WorldWideScience

Sample records for fanac resonance parameter

  1. Resonance neutron capture in {sup 60}Ni below 450 keV

    Energy Technology Data Exchange (ETDEWEB)

    Corvi, F.; Fioni, G. E-mail: gfioni@cea.fr; Gunsing, F.; Mutti, P.; Zanini, L

    2002-01-28

    High-resolution neutron capture cross-section measurements on {sup 60}Ni have been performed at the Geel Linear Accelerator in the energy range from 1 to 450 keV. An experimentally determined weighting function, obtained by a total energy detection set-up, has been applied to the measured capture spectra. The parameters of 275 resonances have been determined in a recent reanalysis using the FANAC R-matrix shape fitting code. Accurate values of the maxwellian-averaged capture cross section for stellar temperatures ranging from kT=5 to 100 keV, corresponding to different scenarios of s-process stellar nucleosynthesis, have been calculated. The distributions of partial radiative widths for s- and p-wave resonances have been derived. A correlation of 0.64 between capture and reduced neutron widths is compatible with the presence of nonstatistical effects in the capture of {sup 60}Ni.

  2. Resonance neutron capture in sup 6 sup 0 Ni below 450 keV

    CERN Document Server

    Corvi, F; Gunsing, F; Mutti, P; Zanini, L

    2002-01-01

    High-resolution neutron capture cross-section measurements on sup 6 sup 0 Ni have been performed at the Geel Linear Accelerator in the energy range from 1 to 450 keV. An experimentally determined weighting function, obtained by a total energy detection set-up, has been applied to the measured capture spectra. The parameters of 275 resonances have been determined in a recent reanalysis using the FANAC R-matrix shape fitting code. Accurate values of the maxwellian-averaged capture cross section for stellar temperatures ranging from kT=5 to 100 keV, corresponding to different scenarios of s-process stellar nucleosynthesis, have been calculated. The distributions of partial radiative widths for s- and p-wave resonances have been derived. A correlation of 0.64 between capture and reduced neutron widths is compatible with the presence of nonstatistical effects in the capture of sup 6 sup 0 Ni.

  3. Neutron Resonance Parameters for Ra-226 (Radium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Volume 24 `Neutron Resonance Parameters' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides the neutron resonance parameters for the isotope Ra-226 (Radium).

  4. Rho resonance parameters from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael

    2016-08-01

    We perform a high-precision calculation of the phase shifts for $\\pi$-$\\pi$ scattering in the I = 1, J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark favors ($N_f = 2$). We extract the $\\rho$ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to $m_{\\pi} = 226$MeV and $m_{\\pi} = 315$MeV, and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase-shifts around the resonance for both quark masses. We find that the extrapolated value, $m_{\\rho} = 720(1)(15)$MeV, is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.

  5. Average resonance parameters evaluation for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    New evaluated <{Gamma}{sub n}{sup 0}> and values for {sup 238}U, {sup 237}Np, {sup 243}Cm, {sup 245}Cm, {sup 246}Cm and {sup 241}Am nuclei in the resolved resonance region are presented. The applied method based on the idea that experimental resonance missing results in correlated changes of reduced neutron widths and level spacings distributions is discussed. (author)

  6. Average resonance parameters evaluation for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    New evaluated <{Gamma}{sub n}{sup 0}> and values for {sup 238}U, {sup 237}Np, {sup 243}Cm, {sup 245}Cm, {sup 246}Cm and {sup 241}Am nuclei in the resolved resonance region are presented. The applied method based on the idea that experimental resonance missing results in correlated changes of reduced neutron widths and level spacings distributions is discussed. (author)

  7. On the ambiguity of determination of interfering resonances parameters

    CERN Document Server

    Malyshev, V M

    2015-01-01

    The general form of solutions for parameters of interfering Breit-Wigner resonances is found. The number of solutions is determined by the properties of roots of corresponding characteristic equation and does not exceed $2^{N-1}$, where $N$ is the number of resonances. For resonances of more complicated form, provided that their amplitudes satisfy certain conditions, for any $N\\ge2$ multiple solutions also exist.

  8. Parameter-induced stochastic resonance with a periodic signal

    Institute of Scientific and Technical Information of China (English)

    Li Jian-Long; Xu Bo-Hou

    2006-01-01

    In this paper conventional stochastic resonance (CSR) is realized by adding the noise intensity. This demonstrates that tuning the system parameters with fixed noise can make the noise play a constructive role and realize parameterinduced stochastic resonance (PSR). PSR can be interpreted as changing the intrinsic characteristic of the dynamical system to yield the cooperative effect between the stochastic-subjected nonlinear system and the external periodic force. This can be realized at any noise intensity, which greatly differs from CSR that is realized under the condition of the initial noise intensity not greater than the resonance level. Moreover, it is proved that PSR is different from the optimization of system parameters.

  9. Simulation of robust resonance parameters using information theory

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Kumar, P.T. [Reactor Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)], E-mail: gstptk@yahoo.co.in; Phoha, V.V. [Department of Computer Science, Louisiana Tech University, Arizona Avenue, Ruston, LA 71270 (United States)], E-mail: phoha@latech.edu; Iyengar, S.S. [Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 (United States)], E-mail: iyengar@csc.lsu.edu

    2008-08-15

    Due to complex nature of resonance region interactions, significant effort has been devoted to quantify the resonance parameter uncertainty information through covariance matrices. Statistical uncertainties arising from measurements contribute only to the diagonal elements of the covariance matrix, but the off-diagonal contributions arise from multiple sources like systematic errors in cross-section measurement, correlation due to nuclear reaction formalism, etc. All the efforts have so far been devoted to minimize the statistical uncertainty by repeated measurements but systematic uncertainty cannot be reduced by mere repetition. The computer codes like SAMMY and KALMAN so far developed to generate resonance parameter covariance have no provision to improve upon the highly correlated experimental data and hence reduce the systematic uncertainty. We propose a new approach called entropy based information theory to reduce the systematic uncertainty in the covariance matrix element wise so that resonance parameters with minimum systematic uncertainty can be simulated. Our simulation approach will aid both the experimentalists and the evaluators to design the experimental facility with minimum systematic uncertainty and thus improve the quality of measurement and the associated instrumentation. We demonstrate, the utility of our approach in simulating the resonance parameters of Uranium-235 and Plutonium-239 with reduced systematic uncertainty.

  10. Neutron Resonance Parameters and Covariance Matrix of 239Pu

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, Herve [ORNL; Leal, Luiz C [ORNL; Larson, Nancy M [ORNL

    2008-08-01

    In order to obtain the resonance parameters in a single energy range and the corresponding covariance matrix, a reevaluation of 239Pu was performed with the code SAMMY. The most recent experimental data were analyzed or reanalyzed in the energy range thermal to 2.5 keV. The normalization of the fission cross section data was reconsidered by taking into account the most recent measurements of Weston et al. and Wagemans et al. A full resonance parameter covariance matrix was generated. The method used to obtain realistic uncertainties on the average cross section calculated by SAMMY or other processing codes was examined.

  11. Studying the $\\rho$ resonance parameters with staggered fermions

    CERN Document Server

    Fu, Ziwen

    2016-01-01

    We deliver a lattice study of $\\rho$ resonance parameters with p-wave $\\pi\\pi$ scattering phases, which are extracted by finite-size methods at one center-of-mass frame and four moving frames for six MILC lattice ensembles with pion masses ranging from $346$ to $ 176$ MeV. The effective range formula is applied to describe the scattering phases as a function of the energy covering the resonance region, this allows us to extract $\\rho$ resonance parameters and to investigate the quark-mass dependence. Lattice studies with three flavors of the Asqtad-improved staggered fermions enable us to use the moving-wall source technique on large lattice spatial dimensions ($L=64$) and small light $u/d$ quarks. Numerical computations are carried out at two lattice spacings, $a \\approx 0.12$ and $0.09$ fm.

  12. Studying the ρ resonance parameters with staggered fermions

    Science.gov (United States)

    Fu, Ziwen; Wang, Lingyun

    2016-08-01

    We deliver a lattice study of ρ resonance parameters with p -wave π π scattering phases, which are extracted by finite-size methods at one center-of-mass frame and four moving frames for six lattice ensembles from the MILC Collaboration with pion masses ranging from 346 to 176 MeV. The effective range formula is applied to describe the scattering phases as a function of the energy covering the resonance region; this allows us to extract ρ resonance parameters and to investigate the quark-mass dependence. Lattice studies with three flavors of Asqtad-improved staggered fermions enable us to use the moving-wall source technique on large lattice spatial dimensions (L =64 ) and small light u /d quarks. Numerical computations are carried out at two lattice spacings, a ≈0.12 and 0.09 fm.

  13. Measurement of the Z Resonance Parameters at LEP

    CERN Document Server

    Barate, R; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Orteu, S; Pacheco, A; Park, I C; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Bazarko, A; Becker, U; Boix, G; Bird, F; Blucher, E; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Greening, T C; Hagelberg, R; Halley, A W; Hansen, J B; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lazeyras, Pierre; Lehraus, Ivan; Maley, P; Mato, P; May, J; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Veenhof, R; Wiedenmann, W; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Bertelsen, H; Fernley, T; Hansen, F; Hansen, J D; Hansen, J R; Hansen, P H; Lindahl, A; Møllerud, R; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Tanaka, R; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Picchi, P; Colrain, P; ten Have, I; Hughes, I S; Knowles, I G; Lynch, J G; Morton, W T; Raine, C; Reeves, P; O'Shea, V; Scarr, J M; Smith, K; Thompson, A S; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Nash, J; Sciabà, A; Sedgbeer, J K; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Keemer, N R; Robertson, N A; Sloan, Terence; Snow, S W; Williams, M I; Bauerdick, L A T; Van Gemmeren, P; Giehl, I; Jakobs, K; Kasemann, M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmelling, M; Wachsmuth, H W; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Etienne, F; Motsch, F; Payre, P; Rousseau, D; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Edwards, M; Haywood, S J; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Affholderbach, K; Barberio, E; Böhrer, A; Brandt, S; Burkhardt, H; Feigl, E; Grupen, Claus; Hess, J; Lutters, G; Meinhard, H; Minguet-Rodríguez, J A; Mirabito, L; Misiejuk, A; Neugebauer, E; Prange, G; Rivera, F; Saraiva, P; Schäfer, U; Sieler, U; Smolik, L; Stephan, F; Trier, H; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pitis, L; Kim, H; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Cinabro, D; Conway, J S; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; Jin, S; Johnson, R P; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Sharma, V; Walsh, A M; Walsh, J; Wear, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    2000-01-01

    The properties of the Z resonance are measured from the analysis of 4.5 million Z decays into fermion pairs collected with the \\Aleph\\ detector at L EP. The data are consistent with lepton universality. The resonance parameters are measured to be $\\MZ=(91.1885 \\pm 0.0031)~\\Gevcc$, $\\GZ= (2.4951 \\pm 0.0043)~\\GeV$, $\\spol=(41.559 \\pm 0.058)$~nb and, combining the three lepton flavours $\\Rl= 20.725\\pm 0.039$. The corresponding number of light neutrino species is $N_{\

  14. Resonances and anti-resonances in the material parameters of 2-D dielectric ENG, MNG, and DNG materials

    DEFF Research Database (Denmark)

    Wu, Yunqiu; Arslanagic, Samel

    The resonant/anti-resonant behavior of parameters extracted by the S-parameter method for two-dimensional epsilon-, mu- and double-negative (ENG, MNG, DNG) materials is investigated. The unit cells consist of infinite dielectric cylinders supporting electric dipole, magnetic dipole, or both....... It is shown that the extraction procedure yields one resonant material parameter, and one anti-resonant material parameter in MNG and ENG configurations. However, both parameters display an over-all resonant response in DNG configurations where electric and magnetic dipole modes are excited simultaneously....

  15. Parameters optimization for magnetic resonance coupling wireless power transmission.

    Science.gov (United States)

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  16. Parameters Optimization for Magnetic Resonance Coupling Wireless Power Transmission

    Directory of Open Access Journals (Sweden)

    Changsheng Li

    2014-01-01

    Full Text Available Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  17. Comments on extracting the resonance strength parameter from yield data

    Science.gov (United States)

    Croft, Stephen; Favalli, Andrea

    2015-10-01

    The F(α,n) reaction is the focus of on-going research in part because it is an important source of neutrons in the nuclear fuel cycle which can be exploited to assay nuclear materials, especially uranium in the form of UF6 [1,2]. At the present time there remains some considerable uncertainty (of the order of ±20%) in the thick target integrated over angle (α,n) yield from 19F (100% natural abundance) and its compounds as discussed in [3,4]. An important thin target cross-section measurement is that of Wrean and Kavanagh [5] who explore the region from below threshold (2.36 MeV) to approximately 3.1 MeV with fine energy resolution. Integration of their cross-section data over the slowing down history of a stopping α-particle allows the thick target yield to be calculated for incident energies up to 3.1 MeV. This trend can then be combined with data from other sources to obtain a thick target yield curve over the wider range of interest to the fuel cycle (roughly threshold to 10 MeV to include all relevant α-emitters). To estimate the thickness of the CaF2 target they used, Wrean and Kavanagh separately measured the integrated yield of the 6.129 MeV γ-rays from the resonance at 340.5 keV (laboratory α-particle kinetic energy) in the 19F(p,αγ) reaction. To interpret the data they adopted a resonance strength parameter of (22.3±0.8) eV based on a determination by Becker et al [6]. The value and its uncertainty directly affects the thickness estimate and the extracted (α,n) cross-section values. In their citation to Becker et al's work, Wrean and Kavanagh comment that they did not make use of an alternative value of (23.7±1.0) eV reported by Croft [7] because they were unable to reproduce the value from the data given in that paper. The value they calculated for the resonance strength from the thick target yield given by Croft was 21.4 eV. The purpose of this communication is to revisit the paper by Croft published in this journal and specifically to

  18. Neutron resonance parameters of dysprosium isotopes using neutron capture yields

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y. U.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National University, Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)

    2015-10-15

    Dysprosium is used in the field of nuclear reactor system because it has a very large thermal neutron absorption cross-section. The dysprosium alloyed with special stainless steels is attractive for control in nuclear reactor because of the ability to absorb neutrons readily without swelling or contracting over time and its high melting point. Dysprosium is also one of fission products from the thermal fission of {sup 234}U, {sup 233}U, and {sup 239}Pu. The fission products are accumulated in the reactor core by the burn-up of the nuclear fuel and the poison effect is increased. Therefore, it is required to understand how Dysprosium as both a poison and an absorbing material in the control rod has an effect on the neutron population in a nuclear reactor system over all energy regions. Neutron Capture experiments on Dy isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. Resonance parameters were extracted by fitting the neutron capture data using the SAMMY multilevel R-matrix Bayesian code.

  19. Calculation of resonant sound absorption parameters for performance evaluation of metal rubber material

    Institute of Scientific and Technical Information of China (English)

    E.A.IZZHEUROV

    2009-01-01

    The first resonant(anti-resonant)frequency and sound absorption coefficient of metal rubber(MR) material are theoretically studied with hard backed samples and with air layer.The equations of the first resonant and anti-resonant frequencies of MR are deduced from the undamped propagation characteristics of porous material.The first resonant and anti-resonance sound absorption coefficients are induced according to the theoretical formula for the acoustic characteristic parameters of MR,and the former is modified while the energy consumption at resonance is taken into consideration.The good agreement between the calculation results of these resonant sound absorption parameters and the experimental results verifies the effectiveness of this calculation method for the performance evaluation of MR as a sound absorption material.

  20. Calculation of resonant sound absorption parameters for performance evaluation of metal rubber material

    Institute of Scientific and Technical Information of China (English)

    WU GuoQi; AO HongRui; JIANG HongYuan; E.A.IZZHEUROV

    2009-01-01

    The first resonant(anti-resonant)frequency and sound absorption coefficient of metal rubber(MR)material are theoretically studied with hard backed samples and with air layer.The equations of the first resonant and anti-resonant frequencies of MR are deduced from the undamped propagation characteristics of porous material.The first resonant and anti-resonance sound absorption coefficients are induced according to the theoretical formula for the acoustic characteristic parameters of MR,and the former is modified while the energy consumption at resonance is taken into consideration.The good agreement between the calculation results of these resonant sound absorption parameters and the experimental results verifies the effectiveness of this calculation method for the performance evaluation of MR as a sound absorption material.

  1. Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control

    CSIR Research Space (South Africa)

    Loveday, PW

    1998-09-01

    Full Text Available A method for analyzing the effect of feedback control on the dynamics of piezoelectric resonators used in vibratory gyroscopes has been developed. This method can be used to determine the feasibility of replacing the traditional mechanical balancing...

  2. Determination of Scaling Parameter and Dynamical Resonances in Complex-Rotated Hamiltonian Ⅱ: Numerical Analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Zong-Liang; ZHAO Fang; LI Shao-Hua; ZHAO Mei-Shan; CHEN Chang-Yong

    2008-01-01

    This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical analysis and provided a formalism for dynamical resonance calculations. In this paper we present accurate numerical results for two non-trivial dynamical processes, namely, models of diatomie molecular predissoeiation and of barrier potential scattering for resonances. The results presented in this paper confirm our theoretical analysis, remove a theoretical ambiguity on determination of the complex scaling parameter, and provide an improved understanding for dynamical resonance calculations in rigged Hilbert space.

  3. Test of the universality of the three-body Efimov parameter at narrow Feshbach resonances.

    Science.gov (United States)

    Roy, Sanjukta; Landini, Manuele; Trenkwalder, Andreas; Semeghini, Giulia; Spagnolli, Giacomo; Simoni, Andrea; Fattori, Marco; Inguscio, Massimo; Modugno, Giovanni

    2013-08-02

    We measure the critical scattering length for the appearance of the first three-body bound state, or Efimov three-body parameter, at seven different Feshbach resonances in ultracold ^{39}K atoms. We study both intermediate and narrow resonances, where the three-body spectrum is expected to be determined by the nonuniversal coupling of two scattering channels. Instead, our observed ratio of the three-body parameter with the van der Waals radius is approximately the same universal ratio as for broader resonances. This unexpected observation suggests the presence of a new regime for three-body scattering at narrow resonances.

  4. Resonant transmission in one-dimensional quantum mechanics with two independent point interactions: Full parameter analysis

    Science.gov (United States)

    Konno, Kohkichi; Nagasawa, Tomoaki; Takahashi, Rohta

    2017-10-01

    We discuss the scattering of a quantum particle by two independent successive point interactions in one dimension. The parameter space for two point interactions is given by U(2) × U(2) , which is described by eight real parameters. We perform an analysis of perfect resonant transmission on the whole parameter space. By investigating the effects of the two point interactions on the scattering matrix of plane wave, we find the condition under which perfect resonant transmission occurs. We also provide the physical interpretation of the resonance condition.

  5. Analysis of the {sup 238}U resonance parameters using random-matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Courcelle, A. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Derrien, H.; Leal, L.C.; Larson, N.M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2005-07-01

    Random-matrix theories (RMTs) provide valuable statistical tools to analyze neutron-resonance data. The predictive power of the random-matrix theories, which do not contain any adjustable parameters, is striking, and the application is rather simple and fast. A new evaluation of {sup 238}U resonance parameters has recently been performed at the Oak Ridge National Laboratory; the objective of this paper is to illustrate the use of RMT in the field of resonance-parameter evaluation with the newly evaluated {sup 239}U energy levels and widths. Several statistics were computed using the s-wave resonances up to 20 keV and compared to the Gaussian Orthogonal Ensemble predictions. It is shown that a good agreement is observed between RMT and the experimental data up to 2.5 keV. The F-Dyson statistic was especially investigated because of its claimed ability to detect locally missed and spurious levels in the sample (p-resonances contamination or unresolved multiplets). As expected, the entire set of evaluated {sup 238}U s-wave resonances up to 20 keV disagrees significantly with the theory. There are two reasons for this: First, it is difficult to distinguish s- and p-wave resonances in the analysis. Secondly, especially above 10 keV, it is impossible to determine reliable resonance energies from the available experimental data. It is concluded that the use of RMT can help nuclear data specialists to improve their evaluations in the resonance range. (authors)

  6. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  7. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuefeng, E-mail: lixfpost@163.com [School of Science, Xi' an University of Post and Telecommunications, Xi' an, 710121 (China); Cao, Guangzhan; Liu, Hongjun [Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an, 710119 (China)

    2014-04-15

    Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  8. SAMDIST: A Computer Code for Calculating Statistical Distributions for R-Matrix Resonance Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Leal, L.C.

    1995-01-01

    The: SAMDIST computer code has been developed to calculate distribution of resonance parameters of the Reich-Moore R-matrix type. The program assumes the parameters are in the format compatible with that of the multilevel R-matrix code SAMMY. SAMDIST calculates the energy-level spacing distribution, the resonance width distribution, and the long-range correlation of the energy levels. Results of these calculations are presented in both graphic and tabular forms.

  9. SAMDIST A Computer Code for Calculating Statistical Distributions for R-Matrix Resonance Parameters

    CERN Document Server

    Leal, L C

    1995-01-01

    The: SAMDIST computer code has been developed to calculate distribution of resonance parameters of the Reich-Moore R-matrix type. The program assumes the parameters are in the format compatible with that of the multilevel R-matrix code SAMMY. SAMDIST calculates the energy-level spacing distribution, the resonance width distribution, and the long-range correlation of the energy levels. Results of these calculations are presented in both graphic and tabular forms.

  10. Electromagnetic scattering by spherical negative-refractive-index particles: Low-frequency resonance and localization parameters.

    Science.gov (United States)

    Liu, Zheng; Lin, Zhifang; Chui, S T

    2004-01-01

    The Mie scattering of electromagnetic waves of wave vector k by spherical negative-refractive-index particles of radius a exhibits an unusual resonance at ka-->0. The scattering enhancement from the ka-->0 resonance is insensitive to the size of scatterers, distinct from the Mie scattering resonances from positive-refractive-index particles. For media consisting of a collection of the negative-refractive-index particles, the unusual resonance results in a significant reduction of the localization parameter, providing a possibility to reach the light localization transition by reducing the wave vector k, in analogy to electronic systems.

  11. Resonance parameters of the {rho}-meson from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, Karl; Renner, Dru B. [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC

    2010-12-15

    We perform a non-perturbative lattice calculation of the P-wave pion-pion scattering phase in the {rho}-meson decay channel using two flavors of maximally twisted mass fermions at pion masses ranging from 480 MeV to 290 MeV. Making use of finite-size methods, we evaluate the pion-pion scattering phase in the center-of-mass frame and two moving frames. Applying an effective range formula, we find a good description of our results for the scattering phase as a function of the energy covering the resonance region. This allows us to extract the {rho}-meson mass and decay width and to study their quark mass dependence. (orig.)

  12. Resonance Parameters of the Rho-Meson from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Xu Feng, Karl Jansen, Dru Renner

    2011-05-01

    We perform a non-perturbative lattice calculation of the P-wave pion-pion scattering phase in the rho-meson decay channel using two flavors of maximally twisted mass fermions at pion masses ranging from 480 MeV to 290 MeV. Making use of finite-size methods, we evaluate the pion-pion scattering phase in the center-of-mass frame and two moving frames. Applying an effective range formula, we find a good description of our results for the scattering phase as a function of the energy covering the resonance region. This allows us to extract the rho-meson mass and decay width and to study their quark mass dependence.

  13. Determination of Scaling Parameter and Dynamical Resonances in Complex-Rotated Hamiltonian Ⅰ: Theory

    Institute of Scientific and Technical Information of China (English)

    LI Heng-Mei; ZHAO Fang; YUAN Hong-Chun; ZHAO Mei-Shan

    2008-01-01

    In this paper we present a theoretical analysis on the determination of the scaling parameter in the complex-rotated Hamiltonian, which has served as a basis for successful applications of the rigged Hilbert space theory for resonances. Based on the complex energy eigenvalue, E(θ) = En(θ) - iF(θ)/2, as a function of the scaling parameter The condition dER(θR)/ dθ = 0 is merely a consequence of the Virial theorem and θⅠ = θR is not a necessary condition for a resonance state. We also provide a harmonic approximation formalism for resonances in scattering over a potential barrier.

  14. An information theory approach to minimise correlated systematic uncertainty in modelling resonance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Kumar, P.T. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, O-Okayama, Meguro-Ku, Tokyo 152-8550 (Japan)], E-mail: gstptk@yahoo.co.in; Sekimoto, Hiroshi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, O-Okayama, Meguro-Ku, Tokyo 152-8550 (Japan)], E-mail: hsekimot@nr.titech.ac.jp

    2009-02-15

    Covariance matrix elements depict the statistical and systematic uncertainties in reactor parameter measurements. All the efforts have so far been devoted only to minimise the statistical uncertainty by repeated measurements but the dominant systematic uncertainty has either been neglected or randomized. In recent years efforts has been devoted to simulate the resonance parameter uncertainty information through covariance matrices in code SAMMY. But, the code does not have any provision to check the reliability of the simulated covariance data. We propose a new approach called entropy based information theory to reduce the systematic uncertainty in the correlation matrix element so that resonance parameters with minimum systematic uncertainty can be modelled. We apply our information theory approach in generating the resonance parameters of {sup 156}Gd with reduced systematic uncertainty and demonstrate the superiority of our technique over the principal component analysis method.

  15. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium

    Energy Technology Data Exchange (ETDEWEB)

    G. Leinweber; J.A. Burke; H.D. Knox; N.J. Drindak; D.W. Mesh; W.T. Haines; R.V. Ballad; R.C. Block; R.E. Slovacek; C.J. Werner; M.J. Trbovich; D.P. Barry; T. Sato

    2001-07-16

    The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is {sup 149}Sm, which has a large neutron absorption cross section at thermal energies and is a {sup 235}U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with {sup 6}Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D{sub 2}O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in {sup 149}Sm, present measurements agree within estimated

  16. Efimov Resonance and Three-Body Parameter in a Lithium-Rubidium Mixture

    Science.gov (United States)

    Maier, R. A. W.; Eisele, M.; Tiemann, E.; Zimmermann, C.

    2015-07-01

    We study collisional heating in a cold 7Li-87Rb mixture near a broad Feshbach resonance at 661 G. At the high field slope of the resonance, we find an enhanced three-body recombination rate that we interpret as a heteronuclear Efimov resonance. With improved Feshbach spectroscopy of two further resonances, a model for the molecular potentials has been developed that now consistently explains all known Feshbach resonances of the various Li-Rb isotope mixtures. The model is used to determine the scattering length of the observed Efimov state. Its value of -1870 a0 Bohr radii supports the currently discussed assumption of universality of the three-body parameter also in heteronuclear mixtures.

  17. Uncertainty of Doppler reactivity worth due to uncertainties of JENDL-3.2 resonance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zukeran, Atsushi [Hitachi Ltd., Hitachi, Ibaraki (Japan). Power and Industrial System R and D Div.; Hanaki, Hiroshi; Nakagawa, Tuneo; Shibata, Keiichi; Ishikawa, Makoto

    1998-03-01

    Analytical formula of Resonance Self-shielding Factor (f-factor) is derived from the resonance integral (J-function) based on NR approximation and the analytical expression for Doppler reactivity worth ({rho}) is also obtained by using the result. Uncertainties of the f-factor and Doppler reactivity worth are evaluated on the basis of sensitivity coefficients to the resonance parameters. The uncertainty of the Doppler reactivity worth at 487{sup 0}K is about 4 % for the PNC Large Fast Breeder Reactor. (author)

  18. Experiment and application of parameter-induced stochastic resonance in an over-damped random linear system

    Institute of Scientific and Technical Information of China (English)

    Jiang Shi-Qi; Hou Min-Jie; Jia Chun-Hua; He Ji-Rong; Gu Tian-Xiang

    2009-01-01

    This paper investigates the parameter-induced stochastic resonance using experimental methods in an over-damped random linear system with asymmetric dichotomous noise. Non-monotonic dependence of signal-to-noise ratio on the system parameter is observed. Several potential applications of parameter-induced stochastic resonance are given in circuits.

  19. Resolved resonance parameters for sup 2 sup 3 sup 6 Np

    CERN Document Server

    Morogovskij, G B

    2001-01-01

    Multilevel Breit-Wigner parameters were obtained for fission cross-section representation in the 0.01-33 eV energy region from evaluation of a sup 2 sup 3 sup 6 Np experimental fission cross-section in the resolved resonance region.

