synthetase inhibition matches that for G/sub 2/-arrest reduction. G/sub 2/-arrest was measured in X-irradiated (1.5 Gy) CHO cells using the mitotic cell selection technique. Poly(ADPR) synthetase activity was measured in permeabilized cells by /sup 3/H-NAD incorporation. The synthetase inhibitors used were 3-aminobenzamide, benzamide, nicotinamide, 4-acetyl pyridine, caffeine and theophylline. The inactive compounds used were 3-aminobenzoic acid, benzoic acid, nicotinic acid, adenine, adenosine and 3'-deoxyadenosine. Inhibitors of poly(ADPR) synthetase reduced G/sub 2/-arrest while related compounds which produced no enzyme inhibition did not. The concentration dependencies for G/sub 2/-arrest reduction and enzyme inhibition were similar only for methyl xanthines. Further analysis awaits the determination of intracellular drug concentrations

  19. A reduced-amide inhibitor of Pin1 binds in a conformation resembling a twisted-amide transition state.

    Science.gov (United States)

    Xu, Guoyan G; Zhang, Yan; Mercedes-Camacho, Ana Y; Etzkorn, Felicia A

    2011-11-08

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R-pSer-Ψ[CH(2)N]-Pro-2-(indol-3-yl)ethylamine, 1 [R = fluorenylmethoxycarbonyl (Fmoc)] and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC(50) value of 6.3 μM, which is 4.5-fold better for Pin1 than our comparable ground-state analogue, a cis-amide alkene isostere-containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination and resulted in an IC(50) value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1.

  20. A new synthetic matrix metalloproteinase inhibitor reduces human mesenchymal stem cell adipogenesis.

    Directory of Open Access Journals (Sweden)

    Dale B Bosco

    Full Text Available Development of adipose tissue requires the differentiation of less specialized cells, such as human mesenchymal stem cells (hMSCs, into adipocytes. Since matrix metalloproteinases (MMPs play critical roles in the cell differentiation process, we conducted investigations to determine if a novel mercaptosulfonamide-based MMP inhibitor (MMPI, YHJ-7-52, could affect hMSC adipogenic differentiation and lipid accumulation. Enzyme inhibition assays, adipogenic differentiation experiments, and quantitative PCR methods were employed to characterize this inhibitor and determine its effect upon adipogenesis. YHJ-7-52 reduced lipid accumulation in differentiated cells by comparable amounts as a potent hydroxamate MMPI, GM6001. However, YHJ-7-82, a non-inhibitory structural analog of YHJ-7-52, in which the zinc-binding thiol group is replaced by a hydroxyl group, had no effect on adipogenesis. The two MMPIs (YHJ-7-52 and GM6001 were also as effective in reducing lipid accumulation in differentiated cells as T0070907, an antagonist of peroxisome-proliferator activated receptor gamma (PPAR-gamma, at a similar concentration. PPAR-gamma is a typical adipogenic marker and a key regulatory protein for the transition of preadiopocyte to adipocyte. Moreover, MMP inhibition was able to suppress lipid accumulation in cells co-treated with Troglitazone, a PPAR-gamma agonist. Our results indicate that MMP inhibitors may be used as molecular tools for adipogenesis and obesity treatment research.

  1. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    Science.gov (United States)

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-07-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlysosomal protein breakdown by up to 50% (P protein synthesis or amino acid pools, but improved overall protein balance in the muscle. Upon treatment with MG132, ubiquitin-conjugated proteins accumulated in the muscle. The inhibition of muscle proteolysis correlated with efficacy against the proteasome, although these agents could also inhibit calpain-dependent proteolysis induced with Ca2+. These inhibitors had much larger effects on proteolysis in atrophying muscles than in controls. In the denervated soleus undergoing atrophy, the increase in ATP-dependent proteolysis was reduced 70% by MG132 (P muscle proteolysis induced by administering thyroid hormones was reduced 40-70% by the inhibitors. Finally, in rats made septic by cecal puncture, the increase in muscle proteolysis was completely blocked by MG132. Thus, the enhanced proteolysis in many catabolic states (including denervation, hyperthyroidism, and sepsis) is due to a proteasome-dependent pathway, and inhibition of proteasome function may be a useful approach to reduce muscle wasting.

  2. Combining Urease and Nitrification Inhibitors with Incorporation Reduces Ammonia and Nitrous Oxide Emissions and Increases Corn Yields.

    Science.gov (United States)

    Drury, Craig F; Yang, Xueming; Reynolds, W Dan; Calder, Wayne; Oloya, Tom O; Woodley, Alex L

    2017-09-01

    Less than 50% of applied nitrogen (N) fertilizer is typically recovered by corn ( L.) due to climatic constraints, soil degradation, overapplication, and losses to air and water. Two application methods, two N sources, and two inhibitors were evaluated to reduce N losses and enhance crop uptake. The treatments included broadcast urea (BrUrea), BrUrea with a urease inhibitor (BrUrea+UI), BrUrea with a urease and a nitrification inhibitor (BrUrea+UI+NI), injection of urea ammonium nitrate (InjUAN), and injected with one or both inhibitors (InjUAN+UI, InjUAN+UI+NI), and a control. The BrUrea treatment lost 50% (64.4 kg N ha) of the applied N due to ammonia volatilization, but losses were reduced by 64% with BrUrea+UI+NI (23.0 kg N ha) and by 60% with InjUAN (26.1 kg N ha). Ammonia losses were lower and crop yields were greater in 2014 than 2013 as a result of the more favorable weather when N was applied in 2014. When ammonia volatilization was reduced by adding a urease inhibitor, NO emissions were increased by 30 to 31% with BrUrea+UI and InjUAN+UI compared with BrUrea and InjUAN, respectively. Pollution swapping was avoided when both inhibitors were used (BrUrea+UI+NI, InjUAN+UI+NI) as both ammonia volatilization and NO emissions were reduced, and corn grain yields increased by 5% with BrUrea+UI+NI and by 7% with InjUAN+UI+NI compared with BrUrea and InjUAN, respectively. The combination of two N management strategies (InjUAN+UI+NI) increased yields by 19% (12.9 t ha) compared with BrUrea (10.8 t ha). Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Caged Protein Prenyltransferase Substrates: Tools for Understanding Protein Prenylation

    Energy Technology Data Exchange (ETDEWEB)

    DeGraw, Amanda J.; Hast, Michael A.; Xu, Juhua; Mullen, Daniel; Beese, Lorena S.; Barany, George; Distefano, Mark D. (Duke); (UMM)

    2010-11-15

    Originally designed to block the prenylation of oncogenic Ras, inhibitors of protein farnesyltransferase currently in preclinical and clinical trials are showing efficacy in cancers with normal Ras. Blocking protein prenylation has also shown promise in the treatment of malaria, Chagas disease and progeria syndrome. A better understanding of the mechanism, targets and in vivo consequences of protein prenylation are needed to elucidate the mode of action of current PFTase (Protein Farnesyltransferase) inhibitors and to create more potent and selective compounds. Caged enzyme substrates are useful tools for understanding enzyme mechanism and biological function. Reported here is the synthesis and characterization of caged substrates of PFTase. The caged isoprenoid diphosphates are poor substrates prior to photolysis. The caged CAAX peptide is a true catalytically caged substrate of PFTase in that it is to not a substrate, yet is able to bind to the enzyme as established by inhibition studies and X-ray crystallography. Irradiation of the caged molecules with 350 nm light readily releases their cognate substrate and their photolysis products are benign. These properties highlight the utility of those analogs towards a variety of in vitro and in vivo applications.

  4. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Chiaki [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812 (Japan); Higashi, Chizuka; Niinaka, Yasufumi [Faculty of Medicine, University of Yamanashi, Chuoh-shi 409-3898 (Japan); Yamada, Koji [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812 (Japan); Noguchi, Kohji [Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Constitutive NF-{kappa}B signaling is essential for the survival and growth of PEL cells. Black-Right-Pointing-Pointer NF-{kappa}B signaling is upregulated by the proteasome-dependent degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress NF-{kappa}B signaling and induce apoptosis in PEL cells through stabilization of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress viral replication in PEL cells during lytic KSHV infection. -- Abstract: Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxic effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-{kappa}B inhibitory molecule (I{kappa}B{alpha}) and suppressed the transcriptional activity of NF-{kappa}B in PEL cells. The NF-{kappa}B specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-{kappa}B signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-{kappa}B signaling is upregulated by proteasome-dependent degradation of I{kappa}B{alpha}. The suppression of NF-{kappa}B signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome

  5. Complex formation of p65/RelA with nuclear Akt1 for enhanced transcriptional activation of NF-κB

    International Nuclear Information System (INIS)

    Kwon, Osong; Kim, Kyung A; He, Long; Jung, Mira; Jeong, Sook Jung; Ahn, Jong Seog; Kim, Bo Yeon

    2008-01-01

    Akt1 was revealed to interact with Ki-Ras in the cytoplasm of Ki-Ras-transformed human prostate epithelial cells, 267B1/K-ras. Moreover, p65/RelA in the nucleus was found to interact with both Ki-Ras and Akt1, suggesting the nuclear translocation of Akt1:Ki-Ras complex for NF- κB activation. In support of this, compared with wild type Akt1, the dominant negative Akt1 mutant was decreased in its nuclear expression, reducing the Ki-Ras-induced NF-κB transcriptional activation. Moreover, inhibitors of Ras (sulindac sulfide and farnesyltransferase inhibitor I) or PI3K/Akt (wortmannin), reduced the amounts of Akt1 and Ki-Ras in the nucleus as well as partial NF-κB activity. The complete inhibition of Ki-Ras-induced NF-κB activation, however, could only be obtained by combined treatment with wortmannin and proteasome inhibitor-1. Accordingly, clonogenic assay showed Akt1 contribution to IκBα-mediated NF-κB activation for oncogenic cell growth by Ki-Ras. Our data suggest a crucial role of Ki-Ras:Akt1 complex in NF-κB transcriptional activation and enhancement of cell survival

  6. Protein farnesyltransferase isoprenoid substrate discrimination is dependent on isoprene double bonds and branched methyl groups.

    Science.gov (United States)

    Micali, E; Chehade, K A; Isaacs, R J; Andres, D A; Spielmann, H P

    2001-10-16

    Farnesylation is a posttranslational lipid modification in which a 15-carbon farnesyl isoprenoid is linked via a thioether bond to specific cysteine residues of proteins in a reaction catalyzed by protein farnesyltransferase (FTase). We synthesized the benzyloxyisoprenyl pyrophosphate (BnPP) series of transferable farnesyl pyrophosphate (FPP) analogues (1a-e) to test the length dependence of the isoprenoid substrate on the FTase-catalyzed transfer of lipid to protein substrate. Kinetic analyses show that pyrophosphates 1a-e and geranyl pyrophosphate (GPP) transfer with a lower efficiency than FPP whereas geranylgeranyl pyrophosphate (GGPP) does not transfer at all. While a correlation was found between K(m) and analogue hydrophobicity and length, there was no correlation between k(cat) and these properties. Potential binding geometries of FPP, GPP, GGPP, and analogues 1a-e were examined by modeling the molecules into the active site of the FTase crystal structure. We found that analogue 1d displaces approximately the same volume of the active site as does FPP, whereas GPP and analogues 1a-c occupy lesser volumes and 1e occupies a slightly larger volume. Modeling also indicated that GGPP adopts a different conformation than the farnesyl chain of FPP, partially occluding the space occupied by the Ca(1)a(2)X peptide in the ternary X-ray crystal structure. Within the confines of the FTase pocket, the double bonds and branched methyl groups of the geranylgeranyl chain significantly restrict the number of possible conformations relative to the more flexible lipid chain of analogues 1a-e. The modeling results also provide a molecular explanation for the observation that an aromatic ring is a good isostere for the terminal isoprene of FPP.

  7. Economic Evaluation of PCSK9 Inhibitors in Reducing Cardiovascular Risk from Health System and Private Payer Perspectives.

    Directory of Open Access Journals (Sweden)

    Alejandro Arrieta

    Full Text Available The introduction of Proprotein covertase subtilisin/kexin type 9 (PCSK9 inhibitors has been heralded as a major advancement in reducing low-density lipoprotein cholesterol levels by nearly 50%. However, concerns have been raised on the added value to the health care system in terms of their costs and benefits. We assess the cost-effectiveness of PCSK9 inhibitors based on a decision-analytic model with existing clinical evidence. The model compares a lipid-lowering therapy based on statin plus PCSK9 inhibitor treatment with statin treatment only (standard therapy. From health system perspective, incremental cost per quality adjusted life years (QALYs gained are presented. From a private payer perspective, return-on-investment and net present values over patient lifespan are presented. At the current annual cost of $14,000 to $15,000, PCSK9 inhibitors are not cost-effective at an incremental cost of about $350,000 per QALY. Moreover, for every dollar invested in PCSK9 inhibitors, the private payer loses $1.98. Our study suggests that the annual treatment price should be set at $4,250 at a societal willingness-to-pay of $100,000 per QALY. However, we estimate the breakeven price for private payer is only $600 per annual treatment. At current prices, our study suggests that PCSK9 inhibitors do not add value to the U.S. health system and their provision is not profitable for private payers. To be the breakthrough drug in the fight against cardiovascular disease, the current price of PCSK9 inhibitors must be reduced by more than 70%.

  8. An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture

    International Nuclear Information System (INIS)

    Misselbrook, T H; Cardenas, L M; Camp, V; Thorman, R E; Williams, J R; Rollett, A J; Chambers, B J

    2014-01-01

    A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N 2 O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH 3 ) volatilization, nitrate (NO 3 − ) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N 2 O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N 2 O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH 3 volatilization, NO 3 − leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N 2 O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N 2 O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted. (paper)

  9. Towards complete sets of farnesylated and geranylgeranylated proteins.

    Directory of Open Access Journals (Sweden)

    Sebastian Maurer-Stroh

    2007-04-01

    Full Text Available Three different prenyltransferases attach isoprenyl anchors to C-terminal motifs in substrate proteins. These lipid anchors serve for membrane attachment or protein-protein interactions in many pathways. Although well-tolerated selective prenyltransferase inhibitors are clinically available, their mode of action remains unclear since the known substrate sets of the various prenyltransferases are incomplete. The Prenylation Prediction Suite (PrePS has been applied for large-scale predictions of prenylated proteins. To prioritize targets for experimental verification, we rank the predictions by their functional importance estimated by evolutionary conservation of the prenylation motifs within protein families. The ranked lists of predictions are accessible as PRENbase (http://mendel.imp.univie.ac.at/sat/PrePS/PRENbase and can be queried for verification status, type of modifying enzymes (anchor type, and taxonomic distribution. Our results highlight a large group of plant metal-binding chaperones as well as several newly predicted proteins involved in ubiquitin-mediated protein degradation, enriching the known functional repertoire of prenylated proteins. Furthermore, we identify two possibly prenylated proteins in Mimivirus. The section HumanPRENbase provides complete lists of predicted prenylated human proteins-for example, the list of farnesyltransferase targets that cannot become substrates of geranylgeranyltransferase 1 and, therefore, are especially affected by farnesyltransferase inhibitors (FTIs used in cancer and anti-parasite therapy. We report direct experimental evidence verifying the prediction of the human proteins Prickle1, Prickle2, the BRO1 domain-containing FLJ32421 (termed BROFTI, and Rab28 (short isoform as exclusive farnesyltransferase targets. We introduce PRENbase, a database of large-scale predictions of protein prenylation substrates ranked by evolutionary conservation of the motif. Experimental evidence is presented for

  10. Role of protein farnesylation events in the ABA-mediated regulation of the Pinoresinol-Lariciresinol Reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Corbin, Cyrielle; Decourtil, Cédric; Marosevic, Djurdjica; Bailly, Marlène; Lopez, Tatiana; Renouard, Sullivan; Doussot, Joël; Dutilleul, Christelle; Auguin, Daniel; Giglioli-Guivarc'h, Nathalie; Lainé, Eric; Lamblin, Frédéric; Hano, Christophe

    2013-11-01

    A Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to other sequences already characterized in plants and all the features of a farnesyltransferase were detected. Molecular modeling of LuERA1 protein confirmed its farnesyltransferase nature. LuERA1 is expressed in the vegetative organs and also in the outer seedcoat of the flaxseed, where it could modulate the previously observed regulation operated by ABA on lignan synthesis. This effect could be mediated by the regulation of the transcription of a key gene for lignan synthesis in flax, the LuPLR1 gene, encoding a pinoresinol lariciresinol reductase. The positive effect of manumycin A, a specific inhibitor of farnesyltransferase, on lignan biosynthesis in flax cell suspension systems supports the hypothesis of the involvement of such an enzyme in the negative regulation of ABA action. In Arabidopsis, ERA1 is able to negatively regulate the ABA effects and the mutant era1 has an enhanced sensitivity to ABA. When expressed in an Arabidopsis cell suspension (heterologous system) LuERA1 is able to reverse the effect of the era1 mutation. RNAi experiments in flax targeting the farnesyltransferase β-subunit encoded by the LuERA1 gene led to an increase LuPLR1 expression level associated with an increased content of lignan in transgenic calli. Altogether these results strongly suggest a role of the product of this LuERA1 gene in the ABA-mediated upregulation of lignan biosynthesis in flax cells through the activation of LuPLR1 promoter. This ABA signaling pathway involving ERA1 probably acts through the ABRE box found in the promoter sequence of LuPLR1, a key gene for lignan synthesis in flax, as demonstrated by LuPLR1 gene promoter-reporter experiments in flax cells using wild

  11. IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators.

    Directory of Open Access Journals (Sweden)

    Toshifumi Tezuka

    Full Text Available Plasminogen activator inhibitor (PAI-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp. IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling.

  12. IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators.

    Science.gov (United States)

    Tezuka, Toshifumi; Ogawa, Hirohisa; Azuma, Masahiko; Goto, Hisatsugu; Uehara, Hisanori; Aono, Yoshinori; Hanibuchi, Masaki; Yamaguchi, Yoichi; Fujikawa, Tomoyuki; Itai, Akiko; Nishioka, Yasuhiko

    2015-01-01

    Plasminogen activator inhibitor (PAI)-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp). IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling.

  13. The cannabinoid transporter inhibitor OMDM-2 reduces social interaction: Further evidence for transporter-mediated endocannabinoid release.

    Science.gov (United States)

    Seillier, Alexandre; Giuffrida, Andrea

    2018-03-01

    Experimental evidence suggests that the transport of endocannabinoids might work bi-directionally. Accordingly, it is possible that pharmacological blockade of the latter affects not only the re-uptake, but also the release of endocannabinoids, thus preventing them from stimulating CB 1 receptors. We used biochemical, pharmacological, and behavioral approaches to investigate the effects of the transporter inhibitor OMDM-2 on social interaction, a behavioral assay that requires activation of CB 1 receptors. The underlying mechanisms of OMDM-2 were compared with those of the Fatty Acid Amide Hydrolase (FAAH) inhibitor URB597. Systemic administration of OMDM-2 reduced social interaction, but in contrast to URB597-induced social deficit, this effect was not reversed by the TRPV1 antagonist capsazepine. The CB 1 antagonist AM251, which did not affect URB597-induced social withdrawal, exacerbated OMDM-2 effect. In addition, the potent CB 1 agonist CP55,940 reversed OMDM-2-, but not URB597-, induced social withdrawal. Blockade of CB 1 receptor by AM251 reduced social interaction and the cholecystokinin CCK2 antagonist LY225910 reversed this effect. Similarly, OMDM-2-induced social withdrawal was reversed by LY225910, whereas URB597 effect was not. Elevation of endocannabinoid levels by URB597 or JZL184, an inhibitor of 2-AG degradation, failed to reverse OMDM-2-induced social withdrawal, and did not show additive effects on cannabinoid measurements when co-administered with OMDM-2. Taken together, these findings indicate that OMDM-2 impaired social interaction in a manner that is consistent with reduced activation of presynaptic CB 1 receptors. As cannabinoid reuptake inhibitors may impair endocannabinoid release, caution should be taken when using these drugs to enhance endocannabinoid tone in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Prenyltransferase inhibitor radiosensitization of pancreatic ductal carcinoma (PaCa) cells

    International Nuclear Information System (INIS)

    Brunner, T.B.; Hahn, S.M.; Rustgi, A.K.

    2003-01-01

    Farnesyltransferase inhibitors (FTIs) radiosensitize tumor cell lines expressing activated H-Ras. K-Ras however remains active after FTI treatment due to prenylation by geranylgeranyltransferase. Up to 90% of pancreatic carcinomas (PaCa) are mutant in K-ras. We hypothesized that combined FTI and geranylgeranyltransferase inhibitor (GGTI) treatment could radiosensitize PaCa cells. Nine human PaCa lines (7 K-ras-mutant, 2 ras-wt) and transgenic mouse pancreatic ductal cells (PDC) expressing wt-ras or mutant K-ras were tested in clonogenic assays with combined FTI-A +/- GGTI-B (Merck and Co Inc.). Inhibition of PI3- kinase (with LY294002) or inhibition of MEK1/2 (with U0126) served to assess the significance of the PI3-kinase and MAPK to radiation survival in these cells. H- and K-Ras prenylation status and changes in phosphorylation of AKT and MAPK were monitored as were changes in cell cycle distribution. FTI+GGTI treatment achieved inhibition of K-Ras prenylation in all PaCa cell lines. This treatment radiosensitized the K-ras mutant cell lines AsPC-1, Capan-2, MiaPaCa-2 and PSN-1, PancM, but not Capan-1 or the ras-wt cell lines (BxPC-3, HS766T, PDC-wt). L-778,123, a dual action inhibitor, sensitized all K-ras mutant cells. Surprisingly, PancM, Panc-1, MiaPaCa-2 and PDC K-Ras cells were radiosensitized by FTI treatment alone. R11577, another FTI without GGTI activity, also sensitized Panc-1 and MiaPaCa-2 and additionally AsPC-1 cells. Radiosensitization was also achieved after treatment with LY294002 in all PaCa lines expressing mutant-K-ras and the ras-wt line BxPC-3 overexpressing Akt2. However these lines were not sensitized by U0126. FTI+GGTI sensitize K-ras mt PaCa cell lines to radiation. PI3-kinase signaling but not MAPK signaling appears to contribute to radiation survival in PaCa cells. Radiosensitization of certain PaCa cells by FTI alone indicates that alternate pathways or farnesylated targets other than K-Ras may also be involved in radiation survival

  15. Effect of ionizing radiation on reducing the several inhibitors in codling moth Cydia pomonella (L.) medium

    International Nuclear Information System (INIS)

    Mohamad, F. A.

    2008-01-01

    The medium for Codling moth, Cydia pomonella (L) was sterilized using ionizing radiation (0, 5, 15 and 25 KGy) or heat (cooking for 40 minutes.). inhibitors were also added either on the top of the diet or by mixing it with the diet. The results showed that all Codling moth larvae in the ionizing radiation sterilized diet died before reaching the 4th larval instar. Results of using both radiation and cooking for sterilizing the diet gave variable results; those treated with 15 KGy gave significantly more moths with higher weight and more fecundity. The results also showed that increasing the amount of microbial inhibitors in diet negatively affected the number of produced moth and their biological characteristics. Consequently irradiation could be a mean for reducing the amount of chemical inhibitors added to the diet. (author)

  16. Dabrafenib, an inhibitor of RIP3 kinase-dependent necroptosis, reduces ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Shelly A Cruz

    2018-01-01

    Full Text Available Ischemic brain injury triggers neuronal cell death by apoptosis via caspase activation and by necroptosis through activation of the receptor-interacting protein kinases (RIPK associated with the tumor necrosis factor-alpha (TNF-α/death receptor. Recent evidence shows RIPK inhibitors are neuroprotective and alleviate ischemic brain injury in a number of animal models, however, most have not yet undergone clinical trials and safety in humans remains in question. Dabrafenib, originally identified as a B-raf inhibitor that is currently used to treat melanoma, was later revealed to be a potent RIPK3 inhibitor at micromolar concentrations. Here, we investigated whether Dabrafenib would show a similar neuroprotective effect in mice subjected to ischemic brain injury by photothrombosis. Dabrafenib administered intraperitoneally at 10 mg/kg one hour after photothrombosis-induced focal ischemic injury significantly reduced infarct lesion size in C57BL6 mice the following day, accompanied by a markedly attenuated upregulation of TNF-α. However, subsequent lower doses (5 mg/kg/day failed to sustain this neuroprotective effect after 4 days. Dabrafenib blocked lipopolysaccharides-induced activation of TNF-α in bone marrow-derived macrophages, suggesting that Dabrafenib may attenuate TNF-α-induced necroptotic pathway after ischemic brain injury. Since Dabrafenib is already in clinical use for the treatment of melanoma, it might be repurposed for stroke therapy.

  17. Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration.

    Science.gov (United States)

    Kazi, Rubina S; Banarjee, Reema M; Deshmukh, Arati B; Patil, Gouri V; Jagadeeshaprasad, Mashanipalya G; Kulkarni, Mahesh J

    2017-03-06

    Advanced Glycation End products (AGEs) are implicated in aging process. Thus, reducing AGEs by using glycation inhibitors may help in attenuating the aging process. In this study using Saccharomyces cerevisiae yeast system, we show that Aminoguanidine (AMG), a well-known glycation inhibitor, decreases the AGE modification of proteins in non-calorie restriction (NR) (2% glucose) and extends chronological lifespan (CLS) similar to that of calorie restriction (CR) condition (0.5% glucose). Proteomic analysis revealed that AMG back regulates the expression of differentially expressed proteins especially those involved in mitochondrial respiration in NR condition, suggesting that it switches metabolism from fermentation to respiration, mimicking CR. AMG induced back regulation of differentially expressed proteins could be possibly due to its chemical effect or indirectly by glycation inhibition. To delineate this, Metformin (MET), a structural analog of AMG and a mild glycation inhibitor and Hydralazine (HYD), another potent glycation inhibitor but not structural analog of AMG were used. HYD was more effective than MET in mimicking AMG suggesting that glycation inhibition was responsible for restoration of differentially expressed proteins. Thus glycation inhibitors particularly AMG, HYD and MET extend yeast CLS by reducing AGEs, modulating the expression of proteins involved in mitochondrial respiration and possibly by scavenging glucose. This study reports the role of glycation in aging process. In the non-caloric restriction condition, carbohydrates such as glucose promote protein glycation and reduce CLS. While, the inhibitors of glycation such as AMG, HYD, MET mimic the caloric restriction condition by back regulating deregulated proteins involved in mitochondrial respiration which could facilitate shift of metabolism from fermentation to respiration and extend yeast CLS. These findings suggest that glycation inhibitors can be potential molecules that can be used

  18. Peptidase inhibitors reduce opiate narcotic withdrawal signs, including seizure activity, in the rat.

    Science.gov (United States)

    Pinsky, C; Dua, A K; LaBella, F S

    1982-07-15

    Narcotic withdrawal was precipitated by administration of naloxone in a low dose at 2 h after the final dose of morphine in a 9-day dependency-inducing schedule. Withdrawal was characterized by leaps, increased nocifensor activity and by cerebral cortical epileptiform activity, the latter not generally reported to be prominent in narcotic withdrawal. Single large doses of morphine did not provoke epileptiform activity at 2 h postinjection but did induce an acute opioid dependency wherein a moderately high dose of naloxone, ineffective in non-dependent rats, provoked upward leaping and electrocortical epileptiform activity. Pretreatment of the 9-day dependent rats with peptidase inhibitors, administered intracerebroventricularly, significantly reduced withdrawal severity including the epileptiform activity. We propose that peptidase inhibitors protect certain species of endogenous opioids and/or other neuropeptides that tend to suppress expression of the narcotic withdrawal syndrome. Furthermore, our findings suggest that epileptiform activity is a nascent form of cerebral activity hitherto largely unnoticed in narcotic withdrawal and that neuropeptides may be involved in certain epileptic states.

  19. The mechano-gated channel inhibitor GsMTx4 reduces the exercise pressor reflex in decerebrate rats.

    Science.gov (United States)

    Copp, Steven W; Kim, Joyce S; Ruiz-Velasco, Victor; Kaufman, Marc P

    2016-02-01

    Mechanical and metabolic stimuli from contracting muscles evoke reflex increases in blood pressure, heart rate and sympathetic nerve activity. Little is known, however, about the nature of the mechano-gated channels on the thin fibre muscle afferents that contribute to evoke this reflex, termed the exercise pressor reflex. We determined the effect of GsMTx4, an inhibitor of mechano-gated Piezo channels, on the exercise pressor reflex evoked by intermittent contraction of the triceps surae muscles in decerebrated, unanaesthetized rats. GsMTx4 reduced the pressor, cardioaccelerator and renal sympathetic nerve responses to intermittent contraction but did not reduce the pressor responses to femoral arterial injection of compounds that stimulate the metabolically-sensitive thin fibre muscle afferents. Expression levels of Piezo2 channels were greater than Piezo1 channels in rat dorsal root ganglia. Our findings suggest that mechanically-sensitive Piezo proteins contribute to the generation of the mechanical component of the exercise pressor reflex in rats. Mechanical and metabolic stimuli within contracting skeletal muscles evoke reflex autonomic and cardiovascular adjustments. In cats and rats, gadolinium has been used to investigate the role played by the mechanical component of this reflex, termed the exercise pressor reflex. Gadolinium, however, has poor selectivity for mechano-gated channels and exerts multiple off-target effects. We tested the hypothesis that GsMTX4, a more selective mechano-gated channel inhibitor than gadolinium and a particularly potent inhibitor of mechano-gated Piezo channels, reduced the exercise pressor reflex in decerebrate rats. Injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced the peak pressor (control: 24 ± 5, GsMTx4: 12 ± 5 mmHg, P acid. Moreover, injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced the peak pressor (control: 24 ± 2, GsMTx4: 14 ± 3 mmHg, P reflex in

  20. Treatment with acarbose, an alpha-glucosidase inhibitor, reduces increased albumin excretion in streptozotocin-diabetic rats.

    Science.gov (United States)

    Cohen, M P; Vasselli, J R; Neuman, R G; Witt, J

    1995-10-01

    1. We examined the effect of the alpha-glucosidase inhibitor acarbose on urinary albumin excretion (UAE) in streptozotocin diabetic rats. 2. Treatment with acarbose for 8 weeks after induction of diabetes prevented the significant increase in UAE observed in untreated diabetic rats relative to nondiabetic controls. 3. Acarbose significantly reduced integrated glycemia, which correlated with albumin excretion rates, and exerts a salutary effect on diabetic renal dysfunction.

  1. Reduced Airway Hyperresponsiveness by Phosphodiesterase 3 and 4 Inhibitors in Guinea-Pigs

    Directory of Open Access Journals (Sweden)

    Nöella Germain

    1999-01-01

    Full Text Available The aim of the present study was to compare the effects of selective phosphodiesterase (PDE 3, 4 and 5 inhibitors on antigen-induced airway hyperresponsiveness in sensitized guinea-pigs. When the sensitized guinea-pigs were orally pre-treated with the selective PDE4 inhibitor, Ro 20-1724 (30 mg/kg, and studied 48 h after OA, a significant reduction (p<0.01 of the leftward shift of the dose-response curve to ACh was noted, whereas it was ineffective at the lower dose (10 mg/kg. Administration of the selective PDE3 inhibitor, milrinone (30 mg/kg also elicited a significant reduction (p<0.01 of the airway hyperresponsiveness, whereas the PDE5 inhibitor zaprinast (30 mg/kg was ineffective. These results show that both PDE3 and PDE4 inhibitors are able to inhibit the antigen-induced airway hyperresponsiveness in sensitized guinea-pigs and support the potential utility of selective PDE inhibitors in the treatment of asthma.

  2. TNF-α inhibitors reduce the pathological Th1 -Th17 /Th2 imbalance in cutaneous mesenchymal stem cells of psoriasis patients.

    Science.gov (United States)

    Campanati, Anna; Orciani, Monia; Lazzarini, Raffaella; Ganzetti, Giulia; Consales, Veronica; Sorgentoni, Giulia; Di Primio, Roberto; Offidani, Annamaria

    2017-04-01

    Psoriasis is a disease characterized by an imbalance between Th 1 and Th 17 and Th 2 inflammatory axes, in which cutaneous mesenchymal stem cells (MSCs) are early involved, as they show a greater relative expression of several genes encoding for Th 1 and Th 17 cytokines. Therapeutic implications of TNF-α inhibitors on differentiated skin cells have been largely described in psoriasis; however, their effects on MSCs derived from patients with psoriasis have been only partially described. The aim of this work was to evaluate the effect of TNF-α inhibitors on cytokine milieu expressed by MSCs isolated from the skin of patients with psoriasis. Resident MSCs from skin of patients with psoriasis and healthy subjects have been isolated, characterized and profiled by PCR and ELISA for the expression of 22 cytokines involved in Th 1 , Th 2 and Th 17 pathways, both before and after 12 weeks therapy with TNF-α inhibitors. The administration of TNF-α inhibitors for 12-weeks acts on MSCs as follows: it reduces the expression of several Th 1 -Th 17 cytokines whose levels are elevated at baseline (IL-6, IL-8, IL-12, IL-23A, IFN-γ, TNF-α, CCL2, CCL20, CXCL2, CXCL5, IL-17A, IL-17C, IL-17F, IL-21, G-CSF). Similarly, it enhances the expression of several Th 2 cytokines which are underexpressed at baseline (IL-2, IL-4, IL-5), reducing the expression of those overexpressed at baseline (TGF-β and IL-13). TNF-α inhibitors could contribute to reduce the pathological imbalance between the Th 1 -Th 17 vs Th 2 axis in MSCs of patients with psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    Science.gov (United States)

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  4. The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet ß cells in vivo and in vitro

    DEFF Research Database (Denmark)

    Lewis, Eli C; Blaabjerg, Lykke; Størling, Joachim

    2011-01-01

    of histone deacetylases (HDAC) are used commonly in humans but also possess antiinflammatory and cytokine-suppressing properties. Here we show that oral administration of the HDAC inhibitor ITF2357 to mice normalized streptozotocin (STZ)-induced hyperglycemia at the clinically relevant doses of 1.25-2.5 mg...... production and decreased apoptosis rates from 14.3% (vehicle) to 2.6% (ITF2357). Inducible nitric oxide synthase (iNOS) levels decreased in association with reduced islet-derived nitrite levels. In peritoneal macrophages and splenocytes, ITF2357 inhibited the production of nitrite, as well as that of TNFa...... and IFN¿ at an IC(50) of 25-50 nmol/L. In the insulin-producing INS cells challenged with the combination of IL-1ß plus IFN¿, apoptosis was reduced by 50% (P orally active HDAC inhibitor ITF2357 favors ß-cell survival during inflammatory conditions....

  5. Urease inhibitor for reducing ammonia emissions from an open-lot beef cattle feedyard in the Texas High Plains

    Science.gov (United States)

    Reduction of ammonia (NH3) emissions from animal feeding operations is important from the perspective of environmental policy and its impact on agriculture. In laboratory studies, urease inhibitors have been effective in reducing NH3 emissions from beef cattle manure, however there has been little t...

  6. S-phenylpiracetam, a selective DAT inhibitor, reduces body weight gain without influencing locomotor activity.

    Science.gov (United States)

    Zvejniece, Liga; Svalbe, Baiba; Vavers, Edijs; Makrecka-Kuka, Marina; Makarova, Elina; Liepins, Vilnis; Kalvinsh, Ivars; Liepinsh, Edgars; Dambrova, Maija

    2017-09-01

    S-phenylpiracetam is an optical isomer of phenotropil, which is a clinically used nootropic drug that improves physical condition and cognition. Recently, it was shown that S-phenylpiracetam is a selective dopamine transporter (DAT) inhibitor that does not influence norepinephrine (NE) or serotonin (5-HT) receptors. The aim of the present study was to study the effects of S-phenylpiracetam treatment on body weight gain, blood glucose and leptin levels, and locomotor activity. Western diet (WD)-fed mice and obese Zucker rats were treated daily with peroral administration of S-phenylpiracetam for 8 and 12weeks, respectively. Weight gain and plasma metabolites reflecting glucose metabolism were measured. Locomotor activity was detected in an open-field test. S-phenylpiracetam treatment significantly decreased body weight gain and fat mass increase in the obese Zucker rats and in the WD-fed mice. In addition, S-phenylpiracetam reduced the plasma glucose and leptin concentration and lowered hyperglycemia in a glucose tolerance test in both the mice and the rats. S-phenylpiracetam did not influence locomotor activity in the obese Zucker rats or in the WD-fed mice. The results demonstrate that S-phenylpiracetam reduces body weight gain and improves adaptation to hyperglycemia without stimulating locomotor activity. Our findings suggest that selective DAT inhibitors, such as S-phenylpiracetam, could be potentially useful for treating obesity in patients with metabolic syndrome with fewer adverse health consequences compared to other anorectic agents. Copyright © 2017. Published by Elsevier Inc.

  7. Atomoxetine, a norepinephrine reuptake inhibitor, reduces seizure-induced respiratory arrest.

    Science.gov (United States)

    Zhang, Honghai; Zhao, Haiting; Feng, Hua-Jun

    2017-08-01

    Sudden unexpected death in epilepsy (SUDEP) is a devastating epilepsy complication, and no effective preventive strategies are currently available for this fatal disorder. Clinical and animal studies of SUDEP demonstrate that seizure-induced respiratory arrest (S-IRA) is the primary event leading to death after generalized seizures in many cases. Enhancing brain levels of serotonin reduces S-IRA in animal models relevant to SUDEP, including the DBA/1 mouse. Given that serotonin in the brain plays an important role in modulating respiration and arousal, these findings suggest that deficits in respiration and/or arousal may contribute to S-IRA. It is well known that norepinephrine is an important neurotransmitter that modulates respiration and arousal in the brain as well. Therefore, we hypothesized that enhancing noradrenergic neurotransmission suppresses S-IRA. To test this hypothesis, we examined the effect of atomoxetine, a norepinephrine reuptake inhibitor (NRI), on S-IRA evoked by either acoustic stimulation or pentylenetetrazole in DBA/1 mice. We report the original observation that atomoxetine specifically suppresses S-IRA without altering the susceptibility to seizures evoked by acoustic stimulation, and atomoxetine also reduces S-IRA evoked by pentylenetetrazole in DBA/1 mice. Our data suggest that the noradrenergic signaling is importantly involved in S-IRA, and that atomoxetine, a medication widely used to treat attention deficit hyperactivity disorder (ADHD), is potentially useful to prevent SUDEP. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A selective phosphodiesterase 10A inhibitor reduces l-dopa-induced dyskinesias in parkinsonian monkeys.

    Science.gov (United States)

    Beck, Goichi; Maehara, Shunsuke; Chang, Phat Ly; Papa, Stella M

    2018-03-06

    Phosphodiesterase 10A is a member of the phosphodiesterase family whose brain expression is restricted to the striatum. Phosphodiesterase 10A regulates cyclic adenosine monophosphate and cyclic guanosine monophosphate, which mediate responses to dopamine receptor activation, and the levels of these cyclic nucleotides are decreased in experimental models of l-dopa-induced dyskinesia. The elevation of cyclic adenosine monophosphate/cyclic guanosine monophosphate levels by phosphodiesterase 10A inhibition may thus be targeted to reduce l-dopa-induced dyskinesia. The present study was aimed at determining the potential antidyskinetic effects of phosphodiesterase 10A inhibitors in a primate model of Parkinson's disease (PD). The experiments performed in this model were also intended to provide translational data for the design of future clinical trials. Five MPTP-treated macaques with advanced parkinsonism and reproducible l-dopa-induced dyskinesia were used. MR1916, a selective phosphodiesterase 10A inhibitor, at doses 0.0015 to 0.05 mg/kg, subcutaneously, or its vehicle (control test) was coadministered with l-dopa methyl ester acutely (predetermined optimal and suboptimal subcutaneous doses) and oral l-dopa chronically as daily treatment for 5 weeks. Standardized scales were used to assess motor disability and l-dopa-induced dyskinesia by blinded examiners. Pharmacokinetics was also examined. MR1916 consistently reduced l-dopa-induced dyskinesia in acute tests of l-dopa optimal and suboptimal doses. Significant effects were present with every MR1916 dose tested, but the most effective was 0.015 mg/kg. None of the MR1916 doses tested affected the antiparkinsonian action of l-dopa at the optimal dose. The anti-l-dopa-induced dyskinesia effect of MR1916 (0.015 mg/kg, subcutaneously) was sustained with chronic administration, indicating that tolerance did not develop over the 5-week treatment. No adverse effects were observed after MR1916 administration acutely or

  9. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus.

    Science.gov (United States)

    Kalia, Nitin Pal; Mahajan, Priya; Mehra, Rukmankesh; Nargotra, Amit; Sharma, Jai Parkash; Koul, Surrinder; Khan, Inshad Ali

    2012-10-01

    To delineate the role of capsaicin (8-methyl-N-vanillyl-6-nonenamide) as an inhibitor of the NorA efflux pump and its impact on invasion of macrophages by Staphylococcus aureus. Capsaicin in combination with ciprofloxacin was tested for activity against S. aureus SA-1199B (NorA overproducing), SA-1199 (wild-type) and SA-K1758 (norA knockout). The role of NorA in the intracellular invasion of S. aureus and the ability of capsaicin to inhibit this invasion was established in J774 macrophage cell lines. The three-dimensional structure of NorA was predicted using an in silico approach and docking studies of capsaicin were performed. Capsaicin significantly reduced the MIC of ciprofloxacin for S. aureus SA-1199 and SA-1199B. Furthermore, capsaicin also extended the post-antibiotic effect of ciprofloxacin by 1.1 h at MIC concentration. There was a decrease in mutation prevention concentration of ciprofloxacin when combined with capsaicin. Inhibition of ethidium bromide efflux by NorA-overproducing S. aureus SA-1199B confirmed the role of capsaicin as a NorA efflux pump inhibitor (EPI). The most significant finding of this study was the ability of capsaicin to reduce the intracellular invasion of S. aureus SA-1199B (NorA overproducing) in J774 macrophage cell lines by 2 log(10). This study, for the first time, has shown that capsaicin, a novel EPI, not only inhibits the NorA efflux pump of S. aureus but also reduces the invasiveness of S. aureus, thereby reducing its virulence.

  10. Reducing conditions are the key for efficient production of active ribonuclease inhibitor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2011-05-01

    Full Text Available Abstract Background The eukaryotic RNase ribonuclease/angiogenin inhibitors (RI are a protein group distinguished by a unique structure - they are composed of hydrophobic leucine-rich repeat motifs (LRR and contain a high amount of reduced cysteine residues. The members of this group are difficult to produce in E. coli and other recombinant hosts due to their high aggregation tendency. Results In this work dithiothreitol (DTT was successfully applied for improving the yield of correctly folded ribonuclease/angiogenin inhibitor in E. coli K12 periplasmic and cytoplasmic compartments. The feasibility of the in vivo folding concepts for cytoplasmic and periplasmic production were demonstrated at batch and fed-batch cultivation modes in shake flasks and at the bioreactor scale. Firstly, the best secretion conditions of RI in the periplasmic space were evaluated by using a high throughput multifactorial screening approach of a vector library, directly with the Enbase fed-batch production mode in 96-well plates. Secondly, the effect of the redox environment was evaluated in isogenic dsbA+ and dsbA- strains at the various cultivation conditions with reducing agents in the cultivation medium. Despite the fusion to the signal peptide, highest activities were found in the cytoplasmic fraction. Thus by removing the signal peptide the positive effect of the reducing agent DTT was clearly proven also for the cytoplasmic compartment. Finally, optimal periplasmic and cytoplasmic RI fed-batch production processes involving externally added DTT were developed in shake flasks and scaled up to the bioreactor scale. Conclusions DTT highly improved both, periplasmic and cytoplasmic accumulation and activity of RI at low synthesis rate, i.e. in constructs harbouring weak recombinant synthesis rate stipulating genetic elements together with cultivation at low temperature. In a stirred bioreactor environment RI folding was strongly improved by repeated pulse addition

  11. Ganetespib, an HSP90 inhibitor, kills Epstein-Barr virus (EBV)-infected B and T cells and reduces the percentage of EBV-infected cells in the blood.

    Science.gov (United States)

    Shatzer, Amber; Ali, Mir A; Chavez, Mayra; Dowdell, Kennichi; Lee, Min-Jung; Tomita, Yusuke; El-Hariry, Iman; Trepel, Jane B; Proia, David A; Cohen, Jeffrey I

    2017-04-01

    HSP90 inhibitors have been shown to kill Epstein-Barr virus (EBV)-infected cells by reducing the level of EBV EBNA-1 and/or LMP1. We treated virus-infected cells with ganetespib, an HSP90 inhibitor currently being evaluated in multiple clinical trials for cancer and found that the drug killed EBV-positive B and T cells and reduced the level of both EBV EBNA-1 and LMP1. Treatment of cells with ganetespib also reduced the level of pAkt. Ganetespib delayed the onset of EBV-positive lymphomas and prolonged survival in SCID mice inoculated with one EBV-transformed B-cell line, but not another B-cell line. The former cell line showed lower levels of EBNA-1 after treatment with ganetespib in vitro. Treatment of a patient with T-cell chronic active EBV with ganetespib reduced the percentage of EBV-positive cells in the peripheral blood. These data indicate that HSP90 inhibitors may have a role in the therapy of certain EBV-associated diseases.

  12. The mechano-gated channel inhibitor GsMTx4 reduces the exercise pressor reflex in rats with ligated femoral arteries.

    Science.gov (United States)

    Copp, Steven W; Kim, Joyce S; Ruiz-Velasco, Victor; Kaufman, Marc P

    2016-05-01

    Mechanical and metabolic stimuli arising from contracting muscles evoke the exercise pressor reflex. This reflex is greater in a rat model of simulated peripheral arterial disease in which a femoral artery is chronically ligated than it is in rats with freely perfused femoral arteries. The role played by the mechanically sensitive component of the exaggerated exercise pressor reflex in ligated rats is unknown. We tested the hypothesis that the mechano-gated channel inhibitor GsMTx4, a relatively selective inhibitor of mechano-gated Piezo channels, reduces the exercise pressor reflex in decerebrate rats with ligated femoral arteries. Injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced the pressor response to Achilles tendon stretch (a purely mechanical stimulus) but had no effect on the pressor responses to intra-arterial injection of α,β-methylene ATP or lactic acid (purely metabolic stimuli). Moreover, injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced both the integrated pressor area (control 535 ± 21, GsMTx4 218 ± 24 mmHg·s; P reflex contributes to the exaggerated exercise pressor reflex during intermittent hindlimb muscle contractions in rats with ligated femoral arteries. Copyright © 2016 the American Physiological Society.

  13. Cellular growth kinetics distinguish a cyclophilin inhibitor from an HSP90 inhibitor as a selective inhibitor of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Rudolf K F Beran

    Full Text Available During antiviral drug discovery, it is critical to distinguish molecules that selectively interrupt viral replication from those that reduce virus replication by adversely affecting host cell viability. In this report we investigate the selectivity of inhibitors of the host chaperone proteins cyclophilin A (CypA and heat-shock protein 90 (HSP90 which have each been reported to inhibit replication of hepatitis C virus (HCV. By comparing the toxicity of the HSP90 inhibitor, 17-(Allylamino-17-demethoxygeldanamycin (17-AAG to two known cytostatic compounds, colchicine and gemcitabine, we provide evidence that 17-AAG exerts its antiviral effects indirectly through slowing cell growth. In contrast, a cyclophilin inhibitor, cyclosporin A (CsA, exhibited selective antiviral activity without slowing cell proliferation. Furthermore, we observed that 17-AAG had little antiviral effect in a non-dividing cell-culture model of HCV replication, while CsA reduced HCV titer by more than two orders of magnitude in the same model. The assays we describe here are useful for discriminating selective antivirals from compounds that indirectly affect virus replication by reducing host cell viability or slowing cell growth.

  14. Supplementation with a new trypsin inhibitor from peanut is associated with reduced fasting glucose, weight control, and increased plasma CCK secretion in an animal model.

    Science.gov (United States)

    Serquiz, Alexandre C; Machado, Richele J A; Serquiz, Raphael P; Lima, Vanessa C O; de Carvalho, Fabiana Maria C; Carneiro, Marcella A A; Maciel, Bruna L L; Uchôa, Adriana F; Santos, Elizeu A; Morais, Ana H A

    2016-12-01

    Ingestion of peanuts may have a beneficial effect on weight control, possibly due to the satietogenic action of trypsin inhibitors. The aim of this study was to isolate a new trypsin inhibitor in a typical Brazilian peanut sweet (paçoca) and evaluate its effect in biochemical parameters, weight gain and food intake in male Wistar rats. The trypsin inhibitor in peanut paçoca (AHTI) was isolated. Experimental diets were prepared with AIN-93G supplemented with AHTI. Animals had their weight and food intake monitored. Animals were anesthetized, euthanized, and their bloods collected by cardiac puncture for dosage of cholecystokinin (CCK) and other biochemical parameters. Supplementation with AHTI significantly decreased fasting glucose, body weight gain, and food intake. These effects may be attributed to increased satiety, once supplemented animals showed no evidence of impaired nutritional status and also because AHTI increased CCK production. Thus, our results indicate that AHTI, besides reducing fasting glucose, can reduce weight gain via food intake reduction.

  15. SGLT2 Inhibitors and the Diabetic Kidney.

    Science.gov (United States)

    Fioretto, Paola; Zambon, Alberto; Rossato, Marco; Busetto, Luca; Vettor, Roberto

    2016-08-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether

  16. Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation.

    Science.gov (United States)

    Tang, Yong; Dou, Xiaoli; Hu, Jinguang; Jiang, Jianxin; Saddler, Jack N

    2018-01-01

    The merit of deacetylation of corn stover prior to pretreatment is decreasing the formation of inhibitors and improving enzyme hydrolysis, proved in dilute acid pretreatment. However, few studies are done on how deacetylation would affect bioconversion process containing steam explosion. In this study, the effect of deacetylation on steam explosion was conducted using poplar as substrate. About 57 to 90% of acetyl group in poplar, depending on alkaline types and concentration, was removed by dilute alkaline deacetylation in 6 h. Deacetylation eliminated over 85% of inhibitor formation during downstream steam explosion. However, deacetylation prior to steam explosion decreased the dissolution of hemicellulose, thus reducing the cellulose accessibility of pretreated poplar, finally resulting in 5-20% decrease in glucose yield and 20-35% decrease in xylose yield. The addition of 5% SO 2 during steam explosion significantly improved the hydrolysis of deacetylated and pretreated poplar without significantly increasing the concentration of inhibitors. Incorporating 45 mmol/kg sulfoacid group in lignin fraction of deacetylated and then pretreated poplar dramatically improved the xylose yield to about 100% and increased the glucose yield by 30%.

  17. Farnesylation Directs AtIPT3 Subcellular Localization and Modulates Cytokinin Biosynthesis in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Galichet, A.; Hoyerová, Klára; Kamínek, Miroslav; Gruissem, W.

    2008-01-01

    Roč. 146, č. 3 (2008), s. 1155-1164 ISSN 0032-0889 R&D Projects: GA AV ČR(CZ) IAA600380507; GA MŠk(CZ) LC06034; GA ČR GA522/02/0530; GA MŠk 1M06030 Institutional research plan: CEZ:AV0Z50380511 Keywords : ATP/ADP ISOPENTENYLTRANSFERASES * PROTEIN FARNESYLTRANSFERASE * PLANT FARNESYLTRANSFERASE Subject RIV: ED - Physiology Impact factor: 6.110, year: 2008

  18. Verapamil and angiotensin-converting enzyme inhibitors in patients with coronary artery disease and reduced left ventricular ejection fraction

    DEFF Research Database (Denmark)

    Hansen, J F; Tingsted, L; Rasmussen, Verner

    1996-01-01

    Verapamil is effective as antianginal medication but contraindicated in patients with congestive heart failure. Angiotensin-converting enzyme (ACE) inhibitors improve survival in patients with congestive heart failure but have limited effect on patients with angina pectoris. No studies have been.......4 to 2.5 +/- 0.6 (p attacks were both significantly reduced after 3 months of treatment. These findings support the hypothesis that the combination of verapamil and trandolapril is useful in patients with attenuated left ventricular function...

  19. Inactivation of proteinaceous protease inhibitors of soybeans by isolated fungi

    NARCIS (Netherlands)

    Meijer, M.M.T.; Spekking, W.T.J.; Sijtsma, L.; Bont, de J.A.M.

    1995-01-01

    Proteinaceous protease inhibitors, Kunitz Soybean Trypsin Inhibitor (KSTI) and Bowman Birk Inhibitor (BBI), in legume seeds reduce the digestibility of proteins in feed of monogastric animals. Enzymatic inactivation of these inhibitors will increase the nutritional value of the feed. The aim of this

  20. Use of selective serotonin reuptake inhibitors reduces fertility in men

    DEFF Research Database (Denmark)

    Nørr, L; Bennedsen, Birgit; Fedder, Jens

    2016-01-01

    Clinical review of the present data on the effects of selective serotonin reuptake inhibitors (SSRIs) on male fertility was the objective of the study. PubMed and Scopus were searched for publications in English or Danish and reviewed. Human trials, animal studies and in vitro studies were included...

  1. Efficacy, Pharmacokinetics, and Metabolism of Tetrahydroquinoline Inhibitors of Plasmodium falciparum Protein Farnesyltransferase▿ †

    Science.gov (United States)

    Van Voorhis, Wesley C.; Rivas, Kasey L.; Bendale, Pravin; Nallan, Laxman; Hornéy, Carolyn; Barrett, Lynn K.; Bauer, Kevin D.; Smart, Brian P.; Ankala, Sudha; Hucke, Oliver; Verlinde, Christophe L. M. J.; Chakrabarti, Debopam; Strickland, Corey; Yokoyama, Kohei; Buckner, Frederick S.; Hamilton, Andrew D.; Williams, David K.; Lombardo, Louis J.; Floyd, David; Gelb, Michael H.

    2007-01-01

    New antimalarials are urgently needed. We have shown that tetrahydroquinoline (THQ) protein farnesyltransferase (PFT) inhibitors (PFTIs) are effective against the Plasmodium falciparum PFT and are effective at killing P. falciparum in vitro. Previously described THQ PFTIs had limitations of poor oral bioavailability and rapid clearance from the circulation of rodents. In this paper, we validate both the Caco-2 cell permeability model for predicting THQ intestinal absorption and the in vitro liver microsome model for predicting THQ clearance in vivo. Incremental improvements in efficacy, oral absorption, and clearance rate were monitored by in vitro tests; and these tests were followed up with in vivo absorption, distribution, metabolism, and excretion studies. One compound, PB-93, achieved cure when it was given orally to P. berghei-infected rats every 8 h for a total of 72 h. However, PB-93 was rapidly cleared, and dosing every 12 h failed to cure the rats. Thus, the in vivo results corroborate the in vitro pharmacodynamics and demonstrate that 72 h of continuous high-level exposure to PFTIs is necessary to kill plasmodia. The metabolism of PB-93 was demonstrated by a novel technique that relied on double labeling with a radiolabel and heavy isotopes combined with radiometric liquid chromatography and mass spectrometry. The major liver microsome metabolite of PB-93 has the PFT Zn-binding N-methyl-imidazole removed; this metabolite is inactive in blocking PFT function. By solving the X-ray crystal structure of PB-93 bound to rat PFT, a model of PB-93 bound to malarial PFT was constructed. This model suggests areas of the THQ PFTIs that can be modified to retain efficacy and protect the Zn-binding N-methyl-imidazole from dealkylation. PMID:17606674

  2. SGLT2 inhibitors: molecular design and potential differences in effect.

    Science.gov (United States)

    Isaji, Masayuki

    2011-03-01

    The physiological and pathological handling of glucose via sodium-glucose cotransporter-2 (SGLT2) in the kidneys has been evolving, and SGLT2 inhibitors have been focused upon as a novel drug for treating diabetes. SGLT2 inhibitors enhance renal glucose excretion by inhibiting renal glucose reabsorption. Consequently, SGLT2 inhibitors reduce plasma glucose insulin independently and improve insulin resistance in diabetes. To date, various SGLT2 inhibitors have been developed and evaluated in clinical studies. The potency and positioning of SGLT2 inhibitors as an antidiabetic drug are dependent on their characteristic profile, which induces selectivity, efficacy, pharmacokinetics, and safety. This profile decides which SGLT2 inhibitors can be expected for application of the theoretical concept of reducing renal glucose reabsorption for the treatment of diabetes. I review the structure and advancing profile of various SGLT2 inhibitors, comparing their similarities and differences, and discuss the expected SGLT2 inhibitors for an emerging category of antidiabetic drugs.

  3. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  4. mTOR inhibitors alone and in combination with JAK2 inhibitors effectively inhibit cells of myeloproliferative neoplasms.

    Directory of Open Access Journals (Sweden)

    Costanza Bogani

    Full Text Available BACKGROUND: Dysregulated signaling of the JAK/STAT pathway is a common feature of chronic myeloproliferative neoplasms (MPN, usually associated with JAK2V617F mutation. Recent clinical trials with JAK2 inhibitors showed significant improvements in splenomegaly and constitutional symptoms in patients with myelofibrosis but meaningful molecular responses were not documented. Accordingly, there remains a need for exploring new treatment strategies of MPN. A potential additional target for treatment is represented by the PI3K/AKT/mammalian target of rapamycin (mTOR pathway that has been found constitutively activated in MPN cells; proof-of-evidence of efficacy of the mTOR inhibitor RAD001 has been obtained recently in a Phase I/II trial in patients with myelofibrosis. The aim of the study was to characterize the effects in vitro of mTOR inhibitors, used alone and in combination with JAK2 inhibitors, against MPN cells. FINDINGS: Mouse and human JAK2V617F mutated cell lines and primary hematopoietic progenitors from MPN patients were challenged with an allosteric (RAD001 and an ATP-competitive (PP242 mTOR inhibitor and two JAK2 inhibitors (AZD1480 and ruxolitinib. mTOR inhibitors effectively reduced proliferation and colony formation of cell lines through a slowed cell division mediated by changes in cell cycle transition to the S-phase. mTOR inhibitors also impaired the proliferation and prevented colony formation from MPN hematopoietic progenitors at doses significantly lower than healthy controls. JAK2 inhibitors produced similar antiproliferative effects in MPN cell lines and primary cells but were more potent inducers of apoptosis, as also supported by differential effects on cyclinD1, PIM1 and BcLxL expression levels. Co-treatment of mTOR inhibitor with JAK2 inhibitor resulted in synergistic activity against the proliferation of JAK2V617F mutated cell lines and significantly reduced erythropoietin-independent colony growth in patients with

  5. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    Science.gov (United States)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  6. Reduced intensity conditioning is superior to nonmyeloablative conditioning for older chronic myelogenous leukemia patients undergoing hematopoietic cell transplant during the tyrosine kinase inhibitor era

    DEFF Research Database (Denmark)

    Warlick, Erica; Ahn, Kwang Woo; Pedersen, Tanya L

    2012-01-01

    Tyrosine kinase inhibitors (TKIs) and reduced intensity conditioning (RIC)/nonmyeloablative (NMA) conditioning hematopoietic cell transplants (HCTs) have changed the therapeutic strategy for chronic myelogenous leukemia (CML) patients. We analyzed post-HCT outcomes of 306 CML patients reported to...

  7. Pectinesterase inhibitor from jelly-fig (Ficus awkeotsang Makino) achenes reduces methanol content in carambola wine.

    Science.gov (United States)

    Wu, James Swi-Bea; Wu, Ming-Chang; Jiang, Chii-Ming; Hwang, Ya-Ping; Shen, Szu-Chuan; Chang, Hung-Min

    2005-11-30

    Crude pectinesterase (PE) inhibitor (PEI) extracted from jelly-fig achenes (JFA) (Ficus awakeosang Makino) was added to carambola (Averrhoa carambola L.) puree to determine the change in methanol production during fermentation. Addition of pectin or microbial pectic enzyme to puree increased dose-dependently the methanol content in fermented products. Decreasing ratio (from 1:0 to 1:19, v:v) of pectic enzyme to diluted crude PEI solution in the puree-enzyme mixture decreased the PE activity remarkably. Except for transmittance (%T), addition of crude PEI to puree did not affect apparently the physical and chemical properties of wine; however, it reduced methanol content in the control from 256 to 58 ppm. The degree of esterification (DE) of pectin in starting puree was approximately 70%. It decreased to approximately 27% in the control group and reduced slightly to approximately 67% in fermented puree with crude PEI added after 14 days of fermentation. This reveals that crude PEI solution was potent in inhibiting intrinsic carambola PE activity and appeared to be a potential alternative for methanol reduction in wines.

  8. Long-term outcomes of thoracic transplant recipients following conversion to everolimus with reduced calcineurin inhibitor in a multicenter, open-label, randomized trial lv

    DEFF Research Database (Denmark)

    Gullestad, Lars; Eiskjaer, Hans; Gustafsson, Finn

    2016-01-01

    The NOCTET study randomized 282 patients ≥1 year after heart or lung transplantation to continue conventional calcineurin inhibitor (CNI) therapy or to start everolimus with reduced-exposure CNI. Last follow-up, at ≥5 years postrandomization (mean: 5.6 years) was attended by 72/140 everolimus...

  9. A Novel Ras Inhibitor (MDC-1016 Reduces Human Pancreatic Tumor Growth in Mice

    Directory of Open Access Journals (Sweden)

    Gerardo G Mackenzie

    2013-10-01

    Full Text Available Pancreatic cancer has one of the poorest prognoses among all cancers partly because of its persistent resistance to chemotherapy. The currently limited treatment options for pancreatic cancer underscore the need for more efficient agents. Because activating Kras mutations initiate and maintain pancreatic cancer, inhibition of this pathway should have a major therapeutic impact. We synthesized phospho-farnesylthiosalicylic acid (PFTS; MDC-1016 and evaluated its efficacy, safety, and metabolism in preclinical models of pancreatic cancer. PFTS inhibited the growth of human pancreatic cancer cells in culture in a concentration- and time-dependent manner. In an MIA PaCa-2 xenograft mouse model, PFTS at a dose of 50 and 100 mg/kg significantly reduced tumor growth by 62% and 65% (P < .05 vs vehicle control. Furthermore, PFTS prevented pancreatitis-accelerated acinar-to-ductal metaplasia in mice with activated Kras. PFTS appeared to be safe, with the animals showing no signs of toxicity during treatment. Following oral administration, PFTS was rapidly absorbed, metabolized to FTS and FTS glucuronide, and distributed through the blood to body organs. Mechanistically, PFTS inhibited Ras-GTP, the active form of Ras, both in vitro and in vivo, leading to the inhibition of downstream effector pathways c-RAF/mitogen-activated protein-extracellular signal-regulated kinase (ERK kinase (MEK/ERK1/2 kinase and phosphatidylinositol 3-kinase/AKT. In addition, PFTS proved to be a strong combination partner with phospho-valproic acid, a novel signal transducer and activator of transcription 3 (STAT3 inhibitor, displaying synergy in the inhibition of pancreatic cancer growth. In conclusion, PFTS, a direct Ras inhibitor, is an efficacious agent for the treatment of pancreatic cancer in preclinical models, deserving further evaluation.

  10. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification

    Directory of Open Access Journals (Sweden)

    David H. Keating

    2014-08-01

    Full Text Available Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass, phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH. To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(PH, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.

  11. Novel agents and regimens for acute myeloid leukemia: 2009 ASH annual meeting highlights

    Directory of Open Access Journals (Sweden)

    Zhu Xiongpeng

    2010-04-01

    Full Text Available Abstract Prognostic markers, such as NPM1, Flt3-ITD, and cytogenetic abnormalities have made it possible to formulate aggressive treatment plans for unfavorable acute myeloid leukemia (AML. However, the long-term survival of AML with unfavorable factors remains unsatisfactory. The latest data indicate that the standard dose of daunorubicin (DNR at 45 mg/m2 is inferior to high dose 90 mg/m2 for induction therapy. The rates of complete remission and overall survival are significantly better in the high dose induction regimen. New regimens exploring the new liposomal encapsulation of Ara-C and DNR as well as addition of gemtuzumab ozogamicin monoclonal antibody have been studied. New agents, including the nucleoside analogues (clofarabine, sapacitabine, elacytarabine, FLT3 inhibitor (sorafenib, farnesyl-transferase inhibitor (tipifarnib, histone deacetylase inhibitor (vorinostat, lenalidomide, as well as DNA methyltransferase inhibitors (decitabine, azacitidine, were recently reported for AML treatment in the 2009 ASH annual meeting. This review also summarizes the updates of the clinical trials on novel agents including voreloxin, AS1413, behenoylara-C, ARRY520, ribavirin, AZD1152, AZD6244, and terameprocol (EM-1421 from the 2009 ASH annual meeting.

  12. The levels of mutant K-RAS and mutant N-RAS are rapidly reduced in a Beclin1 / ATG5 -dependent fashion by the irreversible ERBB1/2/4 inhibitor neratinib

    OpenAIRE

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Kirkwood, John; Sander, Cindy; Avogadri-Connors, Francesca; Cutler Jr, Richard E.; Lalani, Alshad S.; Dent, Paul

    2017-01-01

    ABSTRACT The FDA approved irreversible inhibitor of ERBB1/2/4, neratinib, was recently shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET and mutant K-RAS via autophagic degradation. In the present studies, in a dose-dependent fashion, neratinib reduced the expression levels of mutant K-RAS or of mutant N-RAS, which was augmented in an additive to greater than additive fashion by the HDAC inhibitors sodium valproate and AR42. Neratinib could reduce PDGFR...

  13. Sodium Valproate, a Histone Deacetylase Inhibitor, Is Associated With Reduced Stroke Risk After Previous Ischemic Stroke or Transient Ischemic Attack

    Science.gov (United States)

    Brookes, Rebecca L.; Crichton, Siobhan; Wolfe, Charles D.A.; Yi, Qilong; Li, Linxin; Hankey, Graeme J.; Rothwell, Peter M.

    2018-01-01

    Background and Purpose— A variant in the histone deacetylase 9 (HDAC9) gene is associated with large artery stroke. Therefore, inhibiting HDAC9 might offer a novel secondary preventative treatment for ischemic stroke. The antiepileptic drug sodium valproate (SVA) is a nonspecific inhibitor of HDAC9. We tested whether SVA therapy given after ischemic stroke was associated with reduced recurrent stroke rate. Methods— Data were pooled from 3 prospective studies recruiting patients with previous stroke or transient ischemic attack and long-term follow-up: the South London Stroke Register, The Vitamins to Prevent Stroke Study, and the Oxford Vascular Study. Patients receiving SVA were compared with patients who received antiepileptic drugs other than SVA using survival analysis and Cox Regression. Results— A total of 11 949 patients with confirmed ischemic event were included. Recurrent stroke rate was lower in patient taking SVA (17 of 168) than other antiepileptic drugs (105 of 530; log-rank survival analysis P=0.002). On Cox regression, controlling for potential cofounders, SVA remained associated with reduced stroke (hazard ratio=0.44; 95% confidence interval: 0.3–0.7; P=0.002). A similar result was obtained when patients taking SVA were compared with all cases not taking SVA (Cox regression, hazard ratio=0.47; 95% confidence interval: 0.29–0.77; P=0.003). Conclusions— These results suggest that exposure to SVA, an inhibitor of HDAC, may be associated with a lower recurrent stroke risk although we cannot exclude residual confounding in this study design. This supports the hypothesis that HDAC9 is important in the ischemic stroke pathogenesis and that its inhibition, by SVA or a more specific HDAC9 inhibitor, is worthy of evaluation as a treatment to prevent recurrent ischemic stroke. PMID:29247141

  14. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development.

    Science.gov (United States)

    Wilkinson, Richard D A; Young, Andrew; Burden, Roberta E; Williams, Rich; Scott, Christopher J

    2016-04-21

    Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.