  20. Magnetic resonance imaging derived left ventricular global and region function parameters in healthy adults

    Institute of Scientific and Technical Information of China (English)

    穆莉莎

    2014-01-01

    Objective To establish cardiac magnetic resonance imaging(MRI)derived left ventricular(LV)global and region function parameters in normal adults.Methods Twenty normal adults were examined with fast imaging employing steady-state(Fiesta)acquisition sequence of cardiac MRI,LV global function and LV region function were measured at basal,middle,apical level and at 16

  1. Nuclear data project in Korea and resonance parameter evaluation of fission products

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa; Oh, Soo-Youl [Korea Atomic Energy Research Institute, Yusong, Taejon (Korea)

    2000-03-01

    Nuclear data activities in the fields of evaluation, processing, measurement, and service in Korea are presented in this paper. As one of the current activities, the neutron resonance parameters for stable or long-lived nineteen fission products have been evaluated and the results are presented here. (author)

  2. Nonstationary weak signal detection based on normalization stochastic resonance with varying parameters

    Indian Academy of Sciences (India)

    HAIBIN ZHANG; WEI XIONG; SHANGBIN ZHANG; QINGBO HE; FANRANG KONG

    2016-06-01

    The nonlinear stochastic resonance system possesses the ability of taking advantage of background noise to enhance the weak signal. It provides a new approach to detect the weak signal embedded with heavy noise. This study proposes a new varying parameter stochastic resonance employing the fourth-order Runge–Kutta numerical method as well as the normalized transformation of a bistable stochastic resonance system. The model performs well in the detection of a time-varying signal with background noise for denoising and signal recovery. We take the fitness coefficient and cross-correlation coefficient as the criteria and analyze the influence of different parameters. The simulating results indicate its availability, validity and that it generates a betterperformance than the traditional stochastic resonance. The method develops the area of time-varying signal detection with stochastic resonance and presents new strategy for detection and denoising of a time-varying signal. It can be expected to be widely used in the areas of aperiodic signal processing, radar communication,etc

  3. Evaluation of Silicon Neutron Resonance Parameters in the Energy Range Thermal to 1800 keV

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, H.

    2002-09-30

    The evaluation of the neutron cross sections of the three stable isotopes of silicon in the energy range thermal to 20 MeV was performed by Hetrick et al. for ENDF/B-VI (Evaluated Nuclear Data File). Resonance parameters were obtained in the energy range thermal to 1500 keV from a SAMMY analysis of the Oak Ridge National Laboratory experimental neutron transmission data. A new measurement of the capture cross section of natural silicon in the energy range 1 to 700 keV has recently been performed at the Oak Ridge Electron Linear Accelerator. Results of this measurement were used in a SAMMY reevaluation of the resonance parameters, allowing determination of the capture width of a large number of resonances. The experimental data base is described; properties of the resonance parameters are given. For the first time the direct neutron capture component has been taken into account from the calculation by Rauscher et al. in the energy range from thermal to 1 MeV. Results of benchmark calculations are also given. The new evaluation is available in the ENDF/B-VI format.

  4. Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study.

    Science.gov (United States)

    Tweten, D J; Okamoto, R J; Bayly, P V

    2017-01-17

    To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE). Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed-form expressions for traveling waves, finite-element (FE) simulations of waves in homogeneous ITI material, and FE simulations of waves in heterogeneous material. Key properties are the complex shear modulus μ2 , shear anisotropy ϕ=μ1/μ2-1, and tensile anisotropy ζ=E1/E2-1. Each method provided good estimates of ITI parameters when both slow and fast shear waves with multiple propagation directions were present. No method gave accurate estimates when the displacement field contained only slow shear waves, only fast shear waves, or waves with only a single propagation direction. Methods based on directional filtering are robust to noise and include explicit checks of propagation and polarization. Curl-based methods led to more accurate estimates in low noise conditions. Parameter estimation in heterogeneous materials is challenging for all methods. Multiple shear waves, both slow and fast, with different propagation directions, must be present in the displacement field for accurate parameter estimates in ITI materials. Experimental design and data analysis can ensure that these requirements are met. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Calculation of Stark resonance parameters for valence orbitals of the water molecule

    CERN Document Server

    Laso, Susana Arias

    2016-01-01

    An exterior complex scaling technique is applied to compute Stark resonance parameters for two molecular orbitals ($1b_{1}$ and $1b_{2}$) represented in the field-free limit in a single-center expansion. For electric DC field configurations that guarantee azimuthal symmetry of the solution the calculation is carried out by solving a two-dimensional partial differential equation in spherical polar coordinates using a finite-element method. The resonance positions and widths as a function of electric field strengths are shown for field strengths starting in the tunnelling ionization regime, and extending well into the over-barrier ionization region.

  6. Determination of the $\\psi(3770)$, $\\psi(4040)$, $\\psi(4160)$ and $\\psi(4415)$ resonance parameters

    CERN Document Server

    Ablikim, M; Ban, Y; Cai, X; Chen, H F; Chen, H S; Chen, H X; Chen, J C; Chen, Jin; Chen, Y B; Chu, Y P; Dai, Y S; Diao, L Y; Deng, Z Y; Dong, Q F; Du, S X; Fang, J; Fang, S S; Fu, C D; Gao, C S; Gao, Y N; Gu, S D; Gu, Y T; Guo, Y N; Guo, Z J; Harris, F A; He, K L; He, M; Heng, Y K; Hou, J; Hu, H M; Hu, J H; Hu, T; Huang, G S; Huang, X T; Ji, X B; Jiang, X S; Jiang, X Y; Jiao, J B; Jin, D P; Jin, S; Lai, Y F; Li, G; Li, H B; Li, J; Li, R Y; Li, S M; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Liang, Y F; Liao, H B; Liu, B J; Liu, C X; Liu, F; Fang Liu; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, Jian; Liu, Q; Liu, R G; Liu, Z A; Lou, Y C; Lu, F; Lu, G R; Lu, J G; Luo, C L; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Mao, Z P; Mo, X H; Nie, J; Olsen, S L; Ping, R G; Qi, N D; Qin, H; Qiu, J F; Ren, Z Y; Rong, G; Ruan, X D; Shan, L Y; Shang, L; Shen, C P; Shen, D L; Shen, X Y; Sheng, H Y; Sun, H S; Sun, S S; Sun, Y Z; Sun, Z J; Tang, X; Tong, G L; Varner, G S; Wang, D Y; Wang, L; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, W F; Wang, Y F; Wang, Z; Wang, Z Y; Wang, Zheng; Wei, C L; Wei, D H; Weng, Y; Wu, N; Xia, X M; Xie, X X; Xu, G F; Xu, X P; Xu, Y; Yan, M L; Yang, H X; Yang, Y X; Ye, M H; Ye, Y X; Yu, G W; Yuan, C Z; Yuan, Y; Zang, S L; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H Q; Zhang, H Y; Zhang, J W; Zhang, J Y; Zhang, S H; Zhang, X Y; Zhang, Yiyun; Zhang, Z X; Zhang, Z P; Zhao, D X; Zhao, J W; Zhao, M G; Zhao, P P; Zhao, W R; Zhao, Z G; Zheng, H Q; Zheng, J P; Zheng, Z P; Zhou, L; Zhu, K J; Zhu, Q M; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, B A; Zhuang, X A; Zou, B S

    2008-01-01

    $R$ measurement data taken with the BESII detector at center-of-mass energies between 3.7 and 5.0 GeV is fitted to determine resonance parameters (mass, total width, electron width) of the high mass charmonium states, $\\psi(3770)$, $\\psi(4040)$, $\\psi(4160)$ and $\\psi(4415)$. Various effects, including the relative phases between the resonances, interferences, the energy-dependence of the full widths, and the initial state radiative correction, are examined. The results are compared to previous studies.

  7. Stochastic Parameter Resonance of Road-Vehicle Systems and Related Bifurcation Problems

    Science.gov (United States)

    Wedig, Walter V.

    The paper investigates stochastic dynamics of road-vehicle systems and related bifurcation problems. The ride on rough roads generates vertical car vibrations whose root-mean-squares are resonant for critical car speeds and vanish when the car velocity is increasing, infinitely. These investigations are extended to wheel suspensions with progressive spring characteristics. For weak but still positive damping, the car vibrations become unstable when the velocity reaches the parameter resonance near twice the critical speed bifurcating into stochastic chaos of larger non-stationary car vibrations.

  8. Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems

    Science.gov (United States)

    Páez, Rocío Isabel; Efthymiopoulos, Christos

    2015-02-01

    The possibility that giant extrasolar planets could have small Trojan co-orbital companions has been examined in the literature from both viewpoints of the origin and dynamical stability of such a configuration. Here we aim to investigate the dynamics of hypothetical small Trojan exoplanets in domains of secondary resonances embedded within the tadpole domain of motion. To this end, we consider the limit of a massless Trojan companion of a giant planet. Without other planets, this is a case of the elliptic restricted three body problem (ERTBP). The presence of additional planets (hereafter referred to as the restricted multi-planet problem, RMPP) induces new direct and indirect secular effects on the dynamics of the Trojan body. The paper contains a theoretical and a numerical part. In the theoretical part, we develop a Hamiltonian formalism in action-angle variables, which allows us to treat in a unified way resonant dynamics and secular effects on the Trojan body in both the ERTBP or the RMPP. In both cases, our formalism leads to a decomposition of the Hamiltonian in two parts, . , called the basic model, describes resonant dynamics in the short-period (epicyclic) and synodic (libration) degrees of freedom, while contains only terms depending trigonometrically on slow (secular) angles. is formally identical in the ERTBP and the RMPP, apart from a re-definition of some angular variables. An important physical consequence of this analysis is that the slow chaotic diffusion along resonances proceeds in both the ERTBP and the RMPP by a qualitatively similar dynamical mechanism. We found that this is best approximated by the paradigm of `modulational diffusion'. In the paper's numerical part, we then focus on the ERTBP in order to make a detailed numerical demonstration of the chaotic diffusion process along resonances. Using color stability maps, we first provide a survey of the resonant web for characteristic mass parameter values of the primary, in which the

  9. Multi-objective Optimization of Large Wind Farm Parameters for Harmonic Instability and Resonance Conditions

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei;

    2016-01-01

    In large wind farms, the mutual interactions between the power converter control systems and passive components may result in harmonic instability and resonance frequencies at a various frequency range. This paper presents an optimized parameter design of the power converter controllers in large...... wind farms in order to reduce the resonance probability and guarantee harmonic stability. In fact, a general multiobjective optimization procedure based on the genetic algorithm is proposed to set the poles of the wind farm in a desired location in order to minimize the number of the resonance...... frequencies and to improve the harmonic stability. Time-domain simulations of a 400-MW wind farm in the PSCAD/EMTDC environment demonstrate the effectiveness of the proposed design technique....

  10. Compound piezoelectric cylindrical resonators as sensors of the rheological parameters of viscoelastic media.

    Science.gov (United States)

    Kiełczyński, Piotr; Szalewski, Marek

    2007-06-01

    The electro-elastic behavior of a viscoelastically loaded layered cylindrical resonator (sensor) comprising two coupled hollow cylinders is presented. The inner cylinder is a piezoelectric ceramic tube. The outer cylinder is a non-piezoelectric (passive) metallic cylinder. An analytical formula for the electrical admittance of a compound layered cylindrical resonator loaded with a viscoelastic liquid is established. Admittance (conductance) diagrams were obtained using a continuum electromechanical model. The established analytical formulas enable the determination of the influence of the liquid viscosity, material, and geometrical parameters of a compound cylindrical resonator on the response characteristics of the compound sensor. In the paper, the sensor implications resulting from the performed analysis are described. Moreover, the algorithm of the method developed by the authors to evaluate the rheological parameters of a viscoelastic liquid is presented. Good agreement between the theoretical results and experimental data is shown. The analysis presented in this paper can be utilized for the design and construction of cylindrical piezoelectric viscosity sensors, annular accelerometers, filters, transducers, and multilayer resonators.

  11. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinjing; Zhang, Tao, E-mail: liberal.gentle.breeze@hotmail.com [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2015-02-15

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N{sup 2}) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm.

  12. Evidence of parameter-induced aperiodic stochastic resonance with fixed noise

    Institute of Scientific and Technical Information of China (English)

    Li Jian-Long

    2007-01-01

    Stochastic resonance (SR) is based on the cooperative effect between the stochastic dynamical system and the external forcing. As is well known, the cooperative effect is produced by adding noises. In this paper, we show the evidence that by changing the system parameters and the signal intensity, a nonlinear system in the presence of an input aperiodic signal can yield the cooperative effect, with the noise fixed. To quantify the nonlinear system output,we determine the theoretical bit error rate (BER). By numerical simulation, the validity of the theoretical derivation is checked. Besides, we show that parameter-induced SR is more realizable than SR via adding noises, especially when the noise intensity exceeds the resonance level, or when the characteristic of the noise is not known.

  13. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection.

    Science.gov (United States)

    Zhang, Jinjing; Zhang, Tao

    2015-02-01

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N(2)) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm.

  14. Large scale integration of CVD-graphene based NEMS with narrow distribution of resonance parameters

    Science.gov (United States)

    Arjmandi-Tash, Hadi; Allain, Adrien; (Vitto Han, Zheng; Bouchiat, Vincent

    2017-06-01

    We present a novel method for the fabrication of the arrays of suspended micron-sized membranes, based on monolayer pulsed-CVD graphene. Such devices are the source of an efficient integration of graphene nano-electro-mechanical resonators, compatible with production at the wafer scale using standard photolithography and processing tools. As the graphene surface is continuously protected by the same polymer layer during the whole process, suspended graphene membranes are clean and free of imperfections such as deposits, wrinkles and tears. Batch fabrication of 100 μm-long multi-connected suspended ribbons is presented. At room temperature, mechanical resonance of electrostatically-actuated devices show narrow distribution of their characteristic parameters with high quality factor and low effective mass and resonance frequencies, as expected for low stress and adsorbate-free membranes. Upon cooling, a sharp increase of both resonant frequency and quality factor is observed, enabling to extract the thermal expansion coefficient of CVD graphene. Comparison with state-of-the-art graphene NEMS is presented.

  15. Study of dual wavelength composite output of solid state laser based on adjustment of resonator parameters

    Science.gov (United States)

    Wang, Lei; Nie, Jinsong; Wang, Xi; Hu, Yuze

    2016-10-01

    The 1064nm fundamental wave (FW) and the 532nm second harmonic wave (SHW) of Nd:YAG laser have been widely applied in many fields. In some military applications requiring interference in both visible and near-infrared spectrum range, the de-identification interference technology based on the dual wavelength composite output of FW and SHW offers an effective way of making the device or equipment miniaturized and low cost. In this paper, the application of 1064nm and 532nm dual-wavelength composite output technology in military electro-optical countermeasure is studied. A certain resonator configuration that can achieve composite laser output with high power, high beam quality and high repetition rate is proposed. Considering the thermal lens effect, the stability of this certain resonator is analyzed based on the theory of cavity transfer matrix. It shows that with the increase of thermal effect, the intracavity fundamental mode volume decreased, resulting the peak fluctuation of cavity stability parameter. To explore the impact the resonator parameters does to characteristics and output ratio of composite laser, the solid-state laser's dual-wavelength composite output models in both continuous and pulsed condition are established by theory of steady state equation and rate equation. Throughout theoretical simulation and analysis, the optimal KTP length and best FW transmissivity are obtained. The experiment is then carried out to verify the correctness of theoretical calculation result.

  16. PARAMETERS OF NUCLEAR MAGNETIC RESONANCE IN PATIENTS WITH CONGENITAL NARROWING OF THE LUMBAR SPINAL CANAL

    Directory of Open Access Journals (Sweden)

    ELIU HAZAEL MORALES-RANGEL

    Full Text Available ABSTRACT Objective: To compare the morphological parameters of magnetic resonance in patients with congenital narrowing of the lumbar spinal canal with patients with low back pain. Methods: A descriptive, retrospective, observational study was conducted with measurements in the axial and sagittal magnetic resonance sections of the vertebral body and canal of the lumbar spine of 64 patients with diagnosis of low back pain, which were compared with resonance images taken from 31 Mexican patients with congenital narrowing of the lumbar spinal canal. Results: The results show that patients with congenital narrowing of the lumbar spinal canal in the axial sections have a difference in diameters, being L2<13.9 mm, L3<13.3 mm, L4<12.9 mm, L5<13.1 mm, compared with controls L2<20.5 mm, L3<20.5 mm, L4<19.3 mm, L5<18.1 mm with p = 0.000. Conclusions: We found different measurements in the Mexican population compared to those found by similar studies. With the parameters obtained, it would be possible to make the proper diagnosis, surgical planning, and treatment.

  17. Design Considerations of Structural Parameters in Resonant Tunneling Diode by None-Equilibrium Green Function Method

    Directory of Open Access Journals (Sweden)

    M. Charmi

    2015-12-01

    Full Text Available This paper presents the effects of structural parameters like Quantum well width, barrier width, spacer width, contact width and contact doping, on performance of Resonant Tunneling Diode using full quantum simulation. The simulation is based on a self-consistent solution of the Poisson equation and Schrodinger equation with open boundary conditions, within the non-equilibrium Green’s function formalism. The effects of varying the structural parameters is investigated in terms of the output current, peak current, valley current, peak to valley current ratio and the voltage associated with the peak current. Simulation results illustrate that the device performance can be improved by proper selection of the structural parameters.

  18. Parameter optimization analysis to minimize the polarization error in a localized thermal tunable fiber ring resonator gyro.

    Science.gov (United States)

    Bobbili, Prasada Rao; Nayak, Jagannath; Pinnoji, Prerana Dabral; Rama Koti Reddy, D V

    2016-03-10

    The accuracy of the resonant frequency servo loop is a major concern for the high-performance operation of a resonant fiber optic gyro. For instance, a bias error as large as tens or even hundreds of degrees/hour has been observed at the demodulated output of the resonant frequency servo loop. The traditional frequency servo mechanism is not an efficient tool to address this problem. In our previous work, we proposed a novel method to minimize the laser frequency noise to the level of the shot noise by refractive index modulation by a thermally tunable resonator. In this paper, we performed the parameter optimization for the resonator coil, multifunction integrated-optics chip, and couplers by the transition matrix using the Jones matrix methodology to minimize the polarization error. With the optimized parameter values, we achieved the bias value of the resonator fiber optic gyro to 1.924°/h.

  19. Parameter allocation of parallel array bistable stochastic resonance and its application in communication systems

    Science.gov (United States)

    Liu, Jian; Wang, You-Guo; Zhai, Qi-Qing; Liu, Jin

    2016-10-01

    In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system (P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated (BPAM) signal transmissions. The optimal parameter allocation policy of the P-BSR-CS is provided to minimize the bit error rate (BER) and maximize the channel capacity (CC) under the adiabatic approximation condition. On this basis, we further derive the best parameter selection theorem in realistic communication scenarios via variable transformation. Specifically, the P-BSR structure design not only brings the robustness of parameter selection optimization, where the optimal parameter pair is not fixed but variable in quite a wide range, but also produces outstanding system performance. Theoretical analysis and simulation results indicate that in the P-BSR-CS the proposed parameter allocation scheme yields considerable performance improvement, particularly in very low signal-to-noise ratio (SNR) environments. Project supported by the National Natural Science Foundation of China (Grant No. 61179027), the Qinglan Project of Jiangsu Province of China (Grant No. QL06212006), and the University Postgraduate Research and Innovation Project of Jiangsu Province (Grant Nos. KYLX15_0829, KYLX15_0831).

  20. Efficient Method to Extract Coupling Ratio and Round-trip Loss Parameters of Optical Waveguide Ring Resonator

    Institute of Scientific and Technical Information of China (English)

    HAN Xiu-you; PANG Fu-fei; FANG Zu-jie; ZHAO Ming-shan

    2008-01-01

    Based on the measurement of the contrast ratios of the transmission spectra from the throughput and drop ports of ring resonator, an efficient method is proposed to extract the coupling ratio and round-trip loss of the integrated optical waveguide ring resonator. The parameters of a racetrack resonator prepared by ion-exchange technique in K9 optical glass substrate are examined, which demonstrates the validity of this method. The accuracy and applicable range of this method are also discussed.

  1. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.

    Science.gov (United States)

    Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin

    2014-07-25

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.

  2. CONTROL OF LASER RADIATION PARAMETERS: Enhancement of the efficiency and control of emission parameters of an unstable-resonator chemical oxygen—iodine laser

    Science.gov (United States)

    Boreisho, A. S.; Lobachev, V. V.; Savin, A. V.; Strakhov, S. Yu; Trilis, A. V.

    2007-07-01

    The outlook is considered for the development of a high-power supersonic flowing chemical oxygen—iodine laser operating as an amplifier and controlled by radiation from a master oscillator by using an unstable resonator with a hole-coupled mirror. The influence of the seed radiation intensity, the coupling-hole diameter, the active-medium length, and the magnification factor on the parameters of laser radiation is analysed. It is shown that the use of such resonators is most advisable in medium-power oxygen—iodine lasers for which classical unstable resonators are inefficient because of their low magnification factors. The use of unstable resonators with a hole-coupled mirror and injection provides the control of radiation parameters and a considerable increase in the output power and brightness of laser radiation.

  3. Degenerative lumbar spinal canal stenosis: intra- and inter-reader agreement for magnetic resonance imaging parameters.

    Science.gov (United States)

    Winklhofer, Sebastian; Held, Ulrike; Burgstaller, Jakob M; Finkenstaedt, Tim; Bolog, Nicolae; Ulrich, Nils; Steurer, Johann; Andreisek, Gustav; Del Grande, Filippo

    2017-02-01

    To assess the inter- and intra-reader agreement of commonly used quantitative and qualitative image parameters for the assessment of degenerative lumbar spinal canal stenosis (LSS) by magnetic resonance imaging (MRI). In this ethical board approved cross-sectional multicenter study, MRI of 100 randomly selected patients (median age 72.5 years, 48 % female) of the prospective Lumbar Stenosis Outcome Study (LSOS) were evaluated by two independent readers. A set of five previously published core imaging parameters as well as nine qualitative and five quantitative additional parameters regarding LSS and degenerative changes of the lumbar spine were assessed to calculate κ and intraclass correlation coefficients (ICC) for the inter-reader agreement. Additional repeated image evaluations were performed by one reader to calculate the intra-reader agreement. κ values for the core image parameters ranged between 0.42 (compromise of the foraminal zone) and 0.77 (relation between fluid and cauda equina) for inter-reader agreement and between 0.59 (compromise of the foraminal zone) and 0.8 (compromise of the central zone) for intra-reader agreement. The inter-reader agreement for the non-core parameters showed κ values of 0.27-0.69 and ICC values of 0.46-0.85. The intra-reader agreement showed κ values of 0.53-0.69 and ICC values of 0.81-0.88. The inter- and intra-reader agreement of commonly used quantitative and qualitative image parameters for the assessment of LSS showed quite a variability with previously defined core parameters having good to excellent inter- and intra-reader agreements.

  4. Simulation Research of Magnetically-coupled Resonant Wireless Power Transfer System with Single Intermediate Coil Resonator Based on S Parameters Using ANSYS

    Directory of Open Access Journals (Sweden)

    Liu Cheng

    2016-01-01

    Full Text Available ANSYS can be a powerful tool to simulate the process of energy exchange in magnetically-coupled resonant wireless power transfer system. In this work, the MCR-WPT system with single intermediate coil resonator is simulated and researched based on scattering parameters using ANSYS Electromagnetics. The change rule of power transfer efficiency is reflected intuitively through the scattering parameters. A new method of calculating the coupling coefficient is proposed. A cascaded 2-port network model using scattering parameters is adopted to research the efficiency of transmission. By changing the relative position and the number of turns of the intermediate coil, we find some factors affecting the efficiency of transmission. Methods and principles of designing the MCR-WPT system with single intermediate coil resonator are obtained. And these methods have practical value with design and optimization of system efficiency.

  5. Sensitivity of computed uranium-238 self-shielding factors to the choice of the unresolved average resonance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobos, J.L.; de Saussure, G.; Perez, R.B.

    1982-05-01

    The influence of different representations of the unresolved resonances of /sup 238/U on the computed self-shielding factors is examined. It is shown that the evaluated infinitely diluted average capture cross section does not provide sufficient information to determine a unique set of unresolved resonance parameters; different sets of unresolved resonance parameters equally consistent with the evaluated average capture cross section yield significantly different computed self-shielding factors. In the conclusion it is recommended that the resolved resonance description of the evaluated /sup 238/U cross sections be extended to higher energies and that thick sample transmission data and self-indication data be used to improve the evaluation of the unresolved resonance region.

  6. Two-Parameter Stochastic Resonance in a Model of Electrodissolution of Fe in H2SO4

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Stochastic resonance (SR) is shown in a two-parameter system, a model of electrodissolution of Fe in H2SO4. Modulation of two different parameters by a periodic signal in one parameter and noise in the other parameter is found to give rise to SR. The result indicates that the noise can enlarge a weak periodic signal and lead the system to order. The scenario and novel aspects of SR in this system are discussed.

  7. The impact of optic nerve movement on optic nerve magnetic resonance diffusion parameters

    Directory of Open Access Journals (Sweden)

    Anand Moodley

    2014-04-01

    Full Text Available Background: Optic nerve diffusion imaging is a useful investigational tool of optic nerve microstructure, but is limited by eye-movement-induced optic nerve movement and artifacts from surrounding cerebrospinal fluid, fat, bone and air. Attempts at improving patient cooperation, thus voluntarily limiting eye movement during a standard diffusion imagingsequence, are usually futile. The aim of this study was to establish the impact of optic nerve movement on clinical diffusion parameters of the optic nerve.Method: Twenty-nine healthy volunteers with intact vision and intact conjugate gaze were recruited and subjected to magnetic resonance diffusion-weighted imaging (DWI and diffusion-tensor imaging (DTI of the optic nerves. Twenty right eyes had nerve tracking done using single-shot echo-planar imaging at 20 time points over 3 minutes. Optic nerve movement measurements were correlated with diffusion parameters of apparent diffusion coefficient (ADC, mean diffusivity (MD, fractional anisotropy (FA and anisotropic index(AI using Spearman’s rank correlation.Results: No significant correlations were noted between optic nerve movement parameters and ADC in the axial plane and MD of the optic nerve. Low to moderate negative correlations were noted between optic nerve movement parameters and AI and FA and positive correlation with ADC in the radial plane.Conclusion: Optic nerve movement documented during the timespan of standard diffusion sequences (DWI and DTI has a negative effect on the anisotropic diffusion parameters of the optic nerve. With greater eye movement, optic nerve diffusion appears less anisotropic owing to greater radial diffusion.

  8. Minimizing the statistical error of resonance parameters and cross-sections derived from transmission measurements

    CERN Document Server

    Danon, Y

    2002-01-01

    Total neutron cross-sections are usually measured by a transmission experiment. In this experiment the transmission through a sample is measured by taking the ratio of the background corrected counts measured with and without the sample in the beam. This procedure can be optimized to reduce the statistical error in the measured cross-section. The objective is to find the optimal sample thickness and time split between the open beam, sample and background measurements. An optimization procedure for constant cross-section measurement is derived and extended to the area under the total cross-section curve of an isolated resonance. The minimization of the statistical error in the measured area also minimizes the statistical error in the inferred neutron width. Comparison of the analytical expression developed in this paper and resonance parameters obtained from the SAMMY (Updated users' guide for SAMMY: Multilevel R-Matrix fits to neutron data using Bays' equation, version m2, ORNTL/TM/-9179/R4) code is shown. Th...

  9. The limits on the strong Higgs sector parameters in the presence of new vector resonances

    Science.gov (United States)

    Gintner, Mikuláš; Juráň, Josef

    2016-12-01

    In this paper, we investigate how the LHC data limit the Higgs-related couplings in the effective description of a strongly interacting extension of the Standard model. The Higgs boson is introduced as a scalar composite state and it is followed in the mass hierarchy by an SU(2) triplet of vector composites. The limits are calculated from the constraints obtained in the recent ATLAS+CMS combined analysis of the data from 2011 and 2012. We find that the data prefer the scenario where the Higgs couplings to the electroweak gauge bosons differ from its couplings to the vector triplet. We also investigate the unitarity limits of the studied effective model for the experimentally preferred values of the Higgs couplings. We find from the π π → π π scattering amplitudes that for the vector resonance masses between one and two TeV significant portions of the experimentally allowed regions are well below the unitarity limit. We also evaluate how the existing ATLAS and CMS Run-2 data restrict our model with the upper bounds on the resonance production cross section times its branching ratio for various decay channels. The masses in the range 1 TeV≤ M_ρ ≤ 2 TeV are not excluded in parts or even full parameter space of our theory.

  10. Resonance parameter and covariance evaluation for 16O up to 6 MeV

    Directory of Open Access Journals (Sweden)

    Leal Luiz

    2016-01-01

    Full Text Available A resolved resonance evaluation was performed for 16O in the energy range 0 eV to 6 MeV using the computer code SAMMY resulting in a set of resonance parameters (RPs that describes well the experimental data used in the evaluation. A RP covariance matrix (RPC was also generated. The RP were converted to the evaluated nuclear data file format using the R-Matrix Limited format and the compact format was used to represent the RPC. In contrast to the customary use of RP, which are frequently intended for the generation of total, capture, and scattering cross sections only, the present RP evaluation permits the computation of angle dependent cross sections. Furthermore, the RPs are capable of representing the (n, α cross section from the energy threshold (2.354 MeV of the (n, α reaction to 6 MeV. The intent of this paper is to describe the procedures used in the evaluation of the RP and RPC, the use of the RPC in benchmark calculations and to assess the impact of the 16O nuclear data uncertainties in the calculate dkeff for critical benchmark experiments.