  15. The cardiovascular safety trials of DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors.

    Science.gov (United States)

    Secrest, Matthew H; Udell, Jacob A; Filion, Kristian B

    2017-04-01

    In this paper, we review the results of large, double-blind, placebo-controlled randomized trials mandated by the US Food and Drug Administration to examine the cardiovascular safety of newly-approved antihyperglycemic agents in patients with type 2 diabetes. The cardiovascular effects of dipeptidyl peptidase-4 (DPP-4) inhibitors remain controversial: while these drugs did not reduce or increase the risk of primary, pre-specified composite cardiovascular outcomes, one DPP-4 inhibitor (saxagliptin) increased the risk of hospitalization for heart failure in the overall population; another (alogliptin) demonstrated inconsistent effects on heart failure hospitalization across subgroups of patients, and a third (sitagliptin) demonstrated no effect on heart failure. Evidence for cardiovascular benefits of glucagon-like peptide-1 (GLP-1) agonists has been similarly heterogeneous, with liraglutide and semaglutide reducing the risk of composite cardiovascular outcomes, but lixisenatide having no reduction or increase in cardiovascular risk. The effect of GLP-1 agonists on retinopathy remains a potential concern. In the only completed trial to date to assess a sodium-glucose cotransporter-2 (SGLT2) inhibitor, empagliflozin reduced the risk of composite cardiovascular endpoints, predominantly through its impact on cardiovascular mortality and heart failure hospitalization. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Histone Deacetylase Inhibitors as Anticancer Drugs.

    Science.gov (United States)

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  17. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  18. Are SGLT2 inhibitors reasonable antihypertensive drugs and renoprotective?

    Science.gov (United States)

    Lovshin, J A; Gilbert, R E

    2015-06-01

    By eliminating glucose in the urine, the sodium-glucose-linked cotransporter-2 (SGLT2) inhibitors act as osmotic diuretics to lower blood pressure in addition to reducing plasma glucose and assisting with weight loss. While not approved as antihypertensive agents, the ability of this new class of antihyperglycemic agents to lower blood pressure is not insubstantial, and while not used primarily for this indication, they may assist diabetic individuals in attaining currently recommended blood pressure targets. In addition to lowering systemic pressure, preclinical and exploratory human studies suggest that SGLT2 inhibitors may also lower intraglomerular pressure, potentially reducing the rate of GFR decline in patients with diabetic nephropathy. However, given the lack of clinically meaningful endpoint data, the use of SGLT2 inhibitors, primarily, as either antihypertensive or renoprotective agents would, at present, be premature. Fortunately, further insight will be garnered from large, randomized controlled trials that will assess the effects of various SGLT2 inhibitors on cardiovascular and renal outcomes.

  19. A Trypsin Inhibitor from Tamarind Reduces Food Intake and Improves Inflammatory Status in Rats with Metabolic Syndrome Regardless of Weight Loss

    Directory of Open Access Journals (Sweden)

    Fabiana M. C. Carvalho

    2016-09-01

    Full Text Available Trypsin inhibitors are studied in a variety of models for their anti-obesity and anti-inflammatory bioactive properties. Our group has previously demonstrated the satietogenic effect of tamarind seed trypsin inhibitors (TTI in eutrophic mouse models and anti-inflammatory effects of other trypsin inhibitors. In this study, we evaluated TTI effect upon satiety, biochemical and inflammatory parameters in an experimental model of metabolic syndrome (MetS. Three groups of n = 5 male Wistar rats with obesity-based MetS received for 10 days one of the following: (1 Cafeteria diet; (2 Cafeteria diet + TTI (25 mg/kg; and (3 Standard diet. TTI reduced food intake in animals with MetS. Nevertheless, weight gain was not different between studied groups. Dyslipidemia parameters were not different with the use of TTI, only the group receiving standard diet showed lower very low density lipoprotein (VLDL and triglycerides (TG (Kruskal–Wallis, p < 0.05. Interleukin-6 (IL-6 production did not differ between groups. Interestingly, tumor necrosis factor-alpha (TNF-α was lower in animals receiving TTI. Our results corroborate the satietogenic effect of TTI in a MetS model. Furthermore, we showed that TTI added to a cafeteria diet may decrease inflammation regardless of weight loss. This puts TTI as a candidate for studies to test its effectiveness as an adjuvant in MetS treatment.

  20. Dicty_cDB: Contig-U03504-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available Name: Full=Protoheme IX farnesyltransferase, mitocho... 60 8e-16 FM992692_191( FM992692 |pid:none) Candida dubliniensi...191( CT005262 |pid:none) Leishmania major strain Friedlin... 58 1e-13 CU633876_156( CU633876 |pid:none) Podospora ans... CP000934 |pid:none) Cellvibrio japonicus Ueda107, co... 45 1e-05 (Q15N01) RecName: Full=Protoheme IX farnesyltrans...ame: Full=Protoheme IX farnesyltransferase; ... 41 0.014 AP006725_1119( AP006725 |pid:none) Klebsiella pneumoni...sflstlssts*tiswcrl*nvisdsrkensgscfigscfiwysiafhl *lfl*fqrssnhshlygik*clfsitihh*nlsktfiyhilnif own upda

  1. Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans.

    Science.gov (United States)

    List, James F; Whaley, Jean M

    2011-03-01

    Glucose is freely filtered in the glomeruli before being almost entirely reabsorbed into circulation from the proximal renal tubules. The sodium-glucose cotransporter 2 (SGLT2), present in the S1 segment of the proximal tubule, is responsible for the majority of glucose reabsorption. SGLT2 inhibitors reduce glucose reabsorption and increase urinary glucose excretion. In animal models and humans with type 2 diabetes, this effect is associated with reduced fasting and postprandial blood glucose levels, and reduced hemoglobin A1c. Animal studies suggest that reduction of hyperglycemia with SGLT2 inhibitors may also improve insulin sensitivity and preserve β-cell function. Urinary excretion of excess calories with SGLT2 inhibitors is also associated with reduction in body weight. Modest reductions in blood pressure have been noted with SGLT2 inhibitors, consistent with a mild diuretic action. Some C-glucoside SGLT2 inhibitors, such as dapagliflozin, have pharmacokinetic properties that make them amenable to once-daily dosing.

  2. Small molecule inhibitor screening identifified HSP90 inhibitor 17-AAG as potential therapeutic agent for gallbladder cancer.

    Science.gov (United States)

    Weber, Helga; Valbuena, José R; Barbhuiya, Mustafa A; Stein, Stefan; Kunkel, Hana; García, Patricia; Bizama, Carolina; Riquelme, Ismael; Espinoza, Jaime A; Kurtz, Stephen E; Tyner, Jeffrey W; Calderon, Juan Francisco; Corvalán, Alejandro H; Grez, Manuel; Pandey, Akhilesh; Leal-Rojas, Pamela; Roa, Juan C

    2017-04-18

    Gallbladder cancer (GBC) is a lethal cancer with poor prognosis associated with high invasiveness and poor response to chemotherapy and radiotherapy. New therapeutic approaches are urgently needed in order to improve survival and response rates of GBC patients. We screened 130 small molecule inhibitors on a panel of seven GBC cell lines and identified the HSP90 inhibitor 17-AAG as one of the most potent inhibitory drugs across the different lines. We tested the antitumor efficacy of 17-AAG and geldanamycin (GA) in vitro and in a subcutaneous preclinical tumor model NOD-SCID mice. We also evaluated the expression of HSP90 by immunohistochemistry in human GBC tumors.In vitro assays showed that 17-AAG and GA significantly reduced the expression of HSP90 target proteins, including EGFR, AKT, phospho-AKT, Cyclin B1, phospho-ERK and Cyclin D1. These molecular changes were consistent with reduced cell viability and cell migration and promotion of G2/M cell cycle arrest and apoptosis observed in our in vitro studies.In vivo, 17-AAG showed efficacy in reducing subcutaneous tumors size, exhibiting a 69.6% reduction in tumor size in the treatment group compared to control mice (p < 0.05).The HSP90 immunohistochemical staining was seen in 182/209 cases of GBC (87%) and it was strongly expressed in 70 cases (33%), moderately in 58 cases (28%), and weakly in 54 cases (26%).Our pre-clinical observations strongly suggest that the inhibition of HSP90 function by HSP90 inhibitors is a promising therapeutic strategy for gallbladder cancer that may benefit from new HSP90 inhibitors currently in development.

  3. The levels of mutant K-RAS and mutant N-RAS are rapidly reduced in a Beclin1 / ATG5 -dependent fashion by the irreversible ERBB1/2/4 inhibitor neratinib.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Kirkwood, John; Sander, Cindy; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul

    2018-02-01

    The FDA approved irreversible inhibitor of ERBB1/2/4, neratinib, was recently shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET and mutant K-RAS via autophagic degradation. In the present studies, in a dose-dependent fashion, neratinib reduced the expression levels of mutant K-RAS or of mutant N-RAS, which was augmented in an additive to greater than additive fashion by the HDAC inhibitors sodium valproate and AR42. Neratinib could reduce PDGFRα levels in GBM cells, that was enhanced by sodium valproate. Knock down of Beclin1 or of ATG5 prevented neratinib and neratinib combined with sodium valproate / AR42 from reducing the expression of mutant N-RAS in established PDX and fresh PDX models of ovarian cancer and melanoma, respectively. Neratinib and the drug combinations caused the co-localization of mutant RAS proteins and ERBB2 with Beclin1 and cathepsin B. The drug combination activated the AMP-dependent protein kinase that was causal in enhancing HMG Co A reductase phosphorylation. Collectively, our data reinforce the concept that the irreversible ERBB1/2/4 inhibitor neratinib has the potential for use in the treatment of tumors expressing mutant RAS proteins.

  4. Bauhinia bauhinioides cruzipain inhibitor reduces endothelial proliferation and induces an increase of the intracellular Ca2+ concentration.

    Science.gov (United States)

    Bilgin, Mehmet; Neuhof, Christiane; Doerr, Oliver; Benscheid, Utz; Andrade, Sheila S; Most, Astrid; Abdallah, Yaser; Parahuleva, Mariana; Guenduez, Dursun; Oliva, Maria L; Erdogan, Ali

    2010-12-01

    Proteinase inhibitors, isolated from different types of Bauhinia, have an effect on apoptosis, angiogenesis and inflammation. The Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a Kunitz-type inhibitor and inactivates the cysteine proteinases cruzipain and cruzain from Trypanosoma cruzi. Cruzipain and tissue kallikrein have similar biochemical properties, e.g. the proteolytic cleavage of the kininogen precursor of lys-bradykinin. Tissue kallikrein stimulation in endothelial cells causes migration and capillary tube formation. The aim of this study was to examine whether the antiproliferative effect of BbCI is dependent on changes of the intracellular calcium concentration and membrane hyperpolarization. Endothelial cells were isolated from human umbilical cord veins (HUVEC). For proliferation experiments, HUVEC were incubated with BbCI (10-100 μmol/L) for 48 h. The proliferation was detected by cell counting with a Neubauer chamber. The effect of BbCI (10-100 μM) on the membrane potential was measured with the fluorescence dye DiBAC4(3) and the effect on [Ca+2]i with the fluorescence probe Fluo-3 AM. The change of the fluorescence intensity was determined with a GENios plate reader (Tecan). The experiments showed that BbCI (10-100 μmol/L) reduces the endothelial cell proliferation significantly in a concentration-dependent manner with a maximum effect at 100 μmol/L (35.1±1.8% as compared to control (p≤0.05; n=45)). As compared to the control, the addition of BbCI (100 μmol/L) caused a significant increase of systolic Ca2+ of 28.4±5.0% after 30 min incubation. HUVEC treatment with BbCI (100 μmol/L) showed a weak but significant decrease of the membrane potential of 9.5±0.9% as compared to control (p≤0.05; n=80). BbCI influenced significantly the endothelial proliferation, the intracellular Ca2+ concentration and the membrane potential.

  5. The increasing role of monoamine oxidase type B inhibitors in Parkinson's disease therapy.

    Science.gov (United States)

    Elmer, Lawrence W; Bertoni, John M

    2008-11-01

    The role of monoamine oxidase type B inhibitors in the treatment of Parkinson's disease has expanded with the new monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets. As primary therapy in early disease monoamine oxidase B inhibitors reduce motor disability and delay the need for levodopa. In more advanced disease requiring levodopa, adjunctive monoamine oxidase B inhibitors reduce 'off' time and may improve gait and freezing. Rasagiline and selegiline oral disintegrating tablets may reduce the safety risks associated with the amfetamine and methamfetamine metabolites of conventional oral selegiline while retaining or improving therapeutic efficacy. Articles were identified by searches of PubMed and searches on the Internet and reviewed. All articles and other referenced materials were retrieved using the keywords 'Parkinson's disease', 'treatment' and 'monoamine oxidase B inhibitor' and were published between 1960 and 2007, with older references selected for historical significance. Only papers published in English were reviewed. Accumulating data support the use of monoamine oxidase B inhibitors as monotherapy for early and mild Parkinson's disease and as adjunctive therapy for more advanced Parkinson's disease with levodopa-associated motor fluctuations. The recently released monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets, have potential advantages over conventional oral selegiline.

  6. [Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors in CKD].

    Science.gov (United States)

    Insalaco, Monica; Zanoli, Luca; Rastelli, Stefania; Lentini, Paolo; Rapisarda, Francesco; Fatuzzo, Pasquale; Castellino, Pietro; Granata, Antonio

    2015-01-01

    Among the new drugs used for the treatment of Diabetes Mellitus type 2, sodium-glucose cotransporter 2 (SGLT2) inhibitors represent a promising therapeutic option. Since their ability to lower glucose is proportional to GFR, their effect is reduced in patients with chronic kidney disease (CKD). The antidiabetic mechanism of these drugs is insulin-independent and, therefore, complimentary to that of others antihyperglicaemic agents. Moreover, SGLT2 inhibitors are able to reduce glomerular hyperfiltration, systemic and intraglomerular pressure and uric acid levels, with consequent beneficial effects on the progression of kidney disease in non diabetic patients as well. Only few studies have been performed to evaluate the effects of SGLT2 inhibitors in patients with CKD. Therefore, safety and efficacy of SGLT2 inhibitors should be better clarified in the setting of CKD. In this paper, we will review the use of SGLT2 inhibitors in diabetic patients, including those with CKD.

  7. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy.

    Science.gov (United States)

    Nio, Yasunori; Tanaka, Masayuki; Hirozane, Yoshihiko; Muraki, Yo; Okawara, Mitsugi; Hazama, Masatoshi; Matsuo, Takanori

    2017-12-01

    Duchenne muscular dystrophy (DMD) is the most common inherited muscular dystrophy. Patients experience DMD in their 20s from cardiac or respiratory failure related to progressive muscle wasting. Currently, the only treatments for the symptoms of DMD are available. Muscle fibrosis, a DMD feature, leads to reduced muscle function and muscle mass, and hampers pharmaceutical therapeutic efficacy. Although antifibrotic agents may be useful, none is currently approved. Phosphodiesterase 4 (PDE4) inhibitors have exhibited antifibrotic effects in human and animal models. In this study, we showed beneficial effects of the PDE4 inhibitor piclamilast in the DMD mdx mouse. Piclamilast reduced the mRNA level of profibrotic genes, including collagen 1A1, in the gastrocnemius and diaphragm, in the mdx mouse, and significantly reduced the Sirius red staining area. The PDE5 inhibitors sildenafil and tadalafil ameliorated functional muscle ischemia in boys with DMD, and sildenafil reversed cardiac dysfunction in the mdx mouse. Single-treatment piclamilast or sildenafil showed similar antifibrotic effects on the gastrocnemius; combination therapy showed a potent antifibrotic effect, and piclamilast and combination therapy increased peroxisome proliferator-activated receptor γ coactivator-1α mRNA in mouse gastrocnemius. In summary, we confirmed that piclamilast has significant antifibrotic effects in mdx mouse muscle and is a potential treatment for muscle fibrosis in DMD.-Nio, Y., Tanaka, M., Hirozane, Y., Muraki, Y., Okawara, M., Hazama, M., Matsuo, T. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy. © FASEB.

  8. Nordic Walking as an Exercise Intervention to Reduce Pain in Women With Aromatase Inhibitor-Associated Arthralgia: A Feasibility Study.

    Science.gov (United States)

    Fields, Jo; Richardson, Alison; Hopkinson, Jane; Fenlon, Deborah

    2016-10-01

    Women taking aromatase inhibitors as treatment for breast cancer commonly experience joint pain and stiffness (aromatase inhibitor-associated arthralgia [AIAA]), which can cause problems with adherence. There is evidence that exercise might be helpful, and Nordic walking could reduce joint pain compared to normal walking. To determine the feasibility of a trial of Nordic walking as an exercise intervention for women with AIAA. A feasibility study was carried out in a sample of women with AIAA using a randomized control design. Women were randomized to exercise (six-week supervised group Nordic walking training once per week with an increasing independent element, followed by six weeks 4 × 30 minutes/week independent Nordic walking); or enhanced usual care. Data were collected on recruitment, retention, exercise adherence, safety, and acceptability. The Brief Pain Inventory, GP Physical Activity Questionnaire, and biopsychosocial measures were completed at baseline, six and 12 weeks. Forty of 159 eligible women were recruited and attrition was 10%. There was no increased lymphedema and no long-term or serious injury. Adherence was >90% for weekly supervised group Nordic walking, and during independent Nordic walking, >80% women managed one to two Nordic walking sessions per week. From baseline to study end point, overall activity levels increased and pain reduced in both the intervention and control groups. Our findings indicate that women with AIAA are prepared to take up Nordic walking, complete a six-week supervised course and maintain increased activity levels over a 12-week period with no adverse effects. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  9. Boeravinone B, A Novel Dual Inhibitor of NorA Bacterial Efflux Pump of Staphylococcus aureus and Human P-Glycoprotein, Reduces the Biofilm Formation and Intracellular Invasion of Bacteria.

    Science.gov (United States)

    Singh, Samsher; Kalia, Nitin P; Joshi, Prashant; Kumar, Ajay; Sharma, Parduman R; Kumar, Ashok; Bharate, Sandip B; Khan, Inshad A

    2017-01-01

    This study elucidated the role of boeravinone B, a NorA multidrug efflux pump inhibitor, in biofilm inhibition. The effects of boeravinone B plus ciprofloxacin, a NorA substrate, were evaluated in NorA-overexpressing, wild-type, and knocked-out Staphylococcus aureus (SA-1199B, SA-1199, and SA-K1758, respectively). The mechanism of action was confirmed using the ethidium bromide accumulation and efflux assay. The role of boeravinone B as a human P -glycoprotein ( P -gp) inhibitor was examined in the LS-180 (colon cancer) cell line. Moreover, its role in the inhibition of biofilm formation and intracellular invasion of S. aureus in macrophages was studied. Boeravinone B reduced the minimum inhibitory concentration (MIC) of ciprofloxacin against S. aureus and its methicillin-resistant strains; the effect was stronger in SA-1199B. Furthermore, time-kill kinetics revealed that boeravinone B plus ciprofloxacin, at subinhibitory concentration (0.25 × MIC), is as equipotent as that at the MIC level. This combination also had a reduced mutation prevention concentration. Boeravinone B reduced the efflux of ethidium bromide and increased the accumulation, thus strengthening the role as a NorA inhibitor. Biofilm formation was reduced by four-eightfold of the minimal biofilm inhibitory concentration of ciprofloxacin, effectively preventing bacterial entry into macrophages. Boeravinone B effectively inhibited P -gp with half maximal inhibitory concentration (IC 50 ) of 64.85 μM. The study concluded that boeravinone B not only inhibits the NorA-mediated efflux of fluoroquinolones but also considerably inhibits the biofilm formation of S. aureus. Its P -gp inhibition activity demonstrates its potential as a bioavailability and bioefficacy enhancer.

  10. Aromatase inhibitors and breast cancer prevention.

    Science.gov (United States)

    Litton, Jennifer Keating; Arun, Banu K; Brown, Powel H; Hortobagyi, Gabriel N

    2012-02-01

    Endocrine therapy with selective estrogen receptor modulators (SERMs) has been the mainstay of breast cancer prevention trials to date. The aromatase inhibitors, which inhibit the final chemical conversion of androgens to estrogens, have shown increased disease-free survival benefit over tamoxifen in patients with primary hormone receptor-positive breast cancer, as well as reducing the risk of developing contralateral breast cancers. The aromatase inhibitors are being actively evaluated as prevention agents for women with a history of ductal carcinoma in situ as well as for women who are considered to be at high risk for developing primary invasive breast cancer. This review evaluates the available prevention data, as evidenced by the decrease in contralateral breast cancers, when aromatase inhibitors are used in the adjuvant setting, as well as the emerging data of the aromatase inhibitors specifically tested in the prevention setting for women at high risk. Exemestane is a viable option for breast cancer prevention. We continue to await further follow-up on exemestane as well as other aromatase inhibitors in the prevention setting for women at high risk of developing breast cancer or with a history of ductal carcinoma in situ.

  11. Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhengzhi, E-mail: zouzhengzhi@m.scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Luo, Xiaoyong [Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang 471000 (China); Nie, Peipei [KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510000 (China); Wu, Baoyan; Zhang, Tao; Wei, Yanchun [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Wang, Wenyi [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Geng, Guojun; Jiang, Jie [Xiamen Cancer Center, Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Mi, Yanjun, E-mail: myjgj_77@163.com [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China)

    2016-09-09

    SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuating AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies. - Highlights: • Depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors. • Overexpression of SRC-3 enhanced cancer cell resistance to HDAC inhibitors. • SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. • Bufalin synergized with HDAC inhibitor attenuated AKT activation and reduced Bcl-2 levels in human cancer cell.

  12. The calcineurin inhibitor tacrolimus reduces proteinuria in membranous nephropathy accompanied by a decrease in angiopoietin-like-4.

    Directory of Open Access Journals (Sweden)

    Lei Peng

    Full Text Available Tacrolimus is an anticalcineurinic agent with potent immunosuppressive activity that has recently been shown to have the added benefit of reducing proteinuria in membranous nephropathy (MN patients. However, its potential mechanisms remain unknown. To reveal the mechanism, rat cohorts were administered tacrolimus or vehicle from days 7 to 28 after the induction of passive Heymann nephritis (PHN. PHN induction resulted in heavy proteinuria and increased expression of desmin, a marker of injured podocytes. We also showed that the glomerular expression of angiopoietin-like-4 (Angptl4 was markedly upregulated in PHN rats and human MN followed by an increase in urine Angptl4 excretion. In addition, increased Angptl4 expression may be related to podocyte injury and proteinuria. Furthermore, upregulated Angptl4 expression primarily colocalized with podocytes rather than endothelial or mesangial cells, indicating that podocytes may be the source of Angptl4, which then gradually migrated to the glomerular basement membrane over time. However, tacrolimus treatment markedly reduced glomerular and urinary Angptl4, accompanied by a reduction in the established proteinuria and the promotion of podocyte repair. Additionally, glomerular immune deposits and circulating IgG levels induced by PHN clearly decreased following tacrolimus treatment. In conclusion, this is the first demonstration that the calcineurin inhibitor tacrolimus can reduce Angptl4 in podocytes accompanied by a decrease in established proteinuria and promotion of podocyte repair in MN.

  13. Reduced Levels of Tissue Inhibitors of Metalloproteinases in UVB-Irradiated Corneal Epithelium

    Czech Academy of Sciences Publication Activity Database

    Ardan, Taras; Němcová, Lucie; Bohuslavová, Božena; Klezlová, A.; Popelka, Štěpán; Studenovská, Hana; Hrnčiarová, Eva; Čejková, Jitka; Motlík, Jan

    2016-01-01

    Roč. 92, č. 5 (2016), s. 720-727 ISSN 0031-8655 R&D Projects: GA ČR GPP302/10/P155; GA MŠk(CZ) LO1609 Institutional support: RVO:67985904 ; RVO:61389013 ; RVO:68378041 Keywords : tissue inhibitors of metalloproteinases * matrix metalloproteinases Subject RIV: EB - Genetics ; Molecular Biology; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 2.121, year: 2016

  14. Topical application of a protein kinase C inhibitor reduces skin and hair pigmentation

    NARCIS (Netherlands)

    Park, Hee-Young; Lee, Jin; González, Salvador; Middelkamp-Hup, Maritza A.; Kapasi, Sameer; Peterson, Shaun; Gilchrest, Barbara A.

    2004-01-01

    To determine whether inhibition of PKC-beta activity decreases pigmentation, paired cultures of primary human melanocytes were first pretreated with bisindolylmaleimide (Bis), a selective PKC inhibitor, or vehicle alone for 30 min, and then treated with TPA for an additional 90 min to activate PKC

  15. Fluoxetine Is a Potent Inhibitor of Coxsackievirus Replication

    OpenAIRE

    Zuo, Jun; Quinn, Kevin K.; Kye, Steve; Cooper, Paige; Damoiseaux, Robert; Krogstad, Paul

    2012-01-01

    No antiviral drugs currently exist for the treatment of enterovirus infections, which are often severe and potentially life threatening. Molecular screening of small molecule libraries identified fluoxetine, a selective serotonin reuptake inhibitor, as a potent inhibitor of coxsackievirus replication. Fluoxetine did not interfere with either viral entry or translation of the viral genome. Instead, fluoxetine and its metabolite norfluoxetine markedly reduced the synthesis of viral RNA and prot...

  16. Imidazopyridine and Pyrazolopiperidine Derivatives as Novel Inhibitors of Serine Palmitoyl Transferase.

    Science.gov (United States)

    Genin, Michael J; Gonzalez Valcarcel, Isabel C; Holloway, William G; Lamar, Jason; Mosior, Marian; Hawkins, Eric; Estridge, Thomas; Weidner, Jeffrey; Seng, Thomas; Yurek, David; Adams, Lisa A; Weller, Jennifer; Reynolds, Vincent L; Brozinick, Joseph T

    2016-06-23

    To develop novel treatments for type 2 diabetes and dyslipidemia, we pursued inhibitors of serine palmitoyl transferase (SPT). To this end compounds 1 and 2 were developed as potent SPT inhibitors in vitro. 1 and 2 reduce plasma ceramides in rodents, have a slight trend toward enhanced insulin sensitization in DIO mice, and reduce triglycerides and raise HDL in cholesterol/cholic acid fed rats. Unfortunately these molecules cause a gastric enteropathy after chronic dosing in rats.

  17. SGLT2 inhibitors with cardiovascular benefits: Transforming clinical care in Type 2 diabetes mellitus.

    Science.gov (United States)

    d'Emden, Michael; Amerena, John; Deed, Gary; Pollock, Carol; Cooper, Mark E

    2018-02-01

    Cardiovascular risk reduction in individuals with Type 2 diabetes mellitus (T2DM) is a key part of clinical management. Sodium-glucose co-transporter (SGLT2) inhibitors improve glycaemic control, reduce body weight and decrease blood pressure. In addition, the SGLT2 inhibitors empagliflozin and canagliflozin reduced the risk of composite cardiovascular events in high-risk individuals with T2DM in the EMPA-REG OUTCOME trial and the CANVAS Program, respectively. Empagliflozin also reduced cardiovascular deaths and improved renal outcomes. This class of agents should be considered in people with established cardiovascular disease, usually in combination with other glucose lowering medications, when satisfactory glycaemic control has not been achieved. The dose of insulin or sulfonylureas may need to be lowered when used with SGLT2 inhibitors, to reduce the risk of hypoglycaemia. Genitourinary infections can occur with SGLT2 inhibitors in a small proportion of people. In people with osteoporosis or prior amputation, it may be prudent to use empagliflozin rather than canagliflozin, based on the increased risk for bone fractures and amputations observed with canagliflozin in the CANVAS Program. SGLT2 inhibitors have the potential to transform the clinical care of persons with T2DM by not only improving glycaemic control but also reducing blood pressure, body weight and diabetes-related end-organ complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model.

    Science.gov (United States)

    Di Liddo, Rosa; Valente, Sergio; Taurone, Samanta; Zwergel, Clemens; Marrocco, Biagina; Turchetta, Rosaria; Conconi, Maria Teresa; Scarpa, Carlotta; Bertalot, Thomas; Schrenk, Sandra; Mai, Antonello; Artico, Marco

    2016-01-20

    Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1β and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.

  19. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul

    2017-10-27

    Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phosphorylation. Neratinib also rapidly reduced the expression of ERBB1/2/3/4, c-MET and of mutant K-/N-RAS; K-RAS co-localized with phosphorylated ATG13 and with cathepsin B in vesicles. Combined exposure of cells to [neratinib + HDAC inhibitors] caused inactivation of mTORC1 and mTORC2, enhanced autophagosome and subsequently autolysosome formation, and caused an additive to greater than additive induction of cell death. Knock down of Beclin1 or ATG5 prevented HDAC inhibitors or neratinib from reducing ERBB1/3/4 and K-/N-RAS expression and reduced [neratinib + HDAC inhibitor] lethality. Neratinib and HDAC inhibitors reduced the expression of multiple HDAC proteins via autophagy that was causal in the reduced expression of PD-L1, PD-L2 and ornithine decarboxylase, and increased expression of Class I MHCA. In vivo , neratinib and HDAC inhibitors interacted to suppress the growth of 4T1 mammary tumors, an effect that was enhanced by an anti-PD-1 antibody. Our data support the premises that neratinib lethality can be enhanced by HDAC inhibitors, that neratinib may be a useful therapeutic tool in afatinib resistant NSCLC, and that [neratinib + HDAC inhibitor] exposure facilitates anti-tumor immune responses.

  20. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors

    Science.gov (United States)

    Cavaiola, Tricia Santos; Pettus, Jeremy

    2018-01-01

    As the first cardiovascular (CV) outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM), the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME®) trial, which investigated the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS) Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL), which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM. PMID:29695924

  1. HIV protease drug resistance and its impact on inhibitor design.

    Science.gov (United States)

    Ala, P J; Rodgers, J D; Chang, C H

    1999-07-01

    The primary cause of resistance to the currently available HIV protease inhibitors is the accumulation of multiple mutations in the viral protease. So far more than 20 substitutions have been observed in the active site, dimer interface, surface loops and flaps of the homodimer. While many mutations reduce the protease's affinity for inhibitors, others appear to enhance its catalytic efficiency. This high degree of genetic flexibility has made the protease an elusive drug target. The design of the next generation of HIV protease inhibitors will be discussed in light of the current structural information.

  2. Monoamine Oxidase B Inhibitors in Parkinson's Disease.

    Science.gov (United States)

    Dezsi, Livia; Vecsei, Laszlo

    2017-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with a prevalence increasing with age. Oxidative stress and glutamate toxicity are involved in its pathomechanism. There are still many unmet needs of PD patients, including the alleviation of motor fluctuations and dyskinesias, and the development of therapies with neuroprotective potential. To give an overview of the pharmacological properties, the efficacy and safety of the monoamine oxidase B (MAO-B) inhibitors in the treatment of PD, with special focus on the results of randomized clinical trials. A literature search was conducted in PubMed for 'PD treatment', 'MAO-B inhibitors', 'selegiline', 'rasagiline', 'safinamide' and 'clinical trials' with 'MAO-B inhibitors' in 'Parkinson' disease'. MAO-B inhibitors have a favorable pharmacokinetic profile, improve the dopamine deficient state and may have neuroprotective properties. Safinamide exhibits an anti-glutamatergic effect as well. When applied as monotherapy, MAO-B inhibitors provide a modest, but significant improvement of motor function and delay the need for levodopa. Rasagiline and safinamide were proven safe and effective when added to a dopamine agonist in early PD. As add-on to levodopa, MAO-B inhibitors significantly reduced off-time and were comparable in efficacy to COMT inhibitors. Improvements were achieved as regards certain non-motor symptoms as well. Due to the efficacy shown in clinical trials and their favorable side-effect profile, MAO-B inhibitors are valuable drugs in the treatment of PD. They are recommended as monotherapy in the early stages of the disease and as add-on therapy to levodopa in advanced PD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. SGLT2 Inhibitors: Benefit/Risk Balance.

    Science.gov (United States)

    Scheen, André J

    2016-10-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation.

  4. β-secretase inhibitor; a promising novel therapeutic drug in AD

    Directory of Open Access Journals (Sweden)

    Kelly Willemijn Menting

    2014-07-01

    Full Text Available Alzheimer’s disease (AD and vascular dementia are responsible for up to 90% of dementia cases. According to the World Health Organization (WHO, a staggering number of 35.6 million people are currently diagnosed with dementia. Blocking disease progression or preventing AD altogether is desirable for both social and economic reasons and recently focus has shifted to a new and promising drug: the β-secretase inhibitor. Much of AD research has investigated the amyloid cascade hypothesis, which postulates that AD is caused by changes in amyloid beta (Aβ stability and aggregation. Blocking Aβ production by inhibiting the first protease required for its generation, β-secretase/BACE1, may be the next step in blocking AD progression. In April 2012, promising phase I data on inhibitor MK-8931 was presented. This drug reduced Aβ CSF levels up to 92% and was well tolerated by patients. In March 2013 data was added from a one week trial in 32 mild to moderate AD patients, showing CSF Aβ levels decreased up to 84%. However, BACE1 inhibitors require further research. First, greatly reducing Aβ levels through BACE1 inhibition may have harmful side effects. Second, BACE1 inhibitors have yet to pass clinical trial phase II/III and no data on possible side effects on AD patients are available. And third, there remains doubt about the clinical efficacy of BACE1 inhibitors. In moderate AD patients, Aβ plaques have already been formed. BACE1 inhibitors prevent production of new Aβ plaques, but hypothetically do not influence already existing Aβ peptides. Therefore, BACE1 inhibitors are potentially better at preventing AD instead of having therapeutic use.

  5. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  6. Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells.

    Science.gov (United States)

    Federici, Cristina; Lugini, Luana; Marino, Maria Lucia; Carta, Fabrizio; Iessi, Elisabetta; Azzarito, Tommaso; Supuran, Claudiu T; Fais, Stefano

    2016-01-01

    Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness. To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells. The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells. The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells. These results represent the first successful attempt in combining two different proton exchanger inhibitors. This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alternative strategy against tumors.

  7. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding.

    Science.gov (United States)

    Huang, Kai-Fa; Liaw, Su-Sen; Huang, Wei-Lin; Chia, Cho-Yun; Lo, Yan-Chung; Chen, Yi-Ling; Wang, Andrew H-J

    2011-04-08

    Aberrant pyroglutamate formation at the N terminus of certain peptides and proteins, catalyzed by glutaminyl cyclases (QCs), is linked to some pathological conditions, such as Alzheimer disease. Recently, a glutaminyl cyclase (QC) inhibitor, PBD150, was shown to be able to reduce the deposition of pyroglutamate-modified amyloid-β peptides in brain of transgenic mouse models of Alzheimer disease, leading to a significant improvement of learning and memory in those transgenic animals. Here, we report the 1.05-1.40 Å resolution structures, solved by the sulfur single-wavelength anomalous dispersion phasing method, of the Golgi-luminal catalytic domain of the recently identified Golgi-resident QC (gQC) and its complex with PBD150. We also describe the high-resolution structures of secretory QC (sQC)-PBD150 complex and two other gQC-inhibitor complexes. gQC structure has a scaffold similar to that of sQC but with a relatively wider and negatively charged active site, suggesting a distinct substrate specificity from sQC. Upon binding to PBD150, a large loop movement in gQC allows the inhibitor to be tightly held in its active site primarily by hydrophobic interactions. Further comparisons of the inhibitor-bound structures revealed distinct interactions of the inhibitors with gQC and sQC, which are consistent with the results from our inhibitor assays reported here. Because gQC and sQC may play different biological roles in vivo, the different inhibitor binding modes allow the design of specific inhibitors toward gQC and sQC.

  8. Fermentable sugars and microbial inhibitors formation from two ...

    African Journals Online (AJOL)

    ... under low severity factor and its enzymatic degradability was investigated in this ... The highest glucan conversion and recovery at the optimum conditions were ... reduce microbial inhibitors formation and excessive biomass processing cost.

  9. Cyclooxygenase-2 inhibitors and free flap complications after autologous breast reconstruction

    DEFF Research Database (Denmark)

    Bonde, Christian; Khorasani, Hoda; Hoejvig, Jens

    2017-01-01

    BACKGROUND: A key component of modern analgesics is the use of multimodal opioid-sparing analgesia (MOSA). In the past, our analgesic regime after autologous breast reconstruction (ABR) included either NSAID or a selective cyclooxygenase-2 (COX-2) inhibitor. COX-2 inhibitors are superior to NSAID...... or gastrointestinal bleeding. CONCLUSIONS: Multimodal analgesia using a COX-2 inhibitor is safe in ABR with free flaps and does not increase flap failure. COX-2 inhibitors seem superior to NSAID with reduced risk of post-operative haematomas.......BACKGROUND: A key component of modern analgesics is the use of multimodal opioid-sparing analgesia (MOSA). In the past, our analgesic regime after autologous breast reconstruction (ABR) included either NSAID or a selective cyclooxygenase-2 (COX-2) inhibitor. COX-2 inhibitors are superior to NSAIDs...... because of the well-known side effects of NSAID treatment (bleeding/gastrointestinal ulcers). However, COX-2 inhibitors have been suggested to increase flap failure rates. We report our experience in using COX-2 inhibitors as part of our post-operative MOSA after ABR using free flaps. MATERIALS...

  10. Systemic delivery of a glucosylceramide synthase inhibitor reduces CNS substrates and increases lifespan in a mouse model of type 2 Gaucher disease.

    Directory of Open Access Journals (Sweden)

    Mario A Cabrera-Salazar

    Full Text Available Neuropathic Gaucher disease (nGD, also known as type 2 or type 3 Gaucher disease, is caused by a deficiency of the enzyme glucocerebrosidase (GC. This deficiency impairs the degradation of glucosylceramide (GluCer and glucosylsphingosine (GluSph, leading to their accumulation in the brains of patients and mouse models of the disease. These accumulated substrates have been thought to cause the severe neuropathology and early death observed in patients with nGD and mouse models. Substrate accumulation is evident at birth in both nGD mouse models and humans affected with the most severe type of the disease. Current treatment of non-nGD relies on the intravenous delivery of recombinant human glucocerebrosidase to replace the missing enzyme or the administration of glucosylceramide synthase inhibitors to attenuate GluCer production. However, the currently approved drugs that use these mechanisms do not cross the blood brain barrier, and thus are not expected to provide a benefit for the neurological complications in nGD patients. Here we report the successful reduction of substrate accumulation and CNS pathology together with a significant increase in lifespan after systemic administration of a novel glucosylceramide synthase inhibitor to a mouse model of nGD. To our knowledge this is the first compound shown to cross the blood brain barrier and reduce substrates in this animal model while significantly enhancing its lifespan. These results reinforce the concept that systemically administered glucosylceramide synthase inhibitors could hold enhanced therapeutic promise for patients afflicted with neuropathic lysosomal storage diseases.

  11. Systemic delivery of a glucosylceramide synthase inhibitor reduces CNS substrates and increases lifespan in a mouse model of type 2 Gaucher disease.

    Science.gov (United States)

    Cabrera-Salazar, Mario A; Deriso, Matthew; Bercury, Scott D; Li, Lingyun; Lydon, John T; Weber, William; Pande, Nilesh; Cromwell, Mandy A; Copeland, Diane; Leonard, John; Cheng, Seng H; Scheule, Ronald K

    2012-01-01

    Neuropathic Gaucher disease (nGD), also known as type 2 or type 3 Gaucher disease, is caused by a deficiency of the enzyme glucocerebrosidase (GC). This deficiency impairs the degradation of glucosylceramide (GluCer) and glucosylsphingosine (GluSph), leading to their accumulation in the brains of patients and mouse models of the disease. These accumulated substrates have been thought to cause the severe neuropathology and early death observed in patients with nGD and mouse models. Substrate accumulation is evident at birth in both nGD mouse models and humans affected with the most severe type of the disease. Current treatment of non-nGD relies on the intravenous delivery of recombinant human glucocerebrosidase to replace the missing enzyme or the administration of glucosylceramide synthase inhibitors to attenuate GluCer production. However, the currently approved drugs that use these mechanisms do not cross the blood brain barrier, and thus are not expected to provide a benefit for the neurological complications in nGD patients. Here we report the successful reduction of substrate accumulation and CNS pathology together with a significant increase in lifespan after systemic administration of a novel glucosylceramide synthase inhibitor to a mouse model of nGD. To our knowledge this is the first compound shown to cross the blood brain barrier and reduce substrates in this animal model while significantly enhancing its lifespan. These results reinforce the concept that systemically administered glucosylceramide synthase inhibitors could hold enhanced therapeutic promise for patients afflicted with neuropathic lysosomal storage diseases.

  12. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors

    Directory of Open Access Journals (Sweden)

    Santos Cavaiola T

    2018-04-01

    Full Text Available Tricia Santos Cavaiola, Jeremy Pettus Division of Endocrinology and Metabolism, University of California San Diego, San Diego, CA, USA Abstract: As the first cardiovascular (CV outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM, the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME® trial, which investigated the sodium glucose cotransporter 2 (SGLT2 inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL, which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM. Keywords: canagliflozin, cardiovascular outcomes, dapagliflozin, empagliflozin, mechanisms, sodium glucose cotransporter 2 inhibitors

  13. Low-Dose Dextromethorphan, a NADPH Oxidase Inhibitor, Reduces Blood Pressure and Enhances Vascular Protection in Experimental Hypertension

    Science.gov (United States)

    Wu, Tao-Cheng; Chao, Chih-Yu; Lin, Shing-Jong; Chen, Jaw-Wen

    2012-01-01

    Background Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM), a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP) and vascular protection in aged spontaneous hypertensive rats (SHRs). Methodology/Principal Findings Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker) monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. Conclusions/Significance Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension. PMID:23049937

  14. Low-dose dextromethorphan, a NADPH oxidase inhibitor, reduces blood pressure and enhances vascular protection in experimental hypertension.

    Directory of Open Access Journals (Sweden)

    Tao-Cheng Wu

    Full Text Available BACKGROUND: Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM, a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP and vascular protection in aged spontaneous hypertensive rats (SHRs. METHODOLOGY/PRINCIPAL FINDINGS: Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. CONCLUSIONS/SIGNIFICANCE: Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension.

  15. A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes.

    Science.gov (United States)

    Cha, Seon-Ah; Park, Yong-Moon; Yun, Jae-Seung; Lim, Tae-Seok; Song, Ki-Ho; Yoo, Ki-Dong; Ahn, Yu-Bae; Ko, Seung-Hyun

    2017-04-13

    Previous studies suggest that dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium glucose cotransporter 2 (SGLT2) inhibitors have different effects on the lipid profile in patients with type 2 diabetes. We investigated the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile in patients with type 2 diabetes. From January 2013 to December 2015, a total of 228 patients with type 2 diabetes who were receiving a DPP-4 inhibitor or SGLT2 inhibitor as add-on therapy to metformin and/or a sulfonylurea were consecutively enrolled. We compared the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile at baseline and after 24 weeks of treatment. To compare lipid parameters between the two groups, we used the analysis of covariance (ANCOVA). A total of 184 patients completed follow-up (mean age: 53.1 ± 6.9 years, mean duration of diabetes: 7.1 ± 5.7 years). From baseline to 24 weeks, HDL-cholesterol (HDL-C) levels were increased by 0.5 (95% CI, -0.9 to 2.0) mg/dl with a DPP-4 inhibitor and by 5.1 (95% CI, 3.0 to 7.1) mg/dl with an SGLT2 inhibitor (p = 0.001). LDL-cholesterol (LDL-C) levels were reduced by 8.4 (95% CI, -14.0 to -2.8) mg/dl with a DPP-4 inhibitor, but increased by 1.3 (95% CI, -5.1 to 7.6) mg/dl with an SGLT2 inhibitor (p = 0.046). There was no significant difference in the mean hemoglobin A1c (8.3 ± 1.1 vs. 8.0 ± 0.9%, p = 0.110) and in the change of total cholesterol (TC) (p = 0.836), triglyceride (TG) (p = 0.867), apolipoprotein A (p = 0.726), apolipoprotein B (p = 0.660), and lipoprotein (a) (p = 0.991) between the DPP-4 inhibitor and the SGLT2 inhibitor. The SGLT2 inhibitor was associated with a significant increase in HDL-C and LDL-C after 24 weeks of SGLT2 inhibitor treatment in patients with type 2 diabetes compared with those with DPP-4 inhibitor treatment in this study. This study was conducted by retrospective medical record review.

  16. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  17. Epithelial tissue hyperplasia induced by the RAF inhibitor PF-04880594 is attenuated by a clinically well-tolerated dose of the MEK inhibitor PD-0325901.

    Science.gov (United States)

    Torti, Vince R; Wojciechowicz, Donald; Hu, Wenyue; John-Baptiste, Annette; Evering, Winston; Troche, Gabriel; Marroquin, Lisa D; Smeal, Tod; Yamazaki, Shinji; Palmer, Cynthia L; Burns-Naas, Leigh Ann; Bagrodia, Shubha

    2012-10-01

    Clinical trials of selective RAF inhibitors in patients with melanoma tumors harboring activated BRAFV600E have produced very promising results, and a RAF inhibitor has been approved for treatment of advanced melanoma. However, about a third of patients developed resectable skin tumors during the course of trials. This is likely related to observations that RAF inhibitors activate extracellular signal-regulated kinase (ERK) signaling, stimulate proliferation, and induce epithelial hyperplasia in preclinical models. Because these findings raise safety concerns about RAF inhibitor development, we further investigated the underlying mechanisms. We showed that the RAF inhibitor PF-04880594 induces ERK phosphorylation and RAF dimerization in those epithelial tissues that undergo hyperplasia. Hyperplasia and ERK hyperphosphorylation are prevented by treatment with the mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor PD-0325901 at exposures that extrapolate to clinically well-tolerated doses. To facilitate mechanistic and toxicologic studies, we developed a three-dimensional cell culture model of epithelial layering that recapitulated the RAF inhibitor-induced hyperplasia and reversal by MEK inhibitor in vitro. We also showed that PF-04880594 stimulates production of the inflammatory cytokine interleukin 8 in HL-60 cells, suggesting a possible mechanism for the skin flushing observed in dogs. The complete inhibition of hyperplasia by MEK inhibitor in epithelial tissues does not seem to reduce RAF inhibitor efficacy and, in fact, allows doubling of the PF-04880594 dose without toxicity usually associated with such doses. These findings indicated that combination treatment with MEK inhibitors might greatly increase the safety and therapeutic index of RAF inhibitors for the treatment of melanoma and other cancers. ©2012 AACR.

  18. A new mechanism for reduced sensitivity to demethylation-inhibitor fungicides in the fungal banana black Sigatoka pathogen Pseudocercospora fijiensis.

    Science.gov (United States)

    Diaz-Trujillo, Caucasella; Chong, Pablo; Stergiopoulos, Ioannis; Cordovez, Viviane; Guzman, Mauricio; De Wit, Pierre J G M; Meijer, Harold J G; Scalliet, Gabriel; Sierotzki, Helge; Lilia Peralta, Esther; Arango Isaza, Rafael E; Kema, Gerrit H J

    2017-11-04

    The Dothideomycete Pseudocercospora fijiensis, previously Mycosphaerella fijiensis, is the causal agent of black Sigatoka, one of the most destructive diseases of bananas and plantains. Disease management depends on fungicide applications, with a major contribution from sterol demethylation-inhibitors (DMIs). The continued use of DMIs places considerable selection pressure on natural P. fijiensis populations, enabling the selection of novel genotypes with reduced sensitivity. The hitherto explanatory mechanism for this reduced sensitivity was the presence of non-synonymous point mutations in the target gene Pfcyp51, encoding the sterol 14α-demethylase enzyme. Here, we demonstrate a second mechanism involved in DMI sensitivity of P. fijiensis. We identified a 19-bp element in the wild-type (wt) Pfcyp51 promoter that concatenates in strains with reduced DMI sensitivity. A polymerase chain reaction (PCR) assay identified up to six Pfcyp51 promoter repeats in four field populations of P. fijiensis in Costa Rica. We used transformation experiments to swap the wt promoter of a sensitive field isolate with a promoter from a strain with reduced DMI sensitivity that comprised multiple insertions. Comparative in vivo phenotyping showed a functional and proportional up-regulation of Pfcyp51, which consequently decreased DMI sensitivity. Our data demonstrate that point mutations in the Pfcyp51 coding domain, as well as promoter inserts, contribute to the reduced DMI sensitivity of P. fijiensis. These results provide new insights into the importance of the appropriate use of DMIs and the need for the discovery of new molecules for black Sigatoka management. © 2017 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  19. Inhibitors

    Science.gov (United States)

    ... JM, and the Hemophilia Inhibitor Research Study Investigators. Validation of Nijmegen-Bethesda assay modifications to allow inhibitor ... webinars on blood disorders Language: English (US) Español (Spanish) File Formats Help: How do I view different ...

  20. Sodium-Glucose Linked Transporter-2 Inhibitors in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    L. Zanoli

    2015-01-01

    Full Text Available SGLT2 inhibitors are new antihyperglycaemic agents whose ability to lower glucose is directly proportional to GFR. Therefore, in chronic kidney disease (CKD the blood glucose lowering effect is reduced. Unlike many current therapies, the mechanism of action of SGLT2 inhibitors is independent of insulin action or beta-cell function. In addition, the mechanism of action of SGLT2 inhibitors is complementary and not alternative to other antidiabetic agents. SGLT2 inhibitors could be potentially effective in attenuating renal hyperfiltration and, consequently, the progression of CKD. Moreover, the reductions in intraglomerular pressure, systemic blood pressure, and uric acid levels induced by SGLT inhibition may potentially be of benefit in CKD subjects without diabetes. However, at present, only few clinical studies were designed to evaluate the effects of SGLT2 inhibitors in CKD. Consequently, safety and potential efficacy beyond blood glucose lowering should be better clarified in CKD. In this paper we provide an updated review of the use of SGLT2 inhibitors in clinical practice, with particular attention on subjects with CKD.

  1. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression

    Science.gov (United States)

    Vaikari, Vijaya Pooja; Kota, Rajesh; Chen, Kevin; Yeh, Tzu-Shao; Jhaveri, Niyati; Groshen, Susan L.; Olenyuk, Bogdan Z.; Chen, Thomas C.; Hofman, Florence M.; Shih, Jean C.

    2016-01-01

    Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis. PMID:26871599

  2. Chickens treated with a nitric oxide inhibitor became more resistant to Plasmodium gallinaceum infection due to reduced anemia, thrombocytopenia and inflammation

    Science.gov (United States)

    2013-01-01

    Malaria is a serious infectious disease caused by parasites of the Plasmodium genus that affect different vertebrate hosts. Severe malaria leads to host death and involves different pathophysiological phenomena such as anemia, thrombocytopenia and inflammation. Nitric oxide (NO) is an important effector molecule in this disease, but little is known about its role in avian malaria models. Plasmodium gallinaceum- infected chickens were treated with aminoguanidine (AG), an inhibitor of inducible nitric oxide synthase, to observe the role of NO in the pathogenesis of this avian model. AG increased the survival of chickens, but also induced higher parasitemia. Treated chickens demonstrated reduced anemia and thrombocytopenia. Moreover, erythrocytes at different stages of maturation, heterophils, monocytes and thrombocytes were infected by Plasmodium gallinaceum and animals presented a generalized leucopenia. Activated leukocytes and thrombocytes with elongated double nuclei were observed in chickens with higher parasitemia; however, eosinophils were not involved in the infection. AG reduced levels of hemozoin in the spleen and liver, indicating lower inflammation. Taken together, the results suggest that AG reduced anemia, thrombocytopenia and inflammation, explaining the greater survival rate of the treated chickens. PMID:23398940

  3. A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise

    DEFF Research Database (Denmark)

    Paulsen, G; Egner, I M; Drange, M

    2010-01-01

    The aim of this study was to investigate the effect of a cyclooxygenase (COX)-2 inhibitor on the recovery of muscle function, inflammation, regeneration after, and adaptation to, unaccustomed eccentric exercise. Thirty-three young males and females participated in a double-blind, placebo-controll......The aim of this study was to investigate the effect of a cyclooxygenase (COX)-2 inhibitor on the recovery of muscle function, inflammation, regeneration after, and adaptation to, unaccustomed eccentric exercise. Thirty-three young males and females participated in a double-blind, placebo...

  4. Green chemistry applied to corrosion and scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Darling, D.; Rakshpal, R. [Environmental Protection Agency, Washington, DC (United States)

    1998-12-31

    Numerous breakthroughs in environmental protection and pollution prevention have been realized in recent years by both industry and academia through the application of green chemistry principles. Green chemistry, or pollution prevention at the molecular level, is chemistry designed to reduce or eliminate the use or generation of hazardous materials associated with the manufacture and application of chemicals. The application of the green chemistry principles to the areas of corrosion and scale inhibitors has resulted in the reduction/elimination of many of the more toxic inhibitors and the development of newer, more environmentally friendly ones.

  5. Inhibitin: a specific inhibitor of sodium/sodium exchange in erythrocytes.

    OpenAIRE

    Morgan, K; Brown, R C; Spurlock, G; Southgate, K; Mir, M A

    1986-01-01

    An inhibitor of ouabain-insensitive sodium/sodium exchange in erythrocytes has been isolated from leukemic promyelocytes. To explore the specific effects of this inhibitor, named inhibitin, sodium transport experiments were carried out in human erythrocytes. Inhibitin reduced ouabain-insensitive bidirectional sodium transport. It did not change net sodium fluxes, had no significant effect on rubidium influx, and did not inhibit sodium-potassium-ATPase activity. The inhibitory effect of inhibi...

  6. Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2017-08-01

    Full Text Available Antibody-drug conjugates (ADCs are a class of highly potent biopharmaceutical drugs generated by conjugating cytotoxic drugs with specific monoclonal antibodies through appropriate linkers. Specific antibodies used to guide potent warheads to tumor tissues can effectively reduce undesired side effects of the cytotoxic drugs. An in-depth understanding of antibodies, linkers, conjugation strategies, cytotoxic drugs, and their molecular targets has led to the successful development of several approved ADCs. These ADCs are powerful therapeutics for cancer treatment, enabling wider therapeutic windows, improved pharmacokinetic/pharmacodynamic properties, and enhanced efficacy. Since tubulin inhibitors are one of the most successful cytotoxic drugs in the ADC armamentarium, this review focuses on the progress in tubulin inhibitor-based ADCs, as well as lessons learned from the unsuccessful ADCs containing tubulin inhibitors. This review should be helpful to facilitate future development of new generations of tubulin inhibitor-based ADCs for cancer therapy.

  7. Complete amino acid sequence of bovine colostrum low-Mr cysteine proteinase inhibitor.

    Science.gov (United States)

    Hirado, M; Tsunasawa, S; Sakiyama, F; Niinobe, M; Fujii, S

    1985-07-01

    The complete amino acid sequence of bovine colostrum cysteine proteinase inhibitor was determined by sequencing native inhibitor and peptides obtained by cyanogen bromide degradation, Achromobacter lysylendopeptidase digestion and partial acid hydrolysis of reduced and S-carboxymethylated protein. Achromobacter peptidase digestion was successfully used to isolate two disulfide-containing peptides. The inhibitor consists of 112 amino acids with an Mr of 12787. Two disulfide bonds were established between Cys 66 and Cys 77 and between Cys 90 and Cys 110. A high degree of homology in the sequence was found between the colostrum inhibitor and human gamma-trace, human salivary acidic protein and chicken egg-white cystatin.

  8. Proton Pump Inhibitor Use Is Associated With a Reduced Risk of Infection with Intestinal Protozoa.

    Science.gov (United States)

    Sheele, Johnathan M

    2017-12-01

    Proton pump inhibitors (PPIs) can kill some human protozoan parasites in cell culture better than the drug metronidazole. Clinical data showing an antiprotozoal effect for PPIs are lacking. The objective of the study is to determine if PPI use is associated with a reduced risk of having intestinal parasites. We obtained electronic medical record data for all persons who received a stool ova and parasite (O & P) examination at our tertiary care academic medical center in Cleveland, Ohio, between January 2000 and September 2014. We obtained the person's age, whether they were taking a PPI at the time of the O & P examination, and whether the pathology report indicated the presence of any parasites. χ 2 with Yates correction was used to determine if PPI use was associated with stool protozoa. Three intestinal protozoa were identified in 1199 patients taking a PPI (0.3%), and 551 intestinal parasites were identified in the 14,287 patients not taking a PPI (3.9%). There was a statistically significant lower likelihood of finding protozoa in the stool of a person taking a PPI compared with those not taking a PPI (P protozoa reported on stool O & P examination compared with those not taking a PPI. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  9. Non-genetic risk factors in haemophilia A inhibitor management

    DEFF Research Database (Denmark)

    Löfgren, Karin Maria; Søndergaard, H.; Skov, Søren

    2016-01-01

    In haemophilia A (HA) management, antidrug antibodies, or inhibitors, are a serious complication that renders factor VIII (FVIII) replacement therapy ineffective, increases morbidity and reduces quality of life for affected patients. Inhibitor development aetiology is multifactorial and covers both...... stressed, injured or dying cells can activate an immune reaction, without the involvement of foreign antigens. Bleeds, trauma, surgery or concomitant infection could be events initiating danger signalling in HA patients, resulting in an immune reaction towards administered FVIII that otherwise would pass...

  10. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    OpenAIRE

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-01-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlyso...

  11. Effect of endocytosis inhibitors on Coxiella burnetii interaction with host cells

    International Nuclear Information System (INIS)

    Tujulin, E.; Macellaro, A.; Norlander, L.; Liliehoeoek, B.

    1998-01-01

    The obligate intracellular rickettsia Coxiella burnetii has previously been reported to reach the intra-vacuolar compartment of host cells by phagocytosis. With the aim to further examine the mechanisms of C. burnetii internalisation, macrophage monolayers were treated with well characterised inhibitors of endocytosis. The treatment with two general inhibitors, colchicine and methylamine, resulted in a pronounced dose-dependent decrease of radiolabelled phase II rickettsiae retained from the intracellular fraction. A third inhibitor used, amiloride, has been reported to reduce effectively clathrin-independent pinocytic pathways. The internalisation of C. burnetii was shown to be substantially reduced also by amiloride and the effect was dependent on its concentration. The passive role of C. burnetii in the internalisation was verified by using heat-killed C. burnetii. Host cells treated with either of the three inhibitors (amiloride, colchicine and methylamine) showed a similar reduction of intracellular C. burnetii after exposure to killed as weal as live organisms. The data presented indicate that different endocytic mechanisms, pinocytosis as well as phagocytosis, may mediate the uptake of C. burnetii by a host cell. Key words: Coxiella burnetii; internalisation; endocytosis (authors)

  12. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system.

    Science.gov (United States)

    Schernthaner, Guntram; Mogensen, Carl Erik; Schernthaner, Gerit-Holger

    2014-09-01

    Diabetic nephropathy (DN) affects an estimated 20%-40% of patients with type 2 diabetes mellitus (T2DM). Key modifiable risk factors for DN are albuminuria, anaemia, dyslipidaemia, hyperglycaemia and hypertension, together with lifestyle factors, such as smoking and obesity. Early detection and treatment of these risk factors can prevent DN or slow its progression, and may even induce remission in some patients. DN is generally preceded by albuminuria, which frequently remains elevated despite treatment in patients with T2DM. Optimal treatment and prevention of DN may require an early, intensive, multifactorial approach, tailored to simultaneously target all modifiable risk factors. Regular monitoring of renal function, including urinary albumin excretion, creatinine clearance and glomerular filtration rate, is critical for following any disease progression and making treatment adjustments. Dipeptidyl peptidase (DPP)-4 inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels without additional risk of hypoglycaemia, and may also reduce albuminuria. Further investigation of the potential renal benefits of DPP-4 and SGLT2 inhibitors is underway. © The Author(s) 2014.

  13. Glad you brought it up: a patient-centred programme to reduce proton-pump inhibitor prescribing in general medical practice.

    Science.gov (United States)

    Murie, Jill; Allen, Jane; Simmonds, Ray; de Wet, Carl

    2012-01-01

    Many patients unnecessarily receive proton-pump inhibitor (PPI) drugs long term with significant financial and safety implications. Educating, empowering and supporting patients to self-manage their symptoms can lead to significant and sustained reductions in PPI prescribing. We aimed to implement a programme to reduce inappropriate PPI prescribing. Eligible patients in one general medical practice in rural Scotland were invited for participation between November 2008 and February 2010. Patients attended special nurse advisor clinics, completed dyspepsia questionnaires, received information, formulated self-management plans and were offered flexible support. Of the study population, 437/2883 (15%) were prescribed PPIs. Of these, 166 (38%) were judged eligible for participation. After 12 months, 138/157 (83%) had reduced or stopped their PPIs, while 19/157 (11%) had reverted. The estimated annual net saving in the prescribing budget was ?3180.67. Self-reported understanding of symptom self-management increased from 6/20 (30%) to 18/20 (90%) patients after participation in the programme. A patient-centred programme delivered by a specialist nurse significantly reduced PPI prescribing with financial and potential therapeutic benefits. The vast majority of eligible patients were able to 'step down and off' or 'step off' PPI use after 12 months without any complications or deteriorating symptom control. Further research with larger cohorts of practices and patients is needed to develop a feasible, acceptable and effective programme if similar benefits are to be achieved for primary care in general.

  14. How inhibiting nitrification affects nitrogen cycle and reduces ...

    Science.gov (United States)

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI along with nitrogen (N) fertilizer increased crop nitrogen use efficiency, crop yield, and altered the pathways and the amount of N loss to environment. NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9% of the total N loss. The cost and benefit analysis showed that the economic benefit of reducing N’s environmental impacts offset the cost of NI. NI application could bring additional revenue of $163.72 ha-1 for a maize farm. Taken together, our findings show that NI application may create a win-win scenario that increases agricultural output, while reducing the negative impact on the environment. Policies that encourage NI application would reduce N’s environmental impacts. A group from Chinese Academy of Sciences, US EPA-ORD and North Carolina examined the net environmental and economic effects of nitrification inhibitors to reduce nitrate leaching associated with farm fertilizers. They conducted a meta-analysis of studies examining nitrification inhibitors, and found that NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9

  15. Interspecific differences between D. pulex and D. magna in tolerance to cyanobacteria with protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Christian J Kuster

    Full Text Available It is known that cyanobacteria negatively affect herbivores due to their production of toxins such as protease inhibitors. In the present study we investigated potential interspecific differences between two major herbivores, Daphnia magna and Daphnia pulex, in terms of their tolerance to cyanobacteria with protease inhibitors. Seven clones each of D. magna and of D. pulex were isolated from different habitats in Europe and North America. To test for interspecific differences in the daphnids' tolerance to cyanobacteria, their somatic and population growth rates were determined for each D. magna and D. pulex clone after exposure to varying concentrations of two Microcystis aeruginosa strains. The M. aeruginosa strains NIVA and PCC(- contained either chymotrypsin or trypsin inhibitors, but no microcystins. Mean somatic and population growth rates on a diet with 20% NIVA were significantly more reduced in D. pulex than in D. magna. On a diet with 10% PCC(-, the population growth of D. pulex was significantly more reduced than that of D. magna. This indicates that D. magna is more tolerant to cyanobacteria with protease inhibitors than D. pulex. The reduction of growth rates was possibly caused by an interference of cyanobacterial inhibitors with proteases in the gut of Daphnia, as many other conceivable factors, which might have been able to explain the reduced growth, could be excluded as causal factors. Protease assays revealed that the sensitivities of chymotrypsins and trypsins to cyanobacterial protease inhibitors did not differ between D. magna and D. pulex. However, D. magna exhibited a 2.3-fold higher specific chymotrypsin activity than D. pulex, which explains the observed higher tolerance to cyanobacterial protease inhibitors of D. magna. The present study suggests that D. magna may control the development of cyanobacterial blooms more efficiently than D. pulex due to differences in their tolerance to cyanobacteria with protease

  16. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China.

    Science.gov (United States)

    Fan, Changhua; Li, Bo; Xiong, Zhengqin

    2018-01-15

    Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased

  17. Proton pump inhibitors reduce the size and acidity of the acid pocket in the stomach

    NARCIS (Netherlands)

    Rohof, Wout O.; Bennink, Roelof J.; Boeckxstaens, Guy E.

    2014-01-01

    The gastric acid pocket is believed to be the reservoir from which acid reflux events originate. Little is known about how changes in position, size, and acidity of the acid pocket contribute to the therapeutic effect of proton pump inhibitors (PPIs) in patients with gastroesophageal reflux disease

  18. Restoring conjunctival tolerance by topical nuclear factor-κB inhibitors reduces preservative-facilitated allergic conjunctivitis in mice.

    Science.gov (United States)

    Guzmán, Mauricio; Sabbione, Florencia; Gabelloni, María Laura; Vanzulli, Silvia; Trevani, Analía Silvina; Giordano, Mirta Nilda; Galletti, Jeremías Gastón

    2014-09-04

    To evaluate the role of nuclear factor-κB (NF-κB) activation in eye drop preservative toxicity and the effect of topical NF-κB inhibitors on preservative-facilitated allergic conjunctivitis. Balb/c mice were instilled ovalbumin (OVA) combined with benzalkonium chloride (BAK) and/or NF-κB inhibitors in both eyes. After immunization, T-cell responses and antigen-induced ocular inflammation were evaluated. Nuclear factor-κB activation and associated inflammatory changes also were assessed in murine eyes and in an epithelial cell line after BAK exposure. Benzalkonium chloride promoted allergic inflammation and leukocyte infiltration of the conjunctiva. Topical NF-κB inhibitors blocked the disruptive effect of BAK on conjunctival immunological tolerance and ameliorated subsequent ocular allergic reactions. In line with these findings, BAK induced NF-κB activation and the secretion of IL-6 and granulocyte-monocyte colony-stimulating factor in an epithelial cell line and in the conjunctiva of instilled mice. In addition, BAK favored major histocompatibility complex (MHC) II expression in cultured epithelial cells in an NF-κB-dependent fashion after interaction with T cells. Benzalkonium chloride triggers conjunctival epithelial NF-κB activation, which seems to mediate some of its immune side effects, such as proinflammatory cytokine release and increased MHC II expression. Breakdown of conjunctival tolerance by BAK favors allergic inflammation, and this effect can be prevented in mice by topical NF-κB inhibitors. These results suggest a new pharmacological target for preservative toxicity and highlight the importance of conjunctival tolerance in ocular surface homeostasis. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  19. Angiotensin converting enzyme (ACE) inhibitors and renal function. A review of the current status

    DEFF Research Database (Denmark)

    Kamper, A L

    1991-01-01

    studies have been published to date. In chronic renal failure, ACE inhibitors may worsen anaemia and hyperkalaemia. Renovascular hypertension can be treated with ACE inhibitors, but the treatment may lead to a compromised renal function. The dosage of these drugs should be reduced in renal failure...

  20. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish

    DEFF Research Database (Denmark)

    Lundegaard, Pia R.; Anastasaki, Corina; Grant, Nicola J.

    2015-01-01

    Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors...... as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult...... zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance...