  11. Parameter analysis for a nuclear magnetic resonance gyroscope based on 133Cs–129Xe/131Xe

    Science.gov (United States)

    Zhang, Da-Wei; Xu, Zheng-Yi; Zhou, Min; Xu, Xin-Ye

    2017-02-01

    We theoretically investigate several parameters for the nuclear magnetic resonance gyroscope based on 133Cs–129Xe/131Xe. For a cell containing a mixture of 133Cs at saturated pressure, we investigate the optimal quenching gas (N2) pressure and the corresponding pump laser intensity to achieve 30% 133Cs polarization at the center of the cell when the static magnetic field B 0 is 5 {{μ }}{{T}} with different 129Xe/131Xe pressure. The effective field produced by spin-exchange polarized 129Xe or 131Xe sensed by 133Cs can also be discussed in different 129Xe/131Xe pressure conditions. Furthermore, the relationship between the detected signal and the probe laser frequency is researched. We obtain the optimum probe laser detuning from the D2 (6{}2{{S}}1/2\\to 6{}2{{P}}3/2) resonance with different 129Xe/131Xe pressure owing to the pressure broadening. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA123401), the National Key Basic Research and Development Program of China (Grant Nos. 2016YFA0302103 and 2012CB821302), the National Natural Science Foundation of China (Grant 11134003), and Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400).

  12. R-MATRIX RESONANCE ANALYSIS AND STATISTICAL PROPERTIES OF THE RESONANCE PARAMETERS OF 233U IN THE NEUTRON ENERGY RANGE FROM THERMAL TO 600 eV

    Energy Technology Data Exchange (ETDEWEB)

    Leal, L.C.

    2001-02-27

    The R-matrix resonance analysis of experimental neutron transmission and cross sections of {sup 233}U, with the Reich-Moore Bayesian code SAMMY, was extended up to the neutron energy of 600 eV by taking advantage of new high resolution neutron transmission and fission cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA). The experimental data base is described. In addition to the microscopic data (time-of-flight measurements of transmission and cross sections), some experimental and evaluated integral quantities were included in the data base. Tabulated and graphical comparisons between the experimental data and the SAMMY calculated cross sections are given. The ability of the calculated cross sections to reproduce the effective multiplication factors k{sub eff} for various thermal, intermediate, and fast systems was tested. The statistical properties of the resonance parameters were examined and recommended values of the average s-wave resonance parameters are given.

  13. Neutron capture on (94)Zr: Resonance parameters and Maxwellian-averaged cross sections

    CERN Document Server

    Tagliente, G; Fujii, K; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Belloni, F; Berthoumieux, E; Bisterzo, S; Calvino, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapico, C; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrari, A; Ferreira-Marques, R; Furman, W; Gallino, R; Goncalves, I; Gonzalez-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez, T; Massimi, C; Mastinu, P; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M.T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tain, J.L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M.C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2011-01-01

    The neutron capture cross sections of the Zr isotopes play an important role in nucleosynthesis studies. The s-process reaction flow between the Fe seed and the heavier isotopes passes through the neutron magic nucleus (90)Zr and through (91,92,93,94)Zr, but only part of the flow extends to (96)Zr because of the branching point at (95)Zr. Apart from their effect on the s-process flow, the comparably small isotopic (n, gamma) cross sections make Zr also an interesting structural material for nuclear reactors. The (94)Zr (n, gamma) cross section has been measured with high resolution at the spallation neutron source n_TOF at CERN and resonance parameters are reported up to 60 keV neutron energy.

  14. Operating and mathematical representation of resonances between flow parameters oscillations and structure vibrations of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, K.N.; Yang Shan Afshar, E.; Polyakov, N.I. [Nuclear Power Plant Department of Moscow Power Engineering Institute Technical Univ., Moscow (Russian Federation)

    2007-07-01

    The experimental data that have been obtained from the measurements of noise signals in primary circuit of NPP with reactor of WWER-1000 are presented. The causes of resonant interaction between Eigen-Frequencies of Oscillations of the Coolant Pressure (EFOCP) and structure vibrations are discussed. An application-oriented approach to the problem of identification of abnormal phenomena of thermal-hydraulic parameters is proposed. Logarithmic Decrement {delta} is determined. The bigger damping ratio {zeta} provides bigger {delta} and correspondingly smaller values of Q-factor and amplitude X(t)max. All experimental units intended for NPP severe accident investigation must satisfy to the NPP Q-factor criterion of similarity. (authors)

  15. Neutron total cross-sections and resonance parameters of Mo and Ta

    Indian Academy of Sciences (India)

    A K M Moinul Haque Meaze; K Devan; Y S Lee; Y D Oh; G N Kim; D Son

    2007-02-01

    Experimental results of transmissions for the samples of natural molybdenum with thickness 0.0192 atoms/barn and for the four samples of natural tantalum with thickness 0.0222, 0.0111, 0.0055 and 0.0025 atoms/barn are presented in this work. Measurements were carried out at the Pohang Neutron Facility which consists of a 100 MeV Linac, water-cooled tantalum target, and 12 m flight path length. Effective total cross-sections were extracted from the transmission data, and resonance parameters were obtained by using the code SAMMY. The present measurements were compared with other measurements and with the evaluated nuclear data file ENDF/B-VI.8.

  16. Distinguishing black-hole spin-orbit resonances by their gravitational wave signatures. II: Full parameter estimation

    CERN Document Server

    Trifirò, Daniele; Gerosa, Davide; Berti, Emanuele; Kesden, Michael; Littenberg, Tyson; Sperhake, Ulrich

    2015-01-01

    Gravitational waves from coalescing binary black holes encode the evolution of their spins prior to merger. In the post-Newtonian regime and on the precession timescale, this evolution has one of three morphologies, with the spins either librating around one of two fixed points ("resonances") or circulating freely. In this work we perform full parameter estimation on resonant binaries with fixed masses and spin magnitudes, changing three parameters: a conserved "projected effective spin" $\\xi$ and resonant family $\\Delta\\Phi=0,\\pi$ (which uniquely label the source); the inclination $\\theta_{JN}$ of the binary's total angular momentum with respect to the line of sight (which determines the strength of precessional effects in the waveform); and the signal amplitude. We demonstrate that resonances can be distinguished for a wide range of binaries, except for highly symmetric configurations where precessional effects are suppressed. Motivated by new insight into double-spin evolution, we introduce new variables t...

  17. Diagnostics of recombining laser plasma parameters based on He-like ion resonance lines intensity ratios

    Science.gov (United States)

    Ryazantsev, S. N.; Skobelev, I. Yu; Faenov, A. Ya; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.

    2016-11-01

    While the plasma created by powerful laser expands from the target surface it becomes overcooled, i.e. recombining one. Improving of diagnostic methods applicable for such plasma is rather important problem in laboratory astrophysics nowadays because laser produced jets are fully scalable to young stellar objects. Such scaling is possible because of the plasma hydrodynamic equations invariance under some transformations. In this paper it is shown that relative intensities of the resonance transitions in He-like ions can be used to measure the parameters of recombining plasma. Intensity of the spectral lines corresponding to these transitions is sensitive to the density in the range of 1016-1020 cm-3 while the temperature ranges from 10 to 100 eV for ions with nuclear charge Zn ∼ 10. Calculations were carried out for F VIII ion and allowed to determine parameters of plasma jets created by nanosecond laser system ELFIE (Ecole Polytechnique, France) for astrophysical phenomenon modelling. Obtained dependencies are quite universal and can be used for any recombining plasma containing He-like fluorine ions.

  18. Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters

    Science.gov (United States)

    Yang, Ding-Xin; Gu, Feng-Shou; Feng, Guo-Jin; Yang, Yong-Min; Ball, Andrew

    2015-11-01

    The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications. Project supported by the National Natural Science Foundation of China (Grant No. 51379526).

  19. Extracting the resonance parameters from experimental data on scattering of charged particles

    CERN Document Server

    Vaandrager, P

    2016-01-01

    A new parametrization of the multi-channel S-matrix is used to fit scattering data and then to locate the resonances as its poles. The S-matrix is written in terms of the corresponding "in" and "out" Jost matrices which are expanded in the Taylor series of the collision energy E around an appropriately chosen energy E0. In order to do this, the Jost matrices are written in a semi-analytic form where all the factors (involving the channel momenta and Sommerfeld parameters) responsible for their "bad behaviour" (i.e. responsible for the multi-valuedness of the Jost matrices and for branching of the Riemann surface of the energy) are given explicitly. The remaining unknown factors in the Jost matrices are analytic and single-valued functions of the variable E and are defined on a simple energy plane. The expansion is done for these analytic functions and the expansion coefficients are used as the fitting parameters. The method is tested on a two-channel model, using a set of artificially generated data points wi...

  20. Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters

    Institute of Scientific and Technical Information of China (English)

    杨定新; 谷丰收; 冯国金; 杨拥民

    2015-01-01

    The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications.

  1. Role of Quantitative Magnetic Resonance Imaging Parameters in the Evaluation of Treatment Response in Malignant Tumors

    Institute of Scientific and Technical Information of China (English)

    Qing-Gang Xu; Jun-Fang Xian

    2015-01-01

    Objective:To elaborate the role of quantitative magnetic resonance imaging (MRI) parameters in the evaluation of treatment response in malignant tumors.Data Sources:Data cited in this review were obtained mainly from PubMed in English from 1999 to 2014,with keywords "dynamic contrast-enhanced (DCE)-MRI," "diffusion-weighted imaging (DWI)," "microcirculation," "apparent diffusion coefficient (ADC)," "treatment response" and "oncology."Study Selection:Articles regarding principles of DCE-MRI,principles of DWI,clinical applications as well as opportunity and aspiration were identified,retrieved and reviewed.Results:A significant correlation between ADC values and treatment response was reported in most DWI studies.Most quantitative DCE-MRI studies showed a significant correlation between K~s values and treatment response.However,in different tumors and studies,both high and low pretreatment ADC or K~s values were found to be associated with response rate.Both DCE-MRI and DWI demonstrated changes in their parameters hours to days after treatment,showing a decrease in K~ns or an increase in ADC associated with response in most cases.Conclusions:Combinations of quantitative MRI play an important role in the evaluation of treatment response of malignant tumors and hold promise for use as a cancer treatment response biomarker.However,validation is hampered by the lack of reproducibility and standardization.MRI acquisition protocols and quantitative image analysis approaches should be properly addressed prior to further testing the clinical use of quantitative MRI parameters in the assessment of treatments.

  2. 22. Comparison of conventional echocardiographic parameters of rv systolic function with cardiac magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    H. Shamsan

    2016-07-01

    Full Text Available Nowadays, cardiac magnetic resonance (CMR imaging is considered the gold standard for quantification of RV size and function. Multiple 2D Echocardiography (echo parameters are recommended for quantification of systolic RV function including Fractional Area Change (FAC%, tricuspid annular plane systolic excursion (TAPSE and Tissue Doppler velocity (TDI of tricuspid annulus. The aim of our study was to compare the conventional 2-D echocardiographic parameters of RV systolic function with CMR derived RVEF and stroke volume (SV. The echo and cardiac magnetic parameters to assess the right ventricular function are different. Consecutive patients referred to CMR for RV assessment from January 2011 to December 2014 were screened. 69 patients with CMR and adequate echo were selected. 20 subjects with normal CMR were enrolled as a control group. Quantitative 2-D echo measures were compared with CMR RVEF (% and SV (ml. The comparison was made using linear correlation for the echo variables with CMR variables. The mean age of patients was 38.2 + 5.4 (51% females were enrolled. 84.1% of patients had normal RVEF by CMR. In patients, FAC% but not TAPSE or annular TDI, correlated with CMR derived RVEF (R = 0.45, p = 0.0001 with fair agreement (kappa 0.43. However, FAC% did not correlate with CMR RV stroke volume. In contrast, in normal subjects, TAPSE had the best correlation with CMR derived RVEF (R = 0.67, p = 0.0001. In patients, CMR reclassified RV function assessed by FAC% in 11 (16%. 6 (8% patients who had abnormal RV function by FAC% were reclassified as normal while 5 (7% with normal RV function by FAC% were reclassified as abnormal. In normal subjects, however, only one with abnormal RV function by TAPSE was reclassified as normal by CMR. The current quantitative 2-D echo parameters of RV systolic function assessment correlate poorly with CMR measured RVEF and SV and behave differently in comparison with CMR in patients with normal and

  3. Set up of a method for the adjustment of resonance parameters on integral experiments; Mise au point d`une methode d`ajustement des parametres de resonance sur des experiences integrales

    Energy Technology Data Exchange (ETDEWEB)

    Blaise, P.

    1996-12-18

    Resonance parameters for actinides play a significant role in the neutronic characteristics of all reactor types. All the major integral parameters strongly depend on the nuclear data of the isotopes in the resonance-energy regions.The author sets up a method for the adjustment of resonance parameters taking into account the self-shielding effects and restricting the cross section deconvolution problem to a limited energy region. (N.T.).

  4. A Mathematical Assessment of the Precision of Parameters in Measuring Resonance Spectra

    Science.gov (United States)

    Golding, Elke M.; Golding, Raymund M.

    1998-12-01

    The accurate interpretation ofin vivomagnetic resonance spectroscopy (MRS) spectra requires a complete understanding of the associated noise-induced errors. In this paper, we address the effect of complex correlated noise patterns on the measurement of a set ofpeakparameters. This is examined initially at the level of a single spectral analysis followed by addressing the noise-induced errors associated with determining thesignalparameters from thepeakparameters. We describe a relatively simple method for calculating these errors for any correlated noise pattern in terms of the noise standard deviation and correlation length. The results are presented in such a way that an estimate of the errors may be made from a single MRS spectrum. We also explore how, under certain circumstances, the lineshape of the signal may be determined. We then apply these results to reexamine a set ofin vivo31P MRS spectra obtained from rat brain prior to and following moderate fluid percussion injury. The approach outlined in this paper will demonstrate how meaningful results may be obtained from spectra where the signal-to-noise ratio (SNR) is quite small and where knowledge of the precise shape of the signal and the detail of the noise pattern is unknown. In essence, we show how to determine the expected errors in the spectral parameters from an estimate of the SNR from a single spectrum, thereby allowing a more discriminative interpretation of the data.

  5. The limits on the strong Higgs sector parameters in the presence of new vector resonances

    CERN Document Server

    Gintner, Mikulas

    2016-01-01

    In this paper, we investigate how the LHC data limit the Higgs related couplings in the effective description of a strongly interacting extension of the Standard model. The Higgs boson is introduced as a scalar composite state and it is followed in the mass hierarchy by an $SU(2)$ triplet of vector composites. The limits are calculated from the constraints on the parameters of the interim kappa framework obtained in the recent ATLAS+CMS combined analysis of the data from 2011 and 2012. In our work, we find that the data prefer the scenario where the Higgs couplings to the electroweak gauge bosons differ from its couplings to the vector triplet. We calculate the experimentally preferred values for these couplings along with the preferred value for the Higgs coupling to the top quark. We also investigate the unitarity limits of the studied effective model for these experimentally preferred values. We find from the $\\pi\\pi\\rightarrow\\pi\\pi$ scattering amplitudes that for the vector resonance masses between one a...

  6. Measurement of resonance parameters of orbitally excited narrow B0 mesons.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-03-13

    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B;{(*)+}pi;{-} using 1.7 fb;{-1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B_{2};{*0} state are measured to be m(B_{2};{*0})=5740.2_{-1.8};{+1.7}(stat)-0.8+0.9(syst) MeV/c;{2} and Gamma(B_{2};{*0})=22.7_{-3.2};{+3.8}(stat)-10.2+3.2(syst) MeV/c;{2}. The mass difference between the B_{2};{*0} and B10 states is measured to be 14.9_{-2.5};{+2.2}(stat)-1.4+1.2(syst) MeV/c;{2}, resulting in a B10 mass of 5725.3_{-2.2};{+1.6}(stat)-1.5+1.4(syst) MeV/c;{2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B_{2};{*0} width.

  7. Coupling Influence on Signal Readout of a Dual-Parameter LC Resonant System

    Directory of Open Access Journals (Sweden)

    Jijun Xiong

    2015-01-01

    Full Text Available Dual-parameter inductive-capacitive (LC resonant sensor is gradually becoming the measurement trend in complex harsh environments; however, the coupling between inductors greatly affects the readout signal, which becomes very difficult to resolve by means of simple mathematical tools. By changing the values of specific variables in a MATLAB code, the influence of coupling between coils on the readout signal is analyzed. Our preliminary conclusions underline that changing the coupling to antenna greatly affects the readout signal, but it simultaneously influences the other signal. When f01=f02, it is better to broaden the difference between the two coupling coefficients k1 and k2. On the other side, when f01 is smaller than f02, it is better to decrease the coupling between sensor inductors k12, in order to obtain two readout signals averaged in strength. Finally, a test system including a discrete capacitor soldered to a printed circuit board (PCB based planar spiral coil is built, and the readout signals under different relative inductors positions are analyzed. All experimental results are in good agreement with the results of the MATLAB simulation.

  8. Electron paramagnetic resonance parameters and local structure for Gd3+ in KY3F10

    Indian Academy of Sciences (India)

    Shao-Yi Wu; Hua-Ming Zhang; Guang-Duo Lu; Zhi-Hong Zhang

    2007-09-01

    The electron paramagnetic resonance parameters, zero-field splittings (ZFSs) b$_{2}^{0}$, b$_{4}^{0}$, b$_{4}^{4}$, b$_{6}^{0}$, b$_{6}^{4}$ and the factors for Gd3+ on the tetragonal Y3+ site in KY3F10 are theoretically studied from the superposition model for the ZFSs and the approximation formula for the factor containing the admixture of the ground 8S7/2 and the excited 6L7/2 (L=P, D, F, G) states via the spin–orbit coupling interactions, respectively. By analysing the above ZFSs, the local structure information for the impurity Gd3+ is obtained, i.e., the impurity–ligand bonding angles related to the four-fold (C4) axis for the impurity Gd3+ center are found to be about 0.6° larger than those for the host Y3+ site in KY3F10. The calculated ZFSs based on the above angular distortion as well as the factors are in reasonable agreement with the observed values. The present studies on the ZFSs and the local structure would be helpful to understand the optical and magnetic properties of this material with Gd dopants.

  9. Estimation of uncertainties in resonance parameters of {sup 56}Fe, {sup 239}Pu, {sup 240}Pu and {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-05-01

    Uncertainties have been estimated for the resonance parameters of {sup 56}Fe, {sup 239}Pu, {sup 240}Pu and {sup 238}U contained in JENDL-3.2. Errors of the parameters were determined from the measurements which the evaluation was based on. The estimated errors have been compiled in the MF32 of the ENDF format. The numerical results are given in tables. (author)

  10. Higgs boson resonance parameters and the finite temperature phase transition in a chirally invariant Higgs-Yukawa model

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)

    2011-12-15

    We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)

  11. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...... theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall perspective...

  12. Determination of the neutron resonance parameters for{sup 209}Bi from new capture and transmission measurements at GELINA

    Energy Technology Data Exchange (ETDEWEB)

    Borella, A.; Gunsing, F. [CEA DAPNIA/SPhN, F-91911 Gif-sur-Yvette Cedex (France); Kopecky, S. [EC-JRC-IRMM, Retieseweg 111, B-2440 Geel (Belgium); Mutti, P. [Institut Laue-Langevin, rue Jules Horowitz 6, F-38042 Grenoble (France); Schillebeeckx, P.; Siegler, P.; Wynants, R. [EC-JRC-IRMM, Retieseweg 111, B-2440 Geel (Belgium)

    2006-07-01

    High resolution neutron total and capture cross section measurements have been performed to determine the resonance parameters for {sup 209}Bi + n. The transmission and capture measurements were carried out at the time-of-flight facility GELINA of the IRMM in Geel (Belgium). The transmission measurements were carried out at a 30 m and a 50 m flight path using Li-glass scintillators. The capture measurements were performed at a 30 m and 60 m flight path based on the total energy detection principle. The capture detection system consisted of four C6D6 detectors and a {sup 10}B ionization chamber, which was used to determine the shape of the neutron flux. A special analysis procedure, including a sample dependent pulse height weighting function, was applied to ensure that the efficiency for a neutron capture event was independent from the {gamma}-ray cascade. From a simultaneous resonance shape analysis of the transmission and capture data we deduced the neutron width for 10 resonances and the capture area for 43 resonances up to a neutron energy of 40 keV. The resonance shape analysis was performed with the most recent version of the REFIT code. This latest version includes a direct correction for the neutron sensitivity of the capture detection system and accounts for the influence of the neutron attenuation in the sample on the weighted response. (authors)

  13. Parameter Diversity Induced Multiple Spatial Coherence Resonances and Spiral Waves in Neuronal Network with and Without Noise

    Institute of Scientific and Technical Information of China (English)

    李玉叶; 贾冰; 古华光; 安书成

    2012-01-01

    Diversity in the neurons and noise are inevitable in the real neuronal network.In this paper,parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated.The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified.The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased.The results suggest that natural nervous system might profit from both parameter diversity and noise,provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise.

  14. Determination of neutron resonance parameters of Neptunium 237 between 0 and 500 eV. The covariance matrices of statistical and of systematic origin, relating the resonance parameters, are also given; Determination des parametres des resonances neutroniques du neptunium 237, en dessous de 500eV, et obtention des matrices de covariances statistiques et systematiques entre les parametres de ces resonances

    Energy Technology Data Exchange (ETDEWEB)

    Lepretre, A.; Herault, N. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Brusegan, A.; Noguere, G.; Siegler, P. [Institut des Materiaux et des Metrologies - IRMM, Joint Research Centre, Gell (Belgium)

    2002-12-01

    This report is a follow up of the report CEA DAPNIA/SPHN-99-04T of Vincent Gressier. In the frame of a collaboration between the 'Commissariat a l'Energie Atomique (CEA)' and the Institute for Reference Materials and Measurement (IRMM, Geel, Belgique), the resonance parameters of neptunium 237 have been determined in the energy interval between 0 and 500 eV. These parameters have been obtained by using the Refit code in analysing simultaneously three transmission experiments. The covariance matrix of statistical origin is provided. A new method, based on various sensitivity studies is proposed for determining also the covariance matrix of systematic origin, relating the resonance parameters. From an experimental viewpoint, the study indicated that, with a large probability, the background spectrum has structure. A two dimensional profiler for the neutron density has been proved feasible. Such a profiler could, among others, demonstrate the existence of the structured background. (authors)

  15. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    Science.gov (United States)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3 / 2 , 5 / 2 , 7 / 2, and 9 / 2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  16. Experimental verification of a one-parameter scaling law for the quantum and "classical" resonances of the atom-optics kicked rotor

    CERN Document Server

    Wimberger, S M; Parkins, S; Leonhardt, R; Wimberger, Sandro; Sadgrove, Mark; Parkins, Scott; Leonhardt, Rainer

    2005-01-01

    We present experimental measurements of the mean energy in the vicinity of the first and second quantum resonances of the atom optics kicked rotor for a number of different experimental parameters. Our data is rescaled and compared with the one parameter epsilon--classical scaling function developed to describe the quantum resonance peaks. Additionally, experimental data is presented for the ``classical'' resonance which occurs in the limit as the kicking period goes to zero. This resonance is found to be analogous to the quantum resonances, and a similar one-parameter classical scaling function is derived, and found to match our experimental results. The width of the quantum and classical resonance peaks is compared, and their Sub-Fourier nature examined.

  17. CORRELATION BETWEEN MAGNETIC-RESONANCE-IMAGING AND CLINICAL-PARAMETERS IN MULTIPLE-SCLEROSIS

    NARCIS (Netherlands)

    SINNIGE, LGF; TEEUWISSEN, E; HEW, JM; MINDERHOUD, JM

    1995-01-01

    In this study, the course of 60 consecutive multiple sclerosis patients (relapsing-remitting (RR), relapsing-progressive (RP), primary-progressive (PP)) was compared with the number and mean size of the lesions as well as the total load of the lesions as shown on magnetic resonance imaging (MRI). Si

  18. The precision of pharmacokinetic parameters in dynamic contrast-enhanced magnetic resonance imaging: the effect of sampling frequency and duration

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, Hugo J W L [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht (Netherlands); Jaspers, K; Backes, Walter H, E-mail: w.backes@mumc.nl [Department of Radiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht (Netherlands)

    2011-09-07

    Dynamic contrast-enhanced magnetic resonance imaging is increasingly applied for tumour diagnosis and early evaluation of therapeutic responses over time. However, the reliability of pharmacokinetic parameters derived from DCE-MRI is highly dependent on the experimental settings. In this study, the effect of sampling frequency (f{sub s}) and duration on the precision of pharmacokinetic parameters was evaluated based on system identification theory and computer simulations. Both theoretical analysis and simulations showed that a higher value of the pharmacokinetic parameter K{sup trans} required an increasing sampling frequency. For instance, for similar results, a relatively low f{sub s} of 0.2 Hz was sufficient for a low K{sup trans} of 0.1 min{sup -1}, compared to a high f{sub s} of 3 Hz for a high K{sup trans} of 0.5 min{sup -1}. For the parameter v{sub e}, a decreasing value required a higher sampling frequency. A sampling frequency below 0.1 Hz systematically resulted in imprecise estimates for all parameters. For the K{sup trans} and v{sub e} parameters, the sampling duration should be above 2 min, but durations of more than 7 min do not further improve parameter estimates.

  19. The precision of pharmacokinetic parameters in dynamic contrast-enhanced magnetic resonance imaging: the effect of sampling frequency and duration

    Science.gov (United States)

    Aerts, Hugo J. W. L.; Jaspers, K.; Backes, Walter H.

    2011-09-01

    Dynamic contrast-enhanced magnetic resonance imaging is increasingly applied for tumour diagnosis and early evaluation of therapeutic responses over time. However, the reliability of pharmacokinetic parameters derived from DCE-MRI is highly dependent on the experimental settings. In this study, the effect of sampling frequency (fs) and duration on the precision of pharmacokinetic parameters was evaluated based on system identification theory and computer simulations. Both theoretical analysis and simulations showed that a higher value of the pharmacokinetic parameter Ktrans required an increasing sampling frequency. For instance, for similar results, a relatively low fs of 0.2 Hz was sufficient for a low Ktrans of 0.1 min-1, compared to a high fs of 3 Hz for a high Ktrans of 0.5 min-1. For the parameter ve, a decreasing value required a higher sampling frequency. A sampling frequency below 0.1 Hz systematically resulted in imprecise estimates for all parameters. For the Ktrans and ve parameters, the sampling duration should be above 2 min, but durations of more than 7 min do not further improve parameter estimates.

  20. Generalized Parameter-Adjusted Stochastic Resonance of Duffing Oscillator and Its Application to Weak-Signal Detection

    Science.gov (United States)

    Lai, Zhi-Hui; Leng, Yong-Gang

    2015-01-01

    A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application. PMID:26343671

  1. Generalized Parameter-Adjusted Stochastic Resonance of Duffing Oscillator and Its Application to Weak-Signal Detection.

    Science.gov (United States)

    Lai, Zhi-Hui; Leng, Yong-Gang

    2015-08-28

    A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application.

  2. Generalized Parameter-Adjusted Stochastic Resonance of Duffing Oscillator and Its Application to Weak-Signal Detection

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Lai

    2015-08-01

    Full Text Available A two-dimensional Duffing oscillator which can produce stochastic resonance (SR is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application.

  3. Structural parameter effect of porous material on sound absorption performance of double-resonance material

    Science.gov (United States)

    Fan, C.; Tian, Y.; Wang, Z. Q.; Nie, J. K.; Wang, G. K.; Liu, X. S.

    2017-06-01

    In view of the noise feature and service environment of urban power substations, this paper explores the idea of compound impedance, fills some porous sound-absorption material in the first resonance cavity of the double-resonance sound-absorption material, and designs a new-type of composite acoustic board. We conduct some acoustic characterizations according to the standard test of impedance tube, and research on the influence of assembly order, the thickness and area density of the filling material, and back cavity on material sound-absorption performance. The results show that the new-type of acoustic board consisting of aluminum fibrous material as inner structure, micro-porous board as outer structure, and polyester-filled space between them, has good sound-absorption performance for low frequency and full frequency noise. When the thickness, area density of filling material and thickness of back cavity increase, the sound absorption coefficient curve peak will move toward low frequency.

  4. Comparison between 2D ultrasonography and magnetic resonance imaging for assessing brain and spine parameters in fetuses with spina bifida.

    Science.gov (United States)

    Araujo Júnior, Edward; Nakano, Mayra Lemos; Nardozza, Luciano Marcondes Machado; Haratz, Karina Krajden; Oliveira, Patrícia Soares; Martins, Wellington P; Ajzen, Sérgio Aron; Moron, Antonio Fernandes

    2013-05-01

    To compare two-dimensional ultrasonography (2DUS) and magnetic resonance imaging (MRI) for assessing brain and spine parameters in fetuses with spina bifida. A cross-sectional study was conducted on 15 fetuses with spina bifida (one with encephalocele, four with rachischisis and 10 with myelomeningocele). The size of the atrium of the lateral ventricle, percentage shortening of the cerebellum, degree of compromising of the first vertebra and total number of vertebras affected by herniation were assessed. The MRI examination was performed not more than 7 days after the 2DUS. To compare and correlate the parameters from the two techniques, the paired Student's t test and intraclass correlation coefficient (ICC) were used. To assess the correlations of atrium measurements from 2DUS and MRI with other parameters, Pearson's correlation coefficient (r) was used. No significant difference was observed in any of the means of the parameters assessed using the two techniques (p > 0.05). Both 2DUS and MRI seemed to present satisfactory reliability in measurements on the size of the atrium of the lateral ventricle and the first vertebra affected (ICC = 0.88 and 0.75, respectively). Measurements on the atrium of the lateral ventricle from 2DUS correlated better with the other parameters than did measurements from MRI. In fetuses with spina bifida, 2DUS and MRI present similar results, but measurements on the atrium of the lateral ventricle from 2DUS correlated better with the other parameters.