  1. Histone deacetylase inhibitors reduce the number of herpes simplex virus-1 genomes initiating expression in individual cells

    Directory of Open Access Journals (Sweden)

    Lev Shapira

    2016-12-01

    Full Text Available Although many viral particles can enter a single cell, the number of viral genomes per cell that establish infection is limited. However, mechanisms underlying this restriction were not explored in depth. For herpesviruses, one of the possible mechanisms suggested is chromatinization and silencing of the incoming genomes. To test this hypothesis, we followed infection with three herpes simplex virus 1 (HSV-1 fluorescence-expressing recombinants in the presence or absence of histone deacetylases inhibitors (HDACi’s. Unexpectedly, a lower number of viral genomes initiated expression in the presence of these inhibitors. This phenomenon was observed using several HDACi: Trichostatin A (TSA, Suberohydroxamic Acid (SBX, Valporic Acid (VPA and Suberoylanilide Hydoxamic Acid (SAHA. We found that HDACi presence did not change the progeny outcome from the infected cells but did alter the kinetic of the gene expression from the viral genomes. Different cell types (HFF, Vero and U2OS, which vary in their capability to activate intrinsic and innate immunity, show a cell specific basal average number of viral genomes establishing infection. Importantly, in all cell types, treatment with TSA reduced the number of viral genomes. ND10 nuclear bodies are known to interact with the incoming herpes genomes and repress viral replication. The viral immediate early protein, ICP0, is known to disassemble the ND10 bodies and to induce degradation of some of the host proteins in these domains. HDACi treated cells expressed higher levels of some of the host ND10 proteins (PML and ATRX, which may explain the lower number of viral genomes initiating expression per cell. Corroborating this hypothesis, infection with three HSV-1 recombinants carrying a deletion in the gene coding for ICP0, show a reduction in the number of genomes being expressed in U2OS cells. We suggest that alterations in the levels of host proteins involved in intrinsic antiviral defense may result in

  2. Antitumorigenic effect of proteasome inhibitors on insulinoma cells

    DEFF Research Database (Denmark)

    Størling, Joachim; Allaman-Pillet, Nathalie; Karlsen, Allan E

    2004-01-01

    inhibition of the proteasome has an antitumorigenic potential in insulinoma cells. Exposure of mouse betaTC3 insulinoma cells to the proteasome inhibitor N-Acetyl-Leu-Leu-Nle-CHO (ALLN) reduced cell viability, activated caspase-3, induced apoptosis, and suppressed insulin release. Treatment with ALLN also...

  3. Potential role of recombinant secretory leucoprotease inhibitor in the prevention of neutrophil mediated matrix degradation.

    Science.gov (United States)

    Llewellyn-Jones, C G; Lomas, D A; Stockley, R A

    1994-06-01

    Neutrophil elastase is able to degrade connective tissue matrices and is thought to be involved in the pathogenesis of destructive lung diseases. The ability of recombinant secretory leucoprotease inhibitor (rSLPI) to inhibit neutrophil mediated degradation of fibronectin in vitro is demonstrated and its efficacy compared with native alpha-1-proteinase inhibitor (n alpha 1-PI), recombinant alpha-1-proteinase inhibitor (r alpha 1-PI), and the chemical elastase inhibitor ICI 200,355. When preincubated with neutrophils both rSLPI and r alpha 1-PI were effective inhibitors of fibronectin degradation although n alpha 1-PI and ICI 200,355 were less effective. Recombinant SLPI was the most effective inhibitor when the cells were allowed to adhere to fibronectin before the addition of the inhibitors. Preincubation of rSLPI (0.1 mumol/l) with the fibronectin plate resulted in almost total inhibition of fibronectin degradation (reduced to 3.3 (SE 0.9)% of control). Pretreating the fibronectin plate with 1 mumol/l rSLPI, r alpha 1-PI and ICI 200,355 followed by thorough washing before the addition of cells resulted in no inhibition of fibronectin degradation with r alpha 1-PI and the ICI inhibitor, but rSLPI retained its inhibitory effect. This effect could be reduced by adding rSLPI in high pH buffer or 2 mol/1 NaCl. It is postulated that rSLPI binds to fibronectin to form a protective layer which prevents its degradation by neutrophil elastase. It may prove to be the most useful therapeutic agent in the prevention of neutrophil mediated lung damage.

  4. Big enough for an aromatase inhibitor? How adiposity affects male fertility.

    Science.gov (United States)

    Stephens, Sahar M; Polotsky, Alex J

    2013-07-01

    Obesity is a pandemic and is associated with multiple medical problems including subfertility. Male obesity has been associated with altered semen parameters and reproductive hormonal levels, including a reduced testosterone:estradiol (T:E₂) ratio. Treatment methods employed for obesity-related male subfertility include gonadotropin administration, weight loss, and aromatase inhibitors. Letrozole is a highly effective nonsteroidal aromatase inhibitor that has been used to treat male subfertility in several case series with promising results. Adequately designed randomized controlled studies are needed to produce evidence-based data on the role of aromatase inhibitors in male subfertility management and evaluate the side-effect profile. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Association of Proton Pump Inhibitors with Reduced Risk of Warfarin-related Serious Upper Gastrointestinal Bleeding

    Science.gov (United States)

    Ray, Wayne A.; Chung, Cecilia P.; Murray, Katherine T.; Smalley, Walter E.; Daugherty, James R.; Dupont, William D.; Stein, C. Michael

    2016-01-01

    Background & Aims Proton-pump inhibitors (PPIs) might reduce the risk of serious warfarin-related upper gastrointestinal bleeding, but the evidence of their efficacy for this indication is limited. A gastroprotective effect of PPIs would be particularly important for patients who take warfarin with antiplatelet drugs or nonselective non-steroidal anti-inflammatory drugs (NSAIDs), which further increase the risk of gastrointestinal bleeding. Methods This retrospective cohort study of patients beginning warfarin treatment in Tennessee Medicaid and the 5% National Medicare Sample identified 97,430 new episodes of warfarin treatment with 75,720 person-years of follow up. The study endpoints were hospitalizations for upper gastrointestinal bleeding potentially preventable by PPIs and for bleeding at other sites. Results Patients who took warfarin without PPI co-therapy had 119 hospitalizations for upper gastrointestinal bleeding per 10,000 person-years of treatment. The risk decreased by 24% among patients who received PPI co-therapy (adjusted hazard ratio [HR], 0.76; 95% CI, 0.63–0.91). There was no significant reduction in the risk of other gastrointestinal bleeding hospitalizations (HR, 1.07; 95% CI, 0.94–1.22) or non-gastrointestinal bleeding hospitalizations (HR, 0.98; 95% CI, 0.84–1.15) in this group. Among patients concurrently using antiplatelet drugs or NSAIDs, those without PPI co-therapy had 284 upper gastrointestinal bleeding hospitalizations per 10,000 person-years of warfarin treatment. The risk decreased by 45% (HR, 0.55; 95% CI, 0.39–0.77) with PPI co-therapy. PPI co-therapy had no significant protective effect for warfarin patients not using antiplatelet drugs or NSAIDs (HR, 0.86; 95% CI, 0.70-1.06). Findings were similar in both study populations. Conclusions In an analysis of patients beginning warfarin treatment in Tennessee Medicaid and the 5% National Medicare Sample, PPI co-therapy was associated with reduced risk of warfarin-related upper

  6. A high-throughput screen for inhibitors of the prolyl isomerase, Pin1, identifies a seaweed polyphenol that reduces adipose cell differentiation.

    Science.gov (United States)

    Mori, Tadashi; Hidaka, Masafumi; Ikuji, Hiroko; Yoshizawa, Ibuki; Toyohara, Haruhiko; Okuda, Toru; Uchida, Chiyoko; Asano, Tomoichiro; Yotsu-Yamashita, Mari; Uchida, Takafumi

    2014-01-01

    The peptidyl prolyl cis/trans isomerase Pin1 enhances the uptake of triglycerides and the differentiation of fibroblasts into adipose cells in response to insulin stimulation. Pin1 downregulation could be a potential approach to prevent and treat obesity-related disorders. In order to identify an inhibitor of Pin1 that exhibited minimal cytotoxicity, we established a high-throughput screen for Pin1 inhibitors and used this method to identify an inhibitor from 1,056 crude fractions of two natural product libraries. The candidate, a phlorotannin called 974-B, was isolated from the seaweed, Ecklonia kurome. 974-B inhibited the differentiation of mouse embryonic fibroblasts and 3T3-L1 cells into adipose cells without inducing cytotoxicity. We discovered the Pin1 inhibitor, 974-B, from the seaweed, E. kurome, and showed that it blocks the differentiation of fibroblasts into adipose cells, suggesting that 974-B could be a lead drug candidate for obesity-related disorders.

  7. The NAMPT inhibitor FK866 reverts the damage in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Esposito Emanuela

    2012-04-01

    Full Text Available Abstract Background Emerging data implicate nicotinamide phosphoribosyl transferase (NAMPT in the pathogenesis of cancer and inflammation. NAMPT inhibitors have proven beneficial in inflammatory animal models of arthritis and endotoxic shock as well as in autoimmune encephalitis. Given the role of inflammatory responses in spinal cord injury (SCI, the effect of NAMPT inhibitors was examined in this setting. Methods We investigated the effects of the NAMPT inhibitor FK866 in an experimental compression model of SCI. Results Twenty-four hr following induction of SCI, a significant functional deficit accompanied widespread edema, demyelination, neuron loss and a substantial increase in TNF-α, IL-1β, PAR, NAMPT, Bax, MPO activity, NF-κB activation, astrogliosis and microglial activation was observed. Meanwhile, the expression of neurotrophins BDNF, GDNF, NT3 and anti-apoptotic Bcl-2 decreased significantly. Treatment with FK866 (10 mg/kg, the best known and characterized NAMPT inhibitor, at 1 h and 6 h after SCI rescued motor function, preserved perilesional gray and white matter, restored anti-apoptotic and neurotrophic factors, prevented the activation of neutrophils, microglia and astrocytes and inhibited the elevation of NAMPT, PAR, TNF-α, IL-1β, Bax expression and NF-κB activity. We show for the first time that FK866, a specific inhibitor of NAMPT, administered after SCI, is capable of reducing the secondary inflammatory injury and partly reduce permanent damage. We also show that NAMPT protein levels are increased upon SCI in the perilesional area which can be corrected by administration of FK866. Conclusions Our findings suggest that the inflammatory component associated to SCI is the primary target of these inhibitors.

  8. Health economics of treating haemophilia A with inhibitors.

    Science.gov (United States)

    Knight, C

    2005-11-01

    Haemophilia is a rare, inherited blood disorder in which blood clotting is impaired such that patients suffer from excessive internal and external bleeding. At present there is no cure for haemophilia A and patients require expensive, life-long treatment involving clotting factor replacement therapy. Treatment costs are perceived to be higher for patients who have developed inhibitory antibodies to factor VIII, the standard therapy for haemophilia A. However, initial cost analyses suggest that clotting factor therapy with alternative haemostatic agents, such as recombinant activated factor VII or activated prothrombin complex concentrate, is no more expensive for the majority of haemophilia A patients with inhibitors than for those without inhibitors. With the availability of effective alternative haemostatic agents, orthopaedic surgery for haemophilia A patients with inhibitors is now a clinical option, and initial cost analyses suggest this may be a cost-effective treatment strategy for patients with inhibitors whose quality of life (QoL) is severely impaired by joint arthropathy. In an era of finite healthcare resourcing it is important to determine whether new treatments justify higher unit costs compared with standard therapies and whether such higher costs are justified from an individual perspective in terms of improved QoL, and from a societal perspective in terms of improved productivity and reduced overall healthcare costs. This paper examines current data on the health economics of treating haemophilia A patients with inhibitors, focusing on the overall costs of clotting factor replacement therapy and the cost consequences of joint replacement.

  9. Impact of sodium–glucose cotransporter 2 inhibitors on blood pressure

    Science.gov (United States)

    Reed, James W

    2016-01-01

    SGLT2 inhibitors are glucose-lowering agents used to treat type 2 diabetes mellitus (T2DM). These agents target the kidney to promote urinary glucose excretion, resulting in improved blood glucose control. SGLT2-inhibitor therapy is also associated with weight loss and blood pressure (BP) lowering. Hypertension is a common comorbidity in patients with T2DM, and is associated with excess morbidity and mortality. This review summarizes data on the effect of SGLT2 inhibitors marketed in the US (namely canagliflozin, dapagliflozin, or empagliflozin) on BP in patients with T2DM. Boolean searches were conducted that included terms related to BP or hypertension with terms for SGLT2 inhibitors, canagliflozin, dapagliflozin, or empagliflozin using PubMed, Google, and Google Scholar. Data from numerous randomized controlled trials of SGLT2 inhibitors in patients with T2DM demonstrated clinically relevant reductions in both systolic and diastolic BP, assessed via seated office measurements and 24-hour ambulatory BP monitoring. Observed BP lowering was not associated with compensatory increases in heart rate. Circadian BP rhythm was also maintained. The mechanism of SGLT2 inhibitor-associated BP reduction is not fully understood, but is assumed to be related to osmotic diuresis and natriuresis. Other factors that may also contribute to BP reduction include SGLT2 inhibitor-associated decreases in body weight and reduced arterial stiffness. Local inhibition of the renin–angiotensin–aldosterone system secondary to increased delivery of sodium to the juxtaglomerular apparatus during SGLT2 inhibition has also been postulated. Although SGLT2 inhibitors are not indicated as BP-lowering agents, the modest decreases in systolic and diastolic BP observed with SGLT2 inhibitors may provide an extra clinical advantage for the majority of patients with T2DM, in addition to improving blood glucose control. PMID:27822054

  10. The efficiency of a corrosion inhibitor on steel in a simulated concrete environment

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Nina; Kosec, Tadeja, E-mail: tadeja.kosec@zag.si; Legat, Andraž

    2016-12-01

    The aim of the present work was to characterize the efficiency of a corrosion inhibitor on steel in a simulated concrete pore solution. Laboratory measurements were performed at various chloride and inhibitor concentrations in order to simulate different applications of the inhibitor when used for the protection or rehabilitation of steel reinforcement in concrete. Two electrochemical techniques, i.e. potentiodynamic polarization scans and electrochemical impedance spectroscopy, were used for this study. The exposed surfaces of the steel specimens were subsequently investigated by Raman spectroscopy and scanning electron microscopy. It was found that the inhibitor can efficiently retard the corrosion of steel in a simulated concrete pore solution at concentrations of the inhibitor >2.0% and of chlorides <0.3% at a pH 10.5. On the other hand, when these conditions are not fulfilled, localized corrosion was observed. The results of the Raman and SEM/EDS analysis showed various morphologies of corrosion products and different types of corrosion attack depending on the pH of the pore solution, and the applied concentrations of the chlorides and the inhibitor. - Highlights: • Electrochemical studies performed at various Cl{sup −} and inhibitor concentrations. • Exposed steel surfaces investigated by Raman spectroscopy and SEM. • Cl{sup −}/inhibitor ratio is important parameter for the inhibitor's efficiency. • The corrosion can re-occur if the concentration of the inhibitor is reduced. • Different corrosion behaviour and oxides in the presence of inhibitor and/or Cl{sup −}.

  11. New Estimation of the Dosage of Scale Inhibitor in the Cooling Water System

    Directory of Open Access Journals (Sweden)

    Jiang Jiaomei

    2011-01-01

    Full Text Available In the cooling water system, excessive use of organic phosphate scale inhibitors is harmful to environment. Reducing the dosage of the organic phosphate scale inhibitor is important. A self-made jacketed crystallizer was used in this experiment. The critical pH values have been determined in cooling water systems with series of Ca2+ concentrations by adding different concentration of the scale inhibitor ATMP (Amino Trimethylene Phosphonic Acid according to the calcium carbonate Metastable zone theory. A model equation at 45 °C and pH=9 was proposed to estimate the lowest dose of the scale inhibitor ATMP. The measured pH value was approximate to the expected pH value in two cooling water systems through verification test.

  12. Chenodeoxycholic Acid Reduces Hypoxia Inducible Factor-1α Protein and Its Target Genes.

    Directory of Open Access Journals (Sweden)

    Yunwon Moon

    Full Text Available This study evaluated HIF-1α inhibitors under different hypoxic conditions, physiological hypoxia (5% O2 and severe hypoxia (0.1% O2. We found that chenodeoxy cholic acid (CDCA reduced the amount of HIF-1α protein only under physiological hypoxia but not under severe hypoxia without decreasing its mRNA level. By using a proteasome inhibitor MG132 and a translation inhibitor cyclohexamide, we showed that CDCA reduced HIF-1α protein by decreasing its translation but not by enhancing its degradation. The following findings indicated that farnesoid X receptor (FXR, a CDCA receptor and its target gene, Small heterodimer partner (SHP are not involved in this effect of CDCA. Distinctly from CDCA, MG132 prevented SHP and an exogenous FXR agonist, GW4064 from reducing HIF-1α protein. Furthermore a FXR antagonist, guggulsterone failed to prevent CDCA from decreasing HIF-1α protein. Furthermore, guggulsterone by itself reduced HIF-1α protein even in the presence of MG132. These findings suggested that CDCA and guggulsterone reduced the translation of HIF-1α in a mechanism which FXR and SHP are not involved. This study reveals novel therapeutic functions of traditional nontoxic drugs, CDCA and guggulsterone, as inhibitors of HIF-1α protein.

  13. Two-year outcomes in thoracic transplant recipients after conversion to everolimus with reduced calcineurin inhibitor within a multicenter, open-label, randomized trial

    DEFF Research Database (Denmark)

    Gullestad, Lars; Mortensen, Svend-Aage; Eiskjær, Hans

    2010-01-01

    Use of the mammalian target of rapamycin inhibitor everolimus with an accompanying reduction in calcineurin inhibitor (CNI) exposure has shown promise in preserving renal function in maintenance thoracic transplant patients, but robust, long-term data are required....

  14. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the PARP1 inhibitor niraparib to kill ovarian cancer cells.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Samuel, Peter; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-06-03

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET, PDGFRα and mutant RAS proteins via autophagic degradation. Neratinib interacted in an additive to synergistic fashion with the approved PARP1 inhibitor niraparib to kill ovarian cancer cells. Neratinib and niraparib caused the ATM-dependent activation of AMPK which in turn was required to cause mTOR inactivation, ULK-1 activation and ATG13 phosphorylation. The drug combination initially increased autophagosome levels followed later by autolysosome levels. Preventing autophagosome formation by expressing activated mTOR or knocking down of Beclin1, or knock down of the autolysosome protein cathepsin B, reduced drug combination lethality. The drug combination caused an endoplasmic reticulum stress response as judged by enhanced eIF2α phosphorylation that was responsible for reducing MCL-1 and BCL-XL levels and increasing ATG5 and Beclin1 expression. Knock down of BIM, but not of BAX or BAK, reduced cell killing. Expression of activated MEK1 prevented the drug combination increasing BIM expression and reduced cell killing. Downstream of the mitochondrion, drug lethality was partially reduced by knock down of AIF, but expression of dominant negative caspase 9 was not protective. Our data demonstrate that neratinib and niraparib interact to kill ovarian cancer cells through convergent DNA damage and endoplasmic reticulum stress signaling. Cell killing required the induction of autophagy and was cathepsin B and AIF -dependent, and effector caspase independent.

  15. Risk Factors for Inhibitor Formation in Hemophilia: A Prevalent Case-Control Study

    Science.gov (United States)

    Ragni, Margaret V.; Ojeifo, Oluseyi; Feng, Jinong; Yan, Jin; Hill, Kathleen A.; Sommer, Steve S.; Trucco, Massimo N.; Brambilla, Donald J.

    2009-01-01

    Background Inhibitor formation is a major complication of hemophilia treatment. Aim In a prevalent case-control study, we evaluated blood product exposure, genotype, and HLA type on hemophilia A inhibitor formation. Methods Product exposure was extracted from medical records. Genotype was determined on stored DNA samples by detection of virtually all mutations-SSCP (DOVAM-S) and subcycling PCR. HLA typing was performed by PCR amplification and exonuclease-released fluorescence. Results Cases experienced higher intensity factor, 455 vs. 200 U per exposure, p0.100. Genotype was not associated with race. Time to immune tolerance was shorter for titers 0.50. Conclusions Inhibitor formation is associated with high intensity product exposure, CNS bleeding, African-American race, and low frequency of missense mutations. The ideal time to initiate prophylaxis to reduce CNS bleeding and inhibitor formation will require prospective studies. PMID:19563499

  16. Drug Reduces Cancer Treatment-Related Joint Pain

    Science.gov (United States)

    A Cancer Currents blog post about a clinical trial demonstrating that duloxetine (Cymbalta®) may reduce joint pain caused by aromatase inhibitors in women being treated for early-stage breast cancer.

  17. Impact of sodium–glucose cotransporter 2 inhibitors on blood pressure

    Directory of Open Access Journals (Sweden)

    Reed JW

    2016-10-01

    Full Text Available James W Reed Morehouse School of Medicine, Atlanta, GA, USA Abstract: SGLT2 inhibitors are glucose-lowering agents used to treat type 2 diabetes mellitus (T2DM. These agents target the kidney to promote urinary glucose excretion, resulting in improved blood glucose control. SGLT2-inhibitor therapy is also associated with weight loss and blood pressure (BP lowering. Hypertension is a common comorbidity in patients with T2DM, and is associated with excess morbidity and mortality. This review summarizes data on the effect of SGLT2 inhibitors marketed in the US (namely canagliflozin, dapagliflozin, or empagliflozin on BP in patients with T2DM. Boolean searches were conducted that included terms related to BP or hypertension with terms for SGLT2 inhibitors, canagliflozin, dapagliflozin, or empagliflozin using PubMed, Google, and Google Scholar. Data from numerous randomized controlled trials of SGLT2 inhibitors in patients with T2DM demonstrated clinically relevant reductions in both systolic and diastolic BP, assessed via seated office measurements and 24-hour ambulatory BP monitoring. Observed BP lowering was not associated with compensatory increases in heart rate. Circadian BP rhythm was also maintained. The mechanism of SGLT2 inhibitor-associated BP reduction is not fully understood, but is assumed to be related to osmotic diuresis and natriuresis. Other factors that may also contribute to BP reduction include SGLT2 inhibitor-associated decreases in body weight and reduced arterial stiffness. Local inhibition of the renin–angiotensin–aldosterone system secondary to increased delivery of sodium to the juxtaglomerular apparatus during SGLT2 inhibition has also been postulated. Although SGLT2 inhibitors are not indicated as BP-lowering agents, the modest decreases in systolic and diastolic BP observed with SGLT2 inhibitors may provide an extra clinical advantage for the majority of patients with T2DM, in addition to improving blood glucose

  18. The market dynamics of selective serotonin re-uptake inhibitors: a ...

    African Journals Online (AJOL)

    re-uptake inhibitors: a private sector study in South Africa. Afri Health ... the public and private sectors to reduce medicine costs, and increase ... Fig 1: Comparison between the market volume of generics vs. originators for the period June 2009 ...

  19. PDE5 Inhibitors As Potential Tools In The Treatment Of Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Sabrina eNoel

    2012-09-01

    Full Text Available Despite great advances in the understanding of the genetics and pathophysiology of cystic fibrosis (CF, there is still no cure for the disease. Using phosphodiesterase type 5 (PDE5 inhibitors, we and others have provided evidence of rescued F508del-CFTR trafficking and corrected deficient chloride transport activity. Studies using PDE5 inhibitors in mice homozygous for the clinically relevant F508del mutation have been conducted with the aim of restoring F508del-CFTR protein function. We demonstrated, by measuring transepithelial nasal potential difference in F508del mice following intraperitoneal injection of sildenafil, vardenafil or taladafil at clinical doses are able to restore the decreased CFTR-dependent chloride transport across the nasal mucosa. Moreover, vardenafil, but not sildenafil, stimulates chloride transport through the normal CFTR protein. We developed a specific nebulizer setup for mice, with which we demonstrated, through a single inhalation of PDE5 inhibitors, local activation of CFTR protein in CF. Significant potential advantages of inhalation drug therapy over oral or intravenous routes include rapid onset of pharmacological action, reduced systemic secondary effects and reduced effective drug doses compared to the drug delivered orally; this underlines the relevance and impact of our work for translational science. More recently, we analyzed the bronchoalveolar lavage of CF and wild-type mice for cell infiltrates and expression of pro-inflammatory cytokines and chemokines; we found that the CFTR activating effect of vardenafil, selected as a representative long-lasting PDE5 inhibitor, breaks the vicious circle of lung inflammation which plays a major role in morbi-mortality in CF. Our data highlight the potential use of PDE5 inhibitors in CF. Therapeutic approaches using clinically approved PDE5 inhibitors to address F508del-CFTR defects could speed up the development of new therapies for CF.

  20. Reference: 278 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available functional ERA1 gene, which encodes the beta-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects...gnaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsi

  1. [Pharmacogenic osteoporosis beyond cortisone. Proton pump inhibitors, glitazones and diuretics].

    Science.gov (United States)

    Kann, P H; Hadji, P; Bergmann, R S

    2014-05-01

    [corrected] There are many drugs which can cause osteoporosis or at least favor its initiation. The effect of hormones and drugs with antihormonal activity, such as glucocorticoids and aromatase inhibitors, on initiation of osteoporosis is well known. In addition, proton pump inhibitors, glitazones and diuretics also influence the formation of osteoporosis. The results of currently available studies on the correlation between proton pump inhibitors, glitazones and diuretics on formation of osteoporosis were evaluated and summarized. Proton pump inhibitors and glitazones increase the risk for osteoporotic fractures. Loop diuretics may slightly increase fracture risk, whereas thiazides were shown to be osteoprotective by reducing fracture probability on a relevant scale. Proton pump inhibitors should not be prescribed without serious consideration and then only as long as necessary. Alternatively, the administration of the less effective H2 antagonists should be considered when possible due to the reduction of acid secretion. Because the long-term intake of thiazides is associated with a clinically relevant reduction in the risk of fractures and they are economic and well-tolerated, prescription can be thoroughly recommended within the framework of differential diagnostic considerations in an appropriate clinical context. The briefly increased risk of falling immediately after starting diuretic therapy is the only point which needs to be considered.

  2. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy

    International Nuclear Information System (INIS)

    Han, Yu Kyeong; Lee, Jae Ho; Park, Ga-Young; Chun, Sung Hak; Han, Jeong Yun; Kim, Sung Dae; Lee, Janet; Lee, Chang-Woo; Yang, Kwangmo; Lee, Chang Geun

    2013-01-01

    Highlights: ► A CDK4 inhibitor may be used for breast cancer stem cell-targeted therapy. ► The CDK4 inhibitor differentiated the cancer stem cell population (CD24 − /CD44 + ) of MDA-MB-231. ► The differentiation of the cancer stem cells by the CDK4 inhibitor radiosensitized MDA-MB-231. -- Abstract: Cancer stem cells (CSCs) are one of the main reasons behind cancer recurrence due to their resistance to conventional anti-cancer therapies. Thus, many efforts are being devoted to developing CSC-targeted therapies to overcome the resistance of CSCs to conventional anti-cancer therapies and decrease cancer recurrence. Differentiation therapy is one potential approach to achieve CSC-targeted therapies. This method involves inducing immature cancer cells with stem cell characteristics into more mature or differentiated cancer cells. In this study, we found that a CDK4 inhibitor sensitized MDA-MB-231 cells but not MCF7 cells to irradiation. This difference appeared to be associated with the relative percentage of CSC-population between the two breast cancer cells. The CDK4 inhibitor induced differentiation and reduced the cancer stem cell activity of MDA-MB-231 cells, which are shown by multiple marker or phenotypes of CSCs. Thus, these results suggest that radiosensitization effects may be caused by reducing the CSC-population of MDA-MB-231 through the use of the CDK4 inhibitor. Thus, further investigations into the possible application of the CDK4 inhibitor for CSC-targeted therapy should be performed to enhance the efficacy of radiotherapy for breast cancer

  3. Enhanced effects by 4-phenylbutyrate in combination with RTK inhibitors on proliferation in brain tumor cell models

    International Nuclear Information System (INIS)

    Marino, Ana-Maria; Sofiadis, Anastasios; Baryawno, Ninib; Johnsen, John Inge; Larsson, Catharina; Vukojevic, Vladana; Ekstroem, Tomas J.

    2011-01-01

    Highlights: → The histone deacetylase inhibitor 4-phenylbutyrate substantially enhance efficacy of the receptor tyrosine kinase inhibitors gefitinib or vandetanib in glioma and medulloblastoma cell lines. → Cell death increases and clonogenic survival is reduced in the combination treatments, over mono-therapy. → Combination treatments with these drugs may improve clinical outcome for cancer therapy. -- Abstract: We have investigated in vitro effects of anticancer therapy with the histone deacetylase inhibitor (HDACi) 4-phenylbutyrate (4-PB) combined with receptor tyrosine kinase inhibitors (RTKi) gefitinib or vandetanib on the survival of glioblastoma (U343MGa) and medulloblastoma (D324Med) cells. In comparison with individual effects of these drugs, combined treatment with gefitinib/4-PB or vandetanib/4-PB resulted in enhanced cell killing and reduced clonogenic survival in both cell lines. Our results suggest that combined treatment using HDACi and RTKi may beneficially affect the outcome of cancer therapy.

  4. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries

    Directory of Open Access Journals (Sweden)

    Han Bucong

    2012-11-01

    Full Text Available Abstract Background Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. Results We evaluated support vector machines (SVM as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33% of 13.56M PubChem, 1,496 (0.89% of 168 K MDDR, and 719 (7.73% of 9,305 MDDR compounds similar to the known inhibitors. Conclusions SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates.

  5. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries.

    Science.gov (United States)

    Han, Bucong; Ma, Xiaohua; Zhao, Ruiying; Zhang, Jingxian; Wei, Xiaona; Liu, Xianghui; Liu, Xin; Zhang, Cunlong; Tan, Chunyan; Jiang, Yuyang; Chen, Yuzong

    2012-11-23

    Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates.

  6. Role of inhibitors and biodegradable material in mitigation of ...

    African Journals Online (AJOL)

    Loss of N, occurring mainly through NH3 volatilization, biological denitrification, and NO3 - leaching, has both economic and environmental implications. Therefore, the economic benefits of reduced environmental pollution and future damage to our environment as a result of the use of urease inhibitors are of higher ...

  7. Comparing the lifetime risks of TNF-alpha inhibitor use to common benchmarks of risk.

    Science.gov (United States)

    Kaminska, Edi; Patel, Isha; Dabade, Tushar S; Chang, Jongwha; Qureshi, Ayub A; O'Neill, Jenna L; Balkrishnan, Rajesh; Feldman, Steven R

    2013-04-01

    The study aims to illustrate the range of lifetime risks of lymphoma, tuberculosis (TB), and demyelinating diseases with TNF-α inhibitors in psoriasis patients. Previously published data and online resources were used to determine the risk of the TB, demyelinating disease, and lymphoma with and without TNF-α inhibitor treatment. Lifetime risks for heart disease and stroke were collected using a Medline search. All cancer, trauma, and environmental statistics were obtained from the data published by National Cancer Institute, National Safety Council, and the National Oceanic and Atmospheric Administration, respectively. The lifetime risks of TNF-α-inhibitor-linked conditions and comparators are as follows: TNF-α inhibitor-linked conditions: lymphoma with: without TNF-α inhibitors (0.5-4.8%:2.3%), TB with:without TNF-α inhibitors (0-17.1%:0.3%), and demyelinating disease with:without TNF-α inhibitors (0.1-1.7%:0.15%). Comparators: cancer (40.4%), heart disease (36.2%), stroke (18.4%), accidental death (3.0%), motor vehicle death (1.2%), and lightning strike (0.033%). Much of the data on lifetime risks of disease with TNF-α inhibitor were for patients with rheumatoid arthritis and not psoriasis. The risks of lymphoma, demyelinating diseases, and tuberculosis with TNF-α inhibitors are lower than risks patients face on a regular basis. Screening reduces the risk of tuberculosis in patients receiving TNF-α inhibitors.

  8. Reducing cardiovascular risk : protecting the kidney

    NARCIS (Netherlands)

    Dobre, Daniela; Lambers Heerspink, Hiddo J.; de Zeeuw, Dick

    2009-01-01

    Progressive decline of renal function in chronic kidney disease (CKD), measured by a reduced glomerular filtration rate or albuminuria, is linked to an increased risk of cardiovascular (CV) disease. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs), most

  9. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects

    Directory of Open Access Journals (Sweden)

    Atsuo Tahara

    2016-03-01

    Full Text Available The sodium-glucose cotransporter (SGLT 2 offer a novel approach to treating type 2 diabetes by reducing hyperglycaemia via increased urinary glucose excretion. In the present study, the pharmacokinetic, pharmacodynamic, and pharmacologic properties of all six SGLT2 inhibitors commercially available in Japan were investigated and compared. Based on findings in normal and diabetic mice, the six drugs were classified into two categories, long-acting: ipragliflozin and dapagliflozin, and intermediate-acting: tofogliflozin, canagliflozin, empagliflozin, and luseogliflozin. Long-acting SGLT2 inhibitors exerted an antihyperglycemic effect with lower variability of blood glucose level via a long-lasting increase in urinary glucose excretion. In addition, ipragliflozin and luseogliflozin exhibited superiority over the others with respect to fast onset of pharmacological effect. Duration and onset of the pharmacologic effects seemed to be closely correlated with the pharmacokinetic properties of each SGLT2 inhibitor, particularly with respect to high distribution and long retention in the target organ, the kidney. While all six SGLT2 inhibitors were significantly effective in increasing urinary glucose excretion and reducing hyperglycemia, our findings suggest that variation in the quality of daily blood glucose control associated with duration and onset of pharmacologic effects of each SGLT2 inhibitor might cause slight differences in rates of improvement in type 2 diabetes.

  10. Canine osteosarcoma cells exhibit resistance to aurora kinase inhibitors.

    Science.gov (United States)

    Cannon, C M; Pozniak, J; Scott, M C; Ito, D; Gorden, B H; Graef, A J; Modiano, J F

    2015-03-01

    We evaluated the effect of Aurora kinase inhibitors AZD1152 and VX680 on canine osteosarcoma cells. Cytotoxicity was seen in all four cell lines; however, half-maximal inhibitory concentrations were significantly higher than in human leukaemia and canine lymphoma cells. AZD1152 reduced Aurora kinase B phosphorylation, indicating resistance was not because of failure of target recognition. Efflux mediated by ABCB1 and ABCG2 transporters is one known mechanism of resistance against these drugs and verapamil enhanced AZD1152-induced apoptosis; however, these transporters were only expressed by a small percentage of cells in each line and the effects of verapamil were modest, suggesting other mechanisms contribute to resistance. Our results indicate that canine osteosarcoma cells are resistant to Aurora kinase inhibitors and suggest that these compounds are unlikely to be useful as single agents for this disease. Further investigation of these resistance mechanisms and the potential utility of Aurora kinase inhibitors in multi-agent protocols is warranted. © 2013 Blackwell Publishing Ltd.

  11. Soilless plant growth media influence the efficacy of phytohormones and phytohormone inhibitors.

    Science.gov (United States)

    Best, Norman B; Hartwig, Thomas; Budka, Joshua S; Bishop, Brandon J; Brown, Elliot; Potluri, Devi P V; Cooper, Bruce R; Premachandra, Gnanasiri S; Johnston, Cliff T; Schulz, Burkhard

    2014-01-01

    Plant growth regulators, such as hormones and their respective biosynthesis inhibitors, are effective tools to elucidate the physiological function of phytohormones in plants. A problem of chemical treatments, however, is the potential for interaction of the active compound with the growth media substrate. We studied the interaction and efficacy of propiconazole, a potent and specific inhibitor of brassinosteroid biosynthesis, with common soilless greenhouse growth media for rice, sorghum, and maize. Many of the tested growth media interacted with propiconazole reducing its efficacy up to a hundred fold. To determine the molecular interaction of inhibitors with media substrates, Fourier Transform Infrared Spectroscopy and sorption isotherm analysis was applied. While mica clay substrates absorbed up to 1.3 mg of propiconazole per g substrate, calcined clays bound up to 12 mg of propiconazole per g substrate. The efficacy of the gibberellic acid biosynthesis inhibitor, uniconazole, and the most active brassinosteroid, brassinolide, was impacted similarly by the respective substrates. Conversely, gibberellic acid showed no distinct growth response in different media. Our results suggest that the reduction in efficacy of propiconazole, uniconazole, and brassinolide in bioassays when grown in calcined clay is caused by hydrophobic interactions between the plant growth regulators and the growth media. This was further confirmed by experiments using methanol-water solvent mixes with higher hydrophobicity values, which reduce the interaction of propiconazole and calcined clay.

  12. Oral direct thrombin inhibitors or oral factor Xa inhibitors for the treatment of deep vein thrombosis.

    Science.gov (United States)

    Robertson, Lindsay; Kesteven, Patrick; McCaslin, James E

    2015-06-30

    11 randomised controlled trials of 27,945 participants. Three studies tested oral DTIs (two dabigatran and one ximelagatran), while eight tested oral factor Xa inhibitors (four rivaroxaban, two apixaban and two edoxaban). We deemed all included studies to be of high methodological quality and low risk of bias. The quality of the evidence was graded as high as the outcomes were direct and effect estimates were consistent and precise, as reflected in the narrow CIs around the ORs. Meta-analysis of three studies (7596 participants) comparing oral DTIs with standard anticoagulation groups showed no difference in the rate of recurrent VTE (OR 1.09; 95% CI 0.80 to 1.49), recurrent DVT (OR 1.08; 95% CI 0.74 to 1.58), fatal PE (OR 1.00; 95% CI 0.27 to 3.70), non-fatal PE (OR 1.12; 95% CI 0.66 to 1.90) or all-cause mortality (OR 0.82; 95% CI 0.60 to 1.13). However, oral DTIs were associated with reduced bleeding (OR 0.68; 95% CI 0.47 to 0.98). Meta-analysis of eight studies (16,356 participants) comparing oral factor Xa inhibitors with standard anticoagulation demonstrated a similar rate of recurrent VTE between the two treatments (OR 0.89; 95% CI 0.73 to 1.07). Oral factor Xa inhibitors were associated with a lower rate of recurrent DVT (OR 0.75; 95% CI 0.57 to 0.98). However, this was a weak association, heavily dependent on one study. The rate of fatal (OR 1.20; 95% CI 0.71 to 2.03), non-fatal PE (OR 0.94; 95% CI 0.68 to 1.28) and all-cause mortality (OR 0.90; 95% CI 0.65 to 1.23) was similar between the two treatment groups. Oral factor Xa inhibitors were also associated with reduced bleeding (OR 0.57; 95% CI 0.43 to 0.76). None of the included studies measured post-thrombotic syndrome or health-related quality of life. NOACs such as DTIs and factor Xa inhibitors may be an effective and safe alternative to conventional anticoagulation treatment for acute DVT.

  13. Eliminating anti-nutritional plant food proteins: the case of seed protease inhibitors in pea.

    Science.gov (United States)

    Clemente, Alfonso; Arques, Maria C; Dalmais, Marion; Le Signor, Christine; Chinoy, Catherine; Olias, Raquel; Rayner, Tracey; Isaac, Peter G; Lawson, David M; Bendahmane, Abdelhafid; Domoney, Claire

    2015-01-01

    Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving

  14. Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Shi, Shuobo; Ji, Haichuan; Siewers, Verena

    2016-01-01

    , malate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, FA hydroxylase, farnesyltransferase, anoctamin, dihydrolipoamide dehydrogenase and phosphatidylethanolamine-binding protein. The best enzyme resulted in a 2.5-fold improvement in production of free FAs. Our findings not only provide a novel...

  15. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease.

    Science.gov (United States)

    Chong, Jimmy; Leung, Bonnie; Poole, Phillippa

    2017-09-19

    Chronic obstructive pulmonary disease (COPD) is associated with cough, sputum production or dyspnoea and a reduction in lung function, quality of life and life expectancy. Apart from smoking cessation, there are no other treatments that slow lung function decline. Roflumilast and cilomilast are oral phosphodiesterase 4 (PDE 4 ) inhibitors proposed to reduce the airway inflammation and bronchoconstriction seen in COPD. This is an update of a Cochrane review first published in 2011 and updated in 2013. To evaluate the efficacy and safety of oral PDE 4 inhibitors in the management of stable COPD. We identified randomised controlled trials (RCTs) from the Cochrane Airways Trials Register (date of last search October 2016). We found other trials from web-based clinical trials registers. We included RCTs if they compared oral PDE 4 inhibitors with placebo in people with COPD. We allowed co-administration of standard COPD therapy. One review author extracted data and a second review author checked the data. We reported pooled data in Review Manager as mean differences (MD), standardised mean differences (SMD) or odds ratios (OR). We converted the odds ratios into absolute treatment effects in a 'Summary of findings' table. Thirty-four separate RCTs studying roflumilast (20 trials with 17,627 participants) or cilomilast (14 trials with 6457 participants) met the inclusion criteria, with a duration of between six weeks and one year. These included people across international study centres with moderate to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades II-IV), with a mean age of 64 years.We considered that the methodological quality of the 34 published and unpublished trials was acceptable overall. Treatment with a PDE 4 inhibitor was associated with a significant improvement in forced expiratory volume in one second (FEV 1 ) over the trial period compared with placebo (MD 51.53 mL, 95% confidence interval (CI) 43.17 to 59.90, 27

  16. Small-molecule inhibitors of toxT expression in Vibrio cholerae.

    Science.gov (United States)

    Anthouard, Rebecca; DiRita, Victor J

    2013-08-06

    Vibrio cholerae, a Gram-negative bacterium, infects humans and causes cholera, a severe disease characterized by vomiting and diarrhea. These symptoms are primarily caused by cholera toxin (CT), whose production by V. cholerae is tightly regulated by the virulence cascade. In this study, we designed and carried out a high-throughput chemical genetic screen to identify inhibitors of the virulence cascade. We identified three compounds, which we named toxtazin A and toxtazin B and B', representing two novel classes of toxT transcription inhibitors. All three compounds reduce production of both CT and the toxin-coregulated pilus (TCP), an important colonization factor. We present evidence that toxtazin A works at the level of the toxT promoter and that toxtazins B and B' work at the level of the tcpP promoter. Treatment with toxtazin B results in a 100-fold reduction in colonization in an infant mouse model of infection, though toxtazin A did not reduce colonization at the concentrations tested. These results add to the growing body of literature indicating that small-molecule inhibitors of virulence genes could be developed to treat infections, as alternatives to antibiotics become increasingly needed. V. cholerae caused more than 580,000 infections worldwide in 2011 alone (WHO, Wkly. Epidemiol. Rec. 87:289-304, 2012). Cholera is treated with an oral rehydration therapy consisting of water, glucose, and electrolytes. However, as V. cholerae is transmitted via contaminated water, treatment can be difficult for communities whose water source is contaminated. In this study, we address the need for new therapeutic approaches by targeting the production of the main virulence factor, cholera toxin (CT). The high-throughput screen presented here led to the identification of two novel classes of inhibitors of the virulence cascade in V. cholerae, toxtazin A and toxtazins B and B'. We demonstrate that (i) small-molecule inhibitors of virulence gene production can be

  17. Effect of urease inhibitor application rate and rainfall on ammonia emissions from beef manure

    Science.gov (United States)

    Social, economic, and environmental factors have prompted the desire to reduce global atmospheric ammonia emissions. A research project was conducted to assess the efficacy of the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) for reducing ammonia emissions from simulated open-lot beef...

  18. The MAO-A inhibitor clorgyline reduces ethanol-induced locomotion and its volitional intake in mice.

    Science.gov (United States)

    Ledesma, Juan Carlos; Escrig, Miguel Angel; Pastor, Raúl; Aragon, Carlos M G

    2014-01-01

    Hydrogen peroxide is the co-substrate used by the enzyme catalase to form Compound I (the catalase-H2O2 system), which is the major pathway for the conversion of ethanol (EtOH) into acetaldehyde in the brain. This acetaldehyde has been involved in many of the effects of EtOH. Previous research demonstrated that treatments that change the levels of cerebral H2O2 available to catalase modulate the locomotor-stimulating effects of EtOH and its volitional intake in rodents. However, the source of H2O2 which is used by catalase to form Compound I and mediates the psychoactive actions of EtOH is unknown. One cause of the generation of H2O2 in the brain comes from the deamination of biogenic amines by the activity of MAO-A. Here we explore the consequences of the administration of the MAO-A inhibitor clorgyline on EtOH-induced locomotion and voluntary EtOH drinking. For the locomotor activity tests, we injected Swiss (RjOrl) mice intraperitoneally (IP) with clorgyline (0-10mg/kg) and later (0.5-8h) with EtOH (0-3.75 g/kg; IP). Following these treatments, mice were placed in locomotor activity chambers to measure their locomotion. For the drinking experiments, mice of the C57BL/6J strain were injected IP with clorgyline prior to offering them an EtOH (20%) solution following a drinking-in-the-dark procedure. Additional experiments were performed to assess the selectivity of this compound in altering EtOH-stimulated locomotion and EtOH intake. Moreover, we indirectly tested the ability of clorgyline to reduce brain H2O2 levels. We showed that this treatment selectively reduced EtOH-induced locomotion and its self-administration. Moreover, this compound decreased central H2O2 levels available to catalase. We suggest that H2O2 derived from the deamination of biogenic amines by the activity of MAO-A could determine the formation of brain EtOH-derived acetaldehyde. This centrally-formed acetaldehyde within the neurons of the aminergic system could play a role in the

  19. Association of Proton Pump Inhibitors With Reduced Risk of Warfarin-Related Serious Upper Gastrointestinal Bleeding.

    Science.gov (United States)

    Ray, Wayne A; Chung, Cecilia P; Murray, Katherine T; Smalley, Walter E; Daugherty, James R; Dupont, William D; Stein, C Michael

    2016-12-01

    Proton pump inhibitors (PPIs) might reduce the risk of serious warfarin-related upper gastrointestinal bleeding, but the evidence of their efficacy for this indication is limited. A gastroprotective effect of PPIs would be particularly important for patients who take warfarin with antiplatelet drugs or nonselective nonsteroidal anti-inflammatory drugs (NSAIDs), which further increase the risk of gastrointestinal bleeding. This retrospective cohort study of patients beginning warfarin treatment in Tennessee Medicaid and the 5% National Medicare Sample identified 97,430 new episodes of warfarin treatment with 75,720 person-years of follow-up. The study end points were hospitalizations for upper gastrointestinal bleeding potentially preventable by PPIs and for bleeding at other sites. Patients who took warfarin without PPI co-therapy had 119 hospitalizations for upper gastrointestinal bleeding per 10,000 person-years of treatment. The risk decreased by 24% among patients who received PPI co-therapy (adjusted hazard ratio [HR], 0.76; 95% confidence interval [CI], 0.63-0.91). There was no significant reduction in the risk of other gastrointestinal bleeding hospitalizations (HR, 1.07; 95% CI, 0.94-1.22) or non-gastrointestinal bleeding hospitalizations (HR, 0.98; 95% CI, 0.84-1.15) in this group. Among patients concurrently using antiplatelet drugs or NSAIDs, those without PPI co-therapy had 284 upper gastrointestinal bleeding hospitalizations per 10,000 person-years of warfarin treatment. The risk decreased by 45% (HR, 0.55; 95% CI, 0.39-0.77) with PPI co-therapy. PPI co-therapy had no significant protective effect for warfarin patients not using antiplatelet drugs or NSAIDs (HR, 0.86; 95% CI, 0.70-1.06). Findings were similar in both study populations. In an analysis of patients beginning warfarin treatment in Tennessee Medicaid and the 5% National Medicare Sample, PPI co-therapy was associated with reduced risk of warfarin-related upper gastrointestinal bleeding; the

  20. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    Science.gov (United States)

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies

  1. SGLT2 Inhibitors: Glucotoxicity and Tumorigenesis Downstream the Renal Proximal Tubule?

    Science.gov (United States)

    Bertinat, Romina; Nualart, Francisco; Yáñez, Alejandro J

    2016-08-01

    At present, diabetes mellitus is the main cause of end-stage renal disease. Effective glycaemic management is the most powerful tool to delay the establishment of diabetic complications, such as diabetic kidney disease. Together with reducing blood glucose levels, new anti-diabetic agents are expected not only to control the progression but also to restore known defects of the diabetic kidney. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising anti-diabetic agents that reduce hyperglycaemia by impairing glucose reabsorption in proximal tubule of the kidney and increasing glucosuria. SGLT2 inhibitors have shown to reduce glucotoxicity in isolated proximal tubule cells and also to attenuate expression of markers of overall kidney damage in experimental animal models of diabetes, but the actual renoprotective effect for downstream nephron segments is still unknown and deserves further attention. Here, we briefly discuss possible undesired effects of enhanced glucosuria and albuminuria in nephron segments beyond the proximal tubule after SGLT2 inhibitor treatment, offering new lines of research to further understand the renoprotective action of these anti-diabetic agents. Strategies blocking glucose reabsorption by renal proximal tubule epithelial cells (RPTEC) may be protective for RPTEC, but downstream nephron segments will still be exposed to high glucose and albumin levels through the luminal face. The actual effect of constant enhanced glucosuria over distal nephron segments remains to be established. J. Cell. Physiol. 231: 1635-1637, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. The effect of chemical anti-inhibitors on fibrinolytic enzymes and inhibitors

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Kluft, C

    1997-01-01

    proteases. We studied the influence of chemical anti-inhibitors (chloramine T, flufenamate, sodium lauryl sulfate, and methylamine) on fibrinolytic serine proteases and fibrinolytic enzyme inhibitors using the physiological substrate fibrin as plasmin substrate. Low concentrations of chloramine T (0.01 mmol......%) and plasminogen activators (apparent recovery > 200%). Sodium lauryl sulfate eliminates the major fibrinolytic enzyme inhibitors, but increases the activity of plasmin (apparent recovery > 200%) and plasminogen activator, urokinase type (apparent recovery 130%). Methylamine affects only plasmin inhibition. We...

  3. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  4. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    Science.gov (United States)

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  5. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1

  6. Prevention of PCDD/F formation by chemical inhibitor injection into the flue gases in the incineration processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruuskanen, J.; Halonen, I.; Ruokojaervi, P.; Tuppurainen, K.; Tarhanen, J. [Kuopio Univ. (Finland). Lab. of Environmental Chemistry

    1997-10-01

    Three series of inhibition tests were performed at the laboratory and the pilot scale plants during the years 1995-1996. In the laboratory tests chemical inhibitors were added to fly ash before the thermal treatment. Inhibitors were not found to have any effects on destruction of PCDD/Fs at the torment temperature of 160 and 300 deg C compared to the situation without inhibitors. The thermal treatment at 300 deg C alone reduced and dechlorinated PCDD/Fs effectively. In the pilot scale tests both gaseous and liquid inhibitors were injected to the flue gases at 700 deg C, and gaseous inhibitors also at 400 deg C. The total PCDD/F reductions were between 0-95 % depending on the inhibitor, injection temperature and the amount of inhibitors. In the gaseous inhibitor tests the PCDD/F reductions especially high in the particle phase, being even 98 % in dimethylamine injection. In the liquid inhibitor tests the PCDD/F reductions were also high in the gas phase being even 96 % in sodium ammonium hydrogen phosphate injection. (orig.)

  7. Reduced systemic toxicity and preserved vestibular toxicity following co-treatment with nitriles and CYP2E1 inhibitors: a mouse model for hair cell loss.

    Science.gov (United States)

    Saldaña-Ruíz, Sandra; Boadas-Vaello, Pere; Sedó-Cabezón, Lara; Llorens, Jordi

    2013-10-01

    Several nitriles, including allylnitrile and cis-crotononitrile, have been shown to be ototoxic and cause hair cell degeneration in the auditory and vestibular sensory epithelia of mice. However, these nitriles can also be lethal due in large part to the microsomal metabolic release of cyanide, which is mostly dependent on the activity of the 2E1 isoform of the cytochrome P450 (CYP2E1). In this study, we co-administered mice with a nitrile and, to reduce their lethal effects, a selective CYP2E1 inhibitor: diallylsulfide (DAS) or trans-1,2-dichloroethylene (TDCE). Both in female 129S1/SvImJ (129S1) mice co-treated with DAS and cis-crotononitrile and in male RjOrl:Swiss/CD-1 (Swiss) mice co-treated with TDCE and allylnitrile, the nitrile caused a dose-dependent loss of vestibular function, as assessed by a specific behavioral test battery, and of hair cells, as assessed by hair bundle counts using scanning electron microscopy. In the experiments, the CYP2E1 inhibitors provided significant protection against the lethal effects of the nitriles and did not diminish the vestibular toxicity as assessed by behavioral effects in comparison to animals receiving no inhibitor. Additional experiments using a single dose of allylnitrile demonstrated that TDCE does not cause hair cell loss on its own and does not modify the vestibular toxicity of the nitrile in either male or female 129S1 mice. In all the experiments, high vestibular dysfunction scores in the behavioral test battery predicted extensive to complete loss of hair cells in the utricles. This provides a means of selecting animals for subsequent studies of vestibular hair cell regeneration or replacement.

  8. Interdependence of Inhibitor Recognition in HIV-1 Protease.

    Science.gov (United States)

    Paulsen, Janet L; Leidner, Florian; Ragland, Debra A; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-09

    Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. All-atom molecular dynamics simulations starting from these structures were performed and systematically analyzed in terms of atomic fluctuations, intermolecular interactions, and water structure. These analyses reveal that the S1' subsite highly influences other subsites: the extension of the hydrophobic P1' moiety results in 1) reduced van der Waals contacts in the P2' subsite, 2) more variability in the hydrogen bond frequencies with catalytic residues and the flap water, and 3) changes in the occupancy of conserved water sites both proximal and distal to the active site. In addition, one of the monomers in this homodimeric enzyme has atomic fluctuations more highly correlated with DRV than the other monomer. These relationships intricately link the HIV-1 protease subsites and are critical to understanding molecular recognition and inhibitor binding. More broadly, the interdependency of subsite recognition within an active site requires consideration in the selection of chemical moieties in drug design; this strategy is in contrast to what is traditionally done with independent optimization of chemical moieties of an inhibitor.

  9. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    Science.gov (United States)

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  10. Supply of neuraminidase inhibitors related to reduced influenza A (H1N1) mortality during the 2009-2010 H1N1 pandemic: summary of an ecological study.

    Science.gov (United States)

    Miller, Paula E; Rambachan, Aksharananda; Hubbard, Roderick J; Li, Jiabai; Meyer, Alison E; Stephens, Peter; Mounts, Anthony W; Rolfes, Melissa A; Penn, Charles R

    2013-09-01

    When the influenza A (H1N1) pandemic spread across the globe from April 2009 to August 2010, many WHO Member States used antiviral drugs, specifically neuraminidase inhibitors (NAIs) oseltamivir and zanamivir, to treat influenza patients in critical condition. Antivirals have been found to be effective in reducing severity and duration of influenza illness, and likely reduce morbidity; however, it is unclear whether NAIs used during the pandemic reduced H1N1 mortality. To assess the association between antivirals and influenza mortality, at an ecologic level, country-level data on supply of oseltamivir and zanamivir were compared to laboratory-confirmed H1N1 deaths (per 100 000 people) from July 2009 to August 2010 in 42 WHO Member States. From this analysis, it was found that each 10% increase in kilograms of oseltamivir, per 100 000 people, was associated with a 1·6% reduction in H1N1 mortality over the pandemic period [relative rate (RR) = 0·84 per log increase in oseltamivir supply]. Each 10% increase in kilogram of active zanamivir, per 100 000, was associated with a 0·3% reduction in H1N1 mortality (RR = 0·97 per log increase). While limitations exist in the inference that can be drawn from an ecologic evaluation, this analysis offers evidence of a protective relationship between antiviral drug supply and influenza mortality and supports a role for influenza antiviral use in future pandemics. This article summarises the original study described previously, which can be accessed through the following citation: Miller PE, Rambachan A, Hubbard RJ, Li J, Meyer AE, et al. (2012) Supply of Neuraminidase Inhibitors Related to Reduced Influenza A (H1N1) Mortality during the 2009-2010 H1N1 Pandemic: An Ecological Study. PLoS ONE 7(9): e43491. © 2013 Blackwell Publishing Ltd.

  11. Toxicity to cotton boll weevil Anthonomus grandis of a trypsin inhibitor from chickpea seeds.

    Science.gov (United States)

    de P G Gomes, Angélica; Dias, Simoni C; Bloch, Carlos; Melo, Francislete R; Furtado, José R; Monnerat, Rose G; Grossi-de-Sá, Maria F; Franco, Octávio L

    2005-02-01

    Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to discover new ones with the capability to reduce the digestion process. The present study describes a novel proteinase inhibitor from chickpea seeds (Cicer arietinum L.) and its effects against A. grandis. This inhibitor, named CaTI, was purified by using affinity Red-Sepharose Cl-6B chromatography, followed by reversed-phase HPLC (Vydac C18-TP). SDS-PAGE and MALDI-TOF analyses, showed a unique monomeric protein with a mass of 12,877 Da. Purified CaTI showed significant inhibitory activity against larval cotton boll weevil serine proteinases (78%) and against bovine pancreatic trypsin (73%), when analyzed by fluorimetric assays. Although the molecular mass of CaTI corresponded to alpha-amylase/trypsin bifunctional inhibitors masses, no inhibitory activity against insect and mammalian alpha-amylases was observed. In order to observe CaTI in vivo effects, an inhibitor rich fraction was added to an artificial diet at different concentrations. At 1.5% (w/w), CaTI caused severe development delay, several deformities and a mortality rate of approximately 45%. These results suggested that CaTI could be useful in the production of transgenic cotton plants with enhanced resistance toward cotton boll weevil.

  12. Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice.

    Science.gov (United States)

    Neelakantan, Harshini; Vance, Virginia; Wetzel, Michael D; Wang, Hua-Yu Leo; McHardy, Stanton F; Finnerty, Celeste C; Hommel, Jonathan D; Watowich, Stanley J

    2018-01-01

    There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD + ) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD + salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD + and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to

  13. Role of SGLT2 Inhibitors in Patients with Diabetes Mellitus and Heart Failure.

    Science.gov (United States)

    Verbrugge, Frederik H

    2017-08-01

    This review aims to summarize the evidence on cardiovascular risks and benefits of glucose-lowering drugs in diabetic patients, with a particular focus on the role of sodium-glucose transporter-2 (SGLT-2) inhibitors and their promising potential as a heart failure treatment. The SGLT-2 inhibitor empagliflozin has emerged as the first glucose-lowering drug to lower cardiovascular mortality in diabetes with an unprecedented 38% relative risk reduction. In addition, empagliflozin significantly reduced the rate of heart failure admissions with 35% when compared to placebo in diabetic patients with established atherosclerosis. SGLT-2 inhibitors should be considered as a first-line drug to achieve glycemic control in diabetic patients at high risk for cardiovascular diseases and heart failure in particular. As SGLT-2 inhibitors target different pathophysiological pathways in heart failure, they might even be considered in the broader population without diabetes, but this remains the topic of further study.

  14. Hedgehog Signaling Inhibitors as Anti-Cancer Agents in Osteosarcoma

    International Nuclear Information System (INIS)

    Ram Kumar, Ram Mohan; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare type of cancer associated with a poor clinical outcome. Even though the pathologic characteristics of OS are well established, much remains to be understood, particularly at the molecular signaling level. The molecular mechanisms of osteosarcoma progression and metastases have not yet been fully elucidated and several evolutionary signaling pathways have been found to be linked with osteosarcoma pathogenesis, especially the hedgehog signaling (Hh) pathway. The present review will outline the importance and targeting the hedgehog signaling (Hh) pathway in osteosarcoma tumor biology. Available data also suggest that aberrant Hh signaling has pro-migratory effects and leads to the development of osteoblastic osteosarcoma. Activation of Hh signaling has been observed in osteosarcoma cell lines and also in primary human osteosarcoma specimens. Emerging data suggests that interference with Hh signal transduction by inhibitors may reduce osteosarcoma cell proliferation and tumor growth thereby preventing osteosarcomagenesis. From this perspective, we outline the current state of Hh pathway inhibitors in osteosarcoma. In summary, targeting Hh signaling by inhibitors promise to increase the efficacy of osteosarcoma treatment and improve patient outcome

  15. Sodium-glucose co-transporter 2 (SGLT2 inhibitors: a growing class of anti-diabetic agents

    Directory of Open Access Journals (Sweden)

    Eva M Vivian

    2014-12-01

    Full Text Available Although several treatment options are available to reduce hyperglycemia, only about half of individuals with diagnosed diabetes mellitus (DM achieve recommended glycemic targets. New agents that reduce blood glucose concentrations by novel mechanisms and have acceptable safety profiles are needed to improve glycemic control and reduce the complications associated with type 2 diabetes mellitus (T2DM. The renal sodium-glucose co-transporter 2 (SGLT2 is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors of SGLT2 lower blood glucose independent of the secretion and action of insulin by inhibiting renal reabsorption of glucose, thereby promoting the increased urinary excretion of excess glucose. Canagliflozin, dapagliflozin, and empagliflozin are SGLT2 inhibitors approved as treatments for T2DM in the United States, Europe, and other countries. Canagliflozin, dapagliflozin, and empagliflozin increase renal excretion of glucose and improve glycemic parameters in patients with T2DM when used as monotherapy or in combination with other antihyperglycemic agents. Treatment with SGLT2 inhibitors is associated with weight reduction, lowered blood pressure, and a low intrinsic propensity to cause hypoglycemia. Overall, canagliflozin, dapagliflozin, and empagliflozin are well tolerated. Cases of genital infections and, in some studies, urinary tract infections have been more frequent in canagliflozin-, dapagliflozin-, and empagliflozin-treated patients compared with those receiving placebo. Evidence from clinical trials suggests that SGLT2 inhibitors are a promising new treatment option for T2DM.

  16. Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer

    DEFF Research Database (Denmark)

    Chang, Joan; Lucas, Morghan C; Leonte, Lidia Elena

    2017-01-01

    inhibitor in the MDA-MB-231 human model of breast cancer. We confirmed a functional role for LOXL2 activity in the progression of primary breast cancer. Inhibition of LOXL2 activity inhibited the growth of primary tumors and reduced primary tumor angiogenesis. Dual inhibition of LOXL2 and LOX showed...... a greater effect and also led to a lower overall metastatic burden in the lung and liver. Our data provides the first evidence to support a role for LOXL2 specific small molecule inhibitors as a potential therapy in breast cancer....

  17. Replacement treatment during extinction training with the atypical dopamine uptake inhibitor, JHW-007, reduces relapse to methamphetamine seeking.

    Science.gov (United States)

    Dassanayake, Ashlea F; Canales, Juan J

    2018-04-03

    There are currently no approved medications to effectively counteract the effects of methamphetamine (METH), reduce its abuse and prolong abstinence from it. Data accumulated in recent years have shown that a range of N-substituted benztropine (BZT) analogues possesses psychopharmacological features consistent with those of a potential replacement or "substitute" treatment for stimulant addiction. On the other hand, the evidence that antidepressant therapy may effectively prevent relapse to stimulant seeking is controversial. Here, we compared in rats the ability of the BZT analogue and high affinity dopamine (DA) reuptake inhibitor, JHW-007, and the antidepressant, trazodone, administered during extinction sessions after chronic METH self-administration, to alter METH-primed reinstatement of drug seeking. The data showed that trazodone produced paradoxical effects on lever pressing during extinction of METH self-administration, decreasing active, but increasing inactive, lever pressing. JHW-007 did not have any observable effects on extinction training. Importantly, JHW-007 significantly attenuated METH-primed reinstatement, whereas trazodone enhanced it. These findings lend support to the candidacy of selective DA uptake blockers, such as JHW-007, as potential treatments for METH addiction, but not to the use of antidepressant medication as a single therapeutic approach for relapse prevention. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Protective effect of KhOSP-10 inhibitor during corrosion, hydrogenadsorption and corrosion cracking of a steel in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mindyuk, A K; Svist, E I; Savitskaya, O P; Goyan, E B; Gopanenko, A N [AN Ukrainskoj SSR, Lvov. Fiziko-Mekhanicheskij Inst.

    1975-01-01

    The protective propeties of inhibitor KhOSP-10 in the time of corrosion and corrosive cracking of steel 40Kh are higher then those of inhibitors KPI-1, KI-1, I-I-V etc. Its ability to reduce steel hydrogenation is the same as in the case of KPI-1 inhibitor i.e. below that of KI-1. HCl additives enhance the efficiency of inhibitors KPI-1, KI-1, I-1-V etc. up to the protective ability of KhOSP-10. Kinetics of the electrode processes was estimated from polarization curves.

  19. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus : Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications

    NARCIS (Netherlands)

    Heerspink, Hiddo J. L.; Perkins, Bruce A.; Fitchett, David H.; Husain, Mansoor; Cherney, David Z. I.

    2016-01-01

    Sodium-glucose cotransporter-2 (SGLT2) inhibitors, including empagliflozin, dapagliflozin, and canagliflozin, are now widely approved antihyperglycemic therapies. Because of their unique glycosuric mechanism, SGLT2 inhibitors also reduce weight. Perhaps more important are the osmotic diuretic and

  20. An angiotensin-converting enzyme inhibitor in the combination treatment of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    E. B. Komarova

    2017-01-01

    Full Text Available Angiotensin-converting enzyme (ACE inhibitors have anti-inflammatory and antiproliferative properties and can affect the processes of angiogenesis, by reducing the effects of angiotensin II (ATII. The use of ACE inhibitors in the combination therapy of rheumatoid arthritis (RA can be also effective for monitoring disease activity and for reducing a cardiovascular risk.Objective: to evaluate the efficacy of an ACE inhibitor in the combination therapy of RA.Patients and methods. Eighty-four patients with RA and endothelial dysfunction were examined; the mean age was 40.12±10.2 years; the mean disease duration was 4.22±3.43 years. All the patients had a blood level of ATII of >9 pg/ml. Enzyme immunoassay was used to measure the levels of tumor necrosis factor-α (TNF-α (Vector-Best, Russia, intercellular adhesion molecules 1 (ICAM-1 (Diaclone, France, vascular endothelial growth factor (VEGF and ATII (Diagnostic, Canada. Wrist ultrasonography using the Doppler ultrasound apparatus ESAOTE MyLAB40 was carried out to assess synovial vascularization. The patients were divided into two groups. Group 1 included 43 patients who were assigned to receive standard therapy for RA according to the rheumatic disease treatment protocols; Group 2 comprised 41 patients who received the standard therapy plus ACE inhibitors 2.5–5 mg/day.Results. The use of ACE inhibitors in the 12-month combination therapy of RA patients led to an improvement in the endothelial regulation of vascular tone, to a decrease in the blood concentration of ICAM-1, to a reduction in the intensity of synovial angiogenesis and in the blood level of VEGF by 39%, and a more significant drop in the levels of CRP and TNF-? and in DAS28 by 1.2 scores as compared to those in the standard therapy.

  1. The control of neutrophil chemotaxis by inhibitors of cathepsin G and chymotrypsin.

    Science.gov (United States)

    Lomas, D A; Stone, S R; Llewellyn-Jones, C; Keogan, M T; Wang, Z M; Rubin, H; Carrell, R W; Stockley, R A

    1995-10-06

    Neutrophil chemotaxis plays an important role in the inflammatory response and when excessive or persistent may augment tissue damage. The effects of inhibitors indicated the involvement of one or more serine proteinases in human neutrophil migration and shape change in response to a chemoattractant. Monospecific antibodies, chloromethylketone inhibitors, and reactive-site mutants of alpha 1-antitrypsin and alpha 1-antichymotrypsin were used to probe the specificity of the proteinases involved in chemotaxis. Antibodies specific for cathepsin G inhibited chemotaxis. Moreover, rapid inhibitors of cathepsin G and alpha-chymotrypsin suppressed neutrophil chemotaxis to the chemoattractants N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) and zymosan-activated serum in multiple blind well assays and to fMLP in migration assays under agarose. The concentrations of antichymotrypsin mutants that reduced chemotaxis by 50% would inactivate free cathepsin G with a half-life of 1.5-3 s, whereas the concentrations of chloromethylketones required to produce a similar inhibition of chemotaxis would inactivate cathepsin G with a half-life of 345 s. These data suggest different modes of action for these two classes of inhibitors. Indeed the chloromethylketone inhibitors of cathepsin G (Z-Gly-Leu-Phe-CMK) and to a lesser extent of chymotrypsin (Cbz-Gly-Gly-Phe-CMK) mediated their effect by preventing a shape change in the purified neutrophils exposed to fMLP. Antichymotrypsin did not affect shape change in response to fMLP even at concentrations that were able to reduce neutrophil chemotaxis by 50%. These results support the involvement of cell surface proteinases in the control of cell migration and show that antichymotrypsin and chloromethylketones have differing modes of action. This opens the possibility for the rational design of anti-inflammatory agents targeted at neutrophil membrane enzymes.

  2. Inhibitor Risk Stratification and Individualized Treatment in Patients With Nonsevere Hemophilia A: A Single-Institution Practice Audit.

    Science.gov (United States)

    Sun, Haowei Linda; Chan, Stella; Yenson, Paul; Jackson, Shannon

    2018-03-01

    Inhibitor risk in nonsevere hemophilia A increases with cumulative factor VIII (FVIII) exposure days and high-risk mutations. A standardized approach to minimize inhibitor risk is warranted. Following establishment of a systematic approach to reduce inhibitor risk in nonsevere hemophilia, we evaluated the uptake of these strategies into clinical practice. All adult males with nonsevere hemophilia A followed by British Columbia Adult Hemophilia Program from 2004 to 2016 were included in this retrospective audit. Quality-of-care indicators on inhibitor prevention were examined. Of 108 patients, 18 patients had high-risk FVIII mutations for inhibitor development. Rates of FVIII genotyping and 1-deamino-8-d-arginine-vasopressin (DDAVP) testing in mild patients without contraindications were both over 90%, although DDAVP was used for surgical prophylaxis in only 70% of procedures. Inhibitor testing and clinic visits occurred at a median interval of 22 months. Over 80% of patients with high-risk mutations had documentation and education on their inhibitor risk. Our practice audit demonstrated a high level of recognition and patient education of individual inhibitor risk. Impact of our standardized approach on the incidence of inhibitor development is yet to be determined.

  3. Adverse Effects and Safety of SGLT2 Inhibitor Use among Patients with Type 2 Diabetes: Findings from RCT Evidence

    OpenAIRE

    Tang, Huilin; Zhang, Jingjing; Song, Yiqing

    2017-01-01

    Sodium-glucose cotransporter 2 (SGTL2) inhibitors, a novel class of glucose-lowering agents, act in an insulin-independent manner by increasing urinary glucose excretion. In addition to reduce hyperglycemia, SGTL2 inhibitor exerts beneficial effects on cardiovascular risk factors (e.g., lower blood pressure and enhance weigh loss), which may confer additional health benefits for type 2 diabetes patients. The EMPA-REG OUTCOME trial showed that empagliflozin not only reduced the risk of major a...

  4. SGLT2 inhibitors: a novel choice for the combination therapy in diabetic kidney disease.

    Science.gov (United States)

    Zou, Honghong; Zhou, Baoqin; Xu, Gaosi

    2017-05-16

    Diabetic kidney disease (DKD) is the most common cause of end stage renal disease. The comprehensive management of DKD depends on combined target-therapies for hyperglycemia, hypertension, albuminuria, and hyperlipaemia, etc. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, the most recently developed oral hypoglycemic agents acted on renal proximal tubules, suppress glucose reabsorption and increase urinary glucose excretion. Besides improvements in glycemic control, they presented excellent performances in direct renoprotective effects and the cardiovascular (CV) safety by decreasing albuminuria and the independent CV risk factors such as body weight and blood pressure, etc. Simultaneous use of SGLT-2 inhibitors and renin-angiotensin-aldosterone system (RAAS) blockers are novel strategies to slow the progression of DKD via reducing inflammatory and fibrotic markers induced by hyperglycaemia more than either drug alone. The available population and animal based studies have described SGLT2 inhibitors plus RAAS blockers. The present review was to systematically review the potential renal benefits of SGLT2 inhibitors combined with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, mineralocorticoid receptor antagonists, and especially the angiotensin-converting enzyme inhibitors/angiotensin receptor blockers.

  5. Statins, PCSK9 inhibitors and cholesterol homeostasis: a view from within the hepatocyte.

    Science.gov (United States)

    Sniderman, Allan D; Kiss, Robert Scott; Reid, Thomas; Thanassoulis, George; Watts, Gerald F

    2017-05-01

    Statins and PCSK9 inhibitors dramatically lower plasma LDL levels and dramatically increase LDL receptor number within hepatocyte cell membranes. It seems self-evident that total clearance of LDL particles from plasma and total delivery of cholesterol to the liver must increase in consequence. However, based on the results of stable isotope tracer studies, this analysis demonstrates the contrary to be the case. Statins do not change the production rate of LDL particles. Accordingly, at steady state, the clearance rate cannot change. Because LDL particles contain less cholesterol on statin therapy, the delivery of cholesterol to the liver must, therefore, be reduced. PCSK9 inhibitors reduce the production of LDL particles and this further reduces cholesterol delivery to the liver. With both agents, a larger fraction of a smaller pool is removed per unit time. These findings are inconsistent with the conventional model of cholesterol homeostasis within the liver, but are consistent with a new model of regulation, the multi-channel model, which postulates that different lipoprotein particles enter the hepatocyte by different routes and have different metabolic fates within the hepatocyte. The multi-channel model, but not the conventional model, may explain how statins and PCSK9 inhibitors can produce sustained increases in LDL receptor number. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  6. [Influence of a new phosphoramide urease inhibitor on urea-N transformation in different texture soil].

    Science.gov (United States)

    Zhou, Xuan; Wu, Liang Huan; Dai, Feng

    2016-12-01

    Addition of urease inhibitors is one of the important measures to increase nitrogen (N) use efficiency of crop, due to retardant of urea hydrolysis and reduction of ammonia volatilization loss. An incubation experiment was conducted to investigate the urease inhibition effect of a new phosphoramide urease inhibitor, NPPT (N-(n-propyl) thiophosphoric triamide) in different texture soils under dark condition at 25 ℃, and NBPT (N-(n-butyl) thiophosphoric triamide) was obtained to compare the inhibition effect on urease in different soil textures by different dosages of urea adding. Results showed that the effective reaction time of urea was less than 9 d in the loamy and clay soil. Addition of inhibitors for retardation of urea hydrolysis was more than 3 d. In sandy soil, urea decomposition was relatively slow, and adding inhibitor significantly inhibited soil urease acti-vity, and reduced NH 4 + -N content. During the incubation time, the inhibition effect of high dosage urea in the soil was better than that of low dosage. At day 6, the urease inhibition rate of NBPT and NPPT (N 250 mg·kg -1 ) were 56.3% and 53.0% in sandy soil, 0.04% and 0.3% in loamy soil, 4.1% and 6.2% in clay soil; the urease inhibition rate of NBPT and NPPT (N 500 mg·kg -1 ) were 59.4% and 65.8% in sandy soil, 14.5% and 15.1% in loamy soil, 49.1% and 48.1% in clay soil. The urease inhibition effects in different texture soil were in order of sandy soil > clay soil> loamy soil. The soil NH 4 + -N content by different inhibitors during incubation time increased at first and then decreased, while soil NO 3 - -N content and apparent nitrification rate both showed rising trends. Compared with urea treatment, addition of urease inhibitors (NBPT and NPPT) significantly increased urea-N left in the soil and reduced NH 4 + -N content. In short, new urease inhibitor NPPT in different texture is an effective urease inhibitor.

  7. CINPA1 is an inhibitor of constitutive androstane receptor that does not activate pregnane X receptor.

    Science.gov (United States)

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-05-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Tyrosinase inhibitor screening in traditional Chinese medicines by electrophoretically mediated microanalysis.

    Science.gov (United States)

    Tang, Lilin; Zhang, Wenpeng; Zhao, Haiyan; Chen, Zilin

    2015-08-01

    A capillary-electrophoresis-based method for the screening of tyrosinase inhibitors in traditional Chinese medicines was developed. The method integrated electrophoretically mediated microanalysis with sandwich mode injection, partial filling, and rapid polarity switching techniques, and carried out on-column enzyme reaction and the separation of substrate and product. The conditions were optimized including the background electrolyte, mixing voltage, and the incubation time. Finally, the screening of nine standard natural compounds of traditional Chinese medicines was carried out. The inhibitors can be directly identified from the reduced peak area of the product compared to that obtained without any inhibitor. Chlorogenic acid (100 μM) showed inhibitory activity with the inhibitory percentage of 19.8%, while the other compounds showed no inhibitory activity. This method has great application potential in drug discovery from traditional Chinese medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. SGLT2 inhibitors to control glycemia in type 2 diabetes mellitus: a new approach to an old problem.

    Science.gov (United States)

    Jabbour, Serge A

    2014-01-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent mechanism of action. The SGLT2 is a transporter found in the proximal tubule of the kidney and is responsible for approximately 90% of renal glucose reabsorption. The SGLT2 inhibitors reduce reabsorption of glucose in the kidney, resulting in glucose excretion in the urine (50-90 g of ~180 g filtered by the kidneys daily), which in turn lowers plasma glucose levels in people with diabetes. The insulin-independent mechanism of action of SGLT2 inhibitors dictates that they are associated with a very low risk of hypoglycemia and can be used in patients with any degree of β-cell function or insulin sensitivity. Clinical trials have shown that SGLT2 inhibitors are effective at reducing blood glucose levels, body weight, and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus. Treatment with SGLT2 inhibitors is generally well tolerated, although these agents have been associated with an increased incidence of genital infections. The SGLT2 inhibitors have become a valuable addition to the armory of drugs used to treat patients with type 2 diabetes mellitus, and several agents within the class are currently under investigation in phase III clinical trials.

  10. Imaging findings in a child with calcineurin inhibitor-induced pain syndrome after bone marrow transplant for beta thalassemia major

    Energy Technology Data Exchange (ETDEWEB)

    Ayyala, Rama S.; Arnold, Staci D.; Bhatia, Monica; Dastgir, Jahannaz [Columbia University Medical Center, Morgan Stanley Children' s Hospital, Department of Radiology, New York, NY (United States)

    2016-10-15

    Calcineurin inhibitor-induced pain syndrome is an entity recognized in patients on immunosuppressive therapy after transplantation. Diagnosis is characterized by onset of pain beginning in the setting of an elevated calcineurin-inhibitor trough level. Reducing the medication dose relieves symptoms. Imaging findings can be nonspecific, including bone marrow edema and periosteal reaction. We present the unique case of calcineurin inhibitor-induced pain syndrome in a child and review the imaging findings. (orig.)

  11. Imaging findings in a child with calcineurin inhibitor-induced pain syndrome after bone marrow transplant for beta thalassemia major

    International Nuclear Information System (INIS)

    Ayyala, Rama S.; Arnold, Staci D.; Bhatia, Monica; Dastgir, Jahannaz

    2016-01-01

    Calcineurin inhibitor-induced pain syndrome is an entity recognized in patients on immunosuppressive therapy after transplantation. Diagnosis is characterized by onset of pain beginning in the setting of an elevated calcineurin-inhibitor trough level. Reducing the medication dose relieves symptoms. Imaging findings can be nonspecific, including bone marrow edema and periosteal reaction. We present the unique case of calcineurin inhibitor-induced pain syndrome in a child and review the imaging findings. (orig.)

  12. Brown Recluse spider bite mediated hemolysis: clinical features, a possible role for complement inhibitor therapy, and reduced RBC surface glycophorin A as a potential biomarker of venom exposure.

    Directory of Open Access Journals (Sweden)

    Eric A Gehrie

    Full Text Available The venom of Loxosceles reclusa (Brown Recluse spider can cause a severe, life-threatening hemolysis in humans for which no therapy is currently available in the USA beyond supportive measures. Because this hemolysis is uncommon, relatively little is known about its clinical manifestation, diagnosis, or management. Here, we aimed to clarify the clinical details of envenomation, to determine the efficacy of the complement inhibitor eculizumab to prevent the hemolysis in vitro, and to investigate markers of exposure to Brown Recluse venom.We performed a 10-year chart review of cases of Brown Recluse spider bite-mediated hemolysis at our institution. We also designed an in vitro assay to test the efficacy of eculizumab to inhibit hemolysis of venom exposed red blood cells. Finally, we compared levels of CD55, CD59 and glycophorin A on venom exposed versus venom-naïve cells.Most victims of severe Brown Recluse spider mediated hemolysis at our institution are children and follow an unpredictable clinical course. Brown Recluse spider bite mediated hemolysis is reduced by 79.2% (SD=18.8% by eculizumab in vitro. Erythrocyte glycophorin A, but not CD55 or CD59, is reduced after red blood cells are incubated with venom in vitro.Taken together, our laboratory data and clinical observations indicate that L. reclusa venom exposure results in non-specific antibody and complement fixation on red blood cells, resulting in complement mediated hemolysis that is curtailed by the complement inhibitor eculizumab in vitro. Glycophorin A measurement by flow cytometry may help to identify victims of L. reclusa envenomation.

  13. Renoprotective Effects of SGLT2 Inhibitors: Beyond Glucose Reabsorption Inhibition.

    Science.gov (United States)

    Tsimihodimos, V; Filippatos, T D; Filippas-Ntekouan, S; Elisaf, M

    2017-01-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that inhibit glucose and sodium reabsorption at proximal tubules. These drugs may exhibit renoprotective properties, since they prevent the deterioration of the glomerular filtration rate and reduce the degree of albuminuria in patients with diabetes-associated kidney disease. In this review we consider the pathophysiologic mechanisms that have been recently implicated in the renoprotective properties of SGLT2 inhibitors. The beneficial effects of SGLT2 inhibitors on the conventional risk factors for kidney disease (such as blood pressure, hyperglycaemia, body weight and serum uric acid levels) may explain, at least in part, the observed renal-protecting properties of these compounds. However, it has been hypothesized that the most important mechanisms for this phenomenon include the reduction in the intraglomerular pressure, the changes in the local and systemic degree of activation of the renin-aldosterone-angiotensin system and a shift in renal fuel consumption towards more efficient energy substrates such as ketone bodies. The beneficial effects of SGLT2 inhibitors on various aspects of renal function make them an attractive choice in patients with (and possibly without) diabetes-associated renal impairment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. JAK inhibitors suppress t(8;21) fusion protein-induced leukemia

    Science.gov (United States)

    Lo, Miao-Chia; Peterson, Luke F.; Yan, Ming; Cong, Xiuli; Hickman, Justin H.; DeKelver, Russel C.; Niewerth, Denise; Zhang, Dong-Er

    2014-01-01

    Oncogenic mutations in components of the JAK/STAT pathway, including those in cytokine receptors and JAKs, lead to increased activity of downstream signaling and are frequently found in leukemia and other hematological disorders. Thus, small-molecule inhibitors of this pathway have been the focus of targeted therapy in these hematological diseases. We previously showed that t(8;21) fusion protein AML1-ETO and its alternatively spliced variant AML1-ETO9a (AE9a) enhance the JAK/STAT pathway via down-regulation of CD45, a negative regulator of this pathway. To investigate the therapeutic potential of targeting JAK/STAT in t(8;21) leukemia, we examined the effects of a JAK2-selective inhibitor TG101209 and a JAK1/2-selective inhibitor INCB18424 on t(8;21) leukemia cells. TG101209 and INCB18424 inhibited proliferation and promoted apoptosis of these cells. Furthermore, TG101209 treatment in AE9a leukemia mice reduced tumor burden and significantly prolonged survival. TG101209 also significantly impaired the leukemia-initiating potential of AE9a leukemia cells in secondary recipient mice. These results demonstrate the potential therapeutic efficacy of JAK inhibitors in treating t(8;21) AML. PMID:23812420

  15. Dipeptidyl Peptidase-4 Inhibitor Anagliptin Prevents Intracranial Aneurysm Growth by Suppressing Macrophage Infiltration and Activation.

    Science.gov (United States)

    Ikedo, Taichi; Minami, Manabu; Kataoka, Hiroharu; Hayashi, Kosuke; Nagata, Manabu; Fujikawa, Risako; Higuchi, Sei; Yasui, Mika; Aoki, Tomohiro; Fukuda, Miyuki; Yokode, Masayuki; Miyamoto, Susumu

    2017-06-19

    Chronic inflammation plays a key role in the pathogenesis of intracranial aneurysms (IAs). DPP-4 (dipeptidyl peptidase-4) inhibitors have anti-inflammatory effects, including suppressing macrophage infiltration, in various inflammatory models. We examined whether a DPP-4 inhibitor, anagliptin, could suppress the growth of IAs in a rodent aneurysm model. IAs were surgically induced in 7-week-old male Sprague Dawley rats, followed by oral administration of 300 mg/kg anagliptin. We measured the morphologic parameters of aneurysms over time and their local inflammatory responses. To investigate the molecular mechanisms, we used lipopolysaccharide-treated RAW264.7 macrophages. In the anagliptin-treated group, aneurysms were significantly smaller 2 to 4 weeks after IA induction. Anagliptin inhibited the accumulation of macrophages in IAs, reduced the expression of MCP-1 (monocyte chemotactic protein 1), and suppressed the phosphorylation of p65. In lipopolysaccharide-stimulated RAW264.7 cells, anagliptin treatment significantly reduced the production of tumor necrosis factor α, MCP-1, and IL-6 (interleukin 6) independent of GLP-1 (glucagon-like peptide 1), the key mediator in the antidiabetic effects of DPP-4 inhibitors. Notably, anagliptin activated ERK5 (extracellular signal-regulated kinase 5), which mediates the anti-inflammatory effects of statins, in RAW264.7 macrophages. Preadministration with an ERK5 inhibitor blocked the inhibitory effect of anagliptin on MCP-1 and IL-6 expression. Accordingly, the ERK5 inhibitor also counteracted the suppression of p65 phosphorylation in vitro. A DPP-4 inhibitor, anagliptin, prevents the growth of IAs via its anti-inflammatory effects on macrophages. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells.

    Science.gov (United States)

    Murakawa, Yasuhiro; Sonoda, Eiichiro; Barber, Louise J; Zeng, Weihua; Yokomori, Kyoko; Kimura, Hiroshi; Niimi, Atsuko; Lehmann, Alan; Zhao, Guang Yu; Hochegger, Helfrid; Boulton, Simon J; Takeda, Shunichi

    2007-09-15

    Proteasome inhibitors are novel antitumor agents against multiple myeloma and other malignancies. Despite the increasing clinical application, the molecular basis of their antitumor effect has been poorly understood due to the involvement of the ubiquitin-proteasome pathway in multiple cellular metabolisms. Here, we show that treatment of cells with proteasome inhibitors has no significant effect on nonhomologous end joining but suppresses homologous recombination (HR), which plays a key role in DNA double-strand break (DSB) repair. In this study, we treat human cells with proteasome inhibitors and show that the inhibition of the proteasome reduces the efficiency of HR-dependent repair of an artificial HR substrate. We further show that inhibition of the proteasome interferes with the activation of Rad51, a key factor for HR, although it does not affect the activation of ATM, gammaH2AX, or Mre11. These data show that the proteasome-mediated destruction is required for the promotion of HR at an early step. We suggest that the defect in HR-mediated DNA repair caused by proteasome inhibitors contributes to antitumor effect, as HR plays an essential role in cellular proliferation. Moreover, because HR plays key roles in the repair of DSBs caused by chemotherapeutic agents such as cisplatin and by radiotherapy, proteasome inhibitors may enhance the efficacy of these treatments through the suppression of HR-mediated DNA repair pathways.

  17. Improvement of Corrosion Inhibitors of Primary and Secondary Closed Cooling Water System

    International Nuclear Information System (INIS)

    Choi, Byung Seon; Kim, K. M.; Kim, K. H.

    2010-08-01

    In nuclear power plants, the Closed Cooling Water (CCW) system provide cooling to both safety-related and non-safety-related heat exchange equipment. Various chemicals are used to mitigate corrosion, fouling, and microbiological growth in the CCW systems. In nuclear plants, these inhibitors have included chromates, nitrites, molybdates, hydrazine, and silicate. In the case of the CCW of some domestic nuclear power plants, there is during the overhaul period, a saturation of ion exchange resin caused by an inhibitor which has high conductivity for an increase in radiation exposure and radioactive waste. The objective of this study is to evaluate the corrosion behavior of structural materials with various corrosion inhibitors. In the present study, more than 50 ppm hydrazine concentration is needed to reduce the corrosion rate of carbon steel to satisfy the CCW operational guidelines. However, if hydrazine is continuously injected into the CCW system, the critical concentration of hydrazine will be lower. Hydrazine might be an alternative corrosion inhibitor for nitrite in the CCW system of nuclear power plant

  18. Sodium glucose co-transporter 2 (SGLT2) inhibitors: novel antidiabetic agents.

    Science.gov (United States)

    Washburn, William N

    2012-05-01

    Maintenance of glucose homeostasis in healthy individuals involves SGLT2 (sodium glucose co-transporter 2)-mediated recovery of glucose from the glomerular filtrate which otherwise would be excreted in urine. Clinical studies indicate that SGLT2 inhibitors provide an insulin-independent means to reduce the hyperglycemia that is the hallmark of type 2 diabetes mellitus (T2DM) with minimal risk of hypoglycemia. The pharmacophore common to the SGLT2 inhibitors currently in development is a diarylmethane C-glucoside which is discussed in this review. The focus is how this pharmacophore was further modified as inferred from the patents publishing from 2009 to 2011. The emphasis is on the strategy that each group employed to circumvent the constraints imposed by prior art and how the resulting SGLT2 potency and selectivity versus SGLT1 compared with that of the lead clinical compound dapagliflozin. SGLT2 inhibitors offer a new fundamentally different approach for treatment of diabetes. To date, the clinical results suggest that for non-renally impaired patients this class of inhibitors could be safely used at any stage of T2DM either alone or in combination with other marketed antidiabetic medications.

  19. Sacubitril/Valsartan: A Review in Chronic Heart Failure with Reduced Ejection Fraction.

    Science.gov (United States)

    McCormack, Paul L

    2016-03-01

    Sacubitril/valsartan (Entresto™; LCZ696) is an orally administered supramolecular sodium salt complex of the neprilysin inhibitor prodrug sacubitril and the angiotensin receptor blocker (ARB) valsartan, which was recently approved in the US and the EU for the treatment of chronic heart failure (NYHA class II-IV) with reduced ejection fraction (HFrEF). In the large, randomized, double-blind, PARADIGM-HF trial, sacubitril/valsartan reduced the incidence of death from cardiovascular causes or first hospitalization for worsening heart failure (composite primary endpoint) significantly more than the angiotensin converting enzyme (ACE) inhibitor enalapril. Sacubitril/valsartan was also superior to enalapril in reducing death from any cause and in limiting the progression of heart failure. Sacubitril/valsartan was generally well tolerated, with no increase in life-threatening adverse events. Symptomatic hypotension was significantly more common with sacubitril/valsartan than with enalapril; the incidence of angio-oedema was low. Therefore, sacubitril/valsartan is a more effective replacement for an ACE inhibitor or an ARB in the treatment of HFrEF, and is likely to influence the basic approach to treatment.

  20. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  1. A porphodimethene chemical inhibitor of uroporphyrinogen decarboxylase.

    Directory of Open Access Journals (Sweden)

    Kenneth W Yip

    Full Text Available Uroporphyrinogen decarboxylase (UROD catalyzes the conversion of uroporphyrinogen to coproporphyrinogen during heme biosynthesis. This enzyme was recently identified as a potential anticancer target; its inhibition leads to an increase in reactive oxygen species, likely mediated by the Fenton reaction, thereby decreasing cancer cell viability and working in cooperation with radiation and/or cisplatin. Because there is no known chemical UROD inhibitor suitable for use in translational studies, we aimed to design, synthesize, and characterize such a compound. Initial in silico-based design and docking analyses identified a potential porphyrin analogue that was subsequently synthesized. This species, a porphodimethene (named PI-16, was found to inhibit UROD in an enzymatic assay (IC50 = 9.9 µM, but did not affect porphobilinogen deaminase (at 62.5 µM, thereby exhibiting specificity. In cellular assays, PI-16 reduced the viability of FaDu and ME-180 cancer cells with half maximal effective concentrations of 22.7 µM and 26.9 µM, respectively, and only minimally affected normal oral epithelial (NOE cells. PI-16 also combined effectively with radiation and cisplatin, with potent synergy being observed in the case of cisplatin in FaDu cells (Chou-Talalay combination index <1. This work presents the first known synthetic UROD inhibitor, and sets the foundation for the design, synthesis, and characterization of higher affinity and more effective UROD inhibitors.

  2. Peripheral artery disease: potential role of ACE-inhibitor therapy

    Directory of Open Access Journals (Sweden)

    Giuseppe Coppola

    2008-12-01

    Full Text Available Giuseppe Coppola, Giuseppe Romano, Egle Corrado, Rosa Maria Grisanti, Salvatore NovoDepartment of Internal Medicine, Cardiovascular and Nephro-Urological Diseases, Chair of Cardiovascular Disease, University of Palermo, Palermo, ItalyAbstract: Subjects with peripheral arterial disease (PAD of the lower limbs are at high risk for cardiovascular and cerebrovascular events and the prevalence of coronary artery disease in such patients is elevated. Recent studies have shown that regular use of cardiovascular medications, such as therapeutic and preventive agents for PAD patients, seems to be promising in reducing long-term mortality and morbidity. The angiotensin-converting-enzyme (ACE system plays an important role in the pathogenesis and progression of atherosclerosis, and ACE-inhibitors (ACE-I seem to have vasculoprotective and antiproliferative effects as well as a direct antiatherogenic effect. ACE-I also promote the degradation of bradykinin and the release of nitric oxide, a potent vasodilator; further, thay have shown important implications for vascular oxidative stress. Other studies have suggested that ACE-I may also improve endothelial dysfunction. ACE-I are useful for reducing the risk of cardiovascular events in clinical and subclinical PAD. Particularly, one agent of the class (ie, ramipril has shown in many studies to able to significantly reduce cardiovascular morbidity and mortality in patients with PAD.Keywords: atherosclerosis, peripheral arterial disease, endothelial dysfunction, ACE-inhibitors

  3. Performance investigation of low-toxic organic corrosion inhibitors in amine treating unit

    International Nuclear Information System (INIS)

    Veawab, A.; Tanthapanichakoon, W.

    2003-01-01

    Amine treating unit is constantly subject to severe corrosion problems leading to extra expenditure and operational limitations. Heavy-metal vanadium compounds are extensively used as corrosion inhibitors to suppress the severe corrosion to an acceptable level. In recent years, the fact that these vanadium compounds are inherently toxic and can potentially pose adverse impacts on the human health and the environment has brought about environmental awareness that causes their uses costly due to the difficulty in waste disposal. To respond to the environmental concern and reduce cost of waste disposal as well as prepare for more stringent regulations for chemical uses, the development of low-toxic corrosion inhibitors is necessary. This work therefore focuses on an investigation of inhibition performance of a number of organic and inorganic compounds that have relatively low toxicity in comparison with conventional inhibitors. The performance evaluation was carried out through corrosion experiments using carbon steel specimens. The experiments were done in 3 and 5 kmol/m 3 monoethanolamine (MEA) solution saturated with CO 2 at 80 o C. It was found that several tested compounds have potential to be effective low-toxic corrosion inhibitors. The promising compounds provide reasonable and in some cases comparable protection performance to the conventional inhibitor. (author)

  4. Assessment and partial purification of serine protease inhibitors from Rhipicephalus (Boophilus annulatuslarvae

    Directory of Open Access Journals (Sweden)

    Sedigheh Nabian

    Full Text Available Ticks are rich sources of serine protease inhibitors, particularly those that prevent blood clotting and inflammatory responses during blood feeding. The tick Rhipicephalus (Boophlus annulatusis an important ectoparasite of cattle. The aims of this study were to characterize and purify the serine protease inhibitors present in R. (B. annulatus larval extract. The inhibitors were characterized by means of one and two-dimensional reverse zymography, and purified using affinity chromatography on a trypsin-Sepharose column. The analysis on one and two-dimensional reverse zymography of the larval extract showed trypsin inhibitory activity at between 13 and 40 kDa. Through non-reducing SDS-PAGE and reverse zymography for proteins purified by trypsin-Sepharose affinity chromatography, some protein bands with molecular weights between 13 and 34 kDa were detected. Western blotting showed that five protein bands at 48, 70, 110, 130 and 250 kDa reacted positively with immune serum, whereas there was no positive reaction in the range of 13-40 kDa. Serine protease inhibitors from R. (B. annulatus have anti-trypsin activity similar to inhibitors belonging to several other hard tick species, thus suggesting that these proteins may be useful as targets in anti-tick vaccines.

  5. Proton pump inhibitors reduce the size and acidity of the acid pocket in the stomach.

    Science.gov (United States)

    Rohof, Wout O; Bennink, Roelof J; Boeckxstaens, Guy E

    2014-07-01

    The gastric acid pocket is believed to be the reservoir from which acid reflux events originate. Little is known about how changes in position, size, and acidity of the acid pocket contribute to the therapeutic effect of proton pump inhibitors (PPIs) in patients with gastroesophageal reflux disease (GERD). Thirty-six patients with GERD (18 not taking PPIs, 18 taking PPIs; 19 men; age, 55 ± 2.1 y) were analyzed by concurrent high-resolution manometry and pH-impedance monitoring after a standardized meal. The acid pocket was visualized using scintigraphy after intravenous administration of (99m)technetium-pertechnetate. The size of the acid pocket was measured and its position was determined, relative to the diaphragm, using radionuclide markers on a high-resolution manometry catheter. At the end of the study, the acid pocket was aspirated, and its pH level was measured. The number of reflux episodes was comparable between patients on and off PPIs, but the number of acid reflux episodes was reduced significantly in patients on PPIs. In patients on PPIs, the acid pocket was smaller and more frequently located below the diaphragm. The mean pH of the acid pocket was significantly lower in patients not taking PPIs (n = 6) than in those who were (n = 16) (0.9; range, 0.7-1.2 vs 4.0; range, 1.6-5.9; P pH of acid pockets correlated significantly with the lowest pH values measured for refluxate (r = 0.72; P < .01). Based on analyses of acid pockets in patients with GERD, the acid pocket appears to be a reservoir from which reflux occurs when patients are receiving PPIs. PPIs might affect the size, acidity, or position of the acid pocket, which contributes to the efficacy in patients with GERD. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. TO THE 110-TH ANNIVERSARY OF RENIN FINDING. FIGHT OF TITANS: ANGIOTENSIN CONVERTING ENZYME INHIBITORS AND SARTANS

    Directory of Open Access Journals (Sweden)

    L. N. Malay

    2009-01-01

    Full Text Available Angiotensin converting enzyme (ACE inhibitors and angiotensin II receptor blockers (ARB slow down progression of cardiovascular diseases and reduce risk of mortality and life threatening complications. What it is better to prescribe for patient in a concrete clinical case – ACE inhibitors or ARB? Authors compare these drug classes (mechanism of action, indications, evidense base of clinical trails, treatment costs and safety. The place of ACE inhibitors and ARB in modern therapy of cardiovascular diseases is defined. Results of the recent trails (ONTARGET, TRANCEND, PRoFESS, I-PRESERVE are discussed.

  7. Case Reports That Illustrate the Efficacy of SGLT2 Inhibitors in the Type 1 Diabetic Patient

    Directory of Open Access Journals (Sweden)

    David S. H. Bell

    2015-01-01

    Full Text Available SGLT2 inhibitors are only approved for use in adults with type 2 diabetes. However, because SGLT2 inhibitors have a mechanism of action that does not require the presence of endogenous insulin, these drugs should also be efficacious in type 1 diabetes where endogenous insulin production is greatly reduced or absent. Herein, I present five cases which illustrate the benefits of utilizing an SGLT2 inhibitor with type 1 diabetes. In these cases the use of SGLT2 inhibitors resulted not only in better glycemic control in most patients but also in some patients’ less hypoglycemia, weight loss, and decreased doses of insulin. In type 1 diabetes Candida albicans vaginitis and balanitis may occur more frequently than in type 2 diabetes. These cases show that a large randomized clinical trial of SGLT2 inhibitors in type 1 diabetes needs to be performed.

  8. Necrostatin-1 Reduces Neurovascular Injury after Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Melanie D. King

    2014-01-01

    Full Text Available Intracerebral hemorrhage (ICH is the most common form of hemorrhagic stroke, accounting for 15% of all strokes. ICH has the highest acute mortality and the worst long-term prognosis of all stroke subtypes. Unfortunately, the dearth of clinically effective treatment options makes ICH the least treatable form of stroke, emphasizing the need for novel therapeutic targets. Recent work by our laboratory identified a novel role for the necroptosis inhibitor, necrostatin-1, in limiting neurovascular injury in tissue culture models of hemorrhagic injury. In the present study, we tested the hypothesis that necrostatin-1 reduces neurovascular injury after collagenase-induced ICH in mice. Necrostatin-1 significantly reduced hematoma volume by 54% at 72 h after-ICH, as compared to either sham-injured mice or mice administered an inactive, structural analogue of necrostatin-1. Necrostatin-1 also limited cell death by 48%, reduced blood-brain barrier opening by 51%, attenuated edema development to sham levels, and improved neurobehavioral outcomes after ICH. These data suggest a potential clinical utility for necrostatin-1 and/or novel necroptosis inhibitors as an adjunct therapy to reduce neurological injury and improve patient outcomes after ICH.

  9. Cloning and characterization of the Yarrowia lipolytica squalene synthase (SQS1) gene and functional complementation of the Saccharomyces cerevisiae erg9 mutation

    NARCIS (Netherlands)

    Merkulov, S.; Assema, van F.; Springer, J.; Carmen, del A.F.; Mooibroek, H.

    2000-01-01

    The squalene synthase (SQS) gene encodes a key regulatory enzyme, farnesyl-diphosphate farnesyltransferase (EC 2.5.1.21), in sterol biosynthesis. The SQS1 gene was isolated from a subgenomic library of the industrially important yeast Yarrowia lipolytica, using PCR-generated probes. Probes were

  10. Angiotensin-converting enzyme inhibitor treatment and the development of urinary tract infection

    NARCIS (Netherlands)

    Pouwels, Koen; Visser, Sipke; Bos, Jens; Hak, Eelko

    2013-01-01

    Background: Angiotensin-converting enzyme inhibitors (ACEi) can reduce the urine output, especially when treatment is started. Since bacterial clearance from the urinary tract is dependent on the urine output, it was hypothesized that ACEi may also increase the risk of urinary tract infections

  11. Effect of paddy urease inhibitors on fate of 15N-urea

    International Nuclear Information System (INIS)

    Chen Wei; Lu Wanfang

    1997-01-01

    Urea applied to the paddy field rapidly released ammonium (NH 4 + ) through hydrolysis. The released NH 4 + -N usually reached to a maximum value 2 days after the application. The maximum value was found to be lower and delay 1 day when a mixture of urea and urease inhibitors was applied. Based on 15 N tracing in the urea, it was found that the two urease inhibitors, phenylphosphordiamidate (PPD) and N-(N-butyl) thiophosphoric triamine (NBPT), could enhance the efficiency of urea utilization by rice plants due to more absorption and also stimulated rice growth. The grain yields were higher in the treatments applied with the mixture containing PPD or NBPT, especially at high N level, than that in the treatment applied with urea only. However, the urea inhibitor, hydroquinone (HQ), had far less effect than PPD and NBPT in the experiment. The application of rice straw was found to reduce the urea-N absorption by rice plants but increase its residue in the soil

  12. Hemophilia A Pseudoaneurysm in a Patient with High Responding Inhibitors Complicating Total Knee Arthroplasty: Embolization: A Cost-Reducing Alternative to Medical Therapy

    International Nuclear Information System (INIS)

    Kickuth, Ralph; Anderson, Suzanne; Peter-Salonen, Kristiina; Laemmle, Bernhard; Eggli, Stefan; Triller, Juergen

    2006-01-01

    Joint hemorrhages are very common in patients with severe hemophilia. Inhibitors in patients with hemophilia are allo-antibodies that neutralize the activity of the clotting factor. After total knee replacement, rare intra-articular bleeding complications might occur that do not respond to clotting factor replacement. We report a 40-year-old male with severe hemophilia A and high responding inhibitors presenting with recurrent knee joint hemorrhage after bilateral knee prosthetic surgery despite adequate clotting factor treatment. There were two episodes of marked postoperative hemarthrosis requiring extensive use of subsititution therapy. Eleven days postoperatively, there was further hemorrhage into the right knee. Digital subtraction angiography diagnosed a complicating pseudoaneurysm of the inferior lateral geniculate artery and embolization was successfully performed. Because clotting factor replacement therapy has proved to be excessively expensive and prolonged, especially in patients with inhibitors, we recommend the use of cost-effective early angiographic embolization

  13. Benefits of SGLT2 Inhibitors beyond glycemic control - A focus on metabolic, cardiovascular, and renal outcomes.

    Science.gov (United States)

    Minze, Molly G; Will, Kayley; Terrell, Brian T; Black, Robin L; Irons, Brian K

    2017-08-16

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new pharmacotherapeutic class for the treatment of type 2 diabetes mellitus (T2DM). To evaluate beneficial effects of the SGLT2 inhibitors on metabolic, cardiovascular, and renal outcomes. A Pub-Med search (1966 to July 2017) was performed of published English articles using keywords sodium-glucose co-transporter 2 inhibitors, canagliflozin, dapagliflozin, and empagliflozin. A review of literature citations provided further references. The search identified 17clinical trials and 2 meta-analysis with outcomes of weight loss and blood pressure reduction with dapagliflozin, canagliflozin, or empagliflozin. Three randomized trials focused on either empagliflozin or canagliflozin and reduction of cardiovascular disease and progression of renal disease. SGLT2 inhibitors have a beneficial profile in the treatment of T2DM. They have evidence of reducing weight between 2.9 kilograms when used as monotherapy to 4.7 kilograms when used in combination with metformin, and reduce systolic blood pressure between 3 to 5 mmHg and reduce diastolic blood pressure approximately 2 mmHg. To date, reduction of cardiovascular events was seen specifically with empagliflozin in patients with T2DM and a history of cardiovascular disease. In the same population, empagliflozin was associated with slowing the progression of kidney disease. Moreover, patients with increased risk of cardiovascular disease treated with canagliflozin has decreased risk of death from cardiovascular causes, nonfatal MI, or nonfatal stroke. Data regarding these outcomes with dapagliflozin are underway. SGLT2 inhibitors demonstrate some positive metabolic effects. In addition, empagliflozin specifically has demonstrated reduction in cardiovascular events and delay in the progression of kidney disease in patients with T2DM and a history of cardiovascular disease. Further data is needed to assess if this is a class effect. Copyright© Bentham Science Publishers

  14. SGLT2 inhibitors.

    Science.gov (United States)

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Idiopathic Acquired Hemophilia A with Undetectable Factor VIII Inhibitor

    Directory of Open Access Journals (Sweden)

    Nicholas B. Abt

    2014-01-01

    Full Text Available Objective. We present the case of a 73-year-old female, with no family or personal history of a bleeding disorder, who had a classic presentation for acquired hemophilia A. Factor VIII activity was low but detectable and a factor VIII inhibitor was undetectable. Methods. The patient’s plasma was comprehensively studied to determine the cause of the acquired coagulopathy. Using the Nijmegen modification of the Bethesda assay, no factor VIII autoantibody was measureable despite varying the incubation time from 1 to 3 hours. Results. The aPTT was prolonged at 46.8 seconds, which did not correct in the 4 : 1 mix but did with 1 : 1 mix. Using a one stage factor VIII activity assay, the FVIII activity was 16% and chromogenic FVIII activity was also 16%. The patient was treated with recombinant FVII and transfusion, significantly reducing bleeding. Long-term therapy was initiated with cyclophosphamide and prednisone with normalization of FVIII activity. Conclusions. Physicians can be presented with the challenging clinical picture of an acquired factor VIII inhibitor without a detectable inhibitor by the Bethesda assay. Standard therapy for an acquired hemophilia A should be considered.

  16. Small-Molecule Inhibitors of the Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Lingling Gu

    2015-09-01

    Full Text Available Drug-resistant pathogens have presented increasing challenges to the discovery and development of new antibacterial agents. The type III secretion system (T3SS, existing in bacterial chromosomes or plasmids, is one of the most complicated protein secretion systems. T3SSs of animal and plant pathogens possess many highly conserved main structural components comprised of about 20 proteins. Many Gram-negative bacteria carry T3SS as a major virulence determinant, and using the T3SS, the bacteria secrete and inject effector proteins into target host cells, triggering disease symptoms. Therefore, T3SS has emerged as an attractive target for antimicrobial therapeutics. In recent years, many T3SS-targeting small-molecule inhibitors have been discovered; these inhibitors prevent the bacteria from injecting effector proteins and from causing pathophysiology in host cells. Targeting the virulence of Gram-negative pathogens, rather than their survival, is an innovative and promising approach that may greatly reduce selection pressures on pathogens to develop drug-resistant mutations. This article summarizes recent progress in the search for promising small-molecule T3SS inhibitors that target the secretion and translocation of bacterial effector proteins.

  17. Efficacy of c-Met inhibitor for advanced prostate cancer

    International Nuclear Information System (INIS)

    Tu, William H; Zhu, Chunfang; Clark, Curtis; Christensen, James G; Sun, Zijie

    2010-01-01

    Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer. We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression. We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration. The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer

  18. Glioma-Associated Oncogene Homolog Inhibitors Have the Potential of Suppressing Cancer Stem Cells of Breast Cancer.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Sheen, I-Shyan; Wu, Szu-Hua; Lu, Ssu-Jung; Wang, Chih-Hsuan; Chang, Chiung-Fang

    2018-05-05

    Overexpression of Sonic Hedgehog signaling (Shh) pathway molecules is associated with invasiveness and recurrence in breast carcinoma. Therefore, inhibition of the Shh pathway downstream molecule Glioma-associated Oncogene Homolog (Gli) was investigated for its ability to reduce progression and invasiveness of patient-derived breast cancer cells and cell lines. Human primary breast cancer T2 cells with high expression of Shh signaling pathway molecules were compared with breast cancer line MDA-MB-231 cells. The therapeutic effects of Gli inhibitors were examined in terms of the cell proliferation, apoptosis, cancer stem cells, cell migration and gene expression. Blockade of the Shh signaling pathway could reduce cell proliferation and migration only in MDA-MB-231 cells. Hh pathway inhibitor-1 (HPI-1) increased the percentages of late apoptotic cells in MDA-MB-231 cells and early apoptotic cells in T2 cells. It reduced Bcl2 expression for cell proliferation and increased Bim expression for apoptosis. In addition, Gli inhibitor HPI-1 decreased significantly the percentages of cancer stem cells in T2 cells. HPI-1 worked more effectively than GANT-58 against breast carcinoma cells. In conclusion, HPI-1 could inhibit cell proliferation, reduce cell invasion and decrease cancer stem cell population in breast cancer cells. To target Gli-1 could be a potential strategy to suppress breast cancer stem cells.

  19. A new mechanism for reduced sensitivity to demethylation-inhibitor fungicides in the fungal banana black Sigatoka pathogen Pseudocercospora fijiensis

    NARCIS (Netherlands)

    Díaz-Trujillo, C.; Chong, P.; Stergiopoulos, I.; Meijer, H.J.G.; Wit, de P.J.G.M.; Kema, G.H.J.

    2017-01-01

    The Dothideomycete Pseudocercospora fijiensis, previously Mycosphaerella fijiensis, is the causal agent of black Sigatoka, one of the most destructive diseases of bananas and plantains. Disease management depends on fungicide applications with a major share for sterol demethylation-inhibitors

  20. A new mechanism for reduced sensitivity to demethylation-inhibitor fungicides in the fungal banana black Sigatoka pathogen Pseudocercospora fijiensis

    NARCIS (Netherlands)

    Díaz-Trujillo, C.; Chong, P.; Stergiopoulos, I.; Meijer, H.J.G.; Wit, de P.J.G.M.; Kema, G.H.J.

    2018-01-01

    The Dothideomycete Pseudocercospora fijiensis, previously Mycosphaerella fijiensis, is the causal agent of black Sigatoka, one of the most destructive diseases of bananas and plantains. Disease management depends on fungicide applications with a major share for sterol demethylation-inhibitors

  1. The effect of selective phosphodiesterase inhibitors, alone and in combination, on a murine model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Galbraith Deirdre

    2004-05-01

    Full Text Available Abstract Background The anti-inflammatory effects of the selective phosphodiesterase (PDE inhibitors cilostazol (PDE 3, RO 20-1724 (PDE 4 and sildenafil (PDE 5 were examined in a murine model of allergic asthma. These compounds were used alone and in combination to determine any potential synergism, with dexamethasone included as a positive control. Methods Control and ovalbumin sensitised Balb/C mice were administered orally with each of the possible combinations of drugs at a dose of 3 mg/Kg for 10 days. Results When used alone, RO 20-1724 significantly reduced eosinophil influx into lungs and lowered tumour necrosis factor-α, interleukin-4 and interleukin-5 levels in the bronchoalveolar lavage fluid when compared to untreated mice. Treatment with cilostazol or sildenafil did not significantly inhibit any markers of inflammation measured. Combining any of these PDE inhibitors produced no additive or synergistic effects. Indeed, the anti-inflammatory effects of RO 20-1724 were attenuated by co-administration of either cilostazol or sildenafil. Conclusions These results suggest that concurrent treatment with a PDE 3 and/or PDE 5 inhibitor will reduce the anti-inflammatory effectiveness of a PDE 4 inhibitor.

  2. Bowman-Birk inhibitor affects pathways associated with energy metabolism in Drosophila melanogaster

    Science.gov (United States)

    Bowman-Birk inhibitor (BBI) is toxic when fed to certain insects, including the fruit fly, Drosophila melanogaster. Dietary BBI has been demonstrated to slow growth and increase insect mortality by inhibiting the digestive enzymes trypsin and chymotrypsin, resulting in a reduced supply of amino acid...

  3. Efektivitas kurkumin sebagai antioksidan dan inhibitor melanin pada kultur sel B16F1

    Directory of Open Access Journals (Sweden)

    Sugiharto Sugiharto

    2013-03-01

    Full Text Available Melanin inhibitors have become increasingly important ingredients in medication and cosmetics for the prevention ofhyperpigmentation. In the last few years, a huge number of natural herbal extracts have been tested as inhibitors of melanin synthesisand some of these effects are related to the antioxidant properties. The objectives of this study were to determine of curcumin propertiesas antioxidant activity and melanin inhibitors. In this study, our data indicated that antioxidant assay with DPPH showed IC50 was16,05 μg/ml. In the absence of α-MSH (α-Melanocyte Stimulating Hormone, melanin content assay in cell B16-F1 indicated thatthe highest activity of curcumin to reduce melanin content of 45,67% at 25 μg/ml. Meanwhile, in the presence of α-MSH at the sameconcentration indicated that the highest activity was 53,87%. Based on the data, curcumin has potential properties as antioxidantactivity and melanin inhibitor.

  4. On the protective effect of KhOSP-10 inhibitor during corrosion, hydrogenadsorption and corrosion cracking of a steel in sulfuric acid

    International Nuclear Information System (INIS)

    Mindyuk, A.K.; Svist, E.I.; Savitskaya, O.P.; Goyan, E.B.; Gopanenko, A.N.

    1975-01-01

    The protective propeties of inhibitor KhOSP-10 in the time of corrosion and corrosive cracking of steel 40Kh are higher then those of inhibitors KPI-1, KI-1, I-I-V etc. Its ability to reduce steel hydrogenation is the same as in the case of KPI-1 inhibitor i.e. below that of KI-1. HCl additives enhance the efficiency of inhibitors KPI-1, KI-1, I-1-V etc. up to the protective ability of KhOSP-10. Kinetics of the electrode processes was estimated from polarization curves

  5. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice

    Science.gov (United States)

    Gerasimova, Maria; Rose, Michael A.; Masuda, Takahiro; Satriano, Joseph; Mayoux, Eric; Koepsell, Hermann; Thomson, Scott C.; Rieg, Timo

    2013-01-01

    Our previous work has shown that gene knockout of the sodium-glucose cotransporter SGLT2 modestly lowered blood glucose in streptozotocin-diabetic mice (BG; from 470 to 300 mg/dl) and prevented glomerular hyperfiltration but did not attenuate albuminuria or renal growth and inflammation. Here we determined effects of the SGLT2 inhibitor empagliflozin (300 mg/kg of diet for 15 wk; corresponding to 60–80 mg·kg−1·day−1) in type 1 diabetic Akita mice that, opposite to streptozotocin-diabetes, upregulate renal SGLT2 expression. Akita diabetes, empagliflozin, and Akita + empagliflozin similarly increased renal membrane SGLT2 expression (by 38–56%) and reduced the expression of SGLT1 (by 33–37%) vs. vehicle-treated wild-type controls (WT). The diabetes-induced changes in SGLT2/SGLT1 protein expression are expected to enhance the BG-lowering potential of SGLT2 inhibition, and empagliflozin strongly lowered BG in Akita (means of 187–237 vs. 517–535 mg/dl in vehicle group; 100–140 mg/dl in WT). Empagliflozin modestly reduced GFR in WT (250 vs. 306 μl/min) and completely prevented the diabetes-induced increase in glomerular filtration rate (GFR) (255 vs. 397 μl/min). Empagliflozin attenuated increases in kidney weight and urinary albumin/creatinine ratio in Akita in proportion to hyperglycemia. Empagliflozin did not increase urinary glucose/creatinine ratios in Akita, indicating the reduction in filtered glucose balanced the inhibition of glucose reabsorption. Empagliflozin attenuated/prevented the increase in systolic blood pressure, glomerular size, and molecular markers of kidney growth, inflammation, and gluconeogenesis in Akita. We propose that SGLT2 inhibition can lower GFR independent of reducing BG (consistent with the tubular hypothesis of diabetic glomerular hyperfiltration), while attenuation of albuminuria, kidney growth, and inflammation in the early diabetic kidney may mostly be secondary to lower BG. PMID:24226524

  6. Metastasis is strongly reduced by the matrix metalloproteinase inhibitor Galardin in the MMTV-PymT transgenic breast cancer model

    DEFF Research Database (Denmark)

    Almholt, Kasper; Juncker-Jensen, Anna; Lærum, Ole Didrik

    2008-01-01

    Matrix metalloproteinases (MMP) have several roles that influence cancer progression and dissemination. However, low molecular weight metalloproteinase inhibitors (MPI) have not yet been tested in transgenic/spontaneous metastasis models. We have tested Galardin/GM6001, a potent MPI that reacts w...

  7. Delayed-type hypersensitivity lesions in the central nervous system are prevented by inhibitors of matrix metalloproteinases.

    Science.gov (United States)

    Matyszak, M K; Perry, V H

    1996-09-01

    We have studied the effect of an inhibitor of matrix metalloproleinases, BB-1101, on a delayed-type hypersensitivity (DTH) response in the CNS. We used a recently described model in which heat-killed bacillus Calmette-Guérin (BCG) sequestered behind the blood-brain barrier (BBB) is targeted by a T-cell mediated response after subcutaneous injection of BCG (Matyszak and Perry, 1995). The DTH lesions are characterised by breakdown of the BBB, macrophage and lymphocyte infiltration and tissue damage including myelin loss. Treatment with BB-1101, which is not only a potent inhibitor of matrix metalloproteinases but also strongly inhibits TNF-alpha release, dramatically attenuated the CNS lesions. Breakdown of the BBB and the recruitment of T-cells into the site of the lesion were significantly reduced. There were many fewer inflammatory macrophages in DTH lesions than in comparable lesions from untreated animals. There was also significantly less myelin damage (assessed by staining with anti-MBP antibody). The DTH response in animals treated with dexamethasone was also reduced, but to a lesser degree. No significant effect was seen after administration of pentoxifylline, a phosphodiesterase inhibitor with effects including the inhibition of TNF-alpha production. Our results suggest that inhibitors of matrix metalloproteinases may be of considerable therapeutic benefit in neuroinflammatory diseases.

  8. Effect of bauhinia bauhinioides kallikrein inhibitor on endothelial proliferation and intracellular calcium concentration.

    Science.gov (United States)

    Bilgin, M; Burgazli, K M; Rafiq, A; Mericliler, M; Neuhof, C; Oliva, M L; Parahuleva, M; Soydan, N; Doerr, O; Abdallah, Y; Erdogan, A

    2014-01-01

    Proteinase inhibitors act as a defensive system against predators e.g. insects, in plants. Bauhinia bauhinioides kallikrein inhibitor (BbKI) is a serine proteinase inhibitor, isolated from seeds of Bauhinia bauhinioides and is structurally similar to plant Kunitz-type inhibitors but lacks disulfide bridges. In this study we evaluated the antiproliferative effect of BbKI on endothelial cells and its impact on changes in membrane potential and intracellular calcium. HUVEC proliferation was significantly reduced by incubation with BbKI 50 and 100 µM 12% and 13%. Furthermore, BbKI (100 µM) exposure caused a significant increase in intracellular Ca2+ concentration by 35% as compared to untreated control. The intracellular rise in calcium was not affected by the absence of extracellular calcium. BBKI also caused a significant change in the cell membrane potential but the antiproliferative effect was independent of changes in membrane potential. BBKI has an antiproliferative effect on HUVEC, which is independent of the changes in membrane potential, and it causes an increase in intracellular Ca2+.

  9. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.

    2004-01-01

    -amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha...

  10. Syk inhibitors.

    Science.gov (United States)

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjo, Chisato; Takeuchi, Kenji; Sada, Kiyonao

    2013-01-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in University of Fukui in 1991. Syk is most highly expressed by haemopoietic cells and known to play crucial roles in the signal transduction through various immunoreceptors of the adaptive immune response. However, recent reports demonstrate that Syk also mediates other biological functions, such as innate immune response, osteoclast maturation, platelet activation and cellular adhesion. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Because of its critical roles on the cellular functions, the development of Syk inhibitors for clinical use has been desired. Although many candidate compounds were produced, none of them had progressed to clinical trials. However, novel Syk inhibitors were finally developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure and function of Syk, and then the novel Syk inhibitors and their current status. In addition, we will introduce our research focused on the functions of Syk on Dectin-1-mediated mast cell activation.

  11. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo

    OpenAIRE

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E.; Lalani, Alshad S.; Dent, Paul

    2017-01-01

    Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phos...

  12. PEGylated DX-1000: Pharmacokinetics and Antineoplastic Activity of a Specific Plasmin Inhibitor

    Directory of Open Access Journals (Sweden)

    Laetitia Devy

    2007-11-01

    Full Text Available Novel inhibitors of the urokinase-mediated plasminogen (plg activation system are potentially of great clinical benefit as anticancer treatments. Using phage display, we identified DX-1000 a tissue factor pathway inhibitor-derived Kunitz domain protein which is a specific high-affinity inhibitor of plasmin (pin (Ki = 99 pM. When tested in vitro, DX-1000 blocks plasminmediated pro-matrix metal loproteinase-9 (proMMP-9 activation on cells and dose-dependently inhibits tube formation, while not significantly affecting hemostasis and coagulation. However, this low-molecular weight protein inhibitor (~ 7 kDa exhibits rapid plasma clearance in mice and rabbits, limiting its potential clinical use in chronic diseases. After site-specific PEGylation, DX-1000 retains its activity and exhibits a decreased plasma clearance. This PEGylated derivative is effective in vitro, as well as potent in inhibiting tumor growth of green fluorescent protein (GFP-labeled MDA-MB-231 cells. 4PEG-DX-1000 treatment causes a significant reduction of urokinase-type plasminogen activator (uPA and plasminogen expressions, a reduction of tumor proliferation, and vascularization. 4PEG-DX-1000 treatment significantly decreases the level of active mitogenactivated protein kinase (MAPK in the primary tumors and reduces metastasis incidence. Together, our results demonstrate the potential value of plasmin inhibitors as therapeutic agents for blocking breast cancer growth and metastasis.

  13. Research progress of PARP-1 inhibitors in antitumor drugs and radionuclide markers

    International Nuclear Information System (INIS)

    Zhao Lingzhou; Zhang Huabei

    2011-01-01

    Poly(ADP-ribose)polymerase (PARP) is a new target in the cancer treatment nowadays. PARP not only can repair DNA damage, regulate and control transcription, maintain the stability of intracellular environment and genome, regulate the process of cell survival and death, but also is the main transcription factor in the development of inflammation and the process of cancer. To inhibit PARP activity can reduce the DNA repair function in tumor cells, and increase the sensibility to DNA damage agents, so as to improve the efficacy of radiation therapy and chemotherapy for tumor. A number of studies have suggested that, whether used alone or combination with other chemotherapy drugs, PARP inhibitors show the potential in the anti-tumor therapeutic areas. In this paper, PARP-1 inhibitors were reviewed in antitumor research progress. According to the stage of development , PARP-1 inhibitors are classified. Several representative PARP-1 inhibitors, in clinical trials, with potential clinical value were introduced. Positron emission tomography (PET), uses the main short half-life elementary in human body as tracer, and at the molecular level, achieve the no wound, quantitative and dynamic observation about the different changes of metabolites or drugs in the body. PET is the most advanced contemporary video diagnostic technology, and this paper simply introduce the research progress of PARP-1 inhibitors labeled with radioactive nuclides. (authors)

  14. Bisulfite compounds as metabolic inhibitors: nonspecific effects on membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luettge, U; Osmond, C B; Ball, E; Brinckmann, E; Kinze, G

    1972-01-01

    Bisulfite compounds are shown to be nonspecific inhibitors of photosynthetic processes and of ion transport in green tissues. CO/sub 2/ fixation and light-dependent transient changes in external pH are inhibited about 50% by 5 x 10/sup -4/M glyoxal-Na-bisulfite. Chloride uptake in the light and in the dark is inhibited to the same extent at this concentration. At 5 x 10/sup -3/M the inhibitor reduces ATP levels in the light and in the dark, and the effects on glycolate oxidase and PEP carboxylase are observed. The extent of inhibition is dependent on time of treatment with glyoxal-Na-bisulfite and freshly prepared NaHSO/sub 3/ is equally as effective as the addition compound. Possible explanations of the bisulfite effects and the relationships to SO/sub 2/ effects on photosynthesis are discussed.

  15. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    Directory of Open Access Journals (Sweden)

    Marlien Pieters

    Full Text Available Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g, platelet-containing (352 g and platelet-rich plasma (200 g were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation. Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly

  16. Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors.

    Science.gov (United States)

    Klaeger, Susan; Gohlke, Bjoern; Perrin, Jessica; Gupta, Vipul; Heinzlmeir, Stephanie; Helm, Dominic; Qiao, Huichao; Bergamini, Giovanna; Handa, Hiroshi; Savitski, Mikhail M; Bantscheff, Marcus; Médard, Guillaume; Preissner, Robert; Kuster, Bernhard

    2016-05-20

    Many protein kinases are valid drug targets in oncology because they are key components of signal transduction pathways. The number of clinical kinase inhibitors is on the rise, but these molecules often exhibit polypharmacology, potentially eliciting desired and toxic effects. Therefore, a comprehensive assessment of a compound's target space is desirable for a better understanding of its biological effects. The enzyme ferrochelatase (FECH) catalyzes the conversion of protoporphyrin IX into heme and was recently found to be an off-target of the BRAF inhibitor Vemurafenib, likely explaining the phototoxicity associated with this drug in melanoma patients. This raises the question of whether FECH binding is a more general feature of kinase inhibitors. To address this, we applied a chemical proteomics approach using kinobeads to evaluate 226 clinical kinase inhibitors for their ability to bind FECH. Surprisingly, low or submicromolar FECH binding was detected for 29 of all compounds tested and isothermal dose response measurements confirmed target engagement in cells. We also show that Vemurafenib, Linsitinib, Neratinib, and MK-2461 reduce heme levels in K562 cells, verifying that drug binding leads to a loss of FECH activity. Further biochemical and docking experiments identified the protoporphyrin pocket in FECH as one major drug binding site. Since the genetic loss of FECH activity leads to photosensitivity in humans, our data strongly suggest that FECH inhibition by kinase inhibitors is the molecular mechanism triggering photosensitivity in patients. We therefore suggest that a FECH assay should generally be part of the preclinical molecular toxicology package for the development of kinase inhibitors.

  17. Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Science.gov (United States)

    Ahmed, Mohammed H. Othman; Al-Amiery, Ahmed A.; Al-Majedy, Yasmin K.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Gaaz, Tayser Sumer

    2018-03-01

    The synthesis and characterization of a novel organic corrosion inhibitor (4-(3-mercapto-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-yl)phenol), for mild steel in 1 M hydrochloric acid (HCl) has been successfully reported for the first time. The inhibitor evaluated as corrosion inhibitor for mild steel in 1 M of Hydrochloric acid solution using electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurement techniques. Changes in the impedance parameters suggested an adsorption of the inhibitor onto the mild steel surface, leading to the formation of protective films. The results show that the inhibition efficiencies increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. The maximum inhibition efficiency up to 67% at the maximum concentration 0.5 mM. This shows that those inhibitors are effective in helping to reduce and slowing down the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing an organic inhibitor for the mild steel that can be weakened by increasing the temperature. The adsorption process of the synthesized organic inhibitor depends on its electronic characteristics in addition to steric effects and the nature of metal surface, temperature degree and the varying degrees of surface-site activity. The synthesized inhibitor molecules were absorbed by metal surface and follow Langmuir isotherms.

  18. Xanthine oxidoreductase and its inhibitors: relevance for gout.

    Science.gov (United States)

    Day, Richard O; Kamel, Bishoy; Kannangara, Diluk R W; Williams, Kenneth M; Graham, Garry G

    2016-12-01

    Xanthine oxidoreductase (XOR) is the rate-limiting enzyme in purine catabolism and converts hypoxanthine to xanthine, and xanthine into uric acid. When concentrations of uric acid exceed its biochemical saturation point, crystals of uric acid, in the form of monosodium urate, emerge and can predispose an individual to gout, the commonest form of inflammatory arthritis in men aged over 40 years. XOR inhibitors are primarily used in the treatment of gout, reducing the formation of uric acid and thereby, preventing the formation of monosodium urate crystals. Allopurinol is established as first-line therapy for gout; a newer alternative, febuxostat, is used in patients unable to tolerate allopurinol. This review provides an overview of gout, a detailed analysis of the structure and function of XOR, discussion on the pharmacokinetics and pharmacodynamics of XOR inhibitors-allopurinol and febuxostat, and the relevance of XOR in common comorbidities of gout. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  19. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    International Nuclear Information System (INIS)

    Calderón, J.A.; Vásquez, F.A.; Carreño, J.A.

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm"−"2. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  20. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    Energy Technology Data Exchange (ETDEWEB)

    Calderón, J.A., E-mail: andres.calderon@udea.edu.co [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Vásquez, F.A. [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Carreño, J.A. [Laboratório de H2S, CO2 e Corrosividade, Instituto Nacional De Tecnologia (INT), Av. Venezuela, 82 – Térreo, Anexo 01, Sala 101A, Saúde, Rio de Janeiro, RJ (Brazil)

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm{sup −2}. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  1. Drugs affecting prelamin A processing: Effects on heterochromatin organization

    International Nuclear Information System (INIS)

    Mattioli, Elisabetta; Columbaro, Marta; Capanni, Cristina; Santi, Spartaco; Maraldi, Nadir M.; D'Apice, M. Rosaria; Novelli, Giuseppe; Riccio, Massimo; Squarzoni, Stefano; Foisner, Roland; Lattanzi, Giovanna

    2008-01-01

    Increasing interest in drugs acting on prelamin A has derived from the finding of prelamin A involvement in severe laminopathies. Amelioration of the nuclear morphology by inhibitors of prelamin A farnesylation has been widely reported in progeroid laminopathies. We investigated the effects on chromatin organization of two drugs inhibiting prelamin A processing by an ultrastructural and biochemical approach. The farnesyltransferase inhibitor FTI-277 and the non-peptidomimetic drug N-acetyl-S-farnesyl-L-cysteine methylester (AFCMe) were administered to cultured control human fibroblasts for 6 or 18 h. FTI-277 interferes with protein farnesylation causing accumulation of non-farnesylated prelamin A, while AFCMe impairs the last cleavage of the lamin A precursor and is expected to accumulate farnesylated prelamin A. FTI-277 caused redistribution of heterochromatin domains at the nuclear interior, while AFCMe caused loss of heterochromatin domains, increase of nuclear size and nuclear lamina thickening. At the biochemical level, heterochromatin-associated proteins and LAP2α were clustered at the nuclear interior following FTI-277 treatment, while they were unevenly distributed or absent in AFCMe-treated nuclei. The reported effects show that chromatin is an immediate target of FTI-277 and AFCMe and that dramatic remodeling of chromatin domains occurs following treatment with the drugs. These effects appear to depend, at least in part, on the accumulation of prelamin A forms, since impairment of prelamin A accumulation, here obtained by 5-azadeoxycytidine treatment, abolishes the chromatin effects. These results may be used to evaluate downstream effects of FTIs or other prelamin A inhibitors potentially useful for the therapy of laminopathies

  2. (−)-Xanthatin Selectively Induces GADD45γ and Stimulates Caspase-Independent Cell Death in Human Breast Cancer MDA-MB-231 Cells

    Science.gov (United States)

    Takeda, Shuso; Matsuo, Kazumasa; Yaji, Kentaro; Okajima-Miyazaki, Shunsuke; Harada, Mari; Miyoshi, Hiroko; Okamoto, Yoshiko; Amamoto, Toshiaki; Shindo, Mitsuru; Omiecinski, Curtis J.; Aramaki, Hironori

    2014-01-01

    exo-Methylene lactone group-containing compounds, such as (−)-xanthatin, are present in a large variety of biologically active natural products, including extracts of Xanthium strumarium (Cocklebur). These substances are reported to possess diverse functional activities, exhibiting anti-inflammatory, antimalarial, and anticancer potential. In this study, we synthesized six structurally related xanthanolides containing exo-methylene lactone moieties, including (−)-xanthatin and (+)-8-epi-xanthatin, and examined the effects of these chemically defined substances on the highly aggressive and farnesyltransferase inhibitor (FTI)-resistant MDA-MB-231 cancer cell line. The results obtained demonstrate that (−)-xanthatin was a highly effective inhibitor of MDA-MB-231 cell growth, inducing caspase-independent cell death, and that these effects were independent of FTase inhibition. Further, our results show that among the GADD45 isoforms, GADD45γ was selectively induced by (−)-xanthatin and that GADD45γ-primed JNK and p38 signaling pathways are, at least in part, involved in mediating the growth inhibition and potential anticancer activities of this agent. Given that GADD45γ is becoming increasingly recognized for its tumor suppressor function, the results presented here suggest the novel possibility that (−)-xanthatin may have therapeutic value as a selective inducer of GADD45γ in human cancer cells, in particular in FTI-resistant aggressive breast cancers. PMID:21568272

  3. Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors.

    Science.gov (United States)

    Swedberg, Joakim E; Harris, Jonathan M

    2011-10-04

    Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development.

  4. Tranexamic acid, an inhibitor of plasminogen activation, reduces urinary collagen cross-link excretion in both experimental and rheumatoid arthritis

    NARCIS (Netherlands)

    Ronday, H.K.; TeKoppele, J.M.; Greenwald, R.A.; Moak, S.A.; Roos, J.A.D.M. de; Dijkmans, B.A.C.; Breedveld, F.C.; Verheijen, J.H.