  5. Strenuous resistance exercise effects on magnetic resonance diffusion parameters and muscle-tendon function in human skeletal muscle.

    Science.gov (United States)

    Yanagisawa, Osamu; Kurihara, Toshiyuki; Kobayashi, Naoyuki; Fukubayashi, Toru

    2011-10-01

    To assess the effects of strenuous exercise on magnetic resonance diffusion parameters and muscle-tendon complex function in skeletal muscle. Six men performed ankle plantar flexion exercises with eccentric contraction. The fractional anisotropy (FA), λ(1) , λ(2) , λ(3) , mean diffusivity (MD), and T(2) values in the triceps surae muscles were measured by magnetic resonance diffusion tensor and spin-echo imaging. Passive torque of plantar flexors, maximal voluntary isometric plantar flexion torques (MVIP), and Achilles tendon stiffness during MVIP were measured by combined ultrasonography and dynamometry. Plasma creatine kinase and muscle soreness were also assessed. These parameters were measured before and 1-8 days postexercise. The medial gastrocnemius exhibited significantly decreased FA 2-5 days after, increased λ(2) 3 days after, and increased λ(3) 2 and 3 days after exercise. This muscle also showed significantly increased MD and T(2) values 3 days postexercise. MVIP significantly decreased 2 and 3 days postexercise, while passive torque significantly increased 2 days postexercise. Creatine kinase and muscle soreness increased 3-5 days and 1-5 days postexercise, respectively. Exercise-induced muscle damage manifested as significant changes in muscle diffusion parameters with muscle-tendon complex dysfunction and delayed-onset muscle soreness. Copyright © 2011 Wiley-Liss, Inc.

  6. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results may be used to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry program.

  7. An Analysis Method for Superconducting Resonator Parameter Extraction with Complex Baseline Removal

    Science.gov (United States)

    Cataldo, Giuseppe

    2014-01-01

    A new semi-empirical model is proposed for extracting the quality (Q) factors of arrays of superconducting microwave kinetic inductance detectors (MKIDs). The determination of the total internal and coupling Q factors enables the computation of the loss in the superconducting transmission lines. The method used allows the simultaneous analysis of multiple interacting discrete resonators with the presence of a complex spectral baseline arising from reflections in the system. The baseline removal allows an unbiased estimate of the device response as measured in a cryogenic instrumentation setting.

  8. Magnetic Resonance Imaging-derived Flow Parameters for the Analysis of Cardiovascular Diseases and Drug Development.

    Science.gov (United States)

    Michael, Dada O; Bamidele, Awojoyogbe O; Adewale, Adesola O; Karem, Boubaker

    2013-01-01

    Nuclear magnetic resonance (NMR) allows for fast, accurate and noninvasive measurement of fluid flow in restricted and non-restricted media. The results of such measurements may be possible for a very small B 0 field and can be enhanced through detailed examination of generating functions that may arise from polynomial solutions of NMR flow equations in terms of Legendre polynomials and Boubaker polynomials. The generating functions of these polynomials can present an array of interesting possibilities that may be useful for understanding the basic physics of extracting relevant NMR flow information from which various hemodynamic problems can be carefully studied. Specifically, these results may be used to develop effective drugs for cardiovascular-related diseases.

  9. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second...

  10. Magnetic resonance imaging findings in acute myocarditis and correlation with immunohistological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Roettgen, Rainer; Christiani, Robert; Freyhardt, Patrick; Hamm, Bernd [Charite Universitaetsmedizin Berlin, Klinik fuer Strahlenheilkunde, Campus Virchow-Klinikum, Berlin (Germany); Gutberlet, Matthias [Herzzentrum Leipzig, Abteilung fuer Diagnostische und Interventionelle Radiologie, Leipzig (Germany); Schultheiss, Hans Peter; Kuehl, Uwe [Charite Universitaetsmedizin Berlin, Klinik fuer Herz-, Kreislauf- und Gefaessmedizin, Campus Benjamin-Franklin, Berlin (Germany)

    2011-06-15

    To evaluate the role of MRI in diagnosing acute myocarditis by correlation with immunohistological parameters. A total of 131 patients (85 men, 46 women; mean age, 44.9 years) with suspected acute myocarditis were examined by MRI. The relative water content of the left ventricular myocardium as well as relative and late enhancement was correlated with the immunohistological results in biopsy specimens. Myocardial inflammation was confirmed by immunohistology in 82 of the 131 patients investigated and ruled out in 49 patients. The sensitivity, specificity and accuracy for diagnosing myocarditis in patients with immunohistologically proven disease were 48.8%, 73.8% and 57.3%, respectively, for relative enhancement, 58.3%, 57.1% and 57.9% for relative water content, and 30.6%, 88.1% and 49.6% for late enhancement. A combination of all three parameters had 39,3% sensitivity and 91,3% specificity and 62,7% accuracy. Relative enhancement and late enhancement significantly correlated with the presence of myocarditis but relative oedema did not. Relative and late enhancement significantly correlate with the presence of myocarditis, while there is no significant correlation for relative oedema. Myocarditis cannot be reliably diagnosed using any of the three MRI parameters alone but combinations of parameters will improve specificity. (orig.)

  11. Equivariant singularity theory with distinguished parameters : Two case studies of resonant Hamiltonian systems

    NARCIS (Netherlands)

    Broer, H.W.; Lunter, G.A.; Vegter, G.

    1998-01-01

    We consider Hamiltonian systems near equilibrium that can be (formally) reduced to one degree of freedom. Spatiotemporal symmetries play a key role. The planar reduction is studied by equivariant singularity theory with distinguished parameters. The method is illustrated on the conservative spring-p

  12. Apparent Diffusion Coefficient and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Pancreatic Cancer: Characteristics and Correlation With Histopathologic Parameters.

    Science.gov (United States)

    Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi

    2016-01-01

    To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.

  13. Self-energy Effects on Nuclear Magnetic Resonance Parameters within Quantum Electrodynamics Perturbation Theory

    Directory of Open Access Journals (Sweden)

    Gustavo A. Aucar

    2002-08-01

    Full Text Available Abstract: A theory for the calculation of self-energy corrections to the nuclear magnetic parameters is given in this paper. It is based on the S-matrix formulation of bound-state quantum electrodynamics (QED. Explicit expressions for the various terms of the S-matrix are given. The interpretation of the self-energy, one- and two-vertex terms and some perspective for possible future developments are discussed.

  14. Determination of GLUT1 Oligomerization Parameters using Bioluminescent Förster Resonance Energy Transfer.

    Science.gov (United States)

    Looyenga, Brendan; VanOpstall, Calvin; Lee, Zion; Bell, Jed; Lodge, Evans; Wrobel, Katherine; Arnoys, Eric; Louters, Larry

    2016-06-30

    The facilitated glucose transporter GLUT1 (SLC2A1) is an important mediator of glucose homeostasis in humans. Though it is found in most cell types to some extent, the level of GLUT1 expression across different cell types can vary dramatically. Prior studies in erythrocytes-which express particularly high levels of GLUT1-have suggested that GLUT1 is able to form tetrameric complexes with enhanced transport activity. Whether dynamic aggregation of GLUT1 also occurs in cell types with more modest expression of GLUT1, however, is unclear. To address this question, we developed a genetically encoded bioluminescent Förster resonance energy transfer (BRET) assay using the luminescent donor Nanoluciferase and fluorescent acceptor mCherry. By tethering these proteins to the N-terminus of GLUT1 and performing saturation BRET analysis, we were able to demonstrate the formation of multimeric complexes in live cells. Parallel use of flow cytometry and immunoblotting further enabled us to estimate the density of GLUT1 proteins required for spontaneous oligomerization. These data provide new insights into the physiological relevance of GLUT1 multimerization as well as a new variant of BRET assay that is useful for measuring the interactions among other cell membrane proteins in live cells.

  15. Interrogating the origin and behavior of magnetic resonance diffusion tensor scalar parameters in the myocardium

    Science.gov (United States)

    Abdullah, Osama Mahmoud

    Myocardial microstructure plays an important role in sustaining the orchestrated beating motion of the heart. Several microstructural components, including myocytes and auxiliary cells, extracellular space, and blood vessels provide the infrastructure for normal heart function, including excitation propagation, myocyte contraction, delivery of oxygen and nutrients, and removing byproduct wastes. Cardiac diseases cause deleterious changes to some or all of these microstructural components in the detrimental process of cardiac remodeling. Since heart failure is among the leading causes of death in the world, new and novel tools to noninvasively characterize heart microstructure are needed for monitoring and staging of cardiac disease. In this regards, diffusion magnetic resonance imaging (MRI) provides a promising framework to probe and quantify tissue microstructure without the need for exogenous contrast agent. As diffusion in 3-dimensional space is characterized by the diffusion tensor, MR diffusion tensor imaging (DTI) is being used to noninvasively measure anisotropic diffusion, and thus the magnitude and spatial orientation of microstructural organization of tissues, including the heart. However, even though in vivo cardiac DTI has become more clinically available, to date the origin and behavior of different microstructural components on the measured DTI signal remain to be explicitly specified. The presented studies in this work demonstrate that DTI can be used as a noninvasive and contrast-free imaging modality to characterize myocyte size and density, extracellular collagen content, and the directional magnitude of blood flow. The identified applications are expected to provide metrics to enable physicians to detect, quantify, and stage different microstructural components during progression of cardiac disease.

  16. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.

  17. Suitable image parameters and analytical method for quantitatively measuring cerebral blood flow volume with phase-contrast magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Handa H

    1999-02-01

    Full Text Available The aim of this study was to determine suitable image parameters and an analytical method for phase-contrast magnetic resonance imaging (PC-MRI as a means of measuring cerebral blood flow volume. This was done by constructing an experimental model and applying the results to a clinical application. The experimental model was constructed from the aorta of a bull and circulating isotonic saline. The image parameters of PC-MRI (repetition time, flip angle, matrix, velocity rate encoding, and the use of square pixels were studied with percent flow volume (the ratio of actual flow volume to measured flow volume. The most suitable image parameters for accurate blood flow measurement were as follows: repetition time, 50 msec; flip angle, 20 degrees; and a 512 x 256 matrix without square pixels. Furthermore, velocity rate encoding should be set ranging from the maximum flow velocity in the vessel to five times this value. The correction in measuring blood flow was done with the intensity of the region of interest established in the background. With these parameters for PC-MRI, percent flow volume was greater than 90%. Using the image parameters for PC-MRI and the analytical method described above, we evaluated cerebral blood flow volume in 12 patients with occlusive disease of the major cervical arteries. The results were compared with conventional xenon computed tomography. The values found with both methods showed good correlation. Thus, we concluded that PC-MRI was a noninvasive method for evaluating cerebral blood flow in patients with occlusive disease of the major cervical arteries.

  18. Brain magnetic resonance imaging, aerobic power, and metabolic parameters among 30 asymptomatic scuba divers.

    Science.gov (United States)

    Tripodi, D; Dupas, B; Potiron, M; Louvet, S; Geraut, C

    2004-11-01

    The aim of the study was to evaluate the presence of cerebral lesions in asymptomatic scuba divers and explain the causes of them: potential risk factors associating cardiovascular risk factors, low aerobic capacity, or characteristics of diving (maximum depth, ascent rate). Experienced scuba divers, over 40 years of age, without any decompression sickness (DCS) history were included. We studied 30 scuba divers (instructors) without any clinical symptoms. For all of them, we carried out a clinical examination with fatty body mass determination and we questioned them about their diving habits. A brain Magnetic Resonance imaging (MRI), an assessment of maximal oxygen uptake, glycemia, triglyceridemia, and cholesterolemia were systematically carried out. Cerebral spots of high intensity were found at 33 % in the scuba diving group and 30 % in the control group. In the diving group, abnormalities were related to unsafe scuba-diving or metabolic abnormalities. In our study, we did not find a significant relationship between the lesions of the central nervous system, and the age, depth of the dives, number of dives, and ergometric performances (maximal oxygen uptake, V.O (2max), serum level of blood lactate). Nevertheless, we found a significant relationship between the lesions of the central nervous system and ascent rate faster than 10 meters per minute (r = 0.57; p = 0.003) or presence of high level of cholesterolemia (r = 0.6; p = 0.001). We found concordant results using the Cochran's Test: meaningful link between the number of brain lesions and the speed of decompression (Uexp = 14 < Utable = 43; alpha = 0.05, p < 0.01). We concluded that hyperintensities can be explained by preformed nitrogen gas microbubbles and particularly in presence of cholesterol, when the ascent rate is up to 10 meters per minute. So, it was remarkable to note that asymptomatic patients practicing scuba diving either professionally or recreationally, presented lesions of the central nervous

  19. RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS

    Directory of Open Access Journals (Sweden)

    GO CHIBA

    2014-06-01

    Full Text Available In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  20. Experimental investigations of tuned liquid damper-structure interactions in resonance considering multiple parameters

    Science.gov (United States)

    Ashasi-Sorkhabi, Ali; Malekghasemi, Hadi; Ghaemmaghami, Amirreza; Mercan, Oya

    2017-02-01

    As structures are constructed more slender and taller, their vibrational response and its mitigation become challenging design considerations. Tuned liquid dampers (TLDs) are cost effective and low maintenance vibration absorbers that can be used to suppress structural vibrations. A TLD dissipates energy through liquid boundary layer friction, free surface contamination, and wave breaking. The dynamic characteristics of the TLD and its interaction with the structure is quite complex. In this paper, using a state-of-the-art experimental testing method, namely real-time hybrid simulation (RTHS), a comprehensive parametric study is conducted to investigate the effectiveness of TLDs. During RTHS the TLD response is obtained experimentally while the structure is modeled in a computer, thus capturing the TLD-structure interaction in real-time. By keeping the structure as the analytical model, RTHS offers a unique flexibility in which a wide range of influential parameters can be investigated without modifying the experimental setup. The parameters considered in this study with a wide range of variation include TLD/structure mass ratio, TLD/structure frequency ratio, and structural damping ratio. Additionally, the accuracy of FVM/FEM method that couples the finite volume and finite element approaches to model the liquid and solid domains to capture TLD- structure interaction is assessed experimentally. Results obtained in this study, will not only lead to a better understanding of TLDs and their interaction with the structures but also, contribute to the enhanced design of these devices which will in turn result in their wide-spread application.

  1. Low field magnetic resonance imaging of the lumbar spine: Reliability of qualitative evaluation of disc and muscle parameters

    DEFF Research Database (Denmark)

    Sørensen, Joan Solgaard; Kjaer, Per; Jensen, Tue Secher

    2006-01-01

    for grading lumbar discs were based on the spinal nomenclature of the Combined Task Force and the literature. Consensus in rating was achieved by evaluating 50 MRI examinations in tandem. The remaining 50 examinations were evaluated independently by the observers to determine interobserver agreement and re......PURPOSE: To determine the intra- and interobserver reliability in grading disc and muscle parameters using low-field magnetic resonance imaging (MRI). MATERIAL AND METHODS: MRI scans of 100 subjects representative of the general population were evaluated blindly by two radiologists. Criteria......-evaluated by one of the observers to determine intra-observer agreement. RESULTS: Intra- and interobserver agreement was substantial when grading changes in the lumbar discs. Interobserver agreement was fair to moderate in grading the lumbar muscles, whereas intra-observer agreement was almost perfect. CONCLUSION...

  2. Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation.

    Science.gov (United States)

    Kutzelnigg, Werner; Liu, Wenjian

    2009-07-28

    The calculation of NMR parameters from relativistic quantum theory in a Gaussian basis expansion requires some care. While in the absence of a magnetic field the expansion in a kinetically balanced basis converges for the wave function in the mean and for the energy with any desired accuracy, this is not necessarily the case for magnetic properties. The results for the magnetizability or the nuclear magnetic shielding are not even correct in the nonrelativistic limit (nrl) if one expands the original Dirac equation in a kinetically balanced Gaussian basis. This defect disappears if one starts from the unitary transformed Dirac equation as suggested by Kutzelnigg [Phys. Rev. A 67, 032109 (2003)]. However, a new difficulty can arise instead if one applies the transformation in the presence of the magnetic field of a point nucleus. If one decomposes certain contributions, the individual terms may diverge, although their sum is regular. A controlled cancellation may become difficult and numerical instabilities can arise. Various ways exist to avoid these singularities and at the same time get the correct nrl. There are essentially three approaches intermediate between the transformed and the untransformed formulation, namely, the bispinor decomposition, the decomposition of the lower component, and the hybrid unitary transformation partially at operator and partially at matrix level. All three possibilities were first considered by Xiao et al. [J. Chem. Phys. 126, 214101 (2007)] in a different context and in a different nomenclature. Their analysis and classification in a more general context are given here for the first time. Use of an extended balanced basis has no advantages and has other drawbacks and is not competitive, while the use of a restricted magnetic balance basis can be justified.

  3. Apparent Diffusion Coefficient Value Is Not Dependent on Magnetic Resonance Systems and Field Strength Under Fixed Imaging Parameters in Brain.

    Science.gov (United States)

    Ogura, Akio; Tamura, Takayuki; Ozaki, Masanori; Doi, Tsukasa; Fujimoto, Koji; Miyati, Tosiaki; Ito, Yukiko; Maeda, Fumie; Tarewaki, Hiroyuki; Takahashi, Mitsuyuki

    2015-01-01

    The aim of the study was to investigate the causes of apparent diffusion coefficient (ADC) measurement errors and to determine the optimal scanning parameters that are independent of the field strength and vendors of the magnetic resonance (MR) system. Brain MR images of 10 healthy volunteers were scanned using 6 MR scanners of different field strengths and vendors in 2 different institutions. Ethical review board approvals were obtained for this study, and all volunteers gave their informed consents. Coefficient of variation (CV) of ADC values were compared for their differences in various MR scanners and in the scanned subjects. The CV of ADC values for 6 different scanners of 6 brains was 3.32%. The CV for repeated measurements in 1 day (10 scans per day) and in 10 days (scan per day for 10 days) for 1 subject was 1.72% and 2.96%, respectively (n = 5, P variance for the same subject but were lower than the intersubject variance for the same scanner. The variance in the ADC values for different MR scanners is reasonably small if appropriate scanning parameters (repetition time, >3000 ms; echo time, minimum; and high enough signal-to-noise ratio of high-b diffusion-weighted image) are used.

  4. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    Energy Technology Data Exchange (ETDEWEB)

    Isselhardt, Brett H. [Univ. of California, Berkeley, CA (United States)

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  5. Dose-volume histogram parameters and local tumor control in magnetic resonance image-guided cervical cancer brachytherapy.

    Science.gov (United States)

    Dimopoulos, Johannes C A; Lang, Stefan; Kirisits, Christian; Fidarova, Elena F; Berger, Daniel; Georg, Petra; Dörr, Wolfgang; Pötter, Richard

    2009-09-01

    To investigate the value of dose-volume histogram (DVH) parameters for predicting local control in magnetic resonance (MR) image-guided brachytherapy (IGBT) for patients with cervical cancer. Our study population consists of 141 patients with cervical cancer (Stages IB-IVA) treated with 45-50 Gy external beam radiotherapy plus four times 7 Gy IGBT with or without cisplatin. Gross tumor volume (GTV), high-risk clinical target volume (HRCTV), and intermediate-risk clinical target volume (IRCTV) were contoured, and DVH parameters (minimum dose delivered to 90% of the volume of interest [D90] and D100) were assessed. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (alpha/beta = 10 Gy). Groups were defined for patients with or without local recurrence (LR) in the true pelvis for tumor size at diagnosis (GTV at diagnosis [GTVD] of 2-5 cm (Group 1) or greater than 5 cm (Group 2) and for tumor size response at IGBT (HRCTV) of 2-5 cm (Group 2a) or greater than 5 cm (Group 2b). Eighteen LRs were observed. The most important DVH parameters correlated with LR were the D90 and D100 for HRCTV. Mean D90 and D100 values for HRCTV were 86 +/- 16 and 65 +/- 10 Gy, respectively. The D90 for HRCTV greater than 87 Gy resulted in an LR incidence of 4% (3 of 68) compared with 20% (15 of 73) for D90 less than 87 Gy. The effect was most pronounced in the tumor group (Group 2b). We showed an increase in local control in IGBT in patients with cervical cancer with the dose delivered, which can be expressed by the D90 and D100 for HRCTV. Local control rates greater than 95% can be achieved if the D90 (EQD2) for HRCTV is 87 Gy or greater.

  6. Note: Modified π-type Butterworth-Van Dyke model for dual-mode Lamb-wave resonator with precise two-port Y-parameter characterizations

    Science.gov (United States)

    Wang, Yong; Hong, Yan; Goh, Wang Ling; Mu, Xiaojing

    2016-10-01

    Dual-mode Lamb-wave resonator has become a powerful component for clock reference and sensing applications, enabling efficient compensations of temperature effects, concurrent measurements of multiple environmental parameters, etc. An equivalent circuit model for the dual-mode Lamb-wave resonator is indispensable as it provides a means as well as being an effective tool for evaluating device characteristics and to aid the designing of circuitry for the resonators. This could be the first time ever that an efficient equivalent-circuit model, i.e., modified π-type Butterworth-Van Dyke model for dual-mode Lamb-wave resonators is reported. Evaluated by experiments, this model attains noteworthy agreements on both the magnitudes and phases of Y11 and Y21 of the measurement results. Compared to literature, the proposed model is capable of modeling the dual resonances efficiently. Moreover, this work also proves more accurate when viewing the Y-parameters across a wide frequency range. The gained features of this model are most beneficial for the analysis of the dual-mode Lamb-wave resonator and also for the designing of circuits.

  7. Note: Modified π-type Butterworth-Van Dyke model for dual-mode Lamb-wave resonator with precise two-port Y-parameter characterizations.

    Science.gov (United States)

    Wang, Yong; Hong, Yan; Goh, Wang Ling; Mu, Xiaojing

    2016-10-01

    Dual-mode Lamb-wave resonator has become a powerful component for clock reference and sensing applications, enabling efficient compensations of temperature effects, concurrent measurements of multiple environmental parameters, etc. An equivalent circuit model for the dual-mode Lamb-wave resonator is indispensable as it provides a means as well as being an effective tool for evaluating device characteristics and to aid the designing of circuitry for the resonators. This could be the first time ever that an efficient equivalent-circuit model, i.e., modified π-type Butterworth-Van Dyke model for dual-mode Lamb-wave resonators is reported. Evaluated by experiments, this model attains noteworthy agreements on both the magnitudes and phases of Y11 and Y21 of the measurement results. Compared to literature, the proposed model is capable of modeling the dual resonances efficiently. Moreover, this work also proves more accurate when viewing the Y-parameters across a wide frequency range. The gained features of this model are most beneficial for the analysis of the dual-mode Lamb-wave resonator and also for the designing of circuits.

  8. Ferro-resonance in medium and high-voltage grids - Part 3: ferro-resonance parameters and investigation methods; Ferroresonanzschwingungen in Hoch- und Mittelspannungsnetzen. Teil 3: Parameter von Ferroresonanzkreisen und Methoden zur Untersuchung

    Energy Technology Data Exchange (ETDEWEB)

    Braeunlich, R. [Fachkommission fuer Hochspannungsfragen, Zuerich (Switzerland); Daeumling, H. [Ritz Messwandler GmbH, Hamburg (Germany); Hofstetter, M. [Elektrizitaetswerk der Stadt Zuerich (EWZ), Zuerich (Switzerland); Prucker, U.; Schmid, J.; Minkner, R. [Trench-Germany GmbH, Bamberg (Germany); Schlierf, H.-W. [RWE Transportnetz Strom GmbH, Dortmund (Germany)

    2008-07-01

    This illustrated article is part of a series of four articles that examine ferro-resonance oscillations that can occur under certain operational conditions that involve inductive and capacitive elements. The authors take a look at the criteria involved with reference to the dangers posed by ferro-resonance oscillations and describe how the presence of such oscillations can be detected. Installations that can be endangered by ferro-resonance are described and the components of the installations that are involved are examined. Single-phase and three-phase resonance are examined and the detection of resonance in the electricity mains is discussed. Modeling and simulation of ferro-resonance oscillations are examined. Magnetization characteristics and circuit losses are discussed and the results of simulations are presented and discussed.

  9. Using prior knowledge in SVD-based parameter estimation for magnetic resonance spectroscopy--the ATP example.

    Science.gov (United States)

    Stoica, Petre; Selén, Yngve; Sandgren, Niclas; Van Huffel, Sabine

    2004-09-01

    We introduce the knowledge-based singular value decomposition (KNOB-SVD) method for exploiting prior knowledge in magnetic resonance (MR) spectroscopy based on the SVD of the data matrix. More specifically, we assume that the MR data are well modeled by the superposition of a given number of exponentially damped sinusoidal components and that the dampings alphakappa, frequencies omegakappa, and complex amplitudes rhokappa of some components satisfy the following relations: alphakappa = alpha (alpha = unknown), omegakappa = omega + (kappa- 1)delta (omega = unknown, delta = known), and rhokappa = Ckapparho (rho = unknown, ckappa = known real constants). The adenosine triphosphate (ATP) complex, which has one triple peak and two double peaks whose dampings, frequencies, and amplitudes may in some cases be known to satisfy the above type of relations, is used as a vehicle for describing our SVD-based method throughout the paper. By means of numerical examples, we show that our method provides more accurate parameter estimates than a commonly used general-purpose SVD-based method and a previously suggested prior knowledge-based SVD method.

  10. Assessment of global left ventricular functional parameters : analysis of every second short-axis magnetic resonance imaging slices is as accurate as analysis of consecutive slices

    NARCIS (Netherlands)

    Lubbers, Daniel D.; Willems, Tineke P.; van der Vleuten, Pieter A.; Overbosch, Jelle; Goette, Marco J. W.; van Veldhuisen, Dirk J.; Oudkerk, Matthijs

    The purpose of this study was to assess whether accurate global left-ventricular (LV) functional parameters can be obtained by analyzing every second short-axis magnetic resonance imaging cine series instead of consecutive slices, in order to reduce post-processing time. Forty patients, were scanned

  11. Assessment of global left ventricular functional parameters : analysis of every second short-axis magnetic resonance imaging slices is as accurate as analysis of consecutive slices

    NARCIS (Netherlands)

    Lubbers, Daniel D.; Willems, Tineke P.; van der Vleuten, Pieter A.; Overbosch, Jelle; Goette, Marco J. W.; van Veldhuisen, Dirk J.; Oudkerk, Matthijs

    2008-01-01

    The purpose of this study was to assess whether accurate global left-ventricular (LV) functional parameters can be obtained by analyzing every second short-axis magnetic resonance imaging cine series instead of consecutive slices, in order to reduce post-processing time. Forty patients, were scanned

  12. Magnetic resonance imaging in assessment of stress urinary incontinence in women: Parameters differentiating urethral hypermobility and intrinsic sphincter deficiency

    Institute of Scientific and Technical Information of China (English)

    Katarzyna; Jadwiga; Macura; Richard; Eugene; Thompson; David; Alan; Bluemke; Rene; Genadry

    2015-01-01

    AIM: To define the magnetic resonance imaging(MRI) parameters differentiating urethral hypermobility(UH) and intrinsic sphincter deficiency(ISD) in women with stress urinary incontinence(SUI).METHODS: The static and dynamic MR images of 21 patients with SUI were correlated to urodynamic(UD) findings and compared to those of 10 continent controls. For the assessment of the urethra and integrity of the urethral support structures, we applied the highresolution endocavitary MRI, such as intraurethral MRI, endovaginal or endorectal MRI. For the functional imaging of the urethral support, we performed dynamic MRI with the pelvic phased array coil. We assessed the following MRI parameters in both the patient and thevolunteer groups:(1) urethral angle;(2) bladder neck descent;(3) status of the periurethral ligaments,(4) vaginal shape;(5) urethral sphincter integrity, length and muscle thickness at mid urethra;(6) bladder neck funneling;(7) status of the puborectalis muscle;(8) pubo-vaginal distance. UDs parameters were assessed in the patient study group as follows:(1) urethral mobility angle on Q-tip test;(2) Valsalva leak point pressure(VLPP) measured at 250 cc bladder volume; and(3) maximum urethral closure pressure(MUCP). The UH type of SUI was defined with the Q-tip test angle over 30 degrees, and VLPP pressure over 60 cm H2 O. The ISD incontinence was defined with MUCP pressure below 20 cm H2 O, and VLPP pressure less or equal to 60 cm H2 O. We considered the associations between the MRI and clinical data and UDs using a variety of statistical tools to include linear regression, multivariate logistic regression and receiver operating characteristic(ROC) analysis. All statistical analyses were performed using STATA version 9.0(Stata Corp LP, College Station, TX).RESULTS: In the incontinent group, 52% have history of vaginal delivery trauma as compared to none in control group(P < 0.001). There was no difference between the continent volunteers and incontinent

  13. Construction of a two-parameter empirical model of left ventricle wall motion using cardiac tagged magnetic resonance imaging data

    Directory of Open Access Journals (Sweden)

    Shi Jack J

    2012-10-01

    Full Text Available Abstract Background A one-parameter model was previously proposed to characterize the short axis motion of the LV wall at the mid-ventricle level. The single parameter of this model was associated with the radial contraction of myocardium, but more comprehensive model was needed to account for the rotation at the apex and base levels. The current study developed such model and demonstrated its merits and limitations with examples. Materials and methods The hearts of five healthy individuals were visualized using cardiac tagged magnetic resonance imaging (tMRI covering the contraction and relaxation phases. Based on the characteristics of the overall dynamics of the LV wall, its motion was represented by a combination of two components - radial and rotational. Each component was represented by a transformation matrix with a time-dependent variable α or β. Image preprocessing step and model fitting algorithm were described and applied to estimate the temporal profiles of α and β within a cardiac cycle at the apex, mid-ventricle and base levels. During this process, the tagged lines of the acquired images served as landmark reference for comparing against the model prediction of the motion. Qualitative and quantitative analyses were performed for testing the performance of the model and thus its validation. Results The α and β estimates exhibited similarities in values and temporal trends once they were scaled by the radius of the epicardium (repiand plotted against the time scaled by the period of the cardiac cycle (Tcardiac of each heart measured during the data acquisition. α/repi peaked at about Δt/Tcardiac=0.4 and with values 0.34, 0.4 and 0.3 for the apex, mid-ventricle and base level, respectively. β/repi similarly maximized in amplitude at about Δt/Tcardiac=0.4, but read 0.2 for the apex and - 0.08 for the base level. The difference indicated that the apex twisted more than the base. Conclusion It is feasible to empirically model

  14. New experimental determination of the neutron resonance parameters of {sup 99}Tc; Nouvelle determination experimentale des parametres de resonances neutroniques de {sup 99}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Brienne-Raepsaet, C. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee]|[Aix-Marseille-1 Univ., 13 - Marseille (France)

    1999-04-01

    In order to improve nuclear data for nuclear waste transmutation cross-sections of Tc{sup 99} in the resonance energy region have been performed using the time-of-flight method at the pulsed white neutron source GELINA of the Institute for Reference Materials and Measurements, Geel, Belgium. The energy range studied spreads from 3 eV to 100 KeV. 2 kinds of measurements have been performed: capture and transmission measurements. In the energy range between 0 and 2 KeV, more than 220 resonances have been analyzed. About 130 resonances which had stayed previously undiscovered, have been detected and analyzed. Because of instability problems concerning the process of measuring itself, the systematic error is not yet determined. The accuracy which takes into account statistical and systematic errors is expected to be between 4 and 5%.