    1998-01-01

    The plasminogen activation system is one of the enzyme systems held responsible for bone and cartilage degradation in rheumatoid arthritis (RA). In this study, we evaluated the effect of tranexamic acid (TEA), an inhibitor of plasminogen activation, on urinary collagen cross-link excretion and

  5. Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport

    Directory of Open Access Journals (Sweden)

    Nadine Ruderisch

    2017-10-01

    Full Text Available Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidβ (Aβ antibodies and secretase inhibitors. However, the blood-brain barrier (BBB limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS technology is capable of shuttling large molecules into the brain. This allows for new types of therapeutic modalities engineered for optimal efficacy on the molecular target in the brain independent of brain penetrating properties. To this end, we designed BACE1 peptide inhibitors with varying lipid modifications with single-digit picomolar cellular potency. Secondly, we generated active-exosite peptides with structurally confirmed dual binding mode and improved potency. When fused to the BS via sortase coupling, these BACE1 inhibitors significantly reduced brain Aβ levels in mice after intravenous administration. In plasma, both BS and non-BS BACE1 inhibitor peptides induced a significant time- and dose-dependent decrease of Aβ. Our results demonstrate that the BS is essential for BACE1 peptide inhibitors to be efficacious in the brain and active-exosite design of BACE1 peptide inhibitors together with lipid modification may be of therapeutic relevance.

  6. Study on tea leaves extract as green corrosion inhibitor of mild steel in hydrochloric acid solution

    Science.gov (United States)

    Hamdan, A. B.; Suryanto; Haider, F. I.

    2018-01-01

    Corrosion inhibitor from extraction of plant has been considered as the most preferable and most chosen technique to prevent corrosion of metal in acidic medium because of the environmental friendly factor. In this study, black tea leaves extraction was tested as corrosion inhibitor for mild steel in 0.1M of hydrochloric acid (HCl) with the absence and presence of corrosion inhibitor. The efficiency and effectiveness of black tea as corrosion inhibitor was tested by using corrosion weight loss measurement experiment was carried out with varies parameters which with different concentration of black tea extract solution. The extraction of black tea solution was done by using aqueous solvent method. The FT-IR result shows that black tea extract containing compounds such as catechin, caffeine and tannins that act as anti-corrosive reagents and responsible to enhance the effectiveness of black tea extract as corrosion inhibitor by forming the hydrophobic thin film through absorption process. As a result of weight loss measurement, it shows that loss in weight of mild steel reduces as the concentration of inhibitor increases. The surface analysis was done on the mild steel samples by using SEM.

  7. Novel mechanisms to inhibit HIV reservoir seeding using Jak inhibitors.

    Directory of Open Access Journals (Sweden)

    Christina Gavegnano

    2017-12-01

    Full Text Available Despite advances in the treatment of HIV infection with ART, elucidating strategies to overcome HIV persistence, including blockade of viral reservoir establishment, maintenance, and expansion, remains a challenge. T cell homeostasis is a major driver of HIV persistence. Cytokines involved in regulating homeostasis of memory T cells, the major hub of the HIV reservoir, trigger the Jak-STAT pathway. We evaluated the ability of tofacitinib and ruxolitinib, two FDA-approved Jak inhibitors, to block seeding and maintenance of the HIV reservoir in vitro. We provide direct demonstration for involvement of the Jak-STAT pathway in HIV persistence in vivo, ex vivo, and in vitro; pSTAT5 strongly correlates with increased levels of integrated viral DNA in vivo, and in vitro Jak inhibitors reduce the frequency of CD4+ T cells harboring integrated HIV DNA. We show that Jak inhibitors block viral production from infected cells, inhibit γ-C receptor cytokine (IL-15-induced viral reactivation from latent stores thereby preventing transmission of infectious particles to bystander activated T cells. These results show that dysregulation of the Jak-STAT pathway is associated with viral persistence in vivo, and that Jak inhibitors target key events downstream of γ-C cytokine (IL-2, IL-7 and IL-15 ligation to their receptors, impacting the magnitude of the HIV reservoir in all memory CD4 T cell subsets in vitro and ex vivo. Jak inhibitors represent a therapeutic modality to prevent key events of T cell activation that regulate HIV persistence and together, specific, potent blockade of these events may be integrated to future curative strategies.

  8. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  9. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Bill W. Bogan; Brigid M. Lamb; Gemma Husmillo; Kristine Lowe; J. Robert Paterek; John J. Kilbane II

    2004-12-01

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Various chemicals that inhibit the growth and/or the metabolism of corrosion-associated microbes such as sulfate reducing bacteria, denitrifying bacteria, and methanogenic bacteria were evaluated to determine their ability to inhibit corrosion in experiments utilizing pure and mixed bacterial cultures, and planktonic cultures as well as mature biofilms. Planktonic cultures are easier to inhibit than mature biofilms but several compounds were shown to be effective in decreasing the amount of metal corrosion. Of the compounds tested hexane extracts of Capsicum pepper plants and molybdate were the most effective inhibitors of sulfate reducing bacteria, bismuth nitrate was the most effective inhibitor of nitrate reducing bacteria, and 4-((pyridine-2-yl)methylamino)benzoic acid (PMBA) was the most effective inhibitor of methanogenic bacteria. All of these compounds were demonstrated to minimize corrosion due to MIC, at least in some circumstances. The results obtained in this project are consistent with the hypothesis that any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion. This approach of controlling MIC by controlling the metabolism of biofilms is more environmentally benign than the current approach involving the use of potent biocides, and warrants further investigation.

  10. Impact of mTOR Inhibitors on Cancer Development in Kidney Transplantation Recipients: A Population-Based Study.

    Science.gov (United States)

    Kao, C-C; Liu, J-S; Lin, M-H; Hsu, C-Y; Chang, F-C; Lin, Y-C; Chen, H-H; Chen, T-W; Hsu, C-C; Wu, M-S

    2016-04-01

    The mammalian target of rapamycin (mTOR) inhibitor is an immunosuppressive drug used in kidney transplantation. Whether the mTOR inhibitor is associated with reduced risk of cancer development and mortality after kidney transplantation is controversial. We conducted a nationwide population-based study. Patients who did not have malignancy history and received kidney transplantation between 2010 and 2013 were enrolled. Recipients who had mTOR inhibitors (n = 430) for more than 30 days comprised the study group; 1720 recipients who did not have mTOR inhibitors comprised the control group. The primary outcome is the development of cancer after kidney transplantation. These patients were followed until the first-time admission with diagnosis of cancer, death, or the end of 2014. A Cox proportional-hazard model was used to determine the risk of cancer development and all-cause mortality. During the 35-month median duration of observation, there were 16 and 61 patients with cancer development in the study group and the control group, respectively. The cancer incidence was 12.8 and 12.4 per 1000 person-years. There were 10 and 135 mortality cases, with the incidence rate of 7.8 and 26.9 per 1000 person-years. After multivariable adjustment, the mTOR inhibitors users were not associated with reduced risk of new cancer development as compared with control (hazard ratio [HR], 0.86; 95% confidence interval [CI], 0.46-1.60; P = .63), nor risk of all-cause mortality (HR, 0.70; 95% CI, 0.33-1.46; P = .34). The use of mTOR inhibitors was not associated with a reduction in the risk of cancer development and all-cause mortality in kidney transplantation recipients. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Cox-2 inhibitors and the risk of cardiovascular thrombotic events.

    LENUS (Irish Health Repository)

    Khan, M

    2012-04-01

    In 1971, Vane showed that the analgesic action of traditional NSAIDs relies on inhibition of the cyclo-oxygenase (COX) enzyme, which in turn results in reduced synthesis of proalgesic prostaglandins. Two decades later COX was shown to exist as two distinct isoforms. The constitutive isoform COX-1, supports the beneficial homeostatic functions whereas the inducible isoform, COX-2 becomes up regulated by inflammatory mediators and its products cause many of the symptoms of inflammatory diseases such as rheumatoid and osteoarthritis. Despite the benefits of NSAIDs for acute and chronic pain one of the most clinically significant and well characterized adverse effect is on GI mucosa. The search for NSAIDs with less gastrointestinal toxicity led to the introduction of the selective cyclo-oxygenase-2 (COX-2) inhibitors. The COX-2 selective (COX-1 sparing) inhibitors are associated with reduced GI mucosal damage as demonstrated in several trials. In light of the overwhelming and sometimes contradictory information for patients and physicians regarding the safety of COX-2 agents this article will summarize the available evidence regarding cardiovascular (CV) safety data and contemporary recommendations for prescribing of COX-2-selective NSAIDs.

  12. Can Angiotensin-Converting Enzyme Inhibitors Reduce the Incidence, Severity, and Duration of Radiation Proctitis?

    International Nuclear Information System (INIS)

    Alashkham, Abduelmenem; Paterson, Catherine; Rauchhaus, Petra; Nabi, Ghulam

    2016-01-01

    Purpose: To determine whether participants taking angiotensin-converting enzyme inhibitors (ACEIs) and treated with radical radiation therapy with neoadjuvant/adjuvant hormone therapy have less incidence, severity, and duration of radiation proctitis. Methods and Materials: A propensity score analysis of 817 patients who underwent radical radiation therapy with neoadjuvant or adjuvant hormone therapy as primary line management in a cohort study during 2009 to 2013 was conducted. Patients were stratified as follows: group 1, hypertensive patients taking ACEIs (as a study group); group 2, nonhypertensive patients not taking ACEIs; and group 3, hypertensive patients not taking ACEIs (both as control groups). The incidence, severity, and duration of proctitis were the main outcome. χ"2 tests, Mann-Whitney U tests, analysis of variance, risk ratio (RR), confidence interval (CI), Kaplan-Meier plots, and log-rank tests were used. Results: The mean age of the participants was 68.91 years, with a follow-up time of 3.38 years. Based on disease and age-matched comparison, there was a statistically significant difference of proctitis grading between the 3 groups: χ"2 (8, n=308) = 72.52, P<.001. The Mann-Whitney U test indicated that grades of proctitis were significantly lower in hypertensive patients taking ACEIs than in nonhypertensive patients not taking ACEIs and hypertensive patients not taking ACEIs (P<.001). The risk ratio (RR) of proctitis in hypertensive patients taking ACEIs was significantly lower than in hypertensive patients not taking ACEIs (RR 0.40, 95% CI 0.30-0.53, P<.001) and in nonhypertensive patients not taking ACEIs (RR 0.58, 95% CI 0.44-0.77, P<.001). Time to event analysis revealed that hypertensive patients taking ACEIs were significantly different from the control groups (P<.0001). Furthermore, hypertensive patients taking ACEIs had significantly faster resolution of proctitis (P<.0001). Conclusion: Patients who were taking ACEIs were

  13. Can Angiotensin-Converting Enzyme Inhibitors Reduce the Incidence, Severity, and Duration of Radiation Proctitis?

    Energy Technology Data Exchange (ETDEWEB)

    Alashkham, Abduelmenem, E-mail: alashkham@yahoo.com [Academic Section of Urology, Division of Cancer Research, School of Medicine, University of Dundee, Scotland (United Kingdom); Paterson, Catherine [Academic Section of Urology, Division of Cancer Research, School of Medicine, University of Dundee, Scotland (United Kingdom); Rauchhaus, Petra [Tayside Clinical Trials Unit, School of Medicine, University of Dundee, Scotland (United Kingdom); Nabi, Ghulam [Academic Section of Urology, Division of Cancer Research, School of Medicine, University of Dundee, Scotland (United Kingdom)

    2016-01-01

    Purpose: To determine whether participants taking angiotensin-converting enzyme inhibitors (ACEIs) and treated with radical radiation therapy with neoadjuvant/adjuvant hormone therapy have less incidence, severity, and duration of radiation proctitis. Methods and Materials: A propensity score analysis of 817 patients who underwent radical radiation therapy with neoadjuvant or adjuvant hormone therapy as primary line management in a cohort study during 2009 to 2013 was conducted. Patients were stratified as follows: group 1, hypertensive patients taking ACEIs (as a study group); group 2, nonhypertensive patients not taking ACEIs; and group 3, hypertensive patients not taking ACEIs (both as control groups). The incidence, severity, and duration of proctitis were the main outcome. χ{sup 2} tests, Mann-Whitney U tests, analysis of variance, risk ratio (RR), confidence interval (CI), Kaplan-Meier plots, and log-rank tests were used. Results: The mean age of the participants was 68.91 years, with a follow-up time of 3.38 years. Based on disease and age-matched comparison, there was a statistically significant difference of proctitis grading between the 3 groups: χ{sup 2} (8, n=308) = 72.52, P<.001. The Mann-Whitney U test indicated that grades of proctitis were significantly lower in hypertensive patients taking ACEIs than in nonhypertensive patients not taking ACEIs and hypertensive patients not taking ACEIs (P<.001). The risk ratio (RR) of proctitis in hypertensive patients taking ACEIs was significantly lower than in hypertensive patients not taking ACEIs (RR 0.40, 95% CI 0.30-0.53, P<.001) and in nonhypertensive patients not taking ACEIs (RR 0.58, 95% CI 0.44-0.77, P<.001). Time to event analysis revealed that hypertensive patients taking ACEIs were significantly different from the control groups (P<.0001). Furthermore, hypertensive patients taking ACEIs had significantly faster resolution of proctitis (P<.0001). Conclusion: Patients who were taking ACEIs were

  14. Identification of AI-2 Quorum Sensing Inhibitors in Vibrio harveyi Through Structure-Based Virtual Screening.

    Science.gov (United States)

    Jiang, Tianyu; Zhu, Peng; Du, Lupei; Li, Minyong

    2018-01-01

    Quorum sensing (QS) is a cell-to-cell communication system that regulates gene expression as a result of the production and perception of signal molecules called autoinducers (AIs). AI-2 is a QS autoinducer produced by both Gram-negative and Gram-positive bacteria, in which it regulates intraspecies and interspecies communication. The identification of QS inhibitors is considered a promising strategy for the development of anti-virulence drugs with reduced selective pressure for resistance. Here we describe a high-throughput virtual screening approach to identify AI-2 quorum sensing inhibitors on the basis of Vibrio harveyi LuxPQ crystal structure. Seven potent inhibitors with IC 50 values in the micromolar range were selected with no effect or low effect on V. harveyi growth rate.

  15. Analysis of efficacy of SGLT2 inhibitors using semi-mechanistic model

    Directory of Open Access Journals (Sweden)

    Oleg eDemin Jr

    2014-10-01

    Full Text Available Renal sodium-dependent glucose co-transporter 2 (SGLT2 is one of the most promising targets for the treatment of type 2 diabetes. Two SGLT2 inhibitors, dapagliflozin and canagliflozin, have already been approved for use in USA and Europe; several additional compounds are also being developed for this purpose. Based on the in vitro IC50 values and plasma concentration of dapagliflozin measured in clinical trials, the marketed dosage of the drug was expected to almost completely inhibit SGLT2 function and reduce glucose reabsorption by 90%. However, the administration of dapagliflozin resulted in only 30–50% inhibition of reabsorption. This study was aimed at investigating the mechanism underlying the discrepancy between the expected and observed levels of glucose reabsorption. To this end, systems pharmacology models were developed to analyze the time profile of dapagliflozin, canagliflozin, ipragliflozin, empagliflozin, and tofogliflozin in the plasma and urine; their filtration and active secretion from the blood to the renal proximal tubules; reverse reabsorption; urinary excretion; and their inhibitory effect on SGLT2. The model shows that concentration levels of tofogliflozin, ipragliflozin, and empagliflozin are higher than levels of other inhibitors following administration of marketed SGLT2 inhibitors at labeled doses and non-marketed SGLT2 inhibitors at maximal doses (approved for phase 2/3 studies. All the compounds exhibited almost 100% inhibition of SGLT2. Based on the results of our model, two explanations for the observed low efficacy of SGLT2 inhibitors were supported: 1 the site of action of SGLT2 inhibitors is not in the lumen of the kidney’s proximal tubules, but elsewhere (e.g., the kidneys proximal tubule cells; and 2 there are other transporters that could facilitate glucose reabsorption under the conditions of SGLT2 inhibition (e.g., other transporters of SGLT family.

  16. Thromboxane synthesis inhibitors and postprandial jejunal capillary exchange capacity.

    Science.gov (United States)

    Mangino, M J; Chou, C C

    1988-05-01

    The effects of thromboxane synthesis inhibitors (imidazole and U 63557A; Upjohn) and the cyclooxygenase inhibitor, mefenamic acid, on jejunal capillary filtration coefficients (Kfc) were determined in dogs before and during the presence of predigested food in the jejunal lumen. The jejunal Kfc increased significantly soon after the placement of a predigested test food containing all major constituents of diet. The Kfc remained elevated as long as the food was present in the lumen (15 min). Mefenamic acid (10 mg/kg iv) did not significantly alter resting jejunal Kfc or alter the food-induced increase in Kfc. Imidazole (5.0 mg/min ia) or U 63557A (5.0 mg/kg iv) per se significantly increased jejunal Kfc. Placement of digested food further increased the Kfc to levels significantly higher than those observed before administration of the two thromboxane synthase inhibitors. Production of thromboxane B2 by jejunal tissue was significantly reduced and 6-ketoprostaglandin F1 alpha (the stable hydrolysis product of prostacyclin) production was significantly increased after administration of U 63557A. Our study indicates that the relative production of endogenous thromboxanes and other prostanoids modulates jejunal capillary exchange capacity in the absence or presence of digested food in the jejunal lumen.

  17. Blockade of TRPM7 channel activity and cell death by inhibitors of 5-lipoxygenase.

    Directory of Open Access Journals (Sweden)

    Hsiang-Chin Chen

    2010-06-01

    Full Text Available TRPM7 is a ubiquitous divalent-selective ion channel with its own kinase domain. Recent studies have shown that suppression of TRPM7 protein expression by RNA interference increases resistance to ischemia-induced neuronal cell death in vivo and in vitro, making the channel a potentially attractive pharmacological target for molecular intervention. Here, we report the identification of the 5-lipoxygenase inhibitors, NDGA, AA861, and MK886, as potent blockers of the TRPM7 channel. Using a cell-based assay, application of these compounds prevented cell rounding caused by overexpression of TRPM7 in HEK-293 cells, whereas inhibitors of 12-lipoxygenase and 15-lipoxygenase did not prevent the change in cell morphology. Application of the 5-lipoxygenase inhibitors blocked heterologously expressed TRPM7 whole-cell currents without affecting the protein's expression level or its cell surface concentration. All three inhibitors were also effective in blocking the native TRPM7 current in HEK-293 cells. However, two other 5-lipoxygenase specific inhibitors, 5,6-dehydro-arachidonic acid and zileuton, were ineffective in suppressing TRPM7 channel activity. Targeted knockdown of 5-lipoxygenase did not reduce TRPM7 whole-cell currents. In addition, application of 5-hydroperoxyeicosatetraenoic acid (5-HPETE, the product of 5-lipoxygenase, or 5-HPETE's downstream metabolites, leukotriene B4 and leukotriene D4, did not stimulate TRPM7 channel activity. These data suggested that NDGA, AA861, and MK886 reduced the TRPM7 channel activity independent of their effect on 5-lipoxygenase activity. Application of AA861 and NDGA reduced cell death for cells overexpressing TRPM7 cultured in low extracellular divalent cations. Moreover, treatment of HEK-293 cells with AA861 increased cell resistance to apoptotic stimuli to a level similar to that obtained for cells in which TRPM7 was knocked down by RNA interference. In conclusion, NDGA, AA861, and MK886 are potent blockers of

  18. Histone acetyltransferase inhibitors antagonize AMP-activated protein kinase in postmortem glycolysis

    Directory of Open Access Journals (Sweden)

    Qiong Li

    2017-06-01

    Full Text Available Objective The purpose of this study was to investigate the influence of AMP-activated protein kinase (AMPK activation on protein acetylation and glycolysis in postmortem muscle to better understand the mechanism by which AMPK regulates postmortem glycolysis and meat quality. Methods A total of 32 mice were randomly assigned to four groups and intraperitoneally injected with 5-Aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR, a specific activator of AMPK, AICAR and histone acetyltransferase inhibitor II, or AICAR, Trichostatin A (TSA, an inhibitor of histone deacetylase I and II and Nicotinamide (NAM, an inhibitor of the Sirt family deacetylases. After mice were euthanized, the Longissimus dorsi muscle was collected at 0 h, 45 min, and 24 h postmortem. AMPK activity, protein acetylation and glycolysis in postmortem muscle were measured. Results Activation of AMPK by AICAR significantly increased glycolysis in postmortem muscle. At the same time, it increased the total acetylated proteins in muscle 45 min postmortem. Inhibition of protein acetylation by histone acetyltransferase inhibitors reduced AMPK activation induced increase in the total acetylated proteins and glycolytic rate in muscle early postmortem, while histone deacetylase inhibitors further promoted protein acetylation and glycolysis. Several bands of proteins were detected to be differentially acetylated in muscle with different glycolytic rates. Conclusion Protein acetylation plays an important regulatory role in postmortem glycolysis. As AMPK mediates the effects of pre-slaughter stress on postmortem glycolysis, protein acetylation is likely a mechanism by which antemortem stress influenced postmortem metabolism and meat quality though the exact mechanism is to be elucidated.

  19. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch

    2015-01-01

    ) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced...... to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4...

  20. Laboratory testing and field implementation of scale inhibitor squeeze treatments to subsea and platform horizontal wells, North Sea Basin

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M. M.; Lewis, M. [Nalco/Exxon Energy Chemicals Ltd, Aberdeen (United Kingdom); Tomlinson, C. J.; Pritchard, A. R. P. [Enterprise Oil Plc, Aberdeen (United Kingdom)

    1998-12-31

    Field results from a number of scale squeeze treatments carried out on subsea and platform horizontal wells in the Nelson Field of the North Sea are presented. Scale inhibitor chemicals are reviewed along with factors which influence inhibitor selection for both horizontal and highly deviated wells. Formation brine/inhibitor incompatibility, formation minerals/inhibitor incompatibility, and the potential for sand production and oil-in-water process as a result of these incompatibilities, are discussed. Practical difficulties in squeezing subsea horizontal wells, the use of chemical stabilizers to reduce formation brine/inhibitor incompatibility, variation of pump rates to encourage propagation of inhibitor along the wellbore, and the potential of fluid diversion are outlined, stressing the significance of production logging data (or good reservoir simulation data), to evaluate the location of water production prior to the squeeze treatment. Results of these treatments show that with the correct laboratory evaluation of both scale inhibitor and divertor agents, and with appropriate utilization of production logging or reservoir simulation data, it is possible to carry out scale inhibitor squeeze treatments of subsea and platform horizontal wells without having to resort to coiled tubing. 22 refs., 1 tab., 14 figs

  1. DMH1, a small molecule inhibitor of BMP type i receptors, suppresses growth and invasion of lung cancer.

    Directory of Open Access Journals (Sweden)

    Jijun Hao

    Full Text Available The bone morphogenetic protein (BMP signaling cascade is aberrantly activated in human non-small cell lung cancer (NSCLC but not in normal lung epithelial cells, suggesting that blocking BMP signaling may be an effective therapeutic approach for lung cancer. Previous studies demonstrated that some BMP antagonists, which bind to extracellular BMP ligands and prevent their association with BMP receptors, dramatically reduced lung tumor growth. However, clinical application of protein-based BMP antagonists is limited by short half-lives, poor intra-tumor delivery as well as resistance caused by potential gain-of-function mutations in the downstream of the BMP pathway. Small molecule BMP inhibitors which target the intracellular BMP cascades would be ideal for anticancer drug development. In a zebrafish embryo-based structure and activity study, we previously identified a group of highly selective small molecule inhibitors specifically antagonizing the intracellular kinase domain of BMP type I receptors. In the present study, we demonstrated that DMH1, one of such inhibitors, potently reduced lung cell proliferation, promoted cell death, and decreased cell migration and invasion in NSCLC cells by blocking BMP signaling, as indicated by suppression of Smad 1/5/8 phosphorylation and gene expression of Id1, Id2 and Id3. Additionally, DMH1 treatment significantly reduced the tumor growth in human lung cancer xenograft model. In conclusion, our study indicates that small molecule inhibitors of BMP type I receptors may offer a promising novel strategy for lung cancer treatment.

  2. Xanthium strumarium leaves extracts as a friendly corrosion inhibitor of low carbon steel in hydrochloric acid: Kinetics and mathematical studies

    Directory of Open Access Journals (Sweden)

    Anees A. Khadom

    2018-06-01

    Full Text Available Corrosion inhibition of low carbon steel in 1 M HCl was investigated in absence and presence of Xanthium strumarium leaves (XSL extracts as a friendly corrosion inhibitor. The effect of temperature and inhibitor concentration was studied using weight loss method. The result obtained shown that Xanthium strumarium leaves extracts act as an inhibitor for low carbon steel in HCl and reduces the corrosion rate. The inhibition efficiency was found to increases with increase in inhibitor concentration and temperature. Higher inhibition efficiency was 94.82% at higher level of inhibitor concentration and temperature. The adsorption of Xanthium strumarium leaves extracts was found to obey Langmuir adsorption isotherm model. The values of the free energy of adsorption was more than −20 kJ/mol, which is indicative of mixed mode of physical and chemical adsorption. Keywords: Corrosion, Green inhibitor, Natural extracts, Low carbon steel, Acid, Adsorption

  3. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang

    2011-12-21

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol production. In this study, commercial and polymer-derived activated carbons were utilized to selectively remove the model fermentation inhibitor, furfural, from water solution during bioethanol production. The oxygen functional groups on the carbon surface were found to influence the selectivity of sorbents between inhibitors and sugars during the separation. After inhibitors were selectively removed from the broth, the cell growth and ethanol production efficiency was recovered noticeably in the fermentation. A sorption/desorption cycle was designed, and the sorbents were regenerated in a fixed-bed column system using ethanol-containing standard solution. Dynamic mass balance was obtained after running four or five cycles, and regeneration results were stable even after twenty cycles. © 2011 American Chemical Society.

  4. Preoperative renin-angiotensin system inhibitors protect renal function in aging patients undergoing cardiac surgery.

    Science.gov (United States)

    Barodka, Viachaslau; Silvestry, Scott; Zhao, Ning; Jiao, Xiangyin; Whellan, David J; Diehl, James; Sun, Jian-Zhong

    2011-05-15

    Renal failure (RF) represents a major postoperative complication for elderly patients undergoing cardiac surgery. This observational cohort study examines effects of preoperative use of renin-angiotensin system (RAS) inhibitors on postoperative renal failure in aging patients undergoing cardiac surgery. We retrospectively analyzed a cohort of 1287 patients who underwent cardiac surgery at this institution (2003-2007). The patients included were ≥65 years old, scheduled for elective cardiac surgery, and without preexisting RF (defined by the criteria of the Society of Thoracic Surgeons as described in Method). Of all patients evaluated, 346 patients met the inclusion criteria and were divided into two groups: using (n = 122) or not using (n = 224) preoperative RAS inhibitors. A comparison of the two groups showed no significant differences in baseline parameters, including creatinine clearance, body mass index, history of diabetes and smoking, preoperative medicines (except that more patients with RAS inhibitors had a history of hypertension or congestive heart failure, fewer RAS inhibitor patients had chronic lung disease), in intraoperative perfusion and aortic cross-clamp time, and in postoperative complications and 30-d mortality. Multivariate logistic regression analysis demonstrated, however, that preoperative RAS inhibitors significantly and independently reduced the incidence of postoperative RF in the patients undergoing cardiac surgery compared with those not taking RAS inhibitors: 1.6% versus 7.6%, yielding an odds ratio of 0.19 (95 % CI 0.04-0.84, P = 0.029). Preoperative RAS inhibitors may have significant renoprotective effects for aging patients undergoing elective cardiac surgery. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Loss of second and sixth conserved cysteine residues from trypsin inhibitor-like cysteine-rich domain-type protease inhibitors in Bombyx mori may induce activity against microbial proteases.

    Science.gov (United States)

    Li, Youshan; Liu, Huawei; Zhu, Rui; Xia, Qingyou; Zhao, Ping

    2016-12-01

    Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys 2nd and Cys 6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be

  6. Postexposure protection of macaques from vaginal SHIV infection by topical integrase inhibitors.

    Science.gov (United States)

    Dobard, Charles; Sharma, Sunita; Parikh, Urvi M; West, Rolieria; Taylor, Andrew; Martin, Amy; Pau, Chou-Pong; Hanson, Debra L; Lipscomb, Jonathan; Smith, James; Novembre, Francis; Hazuda, Daria; Garcia-Lerma, J Gerardo; Heneine, Walid

    2014-03-12

    Coitally delivered microbicide gels containing antiretroviral drugs are important for HIV prevention. However, to date, microbicides have contained entry or reverse transcriptase inhibitors that block early steps in virus infection and thus need to be given as a preexposure dose that interferes with sexual practices and may limit compliance. Integrase inhibitors block late steps after virus infection and therefore are more suitable for post-coital dosing. We first determined the kinetics of strand transfer in vitro and confirmed that integration begins about 6 hours after infection. We then used a repeat-challenge macaque model to assess efficacy of vaginal gels containing integrase strand transfer inhibitors when applied before or after simian/human immunodeficiency virus (SHIV) challenge. We showed that gel containing the strand transfer inhibitor L-870812 protected two of three macaques when applied 30 min before SHIV challenge. We next evaluated the efficacy of 1% raltegravir gel and demonstrated its ability to protect macaques when applied 3 hours after SHIV exposure (five of six protected; P infections showed no evidence of drug resistance in plasma or vaginal secretions despite continued gel dosing after infection. We documented rapid vaginal absorption reflecting a short pharmacological lag time and noted that vaginal, but not plasma, virus load was substantially reduced in the breakthrough infection after raltegravir gel treatment. We provide a proof of concept that topically applied integrase inhibitors protect against vaginal SHIV infection when administered shortly before or 3 hours after virus exposure.

  7. A multimodal RAGE-specific inhibitor reduces amyloid β–mediated brain disorder in a mouse model of Alzheimer disease

    Science.gov (United States)

    Deane, Rashid; Singh, Itender; Sagare, Abhay P.; Bell, Robert D.; Ross, Nathan T.; LaRue, Barbra; Love, Rachal; Perry, Sheldon; Paquette, Nicole; Deane, Richard J.; Thiyagarajan, Meenakshisundaram; Zarcone, Troy; Fritz, Gunter; Friedman, Alan E.; Miller, Benjamin L.; Zlokovic, Berislav V.

    2012-01-01

    In Alzheimer disease (AD), amyloid β peptide (Aβ) accumulates in plaques in the brain. Receptor for advanced glycation end products (RAGE) mediates Aβ-induced perturbations in cerebral vessels, neurons, and microglia in AD. Here, we identified a high-affinity RAGE-specific inhibitor (FPS-ZM1) that blocked Aβ binding to the V domain of RAGE and inhibited Aβ40- and Aβ42-induced cellular stress in RAGE-expressing cells in vitro and in the mouse brain in vivo. FPS-ZM1 was nontoxic to mice and readily crossed the blood-brain barrier (BBB). In aged APPsw/0 mice overexpressing human Aβ-precursor protein, a transgenic mouse model of AD with established Aβ pathology, FPS-ZM1 inhibited RAGE-mediated influx of circulating Aβ40 and Aβ42 into the brain. In brain, FPS-ZM1 bound exclusively to RAGE, which inhibited β-secretase activity and Aβ production and suppressed microglia activation and the neuroinflammatory response. Blockade of RAGE actions at the BBB and in the brain reduced Aβ40 and Aβ42 levels in brain markedly and normalized cognitive performance and cerebral blood flow responses in aged APPsw/0 mice. Our data suggest that FPS-ZM1 is a potent multimodal RAGE blocker that effectively controls progression of Aβ-mediated brain disorder and that it may have the potential to be a disease-modifying agent for AD. PMID:22406537

  8. Bioassay-directed fractionation of a blood coagulation factor Xa inhibitor, betulinic acid from Lycopus lucidus

    Directory of Open Access Journals (Sweden)

    Tan Yin-Feng

    2018-03-01

    Full Text Available Thrombosis is a major cause of morbidity and mortality worldwide and plays a pivotal role in the pathogenesis of several cardiovascular disorders, including acute coronary syndrome, unstable angina, myocardial infarction, sudden cardiac death, peripheral arterial occlusion, ischemic stroke, deep-vein thrombosis, and pulmonary embolism. Anticoagulants, antiplatelet agents, and fibrinolytics can reduce the risks of these clinical events. Especially, the blood coagulation factor Xa (FXa inhibitor is a proven anticoagulant. Promoting blood circulation, using traditional Chinese medicine (TCM, for the treatment of these diseases has been safely used for thousands of years in clinical practice. Therefore, highly safe and effective anticoagulant ingredients, including FXa inhibitors, could be found in TCM for activating the blood circulation. One FXa inhibitor, a pentacyclic triterpene (compound 1, betulinic acid characterized by IR, MS and NMR analyses, was isolated from the ethyl acetate fraction of Lycopus lucidus by bioassay-directed fractionation. Compound 1 exhibited an inhibitory effect on FXa with IC50 25.05 μmol/L and reduced the thrombus weight in an animal model at 25-100 mg/kg. These results indicate that betulinic acid could be the potential for anticoagulant therapy.

  9. ARTERIAL HYPERTENSION DURING THERAPY OF ONCOLOGICAL DISEASES WITH ANGIOGENESIS INHIBITORS: SERIOUS IMPEDIMENT OR CONTROLLED REACTION?

    Directory of Open Access Journals (Sweden)

    Zh. D. Kobalava

    2017-01-01

    Full Text Available Vascular endothelial growth factor signaling pathway (VSP inhibitors are drugs for which arterial hypertension (AH is a class effect, occurring with a frequency of up to 73 % of treated patients. Blockade of vascular endothelial growth factor or its receptor is accompanied by inhibition of the synthesis of nitric oxide, which is considered a major pathogenic mechanism for the development of AH. VSP-inhibitors therapy will be as safe as possible, if the patient prior to treatment will take a minimum assessment, allowing to identify the category of patients with high/very high cardiovascular risk. Risk evaluation is necessary not to abandon an effective therapy of VSP-inhibitors, and to provide a systematic approach to reduce the likelihood of potential cardiovascular toxicity. Blood pressure during VSP-inhibitors therapy is characterized by a rapid rise after the first dose of target therapy, as a rule, in the first cycle of treatment, ranging from no increase to double the systolic blood pressure. Usually iatrogenic AH spontaneously resolves after stopping chemotherapy. Timely prescribed antihypertensive therapy help to avoids dose reduction or interruption of the course of VSP-inhibitors, which significantly improves the survival of patients.

  10. Combination of Proteasomal Inhibitors Lactacystin and MG132 Induced Synergistic Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Robert B. Shirley

    2005-12-01

    Full Text Available The proteasome inhibitor Velcade (bortezomib/PS-341 has been shown to block the targeted proteolytic degradation of short-lived proteins that are involved in cell maintenance, growth, division, and death, advocating the use of proteasomal inhibitors as therapeutic agents. Although many studies focused on the use of one proteasomal inhibitor for therapy, we hypothesized that the combination of proteasome inhibitors Lactacystin (AG Scientific, Inc., San Diego, CA and MG132 (Biomol International, Plymouth Meeting, PA may be more effective in inducing apoptosis. Additionally, this regimen would enable the use of sublethal doses of individual drugs, thus reducing adverse effects. Results indicate a significant increase in apoptosis when LNCaP prostate cancer cells were treated with increasing levels of Lactacystin, MG132, or a combination of sublethal doses of these two inhibitors. Furthermore, induction in apoptosis coincided with a significant loss of IKKα, IKKβ, and IKKγ proteins and NFκB activity. In addition to describing effective therapeutic agents, we provide a model system to facilitate the investigation of the mechanism of action of these drugs and their effects on the IKK-NFκB axis.

  11. A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties.

    Science.gov (United States)

    Fang, Evandro Fei; Ng, Tzi Bun

    2015-04-01

    Nephelium lappaceum L., commonly known as "rambutan," is a typical tropical tree and is well known for its juicy and sweet fruit which has an exotic flavor. Chemical studies on rambutan have led to the identification of various components such as monoterpene lactones and volatile compounds. Here, a 22.5-kDa trypsin inhibitor (N . lappaceum trypsin inhibitor (NLTI)) was isolated from fresh rambutan seeds using liquid chromatographical techniques. NLTI reduced the proteolytic activities of both trypsin and α-chymotrypsin. Dithiothreitol reduced the trypsin inhibitory activity of NLTI at a concentration of 1 mM, indicating that an intact disulfide bond is essential to the activity. NLTI inhibited HIV-1 reverse transcriptase with an IC50 of 0.73 μM. In addition, NLTI manifested a time- and dose-dependent inhibitory effect on growth in many tumor cells. NLTI is one of the few trypsin inhibitors with nitric oxide-inducing activity and may find application in tumor therapy.

  12. Histone deacetylase inhibition reduces cardiac Connexin43 expression and gap junction communication

    Directory of Open Access Journals (Sweden)

    Qin eXu

    2013-04-01

    Full Text Available Histone deactylase (HDAC inhibitors are being investigated as novel therapies for cancer, inflammation, neurodegeneration, and heart failure. The effects of HDAC inhibitors on the functional expression of cardiac gap junctions (GJ are essentially unknown. The purpose of this study was to determine the effects of trichostatin A (TSA and vorinostat (VOR on functional GJ expression in ventricular cardiomyocytes. The effects of HDAC inhibition on connexin43 (Cx43 expression and functional GJ assembly were examined in primary cultured neonatal mouse ventricular myocytes. TSA and VOR reduced Cx43 mRNA, protein expression, and immunolocalized Cx43 GJ plaque area within ventricular myocyte monolayer cultures in a dose-dependent manner. Chromatin-immunoprecipitation experiments revealed altered protein interactions with the Cx43 promoter. VOR also altered the phosphorylation state of several key regulatory Cx43 phospho-serine sites. Patch clamp analysis revealed reduced electrical coupling between isolated ventricular myocyte pairs, altered transjunctional voltage-dependent inactivation kinetics, and steady state junctional conductance inactivation and recovery relationships. Single GJ channel conductance was reduced to 54 pS only by maximum inhibitory doses of TSA (>= 100 nM. These two hydroxamate pan-HDAC inhibitors exert multiple levels of regulation on ventricular GJ communication by altering Cx43 expression, GJ area, post-translational modifications (e.g. phosphorylation, acetylation, gating, and channel conductance. Although a 50% downregulation of Cx43 GJ communication alone may not be sufficient to slow ventricular conduction or induce arrhythmias, the development of class-selective HDAC inhibitors may help avoid the potential negative cardiovascular effects of pan-HDACI.

  13. Inga laurina trypsin inhibitor (ILTI) obstructs Spodoptera frugiperda trypsins expressed during adaptive mechanisms against plant protease inhibitors.

    Science.gov (United States)

    Machado, Suzy Wider; de Oliveira, Caio Fernando Ramalho; Zério, Neide Graciano; Parra, José Roberto Postali; Macedo, Maria Lígia Rodrigues

    2017-08-01

    Plant protease inhibitors (PIs) are elements of a common plant defense mechanism induced in response to herbivores. The fall armyworm, Spodoptera frugiperda, a highly polyphagous lepidopteran pest, responds to various PIs in its diet by expressing genes encoding trypsins. This raises the question of whether the PI-induced trypsins are also inhibited by other PIs, which we posed as the hypothesis that Inga laurina trypsin inhibitor (ILTI) inhibits PI-induced trypsins in S. frugiperda. In the process of testing our hypothesis, we compared its properties with those of selected PIs, soybean Kunitz trypsin inhibitor (SKTI), Inga vera trypsin inhibitor (IVTI), Adenanthera pavonina trypsin inhibitor (ApTI), and Entada acaciifolia trypsin inhibitor (EATI). We report that ILTI is more effective in inhibiting the induced S. frugiperda trypsins than SKTI and the other PIs, which supports our hypothesis. ILTI may be more appropriate than SKTI for studies regarding adaptive mechanisms to dietary PIs. © 2017 Wiley Periodicals, Inc.

  14. Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Mohammed H. Othman Ahmed

    2018-03-01

    Full Text Available The synthesis and characterization of a novel organic corrosion inhibitor (4-(3-mercapto-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-ylphenol, for mild steel in 1 M hydrochloric acid (HCl has been successfully reported for the first time. The inhibitor evaluated as corrosion inhibitor for mild steel in 1 M of Hydrochloric acid solution using electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM measurement techniques. Changes in the impedance parameters suggested an adsorption of the inhibitor onto the mild steel surface, leading to the formation of protective films. The results show that the inhibition efficiencies increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. The maximum inhibition efficiency up to 67% at the maximum concentration 0.5 mM. This shows that those inhibitors are effective in helping to reduce and slowing down the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing an organic inhibitor for the mild steel that can be weakened by increasing the temperature. The adsorption process of the synthesized organic inhibitor depends on its electronic characteristics in addition to steric effects and the nature of metal surface, temperature degree and the varying degrees of surface-site activity. The synthesized inhibitor molecules were absorbed by metal surface and follow Langmuir isotherms. Keywords: Corrosion, Inhibitor, Mild steel, EIS spectroscopy

  15. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial

    DEFF Research Database (Denmark)

    NN, NN; Yusuf, S; Teo, K

    2008-01-01

    BACKGROUND: Angiotensin-converting enzyme (ACE) inhibitors reduce major cardiovascular events, but are not tolerated by about 20% of patients. We therefore assessed whether the angiotensin-receptor blocker telmisartan would be effective in patients intolerant to ACE inhibitors with cardiovascular...

  16. Reduction rules for reset/inhibitor nets

    NARCIS (Netherlands)

    Verbeek, H.M.W.; Wynn, M.T.; Aalst, van der W.M.P.; Hofstede, ter A.H.M.

    2010-01-01

    Reset/inhibitor nets are Petri nets extended with reset arcs and inhibitor arcs. These extensions can be used to model cancellation and blocking. A reset arc allows a transition to remove all tokens from a certain place when the transition fires. An inhibitor arc can stop a transition from being

  17. Sodium-glucose cotransporter 2 inhibitors with insulin in type 2 diabetes: Clinical perspectives

    Directory of Open Access Journals (Sweden)

    Mathew John

    2016-01-01

    Full Text Available The treatment of type 2 diabetes is a challenging problem. Most subjects with type 2 diabetes have progression of beta cell failure necessitating the addition of multiple antidiabetic agents and eventually use of insulin. Intensification of insulin leads to weight gain and increased risk of hypoglycemia. Sodium-glucose cotransporter 2 (SGLT2 inhibitors are a class of antihyperglycemic agents which act by blocking the SGLT2 in the proximal tubule of the kidney. They have potential benefits in terms of weight loss and reduction of blood pressure in addition to improvements in glycemic control. Further, one of the SGLT2 inhibitors, empagliflozin has proven benefits in reducing adverse cardiovascular (CV outcomes in a CV outcome trial. Adding SGLT2 inhibitors to insulin in subjects with type 2 diabetes produced favorable effects on glycemic control without the weight gain and hypoglycemic risks associated with insulin therapy. The general risks of increased genital mycotic infections, urinary tract infections, volume, and osmosis-related adverse effects in these subjects were similar to the pooled data of individual SGLT2 inhibitors. There are subsets of subjects with type 2 diabetes who may have insulin deficiency, beta cell autoimmunity, or is prone to diabetic ketoacidosis. In these subjects, SGLT2 inhibitors should be used with caution to prevent the rare risks of ketoacidosis.

  18. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  19. Discovery of a Parenteral Small Molecule Coagulation Factor XIa Inhibitor Clinical Candidate (BMS-962212).

    Science.gov (United States)

    Pinto, Donald J P; Orwat, Michael J; Smith, Leon M; Quan, Mimi L; Lam, Patrick Y S; Rossi, Karen A; Apedo, Atsu; Bozarth, Jeffrey M; Wu, Yiming; Zheng, Joanna J; Xin, Baomin; Toussaint, Nathalie; Stetsko, Paul; Gudmundsson, Olafur; Maxwell, Brad; Crain, Earl J; Wong, Pancras C; Lou, Zhen; Harper, Timothy W; Chacko, Silvi A; Myers, Joseph E; Sheriff, Steven; Zhang, Huiping; Hou, Xiaoping; Mathur, Arvind; Seiffert, Dietmar A; Wexler, Ruth R; Luettgen, Joseph M; Ewing, William R

    2017-12-14

    Factor XIa (FXIa) is a blood coagulation enzyme that is involved in the amplification of thrombin generation. Mounting evidence suggests that direct inhibition of FXIa can block pathologic thrombus formation while preserving normal hemostasis. Preclinical studies using a variety of approaches to reduce FXIa activity, including direct inhibitors of FXIa, have demonstrated good antithrombotic efficacy without increasing bleeding. On the basis of this potential, we targeted our efforts at identifying potent inhibitors of FXIa with a focus on discovering an acute antithrombotic agent for use in a hospital setting. Herein we describe the discovery of a potent FXIa clinical candidate, 55 (FXIa K i = 0.7 nM), with excellent preclinical efficacy in thrombosis models and aqueous solubility suitable for intravenous administration. BMS-962212 is a reversible, direct, and highly selective small molecule inhibitor of FXIa.

  20. Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations.

    Science.gov (United States)

    Scheen, André J

    2014-05-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2), which increase urinary glucose excretion independently of insulin, are proposed as a novel approach for the management of type 2 diabetes mellitus (T2DM). An extensive literature search was performed to analyze the pharmacokinetic characteristics, toxicological issues and safety concerns of SGLT2 inhibitors in humans. This review focuses on three compounds (dapagliflozin, canagliflozin, empagliflozin) with results obtained in healthy volunteers (including drug-drug interactions), patients with T2DM (single dose and multiple doses) and special populations (those with renal or hepatic impairment). The three pharmacological agents share an excellent oral bioavailability, long half-life allowing once-daily administration, low accumulation index and renal clearance, the absence of active metabolites and a limited propensity to drug-drug interactions. No clinically relevant changes in pharmacokinetic parameters were observed in T2DM patients or in patients with mild/moderate renal or hepatic impairment. Adverse events are a slightly increased incidence of mycotic genital and rare benign urinary infections. SGLT2 inhibitors have the potential to reduce several cardiovascular risk factors, and cardiovascular outcome trials are currently ongoing. The best positioning of SGLT2 inhibitors in the armamentarium for treating T2DM is still a matter of debate.

  1. Gamma rays induced mutation for low phytic acid and trypsin inhibitor content in soybean

    International Nuclear Information System (INIS)

    Gupta, S.K.; Manjaya, J.G.

    2017-01-01

    Soybean (Glycine max (L.) Merrill) is an important source of vegetable protein and is used as a food, feed and health supplement. However, consumption of soybean as food is limited because of the presence of many anti-nutritional factors. Trypsin inhibitors and phytic acid are two major anti-nutritional factors present in soybean that need to be removed for increasing the soybean consumption as food. Trypsin inhibitor is known to inhibit the trypsin/chymotrpsin activity and phytic acid reduces the bioavailability of essential micronutrients in digestive tract, resulting in adverse effect on health. Therefore, developing soybean cultivars having low trypsin inhibitors and phytic acid content is highly desirable. Soybean cultivar JS 93-05 was irradiated with 250 Gy gamma rays to induce mutation for various morphological and biochemical characters. A large number of mutants with altered morphological characters were identified. Ninety true breeding mutant lines in M6 generation were screened for trypsin inhibitor and phytic acid content. The phytic acid content was estimated using modified colorimetric method and trypsin inhibitor concentration was estimated using BAPNA as substrate in colorimetric method. The phytic acid content in the mutants varied from 7.59 to 24.14 mg g -1 . Two mutants lines TSG - 62 (7.59 mg g -1 ) and TSG - 66 (9.62 mg g -1 ) showed significant low phytic acid content as compared to the parent JS 93-05 (20.19 mg g -1 ). The trypsin inhibitor concentration in the mutants varied from 19.92 to 53.64 TIU mg -1 and one mutant line (TSG -14) was found with the lowest trypsin inhibitor concentration of 19.92 TIU mg -1 compared to parent JS 93-05 (50.90 TIU mg -1 ). The mutant lines identified in this study will serve as important genetic resources for developing low phytic acid and low trypsin inhibitor cultivars in soybean. (author)

  2. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the BCL-2 inhibitor venetoclax to kill mammary cancer cells.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-03-04

    The irreversible ERBB1/2/4 inhibitor, neratinib, down-regulates the expression of ERBB1/2/4 as well as the levels of MCL-1 and BCL-XL. Venetoclax (ABT199) is a BCL-2 inhibitor. At physiologic concentrations neratinib interacted in a synergistic fashion with venetoclax to kill HER2 + and TNBC mammary carcinoma cells. This was associated with the drug-combination: reducing the expression and phosphorylation of ERBB1/2/3; in an eIF2α-dependent fashion reducing the expression of MCL-1 and BCL-XL and increasing the expression of Beclin1 and ATG5; and increasing the activity of the ATM-AMPKα-ULK1 S317 pathway which was causal in the formation of toxic autophagosomes. Although knock down of BAX or BAK reduced drug combination lethality, knock down of BAX and BAK did not prevent the drug combination from increasing autophagosome and autolysosome formation. Knock down of ATM, AMPKα, Beclin1 or over-expression of activated mTOR prevented the induction of autophagy and in parallel suppressed tumor cell killing. Knock down of ATM, AMPKα, Beclin1 or cathepsin B prevented the drug-induced activation of BAX and BAK whereas knock down of BID was only partially inhibitory. A 3-day transient exposure of established estrogen-independent HER2 + BT474 mammary tumors to neratinib or venetoclax did not significantly alter tumor growth whereas exposure to [neratinib + venetoclax] caused a significant 7-day suppression of growth by day 19. The drug combination neither altered animal body mass nor behavior. We conclude that venetoclax enhances neratinib lethality by facilitating toxic BH3 domain protein activation via autophagy which enhances the efficacy of neratinib to promote greater levels of cell killing.

  3. [ACE inhibitors and the kidney].

    Science.gov (United States)

    Hörl, W H

    1996-01-01

    Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.

  4. Comparative evaluation of the efficacy of the cyclooxygenase pathway inhibitor and nitric oxide synthase inhibitor in the reduction of alveolar bone loss in ligature induced periodontitis in rats: An experimental study

    Directory of Open Access Journals (Sweden)

    Rekha Jagadish

    2014-01-01

    Full Text Available Background: Alveolar bone loss is the most striking feature of periodontal disease. The aim of this study was to investigate the effect of a cyclooxygenase (COX pathway inhibitor and nitric oxide synthase (NOS inhibitor in the reduction of alveolar bone loss in an experimental periodontal disease (EPD model. Materials and Methods: The study was conducted on 60 Wistar rats divided into three groups of 20 rats each and then subjected to a ligature placement around the left maxillary second molars. Group 1 rats were treated with COX inhibitor (diclofenac sodium 10 mg/kg/d, group 2 with NOS inhibitor (aminoguanidine hydrochloride 10 mg/kg/d and group 3 served as controls, receiving only saline, intraperitoneally 1h before EPD induction and daily until the sacrifice on the 11 th day. Leukogram was performed before ligation, at 6 h and at the first, seventh and 11 th days after EPD induction. After sacrifice, all the excised maxillae were subjected to morphometric and histometric analysis to measure the alveolar bone loss. Histopathological analysis was carried out to estimate cell influx, alveolar bone and cementum integrity. Results: Induction of experimental periodontitis in the rat model produced pronounced leucocytosis, which was significantly reduced by the administration of diclofenac sodium and aminoguanidine on the 11 th day. In morphometric and histometric examinations, both the test drugs significantly (P < 0.05 inhibited the alveolar bone loss as compared with the control group. Conclusion: Both COX inhibitor and NOS inhibitor are equally effective in inhibiting the inflammatory bone resorption in an experimental periodontitis model.

  5. Transcriptional changes associated with resistance to inhibitors of epidermal growth factor receptor revealed using metaanalysis

    International Nuclear Information System (INIS)

    Younis, Sidra; Javed, Qamar; Blumenberg, Miroslav

    2015-01-01

    EGFR is important in maintaining metabolic homeostasis in healthy cells, but in tumors it activates downstream signaling pathways, causing proliferation, angiogenesis, invasion and metastasis. Consequently, EGFR is targeted in cancers using reversible, irreversible or antibody inhibitors. Unfortunately, tumors develop inhibitor resistance by mutations or overexpressing EGFR, or its ligand, or activating secondary, EGFR-independent pathways. Here we present a global metaanalysis comparing transcriptional profiles from matched pairs of EGFR inhibitor-sensitive vs. -resistant cell lines, using 15 datasets comprising 274 microarrays. We also analyzed separately pairs of cell lines derived using reversible, irreversible or antibody inhibitors. The metaanalysis identifies commonalities in cell lines resistant to EGFR inhibitors: in sensitive cell lines, the ontological categories involving the ErbB receptors pathways, cell adhesion and lipid metabolism are overexpressed; however, resistance to EGFR inhibitors is associated with overexpression of genes for ErbB receptors-independent oncogenic pathways, regulation of cell motility, energy metabolism, immunity especially inflammatory cytokines biosynthesis, cell cycle and responses to exogenous and endogenous stimuli. Specifically in Gefitinib-resistant cell lines, the immunity-associated genes are overexpressed, whereas in Erlotinib-resistant ones so are the mitochondrial genes and processes. Unexpectedly, lines selected using EGFR-targeting antibodies overexpress different gene ontologies from ones selected using kinase inhibitors. Specifically, they have reduced expression of genes for proliferation, chemotaxis, immunity and angiogenesis. This metaanalysis suggests that ‘combination therapies’ can improve cancer treatment outcomes. Potentially, use of mitochondrial blockers with Erlotinib, immunity blockers with Gefitinib, tyrosine kinase inhibitors with antibody inhibitors, may have better chance of avoiding

  6. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    Magdolen, U.; Krol, J.; Sato, S.; Schmitt, M.; Magdolen, V.; Krueger, A.; Mueller, M.M.; Sperl, S.

    2002-01-01

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  7. Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking.

    Directory of Open Access Journals (Sweden)

    Anna E Daniel

    Full Text Available Plasminogen activator inhibitor-1 (PAI-1, a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrity and permeability by keeping endothelial cell-cell junctions intact.We utilized PAI-039, a specific small molecule inhibitor of PAI-1, to investigate the role of PAI-1 in protecting endothelial integrity. In vivo inhibition of PAI-1 resulted in vascular leakage from intersegmental vessels and in the hindbrain of zebrafish embryos. In addition PAI-1 inhibition in human umbilical vein endothelial cell (HUVEC monolayers leads to a marked decrease of transendothelial resistance and disrupted endothelial junctions. The total level of the endothelial junction regulator VE-cadherin was reduced, whereas surface VE-cadherin expression was unaltered. Moreover, PAI-1 inhibition reduced the shedding of VE-cadherin. Finally, we detected an accumulation of VE-cadherin at the Golgi apparatus.Our findings indicate that PAI-1 function is important for the maintenance of endothelial monolayer and vascular integrity by controlling VE-cadherin trafficking to and from the plasma membrane. Our data further suggest that therapies using PAI-1 antagonists like PAI-039 ought to be used with caution to avoid disruption of the vessel wall.

  8. [Study on membrane type leaf water evaporation inhibitors for improving effect of preventing diseases and pest controlling of Lycium barbarum].

    Science.gov (United States)

    Wang, Dan-Dan; Lv, Zhe; Xu, Chang-Qing; Liu, Sai; Chen, Jun; Peng, Xiao; Wu, Yan

    2018-01-01

    Through indoor and field comparative experiments, the properties of membrane type leaf evaporation inhibitors and its effects on photosynthesis of Lycium barbarum and compatibility and synergistic of pesticide were studied. The evaporation inhibitors and L. barbarum were chosen to investigate the suppression of water evaporation and the compatibility with pesticides. The effect of evaporation inhibitors on photosynthesis of L. barbarum leaves was determined by the chlorophyll fluorescence imaging system. The results showed that water evaporation of L. barbarum leaves of different leaf age were evidently suppressed after treated with evaporation inhibitor. The inhibitor was well compatible with pesticide and effectively improved the pesticide efficacy,and had no significant effect on chlorophyll fluorescence parameters. It is concluded that the evaporation inhibitor has good compatibility with the pesticide, and has remarkable effect of restraining moisture evaporation, which make it can be used for reducing the dosage and improving the efficacy of the pesticide in the field of L. barbarum. Copyright© by the Chinese Pharmaceutical Association.

  9. Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B.

    Science.gov (United States)

    Ulvatne, Hilde; Haukland, Hanne Husom; Samuelsen, Ørjan; Krämer, Manuela; Vorland, Lars H

    2002-10-01

    Lactoferricin B is a cationic antimicrobial peptide derived from the N-terminal part of bovine lactoferrin. The effect of bacterial proteases on the antibacterial activity of lactoferricin B towards Escherichia coli and Staphylococcus aureus was investigated using various protease inhibitors and protease-deficient E. coli mutants. Sodium-EDTA, a metalloprotease inhibitor, was the most efficient inhibitors in both species, but combinations of sodium-EDTA with other types of protease inhibitor gave a synergic effect. The results indicate that several groups of proteases are involved in resistance to lactoferricin B in both E. coli and S. aureus. We also report that genetic inactivation of the heat shock-induced serine protease DegP increased the susceptibility to lactoferricin B in E. coli, suggesting that this protease, at least, is involved in reduced susceptibility to lactoferricin B.

  10. Aromatase inhibitors in pediatrics.

    Science.gov (United States)

    Wit, Jan M; Hero, Matti; Nunez, Susan B

    2011-10-25

    Aromatase, an enzyme located in the endoplasmic reticulum of estrogen-producing cells, catalyzes the rate-limiting step in the conversion of androgens to estrogens in many tissues. The clinical features of patients with defects in CYP19A1, the gene encoding aromatase, have revealed a major role for this enzyme in epiphyseal plate closure, which has promoted interest in the use of inhibitors of aromatase to improve adult height. The availability of the selective aromatase inhibitors letrozole and anastrozole--currently approved as adjuvant therapy for breast cancer--have stimulated off-label use of aromatase inhibitors in pediatrics for the following conditions: hyperestrogenism, such as aromatase excess syndrome, Peutz-Jeghers syndrome, McCune-Albright syndrome and functional follicular ovarian cysts; hyperandrogenism, for example, testotoxicosis (also known as familial male-limited precocious puberty) and congenital adrenal hyperplasia; pubertal gynecomastia; and short stature and/or pubertal delay in boys. Current data suggest that aromatase inhibitors are probably effective in the treatment of patients with aromatase excess syndrome or testotoxicosis, partially effective in Peutz-Jeghers and McCune-Albright syndrome, but probably ineffective in gynecomastia. Insufficient data are available in patients with congenital adrenal hyperplasia or functional ovarian cysts. Although aromatase inhibitors appear effective in increasing adult height of boys with short stature and/or pubertal delay, safety concerns, including vertebral deformities, a decrease in serum HDL cholesterol levels and increase of erythrocytosis, are reasons for caution.

  11. [The primary structure of the alpha-amylase inhibitor Hoe 467A from Streptomyces tendae 4158. A new class of inhibitors].

    Science.gov (United States)

    Aschauer, H; Vértesy, L; Nesemann, G; Braunitzer, G

    1983-10-01

    The native or modified alpha-amylase inhibitor Hoe 467A - isolated from the culture medium of Streptomyces tendae 4158 - and overlapping peptides were degraded by the automatic Edman technique. The oxidized or aminoethylated or oxidized and maleoylated inhibitor was digested with trypsin and the native inhibitor with pepsin. Further digestion with Staphylococcus aureus proteinase was also carried out. After peptic digestion two cystin peptides were isolated, which allowed the establishment of the disulfide bonds. The alpha-amylase inhibitor is a polypeptid consisting of 74 amino-acid residues with a molecular mass of 7958 Da. The inhibitor is composed of all naturally occurring amino acids except methionine and phenylalanine and shows no sequence homology to known inhibitors. The clinical and pharmacological importance in respect to the inhibitors ability for inactivation of human salivary and pancreatic alpha-amylase is discussed. Especially the proteinase resistance of the inhibitor enables a clinical application in human (e.g. Diabetes mellitus) per os.

  12. HSP90 Inhibitors, Geldanamycin and Radicicol, Enhance Fisetin-Induced Cytotoxicity via Induction of Apoptosis in Human Colonic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ming-Shun Wu

    2013-01-01

    Full Text Available We revealed the cytotoxic effect of the flavonoid, fisetin (FIS, on human COLO205 colon cancer cells in the presence and absence of the HSP90 inhibitors, geldanamycin (GA and radicicol (RAD. Compared to FIS treatment alone of COLO205 cells, GA and RAD significantly enhanced FIS-induced cytotoxicity, increased expression of cleaved caspase-3 and the PAPR protein, and produced a greater density of DNA ladder formation. GA and RAD also reduced the MMPs with induction of caspase-9 protein cleavage in FIS-treated COLO205 cells. Increased caspase-3 and -9 activities were detected in COLO205 cells treated with FIS+GA or FIS+RAD, and the intensity of DNA ladder formation induced by FIS+GA was reduced by adding the caspase-3 inhibitor, DEVD-FMK. A decrease in Bcl-2 but not Bcl-XL or Bax protein by FIS+GA or FIS+RAD was identified in COLO205 cells by Western blotting. A reduction in p53 protein with increased ubiquitin-tagged proteins was observed in COLO205 cells treated with FIS+GA or FIS+RAD. Furthermore, GA and RAD reduced the stability of the p53 protein in COLO205 cells under FIS stimulation. The evidence supports HSP90 inhibitors possibly sensitizing human colon cancer cells to FIS-induced apoptosis, and treating colon cancer by combining HSP90 inhibitors with FIS deserves further in vivo study.

  13. Identification of tyrosinase specific inhibitors from Xanthium strumarium fruit extract using ultrafiltration-high performance liquid chromatography.

    Science.gov (United States)

    Wang, Zhiqiang; Hwang, Seung Hwan; Huang, Bo; Lim, Soon Sung

    2015-10-01

    In this study, a strategy based on ultrafiltration-high performance liquid chromatography coupled with diode array detection (UF-HPLC-DAD) was proposed for screening tyrosinase specific inhibitors in Xanthii fructus. The false negatives were distinguished by optimizing the UF-HPLC-DAD parameters to reduce the background noise; the false positives were distinguished by introducing a blocked tyrosinase in the control group for comparison. To obtain the best blocker, the competitive experiments were performed using various known ligands. Using this strategy, three competitive inhibitors (protocatechuic acid; 3,5-di-O-caffeoylquinic acid; and 1,5-di-O-caffeoylquinic acid) and one mixed-type inhibitor (chlorogenic acid) were identified. These results were verified using tyrosinase inhibition assay, kinetic analysis, and structural simulation of the complex. Our experimental results suggest that the proposed strategy could be useful for high-throughput identification of tyrosinase specific inhibitors in natural products. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Squash inhibitor family of serine proteinases

    International Nuclear Information System (INIS)

    Otlewski, J.; Krowarsch, D.

    1996-01-01

    Squash inhibitors of serine proteinases form an uniform family of small proteins. They are built of 27-33 amino-acid residues and cross-linked with three disulfide bridges. The reactive site peptide bond (P1-P1') is between residue 5 (Lys, Arg or Leu) and 6 (always Ile). High resolution X-ray structures are available for two squash inhibitors complexed with trypsin. NMR solution structures have also been determined for free inhibitors. The major structural motif is a distorted, triple-stranded antiparallel beta-sheet. A similar folding motif has been recently found in a number of proteins, including: conotoxins from fish-hunting snails, carboxypeptidase inhibitor from potato, kalata B1 polypeptide, and in some growth factors (e.g. nerve growth factor, transforming growth factor β2, platelet-derived growth factor). Squash inhibitors are highly stable and rigid proteins. They inhibit a number of serine proteinases: trypsin, plasmin, kallikrein, blood clotting factors: X a and XII a , cathepsin G. The inhibition spectrum can be much broadened if specific amino-acid substitutions are introduced, especially at residues which contact proteinase. Squash inhibitors inhibit proteinases via the standard mechanism. According to the mechanism, inhibitors are substrates which exhibit at neutral pH a high k cat /K m index for hydrolysis and resynthesis of the reactive site, and a low value of the hydrolysis constant. (author)

  15. Metal corrosion inhibitors and ecology

    International Nuclear Information System (INIS)

    Krasts, H.; Svarce, J.; Berge, B.

    1999-01-01

    The use of metal corrosion inhibitors in water is one of the cheapest method to protect metals against corrosion. However, the used inhibitors can come to surface water in the course of time and can become as source of environmental pollution. It is important to co-ordinate amount of substances in the elaborated inhibitors not only with demands for metal protection, but also with demands for quality of surface water and drinking water according to normative statements: 3.5 mg/l (as PO 4 ) for hexametaphosphate, tripolyphosphate and phosphonate; 40 mg/l (as SiO 2 for silicate, up to 1 mg/l for CU 2+ ; up to 5 mg/l for Zn 2+ ; up to 1 mg/l for B; up to 0.5 mg/l for Mo 2+ . The examples of the elaborated inhibitors are given. Many organic substances can be used as corrosion inhibitors, but there is shortage of standard methods for their analysis in water in Latvia. Removing of salt's deposits from boilers needs elaboration of a separate normative statement for dispersing waste water which content chloride at high concentration and heavy metals. (authors)

  16. POTENTIAL PLACE OF SGLT2 INHIBITORS IN TREATMENT PARADIGMS FOR TYPE 2 DIABETES MELLITUS.

    Science.gov (United States)

    Handelsman, Yehuda

    2015-09-01

    Following the first Food and Drug Administration (FDA) approval in 2013, sodium glucose cotransporter 2 (SGLT2) inhibitors have generated much interest among physicians treating patients with type 2 diabetes mellitus (T2DM). Here, the role in treatment with this drug class is considered in the context of T2DM treatment paradigms. The clinical trials for the SGLT2 inhibitors are examined with a focus on canagliflozin, dapagliflozin, and empagliflozin. Evidence from clinical trials in patients with T2DM supports the use of SGLT2 inhibitors either as monotherapy or in addition to other glucose-lowering treatments as adjuncts to diet and exercise, and we have gained significant clinical experience in a relatively short time. The drugs appear to be useful in a variety of T2DM populations, contingent primarily on renal function. Most obviously, SGLT2 inhibitors appear to be well suited for patients with potential for hypoglycemia or weight gain. In clinical trials, patients treated with SGLT2 inhibitors have experienced moderate weight loss and a low risk of hypoglycemic events except when used in combination with an insulin secretagogue. In addition, SGLT2 inhibitors have been shown to reduce blood pressure, so they may be beneficial in patients with T2DM complicated by hypertension. SGLT2 inhibitors were incorporated into the 2015 American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) position statement on the management of hyperglycemia and received an even more prominent position in the American Association of Clinical Endocrinologists (AACE)/American College of Endocrinology (ACE) comprehensive diabetes management guidelines and algorithm.

  17. Dietary Inulin Fibers Prevent Proton-Pump Inhibitor (PPI)-Induced Hypocalcemia in Mice.

    Science.gov (United States)

    Hess, Mark W; de Baaij, Jeroen H F; Gommers, Lisanne M M; Hoenderop, Joost G J; Bindels, René J M

    2015-01-01

    Proton-pump inhibitor-induced hypomagnesemia (PPIH) is the most recognized side effect of proton-pump inhibitors (PPIs). Additionally, PPIH is associated with hypocalcemia and hypokalemia. It is hypothesized that PPIs reduce epithelial proton secretion and thereby increase the pH in the colon, which may explain the reduced absorption of and Mg2+ and Ca2+. Fermentation of dietary oligofructose-enriched inulin fibers by the microflora leads to acidification of the intestinal lumen and by this enhances mineral uptake. This study aimed, therefore, to improve mineral absorption by application of dietary inulin to counteract PPIH. Here, C57BL/J6 mice were supplemented with omeprazole and/or inulin. Subsequently, Mg2+ and Ca2+ homeostasis was assessed by means of serum, urine and fecal electrolyte measurements. Moreover, the mRNA levels of magnesiotropic and calciotropic genes were examined in the large intestine and kidney by real-time PCR. Treatment with omeprazole significantly reduced serum Mg2+ and Ca2+ levels. However, concomitant addition of dietary inulin fibers normalized serum Ca2+ but not serum Mg2+ concentrations. Inulin abolished enhanced expression of Trpv6 and S100g in the colon by omeprazole. Additionally, intestinal and renal mRNA levels of the Trpm6 gene were reduced after inulin intake. This study suggests that dietary inulin counteracts reduced intestinal Ca2+ absorption upon PPI treatment. In contrast, inulin did not increase intestinal absorption of Mg2+ sufficiently to recover serum Mg2+. The clinical potential of dietary inulin treatment should be the subject of future studies.

  18. Designing Focused Chemical Libraries Enriched in Protein-Protein Interaction Inhibitors using Machine-Learning Methods

    Science.gov (United States)

    Reynès, Christelle; Host, Hélène; Camproux, Anne-Claude; Laconde, Guillaume; Leroux, Florence; Mazars, Anne; Deprez, Benoit; Fahraeus, Robin; Villoutreix, Bruno O.; Sperandio, Olivier

    2010-01-01

    Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-HitProfiler is

  19. Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods.

    Directory of Open Access Journals (Sweden)

    Christelle Reynès

    2010-03-01

    Full Text Available Protein-protein interactions (PPIs may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific. Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI

  20. Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods.

    Science.gov (United States)

    Reynès, Christelle; Host, Hélène; Camproux, Anne-Claude; Laconde, Guillaume; Leroux, Florence; Mazars, Anne; Deprez, Benoit; Fahraeus, Robin; Villoutreix, Bruno O; Sperandio, Olivier

    2010-03-05

    Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-HitProfiler is

  1. Heat Shock Cognate 70 Inhibitor, VER-155008, Reduces Memory Deficits and Axonal Degeneration in a Mouse Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Ximeng Yang

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disorder resulting in structural brain changes and memory impairment. We hypothesized that reconstructing neural networks is essential for memory recovery in AD. Heat shock cognate 70 (HSC70, a member of the heat shock protein family of molecular chaperones, is upregulated in AD patient brains, and recent studies have demonstrated that HSC70 facilitates axonal degeneration and pathological progression in AD. However, the direct effects of HSC70 inhibition on axonal development and memory function have never been investigated. In this study, we examined the effects of a small-molecule HSC70 inhibitor, VER-155008, on axonal morphology and memory function in a mouse model of AD (5XFAD mice. We found that VER-155008 significantly promoted axonal regrowth in amyloid β-treated neurons in vitro and improved object recognition, location, and episodic-like memory in 5XFAD mice. Furthermore, VER-155008 penetrated into the brain after intraperitoneal administration, suggesting that VER-155008 acts in the brain in situ. Immunohistochemistry revealed that VER-155008 reduced bulb-like axonal swelling in the amyloid plaques in the perirhinal cortex and CA1 in 5XFAD mice, indicating that VER-155008 also reverses axonal degeneration in vivo. Moreover, the two main pathological features of AD, amyloid plaques and paired helical filament tau accumulation, were reduced by VER-155008 administration in 5XFAD mice. This is the first report to show that the inhibition of HSC70 function may be critical for axonal regeneration and AD-like symptom reversal. Our study provides evidence that HSC70 can be used as a new therapeutic target for AD treatment.

  2. Analysis of the efficacy of SGLT2 inhibitors using semi-mechanistic model

    Science.gov (United States)

    Demin, Oleg; Yakovleva, Tatiana; Kolobkov, Dmitry; Demin, Oleg

    2014-01-01

    The Renal sodium-dependent glucose co-transporter 2 (SGLT2) is one of the most promising targets for the treatment of type 2 diabetes. Two SGLT2 inhibitors, dapagliflozin, and canagliflozin, have already been approved for use in USA and Europe; several additional compounds are also being developed for this purpose. Based on the in vitro IC50 values and plasma concentration of dapagliflozin measured in clinical trials, the marketed dosage of the drug was expected to almost completely inhibit SGLT2 function and reduce glucose reabsorption by 90%. However, the administration of dapagliflozin resulted in only 30–50% inhibition of reabsorption. This study was aimed at investigating the mechanism underlying the discrepancy between the expected and observed levels of glucose reabsorption. To this end, systems pharmacology models were developed to analyze the time profile of dapagliflozin, canagliflozin, ipragliflozin, empagliflozin, and tofogliflozin in the plasma and urine; their filtration and active secretion from the blood to the renal proximal tubules; reverse reabsorption; urinary excretion; and their inhibitory effect on SGLT2. The model shows that concentration levels of tofogliflozin, ipragliflozin, and empagliflozin are higher than levels of other inhibitors following administration of marketed SGLT2 inhibitors at labeled doses and non-marketed SGLT2 inhibitors at maximal doses (approved for phase 2/3 studies). All the compounds exhibited almost 100% inhibition of SGLT2. Based on the results of our model, two explanations for the observed low efficacy of SGLT2 inhibitors were supported: (1) the site of action of SGLT2 inhibitors is not in the lumen of the kidney's proximal tubules, but elsewhere (e.g., the kidneys proximal tubule cells); and (2) there are other transporters that could facilitate glucose reabsorption under the conditions of SGLT2 inhibition (e.g., other transporters of SGLT family). PMID:25352807

  3. A serine palmitoyltransferase inhibitor blocks hepatitis C virus replication in human hepatocytes.

    Science.gov (United States)

    Katsume, Asao; Tokunaga, Yuko; Hirata, Yuichi; Munakata, Tsubasa; Saito, Makoto; Hayashi, Hitohisa; Okamoto, Koichi; Ohmori, Yusuke; Kusanagi, Isamu; Fujiwara, Shinya; Tsukuda, Takuo; Aoki, Yuko; Klumpp, Klaus; Tsukiyama-Kohara, Kyoko; El-Gohary, Ahmed; Sudoh, Masayuki; Kohara, Michinori

    2013-10-01

    Host cell lipid rafts form a scaffold required for replication of hepatitis C virus (HCV). Serine palmitoyltransferases (SPTs) produce sphingolipids, which are essential components of the lipid rafts that associate with HCV nonstructural proteins. Prevention of the de novo synthesis of sphingolipids by an SPT inhibitor disrupts the HCV replication complex and thereby inhibits HCV replication. We investigated the ability of the SPT inhibitor NA808 to prevent HCV replication in cells and mice. We tested the ability of NA808 to inhibit SPT's enzymatic activity in FLR3-1 replicon cells. We used a replicon system to select for HCV variants that became resistant to NA808 at concentrations 4- to 6-fold the 50% inhibitory concentration, after 14 rounds of cell passage. We assessed the ability of NA808 or telaprevir to inhibit replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in mice with humanized livers (transplanted with human hepatocytes). NA808 was injected intravenously, with or without pegylated interferon alfa-2a and HCV polymerase and/or protease inhibitors. NA808 prevented HCV replication via noncompetitive inhibition of SPT; no resistance mutations developed. NA808 prevented replication of all HCV genotypes tested in mice with humanized livers. Intravenous NA808 significantly reduced viral load in the mice and had synergistic effects with pegylated interferon alfa-2a and HCV polymerase and protease inhibitors. The SPT inhibitor NA808 prevents replication of HCV genotypes 1a, 1b, 2a, 3a, and 4a in cultured hepatocytes and in mice with humanized livers. It might be developed for treatment of HCV infection or used in combination with pegylated interferon alfa-2a or HCV polymerase or protease inhibitors. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Acupuncture Reduces Breast Cancer Joint Pain | Division of Cancer Prevention

    Science.gov (United States)

    In the largest, most rigorous study of its kind, acupuncture was found to significantly reduce the debilitating joint pain experienced by tens of thousands of women each year while being treated for early stage breast cancer with aromatase inhibitors (AIs). |

  5. Invertase proteinaceous inhibitor of Cyphomandra betacea Sendt fruits.

    Science.gov (United States)

    Ordóñez, R M; Isla, M I; Vattuone, M A; Sampietro, A R

    2000-01-01

    This work describes a new invertase proteinaceous inhibitor from Cyphomandra betacea Sendt. (tomate de arbol) fruits. The proteinaceous inhibitor was isolated and purified from a cell wall preparation. The pH stability, kinetics of the inhibition of the C. betacea invertase, inhibition of several higher plant invertases and lectin nature of the inhibitor were studied. The inhibitor structure involves a single polypeptide (Mr = 19000), as shown by gel filtration and SDS-PAGE determinations. N-terminal aminoacid sequence was determined. The properties and some structural features of the inhibitor are compared with the proteinaceous inhibitors from several plant species (Beta vulgaris L., Ipomoea batatas L. and Lycopersicon esculentum Mill.). All these inhibitors share lectinic properties, some common epitopes, some aminoacid sequences and a certain lack of specificity towards invertases of different species, genera and even plant family. In consequence, the inhibitors appear to belong to the same lectin family. It is now known that some lectins are part of the defence mechanism of higher plants against fungi and bacteria and this is a probable role of the proteinaceous inhibitors.

  6. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview

    International Nuclear Information System (INIS)

    Obot, I.B.; Macdonald, D.D.; Gasem, Z.M.

    2015-01-01

    The use of computational chemistry as a tool in the design and development of organic corrosion inhibitors has been greatly enhanced by the development of density functional theory (DFT). Whereas, traditionally, corrosion scientists have identified new corrosion inhibitor molecules either by incrementally changing the structures of existing inhibitors or by testing hundreds of compounds in the laboratory, these experimental means are often very expensive and time-consuming. Thus, ongoing hardware and software advances have opened the door for powerful use of theoretical chemistry in corrosion inhibition research at a reduced cost. DFT has enabled corrosion scientist to accurately predict the inhibition efficacies of organic corrosion inhibitors based on electronic/molecular properties and reactivity indices. This review summarizes the main features of DFT, giving a brief background to selected DFT-based chemical reactivity concepts, calculations and their applications to organic corrosion inhibitor design. The paper also reviews the principles upon which modern corrosion science is based with emphasis on corrosion in the oil and gas industry and with the goal of identifying important issues in the design of new, more effective inhibitors in this field. The impact of this review is to illustrate the enormous power of DFT and to identify shortcomings in past work, including the assumption that inhibitors only interact with bare metal surfaces.

  7. Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1.

    Science.gov (United States)

    Chen, Allie Y; Thomas, Pei W; Stewart, Alesha C; Bergstrom, Alexander; Cheng, Zishuo; Miller, Callie; Bethel, Christopher R; Marshall, Steven H; Credille, Cy V; Riley, Christopher L; Page, Richard C; Bonomo, Robert A; Crowder, Michael W; Tierney, David L; Fast, Walter; Cohen, Seth M

    2017-09-14

    The efficacy of β-lactam antibiotics is threatened by the emergence and global spread of metallo-β-lactamase (MBL) mediated resistance, specifically New Delhi metallo-β-lactamase-1 (NDM-1). By utilization of fragment-based drug discovery (FBDD), a new class of inhibitors for NDM-1 and two related β-lactamases, IMP-1 and VIM-2, was identified. On the basis of 2,6-dipicolinic acid (DPA), several libraries were synthesized for structure-activity relationship (SAR) analysis. Inhibitor 36 (IC 50 = 80 nM) was identified to be highly selective for MBLs when compared to other Zn(II) metalloenzymes. While DPA displayed a propensity to chelate metal ions from NDM-1, 36 formed a stable NDM-1:Zn(II):inhibitor ternary complex, as demonstrated by 1 H NMR, electron paramagnetic resonance (EPR) spectroscopy, equilibrium dialysis, intrinsic tryptophan fluorescence emission, and UV-vis spectroscopy. When coadministered with 36 (at concentrations nontoxic to mammalian cells), the minimum inhibitory concentrations (MICs) of imipenem against clinical isolates of Eschericia coli and Klebsiella pneumoniae harboring NDM-1 were reduced to susceptible levels.

  8. Reducing dust and allergen exposure in bakeries

    Directory of Open Access Journals (Sweden)

    Howard J Mason

    2017-12-01

    Full Text Available Bakers have a continuing high incidence of occupational allergic asthma. In factory bakeries they are exposed not only to flour dust containing allergens, but also improvers whose ingredients enhance the strength and workability of the dough and its speed of rising. Improvers are flour-based but can contain added soya, fungal or bacterial enzymes that are also allergenic, as well as vegetable oil, calcium sulphate/silicate and organic esters. This study investigated the dustiness of the components used in factory bakeries and whether altering improver ingredients could reduce dust and allergen exposure. A standardised rotating drum test was employed on the individual components, as well as a representative improver and three practicable improver modifications by decreasing calcium sulphate, calcium silicate or increasing oil content. Levels of dust, the allergens wheat flour amylase inhibitor (WAAI and soya trypsin inhibitor (STI were measured in the generated inhalable, thoracic and respirable sized fractions. A “scooping and pouring” workplace simulation was also performed. Initial tests showed that dustiness of several wheat flours was relatively low, and even lower for soya flour, but increased in combination with some other improver components. All three improver modifications generally reduced levels of dust, STI and WAAI, but increasing oil content significantly decreased dust and STI in comparison to the standard improver and those improvers with reduced calcium silicate or sulphate. The simulation demonstrated that increased oil content reduced inhalable levels of gravimetric dust, STI and WAAI. Changing improver formulation, such as increasing oil content of flour by a small amount, may represent a simple, practical method of reducing bakery workers’ exposure to dust and allergens where improvers are used. It may be a useful adjunct to engineering control, changes to work practices and appropriate training in reducing the risk to

  9. Cathepsin D inhibitors

    Directory of Open Access Journals (Sweden)

    M. Gacko

    2007-11-01

    Full Text Available Inhibitors of cathepsin D belong to chemical compounds that estrify carboxyl groups of the Asp33 and Asp231residues of its catalytic site, penta-peptides containing statin, i.e. the amino acid similar in structure to the tetraedric indirectproduct, and polypeptides found in the spare organs of many plants and forming permanent noncovalent complexes withcathepsin. Cathepsin D activity is also inhibited by alpha2-macroglobulin and antibodies directed against this enzyme.Methods used to determine the activity and concentration of these inhibitors and their analytical, preparative and therapeuticapplications are discussed.

  10. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field.

    Science.gov (United States)

    He, Tiehu; Liu, Deyan; Yuan, Junji; Luo, Jiafa; Lindsey, Stuart; Bolan, Nanthi; Ding, Weixin

    2018-07-01

    The effects of biochar combined with the urease inhibitor, hydroquinone, and nitrification inhibitor, dicyandiamide, on gaseous nitrogen (N 2 O, NO and NH 3 ) emissions and wheat yield were examined in a wheat crop cultivated in a rice-wheat rotation system in the Taihu Lake region of China. Eight treatments comprised N fertilizer at a conventional application rate of 150kgNha -1 (CN); N fertilizer at an optimal application rate of 125kgNha -1 (ON); ON+wheat-derived biochar at rates of 7.5 (ONB1) and 15tha -1 (ONB2); ON+nitrification and urease inhibitors (ONI); ONI+wheat-derived biochar at rates of 7.5 (ONIB1) and 15tha -1 (ONIB2); and, a control. The reduced N fertilizer application rate in the ON treatment decreased N 2 O, NO, and NH 3 emissions by 45.7%, 17.1%, and 12.3%, respectively, compared with the CN treatment. Biochar application increased soil organic carbon, total N, and pH, and also increased NH 3 and N 2 O emissions by 32.4-68.2% and 9.4-35.2%, respectively, compared with the ON treatment. In contrast, addition of urease and nitrification inhibitors decreased N 2 O, NO, and NH 3 emissions by 11.3%, 37.9%, and 38.5%, respectively. The combined application of biochar and inhibitors more effectively reduced N 2 O and NO emissions by 49.1-49.7% and 51.7-55.2%, respectively, compared with ON and decreased NH 3 emission by 33.4-35.2% compared with the ONB1 and ONB2 treatments. Compared with the ON treatment, biochar amendment, either alone or in combination with inhibitors, increased wheat yield and N use efficiency (NUE), while addition of inhibitors alone increased NUE but not wheat yield. We suggest that an optimal N fertilizer rate and combined application of inhibitors+biochar at a low application rate, instead of biochar application alone, could increase soil fertility and wheat yields, and mitigate gaseous N emissions. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Omeprazole increases the efficacy of a soluble epoxide hydrolase inhibitor in a PGE2 induced pain model

    International Nuclear Information System (INIS)

    Goswami, Sumanta Kumar; Inceoglu, Bora; Yang, Jun; Wan, Debin; Kodani, Sean D.; Trindade da Silva, Carlos Antonio; Morisseau, Christophe; Hammock, Bruce D.

    2015-01-01

    Epoxyeicosatrienoic acids (EETs) are potent endogenous analgesic metabolites produced from arachidonic acid by cytochrome P450s (P450s). Metabolism of EETs by soluble epoxide hydrolase (sEH) reduces their activity, while their stabilization by sEH inhibition decreases both inflammatory and neuropathic pain. Here, we tested the complementary hypothesis that increasing the level of EETs through induction of P450s by omeprazole (OME), can influence pain related signaling by itself, and potentiate the anti-hyperalgesic effect of sEH inhibitor. Rats were treated with OME (100 mg/kg/day, p.o., 7 days), sEH inhibitor TPPU (3 mg/kg/day, p.o.) and OME (100 mg/kg/day, p.o., 7 days) + TPPU (3 mg/kg/day, p.o., last 3 days of OME dose) dissolved in vehicle PEG400, and their effect on hyperalgesia (increased sensitivity to pain) induced by PGE 2 was monitored. While OME treatment by itself exhibited variable effects on PGE 2 induced hyperalgesia, it strongly potentiated the effect of TPPU in the same assay. The significant decrease in pain with OME + TPPU treatment correlated with the increased levels of EETs in plasma and increased activities of P450 1A1 and P450 1A2 in liver microsomes. The results show that reducing catabolism of EETs with a sEH inhibitor yielded a stronger analgesic effect than increasing generation of EETs by OME, and combination of both yielded the strongest pain reducing effect under the condition of this study. - Highlights: • The soluble epoxide hydrolase (sEH) inhibitor TPPU is anti-hyperalgesic. • Omeprazole potentiates the anti-hyperalgesic actions of TPPU. • This potentiation is associated with increased P450 activity. • The potentiation is associated with an increase in fatty acid epoxide/diol ratio. • Joint use of sEH inhibitors and P450 inducers could result in drug–drug interactions.

  12. Cysteine protease inhibition by nitrile-based inhibitors: a computational study

    Science.gov (United States)

    Quesne, Matthew G.; Ward, Richard A.; de Visser, Sam P.

    2013-01-01

    Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical vs. electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism. PMID:24790966

  13. Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guang-Li; Ren, Nan-Qi; Wang, Ai-Jie; Guo, Wan-Qian; Xu, Ji-Fei; Liu, Bing-Feng [State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    In the process of producing H{sub 2} from lignocellulosic materials, inhibitory compounds could be potentially formed during pre-treatment. This work experimentally investigated the effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Representative compounds presented in corn stover acid hydrolysate were added in various concentrations, individually or in various combinations and subsequently inhibitions on growth and H{sub 2} production were quantified. Acetate sodium was not inhibitory to T. thermosaccharolyticum W16, rather than it was stimulatory to the growth and H{sub 2} production. Alternatively, furfural, hydroxymethylfurfural (HMF), vanillin and syringaldehyde were potent inhibitors of growth and hydrogen production even though these compounds showed inhibitory effect depending on their concentrations. Synergistic inhibitory effects were exhibited in the introduction of combinations of inhibitors to the medium and in hydrolysate with concentrated inhibitors. Fermentation results from hydrolysates revealed that to increase the efficiency of this bioprocess from corn stover hydrolysate, the inhibitory compounds concentration must be reduced to the levels present in the raw hydrolysate. (author)

  14. [Syk inhibitors].

    Science.gov (United States)

    Kimura, Yukihiro; Chihara, Kazuyasu; Takeuchi, Kenji; Sada, Kiyonao

    2013-07-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in the University of Fukui in 1991. Syk is known to be essential for the various physiological functions, especially in hematopoietic lineage cells. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Recently, novel Syk inhibitors were developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis, and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure, and function of Syk, and then describe the novel Syk inhibitors and their current status. Furthermore, we will introduce our findings of the adaptor protein 3BP2 (c-Abl SH3 domain-binding protein-2), as a novel target of Syk.

  15. Ocular Toxicity Profile of ST-162 and ST-168 as Novel Bifunctional MEK/PI3K Inhibitors.

    Science.gov (United States)

    Smith, Andrew; Pawar, Mercy; Van Dort, Marcian E; Galbán, Stefanie; Welton, Amanda R; Thurber, Greg M; Ross, Brian D; Besirli, Cagri G

    2018-04-30

    ST-162 and ST-168 are small-molecule bifunctional inhibitors of MEK and PI3K signaling pathways that are being developed as novel antitumor agents. Previous small-molecule and biologic MEK inhibitors demonstrated ocular toxicity events that were dose limiting in clinical studies. We evaluated in vitro and in vivo ocular toxicity profiles of ST-162 and ST-168. Photoreceptor cell line 661W and adult retinal pigment epithelium cell line ARPE-19 were treated with increasing concentrations of bifunctional inhibitors. Western blots, cell viability, and caspase activity assays were performed to evaluate MEK and PI3K inhibition and dose-dependent in vitro toxicity, and compared with monotherapy. In vivo toxicity profile was assessed by intravitreal injection of ST-162 and ST-168 in Dutch-Belted rabbits, followed by ocular examination and histological analysis of enucleated eyes. Retinal cell lines treated with ST-162 or ST-168 exhibited dose-dependent inhibition of MEK and PI3K signaling. Compared with inhibition by monotherapies and their combinations, bifunctional inhibitors demonstrated reduced cell death and caspase activity. In vivo, both bifunctional inhibitors exhibited a more favorable toxicity profile when compared with MEK inhibitor PD0325901. Novel MEK and PI3K bifunctional inhibitors ST-162 and ST-168 demonstrate favorable in vitro and in vivo ocular toxicity profiles, supporting their further development as potential therapeutic agents targeting multiple aggressive tumors.

  16. Overcoming resistance to beta-lactamase inhibitors: comparing sulbactam to novel inhibitors against clavulanate resistant SHV enzymes with substitutions at Ambler position 244.

    Science.gov (United States)

    Thomson, Jodi M; Distler, Anne M; Bonomo, Robert A

    2007-10-09

    Amino acid changes at Ambler position R244 in class A TEM and SHV beta-lactamases confer resistance to ampicillin/clavulanate, a beta-lactam/beta-lactamase inhibitor combination used to treat serious infections. To gain a deeper understanding of this resistance phenotype, we investigated the activities of sulbactam and two novel penem beta-lactamase inhibitors with sp2 hybridized C3 carboxylates and bicyclic R1 side chains against a library of SHV beta-lactamase variants at the 244 position. Compared to SHV-1 expressed in Escherichia coli, all 19 R244 variants exhibited increased susceptibility to ampicillin/sulbactam, an important difference compared to ampicillin/clavulanate. Kinetic analyses of SHV-1 and three SHV R244 (-S, -Q, and -L) variants revealed the Ki for sulbactam was significantly elevated for the R244 variants, but the partition ratios, kcat/kinact, were markedly reduced (13 000 --> inhibitors effectively restored ampicillin susceptibility in vitro. Compared to that of sulbactam, the kcat/kinact values of penems for SHV-1 and R244S were low (inhibitors with strategic chemical properties that improve affinity and impair turnover.

  17. SGLT2 inhibitors in the management of type 2 diabetes.

    Science.gov (United States)

    Monica Reddy, R P; Inzucchi, Silvio E

    2016-08-01

    The glucose-lowering pharmacopeia continues to grow for patients with type 2 diabetes. The latest drug category, the SGLT2 inhibitors reduce glycated hemoglobin concentrations by increasing urinary excretion of glucose. They are used mainly in combination with metformin and other antihyperglycemic agents, including insulin. Their glucose-lowering potency is modest. Advantages include lack of hypoglycemia as a side effect, and mild reduction in blood pressure and body weight. Side effects include increased urinary frequency, owing to their mild diuretic action, symptoms of hypovolemia, genitourinary infections. There are also recent reports of rare cases of diabetic ketoacidosis occurring in insulin-treated patients. Recently, a large cardiovascular outcome trial reported that a specific SGLT2 inhibitor, empagliflozin, led to a reduction in the primary endpoint of major cardiovascular events. This effect was mainly the result of a surprising 38 % reduction in cardiovascular death, and the drug was also associated with nearly as large a reduction in heart failure hospitalization. These findings were notable because most drugs used in type 2 diabetes have not been shown to improve cardiovascular outcomes. Accordingly, there is growing interest in empagliflozin and the entire SGLT2 inhibitor class as drugs that could potentially change the manner in which we approach the management of hyperglycemia in patients with type 2 diabetes.

  18. Organization of the gene coding for human protein C inhibitor (plasminogen activator inhibitor-3). Assignment of the gene to chromosome 14

    NARCIS (Netherlands)

    Meijers, J. C.; Chung, D. W.

    1991-01-01

    Protein C inhibitor (plasminogen activator inhibitor-3) is a plasma glycoprotein and a member of the serine proteinase inhibitor superfamily. In the present study, the human gene for protein C inhibitor was isolated and characterized from three independent phage that contained overlapping inserts

  19. SGLT2 inhibitors: a promising new therapeutic option for treatment of type 2 diabetes mellitus.

    Science.gov (United States)

    Misra, Monika

    2013-03-01

    Hyperglycemia is an important pathogenic component in the development of microvascular and macrovascular complications in type 2 diabetes mellitus. Inhibition of renal tubular glucose reabsorption that leads to glycosuria has been proposed as a new mechanism to attain normoglycemia and thus prevent and diminish these complications. Sodium glucose cotransporter 2 (SGLT2) has a key role in reabsorption of glucose in kidney. Competitive inhibitors of SGLT2 have been discovered and a few of them have also been advanced in clinical trials for the treatment of diabetes. To discuss the therapeutic potential of SGLT2 inhibitors currently in clinical development. A number of preclinical and clinical studies of SGLT2 inhibitors have demonstrated a good safety profile and beneficial effects in lowering plasma glucose levels, diminishing glucotoxicity, improving glycemic control and reducing weight in diabetes. Of all the SGLT2 inhibitors, dapagliflozin is a relatively advanced compound with regards to clinical development. SGLT2 inhibitors are emerging as a promising therapeutic option for the treatment of diabetes. Their unique mechanism of action offers them the potential to be used in combination with other oral anti-diabetic drugs as well as with insulin. © 2012 The Author. JPP © 2012 Royal Pharmaceutical Society.

  20. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study

    Science.gov (United States)

    Habeeb, Hussein Jwad; Luaibi, Hasan Mohammed; Dakhil, Rifaat Mohammed; Kadhum, Abdul Amir H.; Al-Amiery, Ahmed A.; Gaaz, Tayser Sumer

    2018-03-01

    Mild steel is a metal which is commonly used in industrials and manufacturing of equipment for most industries round the world. It is cheaper cost compared with the other metals and its durable, hard and easy-to-wear physical properties make it a major choice in the manufacture of equipment parts. The main problem through the uses of mild steel in industry is its resistance against corrosion, especially in acidic solutions. This case led to raise the cost of maintenance of equipment that used mild steel and as a result increased costs for the company. Organic corrosive inhibitors that also act as green chemicals, 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol have been synthesized. This inhibitor is tested as corrosion inhibitor on a mild steel sample MS in 1 M hydrochloric acid solution (HCl) using electrochemical measurements test includes PD (Potentiodynamic), EIS (Electrochemical impedance spectroscopy), OCP (Open circuit potential) and EFM (electrochemical frequency modulation). The obtained results indicate that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol acts as a good corrosion inhibitor for mild steel sample in HCl solution with efficiency above 90%. Changes in the impedance parameters postulated adsorption on the mild steel specimens' surfaces of, which it going to the formation of protective coating layer. It also shows that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol corrosion inhibitors are effective in helping to reduce and slow down the corrosion process that occurs on mild steel surface in hydrochloric acid solution. Increase of corrosion inhibitor concentration provides a protective layer of mild steel. However, this protective layer becomes weak when the temperature of the solution increases.

  1. Potential role of glycosidase inhibitors in industrial biotechnological applications

    DEFF Research Database (Denmark)

    Sørensen, J.F.; Kragh, K.M.; Sibbesen, O.

    2004-01-01

    The nutrient content of food and animal feed may be improved through new knowledge about enzymatic changes in complex carbohydrates. Enzymatic hydrolysis of complex carbohydrates containing alpha or beta glycosidic bonds is very important in nutrition and in several technological processes......, produce glucose, fructose or dextrins, hydrolyse lactose, modify food pectins, or improve processes. However, many plant foods also contain endogenous inhibitors, which reduce the activity of glycosidases, in particular, proteins, peptides, complexing agents and phenolic compounds. The plant proteinaceous...

  2. Hepatitis C Virus NS3/4A Protease Inhibitors Incorporating Flexible P2 Quinoxalines Target Drug Resistant Viral Variants.

    Science.gov (United States)

    Matthew, Ashley N; Zephyr, Jacqueto; Hill, Caitlin J; Jahangir, Muhammad; Newton, Alicia; Petropoulos, Christos J; Huang, Wei; Kurt-Yilmaz, Nese; Schiffer, Celia A; Ali, Akbar

    2017-07-13

    A substrate envelope-guided design strategy is reported for improving the resistance profile of HCV NS3/4A protease inhibitors. Analogues of 5172-mcP1P3 were designed by incorporating diverse quinoxalines at the P2 position that predominantly interact with the invariant catalytic triad of the protease. Exploration of structure-activity relationships showed that inhibitors with small hydrophobic substituents at the 3-position of P2 quinoxaline maintain better potency against drug resistant variants, likely due to reduced interactions with residues in the S2 subsite. In contrast, inhibitors with larger groups at this position were highly susceptible to mutations at Arg155, Ala156, and Asp168. Excitingly, several inhibitors exhibited exceptional potency profiles with EC 50 values ≤5 nM against major drug resistant HCV variants. These findings support that inhibitors designed to interact with evolutionarily constrained regions of the protease, while avoiding interactions with residues not essential for substrate recognition, are less likely to be susceptible to drug resistance.

  3. Inhibitor chymotrypsynowy nasion wiechliny łąkowej (Poa pratensis [Chymotrypsin inhibitor from Poa pratensis seeds

    Directory of Open Access Journals (Sweden)

    I. Lorenc-Kubis

    2015-01-01

    Full Text Available A chymotrypsin inhibitor was isolated from Poa pratensis seeds. The inhibitor showed also antytriptic activity. It is a termostable protein, soluble in water, sodium chloride, but insoluble in 5% trichloracetic acid and 0.15 M sulphosalicylic acid.

  4. The renal effects of SGLT2 inhibitors and a mini-review of the literature.

    Science.gov (United States)

    Andrianesis, Vasileios; Glykofridi, Spyridoula; Doupis, John

    2016-12-01

    Sodium-glucose linked transporter 2 (SGLT2) inhibitors are a new and promising class of antidiabetic agents which target renal tubular glucose reabsorption. Their action is based on the blockage of SGLT2 sodium-glucose cotransporters that are located at the luminal membrane of tubular cells of the proximal convoluted tubule, inducing glucosuria. It has been proven that they significantly reduce glycated hemoglobin (HbA1c), along with fasting and postprandial plasma glucose in patients with type 2 diabetes mellitus (T2DM). The glucosuria-induced caloric loss as well as the osmotic diuresis significantly decrease body weight and blood pressure, respectively. Given that SGLT2 inhibitors do not interfere with insulin action and secretion, their efficacy is sustained despite the progressive β-cell failure in T2DM. They are well tolerated, with a low risk of hypoglycemia. Their most frequent adverse events are minor: genital and urinal tract infections. Recently, it was demonstrated that empagliflozin presents a significant cardioprotective effect. Although the SGLT2 inhibitors' efficacy is affected by renal function, new data have been presented that some SGLT2 inhibitors, even in mild and moderate renal impairment, induce significant HbA1c reduction. Moreover, recent data indicate that SGLT2 inhibition has a beneficial renoprotective effect. The role of this review paper is to explore the current evidence on the renal effects of SGLT2 inhibitors.

  5. Tyrosine kinase inhibitors: Multi-targeted or single-targeted?

    Science.gov (United States)

    Broekman, Fleur; Giovannetti, Elisa; Peters, Godefridus J

    2011-02-10

    Since in most tumors multiple signaling pathways are involved, many of the inhibitors in clinical development are designed to affect a wide range of targeted kinases. The most important tyrosine kinase families in the development of tyrosine kinase inhibitors are the ABL, SCR, platelet derived growth factor, vascular endothelial growth factor receptor and epidermal growth factor receptor families. Both multi-kinase inhibitors and single-kinase inhibitors have advantages and disadvantages, which are related to potential resistance mechanisms, pharmacokinetics, selectivity and tumor environment. In different malignancies various tyrosine kinases are mutated or overexpressed and several resistance mechanisms exist. Pharmacokinetics is influenced by interindividual differences and differs for two single targeted inhibitors or between patients treated by the same tyrosine kinase inhibitor. Different tyrosine kinase inhibitors have various mechanisms to achieve selectivity, while differences in gene expression exist between tumor and stromal cells. Considering these aspects, one type of inhibitor can generally not be preferred above the other, but will depend on the specific genetic constitution of the patient and the tumor, allowing personalized therapy. The most effective way of cancer treatment by using tyrosine kinase inhibitors is to consider each patient/tumor individually and to determine the strategy that specifically targets the consequences of altered (epi)genetics of the tumor. This strategy might result in treatment by a single multi kinase inhibitor for one patient, but in treatment by a couple of single kinase inhibitors for other patients.

  6. Effect of MRE11 loss on PARP-inhibitor sensitivity in endometrial cancer in vitro.

    Directory of Open Access Journals (Sweden)

    Romana Koppensteiner

    Full Text Available To evaluate the frequency of MRE11/RAD50/NBS1 (MRN-complex loss of protein expression in endometrial cancers (EC and to determine whether loss of MRE11 renders the cancer cells sensitive to Poly(ADP-ribose polymerase (PARP-inhibitory treatment.MRN expression was examined in 521 samples of endometrial carcinomas and in 10 cancer cell lines. A putative mutation hotspot in the form of an intronic poly(T allele in MRE11 was sequenced in selected cases (n = 26. Sensitivity to the PARP-inhibitor, BMN673 was tested in colony formation assays before and after MRE11 silencing using siRNA. Homologous recombination (HR DNA repair was evaluated by RAD51-foci formation assay upon irradiation and drug treatment.Loss of MRE11 protein was found in 30.7% of EC tumours and significantly associated with loss of RAD50, NBS1 and mismatch repair protein expression. One endometrial cell line showed a markedly reduced MRE11 expression due to a homozygous poly(T mutation of MRE11, thereby exhibiting an increased sensitivity to BMN673. MRE11 depletion sensitizes MRE11 expressing EC cell lines to the treatment with BMN673. The increased sensitivity to PARP-inhibition correlates with reduced RAD51 foci formation upon ionizing radiation in MRE11-depleted cells.Loss of the MRE11 protein predicts sensitivity to PARP-inhibitor sensitivity in vitro, defining it as an additional synthetic lethal gene with PARP. The high incidence of MRE11 loss in ECs can be potentially exploited for PARP-inhibitor therapy. Furthermore, MRE11 protein expression using immunohistochemistry could be investigated as a predictive biomarker for PARP-inhibitor treatment.

  7. Histone deacetylase inhibitors reverse age-related increases in side effects of haloperidol in mice.

    Science.gov (United States)

    Montalvo-Ortiz, Janitza L; Fisher, Daniel W; Rodríguez, Guadalupe; Fang, Deyu; Csernansky, John G; Dong, Hongxin

    2017-08-01

    Older patients can be especially susceptible to antipsychotic-induced side effects, and the pharmacodynamic mechanism underlying this phenomenon remains unclear. We hypothesized that age-related epigenetic alterations lead to decreased expression and functionality of the dopamine D2 receptor (D2R), contributing to this susceptibility. In this study, we treated young (2-3 months old) and aged (22-24 months old) C57BL/6 mice with the D2R antagonist haloperidol (HAL) once a day for 14 days to evaluate HAL-induced motor side effects. In addition, we pretreated separate groups of young and aged mice with histone deacetylase (HDAC) inhibitors valproic acid (VPA) or entinostat (MS-275) and then administered HAL. Our results show that the motor side effects of HAL are exaggerated in aged mice as compared to young mice and that HDAC inhibitors are able to reverse the severity of these deficits. HAL-induced motor deficits in aged mice are associated with an age- and drug-dependent decrease in striatal D2R protein levels and functionality. Further, histone acetylation was reduced while histone tri-methylation was increased at specific lysine residues of H3 and H4 within the Drd2 promoter in the striatum of aged mice. HDAC inhibitors, particularly VPA, restored striatal D2R protein levels and functionality and reversed age- and drug-related histone modifications at the Drd2 promoter. These results suggest that epigenetic changes at the striatal Drd2 promoter drive age-related increases in antipsychotic side effect susceptibility, and HDAC inhibitors may be an effective adjunct treatment strategy to reduce side effects in aged populations.

  8. The effect of functionalized polycarboxylate structures as corrosion inhibitors in a simulated concrete pore solution

    Science.gov (United States)

    Fazayel, A. S.; Khorasani, M.; Sarabi, A. A.

    2018-05-01

    In this study, the effects of polycarboxylate derivatives with different comonomers and functional groups on the control or reduction of corrosion in steel specimens were evaluated through electrochemical impedance spectroscopy (EIS) and potentiodynamic analysis. A highly alkaline contaminated concrete pore solution (CPS) containing chlorides was used to simulate the pitting corrosion, and according to the results, the mechanism of inhibitive action was determined. Both the inhibition efficiency and pitting corrosion inhibition of methacrylate-copolymers were in the order of poly methacrylate-co acrylamide > poly methacrylate-co-2-acrylamido-2 methylpropane sulfonic acid > poly methacrylate-co-hydroxyethyl methacrylate. In addition, the corrosion potential of steel specimens in all studied concentrations of NaCl with different concentrations of polymethacrylate-co acrylamide (as the best inhibitor in this study) in saturated Ca(OH)2 solution showed almost an identical trend. Polymethacrylic acid-co-acrylamide showed a 92.35% inhibitor efficiency in the saturated Ca(OH)2 solution containing 1.8 wt.% chlorides and could effectively reduce the corrosion rate. Even at 3.5 wt.% of NaCl, this inhibitor could remarkably reduce the destructive effect of chloride ion attacks on the steel surface and passive film. The inhibition effect of these polymeric inhibitors seemed to be due to the formation of a barrier layer on the metal surface, approved by the well-known adsorption mechanism of organic molecules at the metal/solution interface. The results of SEM, EDS and AFM investigations were also in agreement with the outcomes of electrochemical studies.

  9. Beneficial long term effect of a phosphodiesterase-5-inhibitor in cirrhotic portal hypertension: A case report with 8 years follow-up.

    Science.gov (United States)

    Deibert, Peter; Lazaro, Adhara; Stankovic, Zoran; Schaffner, Denise; Rössle, Martin; Kreisel, Wolfgang

    2018-01-21

    Non-selective beta-blockers are the mainstay of medical therapy for portal hypertension in liver cirrhosis. Inhibitors of phosphodiesterase-5 (PDE-5-inhibitors) reduce portal pressure in the acute setting by > 10% which may suggest a long-term beneficial effect. Currently, there is no available data on long-term treatment of portal hypertension with PDE-5-inhibitors. This case of a patient with liver cirrhosis secondary to autoimmune liver disease with episodes of bleeding from esophageal varices is the first documented case in which a treatment with a PDE-5-inhibitor for eight years was monitored. In the acute setting, the PDE-5-inhibitor Vardenafil lowered portal pressure by 13%. The portal blood flow increased by 28% based on Doppler sonography and by 16% using MRI technique. As maintenance medication the PDE-5-inhibitor Tadalafil was used for eight consecutive years with comparable effects on portal pressure and portal blood flow. There were no recurrence of bleeding and no formation of new varices. Influencing the NO-pathway by the use of PDE-5 inhibitors may have long-term beneficial effects in compensated cirrhosis.

  10. Notch signaling inhibitor DAPT provides protection against acute craniocerebral injury.

    Directory of Open Access Journals (Sweden)

    Hong-Mei Zhang

    Full Text Available Notch signaling pathway is involved in many physiological and pathological processes. The γ-secretase inhibitor DAPT inhibits Notch signaling pathway and promotes nerve regeneration after cerebral ischemia. However, neuroprotective effects of DAPT against acute craniocerebral injury remain unclear. In this study, we established rat model of acute craniocerebral injury, and found that with the increase of damage grade, the expression of Notch and downstream protein Hes1 and Hes5 expression gradually increased. After the administration of DAPT, the expression of Notch, Hes1 and Hes5 was inhibited, apoptosis and oxidative stress decreased, neurological function and cognitive function improved. These results suggest that Notch signaling can be used as an indicator to assess the severity of post-traumatic brain injury. Notch inhibitor DAPT can reduce oxidative stress and apoptosis after acute craniocerebral injury, and is a potential drug for the treatment of acute craniocerebral injury.

  11. mTOR inhibitors in urinary bladder cancer.

    Science.gov (United States)

    Pinto-Leite, R; Arantes-Rodrigues, R; Sousa, Nuno; Oliveira, P A; Santos, L

    2016-09-01

    Despite the great scientific advances that have been made in cancer treatment, there is still much to do, particularly with regard to urinary bladder cancer. Some of the drugs used in urinary bladder cancer treatment have been in use for more than 30 years and show reduced effectiveness and high recurrence rates. There have been several attempts to find new and more effective drugs, to be used alone or in combination with the drugs already in use, in order to overcome this situation.The biologically important mammalian target of rapamycin (mTOR) pathway is altered in cancer and mTOR inhibitors have raised many expectations as potentially important anticancer drugs. In this article, the authors will review the mTOR pathway and present their experiences of the use of some mTOR inhibitors, sirolimus, everolimus and temsirolimus, in isolation and in conjunction with non-mTOR inhibitors cisplatin and gemcitabine, on urinary bladder tumour cell lines. The non-muscle-invasive cell line, 5637, is the only one that exhibits a small alteration in the mTOR and AKT phosphorylation after rapalogs exposure. Also, there was a small inhibition of cell proliferation. With gemcitabine plus everolimus or temsirolimus, the results were encouraging as a more effective response was noticed with both combinations, especially in the 5637 and T24 cell lines. Cisplatin associated with everolimus or temsirolimus also gave promising results, as an antiproliferative effect was observed when the drugs were associated, in particular on the 5637 and HT1376 cell lines. Everolimus or temsirolimus in conjunction with gemcitabine or cisplatin could have an important role to play in urinary bladder cancer treatment, depending on the tumour grading.

  12. Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize.

    Science.gov (United States)

    Hartwig, Thomas; Corvalan, Claudia; Best, Norman B; Budka, Joshua S; Zhu, Jia-Ying; Choe, Sunghwa; Schulz, Burkhard

    2012-01-01

    Brassinosteroids (BRs) are steroidal hormones that play pivotal roles during plant development. In addition to the characterization of BR deficient mutants, specific BR biosynthesis inhibitors played an essential role in the elucidation of BR function in plants. However, high costs and limited availability of common BR biosynthetic inhibitors constrain their key advantage as a species-independent tool to investigate BR function. We studied propiconazole (Pcz) as an alternative to the BR inhibitor brassinazole (Brz). Arabidopsis seedlings treated with Pcz phenocopied BR biosynthetic mutants. The steady state mRNA levels of BR, but not gibberellic acid (GA), regulated genes increased proportional to the concentrations of Pcz. Moreover, root inhibition and Pcz-induced expression of BR biosynthetic genes were rescued by 24epi-brassinolide, but not by GA(3) co-applications. Maize seedlings treated with Pcz showed impaired mesocotyl, coleoptile, and true leaf elongation. Interestingly, the genetic background strongly impacted the tissue specific sensitivity towards Pcz. Based on these findings we conclude that Pcz is a potent and specific inhibitor of BR biosynthesis and an alternative to Brz. The reduced cost and increased availability of Pcz, compared to Brz, opens new possibilities to study BR function in larger crop species.

  13. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    Science.gov (United States)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  14. Biological abatement of cellulase inhibitors

    Science.gov (United States)

    Bio-abatement uses a fungus to metabolize and remove fermentation inhibitors. To determine whether bio-abatement could alleviate enzyme inhibitor effects observed in biomass liquors after pretreatment, corn stover at 10% (w/v) solids was pretreated with either dilute acid or liquid hot water. The ...

  15. Use of selective-serotonin reuptake inhibitors and platelet aggregation inhibitors among individuals with co-occurring atherosclerotic cardiovascular disease and depression or anxiety

    Directory of Open Access Journals (Sweden)

    J Douglas Thornton

    2016-12-01

    Full Text Available Objective: Medications commonly used to treat heart disease, anxiety, and depression can interact resulting in an increased risk of bleeding, warranting a cautious approach in medical decision making. This retrospective, descriptive study examined the prevalence and the factors associated with the use of both selective-serotonin reuptake inhibitor and platelet aggregation inhibitor among individuals with co-occurring atherosclerotic cardiovascular disease and anxiety or depression. Methods: Respondents aged 22 years and older, alive throughout the study period, and diagnosed with co-occurring atherosclerotic cardiovascular disease and anxiety or depression (n = 1507 in years 2007 through 2013 of the Medical Expenditures Panel Survey were included. The use of treatment was grouped as follows: selective-serotonin reuptake inhibitor and platelet aggregation inhibitor, selective-serotonin reuptake inhibitor or platelet aggregation inhibitor, and neither selective-serotonin reuptake inhibitor nor platelet aggregation inhibitor. Results: Overall, 16.5% used both selective-serotonin reuptake inhibitor and platelet aggregation inhibitor, 61.2% used selective-serotonin reuptake inhibitor or platelet aggregation inhibitor, and 22.3% used neither selective-serotonin reuptake inhibitor nor platelet aggregation inhibitor. Respondents aged over 65 years (adjusted odds ratio = 1.93 (95% confidence interval = 1.08–3.45 and having a diagnosis of diabetes (adjusted odds ratio = 1.63 (95% confidence interval = 1.15–2.31 and hypertension (adjusted odds ratio = 1.84 (95% confidence interval = 1.04–3.27 were more likely to be prescribed the combination. Conclusion: The drug interaction was prevalent in patients who are already at higher risk of health disparities and worse outcomes thus requiring vigilant evaluation.

  16. The Sirtuin 2 Inhibitor AK-7 Is Neuroprotective in Huntington’s Disease Mouse Models

    Directory of Open Access Journals (Sweden)

    Vanita Chopra

    2012-12-01

    Full Text Available Inhibition of sirtuin 2 (SIRT2 deacetylase mediates protective effects in cell and invertebrate models of Parkinson’s disease and Huntington’s disease (HD. Here we report the in vivo efficacy of a brain-permeable SIRT2 inhibitor in two genetic mouse models of HD. Compound treatment resulted in improved motor function, extended survival, and reduced brain atrophy and is associated with marked reduction of aggregated mutant huntingtin, a hallmark of HD pathology. Our results provide preclinical validation of SIRT2 inhibition as a potential therapeutic target for HD and support the further development of SIRT2 inhibitors for testing in humans.

  17. Structural studies of series HIV-1 nonnucleoside reverse transcriptase inhibitors 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-benzimidazoles with different 4-substituents

    Science.gov (United States)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-03-01

    Over the past 10 years, several anti-viral drugs have become available to fight the HIV infection. Antiretroviral treatment reduces the mortality of AIDS. Nonnucleoside inhibitors of HIV-1 reverse transcriptase are specific and potentially nontoxic drugs against AIDS. The crystal structures of five nonnucleoside inhibitors of HIV-1 reverse transcriptase are presented here. The structural parameters, especially those describing the angular orientation of the π-electron systems and influencing biological activity, were determined for all of the investigated inhibitors. The chemical character and orientation of the substituent at C4 position of the benzimidazole moiety substantially influences the anti-viral activity. The structural data of the investigated inhibitors is a good basis for modeling enzyme-inhibitor interactions for structure-assisted drug design.

  18. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice.

    Directory of Open Access Journals (Sweden)

    Vince N Montes

    Full Text Available Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week. The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.

  19. Glycosaminoglycans affect the interaction of human plasma kallikrein with plasminogen, factor XII and inhibitors

    Directory of Open Access Journals (Sweden)

    Gozzo A.J.

    2003-01-01

    Full Text Available Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates reduced (1.2 to 3.0 times the catalytic efficiency of kallikrein (in a nanomolar range on the hydrolysis of plasminogen (0.3 to 1.8 µM and increased (1.9 to 7.7 times the enzyme efficiency in factor XII (0.1 to 10 µM activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times kallikrein inhibition by antithrombin (1.4 µM, while chondroitin 4- and 6-sulfates reduced it (1.3 times. Heparin and heparan sulfate increased (1.4 times the enzyme inhibition by the C1-inhibitor (150 nM.

  20. Emerging Corrosion Inhibitors for Interfacial Coating

    Directory of Open Access Journals (Sweden)

    Mona Taghavikish

    2017-12-01

    Full Text Available Corrosion is a deterioration of a metal due to reaction with environment. The use of corrosion inhibitors is one of the most effective ways of protecting metal surfaces against corrosion. Their effectiveness is related to the chemical composition, their molecular structures and affinities for adsorption on the metal surface. This review focuses on the potential of ionic liquid, polyionic liquid (PIL and graphene as promising corrosion inhibitors in emerging coatings due to their remarkable properties and various embedment or fabrication strategies. The review begins with a precise description of the synthesis, characterization and structure-property-performance relationship of such inhibitors for anti-corrosion coatings. It establishes a platform for the formation of new generation of PIL based coatings and shows that PIL corrosion inhibitors with various heteroatoms in different form can be employed for corrosion protection with higher barrier properties and protection of metal surface. However, such study is still in its infancy and there is significant scope to further develop new structures of PIL based corrosion inhibitors and coatings and study their behaviour in protection of metals. Besides, it is identified that the combination of ionic liquid, PIL and graphene could possibly contribute to the development of the ultimate corrosion inhibitor based coating.

  1. CMV and BKPyV Infections in Renal Transplant Recipients Receiving an mTOR Inhibitor-Based Regimen Versus a CNI-Based Regimen: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials.

    Science.gov (United States)

    Mallat, Samir G; Tanios, Bassem Y; Itani, Houssam S; Lotfi, Tamara; McMullan, Ciaran; Gabardi, Steven; Akl, Elie A; Azzi, Jamil R

    2017-08-07

    The objective of this meta-analysis is to compare the incidences of cytomegalovirus and BK polyoma virus infections in renal transplant recipients receiving a mammalian target of rapamycin inhibitor (mTOR)-based regimen compared with a calcineurin inhibitor-based regimen. We conducted a comprehensive search for randomized, controlled trials up to January of 2016 addressing our objective. Other outcomes included acute rejection, graft loss, serious adverse events, proteinuria, wound-healing complications, and eGFR. Two review authors selected eligible studies, abstracted data, and assessed risk of bias. We assessed quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation methodology. We included 28 randomized, controlled trials with 6211 participants classified into comparison 1: mTOR inhibitor versus calcineurin inhibitor and comparison 2: mTOR inhibitor plus reduced dose of calcineurin inhibitor versus regular dose of calcineurin inhibitor. Results showed decreased incidence of cytomegalovirus infection in mTOR inhibitor-based group in both comparison 1 (risk ratio, 0.54; 95% confidence interval, 0.41 to 0.72), with high quality of evidence, and comparison 2 (risk ratio, 0.43; 95% confidence interval, 0.24 to 0.80), with moderate quality of evidence. The available evidence neither confirmed nor ruled out a reduction of BK polyoma virus infection in mTOR inhibitor-based group in both comparisons. Secondary outcomes revealed more serious adverse events and acute rejections in mTOR inhibitor-based group in comparison 1 and no difference in comparison 2. There was no difference in graft loss in both comparisons. eGFR was higher in the mTOR inhibitor-based group in comparison 1 (mean difference =4.07 ml/min per 1.73 m 2 ; 95% confidence interval, 1.34 to 6.80) and similar to the calcineurin inhibitor-based group in comparison 2. More proteinuria and wound-healing complications occurred in the mTOR inhibitor-based groups. We found

  2. Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Yuri A. Blednov

    2014-05-01

    Full Text Available Some anti-inflammatory medications reduce alcohol consumption in rodent models. Inhibition of phosphodiesterases (PDE increases cAMP and reduces inflammatory signaling. Rolipram, an inhibitor of PDE4, markedly reduced ethanol intake and preference in mice and reduced ethanol seeking and consumption in alcohol-preferring fawn-hooded rats (Hu et al., 2011;Wen et al., 2012. To determine if these effects were specific for PDE4, we compared nine PDE inhibitors with different subtype selectivity: propentofylline (nonspecific, vinpocetine (PDE1, olprinone, milrinone (PDE3, zaprinast (PDE5, rolipram, mesopram, piclamilast, and CDP840 (PDE4. Alcohol intake was measured in C57BL/6J male mice using 24-hour two-bottle choice and two-bottle choice with limited (three-hour access to alcohol. Only the selective PDE4 inhibitors reduced ethanol intake and preference in the 24-hour two-bottle choice test. For rolipram, piclamilast, and CDP840, this effect was observed after the first 6 hours but not after the next 18 hours. Mesopram, however, produced a long-lasting reduction of ethanol intake and preference. In the limited access test, rolipram, piclamilast, and mesopram reduced ethanol consumption and total fluid intake and did not change preference for ethanol, whereas CDP840 reduced both consumption and preference without altering total fluid intake. Our results provide novel evidence for a selective role of PDE4 in regulating ethanol drinking in mice. We suggest that inhibition of PDE4 may be an unexplored target for medication development to reduce excessive alcohol consumption.

  3. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng; Wang, Yihan; Thomas, Mathew; Keats, Jeff; Xu, Qihong; Rivera, Victor M.; Shakespeare, William C.; Clackson, Tim; Dalgarno, David C.; Zhu, Xiaotian (ARIAD)

    2012-01-20

    The BCR-ABL inhibitor imatinib has revolutionized the treatment of chronic myeloid leukemia. However, drug resistance caused by kinase domain mutations has necessitated the development of new mutation-resistant inhibitors, most recently against the T315I gatekeeper residue mutation. Ponatinib (AP24534) inhibits both native and mutant BCR-ABL, including T315I, acting as a pan-BCR-ABL inhibitor. Here, we undertook a combined crystallographic and structure-activity relationship analysis on ponatinib to understand this unique profile. While the ethynyl linker is a key inhibitor functionality that interacts with the gatekeeper, virtually all other components of ponatinib play an essential role in its T315I inhibitory activity. The extensive network of optimized molecular contacts found in the DFG-out binding mode leads to high potency and renders binding less susceptible to disruption by single point mutations. The inhibitory mechanism exemplified by ponatinib may have broad relevance to designing inhibitors against other kinases with mutated gatekeeper residues.

  4. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  5. Characterization and comparison of SGLT2 inhibitors: Part 3. Effects on diabetic complications in type 2 diabetic mice.

    Science.gov (United States)

    Tahara, Atsuo; Takasu, Toshiyuki; Yokono, Masanori; Imamura, Masakazu; Kurosaki, Eiji

    2017-08-15

    In this study, we investigated and compared the effects of all six sodium-glucose cotransporter (SGLT) 2 inhibitors commercially available in Japan on diabetes-related diseases and complications in type 2 diabetic mice. Following 4-week repeated administration to diabetic mice, all SGLT2 inhibitors showed significant improvement in diabetes-related diseases and complications, including obesity; abnormal lipid metabolism; steatohepatitis; inflammation; endothelial dysfunction; and nephropathy. While all SGLT2 inhibitors exerted comparable effects in reducing hyperglycemia, improvement of these diabetes-related diseases and complications was more potent with the two long-acting drugs (ipragliflozin and dapagliflozin) than with the four intermediate-acting four drugs (tofogliflozin, canagliflozin, empagliflozin, and luseogliflozin), albeit without statistical significance. These findings demonstrate that SGLT2 inhibitors alleviate various diabetic pathological conditions in type 2 diabetic mice, and suggest that SGLT2 inhibitors, particularly long-acting drugs, might be useful not only for hyperglycemia but also in diabetes-related diseases and complications, including nephropathy in type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Acidic tumor microenvironment abrogates the efficacy of mTORC1 inhibitors.

    Science.gov (United States)

    Faes, Seraina; Duval, Adrian P; Planche, Anne; Uldry, Emilie; Santoro, Tania; Pythoud, Catherine; Stehle, Jean-Christophe; Horlbeck, Janine; Letovanec, Igor; Riggi, Nicolo; Demartines, Nicolas; Dormond, Olivier

    2016-12-05

    Blocking the mechanistic target of rapamycin complex-1 (mTORC1) with chemical inhibitors such as rapamycin has shown limited clinical efficacy in cancer. The tumor microenvironment is characterized by an acidic pH which interferes with cancer therapies. The consequences of acidity on the anti-cancer efficacy of mTORC1 inhibitors have not been characterized and are thus the focus of our study. Cancer cell lines were treated with rapamycin in acidic or physiological conditions and cell proliferation was investigated. The effect of acidity on mTORC1 activity was determined by Western blot. The anticancer efficacy of rapamycin in combination with sodium bicarbonate to increase the intratumoral pH was tested in two different mouse models and compared to rapamycin treatment alone. Histological analysis was performed on tumor samples to evaluate proliferation, apoptosis and necrosis. Exposing cancer cells to acidic pH in vitro significantly reduced the anti-proliferative effect of rapamycin. At the molecular level, acidity significantly decreased mTORC1 activity, suggesting that cancer cell proliferation is independent of mTORC1 in acidic conditions. In contrast, the activation of mitogen-activated protein kinase (MAPK) or AKT were not affected by acidity, and blocking MAPK or AKT with a chemical inhibitor maintained an anti-proliferative effect at low pH. In tumor mouse models, the use of sodium bicarbonate increased mTORC1 activity in cancer cells and potentiated the anti-cancer efficacy of rapamycin. Combining sodium bicarbonate with rapamycin resulted in increased tumor necrosis, increased cancer cell apoptosis and decreased cancer cell proliferation as compared to single treatment. Taken together, these results emphasize the inefficacy of mTORC1 inhibitors in acidic conditions. They further highlight the potential of combining sodium bicarbonate with mTORC1 inhibitors to improve their anti-tumoral efficacy.

  7. 2-Butyne-1,4-diol as a novel corrosion inhibitor for API X65 steel pipeline in carbonate/bicarbonate solution

    International Nuclear Information System (INIS)

    Sadeghi Meresht, E.; Shahrabi Farahani, T.; Neshati, J.

    2012-01-01

    Highlights: ► Corrosion of API 5L X65 is effectively reduced by the addition of the inhibitor. ► The techniques include weight loss, potentiodynamic polarization, EIS and AFM. ► 2-Butyne-1,4-diol acts as a mixed-type inhibitor. ► The adsorption of 2-butyne-1,4-diol obeys Langmuir adsorption isotherm. - Abstract: The inhibition effects of 2-butyne-1,4-diol on the corrosion susceptibility of grade API 5L X65 steel pipeline in 2 M Na 2 CO 3 /1 M NaHCO 3 solution were studied by electrochemical techniques and weight loss measurements. The results indicated that this inhibitor was a mixed-type inhibitor, with a maximum percentage inhibition efficiency of approximately 92% in the presence of 5 mM inhibitor. Atomic force microscopy revealed that a protective film was formed on the surface of the inhibited sample. The adsorption of the inhibitor was found to conform to the Langmuir isotherm with the standard adsorption free energy of −21.08 kJ mol −1 .

  8. [Specific inhibitors of cyclooxygenase-2 (COX-2): current knowledge and perspectives].

    Science.gov (United States)

    Rioda, W T; Nervetti, A

    2001-01-01

    The Authors summarize the current knowledge on a new class of nonsteroidal anti-inflammatory drugs (NSAIDs), the coxib (celecoxib and rofecoxib), in the treatment of rheumatic diseases. Celecoxib and rofecoxib are selective cyclooxygenase-2 (COX-2) inhibitors which possess the same anti-inflammatory and analgesic activities, but a better gastric tolerability compared to the non-selective COX-1 and COX-2 inhibitors. The Authors also report other possible therapeutic effects of these NSADIs as evidenced by the more recent data of the literature. Celecoxib seems to reduce the incidence of new polyps in patients with familial adenomatous polyposis. It has been suggested the use of celecoxib as a protective drug against the development of colorectal cancer. Other (neoplastic) or pre-neoplastic conditions, such as bladder dysplasia, Barret esophagus, attinic keratosis and Alzheimer's disease seem to have benefit from this class of drugs.

  9. Corrosion inhibitors. Manufacture and technology

    International Nuclear Information System (INIS)

    Ranney, M.W.

    1976-01-01

    Detailed information is presented relating to corrosion inhibitors. Areas covered include: cooling water, boilers and water supply plants; oil well and refinery operations; fuel and lubricant additives for automotive use; hydraulic fluids and machine tool lubes; grease compositions; metal surface treatments and coatings; and general processes for corrosion inhibitors

  10. A miR-21 inhibitor enhances apoptosis and reduces G2-M accumulation induced by ionizing radiation in human glioblastoma U251 cells

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiang; Asai, Akio; Kawamoto, Keiji; Zhao Shiguang; Zhen Yunbo; Teng Lei

    2011-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that take part in diverse biological processes by suppressing target gene expression. Elevated expression of miR-21 has been reported in many types of human cancers. Radiotherapy is a standard adjuvant treatment for patients with glioblastoma. However, the resistance of glioblastoma cells to radiation limits the success of this treatment. In this study, we found that miR-21 expression was upregulated in response to ionizing radiation (IR) in U251 cells, which suggested that miR-21 could be involved in the response of U251 cells to radiation. We showed that a miR-21 inhibitor enhanced IR-induced glioblastoma cell growth arrest and increased the level of apoptosis, which was probably caused by abrogation of the G 2 -M arrest induced by IR. Further research demonstrated that the miR-21 inhibitor induced the upregulation of Cdc25A. Taken together, these findings suggest that miR-21 inhibitor can increase IR-induced growth arrest and apoptosis in U251 glioblastoma cells, at least in part by abrogating G 2 -M arrest, and that Cdc25A is a potential target of miR-21. (author)

  11. Potential physiological role of plant glycosidase inhibitors

    DEFF Research Database (Denmark)

    Bellincampi, D.; Carmadella, L.; Delcour, J.A.

    2004-01-01

    Carbohydrate-active enzymes including glycosidases, transglycosidases, glycosyltransferases, polysaccharide lyases and carbohydrate esterases are responsible for the enzymatic processing of carbohydrates in plants. A number of carbohydrate-active enzymes are produced by microbial pathogens...... and insects responsible of severe crop losses. Plants have evolved proteinaceous inhibitors to modulate the activity of several of these enzymes. The continuing discovery of new inhibitors indicates that this research area is still unexplored and may lead to new exciting developments. To date, the role...... of the inhibitors is not completely understood. Here we review recent results obtained on the best characterised inhibitors, pointing to their possible biological role in vivo. Results recently obtained with plant transformation technology indicate that this class of inhibitors has potential biotechnological...

  12. SGLT2 Inhibitors May Predispose to Ketoacidosis.

    Science.gov (United States)

    Taylor, Simeon I; Blau, Jenny E; Rother, Kristina I

    2015-08-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis. Using PubMed and Google, we conducted Boolean searches including terms related to ketone bodies or ketoacidosis with terms for SGLT2 inhibitors or phlorizin. Priority was assigned to publications that shed light on molecular mechanisms whereby SGLT2 inhibitors could affect ketone body metabolism. SGLT2 inhibitors trigger multiple mechanisms that could predispose to diabetic ketoacidosis. When SGLT2 inhibitors are combined with insulin, it is often necessary to decrease the insulin dose to avoid hypoglycemia. The lower dose of insulin may be insufficient to suppress lipolysis and ketogenesis. Furthermore, SGLT2 is expressed in pancreatic α-cells, and SGLT2 inhibitors promote glucagon secretion. Finally, phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies. A decrease in the renal clearance of ketone bodies could also increase the plasma ketone body levels. Based on the physiology of SGLT2 and the pharmacology of SGLT2 inhibitors, there are several biologically plausible mechanisms whereby this class of drugs has the potential to increase the risk of developing diabetic ketoacidosis. Future research should be directed toward identifying which patients are at greatest risk for this side effect and also to optimizing pharmacotherapy to minimize the risk to patients.

  13. Novel Peptidase Kunitz Inhibitor from Platypodium elegans Seeds Is Active against Spodoptera frugiperda Larvae.

    Science.gov (United States)

    Ramalho, Suellen Rodrigues; Bezerra, Cézar da Silva; Lourenço de Oliveira, Daniella Gorete; Souza Lima, Letícia; Maria Neto, Simone; Ramalho de Oliveira, Caio Fernando; Valério Verbisck, Newton; Rodrigues Macedo, Maria Lígia

    2018-02-14

    A novel Kunitz-type inhibitor from Platypodium elegans seeds (PeTI) was purified and characterized. The mass spectrometry analyses of PeTI indicated an intact mass of 19 701 Da and a partial sequence homologous to Kunitz inhibitors. PeTI was purified by ion exchange and affinity chromatographies. A complex with a 1:1 ratio was obtained only for bovine trypsin, showing a K i = 0.16 nM. Stability studies showed that PeTI was stable over a wide range of temperature (37-80 °C) and pH (2-10). The inhibitory activity of PeTI was affected by dithiothreitol (DTT). Bioassays of PeTI on Spodoptera frugiperda showed negative effects on larval development and weight gain, besides extending the insect life cycle. The activities of digestive enzymes, trypsin and chymotrypsin, were reduced by feeding larvae with 0.2% PeTI in an artificial diet. In summary, we describe a novel Kunitz inhibitor with promising biotechnological potential for pest control.

  14. Histone Deacetylase Inhibitors Are Protective in Acute but Not in Chronic Models of Ototoxicity

    Directory of Open Access Journals (Sweden)

    Chao-Hui Yang

    2017-10-01

    Full Text Available Previous studies have reported that modification of histones alters aminoglycoside-induced hair cell death and hearing loss. In this study, we investigated three FDA-approved histone deacetylase (HDAC inhibitors (vorinostat/SAHA, belinostat, and panobinostat as protectants against aminoglycoside-induced ototoxicity in murine cochlear explants and in vivo in both guinea pigs and CBA/J mice. Individually, all three HDAC inhibitors reduced gentamicin (GM-induced hair cell loss in a dose-dependent fashion in explants. In vivo, however, treatment with SAHA attenuated neither GM-induced hearing loss and hair cell loss in guinea pigs nor kanamycin (KM-induced hearing loss and hair cell loss in mice under chronic models of ototoxicity. These findings suggest that treatment with the HDAC inhibitor SAHA attenuates aminoglycoside-induced ototoxicity in an acute model, but not in chronic models, cautioning that one cannot rely solely on in vitro experiments to test the efficacy of otoprotectant compounds.

  15. Bioactivity-Guided Fractionation of the Traditional Chinese Medicine Resina Draconis Reveals Loureirin B as a PAI-1 Inhibitor

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2017-01-01

    Full Text Available Thrombotic diseases have become a global burden due to morbidity, mortality, and disability. Traditional Chinese medicine has been proven effective in removing blood stasis and promoting blood circulation, but the exact mechanisms remain unclear. Plasminogen activator inhibitor-1 (PAI-1 is a natural inhibitor of tissue-type and urokinase-type plasminogen activators. In this study, we screened four fractions of Resina Draconis (a traditional Chinese medicine extract for PAI-1 inhibitory activity. Bioactivity-guided purification and chromogenic substrate-based assay led to the identification of loureirin B as the major PAI-1 inhibitor, with an IC50 value of 26.10 μM. SDS-PAGE analysis showed that formation of the PAI-1/uPA complex was inhibited by loureirin B, and the inhibitory effect of loureirin B on PAI-1 was also confirmed by clot lysis assay. In vivo studies showed that loureirin B significantly prolonged the tail bleeding time and reduced the weight and size of arterial thrombus, reduced hydroxyproline level, and partly cured liver fibrosis in mice. Taken together, the results revealed loureirin B as a PAI-1 inhibitor, adding a new pharmacological target for loureirin B and uncovering a novel mechanism underlying the antithrombotic property of Resina Draconis, which might be useful in the treatment of cardiovascular diseases such as thrombosis and fibrosis.