  15. New experimental determination of the neutronic resonance parameters of {sup 237}Np below 500 eV; Nouvelle determination experimentale des parametres de resonances neutroniques de {sup 237}Np en dessous de 500 eV

    Energy Technology Data Exchange (ETDEWEB)

    Gressier, V

    1999-10-01

    For studies of future nuclear reactors dedicated to nuclear waste transmutation, an improvement of the accuracy of the neutron radiative capture cross section of {sup 237}Np appears necessary. In the framework of a collaboration between the Commissariat a l'Energie atomique (CEA) and Institute for Reference Materials and Measurement (IRMM, Geel, Bergium), a new determination of the resonance parameters of {sup 237}Np has been performed. Two types of experiments are carried out at GELINA, the IRMM pulsed neutron source, using the time of flight method: a transmission experiment which is related to the neutron total cross section and a capture experiment which gives the neutron radiative capture cross section. The resonance parameters presented in this work are extracted from the transmission data between 0 and 500 eV with the least square code REFIT, using the Reich-Moore formalism. In parallel, the Doppler effect is investigated. The commonly used free gas model appears inadequate below 20 eV for neptunium dioxide at room temperature. By the use of the program DOPUSH, which calculates the Doppler broadening with a harmonic crystal model according to Lamb's theory, we are able to produce abetter fit of the experimental data for the resonances of {sup 237}Np in NpO{sub 2} at low energy or temperatures. In addition to the resonance parameters, a study of their mean value and distribution is included in this work. (authors)

  16. The Application of Multiobjective Genetic Algorithm to the Parameter Optimization of Single-Well Potential Stochastic Resonance Algorithm Aimed at Simultaneous Determination of Multiple Weak Chromatographic Peaks

    Directory of Open Access Journals (Sweden)

    Haishan Deng

    2014-01-01

    Full Text Available Simultaneous determination of multiple weak chromatographic peaks via stochastic resonance algorithm attracts much attention in recent years. However, the optimization of the parameters is complicated and time consuming, although the single-well potential stochastic resonance algorithm (SSRA has already reduced the number of parameters to only one and simplified the process significantly. Even worse, it is often difficult to keep amplified peaks with beautiful peak shape. Therefore, multiobjective genetic algorithm was employed to optimize the parameter of SSRA for multiple optimization objectives (i.e., S/N and peak shape and multiple chromatographic peaks. The applicability of the proposed method was evaluated with an experimental data set of Sudan dyes, and the results showed an excellent quantitative relationship between different concentrations and responses.

  17. Contributions of structural connectivity and cerebrovascular parameters to functional magnetic resonance imaging signals in mice at rest and during sensory paw stimulation.

    Science.gov (United States)

    Schroeter, Aileen; Grandjean, Joanes; Schlegel, Felix; Saab, Bechara J; Rudin, Markus

    2017-07-01

    Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.

  18. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets.

    Science.gov (United States)

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-01

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  19. Photoionization using the xchem approach: Total and partial cross sections of Ne and resonance parameters above the 2 s22 p5 threshold

    Science.gov (United States)

    Marante, Carlos; Klinker, Markus; Kjellsson, Tor; Lindroth, Eva; González-Vázquez, Jesús; Argenti, Luca; Martín, Fernando

    2017-08-01

    The XCHEM approach interfaces well established quantum chemistry packages with scattering numerical methods in order to describe single-ionization processes in atoms and molecules. This should allow one to describe electron correlation in the continuum at the same level of accuracy as quantum chemistry methods do for bound states. Here we have applied this method to study multichannel photoionization of Ne in the vicinity of the autoionizing states lying between the 2 s22 p5 and 2 s 2 p6 ionization thresholds. The calculated total photoionization cross sections are in very good agreement with the absolute measurement of Samson et al. [J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002), 10.1016/S0368-2048(02)00026-9], and with independent benchmark calculations performed at the same level of theory. From these cross sections, we have extracted resonance positions, total autoionization widths, Fano profile parameters, and correlation parameters for the lowest three autoionizing states. The values of these parameters are in good agreement with those reported in earlier theoretical and experimental work. We have also evaluated β asymmetry parameter and partial photoionization cross sections and, from the latter, partial autoionization widths and Starace parameters for the same resonances, not yet available in the literature. Resonant features in the calculated β parameter are in good agreement with the experimental observations. We have found that the three lowest resonances preferentially decay into the 2 p-1ɛ d continuum rather than into the 2 p-1ɛ s one [Phys. Rev. A 89, 043415 (2014), 10.1103/PhysRevA.89.043415], in agreement with previous expectations, and that in the vicinity of the resonances the partial 2 p-1ɛ s cross section can be larger than the 2 p-1ɛ d one, in contrast with the accepted idea that the latter should amply dominate in the whole energy range. These results show the potential of the XCHEM approach to describe highly correlated process

  20. Theoretical study of the electron paramagnetic resonance parameters and local structure for the tetragonal Ir2+ centre in NaCl

    Indian Academy of Sciences (India)

    Y-X Hu; S-Y Wu; X-F Wang; P Xu

    2010-04-01

    The electron paramagnetic resonance (EPR) parameters (the factors, hyperfine structure constants and the superhyperfine parameters) for the tetragonal Ir2+ centre in NaCl are theoretically investigated from the perturbation formulas of these parameters for a 5d7 ion in tetragonally elongated octahedra. This impurity centre is attributed to the substitutional [IrCl6]4- cluster on host Na+ site, associated with the 4% relative elongation along the 4-axis due to the Jahn–Teller effect. Despite the ionicity of host NaCl, the [IrCl6]4- cluster still exhibits moderate covalency and then the ligand orbital and spin-orbit coupling contributions should be taken into account. In addition, the theoretical EPR parameters based on the Jahn–Teller elongation show good agreement with the observed values.

  1. Impact of the papillary muscles on cardiac magnetic resonance image analysis of important left ventricular parameters in hypertrophic cardiomyopathy

    NARCIS (Netherlands)

    Gommans, D.H.F.; Bakker, J.; Cramer, G.E.; Verheugt, F.W.A.; Brouwer, M.A.; Kofflard, M.J.M.

    2016-01-01

    PURPOSE: The use of cardiac magnetic resonance (CMR) analysis has increased in patients with hypertrophic cardiomyopathy (HCM). Quantification of left ventricular (LV) measures will be affected by the inclusion or exclusion of the papillary muscles as part of the LV mass, but the magnitude of effect

  2. Theoretical explanation of electron paramagnetic resonance and optical parameters for Cu2+ ion in LiNbO3 crystal

    Indian Academy of Sciences (India)

    S Ravi; P Subramanian

    2007-08-01

    The EPR parameters, anisotropic -factors , and for Cu2+ ion and hyperfine structure constants , and for Cu2+ in LiNbO3 crystal are calculated by the method of diagonalizing the full Hamiltonian matrix. The crystal-field parameters contact with the crystal structure by the aid of the superposition model. The optical transition parameters are calculated using Zhao crystal-field model. The calculated results are in good agreement with the observed values. The results are discussed.

  3. Impact of the mass and other parameters of charged particles on the results of laser resonance acceleration

    Directory of Open Access Journals (Sweden)

    Adam Dubik

    2014-03-01

    Full Text Available Theoretical and numerical analyses are presented concerning the conditions at which the charged particles of different masses can be accelerated to significant kinetic energy in the circularly polarized laser or maser beams and a static magnetic field. The studies are carried out using the analytical derivations of the particles dynamics and theirs kinetic energy. The presented illustrations enabled interpretation of the complex motion of particles and the possibilities of their acceleration. At the examples of an electron, proton and deuteron, the velocity, kinetic energy and trajectory as a function of the acceleration time at the resonance condition are illustrated in the appropriate graphs. The particles with larger masses require the application of enhanced magnetic field intensity at the resonance condition. However, this field intensity can be significantly reduced if the particles are preaccelerated. [b]Keywords[/b]: optoelectronics, acceleration of charged particles, laser, maser, relativistic dynamics, kinetic energy of a particle, electron, proton, deuteron

  4. Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging in patients with rectal cancer: Correlation with microvascular density and vascular endothelial growth factor expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeo Eun [Dept. of Radiology, Seoul Medical Center, Seoul (Korea, Republic of); Lim, Joon Seok; Kim, Myeong Jin; Kim, Ki Whang; Choi, Jun Jeong [Yonsei University Health System, Seoul (Korea, Republic of); Kim, Dae Hong [Molecular Imaging and Therapy Branch, National Cancer Center, Goyang (Korea, Republic of); Myoung, Sung Min [Dept. of Medical Information, Jungwon University, Goesan (Korea, Republic of)

    2013-12-15

    To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer (K{sup trans}) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters (K{sup trans}, Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p 0.662 for K{sup trans}; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p 0.741 for K{sup trans}; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). DCE-MRI perfusion parameters, K{sup trans} and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.

  5. Dependence of gain and phase-shift on crystal parameters and pump intensity in unidirectional photorefractive ring resonators

    Indian Academy of Sciences (India)

    M K Maurya; T K Yadav; R A Yadav

    2009-04-01

    The steady-state amplification of light beam during two-wave mixing in photorefractive materials has been analysed in the strong nonlinear regime. The oscillation conditions for unidirectional ring resonator have been studied. The signal beam can be amplified in the presence of material absorption, provided the gain due to the beam coupling is large enough to overcome the cavity losses. Such amplification is responsible for the oscillations. The gain bandwidth is only a few Hz. In spite of such an extremely narrow bandwidth, unidirectional oscillation can be observed easily at any cavity length in ring resonators by using photorefractive crystals as the medium and this can be explained in terms of the photorefractive phase-shift. The presence of such a phase-shift allows the possibility of the non-reciprocal steady-state transfer of energy between the two light beams. Dependence of gain bandwidth on coupling constant, absorption coefficient of the material's cavity length (crystal length) and modulation ratio have also been studied.

  6. Initial experience of correlating parameters of intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging at 3.0 T in nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Qian-Jun; Zhang, Shui-Xing; Chen, Wen-Bo; Liang, Long; Zhou, Zheng-Gen; Liu, Zai-Yi; Zeng, Qiong-Xin; Liang, Chang-Hong [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Qiu, Qian-Hui [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Otolaryngology, Guangzhou, Guangdong Province (China)

    2014-12-15

    To determine the correlation between intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters. Thirty-eight newly diagnosed NPC patients were prospectively enrolled. Diffusion-weighted images (DWI) at 13 b-values were acquired using a 3.0-T MRI system. IVIM parameters including the pure molecular diffusion (D), perfusion-related diffusion (D*), perfusion fraction (f), DCE-MRI parameters including maximum slope of increase (MSI), enhancement amplitude (EA) and enhancement ratio (ER) were calculated by two investigators independently. Intra- and interobserver agreement were evaluated using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. Relationships between IVIM and DCE-MRI parameters were evaluated by calculation of Spearman's correlation coefficient. Intra- and interobserver reproducibility were excellent to relatively good (ICC = 0.887-0.997; narrow width of 95 % limits of agreement). The highest correlation was observed between f and EA (r = 0.633, P < 0.001), with a strong correlation between f and MSI (r = 0.598, P = 0.001). No correlation was observed between f and ER (r = -0.162; P = 0.421) or D* and DCE parameters (r = 0.125-0.307; P > 0.119). This study suggests IVIM perfusion imaging using 3.0-T MRI is feasible in NPC, and f correlates significantly with EA and MSI. (orig.)

  7. Multivariate modelling of prostate cancer combining magnetic resonance derived T2, diffusion, dynamic contrast-enhanced and spectroscopic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Riches, S.F.; Payne, G.S.; Morgan, V.A.; DeSouza, N.M. [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, CRUK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Dearnaley, D. [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Department of Urology and Department of Academic Radiotherapy, Sutton, Surrey (United Kingdom); Morgan, S. [The Ottawa Hospital Cancer Centre and the University of Ottawa, Division of Radiation Oncology, Ottawa, Ontario (Canada); Partridge, M. [The Institute of Cancer Research, Section of Radiotherapy and Imaging, Sutton, Surrey (United Kingdom); University of Oxford, The Gray Institute for Radiation Oncology and Biology, Oxford (United Kingdom); Livni, N. [Royal Marsden NHS Foundation Trust Chelsea, Department of Histopathology, London (United Kingdom); Ogden, C. [Royal Marsden NHS Foundation Trust Chelsea, Department of Urology, London (United Kingdom)

    2015-05-01

    The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist. Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T{sub 2}-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T{sub 2,} Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (K{sup trans},K{sub ep},V{sub e}), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer. Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively. The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data. (orig.)

  8. Parameter-adjusted stochastic resonance system for the aperiodic echo chirp signal in optimal FrFT domain

    Science.gov (United States)

    Lin, Li-feng; Yu, Lei; Wang, Huiqi; Zhong, Suchuan

    2017-02-01

    In order to improve the system performance for moving target detection and localization, this paper presents a new aperiodic chirp signal and additive noise driving stochastic dynamical system, in which the internal frequency has the linear variation matching with the driving frequency. By using the fractional Fourier transform (FrFT) operator with the optimal order, the proposed time-domain dynamical system is transformed into the equivalent FrFT-domain system driven by the periodic signal and noise. Therefore, system performance is conveniently analyzed from the view of output signal-to-noise ratio (SNR) in optimal FrFT domain. Simulation results demonstrate that the output SNR, as a function of system parameter, shows the different generalized SR behaviors in the case of various internal parameters of driving chirp signal and external parameters of the moving target.

  9. Resonance Damping and Parameter Design Method for LCL-LC Filter Interfaced Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Li, Zipeng; Jiang, Aiting; Shen, Pan;

    2016-01-01

    , this paper presents a systematic design method for the LCL-LC filtered grid-connected photovoltaic (PV) system. With this method, controller parameters and the active damping feedback coefficient are easily obtained by specifying the system stability and dynamic performance indices, and it is more convenient...

  10. A search for optimal parameters of resonance circuits ensuring damping of electroelastic structure vibrations based on the solution of natural vibration problem

    Science.gov (United States)

    Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.

    2017-06-01

    In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.

  11. Magnetic Resonance Comparison of Left-Right Heart Volumetric and Functional Parameters in Thalassemia Major and Thalassemia Intermedia Patients

    Directory of Open Access Journals (Sweden)

    Carlo Liguori

    2015-01-01

    Full Text Available Objectives. To evaluate a population of asymptomatic thalassemia major (TM and thalassemia intermedia (TI patients using cardiovascular magnetic resonance (CMR. We supposed that TI group could be differentiated from the TM group based on T2∗ and that the TI group could demonstrate higher cardiac output. Methods. A retrospective analysis of 242 patients with TM and TI was performed (132 males, 110 females; mean age 39.6±8 years; 186 TM, 56 TI. Iron load was assessed by T2∗ measurements; volumetric functions were analyzed using steady-state-free precession sequences. Results. Significant difference in left-right heart performance was observed between TM with iron overload and TI patients and between TM with iron overload and TM without iron overload (P<0.05; no significant differences were observed between TM without iron overload and TI patients. A significant correlation was observed between T2∗ and ejection fraction of right ventricle- (RV- ejection fraction of left ventricle (LV; an inverse correlation was present among T2∗ values and end-diastolic volume of LV, end-systolic volume of LV, stroke volume of LV, end-diastolic volume of RV, end-systolic volume of RV, and stroke volume of RV. Conclusions. CMR is a leading approach for cardiac risk evaluation of TM and TI patients.

  12. Multi-Group Formulation of the Temperature-Dependent Resonance Scattering Model and its Impact on Reactor Core Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ghrayeb, Shadi Z. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Ougouag, Abderrafi M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Ouisloumen, Mohamed [Westinghouse Electric Company, Cranberry Township, PA (United States); Ivanov, Kostadin N. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering

    2014-01-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.

  13. Functional parameters of the right heart evaluated by magnetic resonance imaging in patients with single lung transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Richter, C.S. [Royal Brompton National Heart and Chest Hospitals, London (United Kingdom); Mohiaddin, R.H. [Magnetic Resonance Unit, National Heart and Chest Hospitals, London (United Kingdom); Longmore, D.B. [Magnetic Resonance Unit, National Heart and Chest Hospitals, London (United Kingdom)

    1992-12-31

    Blood flow in the main pulmonary artery (MPA) and superior vena cava (SVC) was studied in 25 patients with chronic lung diseases before and after single lung transplantation using cine magnetic resonance imaging (MRI) with velocity mapping. Flow was measured (l/min/m{sup 2}) and characterised (time-related flow curve profiles) in 13 patients before and 14 patients after transplantation. Eight normal subjects matched for heart rate were studied for comparison. MPA and SVC flow (l/min/m{sup 2}) in the posttransplant group were significantly higher than in the pretransplant group. The MPA flow profile in all but one patients was similar to that of the control and consists of a large forward systolic peak and a small forward diastolic peak. Normal SVC flow profile shows forward peaks during ventricular systole (s) and diastole (d), the ratio of s/d was 1.39{+-}0.33. In the pre-transplant group 67% of the patients have a single systolic peak while the diastolic peak either absent or there was a reverse flow, 33% have a dominant diastolic peaks (s/d ratio 0.9{+-}0.04). In the posttransplant group SVC flow profile was comparable to that of control (s/d ratio 1.41{+-}0.62). These changes are likely related to the improvement in the right ventricular function secondary to the reduction of pulmonary resistance. (orig.) [Deutsch] Mittels cine magnetic resonance imaging (MRI, velocity mapping) wurde bei 25 Patienten mit chronischen Lungenerkrankungen der Flow (l/min/m{sup 2}) im Truncus pulmonalis (MPA) und in der Vena cava superior (SVC) vor und/oder nach einseitiger Lungentransplantation gemessen und als Kurvenprofil ueber der Zeit dargestellt (in 13 Faellen praeoperativ, 14mal postoperativ). Zum Vergleich dienten 8 gesunde Probanden mit angeglichener Herzfrequenz. Sowohl der Pulmonalarterienflow als auch der Flow in der oberen Hohlvene erwiesen sich bei Patienten nach Transplantation als signifikant hoeher als in der praeoperativen Patientengruppe. Das Flowprofil der MPA

  14. Top-down, decoupled control of constitutive parameters in electromagnetic metamaterials with dielectric resonators of internal anisotropy

    Science.gov (United States)

    Koo, Sukmo; Mason, Daniel R.; Kim, Yunjung; Park, Namkyoo

    2017-01-01

    A meta-atom platform providing decoupled tuning for the constitutive wave parameters remains as a challenging problem, since the proposition of Pendry. Here we propose an electromagnetic meta-atom design of internal anisotropy (εr ≠ εθ), as a pathway for decoupling of the effective- permittivity εeff and permeability μeff. Deriving effective parameters for anisotropic meta-atom from the first principles, and then subsequent inverse-solving the obtained decoupled solution for a target set of εeff and μeff, we also achieve an analytic, top-down determination for the internal structure of a meta-atom. To realize the anisotropy from isotropic materials, a particle of spatial permittivity modulation in r or θ direction is proposed. As an application example, a matched zero index dielectric meta-atom is demonstrated, to enable the super-funneling of a 50λ-wide flux through a sub-λ slit; unharnessing the flux collection limit dictated by the λ-zone. PMID:28186157

  15. Top-down, decoupled control of constitutive parameters in electromagnetic metamaterials with dielectric resonators of internal anisotropy

    Science.gov (United States)

    Koo, Sukmo; Mason, Daniel R.; Kim, Yunjung; Park, Namkyoo

    2017-02-01

    A meta-atom platform providing decoupled tuning for the constitutive wave parameters remains as a challenging problem, since the proposition of Pendry. Here we propose an electromagnetic meta-atom design of internal anisotropy (εr ≠ εθ), as a pathway for decoupling of the effective- permittivity εeff and permeability μeff. Deriving effective parameters for anisotropic meta-atom from the first principles, and then subsequent inverse-solving the obtained decoupled solution for a target set of εeff and μeff, we also achieve an analytic, top-down determination for the internal structure of a meta-atom. To realize the anisotropy from isotropic materials, a particle of spatial permittivity modulation in r or θ direction is proposed. As an application example, a matched zero index dielectric meta-atom is demonstrated, to enable the super-funneling of a 50λ-wide flux through a sub-λ slit; unharnessing the flux collection limit dictated by the λ-zone.

  16. Nuclear magnetic resonance-based metabonomics reveals strong sex effect on plasma metabolism in 17-year-old Scandinavians and correlation to retrospective infant plasma parameters.

    Science.gov (United States)

    Bertram, Hanne Christine; Duus, Jens Ø; Petersen, Bent O; Hoppe, Camilla; Larnkjaer, Anni; Schack-Nielsen, Lene; Mølgaard, Christian; Michaelsen, Kim F

    2009-07-01

    Nuclear magnetic resonance (NMR)-based metabonomics was carried out on plasma samples from a total of seventy-five 17-year-old Danes to investigate the impact of key parameters such as sex, height, weight, and body mass index on the plasma metabolite profile in a normal, healthy population. Principal component analysis identified sex to have a large impact on the NMR plasma metabolome, whereas no apparent effects of height, weight, and body mass index were found. Partial least square regression discriminant analysis and quantification of relative metabolite concentrations by integration of NMR signals revealed that the sex effect included differences in plasma lipoproteins (mainly high-density lipoprotein), glucose, choline, and amino acid content. Accordingly, the present study suggests a higher lipid synthesis in young women than young men and a higher protein turnover in young men compared with women. Data on plasma content of triglyceride, lipoprotein fractions, and cholesterol at an age of 9 months were available for selected individuals (n = 40); and partial least square regressions revealed correlations between these infant parameters and the NMR plasma metabolome at an age of 17 years. In conclusion, the present study demonstrates the feasibility of NMR-based metabonomics for obtaining a deeper insight into interindividual differences in metabolism and for exploring relationships between parameters measured early in life and metabolic status at a later stage.

  17. Unitary boson-boson and boson-fermion mixtures: third virial coefficient and three-body parameter on a narrow Feshbach resonance

    Science.gov (United States)

    Endo, Shimpei; Castin, Yvan

    2016-11-01

    We give exact integral expressions of the third cluster or virial coefficients of binary mixtures of ideal Bose or Fermi gases, with interspecies interactions of zero range and infinite s-wave scattering length. In general the result depends on three-body parameters Rt appearing in three-body contact conditions, because an Efimov effect is present or because the mixture is in a preefimovian regime with a mass ratio close to an Efimov-effect threshold. We give a new, exact integral expression of Rt for the microscopic narrow Feshbach resonance model. A divergence of Rt in the preefimovian regime at a scaling exponent s = 1 / 2 is predicted and physically discussed. The analytical results are applied to typical species used in cold atom experiments.

  18. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Carlo, E-mail: c.liguori@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Pitocco, Francesca, E-mail: f.pitocco@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Di Giampietro, Ilenia, E-mail: i.digiampietro@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Vivo, Aldo Eros de, E-mail: devivoeros@gmail.com [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Unit of Measurements and Biomedical Instrumentation, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Cianciulli, Paolo, E-mail: CIANCIULLI.PAOLO@aslrmc.it [Thalassemia Unit, Ospedale Sant Eugenio, Piazzale dell’Umanesimo 10, 00143 Rome (Italy); Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy)

    2013-09-15

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients.

  19. 微弱核四极矩共振信号参数估计新方法%New parameters estimation method for weak nuclear quadrupole resonance signals

    Institute of Scientific and Technical Information of China (English)

    朱凯然; 吴兆平; 何学辉; 苏涛; 王文卿

    2012-01-01

    Nuclear quadrupole resonance (NQR) is a solid-state radio frequency spectroscopic technique, allowing the detection of many high explosives. Unfortunately, NQR signals are inherently weak and vulnerable both to the thermal noise of the coil and any radio frequency interference, and the precise estimation of the NQR signal parameters becomes a difficult problem. A residual signal iterative analysis algorithm based on improved fast maximum likelihood estimation is proposed to estimate the parameters of the NQR signal. The proposed method turns the multidimensional search problem into multiple one-dimensional searches to effectively solve the mask problem of the interference to the NQR signal, which simultaneously reduces the computational complexity and improves the estimated precision. The effectiveness of the proposed algorithm is demonstrated by the processing results of both simulated data and experimental data.%核四极矩共振(nuclear quadrupole resonance,NQR)是一种固态射频谱分析技术,可用于检测高危险爆炸物.然而,核四极矩共振信号本身非常弱,并且易受线圈热噪声和射频干扰的影响,精确估计NQR信号参数成为难题.提出基于改进的快速最大似然估计的残余信号迭代分解算法估计NQR信号参数,该算法将多维搜索问题转化为多个一维搜索,在降低计算复杂度的同时提高了参数估计精度,有效地解决了干扰信号对NQR信号的遮蔽问题.仿真和实测数据的结果证明了该算法的有效性.

  20. Incorporating doubly resonant $W^\\pm$ data in a global fit of SMEFT parameters to lift flat directions

    CERN Document Server

    Berthier, Laure; Trott, Michael

    2016-09-27

    We calculate the double pole contribution to two to four fermion scattering through $W^{\\pm}$ currents at tree level in the Standard Model Effective Field Theory (SMEFT). We assume all fermions to be massless, $\\rm U(3)^5$ flavour and $\\rm CP$ symmetry. Using this result, we update the global constraint picture on SMEFT parameters including LEPII data on these charged current processes, and also include modifications to our fit procedure motivated by a companion paper focused on $W^{\\pm}$ mass extractions. The fit reported is now to 177 observables and emphasises the need for a consistent inclusion of theoretical errors, and a consistent treatment of observables. Including charged current data lifts the two-fold degeneracy previously encountered in LEP (and lower energy) data, and allows us to set simultaneous constraints on 20 of 53 Wilson coefficients in the SMEFT, consistent with our assumptions. This allows the model independent inclusion of LEP data in SMEFT studies at LHC, which are projected into the S...

  1. Incorporating doubly resonant $W^\\pm$ data in a global fit of SMEFT parameters to lift flat directions

    CERN Document Server

    Berthier, Laure

    2016-01-01

    We calculate the double pole contribution to two to four fermion scattering through $W^{\\pm}$ currents at tree level in the Standard Model Effective Field Theory (SMEFT). We assume all fermions to be massless, $\\rm U(3)^5$ flavour and $\\rm CP$ symmetry. Using this result, we update the global constraint picture on SMEFT parameters including LEPII data on these charged current processes, and also include modifications to our fit procedure motivated by a companion paper focused on $W^{\\pm}$ mass extractions. The fit reported is now to 177 observables and emphasises the need for a consistent inclusion of theoretical errors, and a consistent treatment of observables. Including charged current data lifts the two-fold degeneracy previously encountered in LEP (and lower energy) data, and allows us to set simultaneous constraints on 20 of 53 Wilson coefficients in the SMEFT, consistent with our assumptions. This allows the model independent inclusion of LEP data in SMEFT studies at LHC, which are projected into the S...

  2. Measurements of Cross Sections and Forward-Backward Asymmetries at the Z Resonance and Determination of Electroweak Parameters

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; Cozzoni, B; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; Dutta, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Innocente, Vincenzo; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Koffeman, E; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lassila-Perini, K M; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lu, W; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Merk, M; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paoloni, A; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Sciarrino, D; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Tellili, B; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Zilizi, G; Zöller, M

    2000-01-01

    We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years $1993-95$.A total luminosity of 103 pb$^{-1}$ was collected at centre-of-mass energies $\\sqrt{s} \\approx m_\\mathrm{Z}$ and $\\sqrt{s} \\approx m_\\mathrm{Z} \\pm 1.8$ GeVwhich corresponds to 2.5 million hadronic and 245 thousand leptonic events selected.These data lead to a significantly improved determination of Z parameters.From the total cross sections, combined with our measurements in $1990-92$,we obtain the final results:%%%\\begin{eqnarr ay*} m_\\mathrm{Z} = 91189.8 \\pm 3.1\\ \\mathrm{MeV} \\, , & & \\Gamma_\\mathrm{Z} = 2502.4 \\pm 4.2\\ \\mathrm{MeV} \\, , \\\\ \\Gamma_\\mathrm{had} = 1741.1 \\pm 3.8\\ \\mathrm{MeV} \\, , & & \\Gamma_\\ell = 84.14 \\pm 0.17\\ \\mathrm{MeV} \\,. \\label{eq:Zpara_abstract}\\end{eqnarray*}%%%An invisible width of $\\Gamma_\\mathrm{inv} = 499.1 \\pm 2.9$ MeV is derived which in the Standard Model yields for the numberof light neutrino spec...

  3. Modifications in Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameters After α-Particle-Emitting {sup 227}Th-trastuzumab Therapy of HER2-Expressing Ovarian Cancer Xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Heyerdahl, Helen, E-mail: Helen.Heyerdahl@rr-research.no [Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo (Norway); Røe, Kathrine [Department of Oncology, Division of Medicine, Akershus University Hospital, Lørenskog (Norway); Brevik, Ellen Mengshoel [Department of Research and Development, Algeta ASA, Oslo (Norway); Dahle, Jostein [Nordic Nanovector AS, Oslo (Norway)

    2013-09-01

    Purpose: The purpose of this study was to investigate the effect of α-particle-emitting {sup 227}Th-trastuzumab radioimmunotherapy on tumor vasculature to increase the knowledge about the mechanisms of action of {sup 227}Th-trastuzumab. Methods and Materials: Human HER2-expressing SKOV-3 ovarian cancer xenografts were grown bilaterally in athymic nude mice. Mice with tumor volumes 253 ± 36 mm{sup 3} (mean ± SEM) were treated with a single injection of either {sup 227}Th-trastuzumab at a dose of 1000 kBq/kg body weight (treated group, n=14 tumors) or 0.9% NaCl (control group, n=10 tumors). Dynamic T1-weighted contrast-enhanced magnetic resonance imaging (DCEMRI) was used to study the effect of {sup 227}Th-trastuzumab on tumor vasculature. DCEMRI was performed before treatment and 1, 2, and 3 weeks after therapy. Tumor contrast-enhancement curves were extracted voxel by voxel and fitted to the Brix pharmacokinetic model. Pharmacokinetic parameters for the tumors that underwent radioimmunotherapy were compared with the corresponding parameters of control tumors. Results: Significant increases of k{sub ep}, the rate constant of diffusion from the extravascular extracellular space to the plasma (P<.05), and k{sub el,} the rate of clearance of contrast agent from the plasma (P<.01), were seen in the radioimmunotherapy group 2 and 3 weeks after injection, compared with the control group. The product of k{sub ep} and the amplitude parameter A, associated with increased vessel permeability and perfusion, was also significantly increased in the radioimmunotherapy group 2 and 3 weeks after injection (P<.01). Conclusions: Pharmacokinetic modeling of MRI contrast-enhancement curves evidenced significant alterations in parameters associated with increased tumor vessel permeability and tumor perfusion after {sup 227}Th-trastuzumab treatment of HER2-expressing ovarian cancer xenografts.

  4. A Measurement of the Effective Electron Neutral Current Coupling Parameters from Polarized Bhabha Scattering at the Z0 Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Langston, Matthew D

    2003-07-15

    The effective electron neutral current coupling parameters, {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c}, have been measured from analyzing 43,222 polarized Bhabha scattered events (e{sup +}e{sup -} {yields} e{sup +}e{sup -}) using the SLAC Large Detector (SLD) experiment at the Stanford Linear Accelerator Center (SLAC). The SLAC Linear Collider (SLC) produced the Bhabha scattered events by colliding polarized electrons, with an average polarization of 74%, with unpolarized positrons at an average center-of-mass energy of 91.25 GeV. The analysis used the entire SLD data sample collected between 1994 and 1998 (the last year the SLD detector collected data). The results are {bar g}{sub V}{sup e} = -0.0469 {+-} 0.0024 (stat.) {+-} 0.0004 (sys.); {bar g}{sub A}{sup e} = -0.5038 {+-} 0.0010 (stat.) {+-} 0.0043 (sys.). All Bhabha scattered events within the angular acceptance of the SLD calorimeter subsystems were used in this analysis, including both small-angle events (28 mrad. {le} theta {le} 68 mrad.) measured by the Silicon/Tungsten Luminosity Monitor (LUM), and large angle events (0 {le} |cos{theta}| {le} 0.9655) measured by the Liquid Argon Calorimeter (LAC). Using all of the data in this manner allows for the high-precision measurement of the luminosity provided by the LUM to constrain the uncertainty on {bar g}{sub V}{sup e} and {bar g}{sub A}{sup e}. The measured integrated luminosity for the combined 1993 through 1998 SLD data sample is L{sub Integrated} = 19,247 {+-} 17 (stat.) {+-} 146 (sys.) nb{sup -1}. In contrast with other SLD precision measurements of the effective weak mixing angle, which are sensitive to the ratio {bar g}{sub V}{sup e}/{bar g}{sub A}{sup e}, this result independently determines {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c}. The analysis techniques to measure {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c} are described, and the results are compared with other SLD measurements as well as other experiments.

  5. An analytical method for estimating the 14N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    Energy Technology Data Exchange (ETDEWEB)

    Iselin, Louis Henry [Univ. of Florida, Gainesville, FL (United States)

    1992-01-01

    The use of 14N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  6. Single-Breathhold Four-Dimensional Assessment of Left Ventricular Morphological and Functional Parameters by Magnetic Resonance Imaging Using the VAST Technique.

    Science.gov (United States)

    Rochitte, Carlos Eduardo; Azevedo, Clerio F; Rosário, Miguel A; Siqueira, Maria H R; Monsão, Victor; Saranathan, Manoj; Foo, Thomas K; Kalil Filho, Roberto; Cerri, Giovanni G; Ramires, José A F

    2011-01-01

    The accurate and reproducible assessment of cardiac volumes, function, and mass is of paramount importance in cardiology. In the present study we sought to determine whether the 3D cine-magnetic resonance (MR) technique, using the variable asymmetric sampling in time (VAST) approach, provided an accurate assessment of LV functional parameters when compared with the conventional 2D cine-MR technique. A total of 43 consecutive patients referred for a CMR examination for clinical reasons and 14 healthy volunteers were included in the study. Cine images were acquired using a steady-state free precession pulse sequence. Two different multiphase acquisitions were performed: conventional 2D cine-MR and 3D cine-MR. The short-axis cine images acquired by both cine-MR techniques were used for the quantitative assessment of LV end-diastolic, end-systolic and stroke volumes, LV mass and ejection fraction. All CMR examinations were completed successfully, with both cine-MR imaging techniques yielding interpretable diagnostic results in all patients. Regarding the quantitative assessment, Bland-Altman analyses demonstrated a good agreement between the measurements of both cine-MR techniques for all LV parameters. In addition, the agreement between 2D and 3D cine-MR techniques for the qualitative assessment of LV global function was perfect (kappa = 1.0, Ptechnique provides an accurate and reproducible quantitative assessment of LV volumes, mass and function when compared with the conventional 2D cine-MR method.

  7. Fiber-optic sensors for monitoring patient physiological parameters: a review of applicable technologies and relevance to use during magnetic resonance imaging procedures.

    Science.gov (United States)

    Dziuda, Łukasz

    2015-01-01

    The issues involved with recording vital functions in the magnetic resonance imaging (MRI) environment using fiber-optic sensors are considered in this paper. Basic physiological parameters, such as respiration and heart rate, are fundamental for predicting the risk of anxiety, panic, and claustrophobic episodes in patients undergoing MRI examinations. Electronic transducers are generally hazardous to the patient and are prone to erroneous operation in heavily electromagnetically penetrated MRI environments; however, nonmetallic fiber-optic sensors are inherently immune to electromagnetic effects and will be crucial for acquiring the above-mentioned physiological parameters. Forty-seven MRI-tested or potentially MRI-compatible sensors have appeared in the literature over the last 20 years. The author classifies these sensors into several categories and subcategories, depending on the sensing element placement, method of application, and measure and type. The author includes five in-house-designed fiber Bragg grating based sensors and shares experience in acquiring physiological measurements during MRI scans. This paper aims to systematize the knowledge of fiber-optic techniques for recording life functions and to indicate the current directions of development in this area.

  8. Fiber-optic sensors for monitoring patient physiological parameters: a review of applicable technologies and relevance to use during magnetic resonance imaging procedures

    Science.gov (United States)

    Dziuda, Łukasz

    2015-01-01

    The issues involved with recording vital functions in the magnetic resonance imaging (MRI) environment using fiber-optic sensors are considered in this paper. Basic physiological parameters, such as respiration and heart rate, are fundamental for predicting the risk of anxiety, panic, and claustrophobic episodes in patients undergoing MRI examinations. Electronic transducers are generally hazardous to the patient and are prone to erroneous operation in heavily electromagnetically penetrated MRI environments; however, nonmetallic fiber-optic sensors are inherently immune to electromagnetic effects and will be crucial for acquiring the above-mentioned physiological parameters. Forty-seven MRI-tested or potentially MRI-compatible sensors have appeared in the literature over the last 20 years. The author classifies these sensors into several categories and subcategories, depending on the sensing element placement, method of application, and measurand type. The author includes five in-house-designed fiber Bragg grating based sensors and shares experience in acquiring physiological measurements during MRI scans. This paper aims to systematize the knowledge of fiber-optic techniques for recording life functions and to indicate the current directions of development in this area.

  9. Large parameter stochastic resonance of two-dimensional Duffing oscillator and its application on weak signal detection%二维Duffing振子的大参数随机共振及微弱信号检测研究

    Institute of Scientific and Technical Information of China (English)

    冷永刚; 赖志慧; 范胜波; 高毓璣

    2012-01-01

    In this paper, the stochastic resonance of two-dimensional Duffing oscillator under the adiabatic assumption is studied. For the large parameter condition, we propose the large parameter stochastic resonance of two-dimensional Duffing oscillator, and discuss the relationship between the scale transformation stochastic resonance and the parameter adjustment stochastic resonance. Then we reveal the mechanism of signal detection by Duffing oscillator stochastic resonance in large parameter condition, and extend its application to weak signal detection.%研究了二维Duffing振子在绝热近似条件下的随机共振特性,针对大参数条件,提出二维Duffing振子的大参数随机共振,并探讨二维Duffing振子变尺度随机共振和参数调节随机共振的关联性,揭示大参数条件下Duffing振子随机共振检测特征信号的机理,扩展其在微弱信号检测领域中的应用.

  10. Neutron Resonance Parameters of 238U and the Calculated Cross Sections from the Reich-Moore Analysis of Experimental Data in the Neutron Energy Range from 0 keV to 20 keV

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, H

    2005-12-05

    The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.

  11. Theoretical studies of the local structure and electron paramagnetic resonance parameters for tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping [Chongqing Jiaotong Univ. (China). School of Science; Li, Ling [Sichuan University of Arts and Science, Dazhou (China). Dept. of Maths and Finance-Economics

    2015-07-01

    The optical spectra, electron paramagnetic resonance parameters (i.e., the spin Hamiltonian parameters, including paramagnetic g factors and the hyperfine structure constants A{sub i}) and the local distortion structure for the tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7} are theoretically studied based on the crystal-field theory and three-order perturbation formulas of a 3d{sup 1} centre in tetragonal site. The magnitude of orbital reduction factor, core polarisation constant κ, and local structure parameters are obtained by fitting the calculated optical spectra and electron paramagnetic resonance parameters to the experimental values. The theoretical results are in reasonable agreement with the experimental values.

  12. Quantitative cardiovascular magnetic resonance in pregnant women: cross-sectional analysis of physiological parameters throughout pregnancy and the impact of the supine position

    Directory of Open Access Journals (Sweden)

    Moelker Adriaan

    2011-06-01

    Full Text Available Abstract Background There are physiological reasons for the effects of positioning on hemodynamic variables and cardiac dimensions related to altered intra-abdominal and intra-thoracic pressures. This problem is especially evident in pregnant women due to the additional aorto-caval compression by the enlarged uterus. The purpose of this study was to investigate the effect of postural changes on cardiac dimensions and function during mid and late pregnancy using cardiovascular magnetic resonance (CMR. Methods Healthy non-pregnant women, pregnant women at 20th week of gestation and at 32nd week of gestation without history of cardiac disease were recruited to the study and underwent CMR in supine and left lateral positions. Cardiac hemodynamic parameters and dimensions were measured and compared between both positions. Results Five non-pregnant women, 6 healthy pregnant women at mid pregnancy and 8 healthy pregnant women at late pregnancy were enrolled in the study. In the group of non-pregnant women left ventricular (LV cardiac output (CO significantly decreased by 9% (p = 0.043 and right ventricular (RV end-diastolic volume (EDV significantly increased by 5% (p = 0.043 from the supine to the left lateral position. During mid pregnancy LV ejection fraction (EF, stroke volume (SV, left atrium lateral diameter and left atrial supero-inferior diameter increased significantly from the supine position to the left lateral position: 8%, 27%, 5% and 11%, respectively (p Conclusions During pregnancy positional changes affect significantly cardiac hemodynamic parameters and dimensions. Pregnant women who need serial studies by CMR should be imaged in a consistent position. From as early as 20 weeks the left lateral position should be preferred on the supine position because it positively affects venous return, SV and CO.

  13. Dynamic contrast-enhanced magnetic resonance imaging parameters correlate with advanced revised-ISS and angiopoietin-1/angiopoietin-2 ratio in patients with multiple myeloma.

    Science.gov (United States)

    Terpos, Evangelos; Matsaridis, Dimitris; Koutoulidis, Vassilis; Zagouri, Flora; Christoulas, Dimitrios; Fontara, Sophia; Panourgias, Evangelia; Gavriatopoulou, Maria; Kastritis, Efstathios; Dimopoulos, Meletios A; Moulopoulos, Lia A

    2017-08-01

    The aim of the study was to assess the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with newly diagnosed multiple myeloma (MM) who were treated with novel anti-myeloma agents. We studied 60 previously untreated MM patients at diagnosis, 14 with smoldering MM (SMM) and 5 with MGUS. All patients underwent MRI of the thoracolumbar spine and pelvis before the administration of any kind of therapy, and DCE-MRI was performed. The MRI perfusion parameters evaluated were wash-in (WIN), washout (WOUT), time-to-peak (TTPK), time-to-maximum slope (TMSP), and the WIN/TMSP ratio. The following serum levels of angiogenic cytokines were measured on the day of MRI: VEGF, angiogenin (Ang), angiopoietin-1 (Angp-1), and -2 (Angp-2). Symptomatic MM patients had increased WIN compared to SMM (p ISS. Patients with R-ISS-3 had lower TTPK median value (23 s, range 18-29 s) compared to patients with R-ISS-2 (48 s, range 27-68 s) and patients with R-ISS-1 MM (54 s, range 42-76 s; p ANOVA = 0.01). A subset of patients with low TTPK (lower quartile) had shorter time to progression compared to all other patients. These data suggest that certain DCE-MRI parameters correlate with R-ISS and adverse prognostic features of angiogenesis, such as the ratio of Angp-1/Angp-2.

  14. Improved quantification of cerebral hemodynamics using individualized time thresholds for assessment of peak enhancement parameters derived from dynamic susceptibility contrast enhanced magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Christian Nasel

    Full Text Available Assessment of cerebral ischemia often employs dynamic susceptibility contrast enhanced magnetic resonance imaging (DSC-MRI with evaluation of various peak enhancement time parameters. All of these parameters use a single time threshold to judge the maximum tolerable peak enhancement delay that is supposed to reliably differentiate sufficient from critical perfusion. As the validity of this single threshold approach still remains unclear, in this study, (1 the definition of a threshold on an individual patient-basis, nevertheless (2 preserving the comparability of the data, was investigated.The histogram of time-to-peak (TTP values derived from DSC-MRI, the so-called TTP-distribution curve (TDC, was modeled using a double-Gaussian model in 61 patients without severe cerebrovascular disease. Particular model-based zf-scores were used to describe the arterial, parenchymal and venous bolus-transit phase as time intervals Ia,p,v. Their durations (delta Ia,p,v, were then considered as maximum TTP-delays of each phase.Mean-R2 for the model-fit was 0.967. Based on the generic zf-scores the proposed bolus transit phases could be differentiated. The Ip-interval reliably depicted the parenchymal bolus-transit phase with durations of 3.4 s-10.1 s (median = 4.3s, where an increase with age was noted (∼30 ms/year.Individual threshold-adjustment seems rational since regular bolus-transit durations in brain parenchyma obtained from the TDC overlap considerably with recommended critical TTP-thresholds of 4 s-8 s. The parenchymal transit time derived from the proposed model may be utilized to individually correct TTP-thresholds, thereby potentially improving the detection of critical perfusion.

  15. Measurement of the CP-violation Parameter sin2$\\phi_1$ with a New Tagging Method at the $\\Upsilon(5S)$ Resonance

    CERN Document Server

    Sato, Y; Aihara, H; Asner, D M; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Bhardwaj, V; Bhuyan, B; Bischofberger, M; Bondar, A; Bozek, A; Bračko, M; Browder, T E; Chang, P; Chen, P; Cheon, B G; Chilikin, K; Chistov, R; Cho, I -S; Cho, K; Choi, S -K; Choi, Y; Dalseno, J; Doležal, Z; Drásal, Z; Eidelman, S; Epifanov, D; Fast, J E; Gaur, V; Gabyshev, N; Goh, Y M; Golob, B; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Horii, Y; Hoshi, Y; Hou, W -S; Hyun, H J; Ishikawa, A; Itoh, R; Iwabuchi, M; Iwasaki, Y; Iwashita, T; Julius, T; Kapusta, P; Kawasaki, T; Kichimi, H; Kiesling, C; Kim, H J; Kim, H O; Kim, J B; Kim, J H; Kim, K T; Kim, M J; Kim, S K; Kim, Y J; Kinoshita, K; Ko, B R; Kobayashi, N; Kodyš, P; Korpar, S; Križan, P; Krokovny, P; Kuhr, T; Kumar, R; Kumita, T; Kuzmin, A; Kwon, Y -J; Lange, J S; Lee, S -H; Li, J; Li, Y; Liu, C; Liu, Z Q; Louvot, R; McOnie, S; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Moll, A; Muramatsu, N; Nakano, E; Nakao, M; Natkaniec, Z; Nishida, S; Nishimura, K; Nitoh, O; Ogawa, S; Ohshima, T; Okuno, S; Olsen, S L; Onuki, Y; Ostrowicz, W; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Park, H K; Pedlar, T K; Petrič, M; Piilonen, L E; Poluektov, A; Röhrken, M; Ryu, S; Sahoo, H; Sakai, Y; Sanuki, T; Schneider, O; Schwanda, C; Schwartz, A J; Seidl, R; Senyo, K; Seon, O; Sevior, M E; Shapkin, M; Shen, C P; Shibata, T -A; Shiu, J -G; Shwartz, B; Sibidanov, A; Simon, F; Smerkol, P; Sohn, Y -S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Stypula, J; Sumihama, M; Sumiyoshi, T; Tanaka, S; Tatishvili, G; Teramoto, Y; Trabelsi, K; Uchida, M; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Varner, G; Varvell, K E; Wang, C H; Wang, M -Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Wicht, J; Won, E; Yabsley, B D; Yamashita, Y; Yusa, Y; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A

    2012-01-01

    We report a measurement of the CP-violation parameter sin2$\\phi_1$ at the $\\Upsilon(5S)$ resonance using a new tagging method, called "$B$-$\\pi$ tagging." In $\\Upsilon(5S)$ decays containing a neutral $B$ meson, a charged $B$, and a charged pion, the neutral $B$ is reconstructed in the $J/\\psi K_S^0$ CP-eigenstate decay channel. The initial flavor of the neutral $B$ meson at the moment of the $\\Upsilon(5S)$ decay is opposite to that of the charged $B$ and may thus be inferred from the charge of the pion without reconstructing the charged $B$. From the asymmetry between $B$-$\\pi^+$ and $B$-$\\pi^-$ tagged $J/\\psi K_S^0$ yields, we determine sin2$\\phi_1$ = 0.57 $\\pm$ 0.58(stat) $\\pm$ 0.06(syst). The results are based on 121 fb$^{-1}$ of data recorded by the Belle detector at the KEKB $e^+ e^-$ collider.

  16. Resonant spin-flavor precession constraints on the neutrino parameters and the twisting structure of the solar magnetic fields from the solar neutrino data

    Indian Academy of Sciences (India)

    S Dev; Jyoti Dhar Sharma; U C Pandey; S P Sud; B C Chauhan

    2003-07-01

    Resonant spin-flavor precession (RSFP) scenario with twisting solar magnetic fields has been confronted with the solar neutrino data from various ongoing experiments. The anticorrelation apparent in the Homestake solar neutrino data has been taken seriously to constrain ( 2,') parameter space and the twisting profiles of the magnetic field in the convective zone of the Sun. The twisting profiles, thus derived, have been used to calculate the variation of the neutrino detection rates with the solar magnetic activity for the Homestake, Super-Kamiokande and the gallium experiments. It is found that the presence of twisting reduces the degree of anticorrelation in all the solar neutrino experiments. However, the anticorrelation in the Homestake experiment is expected to be more pronounced in this scenario. Moreover, the anticorrelation of the solar neutrino flux emerging from the southern solar hemisphere is expected to be stronger than that for the neutrinos emerging from the northern solar hemispheres.

  17. Measurement of the CP-Violation Parameter sin⁡2ϕ1 with a New Tagging Method at the Υ(5S) Resonance

    Science.gov (United States)

    Sato, Y.; Yamamoto, H.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Aziz, T.; Bakich, A. M.; Bhardwaj, V.; Bhuyan, B.; Bischofberger, M.; Bondar, A.; Bozek, A.; Bračko, M.; Browder, T. E.; Chang, P.; Chen, P.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, I.-S.; Cho, K.; Choi, S.-K.; Choi, Y.; Dalseno, J.; Doležal, Z.; Drásal, Z.; Eidelman, S.; Epifanov, D.; Fast, J. E.; Gaur, V.; Gabyshev, N.; Goh, Y. M.; Golob, B.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Horii, Y.; Hoshi, Y.; Hou, W.-S.; Hyun, H. J.; Ishikawa, A.; Itoh, R.; Iwabuchi, M.; Iwasaki, Y.; Iwashita, T.; Julius, T.; Kapusta, P.; Kawasaki, T.; Kichimi, H.; Kiesling, C.; Kim, H. J.; Kim, H. O.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, M. J.; Kim, S. K.; Kim, Y. J.; Kinoshita, K.; Ko, B. R.; Kobayashi, N.; Kodyš, P.; Korpar, S.; Križan, P.; Krokovny, P.; Kuhr, T.; Kumar, R.; Kumita, T.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, S.-H.; Li, J.; Li, Y.; Liu, C.; Liu, Z. Q.; Louvot, R.; McOnie, S.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moll, A.; Muramatsu, N.; Nakano, E.; Nakao, M.; Nakazawa, H.; Natkaniec, Z.; Nishida, S.; Nishimura, K.; Nitoh, O.; Ogawa, S.; Ohshima, T.; Okuno, S.; Olsen, S. L.; Onuki, Y.; Ostrowicz, W.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Petrič, M.; Piilonen, L. E.; Poluektov, A.; Röhrken, M.; Ryu, S.; Sahoo, H.; Sakai, Y.; Sanuki, T.; Schneider, O.; Schwanda, C.; Schwartz, A. J.; Seidl, R.; Senyo, K.; Seon, O.; Sevior, M. E.; Shapkin, M.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Sibidanov, A.; Simon, F.; Smerkol, P.; Sohn, Y.-S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Stypula, J.; Sumihama, M.; Sumiyoshi, T.; Tanaka, S.; Tatishvili, G.; Teramoto, Y.; Trabelsi, K.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Varner, G.; Varvell, K. E.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Wang, X. L.; Watanabe, M.; Watanabe, Y.; Wicht, J.; Won, E.; Yabsley, B. D.; Yamashita, Y.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2012-04-01

    We report a measurement of the CP-violation parameter sin⁡2ϕ1 at the Υ(5S) resonance using a new tagging method, called “B-π tagging.” In Υ(5S) decays containing a neutral B meson, a charged B, and a charged pion, the neutral B is reconstructed in the J/ψKS0 CP-eigenstate decay channel. The initial flavor of the neutral B meson at the moment of the Υ(5S) decay is opposite to that of the charged B and may thus be inferred from the charge of the pion without reconstructing the charged B. From the asymmetry between B-π+ and B-π- tagged J/ψKS0 yields, we determine sin⁡2ϕ1=0.57±0.58(stat)±0.06(syst). The results are based on 121fb-1 of data recorded by the Belle detector at the KEKB e+e- collider.

  18. Measurement of the CP-violation parameter sin2φ1 with a new tagging method at the Υ(5S) resonance.

    Science.gov (United States)

    Sato, Y; Yamamoto, H; Aihara, H; Asner, D M; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Bhardwaj, V; Bhuyan, B; Bischofberger, M; Bondar, A; Bozek, A; Bračko, M; Browder, T E; Chang, P; Chen, P; Cheon, B G; Chilikin, K; Chistov, R; Cho, I-S; Cho, K; Choi, S-K; Choi, Y; Dalseno, J; Doležal, Z; Drásal, Z; Eidelman, S; Epifanov, D; Fast, J E; Gaur, V; Gabyshev, N; Goh, Y M; Golob, B; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Horii, Y; Hoshi, Y; Hou, W-S; Hyun, H J; Ishikawa, A; Itoh, R; Iwabuchi, M; Iwasaki, Y; Iwashita, T; Julius, T; Kapusta, P; Kawasaki, T; Kichimi, H; Kiesling, C; Kim, H J; Kim, H O; Kim, J B; Kim, J H; Kim, K T; Kim, M J; Kim, S K; Kim, Y J; Kinoshita, K; Ko, B R; Kobayashi, N; Kodyš, P; Korpar, S; Križan, P; Krokovny, P; Kuhr, T; Kumar, R; Kumita, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, S-H; Li, J; Li, Y; Liu, C; Liu, Z Q; Louvot, R; McOnie, S; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Moll, A; Muramatsu, N; Nakano, E; Nakao, M; Nakazawa, H; Natkaniec, Z; Nishida, S; Nishimura, K; Nitoh, O; Ogawa, S; Ohshima, T; Okuno, S; Olsen, S L; Onuki, Y; Ostrowicz, W; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Park, H K; Pedlar, T K; Petrič, M; Piilonen, L E; Poluektov, A; Röhrken, M; Ryu, S; Sahoo, H; Sakai, Y; Sanuki, T; Schneider, O; Schwanda, C; Schwartz, A J; Seidl, R; Senyo, K; Seon, O; Sevior, M E; Shapkin, M; Shen, C P; Shibata, T-A; Shiu, J-G; Shwartz, B; Sibidanov, A; Simon, F; Smerkol, P; Sohn, Y-S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Stypula, J; Sumihama, M; Sumiyoshi, T; Tanaka, S; Tatishvili, G; Teramoto, Y; Trabelsi, K; Uchida, M; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Varner, G; Varvell, K E; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Wicht, J; Won, E; Yabsley, B D; Yamashita, Y; Yusa, Y; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A

    2012-04-27

    We report a measurement of the CP-violation parameter sin2φ1 at the Υ(5S) resonance using a new tagging method, called "B-π tagging." In Υ(5S) decays containing a neutral B meson, a charged B, and a charged pion, the neutral B is reconstructed in the J/ψK(S)(0) CP-eigenstate decay channel. The initial flavor of the neutral B meson at the moment of the Υ(5S) decay is opposite to that of the charged B and may thus be inferred from the charge of the pion without reconstructing the charged B. From the asymmetry between B-π(+) and B-π(-) tagged J/ψK(S)(0) yields, we determine sin2φ1=0.57±0.58(stat)±0.06(syst). The results are based on 121 fb(-1) of data recorded by the Belle detector at the KEKB e(+)e(-) collider.