  16. Modulation of neutrophil superoxide generation by inhibitors of protein kinase C, calmodulin, diacylglycerol and myosin light chain kinases, and peptidyl prolyl cis-trans isomerase.

    Science.gov (United States)

    Bergstrand, H; Eriksson, T; Hallberg, A; Johansson, B; Karabelas, K; Michelsen, P; Nybom, A

    1992-12-01

    To assess the role of protein kinase C (PKC) in the respiratory burst of adherent human polymorphonuclear leukocytes (PMNL), reduction of ferricytochrome C by cells triggered with a phorbol ester (PMA), ionophore A23187, serum-treated zymosan (STZ) or three lipid derivatives, 3-decanoyl-sn-glycerol (G-3-OCOC9), (R,R)-1,4-diethyl-2-O-decyl-L-tartrate (Tt-2-OC10) and 3-decyloxy-5-hydroxymethylphenol (DHP) was examined in a microtiter plate procedure in the presence of inhibitors of PKC and, for comparison, inhibitors of calmodulin, diacylglycerol and myosin light chain kinases and the peptidyl-prolyl cis-trans isomerase activity of fujiphilin. 1) Of the protein kinase inhibitors examined, Ro 31-7549 and staurosporine reduced responses to all stimuli except possibly STZ; in contrast, K252a and the myosin light chain kinase inhibitors ML-7 and ML-9 blocked responses to A23187 and STZ better than those triggered by PMA. H-7 reduced responses to A23187, DHP and G-3-OCOC9, and calphostin, palmitoyl carnitine, sphingosine and the multifunctional drugs TMB-8 and W-7 reduced A23187; they also, when examined, reduced decane derivative-induced O2- production more effectively than PMA- and STZ-triggered responses. Polymyxin B, 4 alpha-PMA and retinal displayed no inhibitory capacity. 2) Of the selective calmodulin antagonists, CGS 9343B, Ro 22-4839 and calmidazolium did not inhibit the oxidative response irrespective of the stimulus used, whereas metofenazate reduced those evoked by A23187, DHP, G-3-OCOC9 and STZ.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. α₁-Antitrypsin protease inhibitor MZ heterozygosity is associated with airflow obstruction in two large cohorts

    DEFF Research Database (Denmark)

    Sørheim, Inga-Cecilie; Bakke, Per; Gulsvik, Amund

    2010-01-01

    Severe a1-antitrypsin deficiency is a known genetic risk factor for COPD. Heterozygous (protease inhibitor [PI] MZ) individuals have moderately reduced serum levels of a1-antitrypsin, but whether they have an increased risk of COPD is uncertain....

  18. Omeprazole increases the efficacy of a soluble epoxide hydrolase inhibitor in a PGE{sub 2} induced pain model

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Sumanta Kumar; Inceoglu, Bora; Yang, Jun; Wan, Debin; Kodani, Sean D. [Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA (United States); Trindade da Silva, Carlos Antonio [Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA (United States); Department of Genetics and Biochemistry, Federal University of Uberlandia, MG (Brazil); Morisseau, Christophe [Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA (United States)

    2015-12-15

    Epoxyeicosatrienoic acids (EETs) are potent endogenous analgesic metabolites produced from arachidonic acid by cytochrome P450s (P450s). Metabolism of EETs by soluble epoxide hydrolase (sEH) reduces their activity, while their stabilization by sEH inhibition decreases both inflammatory and neuropathic pain. Here, we tested the complementary hypothesis that increasing the level of EETs through induction of P450s by omeprazole (OME), can influence pain related signaling by itself, and potentiate the anti-hyperalgesic effect of sEH inhibitor. Rats were treated with OME (100 mg/kg/day, p.o., 7 days), sEH inhibitor TPPU (3 mg/kg/day, p.o.) and OME (100 mg/kg/day, p.o., 7 days) + TPPU (3 mg/kg/day, p.o., last 3 days of OME dose) dissolved in vehicle PEG400, and their effect on hyperalgesia (increased sensitivity to pain) induced by PGE{sub 2} was monitored. While OME treatment by itself exhibited variable effects on PGE{sub 2} induced hyperalgesia, it strongly potentiated the effect of TPPU in the same assay. The significant decrease in pain with OME + TPPU treatment correlated with the increased levels of EETs in plasma and increased activities of P450 1A1 and P450 1A2 in liver microsomes. The results show that reducing catabolism of EETs with a sEH inhibitor yielded a stronger analgesic effect than increasing generation of EETs by OME, and combination of both yielded the strongest pain reducing effect under the condition of this study. - Highlights: • The soluble epoxide hydrolase (sEH) inhibitor TPPU is anti-hyperalgesic. • Omeprazole potentiates the anti-hyperalgesic actions of TPPU. • This potentiation is associated with increased P450 activity. • The potentiation is associated with an increase in fatty acid epoxide/diol ratio. • Joint use of sEH inhibitors and P450 inducers could result in drug–drug interactions.

  19. Alterations in cellular energy metabolism associated with the antiproliferative effects of the ATM inhibitor KU-55933 and with metformin.

    Directory of Open Access Journals (Sweden)

    Mahvash Zakikhani

    Full Text Available KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM, an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT, we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation.

  20. SGLT2-inhibitors: a novel class for the treatment of type 2 diabetes introduction of SGLT2-inhibitors in clinical practice.

    Science.gov (United States)

    Cuypers, J; Mathieu, C; Benhalima, K

    2013-01-01

    Treatment of type 2 diabetes (T2DM) continues to present challenges, with significant proportion of patients failing to achieve and maintain glycemic targets. Despite the availability of many oral antidiabetic agents, therapeutic efficacy is offset by side effects such as weight gain and hypoglycemia. Therefore, the search for novel therapeutic agents with an improved benefit-risk profile continues. Recent research has focused on the kidney as a potential therapeutic target, especially because maximal renal glucose reabsorption is increased in T2DM. Under normal physiological conditions, nearly all filtered glucose is reabsorbed in the proximal tubule of the nephron, principally via the sodium-glucose cotransporter 2 (SGLT2). SGLT2-inhibitors are a new class of oral antidiabetics, which reduce hyperglycemia by increasing urinary glucose excretion independently of insulin secretion or action. Clinical results are promising with significant lowering of HbA1c without increased risk of hypoglycemia, reduction of body weight and reduction of systolic blood pressure. Dapagliflozin is the first highly selective SGLT2-inhibitor approved by the European Medecine Agency. Canagliflozin and empagliflozin are undergoing phase III trials. Actual safety issues are an increased risk for genital- and urinary tract infections and a possible increased risk for bladder and breast cancer. This led to refusal of dapagliflozin by the Food and Drug Administration (FDA). A large randomized control trial is therefore warranted by the FDA. This review provides an overview of the current evidence available so far on the therapeutic potential of the SGLT2-inhibitors for the treatment of T2DM.

  1. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study

    Directory of Open Access Journals (Sweden)

    Hussein Jwad Habeeb

    2018-03-01

    Full Text Available Mild steel is a metal which is commonly used in industrials and manufacturing of equipment for most industries round the world. It is cheaper cost compared with the other metals and its durable, hard and easy-to-wear physical properties make it a major choice in the manufacture of equipment parts. The main problem through the uses of mild steel in industry is its resistance against corrosion, especially in acidic solutions. This case led to raise the cost of maintenance of equipment that used mild steel and as a result increased costs for the company. Organic corrosive inhibitors that also act as green chemicals, 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol have been synthesized. This inhibitor is tested as corrosion inhibitor on a mild steel sample MS in 1 M hydrochloric acid solution (HCl using electrochemical measurements test includes PD (Potentiodynamic, EIS (Electrochemical impedance spectroscopy, OCP (Open circuit potential and EFM (electrochemical frequency modulation. The obtained results indicate that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol acts as a good corrosion inhibitor for mild steel sample in HCl solution with efficiency above 90%. Changes in the impedance parameters postulated adsorption on the mild steel specimens' surfaces of, which it going to the formation of protective coating layer. It also shows that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol corrosion inhibitors are effective in helping to reduce and slow down the corrosion process that occurs on mild steel surface in hydrochloric acid solution. Increase of corrosion inhibitor concentration provides a protective layer of mild steel. However, this protective layer becomes weak when the temperature of the solution increases. Keywords: Hydroxybenzylideneaminomethy, Potentiodynamic, Electrochemical frequency modulation, Impedance

  2. Aromatase inhibitors in stimulated IVF cycles

    Directory of Open Access Journals (Sweden)

    Tournaye Herman

    2011-06-01

    Full Text Available Abstract Aromatase inhibitors have been introduced as a new treatment modality that could challenge clomiphene citrate as an ovulation induction regiment in patients with PCOS. Although several randomized trials have been conducted regarding their use as ovulation induction agents, only few trials are available regarding their efficacy in IVF stimulated cycles. Current available evidence support that letrozole may have a promising role in stimulated IVF cycles, either when administered during the follicular phase for ovarian stimulation. Especially for women with poor ovarian response, letrozole appears to have the potential to increase clinical pregnancy rates when combined with gonadotropins, whereas at the same time reduces the total gonadotropin dose required for ovarian stimulation. However, given that in all of the trials letrozole has been administered in GnRH antagonist cycles, it is intriguing to test in the future how it may perform when used in GnRH agonist cycles. Finally administration of letrozole during luteal phase in IVF cycles offers another treatment modality for patients at high risk for OHSS taking into account that it drastically reduces estradiol levels

  3. 17-AAG kills intracellular Leishmania amazonensis while reducing inflammatory responses in infected macrophages.

    Science.gov (United States)

    Petersen, Antonio Luis de Oliveira Almeida; Guedes, Carlos Eduardo Sampaio; Versoza, Carolina Leite; Lima, José Geraldo Bomfim; de Freitas, Luiz Antônio Rodrigues; Borges, Valéria Matos; Veras, Patrícia Sampaio Tavares

    2012-01-01

    Leishmaniasis is a neglected endemic disease with a broad spectrum of clinical manifestations. Pentavalent antimonials have been the treatment of choice for the past 70 years and, due to the emergence of resistant cases, the efficacy of these drugs has come under scrutiny. Second-line drugs are less efficacious, cause a range of side effects and can be costly. The formulation of new generations of drugs, especially in developing countries, has become mandatory. We investigated the anti-leishmanial effect of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an HSP90 inhibitor, in vitro. This inhibitor is currently in clinical trials for cancer treatment; however, its effects against intracellular Leishmania remain untested. Macrophages infected with L. amazonensis were treated with 17-AAG (25-500 nM) and parasite load was quantified using optical microscopy. Parasite load declined in 17-AAG-treated macrophages in a dose- and time-dependent manner. Intracellular parasite death became irreversible after 4 h of treatment with 17-AAG, and occurred independent of nitric oxide (NO) and superoxide (O(2) (-)) production. Additionally, intracellular parasite viability was severely reduced after 48 h of treatment. Interestingly, treatment with 17-AAG reduced pro-inflammatory mediator production, including TNF-α, IL-6 and MCP-1, yet IL-12 remained unaffected. Electron microscopy revealed morphological alterations, such as double-membrane vacuoles and myelin figures at 24 and 48 h after 17-AAG treatment. The HSP90 inhibitor, 17-AAG, possesses high potency under low dosage and reduces both pro-inflammatory and oxidative molecule production. Therefore, further studies are warranted to investigate this inhibitor's potential in the development of new generations of anti-leishmanials.

  4. X-linked inhibitor of apoptosis regulates T cell effector function

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonnière, Lyne; Moore, Craig S

    2007-01-01

    To understand how the balance between pro- and anti-apoptotic signals influences effector function in the immune system, we studied the X-linked inhibitor of apoptosis (XIAP), an endogenous regulator of cellular apoptosis. Real-time PCR showed increased XIAP expression in blood of mice with exper......To understand how the balance between pro- and anti-apoptotic signals influences effector function in the immune system, we studied the X-linked inhibitor of apoptosis (XIAP), an endogenous regulator of cellular apoptosis. Real-time PCR showed increased XIAP expression in blood of mice...... dramatically reduced within the CNS. Flow cytometry showed an 88-93% reduction in T cells. The proportion of TUNEL(+) apoptotic CD4(+) T cells in the CNS was increased from Neurons...... and oligodendrocytes were not affected; neither did apoptosis increase in liver, where XIAP knockdown also occurred. ASO-XIAP increased susceptibility of T cells to activation-induced apoptosis in vitro. Our results identify XIAP as a critical controller of apoptotic susceptibility of effector T cell function...

  5. Flavonoids as Inhibitors of Human Butyrylcholinesterase Variants

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2014-01-01

    Full Text Available The inhibition of butyrylcholinesterase (BChE, EC 3.1.1.8 appears to be of interest in treating diseases with symptoms of reduced neurotransmitter levels, such as Alzheimer’s disease. However, BCHE gene polymorphism should not be neglected in research since it could have an effect on the expected outcome. Several well-known cholinergic drugs (e.g. galantamine, huperzine and rivastigmine originating from plants, or synthesised as derivatives of plant compounds, have shown that herbs could serve as a source of novel target-directed compounds. We focused our research on flavonoids, biologically active polyphenolic compounds found in many plants and plant-derived products, as BChE inhibitors. All of the tested flavonoids: galangin, quercetin, fisetin and luteolin reversibly inhibited usual, atypical, and fluoride-resistant variants of human BChE. The inhibition potency increased in the following order, identically for all three BChE variants: luteolininhibitor dissociation constants (Ki ranged from 10 to 170 mmol/L. We showed that no significant change in the inhibition potency of selected flavonoids exists in view of BChE polymorphism. Our results suggested that flavonoids could assist the further development of new BChE-targeted drugs for treating symptoms of neurodegenerative diseases and dementia.

  6. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  7. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Science.gov (United States)

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  8. SGLT2 inhibitors as adjunct therapy to insulin in type 1 diabetes: Meta analysis

    Directory of Open Access Journals (Sweden)

    Jiao CHEN

    2017-02-01

    Full Text Available Objective To evaluate the efficacy and safety of sodium glucose co-transporter-2 (SGLT-2 inhibitors as adjunct therapy to insulin in type 1 diabetes (T1DM. Methods The PubMed, The Cochrane Library, EMbase, CENTRRAI, CBM, CNKI, VIP and WangFang database were searched from inception to April 5, 2016 for systematic reviews, references screen was performed manually. The trials of SGLT2 inhibitors versus placebo add to insulin carried out in patients with T1DM were collected, and their bias risk was assessed and meta-analysis was conducted by using RevMan 5.3 software. Results Four randomized control trials (RCTs were yielded for meta-analysis, including 529 patients. Compared with control group, SGLT2 inhibitors as adjunct therapy to insulin significantly reduced fasting plasma glucose (FPG [weighted mean difference (WMD=–0.65mmol/L, 95% confidence interval (CI=–1.30 to –0.08, P<0.05], glycated hemoglobin A1C (HbA1c (WMD=–0.37%, 95%CI=–0.54 to –0.20, P<0.00001, body weight (WMD=–2.54kg, 95%CI=–3.48 to –1.60, P<0.0001 and total daily insulin dose (WMD=–6.23IU, 95% CI=–8.05 to –4.40, P<0.0001, but the total adverse events (AEs, hypoglycemia, genital and urinary infections showed no significant difference. Conclusions Based on current studies, SGLT-2 inhibitors are effective as adjunct therapy to insulin in T1DM, may improve glycemic control, reduce body weight and total daily insulin dose without increase of total AEs, hypoglycemia, and genital and urinary infections. DOI: 10.11855/j.issn.0577-7402.2016.12.15

  9. Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs)

    Science.gov (United States)

    Serotonin and norepinephrine reuptake inhibitors (SNRIs) Antidepressant SNRIs help relieve depression symptoms, such as irritability and sadness, ... effects they may cause. By Mayo Clinic Staff Serotonin and norepinephrine reuptake inhibitors (SNRIs) are a class ...

  10. Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure.

    Science.gov (United States)

    Rahman, Asadur; Hitomi, Hirofumi; Nishiyama, Akira

    2017-06-01

    Improvement in cardiovascular (CV) morbidity and mortality in the EMPA-REG OUTCOME study provides new insight into the therapeutic use of sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors in patients with type 2 diabetes. Although SGLT2 inhibitors have several pleiotropic effects, the underlying mechanism responsible for their cardioprotective effects remains undetermined. In this regard, the absence of a nocturnal fall in blood pressure (BP), that is, non-dipping BP, is a common phenomenon in type 2 diabetes and has a crucial role in the pathogenesis of CV morbidity and mortality. In most clinical trials, SGLT2 inhibitors reduce both systolic BP (~3-5 mm Hg) and diastolic BP (~2 mm Hg) in patients with type 2 diabetes. In addition, recent clinical and animal studies have revealed that SGLT2 inhibitors enable the change in BP circadian rhythm from a non-dipper to a dipper type, which is possibly associated with the improvement in CV outcomes in patients with type 2 diabetes. In this review, recent data on the effect of SGLT2 inhibitors on the circadian rhythm of BP will be summarized. The possible underlying mechanisms responsible for the SGLT2 inhibitor-induced improvement in the circadian rhythm of BP will also be discussed.

  11. EMPAGLIFLOZIN (SGLT2 INHIBITOR IN TYPE 2 DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Mohammed Umar Farooque

    2017-05-01

    Full Text Available BACKGROUND To study the analysis of metabolic parameters in patients with type 2 diabetes mellitus on empagliflozin, which is a SGLT2 inhibitor. MATERIALS AND METHODS This study was a prospective study of 120 patients with uncontrolled type 2 diabetes mellitus who were admitted as outpatients in JLNMCH Hospital, Bhagalpur. This study was conducted from February 2017 to April 2017. Informed consent was taken from each patient who participated in the study and the study protocol was approved by the institutions ethics and review board. Inclusion Criteria- Patients with type 2 diabetes mellitus and HbA1c >8% meeting any one of the criteria- Patients who were on dual therapy (metformin + sulfonylurea/DPP4 inhibitor; patients who were on triple therapy (metformin + sulfonylurea + DPP4 inhibitor; patients who were on insulin and triple oral therapy (metformin + sulfonylurea + DPP4 inhibitor. Exclusion Criteria- Patients who had history of genital mycotic infections, recurrent urinary tract infections, pyelonephritis, acute illness, type 1 diabetes, pregnant or lactating women, those patients who were with an eGFR below 45. RESULTS The mean age, duration of diabetes, weight and HbA1c in the study population was 54.36 ± 0.88 years, 14.2 ± 3.6 years, 76.25 ± 2.11 kgs and 9.66 ± 0.22%, respectively. The changes in weight and HbA1c were statistically significant across all groups. In 5% of the patients, genital pruritus was reported. Mycotic genital infection was seen in none of the patients on examination. All the four groups chose to discontinue the use of empagliflozin as a result of pruritus at follow up. The baseline daily insulin dose was 42 ± 25 units, and at 4 months, it was reduced to 34 ± 20 units. At follow up, the reduction in insulin level was 19.1% when compared to baseline. CONCLUSION This study showed that there was an improvement in glycaemic control and body weight with minimal side effects when SGLT2 inhibitor was added at any

  12. Assessing subunit dependency of the Plasmodium proteasome using small molecule inhibitors and active site probes.

    Science.gov (United States)

    Li, Hao; van der Linden, Wouter A; Verdoes, Martijn; Florea, Bogdan I; McAllister, Fiona E; Govindaswamy, Kavitha; Elias, Joshua E; Bhanot, Purnima; Overkleeft, Herman S; Bogyo, Matthew

    2014-08-15

    The ubiquitin-proteasome system (UPS) is a potential pathway for therapeutic intervention for pathogens such as Plasmodium, the causative agent of malaria. However, due to the essential nature of this proteolytic pathway, proteasome inhibitors must avoid inhibition of the host enzyme complex to prevent toxic side effects. The Plasmodium proteasome is poorly characterized, making rational design of inhibitors that induce selective parasite killing difficult. In this study, we developed a chemical probe that labels all catalytic sites of the Plasmodium proteasome. Using this probe, we identified several subunit selective small molecule inhibitors of the parasite enzyme complex. Treatment with an inhibitor that is specific for the β5 subunit during blood stage schizogony led to a dramatic decrease in parasite replication while short-term inhibition of the β2 subunit did not affect viability. Interestingly, coinhibition of both the β2 and β5 catalytic subunits resulted in enhanced parasite killing at all stages of the blood stage life cycle and reduced parasite levels in vivo to barely detectable levels. Parasite killing was achieved with overall low host toxicity, something that has not been possible with existing proteasome inhibitors. Our results highlight differences in the subunit dependency of the parasite and human proteasome, thus providing a strategy for development of potent antimalarial drugs with overall low host toxicity.

  13. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor.

    Science.gov (United States)

    Honma, Daisuke; Kanno, Osamu; Watanabe, Jun; Kinoshita, Junzo; Hirasawa, Makoto; Nosaka, Emi; Shiroishi, Machiko; Takizawa, Takeshi; Yasumatsu, Isao; Horiuchi, Takao; Nakao, Akira; Suzuki, Keisuke; Yamasaki, Tomonori; Nakajima, Katsuyoshi; Hayakawa, Miho; Yamazaki, Takanori; Yadav, Ajay Singh; Adachi, Nobuaki

    2017-10-01

    Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 and represses gene expression to regulate cell proliferation and differentiation. Enhancer of zeste homolog 2 (EZH2) or its close homolog EZH1 functions as a catalytic subunit of PRC2, so there are two PRC2 complexes containing either EZH2 or EZH1. Tumorigenic functions of EZH2 and its synthetic lethality with some subunits of SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes have been observed. However, little is known about the function of EZH1 in tumorigenesis. Herein, we developed novel, orally bioavailable EZH1/2 dual inhibitors that strongly and selectively inhibited methyltransferase activity of both EZH2 and EZH1. EZH1/2 dual inhibitors suppressed trimethylation of histone H3 lysine 27 in cells more than EZH2 selective inhibitors. They also showed greater antitumor efficacy than EZH2 selective inhibitor in vitro and in vivo against diffuse large B-cell lymphoma cells harboring gain-of-function mutation in EZH2. A hematological cancer panel assay indicated that EZH1/2 dual inhibitor has efficacy against some lymphomas, multiple myeloma, and leukemia with fusion genes such as MLL-AF9, MLL-AF4, and AML1-ETO. A solid cancer panel assay demonstrated that some cancer cell lines are sensitive to EZH1/2 dual inhibitor in vitro and in vivo. No clear correlation was detected between sensitivity to EZH1/2 dual inhibitor and SWI/SNF mutations, with a few exceptions. Severe toxicity was not seen in rats treated with EZH1/2 dual inhibitor for 14 days at drug levels higher than those used in the antitumor study. Our results indicate the possibility of EZH1/2 dual inhibitors for clinical applications. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Structure-Based Search for New Inhibitors of Cholinesterases

    Directory of Open Access Journals (Sweden)

    Barbara Malawska

    2013-03-01

    Full Text Available Cholinesterases are important biological targets responsible for regulation of cholinergic transmission, and their inhibitors are used for the treatment of Alzheimer’s disease. To design new cholinesterase inhibitors, of different structure-based design strategies was followed, including the modification of compounds from a previously developed library and a fragment-based design approach. This led to the selection of heterodimeric structures as potential inhibitors. Synthesis and biological evaluation of selected candidates confirmed that the designed compounds were acetylcholinesterase inhibitors with IC50 values in the mid-nanomolar to low micromolar range, and some of them were also butyrylcholinesterase inhibitors.

  15. Possible applications of gliptins (dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes mellitus on the various modes of insulin therapy

    Directory of Open Access Journals (Sweden)

    Gagik Radikovich Galstyan

    2015-10-01

    Full Text Available The evidence for DPP-4 inhibitors effectiveness at the late stages of type 2 diabetes mellitus (T2DM are still growing. This is particularly important for those patients who receive insulin without adequately glycemic control. This publication provides the overview of studies which demonstrate high efficacy of Vildagliptin in reducing the blood glucose level in patients with hight duration of T2DM and insulin therapy. DPP-4 inhibitors normalize basal and postprandial glucagon secretion with pancreas α-cells that helps to provide better glycemic control and to reduce a risk of hypoglycemia. Besides, there are very interesting data for Vildagliptin to reduce insulin requirement in T2DM patients in addition to HbA1clevel decrease.

  16. Reduced Contractility and Motility of Prostatic Cancer-Associated Fibroblasts after Inhibition of Heat Shock Protein 90

    Directory of Open Access Journals (Sweden)

    Alex Henke

    2016-08-01

    Full Text Available Background: Prostate cancer-associated fibroblasts (CAF can stimulate malignant progression and invasion of prostatic tumour cells via several mechanisms including those active in extracellular matrix; Methods: We isolated CAF from prostate cancer patients of Gleason Score 6–10 and confirmed their cancer-promoting activity using an in vivo tumour reconstitution assay comprised of CAF and BPH1 cells. We tested the effects of heat shock protein 90 (HSP90 inhibitors upon reconstituted tumour growth in vivo. Additionally, CAF contractility was measured in a 3D collagen contraction assay and migration was measured by scratch assay; Results: HSP90 inhibitors dipalmitoyl-radicicol and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG reduced tumour size and proliferation in CAF/BPH1 reconstituted tumours in vivo. We observed that the most contractile CAF were derived from patients with lower Gleason Score and of younger age compared with the least contractile CAF. HSP90 inhibitors radicicol and 17-DMAG inhibited contractility and reduced the migration of CAF in scratch assays. Intracellular levels of HSP70 and HSP90 were upregulated upon treatment with HSP90 inhibitors. Inhibition of HSP90 also led to a specific increase in transforming growth factor beta 2 (TGFβ2 levels in CAF; Conclusions: We suggest that HSP90 inhibitors act not only upon tumour cells, but also on CAF in the tumour microenvironment.

  17. Biological abatement of cellulase inhibitors.

    Science.gov (United States)

    Cao, Guangli; Ximenes, Eduardo; Nichols, Nancy N; Zhang, Leyu; Ladisch, Michael

    2013-10-01

    Removal of enzyme inhibitors released during lignocellulose pretreatment is essential for economically feasible biofuel production. We tested bio-abatement to mitigate enzyme inhibitor effects observed in corn stover liquors after pretreatment with either dilute acid or liquid hot water at 10% (w/v) solids. Bio-abatement of liquors was followed by enzymatic hydrolysis of cellulose. To distinguish between inhibitor effects on enzymes and recalcitrance of the substrate, pretreated corn stover solids were removed and replaced with 1% (w/v) Solka Floc. Cellulose conversion in the presence of bio-abated liquors from dilute acid pretreatment was 8.6% (0.1x enzyme) and 16% (1x enzyme) higher than control (non-abated) samples. In the presence of bio-abated liquor from liquid hot water pretreated corn stover, 10% (0.1x enzyme) and 13% (1x enzyme) higher cellulose conversion was obtained compared to control. Bio-abatement yielded improved enzyme hydrolysis in the same range as that obtained using a chemical (overliming) method for mitigating inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Phosphodiesterase inhibitors in clinical urology.

    Science.gov (United States)

    Ückert, Stefan; Kuczyk, Markus A; Oelke, Matthias

    2013-05-01

    To date, benign diseases of the male and female lower urinary and genital tract, such as erectile dysfunction, bladder overactivity, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and symptoms of female sexual dysfunction (including arousal and orgasmic disorders), can be therapeutically approached by influencing the function of the smooth musculature of the respective tissues. The use of isoenzyme-selective phosphodiesterase (PDE) inhibitors is considered a great opportunity to treat various diseases of the human urogenital tract. PDE inhibitors, in particular the PDE5 (cyclic GMP PDE) inhibitors avanafil, lodenafil, sildenafil, tadalafil, udenafil and vardenafil, are regarded as efficacious, having a fast onset of drug action and an improved effect-to-adverse event ratio, combining a high response rate with the advantage of an on-demand intake. The purpose of this review is to summarize recent as well as potential future indications, namely, erectile dysfunction, Peyronie's disease, overactive bladder, urinary stone disease, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and premature ejaculation, for the use of PDE inhibitors in clinical urology.

  19. AI-2 quorum-sensing inhibitors affect the starvation response and reduce virulence in several Vibrio species, most likely by interfering with LuxPQ.

    Science.gov (United States)

    Brackman, Gilles; Celen, Shari; Baruah, Kartik; Bossier, Peter; Van Calenbergh, Serge; Nelis, Hans J; Coenye, Tom

    2009-12-01

    The increase of disease outbreaks caused by Vibrio species in aquatic organisms as well as in humans, together with the emergence of antibiotic resistance in Vibrio species, has led to a growing interest in alternative disease control measures. Quorum sensing (QS) is a mechanism for regulating microbial gene expression in a cell density-dependent way. While there is good evidence for the involvement of auto-inducer 2 (AI-2)-based interspecies QS in the control of virulence in multiple Vibrio species, only few inhibitors of this system are known. From the screening of a small panel of nucleoside analogues for their ability to disturb AI-2-based QS, an adenosine derivative with a p-methoxyphenylpropionamide moiety at C-3' emerged as a promising hit. Its mechanism of inhibition was elucidated by measuring the effect on bioluminescence in a series of Vibrio harveyi AI-2 QS mutants. Our results indicate that this compound, as well as a truncated analogue lacking the adenine base, block AI-2-based QS without interfering with bacterial growth. The active compounds affected neither the bioluminescence system as such nor the production of AI-2, but most likely interfered with the signal transduction pathway at the level of LuxPQ in V. harveyi. The most active nucleoside analogue (designated LMC-21) was found to reduce the Vibrio species starvation response, to affect biofilm formation in Vibrio anguillarum, Vibrio vulnificus and Vibrio cholerae, to reduce pigment and protease production in V. anguillarum, and to protect gnotobiotic Artemia from V. harveyi-induced mortality.

  20. Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells.

    Science.gov (United States)

    Yoshioka, Masahiro; Ohashi, Shinya; Ida, Tomomi; Nakai, Yukie; Kikuchi, Osamu; Amanuma, Yusuke; Matsubara, Junichi; Yamada, Atsushi; Miyamoto, Shin'ichi; Natsuizaka, Mitsuteru; Nakagawa, Hiroshi; Chiba, Tsutomu; Seno, Hiroshi; Muto, Manabu

    2017-08-01

    Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR

  1. F8 haplotype and inhibitor risk: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort

    Science.gov (United States)

    Schwarz, John; Astermark, Jan; Menius, Erika D.; Carrington, Mary; Donfield, Sharyne M.; Gomperts, Edward D.; Nelson, George W.; Oldenburg, Johannes; Pavlova, Anna; Shapiro, Amy D.; Winkler, Cheryl A.; Berntorp, Erik

    2012-01-01

    Background Ancestral background, specifically African descent, confers higher risk for development of inhibitory antibodies to factor VIII (FVIII) in hemophilia A. It has been suggested that differences in the distribution of factor VIII gene (F8) haplotypes, and mismatch between endogenous F8 haplotypes and those comprising products used for treatment could contribute to risk. Design and Methods Data from the HIGS Combined Cohort were used to determine the association between F8 haplotype 3 (H3) vs. haplotypes 1 and 2 (H1+H2) and inhibitor risk among individuals of genetically-determined African descent. Other variables known to affect inhibitor risk including type of F8 mutation and HLA were included in the analysis. A second research question regarding risk related to mismatch in endogenous F8 haplotype and recombinant FVIII products used for treatment was addressed. Results H3 was associated with higher inhibitor risk among those genetically-identified (N=49) as of African ancestry, but the association did not remain significant after adjustment for F8 mutation type and the HLA variables. Among subjects of all racial ancestries enrolled in HIGS who reported early use of recombinant products (N=223), mismatch in endogenous haplotype and the FVIII proteins constituting the products used did not confer greater risk for inhibitor development. Conclusion H3 was not an independent predictor of inhibitor risk. Further, our findings did not support a higher risk of inhibitors in the presence of a haplotype mismatch between the FVIII molecule infused and that of the individual. PMID:22958194

  2. [Effects of biochar and nitrification inhibitor incorporation on global warming potential of a vegetable field in Nanjing, China].

    Science.gov (United States)

    Li, Bo; Li, Qiao-Ling; Fan, Chang-Hua; Sun, Li-Ying; Xiong, Zheng-Qin

    2014-09-01

    The influences of biochar and nitrification inhibitor incorporation on global warming potential (GWP) of a vegetable field were studied using the static chamber and gas chromatography method. Compared with the treatments without biochar addition, the annual GWP of N2O and CH4 and vegetable yield were increased by 8.7%-12.4% and 16.1%-52.5%, respectively, whereas the greenhouse gas intensity (GHGI) were decreased by 5.4%-28.7% following biochar amendment. Nitrification inhibitor significantly reduced the N2O emission while had little influence on CH4 emission, decreased GWP by 17.5%-20.6%, increased vegetable yield by 21.2%-40.1%, and decreased the GHGI significantly. The combined application of biochar and nitrification inhibitor significantly increased both vegetable yield and GWP, but to a greater extent for vegetable yield. Therefore, nitrification inhibitor incorporation could be served as an appropriate practice for increasing vegetable yield and mitigating GHG emissions in vegetable field.

  3. Monoamine depletion by reuptake inhibitors

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-10-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics Inc, Cape Coral, FL; 2Stein Orthopedic Associates, Plantation, FL; 3DBS Labs Inc, Duluth, MN, USABackground: Disagreement exists regarding the etiology of cessation of the observed clinical results with administration of reuptake inhibitors. Traditionally, when drug effects wane, it is known as tachyphylaxis. With reuptake inhibitors, the placebo effect is significantly greater than the drug effect in the treatment of depression and attention deficit hyperactivity disorder, leading some to assert that waning of drug effects is placebo relapse, not tachyphylaxis.Methods: Two groups were retrospectively evaluated. Group 1 was composed of subjects with depression and Group 2 was composed of bariatric subjects treated with reuptake inhibitors for appetite suppression.Results: In Group 1, 200 subjects with depression were treated with citalopram 20 mg per day. A total of 46.5% (n = 93 achieved relief of symptoms (Hamilton-D rating score ≤ 7, of whom 37 (39.8% of whom experienced recurrence of depression symptoms, at which point an amino acid precursor formula was started. Within 1–5 days, 97.3% (n = 36 experienced relief of depression symptoms. In Group 2, 220 subjects were treated with phentermine 30 mg in the morning and citalopram 20 mg at 4 pm. In this group, 90.0% (n = 198 achieved adequate appetite suppression. The appetite suppression ceased in all 198 subjects within 4–48 days. Administration of an amino acid precursor formula restored appetite suppression in 98.5% (n = 195 of subjects within 1–5 days.Conclusion: Reuptake inhibitors do not increase the total number of monoamine molecules in the central nervous system. Their mechanism of action facilitates redistribution of monoamines from one place to another. In the process, conditions are induced that facilitate depletion of monoamines. The "reuptake inhibitor monoamine depletion theory" of this paper

  4. Synergism between demethylation inhibitor fungicides or gibberellin inhibitor plant growth regulators and bifenthrin in a pyrethroid-resistant population of Listronotus maculicollis (Coleoptera: Curculionidae).

    Science.gov (United States)

    Ramoutar, D; Cowles, R S; Requintina, E; Alm, S R

    2010-10-01

    In 2007-2008, the "annual bluegrass weevil," Listronotus maculicollis Kirby (Coleoptera: Curculionidae), a serious pest of Poa annua L. (Poales: Poaceae) on U.S. golf courses, was shown to be resistant to two pyrethroids, bifenthrin and lambda-cyhalothrin. In 2008, we showed that bifenthrin resistance was principally mediated by oxidase detoxification (cytochrome P450 [P450]). P450s can be inhibited by demethylation inhibitor fungicides and gibberellin inhibitor plant growth regulators, both of which are commonly used on golf courses. We tested these compounds for synergistic activity with bifenthin against a pyrethroid-resistant population of L. maculicollis. The LD50 value for bifenthrin was significantly reduced from 87 ng per insect (without synergists) to 9.6-40 ng per insect after exposure to the fungicides fenarimol, fenpropimorph, prochloraz, propiconazole, and pyrifenox and the plant growth regulators flurprimidol, paclobutrazol, and trinexapac-ethyl. Simulated field exposure with formulated products registered for use on turf revealed enhanced mortality when adult weevils were exposed to bifenthrin (25% mortality, presented alone) combined with field dosages of propiconizole, fenarimol, flurprimidol, or trinexapac-ethyl (range, 49-70% mortality).

  5. Association of Genetic Variants Related to CETP Inhibitors and Statins With Lipoprotein Levels and Cardiovascular Risk

    NARCIS (Netherlands)

    Ference, Brian A.; Kastelein, John J. P.; Ginsberg, Henry N.; Chapman, M. John; Nicholls, Stephen J.; Ray, Kausik K.; Packard, Chris J.; Laufs, Ulrich; Brook, Robert D.; Oliver-Williams, Clare; Butterworth, Adam S.; Danesh, John; Smith, George Davey; Catapano, Alberico L.; Sabatine, Marc S.

    2017-01-01

    IMPORTANCE Some cholesteryl ester transfer protein (CETP) inhibitors lower low-density lipoprotein cholesterol (LDL-C) levels without reducing cardiovascular events, suggesting that the clinical benefit of lowering LDL-C may depend on how LDL-C is lowered. OBJECTIVE To estimate the association

  6. Theoretical study on the interaction of pyrrolopyrimidine derivatives as LIMK2 inhibitors: insight into structure-based inhibitor design.

    Science.gov (United States)

    Shen, Mingyun; Zhou, Shunye; Li, Youyong; Li, Dan; Hou, Tingjun

    2013-10-01

    LIM kinases (LIMKs), downstream of Rho-associated protein kinases (ROCKs) and p21-activated protein kinases (PAKs), are shown to be promising targets for the treatment of cancers. In this study, the inhibition mechanism of 41 pyrrolopyrimidine derivatives as LIMK2 inhibitors was explored through a series of theoretical approaches. First, a model of LIMK2 was generated through molecular homology modeling, and the studied inhibitors were docked into the binding active site of LIMK2 by the docking protocol, taking into consideration the flexibility of the protein. The binding poses predicted by molecular docking for 17 selected inhibitors with different bioactivities complexed with LIMK2 underwent molecular dynamics (MD) simulations, and the binding free energies for the complexes were predicted by using the molecular mechanics/generalized born surface area (MM/GBSA) method. The predicted binding free energies correlated well with the experimental bioactivities (r(2) = 0.63 or 0.62). Next, the free energy decomposition analysis was utilized to highlight the following key structural features related to biological activity: (1) the important H-bond between Ile408 and pyrrolopyrimidine, (2) the H-bonds between the inhibitors and Asp469 and Gly471 which maintain the stability of the DFG-out conformation, and (3) the hydrophobic interactions between the inhibitors and several key residues (Leu337, Phe342, Ala345, Val358, Lys360, Leu389, Ile408, Leu458 and Leu472). Finally, a variety of LIMK2 inhibitors with a pyrrolopyrimidine scaffold were designed, some of which showed improved potency according to the predictions. Our studies suggest that the use of molecular docking with MD simulations and free energy calculations could be a powerful tool for understanding the binding mechanism of LIMK2 inhibitors and for the design of more potent LIMK2 inhibitors.

  7. The effect of marimastat, a metalloprotease inhibitor, on allergen-induced asthmatic hyper-reactivity

    International Nuclear Information System (INIS)

    Bruce, Colleen; Thomas, Paul S.

    2005-01-01

    This pilot study was designed to assess whether a synthetic matrix metalloproteinase (MMP) inhibitor has anti-inflammatory properties in mild asthma. Tumor necrosis factor alpha (TNFα) has been shown to be an important cytokine in the pathogenesis of allergic airway inflammatory responses, and its release can be inhibited by MMP inhibitors. Twelve atopic asthmatic subjects received the MMP inhibitor marimastat (5 mg) or placebo, twice daily for 3 weeks, separated by a 6-week washout period in a randomized, double-blind, cross-over manner. All subjects underwent an allergen inhalation provocation test to Dermatophagoides pteronyssinus before and after each study phase. Spirometry, exhaled NO (eNO) levels, differential sputum cell counts, an asthma symptom questionnaire, peak flow, and β 2 -agonist usage were measured. Nine subjects completed the study, and, when compared with placebo, marimastat reduced bronchial hyper-responsiveness to inhaled allergen in these subjects from an allergen PC 20 of 22.2 AU/ml (95%CI 11.7-32.6) to 17.0 AU/ml (95%CI 7.6-26.4, P = 0.02). The marimastat phase showed a nonsignificant fall in sputum inflammatory cells. Marimastat did not modify eNO, FEV 1 , asthma symptoms, or albuterol usage. In conclusion, airway responsiveness to allergen may be modified by a MMP inhibitor, perhaps via TNFα playing a role in airway inflammation and remodeling

  8. Predicting DPP-IV inhibitors with machine learning approaches

    Science.gov (United States)

    Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun

    2017-04-01

    Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

  9. Glucagon-like peptide receptor agonists and dipeptidyl peptidase-4 inhibitors in the treatment of diabetes: a review of clinical trials

    DEFF Research Database (Denmark)

    Madsbad, Sten; Krarup, Thure; Deacon, Carolyn F

    2008-01-01

    -acting glucagon-like peptide-1 receptor agonists liraglutide and exenatide long-acting release reduce haemoglobin A1c by about 1.0-2.0% and have fewer gastrointestinal side-effects. The orally available dipeptidyl peptidase-4 inhibitors, that is sitagliptin and vildagliptin reduce haemoglobin A1c by 0...

  10. Effectiveness of neuraminidase inhibitors for preventing staff absenteeism during pandemic influenza

    OpenAIRE

    Lee, VJ; Chen, MI

    2007-01-01

    We used a deterministic SEIR (susceptible-exposed-infectious-removed) meta-population model, together with scenario, sensitivity, and simulation analyses, to determine stockpiling strategies for neuraminidase inhibitors that would minimize absenteeism among healthcare workers. A pandemic with a basic reproductive number (R0) of 2.5 resulted in peak absenteeism of 10%. Treatment decreased peak absenteeism to 8%, while 8 weeks' prophylaxis reduced it to 2%. For pandemics with higher R0, peak ab...

  11. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Science.gov (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  12. Cardiovascular risk reduction by reversing endothelial dysfunction: ARBs, ACE inhibitors,  or both? Expectations from The ONTARGET  Trial Programme

    Directory of Open Access Journals (Sweden)

    Luis Miguel  Ruilope

    2007-03-01

    Full Text Available Luis Miguel  Ruilope1, Josep Redón2, Roland Schmieder31Servicio de Nefrologia, Unidad de Hipertension Hospital, 12 de Octubre, Madrid, Spain; 2Department of Internal Medicine, Hospital Clinico University of Valencia, Valencia, Spain; 3Department of Nephrology and Hypertension, Friedrich-Alexander-Universitat, Erlangen-Nurnberg, GermanyAbstract: Endothelial dysfunction is the initial pathophysiological step in a progression of vascular damage that leads to overt cardiovascular and chronic kidney disease. Angiotensin II, the primary agent of the renin–angiotensin system (RAS, has a central role in endothelial dysfunction. Therefore, RAS blockade with an angiotensin receptor blocker (ARB and/or angiotensin-converting enzyme (ACE inhibitor provides a rational approach to reverse endothelial dysfunction, reduce microalbuminuria, and, thus, improves cardiovascular and renal prognosis. ARBs and ACE inhibitors act at different points in the RAS pathway and recent evidence suggests that there are differences regarding their effects on endothelial dysfunction. In addition to blood pressure lowering, studies have shown that ARBs reduce target-organ damage, including improvements in endothelial dysfunction, arterial stiffness, the progression of renal dysfunction in patients with type 2 diabetes, proteinuria, and left ventricular hypertrophy. The ONgoing Telmisartan Alone in combination with Ramipril Global Endpoint Trial (ONTARGET Programme is expected to provide the ultimate evidence of whether improved endothelial func tion translates into reduced cardiovascular and renal events in high-risk patients, and to assess possible differential outcomes with telmisartan, the ACE inhibitor ramipril, or a combination of both (dual RAS blockade. Completion of ONTARGET is expected in 2008. Keywords: angiotensin-converting enzyme inhibitor, angiotensin receptor blocker, endothelial dysfunction, ONTARGET, renin–angiotensin system, telmisartan

  13. Thickened water-based hydraulic fluid with reduced dependence of viscosity on temperature

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C. F.

    1985-01-01

    Improved hydraulic fluids or metalworking lubricants, utilizing mixtures of water, metal lubricants, metal corrosion inhibitors, and an associative polyether thickener, have reduced dependence of the viscosity on temperature achieved by the incorporation therein of an ethoxylated polyether surfactant.

  14. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  15. ELISA analysis of soybean trypsin inhibitors in processed foods.

    Science.gov (United States)

    Brandon, D L; Bates, A H; Friedman, M

    1991-01-01

    Soybean proteins are widely used in human foods in a variety of forms, including infant formulas, flour, protein concentrates, protein isolates, soy sauces, textured soy fibers, and tofu. The presence of inhibitors of digestive enzymes in soy proteins impairs the nutritional quality and possibly the safety of soybeans and other legumes. Processing, based on the use of heat or fractionation of protein isolates, does not completely inactivate or remove these inhibitors, so that residual amounts of inhibitors are consumed by animals and humans. New monoclonal antibody-based immunoassays can measure low levels of the soybean Kunitz trypsin inhibitor (KTI) and the Bowman-Birk trypsin and chymotrypsin inhibitor (BBI) and the Bowman-Birk foods. The enzyme-linked immunosorbent assay (ELISA) was used to measure the inhibitor content of soy concentrates, isolates, and flours, both heated and unheated; a commercial soy infant formula; KTI and BBI with rearranged disulfide bonds; browning products derived from heat-treatment of KTI with glucose and starch; and KTI exposed to high pH. The results indicate that even low inhibitor isolates contain significant amounts of specific inhibitors. Thus, infants on soy formula consume about 10 mg of KTI plus BBI per day. The immunoassays complement the established enzymatic assays of trypsin and chymotrypsin inhibitors, and have advantages in (a) measuring low levels of inhibitors in processed foods; and (b) differentiating between the Kunitz and Bowman-Birk inhibitors. The significance of our findings for food safety are discussed.

  16. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    Science.gov (United States)

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  17. Classification of Cytochrome P450 1A2 Inhibitors and Non-Inhibitors by Machine Learning Techniques

    DEFF Research Database (Denmark)

    Vasanthanathan, Poongavanam; Taboureau, Olivier; Oostenbrink, Chris

    2009-01-01

    of CYP1A2 inhibitors and non-inhibitors. Training and test sets consisted of about 400 and 7000 compounds, respectively. Various machine learning techniques, like binary QSAR, support vector machine (SVM), random forest, kappa nearest neighbors (kNN), and decision tree methods were used to develop...

  18. Retro-binding thrombin active site inhibitors: identification of an orally active inhibitor of thrombin catalytic activity.

    Science.gov (United States)

    Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M

    2002-11-04

    A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.

  19. Combined inhibition of monoacylglycerol lipase and cyclooxygenases synergistically reduces neuropathic pain in mice

    Science.gov (United States)

    Crowe, Molly S; Leishman, Emma; Banks, Matthew L; Gujjar, Ramesh; Mahadevan, Anu; Bradshaw, Heather B; Kinsey, Steven G

    2015-01-01

    Background and Purpose Neuropathic pain is commonly treated with GABA analogues, steroids or non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs inhibit one or more COX isozymes but chronic COX inhibition paradoxically increases gastrointestinal inflammation and risk of unwanted cardiovascular events. The cannabinoids also have analgesic and anti-inflammatory properties and reduce neuropathic pain in animal models. The present study investigated the analgesic effects of inhibiting both monoacylglycerol lipase (MAGL) and COX enzymes, using low doses of both inhibitors. Experimental Approach Mice subjected to chronic constriction injury (CCI) were tested for mechanical and cold allodynia after administration of the MAGL inhibitor, JZL184, or the non-selective COX inhibitor diclofenac. Then, both drugs were co-administered at fixed dose proportions of 1:3, 1:1 and 3:1, based on their ED50 values. PGs, endocannabinoids and related lipids were quantified in lumbar spinal cord. Key Results Combining low doses of JZL184 and diclofenac synergistically attenuated mechanical allodynia and additively reduced cold allodynia. The cannabinoid CB1 receptor antagonist, rimonabant, but not the CB2 receptor antagonist, SR144528, blocked the analgesic effects of the JZL184 and diclofenac combination on mechanical allodynia, implying that CB1 receptors were primarily responsible for the anti-allodynia. Diclofenac alone and with JZL184 significantly reduced PGE2 and PGF2α in lumbar spinal cord tissue, whereas JZL184 alone caused significant increases in the endocannabinoid metabolite, N-arachidonoyl glycine. Conclusions and Implications Combining COX and MAGL inhibition is a promising therapeutic approach for reducing neuropathic pain with minimal side effects. PMID:25393148

  20. 2-Butyne-1,4-diol as a novel corrosion inhibitor for API X65 steel pipeline in carbonate/bicarbonate solution

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi Meresht, E. [Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, 1411713114, Tehran (Iran, Islamic Republic of); Shahrabi Farahani, T., E-mail: tshahrabi34@modares.ac.ir [Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, 1411713114, Tehran (Iran, Islamic Republic of); Neshati, J. [Research Institute of Petroleum Industry, RIPI, 1485733111, Tehran (Iran, Islamic Republic of)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Corrosion of API 5L X65 is effectively reduced by the addition of the inhibitor. Black-Right-Pointing-Pointer The techniques include weight loss, potentiodynamic polarization, EIS and AFM. Black-Right-Pointing-Pointer 2-Butyne-1,4-diol acts as a mixed-type inhibitor. Black-Right-Pointing-Pointer The adsorption of 2-butyne-1,4-diol obeys Langmuir adsorption isotherm. - Abstract: The inhibition effects of 2-butyne-1,4-diol on the corrosion susceptibility of grade API 5L X65 steel pipeline in 2 M Na{sub 2}CO{sub 3}/1 M NaHCO{sub 3} solution were studied by electrochemical techniques and weight loss measurements. The results indicated that this inhibitor was a mixed-type inhibitor, with a maximum percentage inhibition efficiency of approximately 92% in the presence of 5 mM inhibitor. Atomic force microscopy revealed that a protective film was formed on the surface of the inhibited sample. The adsorption of the inhibitor was found to conform to the Langmuir isotherm with the standard adsorption free energy of -21.08 kJ mol{sup -1}.

  1. PDE5 inhibitors blunt inflammation in human BPH: a potential mechanism of action for PDE5 inhibitors in LUTS.

    Science.gov (United States)

    Vignozzi, Linda; Gacci, Mauro; Cellai, Ilaria; Morelli, Annamaria; Maneschi, Elena; Comeglio, Paolo; Santi, Raffaella; Filippi, Sandra; Sebastianelli, Arcangelo; Nesi, Gabriella; Serni, Sergio; Carini, Marco; Maggi, Mario

    2013-09-01

    Metabolic syndrome (MetS) and benign prostate hyperplasia (BPH)/low urinary tract symptoms (LUTS) are often comorbid. Chronic inflammation is one of the putative links between these diseases. Phosphodiesterase type 5 inhibitors (PDE5i) are recognized as an effective treatment of BPH-related LUTS. One proposed mechanism of action of PDE5 is the inhibition of intraprostatic inflammation. In this study we investigate whether PDE5i could blunt inflammation in the human prostate. Evaluation of the effect of tadalafil and vardenafil on secretion of interleukin 8 (IL-8, a surrogate marker of prostate inflammation) by human myofibroblast prostatic cells (hBPH) exposed to different inflammatory stimuli. We preliminary evaluate histological features of prostatic inflammatory infiltrates in BPH patients enrolled in a randomized, double bind, placebo controlled study aimed at investigating the efficacy of vardenafil (10 mg/day, for 12 weeks) on BPH/LUTS. In vitro treatment with tadalafil or vardenafil on hBPH reduced IL-8 secretion induced by either TNFα or metabolic factors, including oxidized low-density lipoprotein, oxLDL, to the same extent as a PDE5-insensitive PKG agonist Sp-8-Br-PET-cGMP. These effects were reverted by the PKG inhibitor KT5823, suggesting a cGMP/PKG-dependency. Treatment with tadalafil or vardenafil significantly suppressed oxLDL receptor (LOX-1) expression. Histological evaluation of anti-CD45 staining (CD45 score) in prostatectomy specimens of BPH patients showed a positive association with MetS severity. Reduced HDL-cholesterol and elevated triglycerides were the only MetS factors significantly associated with CD45 score. In the MetS cohort there was a significant lower CD45 score in the vardenafil-arm versus the placebo-one. © 2013 Wiley Periodicals, Inc.

  2. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  3. Epinephrine impairs insulin release by a mechanism distal to calcium mobilization. Similarity to lipoxygenase inhibitors

    International Nuclear Information System (INIS)

    Metz, S.A.

    1988-01-01

    The mechanisms that enable epinephrine (EPI) and lipoxygenase inhibitors to impede insulin secretion are unknown. We examined the possibility that EPI inhibits Ca 2+ fluxes as its major mechanism by studying 45 Ca efflux from prelabeled, intact rat islets. EPI (2.5 x 10(-7) to 1 x 10(-5) M) inhibited insulin release induced by the influx of extracellular Ca 2+ (46 mM K+) or the mobilization of intracellular Ca 2+ stores (2 mM Ba 2+ ), but it did not reduce the 45 Ca efflux stimulated by either agonist. EPI also nullified insulin release induced by isobutylmethylxanthine or dibutyryl cAMP, with minimal or no effects on 45 Ca efflux, and blocked the insulinotropic effects of 12-O-tetradecanoylphorbol-13-acetate (a direct activator of protein kinase C), which is believed primarily to sensitize the exocytotic apparatus to Ca 2+ without mobilizing additional Ca 2+ . Previously we reported that similar effects were induced by inhibitors of pancreatic islet lipoxygenase. In this study, however, pretreatment with either the alpha 2-adrenergic antagonist yohimbine or pertussis toxin did not block the effects of lipoxygenase inhibitors, although either agent did block the effects of EPI. Thus, EPI, via an alpha 2-receptor mechanism, is able to reduce exocytosis largely distal to, or independent of, changes in Ca 2+ flux, cAMP formation or its Ca 2+ -mobilizing action, or generation of protein kinase C activators. Therefore, EPI may reduce the sensitivity of the exocytotic apparatus to Ca 2+ . Inhibition of islet lipoxygenase may have a similar effect; however, in this case, the effect would have to be unrelated, or distal, to stimulation of alpha 2-receptors

  4. Plasma NGAL and glomerular filtration rate in cardiac transplant recipients treated with standard or reduced calcineurin inhibitor levels

    DEFF Research Database (Denmark)

    Gustafsson, Finn; Gude, Einar; Sigurdardottir, Vilborg

    2014-01-01

    GFR) at baseline (R(2) = 0.21; p year (median [25-75 % percentiles]: ΔmGFR 5.5 [-0.5-11.5] vs -1 [-7-4] ml/min/1.73 m(2); p = 0.006). Baseline P-NGAL predicted mGFR after 1 year (R(2) = 0.18; p ...: P-NGAL was measured in 88 cardiac transplantation patients (median 5 years post-transplant) with renal dysfunction randomized to continuation of conventional calcineurin inhibitor-based immunosuppression or switching to an everolimus-based regimen. RESULTS: P-NGAL correlated with measured GFR (m...

  5. Nonnucleoside Reverse-transcriptase Inhibitor- vs Ritonavir-boosted Protease Inhibitor-based Regimens for Initial Treatment of HIV Infection

    DEFF Research Database (Denmark)

    Borges, Álvaro H; Lundh, Andreas; Tendal, Britta

    2016-01-01

    BACKGROUND: Previous studies suggest that nonnucleoside reverse-transcriptase inhibitors (NNRTIs) cause faster virologic suppression, while ritonavir-boosted protease inhibitors (PI/r) recover more CD4 cells. However, individual trials have not been powered to compare clinical outcomes. METHODS: ...

  6. Chelation: A Fundamental Mechanism of Action of AGE Inhibitors, AGE Breakers, and Other Inhibitors of Diabetes Complications

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Rhoji; Murray, David B.; Metz, Thomas O.; Baynes, John

    2012-03-01

    Advanced glycation or glycoxidation end-products (AGE) increase in tissue proteins with age, and their rate of accumulation is increased in diabetes, nephropathy and inflammatory diseases. AGE inhibitors include a range of compounds that are proposed to act by trapping carbonyl and dicarbonyl intermediates in AGE formation. However, some among the newer generation of AGE inhibitors lack reactive functional groups that would trap reaction intermediates, indicating an alternative mechanism of action. We propose that AGE inhibitors function primarily as chelators, inhibiting metal-catalyzed oxidation reactions. The AGE-inhibitory activity of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers is also consistent with their chelating activity. Finally, compounds described as AGE breakers, or their hydrolysis products, also have strong chelating activity, suggesting that these compounds also act through their chelating activity. We conclude that chelation is the common, and perhaps the primary, mechanism of action of AGE inhibitors and breakers, and that chronic, mild chelation therapy should prove useful in treatment of diabetes and age-related diseases characterized by oxidative stress, inflammation and increased chemical modification of tissue proteins by advanced glycoxidation and lipoxidation end-products.

  7. The appropriateness of a proton pump inhibitor prescription.

    LENUS (Irish Health Repository)

    Moran, N

    2014-11-01

    Proton pump inhibitors (PPIs) are one of the most commonly prescribed groups of drug in Ireland, at great expense to the Irish healthcare executive. This study aims to evaluate the appropriateness of PPI prescriptions on admission and discharge in a tertiary referral hospital. All non-elective admissions in the Emergency Department in one week were included in the study. 102 patients in total were included, with 36 (35.4%) treated with a PPI on admission. Of these, only 3 (8.3%) had a clear indication noted as per current NICE guidelines. 18 new in-hospital PPI prescriptions were documented. 11 (61%) of which were present on discharge prescriptions. Continuing PPI prescription on discharge into the community may be inappropriate, costly and potentially harmful. Brief interventions aimed at reducing inappropriate PPI prescriptions have been shown to be effective at reducing the cost and potential harm of unnecessary treatment.

  8. The Anti-Inflammatory Effects of Lipoxygenase and Cyclo-Oxygenase Inhibitors in Inflammation-Induced Human Fetal Glia Cells and the Aβ Degradation Capacity of Human Fetal Astrocytes in an Ex vivo Assay

    Directory of Open Access Journals (Sweden)

    Rea Pihlaja

    2017-05-01

    Full Text Available Chronic inflammation is a common phenomenon present in the background of multiple neurodegenerative diseases, including Alzheimer's disease (AD. The arachidonic acid pathway overproduces proinflammatory eicosanoids during these states and glial cells in the brain gradually lose their vital functions of protecting and supporting neurons. In this study, the role of different key enzymes of the eicosanoid pathway mediating inflammatory responses was examined in vitro and ex vivo using human fetal glial cells. Astrocytes and microglia were exposed to proinflammatory agents i.e., cytokines interleukin 1-β (IL-1β and tumor necrosis factor (TNF-α. ELISA assays were used to examine the effects of inhibitors of key enzymes in the eicosanoid pathway. Inhibitors for 5-lipoxygenase (5-LOX and cyclo-oxygenase 2 (COX-2 in both cell types and 5-, 12-, and 15-LOX-inhibitor in astrocytes reduced significantly IL-6 secretion, compared to exposed glial cells without inhibitors. The cytokine antibody array showed that especially treatments with 5, -12, and -15 LOX inhibitor in astrocytes, 5-LOX inhibitor in microglia and COX-2 inhibitor in both glial cell types significantly reduced the expression of multiple proinflammatory cytokines. Furthermore, human fetal astrocytes and microglia were cultured on top of AD-affected and control human brain sections for 30 h. According to the immunochemical evaluation of the level of total Aβ, astrocytes were very efficient at degrading Aβ from AD-affected brain sections ex vivo; simultaneously added enzyme inhibitors did not increase their Aβ degradation capabilities. Microglia were not able to reduce the level of total Aβ during the 30 h incubation time.

  9. Potential non-oncological applications of histone deacetylase inhibitors.

    Science.gov (United States)

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  10. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali

    2011-06-26

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  11. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali; Eissa, Hala F.; El-Domyati, Fotouh M.; Saleh, Osama Mesilhy; Ibrahim, Nasser E.; Salama, M. I.; Mahfouz, Magdy M.; Bahieldin, Ahmed M.

    2011-01-01

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  12. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    Science.gov (United States)

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  13. Effectiveness and safety of dipeptidyl peptidase 4 inhibitors in the management of type 2 diabetes in older adults: a systematic review and development of recommendations to reduce inappropriate prescribing.

    Science.gov (United States)

    Schott, Gisela; Martinez, Yolanda V; Ediriweera de Silva, R Erandie; Renom-Guiteras, Anna; Vögele, Anna; Reeves, David; Kunnamo, Ilkka; Marttila-Vaara, Minna; Sönnichsen, Andreas

    2017-10-16

    Preventable drug-related hospital admissions can be associated with drugs used in diabetes and the benefits of strict diabetes control may not outweigh the risks, especially in older populations. The aim of this study was to look for evidence on risks and benefits of DPP-4 inhibitors in older adults and to use this evidence to develop recommendations for the electronic decision support tool of the PRIMA-eDS project. Systematic review using a staged approach which searches for systematic reviews and meta-analyses first, then individual studies only if prior searches were inconclusive. The target population were older people (≥65 years old) with type 2 diabetes. We included studies reporting on the efficacy and/or safety of DPP-4 inhibitors for the management of type 2 diabetes. Studies were included irrespective of DPP-4 inhibitors prescribed as monotherapy or in combination with any other drug for the treatment of type 2 diabetes. The target intervention was DPP-4 inhibitors compared to placebo, no treatment, other drugs to treat type 2 diabetes or a non-pharmacological intervention. Thirty studies (reported in 33 publications) were included: 1 meta-analysis, 17 intervention studies and 12 observational studies. Sixteen studies were focused on older adults and 14 studies reported subgroup analyses in participants ≥65, ≥70, or ≥75 years. Comorbidities were reported by 26 studies and frailty or functional status by one study. There were conflicting findings regarding the effectiveness of DPP-4 inhibitors in older adults. In general, DPP-4 inhibitors showed similar or better safety than placebo and other antidiabetic drugs. However, these safety data are mainly based on short-term outcomes like hypoglycaemia in studies with HbA1c control levels recommended for younger people. One recommendation was developed advising clinicians to reconsider the use of DPP-4 inhibitors for the management of type 2 diabetes in older adults with HbA1c companies and authored or

  14. HMG-CoA reductase inhibitors, other lipid-lowering medication, antiplatelet therapy, and the risk of venous thrombosis

    NARCIS (Netherlands)

    Ramcharan, A.S.; van Stralen, K.J.; Snoep, J.D.; Mantel-Teeuwisse, A.K.; Doggen, Catharina Jacoba Maria

    2009-01-01

    Background: Statins [3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors] and antiplatelet therapy reduce the risk of atherosclerotic disease. Besides a reduction of lipid levels, statins might also have antithrombotic and anti-inflammatory properties, and anti-platelet

  15. Regulation of collagenase inhibitor production in chondrosarcoma chondrocytes

    International Nuclear Information System (INIS)

    Harper, J.; Harper, E.

    1987-01-01

    Swarm rat chondrosarcoma chondrocytes produce an inhibitor of collagenase. This inhibitor is similar to those isolated from normal cartilage tissues. These cells will synthesize proteins in the absence of serum. Since serum contains inhibitors of collagenase, it is necessary to culture cells without serum in order to obtain accurate measurements of enzyme and inhibitor levels. They examined the effect of insulin on inhibitor secretion by cultures of Swarm rat chondrosarcoma chondrocytes. They observed a 2.5 to 3.5 fold stimulation of inhibitory activity in the presence of as little as 10 ng/ml insulin as compared to controls in serum free Dulbecco's modified Eagle's medium supplemented with 4.5 g/l glucose. The units of inhibitor were determined over a 7 day culture period. Medium was harvested daily and assayed for collagenase activity and for inhibition of a known collagenase from rabbit skin or human skin, using the 14 C-glycine peptide release assay. The amount of inhibitor obtained from days 2 through 7 were: 1.4 unit (control), 3.8 units (10 ng/ml insulin), 5.2 units (1 μg/ml insulin). The addition of 1 mM dibutyryl cyclic AMP to these chondrocytes in the presence of 1 μg/ml insulin caused a decrease in the level of inhibitor, suggesting that a dephosphorylation event may be necessary for this stimulation by insulin to occur

  16. Structural Biology and Molecular Modeling in the Design of Novel DPP-4 Inhibitors

    Science.gov (United States)

    Scapin, Giovanna

    Inhibition of dipeptidyl peptidase IV (DPP-4) is a promising new approach for the treatment of type 2 diabetes. DPP-4 is the enzyme responsible for inactivating the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP), two hormones that play important roles in glucose homeostasis. The potent, orally bioavailable and highly selective small molecule DPP-4 inhibitor sitagliptin has been approved by the FDA as novel drug for the treatment of type 2 diabetes. The comparison between the binding mode of sitagliptin (a β-amino acid) and that of a second class of inhibitors (α-amino acid-based) initially led to the successful identification and design of structurally diverse and highly potent DPP-4 inhibitors. Further analysis of the crystal structure of sitagliptin bound to DPP-4 suggested that the central β-amino butanoyl moiety could be replaced by a rigid group. This was confirmed by molecular modeling, and the resulting cyclohexylamine analogs were synthesized and found to be potent DPP-4 inhibitors. However, the triazolopyrazine was predicted to be distorted in order to fit in the binding pocket, and the crystal structure showed that multiple conformations exist for this moiety. Additional molecular modeling studies were then used to improve potency of the cyclohexylamine series. In addition, a 3-D QSAR method was used to gain insight for reducing off-target DPP-8/9 activities. Novel compounds were thus synthesized and found to be potent DPP-4 inhibitors. Two compounds in particular were designed to be highly selective against off-target "DPP-4 Activity- and/or Structure Homologues" (DASH) enzymes while maintaining potency against DPP-4.

  17. Developing BACE-1 inhibitors for FXS

    Directory of Open Access Journals (Sweden)

    Cara J Westmark

    2013-05-01

    Full Text Available Fragile X syndrome (FXS is a debilitating genetic disorder with no cure and few therapeutic options. Excessive signaling through metabotropic glutamate receptor 5 (mGluR5 in FXS leads to increased translation of numerous synaptic proteins and exaggerated long-term depression (LTD. Two of the overexpressed proteins are amyloid-beta protein precursor (APP and its metabolite amyloid-beta (Aβ, which have been well-studied in Alzheimer’s disease (AD. Here we discus the possibility that pharmaceuticals under study for the modulation of these proteins in AD might be viable therapeutic strategies for FXS. Specifically, a recently identified acetyltransferase (ATase inhibitor that reduces the levels and activity of β-site APP cleaving enzyme (BACE-1 has strong potential to attenuate BACE-1 activity and maintain homeostatic levels APP catabolites in FXS.