  19. Controlling Parametric Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    Parametric resonance is a resonant phenomenon which takes place in systems characterized by periodic variations of some parameters. While seen as a threatening condition, whose onset can drive a system into instability, this chapter advocates that parametric resonance may become an advantage if t...

  20. Parasitic analysis and π-type Butterworth-Van Dyke model for complementary-metal-oxide-semiconductor Lamb wave resonator with accurate two-port Y-parameter characterizations.

    Science.gov (United States)

    Wang, Yong; Goh, Wang Ling; Chai, Kevin T-C; Mu, Xiaojing; Hong, Yan; Kropelnicki, Piotr; Je, Minkyu

    2016-04-01

    The parasitic effects from electromechanical resonance, coupling, and substrate losses were collected to derive a new two-port equivalent-circuit model for Lamb wave resonators, especially for those fabricated on silicon technology. The proposed model is a hybrid π-type Butterworth-Van Dyke (PiBVD) model that accounts for the above mentioned parasitic effects which are commonly observed in Lamb-wave resonators. It is a combination of interdigital capacitor of both plate capacitance and fringe capacitance, interdigital resistance, Ohmic losses in substrate, and the acoustic motional behavior of typical Modified Butterworth-Van Dyke (MBVD) model. In the case studies presented in this paper using two-port Y-parameters, the PiBVD model fitted significantly better than the typical MBVD model, strengthening the capability on characterizing both magnitude and phase of either Y11 or Y21. The accurate modelling on two-port Y-parameters makes the PiBVD model beneficial in the characterization of Lamb-wave resonators, providing accurate simulation to Lamb-wave resonators and oscillators.

  1. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose-Volume Parameters and First Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Johannes C.A. [Department of Radiation Oncology, Metropolitan Hospital, Athens (Greece); Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria); Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria)

    2012-04-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and

  2. Resonance and Fractal Geometry

    NARCIS (Netherlands)

    Broer, Henk W.

    2012-01-01

    The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena oc

  3. Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields.

    Science.gov (United States)

    Hoerr, Verena; Nagelmann, Nina; Nauerth, Arno; Kuhlmann, Michael T; Stypmann, Jörg; Faber, Cornelius

    2013-07-04

    To overcome flow and electrocardiogram-trigger artifacts in cardiovascular magnetic resonance (CMR), we have implemented a cardiac and respiratory self-gated cine ultra-short echo time (UTE) sequence. We have assessed its performance in healthy mice by comparing the results with those obtained with a self-gated cine fast low angle shot (FLASH) sequence and with echocardiography. 2D self-gated cine UTE (TE/TR = 314 μs/6.2 ms, resolution: 129 × 129 μm, scan time per slice: 5 min 5 sec) and self-gated cine FLASH (TE/TR = 3 ms/6.2 ms, resolution: 129 × 129 μm, scan time per slice: 4 min 49 sec) images were acquired at 9.4 T. Volume of the left and right ventricular (LV, RV) myocardium as well as the end-diastolic and -systolic volume was segmented manually in MR images and myocardial mass, stroke volume (SV), ejection fraction (EF) and cardiac output (CO) were determined. Statistical differences were analyzed by using Student t test and Bland-Altman analyses. Self-gated cine UTE provided high quality images with high contrast-to-noise ratio (CNR) also for the RV myocardium (CNRblood-myocardium = 25.5 ± 7.8). Compared to cine FLASH, susceptibility, motion, and flow artifacts were considerably reduced due to the short TE of 314 μs. The aortic valve was clearly discernible over the entire cardiac cycle. Myocardial mass, SV, EF and CO determined by self-gated UTE were identical to the values measured with self-gated FLASH and showed good agreement to the results obtained by echocardiography. Self-gated UTE allows for robust measurement of cardiac parameters of diagnostic interest. Image quality is superior to self-gated FLASH, rendering the method a powerful alternative for the assessment of cardiac function at high magnetic fields.

  4. Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex-vivo validation

    Directory of Open Access Journals (Sweden)

    Childs Helene

    2011-08-01

    Full Text Available Abstract Background The purpose of the study was to compare the accuracy and evaluation time of quantifying left ventricular (LV, left atrial (LA volume and LV mass using short axis (SAX and long axis (LAX methods when using cardiovascular magnetic resonance (CMR. Materials and methods We studied 12 explanted canine hearts and 46 patients referred for CMR (29 male, age 47 ± 18 years in a clinical 1.5 T CMR system, using standard cine sequences. In standard short axis stacks of various slice thickness values in dogs and 8 mm slice thickness (gap 2 mm in patients, we measured LV volumes using reference slices in a perpendicular, long axis orientation using certified software. Volumes and mass were also measured in six radial long axis (LAX views. LV parameters were also assessed for intra- and inter-observer variability. In 24 patients, we also analyzed reproducibility and evaluation time of two very experienced (> 10 years of CMR reading readers for SAX and LAX. Results In the explanted dog hearts, there was excellent agreement between ex vivo data and LV mass and volume data as measured by all methods for both, LAX (r2 = 0.98 and SAX (r2 = 0.88 to 0.98. LA volumes, however, were underestimated by 13% using the LAX views. In patients, there was a good correlation between all three assessed methods (r2 ≥ 0.95 for all. In experienced clinical readers, left-ventricular volumes and ejection fraction as measured in LAX views showed a better inter-observer reproducibility and a 27% shorter evaluation time. Conclusion When compared to an ex vivo standard, both, short axis and long axis techniques are highly accurate for the quantification of left ventricular volumes and mass. In clinical settings, however, the long axis approach may be more reproducible and more time-efficient. Therefore, the rotational long axis approach is a viable alternative for the clinical assessment of cardiac volumes, function and mass.

  5. Change in resonance parameters of a linear molecule as it bends: Evidence in electron-impact vibrational transitions of hot COS and CO2 molecules*

    Science.gov (United States)

    Hoshino, Masamitsu; Ishijima, Yohei; Kato, Hidetoshi; Mogi, Daisuke; Takahashi, Yoshinao; Fukae, Katsuya; Limão-Vieira, Paulo; Tanaka, Hiroshi; Shimamura, Isao

    2016-04-01

    Inelastic and superelastic electron-impact vibrational excitation functions of hot carbonyl sulphide COS (and hot CO2) are measured for electron energies from 0.5 to 3.0 eV (1.5 to 6.0 eV) and at a scattering angle of 90°. Based on the vibrational populations and the principle of detailed balance, these excitation functions are decomposed into contributions from state-to-state vibrational transitions involving up to the second bending overtone (030) in the electronically ground state. Both the 2Π resonance for COS around 1.2 eV and the 2Πu resonance for CO2 around 3.8 eV are shifted to lower energies as the initial vibrational state is excited in the bending mode. The width of the resonance hump for COS changes only little as the molecule bends, whereas that of the overall boomerang resonance for CO2 becomes narrower. The angular distribution of the electrons resonantly scattered by hot COS and hot CO2 is also measured. The different shapes depending on the vibrational transitions and gas temperatures are discussed in terms of the symmetry of the vibrational wave functions. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  6. Systematic review of perfusion imaging with computed tomography and magnetic resonance in acute ischemic stroke: heterogeneity of acquisition and postprocessing parameters: a translational medicine research collaboration multicentre acute stroke imaging study.

    Science.gov (United States)

    Dani, Krishna A; Thomas, Ralph G R; Chappell, Francesca M; Shuler, Kirsten; Muir, Keith W; Wardlaw, Joanna M

    2012-02-01

    Heterogeneity of acquisition and postprocessing parameters for magnetic resonance- and computed tomography-based perfusion imaging in acute stroke may limit comparisons between studies, but the current degree of heterogeneity in the literature has not been precisely defined. We examined articles published before August 30, 2009 that reported perfusion thresholds, average lesion perfusion values, or correlations of perfusion deficit volumes from acute stroke patients computed tomography perfusion and 49 perfusion-weighted imaging studies were included from 7152 articles. Although certain parameters were reported frequently, consistently, and in line with the Roadmap proposals, we found substantial heterogeneity in other parameters, and there was considerable variation and underreporting of postprocessing methodology. There is substantial scope to increase homogeneity in future studies, eg, through reporting standards.

  7. Investigation of a multi-biomarker disease activity score in rheumatoid arthritis by comparison with magnetic resonance imaging, computed tomography, ultrasonography, and radiography parameters of inflammation and damage

    DEFF Research Database (Denmark)

    Krabbe, S.; Bolce, R.; Brahe Pedersen, C.

    2017-01-01

    resonance imaging (MRI), ultrasonography (US), computed tomography (CT), and radiography performed at weeks 0, 26, and 52. Serum samples were analysed using MBDA score assays and associations between clinical measures, MBDA score, and imaging findings were investigated. Results: The MBDA score correlated......Objectives: To investigate the multi-biomarker disease activity (MBDA) score by comparison with imaging findings in an investigator-initiated rheumatoid arthritis (RA) trial (HURRAH trial, NCT00696059). Method: Fifty-two patients with established RA initiated adalimumab treatment and had magnetic...

  8. On the relation between the effective ferromagnetic resonance linewidth {delta}f{sub eff} and damping parameter {alpha}{sub eff} in ferromagnetic Fe-Co-Hf-N nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material forschung I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)], E-mail: klaus.seemann@imf.fzk.de; Leiste, H.; Klever, Ch. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material forschung I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2009-10-15

    Ferromagnetic Fe-Co-Hf-N nanocomposite films were investigated concerning their microstructure-dependent frequency behaviour. To modify the composition, the films were deposited by reactive RF magnetron sputtering by using three different 6 in. targets with various Hf fractions. The films were post-annealed up to 600 deg. C in a static magnetic field to induce an in-plane uniaxial anisotropy and to obtain different crystal sizes. Depending on the annealing temperature, high-frequency losses were investigated by considering the full-width at half-maximum (FWHM) {delta}f{sub eff} of the imaginary part of the frequency-dependent permeability which showed a resonance frequency f{sub FMR} of 2.3 GHz for an in-plane uniaxial anisotropy field H{sub u} of 4 mT. The FWHM in correlation with the damping parameter {alpha}{sub eff} is discussed, e.g., in terms of two-magnon scattering. Damping occurs due to film inhomogeneity in magnetisation and uniaxial anisotropy caused by a magnetocrystalline anisotropy H{sub a} and/or non-magnetic phases. This will result in homogenous or even inhomogeneous resonance line broadening if additional and resonance as well as precession frequencies of independent grains arise.

  9. Resonance reliability sensitivity for a high-speeding elevator cabin system with random parameters%随机参数高速电梯轿厢系统共振可靠性灵敏度研究

    Institute of Scientific and Technical Information of China (English)

    张瑞军; 司鑫鑫; 杨围围; 董明晓

    2015-01-01

    针对高速电梯轿厢系统制造安装过程中误差使系统设计参数具有随机性问题,以实现轿厢系统共振可靠性灵敏度分析为目标,基于摄动技术导出轿厢系统固有频率与随机参数间关系式,分析参数随机性对固有频率影响;据振动稳定性准则构建基于激振频率变化的高速电梯轿厢系统共振失效功能函数,采用灵敏度技术导出轿厢系统共振可靠性灵敏度表达式,并进行灵敏度分析。结果表明,考虑参数随机性时轿厢系统固有频率存在分散性;取相同变异系数时导靴系统刚度及导轮安装位置对轿厢系统共振可靠性影响较大。该结果可为高速电梯轿厢系统防共振设计、安全评估提供参考。%The errors in the process of manufacture and installation for a high-speed elevator cabin system made design parameters of the system posses randomness.To realize the analysis of resonance reliability sensitivity for the high-speed elevator cabin system,the relationship expressions between the natural frequencies of the system and the random parameters were derived with the perturbation technique to analyze the influence of the parametric randomness on the natural frequencies.According to the stability criterion of vibration for mechanical systems,the performance function of the resonance failure based on the variation of the exciting frequency for the system was built.Utilizing the sensitivity technique,the expressions of the resonance reliability sensitivity of the system were deduced to analyze the sensitivity.The results showed that the natural frequencies of the system have dispersibility considering the parametric randomness;the guide shoe stiffness and guide wheel mounting position have greater effects on the resonance reliability of the system with the same exciting frequency variation coefficient.The results provided a reference for anti-resonance design and safety assessment of high-speed elevator

  10. Electron paramagnetic resonance parameters of Mn4+ ion in h-BaTiO3 crystal from a two-mechanism model

    Indian Academy of Sciences (India)

    Wu Xiao-Xuan; Fang Wang; Feng Wen-Lin; Zheng Wen-Chen

    2009-03-01

    The EPR parameters ( factors ∥, ⊥ and zero-field splitting ) of Mn4+ ion in h-BaTiO3 crystal are calculated from the complete high-order perturbation formulas based on a two-mechanism model for the EPR parameters of 33 ions in trigonal symmetry. In the model, not only the widely used crystal-field mechanism, but also the charge-transfer mechanism (which is not considered in crystal-field theory) are included. The calculated results are in reasonable agreement with the experimental values. The relative importance of charge-transfer mechanism to EPR parameters and the defect structure of Mn4+ centre in h-BaTiO3 crystal obtained from the calculations are discussed.

  11. The ratio of the kinetic inductance to the geometric inductance: a key parameter for the frequency tuning of the THz semiconductor split-ring resonator.

    Science.gov (United States)

    Cong, Jiawei; Yun, Binfeng; Cui, Yiping

    2013-08-26

    By introducing the frequency tuning sensitivity, an analytical model based on equivalent LC circuit is developed for the relative frequency tuning range of THz semiconductor split-ring resonator (SRR). And the model reveals that the relative tuning range is determined by the ratio of the kinetic inductance to the geometric inductance (RKG). The results show that under the same carrier density variation, a larger RKG results in a larger relative tuning range. Based on this model, a stacked SRR-dimer structure with larger RKG compared to the single SRR due to the inductive coupling is proposed, which improves the relative tuning range effectively. And the results obtained by the simple analytical model agree well with the numerical FDTD results. The presented analytical model is robust and can be used to analyze the relative frequency tuning of other tunable THz devices.

  12. Investigation of a multi-biomarker disease activity score in rheumatoid arthritis by comparison with magnetic resonance imaging, computed tomography, ultrasonography, and radiography parameters of inflammation and damage.

    Science.gov (United States)

    Krabbe, S; Bolce, R; Brahe, C H; Døhn, U M; Ejbjerg, B J; Hetland, M L; Sasso, E H; Chernoff, D; Hansen, M S; Knudsen, L S; Hansen, A; Madsen, O R; Hasselquist, M; Møller, J; Østergaard, M

    2017-09-01

    To investigate the multi-biomarker disease activity (MBDA) score by comparison with imaging findings in an investigator-initiated rheumatoid arthritis (RA) trial (HURRAH trial, NCT00696059). Fifty-two patients with established RA initiated adalimumab treatment and had magnetic resonance imaging (MRI), ultrasonography (US), computed tomography (CT), and radiography performed at weeks 0, 26, and 52. Serum samples were analysed using MBDA score assays and associations between clinical measures, MBDA score, and imaging findings were investigated. The MBDA score correlated significantly with MRI synovitis (rho = 0.65, p  44) MBDA scores, respectively. In this cohort, the MBDA score correlated poorly with MRI/US inflammation. However, the MBDA score and MRI/US were generally concordant in showing signs of inflammation in most patients in clinical remission during anti-tumour necrosis factor (anti-TNF) therapy. MBDA scores were elevated in all patients with structural damage progression.

  13. Centrality dependence of chemical freeze-out parameters from net-proton and net-charge fluctuations using hadron resonance gas model

    CERN Document Server

    Adak, Rama Prasad; Ghosh, Sanjay K; Ray, Rajarshi; Samanta, Subhasis

    2016-01-01

    We extract chemical freeze-out parameters in HRG and EVHRG model, analysing the experimental information of net-proton and net-charge fluctuations measured in Au + Au collisions by the STAR collaboration at RHIC. We observe that chemical freeze-out parameters extracted from lower and higher order fluctuations are though almost same for $\\sqrt{s_{NN}} > 27$ GeV, they tend to deviate from each other at lower $\\sqrt{s_{NN}}$. Moreover, these separations increase with decrease of $\\sqrt{s_{NN}}$ and for a fixed $\\sqrt{s_{NN}}$ increase towards central collisions. This may be an indication of approach of critical region at lower $\\sqrt{s_{NN}}$. Furthermore, we observe an approximate scaling behaviour of $(\\mu_B/T)/(\\mu_B/T)_{central}$ with $(N_{part})/(N_{part})_{central}$ for the parameters extracted from lower order fluctuations for 11.5 GeV $\\le \\sqrt{s_{NN}} \\le$ 200 GeV. Scaling is violated for the parameters extracted from higher order fluctuations for $\\sqrt{s_{NN}}= 11.5$ and 19.6 GeV. It is observed that...

  14. Theoretical evaluation of the electron paramagnetic resonance spin Hamiltonian parameters for the impurity displacements for Fe3+ and Ru3+ in corundum

    Indian Academy of Sciences (India)

    Q Fu; S Y Wu; J Z Lin; J S Yao

    2007-03-01

    The impurity displacements for Fe3+ and Ru3+ in corundum (Al2O3) are theoretically studied using the perturbation formulas of the spin Hamiltonian parameters (zero-field splitting and anisotropic factors) for a 3d5 (with high spin = 5/2) and a 4d5 (with low spin = 1/2) ion in trigonal symmetry, respectively. According to the investigations, the nd5 ( = 3 and 4) impurity ions may not locate at the ideal Al3+ site but undergo axial displacements by about 0.132 Å and 0.170 Å for Fe3+ and Ru3+, respectively, away from the center of the ligand octahedron along the C3 axis. The calculated spin Hamiltonian parameters based on the above axial displacements show good agreement with the observed values. The validity of the results is discussed.

  15. Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme

    Energy Technology Data Exchange (ETDEWEB)

    Soares, T. A. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Daura, X. [Universitat Autonoma de Barcelona, InstitucioCatalana de Recerca i Estudis Avancats and Institut de Biotecnologia i Biomedicina (Spain); Oostenbrink, C. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Smith, L. J. [University of Oxford, Oxford Centre for Molecular Sciences, Central Chemistry Laboratory (United Kingdom); Gunsteren, W. F. van [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland)], E-mail: wfvgn@igc.phys.chem.ethz.ch

    2004-12-15

    The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, {sup 3}J{sub NH{alpha}} and {sup 3}J{sub {alpha}}{sub {beta}} coupling constants, and {sup 1}5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone {sup 3}J{sub HN{alpha}}-coupling constants and {sup 1}H- {sup 1}5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain {sup 3}J{sub {alpha}}{sub {beta}}-coupling constants and {sup 1}H- {sup 1}5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the

  16. T2-weighted hypointense lesions within prostate gland: Differential diagnosis using wash-in rate parameter on the basis of dynamic contrast-enhanced magnetic resonance imaging-Hystopatology correlations

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Anna Lia, E-mail: alvalentini@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Gui, Benedetta, E-mail: bgui@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Cina, Alessandro, E-mail: acina@sirm.org [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Pinto, Francesco, E-mail: francesco.pinto@libero.it [Department of Surgical Sciences, Institute of Urology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Totaro, Angelo, E-mail: dr.atotaro@gmail.com [Department of Surgical Sciences, Institute of Urology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Pierconti, Francesco, E-mail: francescopierconti@rm.unicatt.it [Department of Pathology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Bassi, Pier Francesco, E-mail: bassipf@gmail.com [Department of Surgical Sciences, Institute of Urology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Bonomo, Lorenzo, E-mail: lbonomo@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy)

    2012-11-15

    Background and aims: Dynamic contrast enhanced magnetic resonance improves prostate cancer detection. The aims of this paper are to verify whether wash-in-rate parameter (speed of contrast uptake in dynamic contrast enhanced magnetic resonance) can help to differentiate prostate cancer from non-neoplastic T2-weighted hypointense lesions within prostate gland and to assess a cut-off for prostate cancer diagnosis. Methods: Prospective, monocentric, multi-departmental study. Thirty consecutive patients underwent T2-weighted and dynamic contrast enhanced magnetic resonance, and re-biopsy. T2-weighted hypointense lesions, >5 mm in size, were noted. Lesions were assessed as cancerous (showing mass effect, or no defined margin within transitional zone) and non cancerous (no mass effect) and were compared with histopathology by 2 Multiplication-Sign 2 tables. Wash-in-rate of each lesion was calculated and was correlated with histopathology. Student's t-test was adopted to assess significant differences. Receiver operating characteristic (ROC) analysis was employed to identify the best cut-off for wash-in-rate in detecting prostate cancer. Results: At re-biopsy, cancer was proven in 43% of patients. On T2-weighted MRI, 111 hypointense lesions {>=}5 mm in size were found. Sensitivity, specificity and accuracy of T2-weighted MRI were 80% ({+-}12.4 CI 95%), 74.6% ({+-}10.1 CI 95%), and 76.5% ({+-}7.9 CI 95%), respectively. Mean WR was 5.8 {+-} 1.9/s for PCa zones and 2.96 {+-} 1.44/s for non-PCa zones (p < 0.00000001). At ROC analysis, the best area under curve (AUC) for wash-in-rate parameter was associated to 4.2/s threshold with 82.5% sensitivity (CI {+-} 7.07), 97.2% specificity (CI {+-} 4.99) and 91.2% accuracy (CI {+-} 5.27). Eighteen false positive lesions on T2-weighted MRI showed low wash-in-rate values suggesting non-cancer lesions, while in 5/8 false negative cases high wash-in-rate values correctly suggested prostate cancer. Nine lesions with surgically proven

  17. A systematic investigation of hydrogen-bonding effects on the 17O, 14N, and 2H nuclear quadrupole resonance parameters of anhydrous and monohydrated cytosine crystalline structures: a density functional theory study.

    Science.gov (United States)

    Mirzaei, Mahmoud; Elmi, Fatemeh; Hadipour, Nasser L

    2006-06-08

    A systematic computational study was carried out to characterize the 17O, 14N, and 2H nuclear quadrupole resonance (NQR) parameters in the anhydrous and monohydrated cytosine crystalline structures. To include the hydrogen-bonding effects in the calculations, the most probable interacting molecules with the central molecule in the crystalline phase were considered in the pentameric clusters of both structures. To calculate the parameters, couples of the methods B3LYP and B3PW91 and the basis sets 6-311++G** and CC-pVTZ were employed. The mentioned methods calculated reliable values of 17O, 14N, and 2H NQR tensors in the pentameric clusters, which are in good agreements with the experiment. The different influences of various hydrogen-bonding interactions types, N-H...N, N-H...O, and O-H...O, were observed on the 17O, 14N, and 2H NQR tensors. Lower values of quadrupole coupling constants and higher values of asymmetry parameters in the crystalline monohydrated cytosine indicate the presence of stronger hydrogen-bonding interactions in the monohydrated form rather than that of crystalline anhydrous cytosine.

  18. 基于Kramers逃逸速率的Dung振子广义调参随机共振研究%Generalized parameter-adjusted sto chastic resonance of Duffing oscillator based on Kramers rate

    Institute of Scientific and Technical Information of China (English)

    冷永刚; 赖志慧

    2014-01-01

    The stochastic resonance (SR) of two-dimensional Duffing oscillator is studied in this paper. We propose the generalized parameter-adjustment SR of Duffing oscillator. On the basis of Kramers rate, we build a discrimination function of the SR of Duffing oscillator, and we expound the generalized parameter-adjustment SR laws of Duffing oscil-lator under different noise intensity and signal frequency conditions. The general method of generating the generalized parameter-adjustment SR of Duffing oscillator is also given in this paper.%以二维Duffing振子的随机共振为研究对象,提出Duffing振子的广义调参随机共振。以Kramers逃逸速率为基础,建立了Duffing振子随机共振的判别函数,阐述了Duffing振子在不同噪声强度及信号频率输入条件下的广义调参随机共振规律,并给出了Duffing振子广义调参随机共振的一般方法。

  19. Precise determination of the parameters of resonances f0(500 and f0(980 by fitting the data and dispersion relations

    Directory of Open Access Journals (Sweden)

    Pelaez J. R.

    2012-12-01

    Full Text Available The long-standing puzzle in the parameters of the f0(500, as well as the f0(980, is finally being settled [1] thanks to precise dispersive analyses carried out during the last years. Here we report on our very recent dispersive data analysis which allowed for a precise and model independent determination of the amplitudes for the S, P, D and F waves [2–4]. The analytic continuation of once subtracted dispersion relations for the S0 wave to the complex energy plane leads to very precise results for the f0(500 pole: √spole = 457-13+14 - i279-7+11 MeV and for the f0(980 pole: √spole = 996 ± 7 - i25-6+10 MeV.

  20. Reversible DC Magnetization Measurements of the Superconducting Parameters and Their Anisotropies in the Randomly-Doped Cuprates and Prelude to the Magnetic Resonance Studies of - Cuprates.

    Science.gov (United States)

    Cobb, Jonathan Lynn

    The fact that there is no consensus on the microscopic origin of the high-temperature superconducting phenomenon highlights the need for accurate measurements of the parameters which characterize the superconducting state (i.e., the coherence lengths (Ginzburg-Landau), penetration depths, and critical fields) and their anisotropies in these materials. This dissertation presents the first dc magnetization measurements of these parameters in the electron-doped, infinite-layer superconductor rm Sr_{0.90}La _{0.10}CuO_2 (T _{c} = 40 K). This material is particularly attractive for study because of its simple structure which contains nothing more than the features common to all of the high temperature superconducting copper oxides--a stacking of CuO_2 planes separated by (here, single) ion charge doping layers. From these measurements, xi_{| }(0) (xi_|(0))=46 A (30 A), lambda _{|}(0) (lambda_ |(0))=290 nm (450 nm), and H_{c2|}(0) (H _{c2|}(0))=23.8 T (15.5 T) where | and | are with respect to the CuO_2 planes. The ratio of H_ {c2}'s indicates that rm Sr_{0.90}La_{0.10}CuO _2 is much more isotropic than the other cuprates ((m_{c}/m_{ab })^{1/2}~1.5), and one of the samples measured even displayed a surprising anisotropy of less than one. In light of this surprising inverse anisotropy, the first systematic study of the effects of sample inhomogeneities on these reversible dc magnetization measurements was performed. rm YBa_2Cu_3O_{7 -delta} was used in this study because it can be doped either randomly or uniformly, allowing isolation of the artifacts of the measurement technique due to the random nature of the doping alone. This study demonstrates that neglecting the distribution of superconducting transition temperatures which come from the random doping in this type of analysis leads to errors in the measured parameters of up to 1000%. Efforts to measure the distribution of T_{c}'s and to use this distribution in the analysis have produced mixed results, with the most

  1. 基于磁共振的无线能量传输系统接收模块参数研究%Receiver Parameters Analysis of Wireless Energy Transfer System Based on Magnetic Resonance

    Institute of Scientific and Technical Information of China (English)

    石新智; 祁昶; 屈美玲; 叶双莉; 王高峰

    2014-01-01

    基于磁共振的无线能量传输技术应用环境复杂多变,很难保证收、发线圈的参数和结构保持一致。本文针对发射模块参数不变的情况,研究了接收模块线圈半径、线径、线圈匝数和线圈长度变化对电感、电阻、品质因数、互感、耦合系数和传输效率的影响。理论计算与 Pspice仿真均表明,线圈半径的变化对系统传输效率的影响最大,系统传输效率随着线圈半径的增大而增大,但当接收模块的线圈半径小于发射模块线圈半径的50%时,系统的传输效率迅速降低;增大线圈长度对系统的传输效率影响相对较大,增大线圈长度使系统传输效率先减小后增大;导线半径和线圈匝数的变化对传输效率的影响最小,系统传输效率随着它们的增大而略微增大。%Wireless energy transfer system based on magnetic resonance can be applied in different situations. It is hard to make the structure and parameters of the receiver consistent with the transmitter. The impact of receiver parameters, including coils radius, conductor cross-sectional radius, number of turns, and height of coil on the inductance, resistance, quality factor, mutual inductance, coupling coefficient and transfer efficiency of wireless energy transfer systems based on magnetic resonance are studied with parameters of the transmitter are fixed, respectively. Theory calculations and PSPICE simulation indicate that the power transfer efficiency will increase with the increasing of receiver coils radius, conductor cross-sectional radius, number of turns, and height of receiving coil. The effect of radius of receiver is more significant than other parameters. The transfer efficiency will increase notable with the increasing of radius of receiver coils, while increasing slightly with the increasing of conductor cross-sectional radius, number of turns, and height of receiving coil.