  18. Resistance to BET Inhibitor Leads to Alternative Therapeutic Vulnerabilities in Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Pawar, Aishwarya; Gollavilli, Paradesi Naidu; Wang, Shaomeng; Asangani, Irfan A

    2018-02-27

    BRD4 plays a major role in the transcription networks orchestrated by androgen receptor (AR) in castration-resistant prostate cancer (CRPC). Several BET inhibitors (BETi) that displace BRD4 from chromatin are being evaluated in clinical trials for CRPC. Here, we describe mechanisms of acquired resistance to BETi that are amenable to targeted therapies in CRPC. BETi-resistant CRPC cells displayed cross-resistance to a variety of BETi in the absence of gatekeeper mutations, exhibited reduced chromatin-bound BRD4, and were less sensitive to BRD4 degraders/knockdown, suggesting a BRD4-independent transcription program. Transcriptomic analysis revealed reactivation of AR signaling due to CDK9-mediated phosphorylation of AR, resulting in sensitivity to CDK9 inhibitors and enzalutamide. Additionally, increased DNA damage associated with PRC2-mediated transcriptional silencing of DDR genes was observed, leading to PARP inhibitor sensitivity. Collectively, our results identify the therapeutic limitation of BETi as a monotherapy; however, our BETi resistance data suggest unique opportunities for combination therapies in treating CRPC. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. An Updated Review of Tyrosinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Te-Sheng Chang

    2009-05-01

    Full Text Available Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed.

  20. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate.

    Science.gov (United States)

    Navrátilová, Jarmila; Karasová, Martina; Kohutková Lánová, Martina; Jiráková, Ludmila; Budková, Zuzana; Pacherník, Jiří; Šmarda, Jan; Beneš, Petr

    2017-09-01

    Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis-activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti-cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down-regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Validation of the 2nd Generation Proteasome Inhibitor Oprozomib for Local Therapy of Pulmonary Fibrosis.

    Directory of Open Access Journals (Sweden)

    Nora Semren

    Full Text Available Proteasome inhibition has been shown to prevent development of fibrosis in several organs including the lung. However, effects of proteasome inhibitors on lung fibrosis are controversial and cytotoxic side effects of the overall inhibition of proteasomal protein degradation cannot be excluded. Therefore, we hypothesized that local lung-specific application of a novel, selective proteasome inhibitor, oprozomib (OZ, provides antifibrotic effects without systemic toxicity in a mouse model of lung fibrosis. Oprozomib was first tested on the human alveolar epithelial cancer cell line A549 and in primary mouse alveolar epithelial type II cells regarding its cytotoxic effects on alveolar epithelial cells and compared to the FDA approved proteasome inhibitor bortezomib (BZ. OZ was less toxic than BZ and provided high selectivity for the chymotrypsin-like active site of the proteasome. In primary mouse lung fibroblasts, OZ showed significant anti-fibrotic effects, i.e. reduction of collagen I and α smooth muscle actin expression, in the absence of cytotoxicity. When applied locally into the lungs of healthy mice via instillation, OZ was well tolerated and effectively reduced proteasome activity in the lungs. In bleomycin challenged mice, however, locally applied OZ resulted in accelerated weight loss and increased mortality of treated mice. Further, OZ failed to reduce fibrosis in these mice. While upon systemic application OZ was well tolerated in healthy mice, it rather augmented instead of attenuated fibrotic remodelling of the lung in bleomycin challenged mice. To conclude, low toxicity and antifibrotic effects of OZ in pulmonary fibroblasts could not be confirmed for pulmonary fibrosis of bleomycin-treated mice. In light of these data, the use of proteasome inhibitors as therapeutic agents for the treatment of fibrotic lung diseases should thus be considered with caution.

  2. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kai [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of Life Science and Technology, Jinan University, Guangzhou (China); Chen, Maoyun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Xiang, Yangfei; Ma, Kaiqi [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Jin, Fujun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Wang, Xiao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wang, Xiaoyan; Wang, Shaoxiang [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Wang, Yifei, E-mail: twang-yf@163.com [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China)

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  3. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    International Nuclear Information System (INIS)

    Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Ma, Kaiqi; Jin, Fujun; Wang, Xiao; Wang, Xiaoyan; Wang, Shaoxiang; Wang, Yifei

    2014-01-01

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections

  4. Effects of reducing blood pressure on renal outcomes in patients with type 2 diabetes: Focus on SGLT2 inhibitors and EMPA-REG OUTCOME.

    Science.gov (United States)

    Scheen, A J; Delanaye, P

    2017-04-01

    Empagliflozin, a sodium-glucose cotransporter type 2 (SGLT2) inhibitor, has enabled remarkable reductions in cardiovascular and all-cause mortality as well as in renal outcomes in patients with type 2 diabetes (T2D) and a history of cardiovascular disease in the EMPA-REG OUTCOME. These results have been attributed to haemodynamic rather than metabolic effects, in part due to the osmotic/diuretic action of empagliflozin and the reduction in arterial blood pressure (BP). The present narrative review includes the results of meta-analyses of trials evaluating the effects on renal outcomes of lowering BP in patients with T2D, with a special focus on the influence of baseline and achieved systolic BP, and compares the renal outcome results of the EMPA-REG OUTCOME with those of other major trials with inhibitors of the renin-angiotensin system in patients with T2D and the preliminary findings with other SGLT2 inhibitors, and also evaluates post hoc analyses from the EMPA-REG OUTCOME of special interest as regards the BP-lowering hypothesis and renal function. While systemic BP reduction associated to empagliflozin therapy may have contributed to the renal benefits reported in EMPA-REG OUTCOME, other local mechanisms related to kidney homoeostasis most probably also played a role in the overall protection observed in the trial. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Postharvest Exogenous Application of Abscisic Acid Reduces Internal Browning in Pineapple.

    Science.gov (United States)

    Zhang, Qin; Liu, Yulong; He, Congcong; Zhu, Shijiang

    2015-06-10

    Internal browning (IB) is a postharvest physiological disorder causing economic losses in pineapple, but there is no effective control measure. In this study, postharvest application of 380 μM abscisic acid (ABA) reduced IB incidence by 23.4-86.3% and maintained quality in pineapple fruit. ABA reduced phenolic contents and polyphenol oxidase and phenylalanine ammonia lyase activities; increased catalase and peroxidase activities; and decreased O2(·-), H2O2, and malondialdehyde levels. This suggests ABA could control IB through inhibiting phenolics biosynthesis and oxidation and enhancing antioxidant capability. Furthermore, the efficacy of IB control by ABA was not obviously affected by tungstate, ABA biosynthesis inhibitor, nor by diphenylene iodonium, NADPH oxidase inhibitor, nor by lanthanum chloride, calcium channel blocker, suggesting that ABA is sufficient for controlling IB. This process might not involve H2O2 generation, but could involve the Ca(2+) channels activation. These results provide potential for developing effective measures for controlling IB in pineapple.

  6. Stabilization versus inhibition of TAFIa by competitive inhibitors in vitro

    NARCIS (Netherlands)

    Walker, J.B.; Hughes, B.; James, I.; Haddock, P.; Kluft, C.; Bajzar, L.

    2003-01-01

    Two competitive inhibitors of TAFIa (activated thrombin-activable fibrinolysis inhibitor), 2-guanidinoethyl-mercaptosuccinic acid and potato tuber carboxypeptidase inhibitor, variably affect fibrinolysis of clotted human plasma. Depending on their concentration, the inhibitors shortened, prolonged,

  7. Angiotensin-converting enzyme inhibitor treatment and the development of urinary tract infections : a prescription sequence symmetry analysis

    NARCIS (Netherlands)

    Pouwels, Koen B; Visser, Sipke T; Bos, H Jens; Hak, Eelko

    2013-01-01

    BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEi) can reduce urine output, especially when treatment is first started. Since bacterial clearance from the urinary tract is dependent on urine output, it was hypothesized that ACEi may also increase the risk of urinary tract infections (UTIs).

  8. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficience

    NARCIS (Netherlands)

    Abalos, D.; Jeffery, S.L.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A.

    2014-01-01

    Nitrification and urease inhibitors are proposed as means to reduce nitrogen losses, thereby increasing crop nitrogen use efficiency (NUE). However, their effect on crop yield is variable. A meta-analysis was conducted to evaluate their effectiveness at increasing NUE and crop productivity. Commonly

  9. Novel benzimidazole derivatives as phosphodiesterase 10A (PDE10A) inhibitors with improved metabolic stability.

    Science.gov (United States)

    Chino, Ayaka; Masuda, Naoyuki; Amano, Yasushi; Honbou, Kazuya; Mihara, Takuma; Yamazaki, Mayako; Tomishima, Masaki

    2014-07-01

    In this study, we report the identification of potent benzimidazoles as PDE10A inhibitors. We first identified imidazopyridine 1 as a high-throughput screening hit compound from an in-house library. Next, optimization of the imidazopyridine moiety to improve inhibitory activity gave imidazopyridinone 10b. Following further structure-activity relationship development by reducing lipophilicity and introducing substituents, we acquired 35, which exhibited both improved metabolic stability and reduced CYP3A4 time-dependent inhibition. Copyright © 2014. Published by Elsevier Ltd.

  10. Evaluation of corrosion inhibitors for high temperature decontamination applications

    International Nuclear Information System (INIS)

    Sathyaseelan, V.S.; Rufus, A.L.; Velmurugan, S.

    2015-01-01

    Normally, chemical decontamination of coolant systems of nuclear power reactors is carried out at temperatures less than 90 °C. At these temperatures, though magnetite dissolves effectively, the rate of dissolution of chromium and nickel containing oxides formed over stainless steel and other non-carbon steel coolant system surfaces is not that appreciable. A high temperature dissolution process using 5 mM NTA at 160 °C developed earlier by us was very effective in dissolving the oxides such as ferrites and chromites. However, the corrosion of structural materials such as carbon steel (CS) and stainless steel (SS) also increased beyond the acceptable limits at elevated temperatures. Hence, the control of base metal corrosion during the high temperature decontamination process is very important. In view of this, it was felt essential to investigate and develop a suitable inhibitor to reduce the corrosion that can take place on coolant structural material surfaces during the high temperature decontamination applications with weak organic acids. Three commercial inhibitors viz., Philmplus 5K655, Prosel PC 2116 and Ferroqest were evaluated at ambient and at 160 °C temperature in NTA formulation. Preliminary evaluation of these corrosion inhibitors carried out using electrochemical techniques showed maximum corrosion inhibition efficiency for Philmplus. Hence, it was used for high temperature applications. A concentration of 500 ppm was found to be optimum at 160 °C and at this concentration it showed an inhibition efficiency of 62% for CS. High temperature dissolution of oxides such as Fe 3 O 4 and NiFe 2 O 4 , which are relevant to nuclear reactors, was also carried out and the rate of dissolution observed was less in the presence of Philmplus. Studies were also carried out to evaluate hydrazine as a corrosion inhibitor for high temperature applications. The results revealed that for CS inhibition efficiency of hydrazine is comparable to that of Philmplus, while

  11. Naturally occurring Vpr inhibitors from medicinal plants of Myanmar.

    Science.gov (United States)

    Win, Nwet Nwet; Ngwe, Hla; Abe, Ikuro; Morita, Hiroyuki

    2017-10-01

    Human immunodeficiency virus type-1 (HIV-1) is a lentiviral family member that encodes the retroviral Gag, Pol, and Env proteins, along with six additional accessory proteins, Tat, Rev, Vpu, Vif, Nef, and Vpr. The currently approved anti-HIV drugs target the Pol and Env encoded proteins. However, these drugs are only effective in reducing viral replication. Furthermore, the drugs' toxicities and the emergence of drug-resistant strains have become serious worldwide problems. Resistance eventually arises to all of the approved anti-HIV drugs, including the newly approved drugs that target HIV integrase (IN). Drug resistance likely emerges because of spontaneous mutations that occur during viral replication. Therefore, new drugs that effectively block other viral components must be developed to reduce the rate of resistance and suppress viral replication with little or no long-term toxicity. The accessory proteins may expand treatment options. Viral protein R (Vpr) is one of the promising drug targets among the HIV accessory proteins. However, the search for inhibitors continues in anti-HIV drug discovery. In this review, we summarize the naturally occurring compounds discovered from two Myanmar medicinal plants as well as their structure-activity relationships. A total of 49 secondary metabolites were isolated from Kaempferia pulchra rhizomes and Picrasama javanica bark, and the types of compounds were identified as isopimarane diterpenoids and picrasane quassinoids, respectively. Among the isolates, 7 diterpenoids and 15 quassinoids were found to be Vpr inhibitors lacking detectable toxicity, and their potencies varied according to their respective functionalities.

  12. Effects of the Monoamine Uptake Inhibitors RTI-112 and RTI-113 on Cocaine- and Food-Maintained Responding in Rhesus Monkeys

    Science.gov (United States)

    SS, Negus; NK, Mello; HL, Kimmel; LL, Howell; FI, Carroll

    2009-01-01

    Cocaine blocks uptake of the monoamines dopamine, serotonin and norepinephrine, and monoamine uptake inhibitors constitute one class of drugs under consideration as candidate “agonist” medications for the treatment of cocaine abuse and dependence. The pharmacological selectivity of monoamine uptake inhibitors to block uptake of dopamine, serotonin and norepinephrine is one factor that may influence the efficacy and/or safety of these compounds as drug abuse treatment medications. To address this issue, the present study compared the effects of 7-day treatment with a non-selective monoamine uptake inhibitor (RTI-112) and a dopamine-selective uptake inhibitor (RTI-113) on cocaine- and food-maintained responding in rhesus monkeys. Monkeys (N=3) were trained to respond for cocaine injections (0.01 mg/kg/inj) and food pellets under a second-order schedule [FR2(VR16:S)] during alternating daily components of cocaine and food availability. Both RTI-112 (0.0032–0.01 mg/kg/hr) and RTI-113 (0.01–0.056 mg/kg/hr) produced dose-dependent, sustained and nearly complete elimination of cocaine self-administration. However, for both drugs, the potency to reduce cocaine self-administration was similar to the potency to reduce food-maintained responding. These findings do not support the hypothesis that pharmacological selectivity to block dopamine uptake is associated with behavioral selectivity to decrease cocaine- vs. food-maintained responding in rhesus monkeys. PMID:18755212

  13. Sarcoid-like lung granulomas in a hemodialysis patient treated with a dipeptidyl peptidase-4 inhibitor.

    Science.gov (United States)

    Sada, Ken-Ei; Wada, Jun; Morinaga, Hiroshi; Tuchimochi, Shigeyuki; Uka, Mayu; Makino, Hirofumi

    2014-04-01

    It has been reported that the inhibition of dipeptidyl peptidase-4 (DPP-4)/CD26 on T-cells by DPP-4 enzymatic inhibitors suppresses lymphocyte proliferation and reduces the production of various cytokines, including tumor necrosis factor (TNF)-α. A 72-year-old female with diabetic nephropathy on hemodialysis developed multiple lung nodules following the administration of vildagliptin. A biopsy demonstrated the histology of granulomas without caseous necrosis. The discontinuation of vildagliptin resulted in the disappearance of the granulomas within 4 months. As granulomatosis often develops in patients under anti-TNF-α therapy, the accumulation of DPP-4 inhibitors or its metabolites is possibly linked to unrecognized complications, such as sarcoid-like lung granulomas.

  14. Replacement inhibitors for tank farm cooling coil systems

    International Nuclear Information System (INIS)

    Hsu, T.C.

    1995-01-01

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems

  15. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.

    Science.gov (United States)

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, Prespiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.

  16. The safety of proton pump inhibitors in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Lauge; Sørensen, Henrik Toft; Thulstrup, Ane Marie

    1999-01-01

    AIM: To assess the safety of proton pump inhibitors during pregnancy. METHODS: Fifty-one pregnant women exposed to proton pump inhibitors around the time of conception or during pregnancy were compared with 13 327 controls without exposure to any prescribed drug in a population-based study based...... birth weight or number of preterm deliveries in pregnancies exposed to proton pump inhibitors. However, further monitoring is warranted in order to establish or rule out a potential association between the use of proton pump inhibitors and increased risk of either cardiac malformations or preterm birth....

  17. Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor.

    Directory of Open Access Journals (Sweden)

    Barbara Costa

    Full Text Available Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM, p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2 oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.

  18. Experiences with an identification and quantification program for inhibitor-positive milk samples.

    Science.gov (United States)

    Kress, Claudia; Seidler, Caroline; Kerp, Bianca; Schneider, Elisabeth; Usleber, Ewald

    2007-03-14

    Beta-lactam antibiotics (penicillins, cephalosporins) are still the most commonly used antibiotics for dairy cows in Germany. In routine milk testing, according to the German milk quality regulation, a positive result obtained for bulk tank milk by microbiological inhibitor tests needs no further confirmation, but results in reduced milk payment of 0.05 euros kg(-1) for one month. In some cases, however, further identification of the causative agent can be of interest, either if antimicrobial drugs have not knowingly been used recently, or if improper use of such drugs is denied. As a service for milk producers, our laboratory offers further analyses of violative milk samples, aiming at the identification and quantification of the inhibitor(s). In this program, a panel of microbiological inhibitor tests, receptor tests, and enzyme immunoassays (EIA) is used in a step-by-step analysis, which primarily focusses on beta-lactams, but also includes other compounds such as sulfonamides or tetracyclines, respectively. Here we report results for violative milk samples (n=63) analysed between 2003 and 2005. In most cases (95%), beta-lactam antibiotics could be identified, although not always at levels exceeding the respective MRL values. Penicillin G (mostly together with benzylpenicilloyl metabolites) could be identified in 74.6% of all samples. Other compounds identified were, in decreasing order, ceftiofur (11%), ampicillin/amoxicillin (6.3%), isoxazolyl penicillins (3.2%), and sulfonamides (1.6%). The results indicate that penicillin G is still the predominant antibiotic responsible for violative bulk tank milk samples as detected during regulatory control.

  19. A rhodium(III)-based inhibitor of autotaxin with antiproliferative activity.

    Science.gov (United States)

    Kang, Tian-Shu; Wang, Wanhe; Zhong, Hai-Jing; Liang, Jia-Xin; Ko, Chung-Nga; Lu, Jin-Jian; Chen, Xiu-Ping; Ma, Dik-Lung; Leung, Chung-Hang

    2017-02-01

    Cancer of the skin is by far the most common of all cancers. Melanoma accounts for only about 1% of skin cancers but causes a large majority of skin cancer deaths. Autotaxin (ATX), also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), regulates physiological and pathological functions of lysophosphatidic acid (LPA), and is thus an important therapeutic target. We synthesized ten metal-based complexes and a novel cyclometalated rhodium(III) complex 1 was identified as an ATX enzymatic inhibitor using multiple methods, including ATX enzymatic assay, thermal shift assay, western immunoblotting and so on. Protein thermal shift assays showed that 1 increased the melting temperature (T m ) of ATX by 3.5°C. 1 also reduced ATX-LPA mediated downstream survival signal pathway proteins such as ERK and AKT, and inhibited the activation of the transcription factor nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3). 1 also exhibited strong anti-proliferative activity against A2058 melanoma cells (IC 50 =0.58μM). Structure-activity relationship indicated that both the rhodium(III) center and the auxiliary ligands of complex 1 are important for bioactivity. 1 represents a promising scaffold for the development of small-molecule ATX inhibitors for anti-tumor applications. To our knowledge, complex 1 is the first metal-based ATX inhibitor reported to date. Rhodium complexes will have the increased attention in therapeutic and bioanalytical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Structural Insights into TMB-1 and the Role of Residues 119 and 228 in Substrate and Inhibitor Binding.

    Science.gov (United States)

    Skagseth, Susann; Christopeit, Tony; Akhter, Sundus; Bayer, Annette; Samuelsen, Ørjan; Leiros, Hanna-Kirsti S

    2017-08-01

    Metallo-β-lactamases (MBLs) threaten the effectiveness of β-lactam antibiotics, including carbapenems, and are a concern for global public health. β-Lactam/β-lactamase inhibitor combinations active against class A and class D carbapenemases are used, but no clinically useful MBL inhibitor is currently available. Tripoli metallo-β-lactamase-1 (TMB-1) and TMB-2 are members of MBL subclass B1a, where TMB-2 is an S228P variant of TMB-1. The role of S228P was studied by comparisons of TMB-1 and TMB-2, and E119 was investigated through the construction of site-directed mutants of TMB-1, E119Q, E119S, and E119A (E119Q/S/A). All TMB variants were characterized through enzyme kinetic studies. Thermostability and crystallization analyses of TMB-1 were performed. Thiol-based inhibitors were investigated by determining the 50% inhibitory concentrations (IC 50 ) and binding using surface plasmon resonance (SPR) for analysis of TMB-1. Thermostability measurements found TMB-1 to be stabilized by high NaCl concentrations. Steady-state enzyme kinetics analyses found substitutions of E119, in particular, substitutions associated with the penicillins, to affect hydrolysis to some extent. TMB-2 with S228P showed slightly reduced catalytic efficiency compared to TMB-1. The IC 50 levels of the new thiol-based inhibitors were 0.66 μM (inhibitor 2a) and 0.62 μM (inhibitor 2b), and the equilibrium dissociation constant ( K D ) of inhibitor 2a was 1.6 μM; thus, both were more potent inhibitors than l-captopril (IC 50 = 47 μM; K D = 25 μM). The crystal structure of TMB-1 was resolved to 1.75 Å. Modeling of inhibitor 2b in the TMB-1 active site suggested that the presence of the W64 residue results in T-shaped π-π stacking and R224 cation-π interactions with the phenyl ring of the inhibitor. In sum, the results suggest that residues 119 and 228 affect the catalytic efficiency of TMB-1 and that inhibitors 2a and 2b are more potent inhibitors for TMB-1 than l-captopril. Copyright

  1. The COX-2 inhibitor meloxicam prevents pregnancy when administered as an emergency contraceptive to nonhuman primates.

    Science.gov (United States)

    McCann, Nicole C; Lynch, Terrie J; Kim, Soon Ok; Duffy, Diane M

    2013-12-01

    Cyclooxygenase-2 (COX-2) inhibitors reduce prostaglandin synthesis and disrupt essential reproductive processes. Ultrasound studies in women demonstrated that oral COX-2 inhibitors can delay or prevent follicle collapse associated with ovulation. The goal of this study was to determine if oral administration of a COX-2 inhibitor can inhibit reproductive function with sufficient efficacy to prevent pregnancy in primates. The COX-2 inhibitor meloxicam (or vehicle) was administered orally to proven fertile female cynomolgus macaques using one emergency contraceptive model and three monthly contraceptive models. In the emergency contraceptive model, females were bred with a proven fertile male once 2±1 days before ovulation, returned to the females' home cage, and then received 5 days of meloxicam treatment. In the monthly contraceptive models, females were co-caged for breeding with a proven fertile male for a total of 5 days beginning 2±1 days before ovulation. Animals received meloxicam treatment (1) cycle days 5-22, or (2) every day, or (3) each day of the 5-day breeding period. Female were then assessed for pregnancy. The pregnancy rate with meloxicam administration using the emergency contraception model was 6.5%, significantly lower than the pregnancy rate of 33.3% when vehicle without meloxicam was administered. Pregnancy rates with the three monthly contraceptive models (75%-100%) were not consistent with preventing pregnancy. Oral COX-2 inhibitor administration can prevent pregnancy after a single instance of breeding in primates. While meloxicam may be ineffective for regular contraception, pharmacological inhibition of COX-2 may be an effective method of emergency contraception for women. COX-2 inhibitors can interfere with ovulation, but the contraceptive efficacy of drugs of this class has not been directly tested. This study, conducted in nonhuman primates, is the first to suggest that a COX-2 inhibitor may be effective as an emergency contraceptive.

  2. Designed biocompatible nano-inhibitor based on poly(β-cyclodextrin-ester) for reduction of the DEHP migration from plasticized PVC.

    Science.gov (United States)

    Raeisi, Ahmad; Faghihi, Khalil; Shabanian, Meisam

    2017-10-15

    The easy migration of di(2-ethylhexyl) phthalate (DEHP) from the plasticized PVC (P-PVC) poses a serious threat to human health and the ecosystems. Thus, its control migration from the P-PVC products is very important. In this work, a poly(β-cyclodextrin-ester) network (β-CDP) was synthesized via reaction of β-cyclodextrin with 3,3',4,4'-benzophenone tetracarboxylic dianhydride. As a potential inhibitor for reduction of the DEHP migration, the β-CDP was grafted to Fe 3 O 4 nanoparticles. Poly(β-cyclodextrin-ester) functionalized Fe 3 O 4 nanoparticles (MNP-CDP) has been used in PVC/DEHP system as a reactive nano-inhibitor to reduce DEHP migration. Thermal stability and mechanical properties of obtained films were investigated. DEHP migration tests of the P-PVC films were also carried out by using Gas chromatography. It was found that by incorporating the small amounts of nano-inhibitor in PVC/DEHP system, the migration of DEHP effectively reduced from the P-PVC samples about 65% without any serious changes in mechanical and thermal properties of the P-PVC films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Use of SGLT-2 inhibitors in the treatment of type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Leyna Leite Santos

    Full Text Available Summary Introduction: Diabetes mellitus is one of the most common chronic diseases in the world, with high morbidity and mortality rates, resulting in a greatly negative socioeconomic impact. Although there are several classes of oral antidiabetic agents, most of the patients are outside the therapeutic goal range. Objective: To review the use of SGLT-2 inhibitors in the treatment of type 2 diabetes mellitus, focusing on their favorable and unfavorable effects, as well as on cardiovascular profile. Method: A literature search on Pubmed database was performed using the following keywords: "SGLT-2 inhibitors," "dapagliflozin," "empagliflozin," "canagliflozin." Results: SGLT-2 inhibitors are a class of oral antidiabetic drugs directed to the kidney. Their mechanism of action is to reduce blood glucose by inducing glycosuria. Extra-glycemic benefits have been described, such as weight loss, decline in blood pressure and levels of triglycerides and uric acid, and they can slow the progression of kidney disease. Genitourinary infections are the main side effects. There is a low risk of hypotension and hypoglycemia. Diabetic ketoacidosis is a serious adverse effect, although rare. Empagliflozin has already had its cardiovascular benefit demonstrated and studies with other drugs are currently being performed. Conclusion: SGLT-2 inhibitors are a new treatment option for type 2 diabetes mellitus, acting independently of insulin. They have potential benefits other than the reduction of blood glucose, but also carry a risk for adverse effects.

  4. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    International Nuclear Information System (INIS)

    Okabe, Seiichi; Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-01-01

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance

  5. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, Seiichi, E-mail: okabe@tokyo-med.ac.jp; Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.

  6. Synthetic peptide inhibitors of DNA replication in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Løbner-Olesen, Anders; Kjelstrup, Susanne

    F counterselection was developed to directly select for compounds able to disrupt selected interactions. We have subsequently constructed a cyclic peptide library for intracellular synthesis of cyclic peptides using known technology. Several cyclic peptides were able to interfere with oligomerization of Dna......N (), DnaB and DnaX (). Three peptides identified as inhibitors of DnaN have been purified. Two of these peptides inhibited growth as well as DNA replication in S. aureus. The minimal inhibitory concentration (MIC) of the peptides was approximately 50 g/ml. Overexpression of DnaN reduced the inhibitory...

  7. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Terra Vleeshouwer-Neumann

    Full Text Available Embryonal rhabdomyosarcoma (ERMS is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other molecular mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biology. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway analysis revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP studies, we show that Notch1- and EphrinB1-mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, respectively. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the molecular pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients.

  8. Long-term efficacy and safety of sodium-glucose cotransporter-2 inhibitors as add-on to metformin treatment in the management of type 2 diabetes mellitus

    Science.gov (United States)

    Li, Jian; Gong, Yanping; Li, Chunlin; Lu, Yanhui; Liu, Yu; Shao, Yinghong

    2017-01-01

    Abstract Background: Drug intensification is often required for patients with type 2 diabetes mellitus on stable metformin therapy. Among the potential candidates for a combination therapy, sodium-glucose transporter-2 (SGLT2) inhibitors have shown promising outcomes. This meta-analysis was performed to compare the efficacy and safety of SGLT2 inhibitors with non-SGLT2 combinations as add-on treatment to metformin. Methods: Literature search was carried out in multiple electronic databases for the acquisition of relevant randomized controlled trials (RCTs) by following a priori eligibility criteria. After the assessment of quality of the included RCTs, meta-analyses of mean differences or odds ratios (OR) were performed to achieve overall effect sizes of the changes from baseline in selected efficacy and safety endpoints reported in the individual studies. Between-studies heterogeneity was estimated with between-studies statistical heterogeneity (I2) index. Results: Six RCTs fulfilled the eligibility criteria. SGLT2 inhibitors as add-on to metformin treatment reduced % HbA1c significantly more than non-SGLT2 combinations after 52 weeks (P = .002) as well as after 104 weeks (P SGLT2 inhibitors also reduced fasting plasma glucose levels, body weight, systolic, and diastolic blood pressures after 52 weeks and 104 weeks significantly (P SGLT2 combinations. Incidence of hypoglycemia was significantly lower (P = .02) but incidence of suspected or confirmed genital tract infections was significantly higher (P SGLT2 inhibitors treated in comparison with non-SGLT2 combinations. Conclusion: As add-on to metformin treatment, SGLT2 inhibitors are found significantly more efficacious than non-SGLT2 inhibitor combinations in the management of type 2 diabetes mellitus, although, SGLT2 inhibitor therapy is associated with significantly higher incidence of suspected or confirmed genital tract infections. PMID:28682870

  9. Caspase-1 inhibitor regulates humoral responses in experimental autoimmune myasthenia gravis via IL-6- dependent inhibiton of STAT3.

    Science.gov (United States)

    Wang, Cong-Cong; Zhang, Min; Li, Heng; Li, Xiao-Li; Yue, Long-Tao; Zhang, Peng; Liu, Ru-Tao; Chen, Hui; Li, Yan-Bin; Duan, Rui-Sheng

    2017-08-24

    We have previously demonstrated that Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor ameliorates experimental autoimmune myasthenia gravis (EAMG) by inhibited cellular immune response, via suppressing DC IL-1 β, CD4 + T and γdT cells IL-17 pathways. In this study, we investigated the effect of caspase-1 inhibitor on humoral immune response of EAMG and further explore the underlying mechanisms. An animal model of MG was induced by region 97-116 of the rat AChR α subunit (R97-116 peptide) in Lewis rats. Rats were treated with caspase-1 inhibitor Ac-YVAD-cmk intraperitoneally (i.p.) every second day from day 13 after the first immunization. Flow cytometry, western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the neuroprotective effect of caspase-1 inhibitor on humoral immune response of EAMG. The results showed that caspase-1 inhibitor reduced the relative affinity of anti-R97-116 IgG, suppressed germinal center response, decreased follicular helper T cells, and increased follicular regulatory T cells and regulatory B cells. In addition, we found that caspase-1 inhibitor inhibited humoral immunity response in EAMG rats via suppressing IL-6-STAT3-Bcl-6 pathways. These results suggest that caspase-1 inhibitor ameliorates EAMG by regulating humoral immune response, thus providing new insights into the development of myasthenia gravis and other autoimmune diseases therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Carbon- versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors?

    Science.gov (United States)

    Supuran, Claudiu T

    2018-12-01

    A set of compounds incorporating carbon-based zinc-binding groups (ZBGs), of the type PhX (X = COOH, CONH 2 , CONHNH 2 , CONHOH, CONHOMe), and the corresponding derivatives with sulphur(VI)-based ZBGs (X = SO 3 H, SO 2 NH 2 , SO 2 NHNH 2 , SO 2 NHOH, SO 2 NHOMe) were tested as inhibitors of all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1), CA I-XV. Three factors connected with the ZBG influenced the efficacy as CA inhibitor (CAI) of the investigated compounds: (i) the pKa of the ZBG; (ii) its geometry (tetrahedral, i.e. sulphur-based, versus trigonal, i.e. carbon-based ZBGs), and (iii) orientation of the organic scaffold induced by the nature of the ZBG. Benzenesulphonamide was the best inhibitor of all isoforms, but other ZBGs led to interesting inhibition profiles, although with an efficacy generally reduced when compared to the sulphonamide. The nature of the ZBG also influenced the CA inhibition mechanism. Most of these derivatives were zinc binders, but some of them (sulfonates, carboxylates) may interact with the enzyme by anchoring to the zinc-coordinated water molecule or by other inhibition mechanisms (occlusion of the active site entrance, out of the active site binding, etc.). Exploring structurally diverse ZBGs may lead to interesting new developments in the field of CAIs.

  11. Janus Associated Kinases Inhibitors in the Pharmacological Thera

    Directory of Open Access Journals (Sweden)

    Daniela Santos1

    2017-01-01

    Full Text Available Janus associated kinases inhibitors are a new strategy for the treatment of different clinical conditions like immunologic, inflammatory and oncology disorders. The aim of this study was to perform a review of all Janus associated kinases inhibitors available in national and international pharmaceutical market, their therapeutic indications and adverse effects, and the potential indications for investigation of those already available in the pharmaceutical market. It was also performed a review of the main new Janus associated kinases inhibitors that are still in clinical research. A literature review was conducted by consulting the summary of product characteristics of Janus associated kinases inhibitors available in the pharmaceutical market and a research in the bibliographic database PubMed using the terms «JAK inhibitors», «Janus associated kinases inhibitors» and «Janus kinases inhibitors». Ninety-five publications were included in the present review, published from January 2014 to January 2015. Drug databases of the European Medicines Agency and United States Food and Drug Administration were also consulted to search for Janus associated kinases inhibitors authorized in clinical practice. Currently, ruxolitinib and tofacitinib are available in the pharmaceutical market and oclatinib is approved as a veterinary medicinal product. Both drugs approved for human use have major adverse effects at hematological and immunological levels, which enhance the importance of the pharmacist’s role in the monitoring of patients involved in these treatments. However, several molecules are in pre-clinical and clinical studies trying to prove its potential in the treatment of several immunologic, inflammatory and oncology disorders. Thus, it is still necessary to deepen the knowledge in this area in order to overcome the risks of therapy with these agents. These risks weighed against the benefits of its clinical use have compromised the progress of

  12. Supply of neuraminidase inhibitors related to reduced influenza A (H1N1) mortality during the 2009-2010 H1N1 pandemic: an ecological study.

    Science.gov (United States)

    Miller, Paula E; Rambachan, Aksharananda; Hubbard, Roderick J; Li, Jiabai; Meyer, Alison E; Stephens, Peter; Mounts, Anthony W; Rolfes, Melissa A; Penn, Charles R

    2012-01-01

    The influenza A (H1N1) pandemic swept across the globe from April 2009 to August 2010 affecting millions. Many WHO Member States relied on antiviral drugs, specifically neuraminidase inhibitors (NAIs) oseltamivir and zanamivir, to treat influenza patients in critical condition. Such drugs have been found to be effective in reducing severity and duration of influenza illness, and likely reduced morbidity during the pandemic. However, it is less clear whether NAIs used during the pandemic reduced H1N1 mortality. Country-level data on supply of oseltamivir and zanamivir were used to predict H1N1 mortality (per 100,000 people) from July 2009 to August 2010 in forty-two WHO Member States. Poisson regression was used to model the association between NAI supply and H1N1 mortality, with adjustment for economic, demographic, and health-related confounders. After adjustment for potential confounders, each 10% increase in kilograms of oseltamivir, per 100,000 people, was associated with a 1.6% reduction in H1N1 mortality over the pandemic period (relative rate (RR) = 0.84 per log increase in oseltamivir supply). While the supply of zanamivir was considerably less than that of oseltamivir in each Member State, each 10% increase in kilogram of active zanamivir, per 100,000, was associated with a 0.3% reduction in H1N1 mortality (RR = 0.97 per log increase). While there are limitations to the ecologic nature of these data, this analysis offers evidence of a protective relationship between antiviral drug supply and influenza mortality and supports a role for influenza antiviral use in future pandemics.

  13. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  14. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    International Nuclear Information System (INIS)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.; Pacher, Pal; Schulz, Richard

    2009-01-01

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC 50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  15. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D. [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada); Pacher, Pal [National Institutes of Health, NIAAA, Laboratory of Physiologic Studies, Bethesda, MD (United States); Schulz, Richard, E-mail: richard.schulz@ualberta.ca [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada)

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  16. The Wonders of Phosphodiesterase‑5 Inhibitors: A Majestic History

    African Journals Online (AJOL)

    A milestone in drug discovery was the selective inhibitors of. PDE‑5 that ... the pharmacotherapeutics of PDE‑5 inhibitors and the majestic history that led to their discovery. ..... including HIV protease inhibitors, ketoconazole, itraconazole,.

  17. Coprescribing proton-pump inhibitors with nonsteroidal anti-inflammatory drugs: risks versus benefits

    Directory of Open Access Journals (Sweden)

    Gwee KA

    2018-02-01

    Full Text Available Kok Ann Gwee,1 Vernadine Goh,2 Graca Lima,3 Sajita Setia4 1Stomach, Liver, and Bowel Centre, Gleneagles Hospital, 2Department of Pharmacy, National University of Singapore, Singapore; 3Global Medical Affairs, Asia-Pacific Region, Pfizer, Hong Kong; 4Medical Affairs, Pfizer, Singapore Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs are often coadministered with proton-pump inhibitors (PPIs to reduce NSAID-induced gastrointestinal (GI adverse events. This coadministration is generally regarded as safe, and is included in many of the guidelines on NSAID prescription. However, recent evidence indicates that the GI risks associated with NSAIDs can be potentiated when they are combined with PPIs. This review discusses the GI effects and complications of NSAIDs and how PPIs may potentiate these effects, options for prevention of GI side effects, and appropriate use of PPIs in combination with NSAIDs. Keywords: PPIs, COX2 inhibitors, NSAIDs, enteropathy, gastrointestinal

  18. Influence of ferrocyanide inhibitors on the transport and crystrallization processes of sodium chloride in porous building materials

    NARCIS (Netherlands)

    Gupta, S.; Terheiden, K.H; Pel, L.; Sawdy - Heritage, A.M.

    2012-01-01

    Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building materials. In order to reduce the impact of this, effective treatment methods are required. The use of crystallization inhibitors to mitigate salt damage has been proposed in the past; however, to

  19. SGLT2 inhibitors: are they safe?

    Science.gov (United States)

    Filippas-Ntekouan, Sebastian; Filippatos, Theodosios D; Elisaf, Moses S

    2018-01-01

    Sodium-glucose linked transporter type 2 (SGLT2) inhibitors are a relatively new class of antidiabetic drugs with positive cardiovascular and kidney effects. The aim of this review is to present the safety issues associated with SGLT2 inhibitors. Urogenital infections are the most frequently encountered adverse events, although tend to be mild to moderate and are easily manageable with standard treatment. Although no increased acute kidney injury risk was evident in the major trials, the mechanism of action of these drugs requires caution when they are administered in patients with extracellular volume depletion or with drugs affecting renal hemodynamics. Canagliflozin raised the risk of amputations and the rate of fractures in the CANVAS trial, although more data are necessary before drawing definite conclusions. The risk of euglycemic diabetic ketoacidosis seems to be minimal when the drugs are prescribed properly. Regarding other adverse events, SGLT2 inhibitors do not increase the risk of hypoglycemia even when co-administered with insulin, but a decrease in the dose of sulphonylureas may be needed. The available data do not point to a causative role of SGLT2 inhibitors on malignancy risk, however, these drugs should be used with caution in patients with known hematuria or history of bladder cancer. SGLT2 inhibitors seem to be safe and effective in the treatment of diabetes but more studies are required to assess their long-term safety.

  20. Janus kinase inhibitors: jackpot or potluck?

    Directory of Open Access Journals (Sweden)

    Pavithran Keechilat

    2012-06-01

    Full Text Available The reports of a unique mutation in the Janus kinase-2 gene (JAK2 in polycythemia vera by several independent groups in 2005 quickly spurred the development of the Janus kinase inhibitors. In one of the great victories of translational research in recent times, the first smallmolecule Janus kinase inhibitor ruxolitinib entered a phase I trial in 2007. With the approval of ruxolitinib by the US Federal Drug Administration in November 2011 for high-risk and intermediate-2 risk myelofibrosis, a change in paradigm has occurred in the management of a subset of myeloproliferative neoplasms (MPN: primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis. Whereas the current evidence for ruxolitinib only covers high-risk and intermediate-2 risk myelofibrosis, inhibitors with greater potency are likely to offer better disease control and survival advantage in patients belonging to these categories, and possibly to the low-risk and intermediate-1 risk categories of MPN as well. But use of the Janus kinase inhibitors also probably has certain disadvantages, such as toxicity, resistance, withdrawal phenomenon, non-reversal of histology, and an implausible goal of disease clone eradication, some of which could offset the gains. In spite of this, Janus kinase inhibitors are here to stay, and for use in more than just myeloproliferative neoplasms.

  1. Met receptor inhibitor SU11274 localizes in the endoplasmic reticulum.

    Science.gov (United States)

    Wiest, Edwin J; Smith, Heather Jensen; Hollingsworth, Michael A

    2018-07-02

    We discovered that SU11274, a class I c-Met inhibitor, fluoresces when excited by 488 nm laser light and showed rapid specific accumulation in distinct subcellular compartments. Given that SU11274 reduces cancer cell viability, we exploited these newly identified spectral properties to determine SU11274 intracellular distribution and accumulation in human pancreatic cancer cells. The aim of the studies reported here was to identify organelle(s) to which SU11274 is trafficked. We conclude that SU11274 rapidly and predominantly accumulates in the endoplasmic reticulum. Copyright © 2018. Published by Elsevier Inc.

  2. ACE Inhibitor and ARB utilization and expenditures in the Medicaid fee-for-service program from 1991 to 2008.

    Science.gov (United States)

    Bian, Boyang; Kelton, Christina M L; Guo, Jeff J; Wigle, Patricia R

    2010-01-01

    Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) are widely prescribed for the treatment of hypertension and heart failure, as well as for kidney disease prevention in patients with diabetes mellitus and the management of patients after myocardial infarction. To (a) describe ACE inhibitor and ARB utilization and spending in the Medicaid fee-for-service program from 1991 through 2008, and (b) estimate the potential cost savings for the collective Medicaid programs from a higher ratio of generic ACE inhibitor utilization. A retrospective, descriptive analysis was performed using the National Summary Files from the Medicaid State Drug Utilization Data, which are composed of pharmacy claims that are subject to federally mandated rebates from pharmaceutical manufacturers. For the years 1991-2008, quarterly claim counts and expenditures were calculated by summing data for individual ACE inhibitors and ARBs. Quarterly per-claim expenditure as a proxy for drug price was computed for all brand and generic drugs. Market shares were calculated based on the number of pharmacy claims and Medicaid expenditures. In the Medicaid fee-for-service program, ACE inhibitors accounted for 100% of the claims in the combined market for ACE inhibitors and ARBs in 1991, 80.6% in 2000, and 64.7% in 2008. The Medicaid expenditure per ACE inhibitor claim dropped from $37.24 in 1991 to $24.03 in 2008 when generics accounted for 92.5% of ACE inhibitor claims; after adjusting for inflation for the period from 1991 to 2008, the real price drop was 59.2%. Brand ACE inhibitors accounted for only 7.5% of the claims in 2008 for all ACE inhibitors but 32.1% of spending; excluding the effects of manufacturer rebates, Medicaid spending would have been reduced by $28.7 million (9%) in 2008 if all ACE inhibitor claims were generic. The average price per ACE inhibitor claim in 2008 was $24.03 ($17.64 per generic claim vs. $103.45 per brand claim) versus $81.98 per ARB

  3. Reduced incidence of new-onset diabetes mellitus after renal transplantation with 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors (statins).

    Science.gov (United States)

    Prasad, G V Ramesh; Kim, S Joseph; Huang, Michael; Nash, Michelle M; Zaltzman, Jeffrey S; Fenton, Stanley S A; Cattran, Daniel C; Cole, Edward H; Cardella, Carl J

    2004-11-01

    Statins have anti-inflammatory effects, modify endothelial function and improve peripheral insulin resistance. We hypothesized that statins influence the development of new-onset diabetes mellitus in renal transplant recipients. The records of all previously non-diabetic adults who received an allograft in Toronto between January 1, 1999 and December 31, 2001 were reviewed with follow-up through December 31, 2002. All patients receiving cyclosporine or tacrolimus, mycophenolate mofetil and prednisone were included. New-onset diabetes was diagnosed by the Canadian Diabetic Association criteria: fasting plasma glucose > or =7.0 mmol/L or 2-h postprandial glucose > or =11.1 mmol/L on more than two occasions. Statin use prior to diabetes development was recorded along with other variables. Cox proportional hazards models analyzing statin use as a time-dependent covariate were performed. Three hundred fourteen recipients met study criteria, of whom 129 received statins. New-onset diabetes incidence was 16% (n = 49). Statins (p = 0.0004, HR 0.238[0.109-0.524]) and ACE inhibitors/ARB (p = 0.01, HR 0.309[0.127-0.750]) were associated with decreased risk. Prednisone dose (p = 0.0001, HR 1.007[1.003-1.010] per 1 mg/d at 3 months), weight at transplant (p = 0.02, HR 1.022[1.003-1.042] per 1 kg), black ethnicity (p = 0.02, HR 1.230[1.023-1.480]) and age > or =45 years (p = 0.01, HR 2.226[1.162-4.261]) were associated with increased diabetes. Statin use is associated with reduced new-onset diabetes development after renal transplantation.

  4. Experimental and theoretical studies of benzoxazines corrosion inhibitors

    Directory of Open Access Journals (Sweden)

    Abdulhadi Kadhim

    Full Text Available 2-Methyl-4H-benzo[d][1,3]oxazin-4-one (BZ1 and 3-amino-2-methylquinazolin-4(3H-one (BZ2 were evaluated for their corrosion inhibition properties on mild steel (MS in hydrochloric acid solution by weight loss technique and scanning electron microscopy. Results show the inhibition efficiency values depend on the amount of nitrogen in the inhibitor, the inhibitor concentration and the inhibitor molecular weight with maximum inhibition efficiency of 89% and 65% for BZ2 and BZ1 at highest concentration of the compounds. Keywords: Methylquinazoline, Benzoxazines, Corrosion, Inhibitors

  5. Acid corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N G

    1964-04-28

    An acid corrosion inhibitor is prepared by a 2-stage vacuum evaporation of effluents obtained from the ammonia columns of the coking oven plant. The effluent, leaving a scrubber in which the phenols are removed at a temperature of 98$C, passes through a quartz filter and flows into a heated chamber in which it is used for preheating a solution circulating through a vacuum unit, maintaining the temperature of the solution at 55$ to 60$C. The effluent enters a large tank in which it is boiled at 55$ to 60$C under 635 to 640 mm Hg pressure. Double evaporation of this solution yields a very effective acid corrosion inhibitor. Its corrosion-preventing effect is 97.9% compared with 90.1% for thiourea and 88.5% for urotropin under identical conditions.

  6. Novel dual small-molecule HIV inhibitors: scaffolds and discovery strategies.

    Science.gov (United States)

    Song, Anran; Yu, Haiqing; Wang, Changyuan; Zhu, Xingqi; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Searching for safe and effective treatments for HIV infection is still a great challenge worldwide in spite of the 27 marketed anti-HIV drugs and the powerful highly active antiretroviral therapy (HAART). As a promising prospect for generation of new HIV therapy drugs, multiple ligands (MDLs) were greatly focused on recently due to their lower toxicity, simplified dosing and patient adherence than single-target drugs. Till now, by disrupting two active sites or steps of HIV replications, a number of HIV dual inhibitors, such as CD4-gssucap120 inhibitors, CXCR4-gp20 inhibitors, RT-CXCR4 inhibitors, RT-protease inhibitors, RT-integrase inhibitors, and RTassociated functions inhibitors have been identified. Generally, these dual inhibitors were discovered mainly through screening approaches and design strategies. Of these compounds, the molecules bearing small skeletons exhibited strong anti-HIV activity and aroused great attention recently. Reviewing the progress of the dual small-molecule HIV inhibitors from the point of view of their scaffolds and discovery strategies will provide valuable information for producing more effective anti-HIV drugs. In this regard, novel dual small-molecule HIV inhibitors were illustrated, and their discovery paradigms as the major contents were also summarized in this manuscript.

  7. Drug-drug interactions with sodium-glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus.

    Science.gov (United States)

    Scheen, André J

    2014-04-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycaemia by decreasing renal glucose threshold and thereby increasing urinary glucose excretion. They are proposed as a novel approach for the management of type 2 diabetes mellitus. They have proven their efficacy in reducing glycated haemoglobin, without inducing hypoglycaemia, as monotherapy or in combination with various other glucose-lowering agents, with the add-on value of promoting some weight loss and lowering arterial blood pressure. As they may be used concomitantly with many other drugs, we review the potential drug-drug interactions (DDIs) regarding the three leaders in the class (dapagliglozin, canagliflozin and empagliflozin). Most of the available studies were performed in healthy volunteers and have assessed the pharmacokinetic interferences with a single administration of the SGLT2 inhibitor. The exposure [assessed by peak plasma concentrations (Cmax) and area under the concentration-time curve (AUC)] to each SGLT2 inhibitor tested was not significantly influenced by the concomitant administration of other glucose-lowering agents or cardiovascular agents commonly used in patients with type 2 diabetes. Reciprocally, these medications did not influence the pharmacokinetic parameters of dapagliflozin, canagliflozin or empagliflozin. Some modest changes were not considered as clinically relevant. However, drugs that could specifically interfere with the metabolic pathways of SGLT2 inhibitors [rifampicin, inhibitors or inducers of uridine diphosphate-glucuronosyltransferase (UGT)] may result in significant changes in the exposure of SGLT2 inhibitors, as shown for dapagliflozin and canagliflozin. Potential DDIs in patients with type 2 diabetes receiving chronic treatment with an SGLT2 inhibitor deserve further attention, especially in individuals treated with several medications or in more fragile patients with hepatic and/or renal impairment.

  8. Rasagiline (TVP-1012): a new selective monoamine oxidase inhibitor for Parkinson's disease.

    Science.gov (United States)

    Guay, David R P

    2006-12-01

    This article reviews the chemistry, pharmacodynamics, pharmacokinetics, clinical efficacy, tolerability, drug-interaction potential, indications, dosing, and potential role of rasagiline mesylate, a new selective monoamine oxidase (MAO) type B (MAO-B) inhibitor, in the treatment of Parkinson's disease. A MEDLINE/PUBMED search (1986 through September 2006) was conducted to identify studies involving rasagiline written in English. Additional references were obtained from the bibliographies of these studies. All studies evaluating any aspect of rasagiline, including in vitro, in vivo (animal), and human studies, were reviewed. Rasagiline mesylate was developed with the goal of producing a selective MAO-B inhibitor that is not metabolized to (presumed) toxic metabolites (eg, amphetamine and methamphetamine, which are byproducts of the metabolism of selegiline, another selective MAO-B inhibitor). In vitro and in vivo data have confirmed the drug's selectivity for MAO-B. Rasagiline is almost completely eliminated by oxidative metabolism (catalyzed by cytochrome P-450 [CYP] isozyme 1A2) followed by renal excretion of conjugated parent compound and metabolites. Drug clearance is sufficiently slow to allow once-daily dosing. Several studies have documented its efficacy as monotherapy for early-stage disease and as adjunctive therapy in L-dopa recipients with motor fluctuations. As monotherapy, rasagiline is well tolerated with an adverse-effect profile similar to that of placebo. As adjunctive therapy, it exhibits the expected adverse effects of dopamine excess, which can be ameliorated by reducing the L-dopa dosage. CYP1A2 inhibitors slow the elimination of rasagiline and mandate dosage reduction. Hepatic impairment has an analogous effect. The recommended dosage regimens for monotherapy and adjunctive therapy are 1 and 0.5 mg PO QD, respectively. Despite the well-documented selectivity of rasagiline, the manufacturer recommends virtually all of the dietary (vis

  9. Aristolochic acid and its derivatives as inhibitors of snake venom L-amino acid oxidase.

    Science.gov (United States)

    Bhattacharjee, Payel; Bera, Indrani; Chakraborty, Subhamoy; Ghoshal, Nanda; Bhattacharyya, Debasish

    2017-11-01

    Snake venom L-amino acid oxidase (LAAO) exerts toxicity by inducing hemorrhage, pneumorrhagia, pulmonary edema, cardiac edema, liver cell necrosis etc. Being well conserved, inhibitors of the enzyme may be synthesized using the template of the substrate, substrate binding site and features of the catalytic site of the enzyme. Previous findings showed that aristolochic acid (AA), a major constituent of Aristolochia indica, inhibits Russell's viper venom LAAO enzyme activity since, AA interacts with DNA and causes genotoxicity, derivatives of this compound were synthesized by replacing the nitro group to reduce toxicity while retaining the inhibitory potency. The interactions of AA and its derivatives with LAAO were followed by inhibition kinetics and surface plasmon resonance. Similar interactions with DNA were followed by absorption spectroscopy and atomic force microscopy. LAAO-induced cytotoxicity was evaluated by generation of reactive oxygen species (ROS), cell viability assays, confocal and epifluorescence microscopy. The hydroxyl (AA-OH) and chloro (AA-Cl) derivatives acted as inhibitors of LAAO but did not interact with DNA. The derivatives significantly reduced LAAO-induced ROS generation and cytotoxicity in human embryonic kidney (HEK 293) and hepatoma (HepG2) cell lines. Confocal images indicated that AA, AA-OH and AA-Cl interfered with the binding of LAAO to the cell membrane. AA-OH and AA-Cl significantly inhibited LAAO activity and reduced LAAO-induced cytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Δ9-tetrahydrocannabinol and endocannabinoid degradative enzyme inhibitors attenuate intracranial self-stimulation in mice.

    Science.gov (United States)

    Wiebelhaus, Jason M; Grim, Travis W; Owens, Robert A; Lazenka, Matthew F; Sim-Selley, Laura J; Abdullah, Rehab A; Niphakis, Micah J; Vann, Robert E; Cravatt, Benjamin F; Wiley, Jenny L; Negus, S Stevens; Lichtman, Aron H

    2015-02-01

    A growing body of evidence implicates endogenous cannabinoids as modulators of the mesolimbic dopamine system and motivated behavior. Paradoxically, the reinforcing effects of Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, have been difficult to detect in preclinical rodent models. In this study, we investigated the impact of THC and inhibitors of the endocannabinoid hydrolytic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on operant responding for electrical stimulation of the medial forebrain bundle [intracranial self-stimulation (ICSS)], which is known to activate the mesolimbic dopamine system. These drugs were also tested in assays of operant responding for food reinforcement and spontaneous locomotor activity. THC and the MAGL inhibitor JZL184 (4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) attenuated operant responding for ICSS and food, and also reduced spontaneous locomotor activity. In contrast, the FAAH inhibitor PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide) was largely without effect in these assays. Consistent with previous studies showing that combined inhibition of FAAH and MAGL produces a substantially greater cannabimimetic profile than single enzyme inhibition, the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) produced a similar magnitude of ICSS depression as that produced by THC. ICSS attenuation by JZL184 was associated with increased brain levels of 2-arachidonoylglycerol (2-AG), whereas peak effects of SA-57 were associated with increased levels of both N-arachidonoylethanolamine (anandamide) and 2-AG. The cannabinoid receptor type 1 receptor antagonist rimonabant, but not the cannabinoid receptor type 2 receptor antagonist SR144528, blocked the attenuating effects of THC, JZL184, and SA-57 on

  11. TGF-β Small Molecule Inhibitor SB431542 Reduces Rotator Cuff Muscle Fibrosis and Fatty Infiltration By Promoting Fibro/Adipogenic Progenitor Apoptosis.

    Directory of Open Access Journals (Sweden)

    Michael R Davies

    Full Text Available Rotator cuff tears represent a large burden of muscle-tendon injuries in our aging population. While small tears can be repaired surgically with good outcomes, critical size tears are marked by muscle atrophy, fibrosis, and fatty infiltration, which can lead to failed repair, frequent re-injury, and chronic disability. Previous animal studies have indicated that Transforming Growth Factor-β (TGF-β signaling may play an important role in the development of these muscle pathologies after injury. Here, we demonstrated that inhibition of TGF-β1 signaling with the small molecule inhibitor SB431542 in a mouse model of massive rotator cuff tear results in decreased fibrosis, fatty infiltration, and muscle weight loss. These observed phenotypic changes were accompanied by decreased fibrotic, adipogenic, and atrophy-related gene expression in the injured muscle of mice treated with SB431542. We further demonstrated that treatment with SB431542 reduces the number of fibro/adipogenic progenitor (FAP cells-an important cellular origin of rotator cuff muscle fibrosis and fatty infiltration, in injured muscle by promoting apoptosis of FAPs. Together, these data indicate that the TGF-β pathway is a critical regulator of the degenerative muscle changes seen after massive rotator cuff tears. TGF-β promotes rotator cuff muscle fibrosis and fatty infiltration by preventing FAP apoptosis. TGF-β regulated FAP apoptosis may serve as an important target pathway in the future development of novel therapeutics to improve muscle outcomes following rotator cuff tear.

  12. The Kallikrein Inhibitor from Bauhinia bauhinioides (BbKI) shows antithrombotic properties in venous and arterial thrombosis models.

    Science.gov (United States)

    Brito, Marlon V; de Oliveira, Cleide; Salu, Bruno R; Andrade, Sonia A; Malloy, Paula M D; Sato, Ana C; Vicente, Cristina P; Sampaio, Misako U; Maffei, Francisco H A; Oliva, Maria Luiza V

    2014-05-01

    The Bauhinia bauhinioides Kallikrein Inhibitor (BbKI) is a Kunitz-type serine peptidase inhibitor of plant origin that has been shown to impair the viability of some tumor cells and to feature a potent inhibitory activity against human and rat plasma kallikrein (Kiapp 2.4 nmol/L and 5.2 nmol/L, respectively). This inhibitory activity is possibly responsible for an effect on hemostasis by prolonging activated partial thromboplastin time (aPTT). Because the association between cancer and thrombosis is well established, we evaluated the possible antithrombotic activity of this protein in venous and arterial thrombosis models. Vein thrombosis was studied in the vena cava ligature model in Wistar rats, and arterial thrombosis in the photochemical induced endothelium lesion model in the carotid artery of C57 black 6 mice. BbKI at a concentration of 2.0 mg/kg reduced the venous thrombus weight by 65% in treated rats in comparison to rats in the control group. The inhibitor prolonged the time for total artery occlusion in the carotid artery model mice indicating that this potent plasma kallikrein inhibitor prevented thrombosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1.

    Science.gov (United States)

    Juneja, Manisha; Kobelt, Dennis; Walther, Wolfgang; Voss, Cynthia; Smith, Janice; Specker, Edgar; Neuenschwander, Martin; Gohlke, Björn-Oliver; Dahlmann, Mathias; Radetzki, Silke; Preissner, Robert; von Kries, Jens Peter; Schlag, Peter Michael; Stein, Ulrike

    2017-06-01

    MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.

  14. Identification and Functional Characterization of Sugarcane Invertase Inhibitor (ShINH1: A Potential Candidate for Reducing Pre- and Post-harvest Loss of Sucrose in Sugarcane

    Directory of Open Access Journals (Sweden)

    Suresha G. Shivalingamurthy

    2018-05-01

    Full Text Available In sugarcane, invertase enzymes play a key role in sucrose accumulation and are also involved in futile reactions where sucrose is continuously degraded during the pre- and post-harvest period, thereby reducing sugar yield and recovery. Invertase inhibitor (INVINH proteins play a key role in post-translation regulation of plant invertases through which sucrose hydrolysis is controlled. INVINH proteins are small (18 kDa members of the pectin methylesterase inhibitor superfamily and they are moderately conserved across plants. In the present study, we identified two INVINH genes from sugarcane, ShINH1 and ShINH2. In silico characterization of the encoded proteins revealed 43% sequence identity at the amino acid level, confirming the non-allelic nature of the proteins. The presence of putative signal peptide and subcellular targeting sequences revealed that ShINH1 and ShINH2 likely have apoplasmic and vacuolar localization, respectively. Experimental visualization of ShINH1–GFP revealed that ShINHI is indeed exported to the apoplast. Differential tissue-specific and developmental expression of ShINH1 between leaf, stalk, flower and root suggest that it plays a role in controlling source-sink metabolic regulation during sucrose accumulation in sugarcane. ShINH1 is expressed at relatively high levels in leaves and stalk compared to flowers and roots, and expression decreases significantly toward internodal maturity during stalk development. ShINH1 is expressed at variable levels in flowers with no specific association to floral maturity. Production of recombinant ShINH1 enabled experimental validation of protein function under in vitro conditions. Recombinant ShINH1 potently inhibited acid invertase (IC50 22.5 nM, making it a candidate for controlling pre- and post-harvest deterioration of sucrose in sugarcane. Our results indicate that ShINH1 and ShINH2 are likely to play a regulatory role in sucrose accumulation and contribute to the improvement

  15. Microarray-based screening of heat shock protein inhibitors.

    Science.gov (United States)

    Schax, Emilia; Walter, Johanna-Gabriela; Märzhäuser, Helene; Stahl, Frank; Scheper, Thomas; Agard, David A; Eichner, Simone; Kirschning, Andreas; Zeilinger, Carsten

    2014-06-20

    Based on the importance of heat shock proteins (HSPs) in diseases such as cancer, Alzheimer's disease or malaria, inhibitors of these chaperons are needed. Today's state-of-the-art techniques to identify HSP inhibitors are performed in microplate format, requiring large amounts of proteins and potential inhibitors. In contrast, we have developed a miniaturized protein microarray-based assay to identify novel inhibitors, allowing analysis with 300 pmol of protein. The assay is based on competitive binding of fluorescence-labeled ATP and potential inhibitors to the ATP-binding site of HSP. Therefore, the developed microarray enables the parallel analysis of different ATP-binding proteins on a single microarray. We have demonstrated the possibility of multiplexing by immobilizing full-length human HSP90α and HtpG of Helicobacter pylori on microarrays. Fluorescence-labeled ATP was competed by novel geldanamycin/reblastatin derivatives with IC50 values in the range of 0.5 nM to 4 μM and Z(*)-factors between 0.60 and 0.96. Our results demonstrate the potential of a target-oriented multiplexed protein microarray to identify novel inhibitors for different members of the HSP90 family. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.

    Science.gov (United States)

    Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi

    2018-02-06

    Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Immuno-oncologic Approaches: CAR-T Cells and Checkpoint Inhibitors.

    Science.gov (United States)

    Gay, Francesca; D'Agostino, Mattia; Giaccone, Luisa; Genuardi, Mariella; Festuccia, Moreno; Boccadoro, Mario; Bruno, Benedetto

    2017-08-01

    Advances in understanding myeloma biology have shown that disease progression is not only the consequence of intrinsic tumor changes but also of interactions between the tumor and the microenvironment in which the cancer grows. The immune system is an important component of the tumor microenvironment in myeloma, and acting on the immune system is an appealing new treatment strategy. There are 2 ways to act toward immune cells and boost antitumor immunity: (1) to increase antitumor activity (acting on T and NK cytotoxic cells), and (2) to reduce immunosuppression (acting on myeloid-derived stem cells and T regulatory cells). Checkpoint inhibitors and adoptive cell therapy (ACT) are 2 of the main actors, together with monoclonal antibodies and immunomodulatory agents, in the immune-oncologic approach. The aim of checkpoint inhibitors is to release the brakes that block the action of the immune system against the tumor. Anti-programmed death-1 (PD-1) and PD-1-Ligand, as well as anti-CTLA4 and KIR are currently under evaluation, as single agents or in combination, with the best results achieved so far with combination of anti-PD-1 and immunomodulatory agents. The aim of ACT is to create an immune effector specific against the tumor. Preliminary results on chimeric antigen receptor (CAR) T cells, first against CD19, and more recently against B-cell maturation antigen, have shown to induce durable responses in heavily pretreated patients. This review focuses on the most recent clinical results available on the use of checkpoint inhibitors and CAR-T cells in myeloma, in the context of the new immune-oncologic approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Optimization of Allosteric With-No-Lysine (WNK) Kinase Inhibitors and Efficacy in Rodent Hypertension Models

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Ken; Levell, Julian; Yoon, Taeyong; Kohls, Darcy; Yowe, David; Rigel, Dean F.; Imase, Hidetomo; Yuan, Jun; Yasoshima, Kayo; DiPetrillo, Keith; Monovich, Lauren; Xu, Lingfei; Zhu, Meicheng; Kato, Mitsunori; Jain, Monish; Idamakanti, Neeraja; Taslimi, Paul; Kawanami, Toshio; Argikar, Upendra A.; Kunjathoor, Vidya; Xie, Xiaoling; Yagi, Yukiko I.; Iwaki, Yuki; Robinson, Zachary; Park, Hyi-Man (Novartis)

    2017-08-03

    The observed structure–activity relationship of three distinct ATP noncompetitive With-No-Lysine (WNK) kinase inhibitor series, together with a crystal structure of a previously disclosed allosteric inhibitor bound to WNK1, led to an overlay hypothesis defining core and side-chain relationships across the different series. This in turn enabled an efficient optimization through scaffold morphing, resulting in compounds with a good balance of selectivity, cellular potency, and pharmacokinetic profile, which were suitable for in vivo proof-of-concept studies. When dosed orally, the optimized compound reduced blood pressure in mice overexpressing human WNK1, and induced diuresis, natriuresis and kaliuresis in spontaneously hypertensive rats (SHR), confirming that this mechanism of inhibition of WNK kinase activity is effective at regulating cardiovascular homeostasis.

  19. Treatment with a JNK inhibitor increases, whereas treatment with a p38 inhibitor decreases, H2O2-induced calf pulmonary arterial endothelial cell death.

    Science.gov (United States)

    Park, Woo Hyun

    2017-08-01

    Oxidative stress induces apoptosis in endothelial cells (ECs). Reactive oxygen species (ROS) promote cell death by regulating the activity of various mitogen-activated protein kinases (MAPKs) in ECs. The present study investigated the effects of MAPK inhibitors on cell survival and glutathione (GSH) levels upon H 2 O 2 treatment in calf pulmonary artery ECs (CPAECs). H 2 O 2 treatment inhibited the growth and induced the death of CPAECs, as well as causing GSH depletion and the loss of mitochondrial membrane potential (MMP). While treatment with the MEK or JNK inhibitor impaired the growth of H 2 O 2 -treated CPAECs, treatment with the p38 inhibitor attenuated this inhibition of growth. Additionally, JNK inhibitor treatment increased the proportion of sub-G 1 phase cells in H 2 O 2 -treated CPAECs and further decreased the MMP. However, treatment with a p38 inhibitor reversed the effects of H 2 O 2 treatment on cell growth and the MMP. Similarly, JNK inhibitor treatment further increased, whereas p38 inhibitor treatment decreased, the proportion of GSH-depleted cells in H 2 O 2 -treated CPAECs. Each of the MAPK inhibitors affected cell survival, and ROS or GSH levels differently in H 2 O 2 -untreated, control CPAECs. The data suggest that the exposure of CPAECs to H 2 O 2 caused the cell growth inhibition and cell death through GSH depletion. Furthermore, JNK inhibitor treatment further enhanced, whereas p38 inhibitors attenuated, these effects. Thus, the results of the present study suggest a specific protective role for the p38 inhibitor, and not the JNK inhibitor, against H 2 O 2 -induced cell growth inhibition and cell death.

  20. JAK inhibitors in autoinflammation.

    Science.gov (United States)

    Hoffman, Hal M; Broderick, Lori

    2018-06-11

    Interferonopathies are a subset of autoinflammatory disorders with a prominent type I IFN gene signature. Treatment of these patients has been challenging, given the lack of response to common autoinflammatory therapeutics including IL-1 and TNF blockade. JAK inhibitors (Jakinibs) are a family of small-molecule inhibitors that target the JAK/STAT signaling pathway and have shown clinical efficacy, with FDA and European Medicines Agency (EMA) approval for arthritic and myeloproliferative syndromes. Sanchez and colleagues repurposed baricitinib to establish a significant role for JAK inhibition as a novel therapy for patients with interferonopathies, demonstrating the power of translational rare disease research with lifesaving effects.