  2. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Correia de Verdier, Maria; Wikstroem, Johan [Uppsala University Hospital, Department of Radiology, Uppsala University, Uppsala (Sweden)

    2016-05-15

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  3. Split ring resonator resonance assisted terahertz antennas

    CERN Document Server

    Galal, Hossam; Vitiello, Miriam S

    2016-01-01

    We report on the computational development of novel architectures of low impedance broadband antennas, for efficient detection of Terahertz (THz) frequency beams. The conceived Split Ring Resonator Resonance Assisted (SRR RA) antennas are based on both a capacitive and inductive scheme, exploiting a 200 Ohm and 400 Ohm impedance, respectively. Moreover, the impedance is tunable by varying the coupling parameters in the exploited geometry, allowing for better matching with the detector circuit for maximum power extraction. Our simulation results have been obtained by assuming a 1.5 THz operation frequency.

  4. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  5. Simulation of quartz resonators

    Science.gov (United States)

    Weinmann, M.; Radius, R.; Mohr, R.

    Quartz resonators are suitable as novel sensor elements in the field of profilometry and three dimensional measurement techniques. This application requires a tailoring of the oscillator circuit which is performed by a network analysis program. The equivalent network parameters are computed by a finite element analysis. The mechanical loading of the quartz is modeled by a viscous damping approach.

  6. Peripheral moving-table contrast-enhanced magnetic resonance angiography (CE-MRA) using a prototype 18-channel peripheral vascular coil and scanning parameters optimized to the patient's individual hemodynamics.

    Science.gov (United States)

    Potthast, Silke; Wilson, Gregory J; Wang, Maisie S; Maki, Jeffrey H

    2009-05-01

    To demonstrate that with a priori determination of individual patient hemodynamics, peripheral contrast-enhanced magnetic resonance angiography (pCE-MRA) can be customized to maximize signal-to noise ratio (SNR) and avoid venous enhancement. Using a 1.5T MRI scanner and prototype 18-channel peripheral vascular (PV) coil designed for highly accelerated parallel imaging, geometry (g)-factor maps were determined. SNR-maximized protocols considering the two-dimensional sensitivity encoding (2D SENSE) factor, TE, TR, bandwidth (BW), and flip angle (FA) were precalculated and stored. For each exam, a small aortic timing bolus was performed, followed by dynamic three-dimensional (3D)-MRA of the calf. Using this information, the aorta to pedal artery and calf arteriovenous transit times were measured. This enabled estimation of the maximum upper and middle station acquisition duration to allow lower station acquisition to begin prior to venous arrival. The appropriately succinct SNR-optimized protocol for each station was selected and moving-table pCE-MRA was performed using thigh venous compression and high-relaxivity contrast material. The protocol was successfully applied in 15 patients and all imaging demonstrated good SNR without diagnosis-hindering venous enhancement. By knowing each patient's venous enhancement kinetics, scan parameters can be optimized to utilize maximum possible acquisition time. Some time is added for the timing scans, but in return time-resolved calf CE-MRA, maximized SNR, and decreased risk of venous enhancement are gained.

  7. Precise measurement of the $\\chi_{c1}$ and $\\chi_{c2}$ resonance parameters with the decays $\\chi_{c1,c2}\\to J\\psi\\mu^+\\mu^-$

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Atzeni, Michele; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bizzeti, Andrea; Bjørn, Mikkel; Blake, Thomas; Blanc, Frederic; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bordyuzhin, Igor; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britton, Thomas; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Chapman, Matthew George; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu Faye; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; Davis, Adam; De Aguiar Francisco, Oscar; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fazzini, Davide; Federici, Luca; Ferguson, Dianne; Fernandez, Gerard; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; Färber, Christian; Gabriel, Emmy; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano

    2017-01-01

    The decays $\\chi_{c1} \\rightarrow J/\\psi \\mu^+ \\mu^-$ and $\\chi_{c2} \\rightarrow J/\\psi \\mu^+ \\mu^-$ are observed and used to study the resonance parameters of the $\\chi_{c1}$ and $\\chi_{c2}$ mesons. The masses of these states are measured to be \\begin{align*} m(\\chi_{c1}) = 3510.71 \\pm 0.04(stat) \\pm 0.09(syst)~ \\text{MeV}\\,, \\\\ m(\\chi_{c2}) = 3556.10 \\pm 0.06(stat) \\pm 0.11(syst)~ \\text{MeV}\\,, \\end{align*} where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference \\begin{equation*} m(\\chi_{c2}) - m(\\chi_{c1}) = 45.39 \\pm 0.07(stat) \\pm 0.03(syst)~ \\text{MeV}. \\end{equation*} The natural width of the $\\chi_{c2}$ meson is measured to be \\begin{equation*} \\Gamma(\\chi_{c2}) = 2.10 \\pm 0.20(stat) \\pm 0.02(syst)~ \\text{MeV}. \\end{equation*} These results are in good agreement with and have comparable precision to the current world averages.

  8. Photothermal resonance

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method for detecting photo-thermal absorbance of a material utilising a mechanically temperature sensitive resonator (20) and a sample being arrange in thermal communication with the temperature sensitive resonator. The present invention further relates to an ap......The present invention relates to a method for detecting photo-thermal absorbance of a material utilising a mechanically temperature sensitive resonator (20) and a sample being arrange in thermal communication with the temperature sensitive resonator. The present invention further relates...... to an apparatus for detecting photo-thermal absorbance of a sample....

  9. Parameter Optimization of PSS of Parallel Configuration Used to Damp Subsynchronous Resonance%抑制次同步谐振的并联结构PSS参数优化

    Institute of Scientific and Technical Information of China (English)

    蒋平; 王贯义

    2009-01-01

    The problems of subsynchronous resonance (SSR) damping by single-channels power system stabilizer (PSS) and PSS of parallel configuration are analyzed based on the IEEE SSR first benchmark model and the IEEE ST1A excitation system by means of test signal method. The method of computing the ideal phase compensation characteristic provided by PSS is formed based on the phase lags caused by excitation system and the vector relation of rotate speed bias, electromagnetic power bias and electromagnetic torque bias. The parameters of PSS of parallel configuration are optimized by means of genetic algorithms after the ideal compensation phases being computed at the frequencies which are representative in the low frequency range or near the points of SSR frequencies. With the optimized parameters, simulation and analysis are operated. The results show that the actual compensation phases are closer to the ideal compensation phases at entire frequency range with the optimized parameters of PSS of parallel configuration, and better electrical damping characteristic at entire frequency range are obtained, which is the result of that the possibility of subsynchronous resonance and low frequency oscillation is reduced to the least.%采用测试信号法,基于IEEE次同步谐振第一标准测试系统及IEEE ST1A型励磁系统分析了传统的单通道电力系统稳定器(PSS)及多通道并联结构PSS抑制次同步谐振时存在的问题.根据励磁系统引起的相位滞后特性,结合转速偏差、电磁功率偏差与电磁转矩偏差间的矢量关系给出了PSS需提供的理想相位补偿特性的计算方法.选取低频段和次同步谐振频率点附近具有代表性的频率点,计算其理想相位补偿角,并以此为目标应用遗传算法对并联结构PSS的参数进行优化.利用所得优化结果设置并联结构PSS参数,并进行仿真分析.结果表明,优化参数后并联结构PSS的实际相位补偿特性在全频段跟理想相位

  10. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  11. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  12. Equivalent Circuit Model for Thick Split Ring Resonators and Thick Spiral Resonators

    CERN Document Server

    Mancera, Laura Maria Pulido

    2014-01-01

    A simple theoretical model which provides circuit parameters and resonance frequency of metallic thick resonators is presented. Two different topologies were studied: the original Pendry's SRR and spiral resonators of two and three turns. Theoretical computations of resonant frequencies are in good agreement with values obtained with a commercial electromagnetic solver. The model could be helpful for designing thick frequency selective surfaces (FSS) based on this types of resonators, so called metasurfaces.

  13. Main resonance analysis for a MR suspension system with slowly varying parameters%参数慢变磁流变非线性悬架系统主共振研究

    Institute of Scientific and Technical Information of China (English)

    董小闵; 王小龙; 古晓科

    2014-01-01

    The output damping force of a magneto-rheological (MR)damper is reduced with increase in working temperature.As a result,the performance of a MR suspension system is degraded.On the basis of the theory of heat transfer and nonlinear vibration,the main resonance of a MR suspension dynamic system with slowly varying parameters was analyzed here.The energy differential equations at the working area of the MR damper were established and solved with the numerical method.The modified Bingham model was applied to calculate the output damping force of the MR damper.The nonlinear dynamic equation of the MR suspension system with slowly varying parameters was formulated.The steady amplitude response of the MR suspension system under the excitation of main resonance was solved with the averaging method.The calculated results showed that the working temperature rises with increase in running time of the MR damper,consequently,the output damping force of the MR damper decreases significantly and the vibration amplitude variation of the suspension system increases,the performance of the MR suspension system is degraded.%针对磁流变阻尼器随工作温度变化导致阻尼力发生改变,进而降低磁流变悬架系统性能的问题,基于传热学方程和参数慢变非线性振动理论研究温度变化对磁流变非线性悬架系统的主共振动力学行为的影响。根据传热学理论建立磁流变阻尼器工作区域能量微分方程,用数值方法求出温度变化规律,用改进的Bingham模型计算磁流变阻尼力;建立慢变参数磁流变非线性悬架系统动力学方程,利用平均法求解主共振激励下的悬架动行程的稳态幅值响应。研究表明:随着运行时间增加,磁流变阻尼器的温度逐渐升高,导致磁流变阻尼力大幅降低,悬架动行程稳态振幅及其变化量越大,从而使得悬架系统的性能偏离设计目标。

  14. Circuit Parameter Analysis of Maximum Transfer Distance of Magnetic Resonance Wireless Power Transmission Systems%磁共振无线电能传输系统最大传输距离的电路参数分析

    Institute of Scientific and Technical Information of China (English)

    李凤娥

    2012-01-01

    对磁共振无线电能传输系统的最大传输距离问题进行了电路模型研究,先描述了与最大传输距离密切相关的频率分裂现象,进而定义了频率分裂方程、脊方程、谷方程,随后利用脊方程确定了系统的频率分裂临界点,频率分裂临界点对应的传输距离就是系统的最大传输距离.探讨了系统最大传输距离与系统关键参数的关系.最后,利用文献中已有的实验数据,对上述理论进行了实验验证.%Circuit analysis is employed to investigate the maximum transfer distance problem in magnetic resonance wireless power transmission systems. It is described firstly the frequency splitting phenomena that are closely related to the maximum transfer distance problem. Next, the splitting equation, the ridge equation and the trough equation are defined, and the critical splitting point is found through the ridge equation. The maximum transfer distance is uniquely determined by the critical splitting point, and the relationship between the maximum transfer distance and the key system parameters is elucidated. Finally, above theory is validated by the experimental data from the literature.

  15. Tables of Shore and Fano parameters for the helium resonances 2s/sup 2/ /sup 1/S, 2p/sup 2/ /sup 1/D, and 2s 2p /sup 1/P excited in p-He collisions E/sub p/ = 33 to 150 keV

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Merchez, H.

    1976-02-01

    Absolute values of Shore and Fano parameters are tabulated for the helium atom 2s/sup 2/ /sup 1/S, 2p/sup 2/ /sup 1/D, and 2s 2p /sup 1/P resonances produced by a proton beam. Observations were made on the spectra of ejected electrons. The important variation of the shape of the resonances with ejection angle is illustrated for E/sub p/ = 100 keV; the variation with proton energy is shown at 30/sup 0/.

  16. Resonance frequency in ferromagnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Rongke; Huang Andong [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Li Da; Zhang Zhidong, E-mail: rkqiu@163.com [Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-10-19

    The resonance frequency in two-layer and three-layer ferromagnetic superlattices is studied, using the Callen's Green function method, the Tyablikov decoupling approximation and the Anderson-Callen decoupling approximation. The effects of interlayer exchange coupling, anisotropy, external magnetic field and temperature on the resonance frequency are investigated. It is found that the resonance frequencies increase with increasing external magnetic field. In a parameter region of the asymmetric system, each sublayer corresponds to its own resonance frequency. The anisotropy of a sublayer affects only the resonance frequency corresponding to this sublayer. The stronger the anisotropy, the higher is the resonance frequency. The interlayer exchange coupling affects only the resonance frequencies belonging to the sublayers connected by it. The stronger the interlayer exchange coupling, the higher are the resonance frequencies. All the resonance frequencies decrease as the reduced temperature increases. The results direct the method to enhance and adjust the resonance frequency of magnetic multilayered materials with a wide band.

  17. Theoretical and experimental investigation of microstrip rhombic resonators

    Science.gov (United States)

    Al-Charchafchi, S. H.; Boulkos, J.

    1990-06-01

    The resonant behavior of a novel microstrip rhombic resonator is investigated by analyzing an equivalent circuit based on transmission line modeling. Design curves showing the dependence of resonator performance on its parameters, as well as the substrate parameters, are presented. Experiments carried out showed a significant reduction in insertion loss when the rhombic resonator is dielectrically shielded. The resonator could be used as a microwave bandpass filter or a stabilization circuit for microwave oscillators in both hybrid and monolithic integrated circuits.

  18. Universal formalism of Fano resonance

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Liang [School of Physical Science and Technology and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000 (China); Lai, Ying-Cheng [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Luo, Hong-Gang [School of Physical Science and Technology and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Grebogi, Celso [Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2015-01-15

    The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

  19. Universal formalism of Fano resonance

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2015-01-01

    Full Text Available The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset. The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

  20. Multiquark Resonances

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  1. Multiquark resonances

    Science.gov (United States)

    Esposito, A.; Pilloni, A.; Polosa, A. D.

    2017-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  2. Baryon Resonances

    CERN Document Server

    Oset, E; Sun, Bao Xi; Vacas, M J Vicente; Ramos, A; Gonzalez, P; Vijande, J; Torres, A Martinez; Khemchandani, K

    2009-01-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the $\\Lambda(1405)$ resonance, as well as the prediction of one $1/2^+$ baryon state around 1920 MeV which might have been seen in the $\\gamma p \\to K^+ \\Lambda$ reaction.

  3. Baryon Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Oset, E. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Sarkar, S. [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Sun Baoxi [Institute of Theoretical Physics, College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China); Vicente Vacas, M.J. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, A. [Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona, 08028 Barcelona (Spain); Gonzalez, P. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Vijande, J. [Departamento de Fisica Atomica Molecular y Nuclear and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Martinez Torres, A. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Khemchandani, K. [Centro de Fisica Computacional, Departamento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal)

    2010-04-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the {lambda}(1405) resonance, as well as the prediction of one 1/2{sup +} baryon state around 1920 MeV which might have been seen in the {gamma}p{yields}K{sup +}{lambda} reaction.

  4. Neuroaesthetic Resonance

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2013-01-01

    sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....

  5. Nonlinear behavior of Helmholtz resonators

    Science.gov (United States)

    Hersh, A. S.

    1990-10-01

    A semi-empirical fluid mechanical model has been derived to predict the nonlinear acoustic behavior of thin-walled, single-orifice Helmholtz resonators. The model assumed that the sound particle velocity field approaches the resonator in a spherically symmetric manner. The incident and cavity sound pressure fields are connected in terms of an orifice discharge coefficient and an end correction parameter whose values are determined empirically. The accuracy of the model was verified by comparing predicted with measured impedance over a wide range of sound amplitudes and frequencies for two different resonator geometries and with measurements conducted by Ingard and Ising.

  6. Relationship between Fermi Resonance and Solvent Effects

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiu-Lan; LI Dong-Fei; SUN Cheng-Lin; LI Zhan-Long; YANG Guang; ZHOU Mi; LI Zuo-Wei; GAO Shu-Qin

    2011-01-01

    We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS2 in C6H6 at different concentrations. Also, we investigate the Fermi resonance of C6H6 and CCl4 in their solution at different pressures. It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio, etc., on the other hand, the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.%@@ We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS2 in C6H6 at different concentrations.Also,we investigate the Fermi resonance of C6H6 and CCl4 in their solution at different pressures.It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio,etc.,on the other hand,the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.

  7. Autostereogram resonators

    Science.gov (United States)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  8. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars

    2017-01-08

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  9. Low-profile wireless passive resonators for sensing

    Science.gov (United States)

    Gong, Xun; An, Linan

    2017-04-04

    A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.

  10. Low-profile wireless passive resonators for sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xun; An, Linan

    2017-04-04

    A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.

  11. Parameter Estimation

    DEFF Research Database (Denmark)

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  12. Magnetic resonance imaging derived left ventricular global and region function parameters in healthy adults%健康成年人左心室整体及局部功能参数的磁共振研究

    Institute of Scientific and Technical Information of China (English)

    穆莉莎; 蒲艳军; 孙凯; 朱力; 李文玲; 田兴仓

    2014-01-01

    Objective To establish cardiac magnetic resonance imaging (MRI) derived left ventricular (LV) global and region function parameters in normal adults.Methods Twenty normal adults were examined with fast imaging employing steady-state (Fiesta) acquisition sequence of cardiac MRI,LV global function and LV region function were measured at basal,middle,apical level and at 16 LV segments.The regional function parameters among different levels and different segments of the same level were analyzed.Results (1) LV global function: end-diastolic volume (109.17 ± 19.52) ml ; end-systolic volume (37.76 ± 14.16) ml ; ejection fraction (65.93 ± 7.79) % ; wall thickening (83.24 ± 40.82) % ; longitudinal shortening (15.51 ± 3.78)% ; fractional shortening (31.78 ± 9.55)% ; end-diastolic mass (95.20 ± 19.95) g.(2) LV regional function: In each LV level,there was no significant difference in end-systolic wall thickness (P > 0.05).End-diastolic wall thickness and wall thickening were similar between the middle and apical levels,but there were significant differences between middle and apical levels with the basal level (both P <0.05).End-systolic wall thickness of the middle and the apical level was similar,but there were significant differences between middle and apical levels with the basal level (both P < 0.05).At the segments of the same level,end-diastolic wall thickness and the relevant regional function parameters between the segments of anteroseptal and inferoseptal at base and middle level were similar (P > 0.05) ; the end-diastolic wall thickness was the largest and the WT was the minimal at the septal segments of three levels,and the difference were significant between the septal and other segments in the same level (P <0.05).Conclusions Fractional shortening and longitudinal shortening provide new indicators for assessing LV global function by cardiac MRI.There is obvious heterogeneity on LV regional function in normal adults,systolic function is

  13. Study of Mode Coupling on Coaxial Resonators

    Institute of Scientific and Technical Information of China (English)

    Rui Liu; Hong-Fu Li

    2011-01-01

    A study of mode coupling phenomenon of coaxial resonators has been conducted with theories.Through establishing the source-free transmission line equation,boundary conditions of the coaxial resonators with a corrugated inner conductor are analyzed.In the end,calculations are performed in a wide range of corrugation parameters for the resonator of the Karisruhe Institute of Technology (KIT) relevant coaxial gyrotron.

  14. Nested Trampoline Resonators for Optomechanics

    CERN Document Server

    Weaver, Matthew J; Luna, Fernando; Buters, Frank M; Eerkens, Hedwig J; Welker, Gesa; Perock, Blaise; Heeck, Kier; de Man, Sven; Bouwmeester, Dirk

    2015-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating novel trampoline resonators made from low pressure chemical vapor deposition (LPCVD) Si$_3$N$_4$ with a distributed bragg reflector (DBR) mirror. We construct a nested double resonator structure that generates approximately 80 dB of mechanical isolation from the mounting surface, eliminating the strong mounting dependence of the quality factor observed with single resonators. With the consistency provided by this isolation scheme we reliably fabricate devices with mechanical quality factors of around 400,000 at room temperature. In addition these devices were used to form optical cavities with finesse up to 181,000 $\\pm$ 1,000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  15. Controlling Metamaterial Resonances with Light

    CERN Document Server

    Chakrabarti, Sangeeta; Wanare, Harshawardhan

    2010-01-01

    We investigate the use of coherent optical fields as a means of dynamically controlling the resonant behaviour of a variety of composite metamaterials, wherein the metamaterial structures are embedded in a dispersive dielectric medium. Control and switching is implemented by coherently driving the resonant permittivity of the embedding medium by applied optical radiation. The effect of embedding Split ring resonators (SRR) in a frequency- dispersive medium with Lorentz-like dispersion or with dispersion engineered by electromagnetic induced transparency (EIT), is manifested in the splitting of the negative permeability band, the modified (frequency-dependent) filling fractions and dissipation factors. The modified material parameters are strongly linked to the resonant frequencies of the medium, while for an embedding medium exhibiting EIT, also to the strength and detuning of the control field. The robustness of control against the deleterious influence of dissipation associated with the metallic structures ...

  16. Nested trampoline resonators for optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, M. J., E-mail: mweaver@physics.ucsb.edu; Pepper, B.; Luna, F.; Perock, B. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de [Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands); Bouwmeester, D. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands)

    2016-01-18

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si{sub 3}N{sub 4} with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  17. Neuroaesthetic Resonance

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2013-01-01

    Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... tailored channeling of sensory stimulus aligned as ‘art-making’ and ‘game playing’ core experiences. Thus, affecting brain plasticity and human motoric-performance via the adaptability (plasticity) of digital medias result in closure of the human afferent-efferent neural feedback loop closure through...

  18. Effect of Systematic Resonance on DBD Device

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Abnormal phenomena that discharge performance declines with the increase in the frequency of power supply have been observed in many DBD devices. DBD systematic resonance formed by transformer leakage induction and equivalent capacitance of the dielectric layer is a key factor causing such abnormal phenomena. Therefore, the parameters of a DBD device should be optimized to avoid resonance damage and improve DBD discharge characteristics.

  19. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet...

  20. Articulatory Parameters.

    Science.gov (United States)

    Ladefoged, Peter

    1980-01-01

    Summarizes the 16 parameters hypothesized to be necessary and sufficient for linguistic phonetic specifications. Suggests seven parameters affecting tongue shapes, three determining the positions of the lips, one controlling the position of the velum, four varying laryngeal actions, and one controlling respiratory activity. (RL)

  1. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian;

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set...

  2. Resonance, Multi-resonance, and Reverse-resonance Induced by Multiplicative Dichotomous Noise

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A constant-potential system driven by multiplicative dichotomous noise and subject to an input oscillatory signal is investigated. Two phenomena of stochastic resonance are observed. One is the response as a function of the noise's parameters; the other is that as a function of the input signal frequency. A phenomenon of multi-resonance (there are three or four peaks) is found for the response as a function of a parameter of the noise. A phenomenon of reverse-resonance is found, for which the response of the system to the signal can be weakened by the presence of the noise (there is an optimal minimum). These results help in studies of the systems with multiplicative dichotomous noise, such as the semiconductor, the proteins motor, the chemical reaction, and so on.

  3. Low-Loss Polymer-Based Ring Resonator for Resonant Integrated Optical Gyroscopes

    Directory of Open Access Journals (Sweden)

    Guang Qian

    2014-01-01

    Full Text Available Waveguide ring resonator is the sensing element of resonant integrated optical gyroscope (RIOG. This paper reports a polymer-based ring resonator with a low propagation loss of about 0.476 dB/cm for RIOG. The geometrical parameters of the waveguide and the coupler of the resonator were optimally designed. We also discussed the optical properties and gyroscope performance of the polymer resonator which shows a high quality factor of about 105. The polymer-based RIOG exhibits a limited sensitivity of less than 20 deg/h for the low and medium resolution navigation systems.

  4. Scalar-Pseudoscalar scattering and pseudoscalar resonances

    CERN Document Server

    Albaladejo, M

    2010-01-01

    The interactions between the f_0(980) and a_0(980) scalar resonances and the lightest pseudoscalar mesons are studied. We first obtain the interacting kernels, without including any ad hoc free parameter, because the lightest scalar resonances are dynamically generated. These kernels are unitarized, giving the final amplitudes, which generate pseudoscalar resonances, associated with the K(1460), \\pi(1300), \\pi(1800), \\eta(1475) and X(1835). We also consider the exotic channels with I=3/2 and I^G=1^+ quantum numbers. The former could be also resonant in agreement with a previous prediction.

  5. Composite spin-1 resonances at the LHC

    CERN Document Server

    Low, Matthew; Wang, Lian-Tao

    2015-01-01

    In this paper, we discuss the signal of composite spin-1 resonances at the LHC. Motivated by the possible observation of a diboson resonance in the 8 TeV LHC data, we demonstrate that vector resonances from composite Higgs models are able to describe the data. We pay particular attention to the role played by fermion partial compositeness, which is a common feature in composite Higgs models. The parameter space that is both able to account for the diboson excess and passes electroweak precision and flavor tests is explored. Finally, we make projections for signals of such resonances at the 13 TeV run of the LHC.

  6. Inventory parameters

    CERN Document Server

    Sharma, Sanjay

    2017-01-01

    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  7. Micro-machined resonator oscillator

    Science.gov (United States)

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  8. Latent resonance in tidal rivers, with applications to River Elbe

    Science.gov (United States)

    Backhaus, Jan O.

    2015-11-01

    We describe a systematic investigation of resonance in tidal rivers, and of river oscillations influenced by resonance. That is, we explore the grey-zone between absent and fully developed resonance. Data from this study are the results of a one-dimensional numerical channel model applied to a four-dimensional parameter space comprising geometry, i.e. length and depths of rivers, and varying dissipation and forcing. Similarity of real rivers and channels from parameter space is obtained with the help of a 'run-time depth'. We present a model-channel, which reproduces tidal oscillations of River Elbe in Hamburg, Germany with accuracy of a few centimetres. The parameter space contains resonant regions and regions with 'latent resonance'. The latter defines tidal oscillations that are elevated yet not in full but juvenile resonance. Dissipation reduces amplitudes of resonance while creating latent resonance. That is, energy of resonance radiates into areas in parameter space where periods of Eigen-oscillations are well separated from the period of the forcing tide. Increased forcing enhances the re-distribution of resonance in parameter space. The River Elbe is diagnosed as being in a state of anthropogenic latent resonance as a consequence of ongoing deepening by dredging. Deepening the river, in conjunction with the expected sea level rise, will inevitably cause increasing tidal ranges. As a rule of thumb, we found that 1 m deepening would cause 0.5 m increase in tidal range.

  9. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  10. Experiments with Helmholtz Resonators.

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    1996-01-01

    Presents experiments that use Helmholtz resonators and have been designed for a sophomore-level course in oscillations and waves. Discusses the theory of the Helmholtz resonator and resonance curves. (JRH)

  11. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  12. Correlation of left ventricular wall thickness, heart mass, serological parameters and late gadolinium enhancement in cardiovascular magnetic resonance imaging of myocardial inflammation in an experimental animal model of autoimmune myocarditis.

    Science.gov (United States)

    Kromen, Wolfgang; Korkusuz, Huedayi; Korkusuz, Yuecel; Esters, Philip; Bauer, Ralf W; Huebner, Frank; Lindemayr, Sebastian; Vogl, Thomas J

    2012-12-01

    For a definitive diagnosis of myocarditis, different strategies like analysis of late gadolinium enhancement (LGE) in cardiovascular magnetic resonance imaging (CMR) up to invasive endomyocardial biopsy have been applied. The objective of the study was to investigate inflammatory changes like left ventricular wall thickening and increase of ventricular mass and to quantitatively analyse their correlation with extent and localisation of myocardial damage in CMR and with subsequent changes of serological markers in an animal model of an experimental autoimmune myocarditis (EAM). In the current study, an EAM was induced in 10 male Lewis rats, 10 rats served as control. On day 21, animals were examined with four CMR protocols to assess the extent of LGE in a 12 segment model of the rat heart. Left myocardial wall thickness and mass and histological grade of inflammation were measured to determine localisation and severity of the induced myocarditis. Depending on the CMR sequence, LGE was mostly found in the left anterior (9.6%) and left lateral (8.7%) myocardial wall segments. Wall thickness correlated with the LGE area in CMR imaging and the histopathological severity of myocarditis for the left lateral myocardial wall segment. In a similar way, the heart mass correlated to the extent of LGE for the left lateral segment. We conclude that in our animal model left ventricular wall thickness and mass reflect the severity of myocardial changes in myocarditis and that the EAM rat model is well suited for further investigations of myocarditis.

  13. Unstable optical resonator loss calculations using the prony method.

    Science.gov (United States)

    Siegman, A E; Miller, H Y

    1970-12-01

    The eigenvalues for all the significant low-order resonant modes of an unstable optical resonator with circular mirrors are computed using an eigenvalue method called the Prony method. A general equivalence relation is also given, by means of which one can obtain the design parameters for a single-ended unstable resonator of the type usually employed in practical lasers, from the calculated or tabulated values for an equivalent symmetric or double-ended unstable resonator.

  14. Spatially coherent surface resonance states derived from magnetic resonances

    CERN Document Server

    Wei, Zeyong; Cao, Yang; Wu, Chao; Ren, Jinzhi; Hang, Zhihong; Chen, Hong; Zhang, Daozhong; Chan, C T

    2010-01-01

    A thin metamaterial slab comprising a dielectric spacer sandwiched between a metallic grating and a ground plane is shown to possess spatially coherent surface resonance states that span a large frequency range and can be tuned by structural and material parameters. They give rise to nearly perfect angle-selective absorption and thus exhibit directional thermal emissivity. Direct numerical simulations show that the metamaterial slab supports spatially coherent thermal emission in a wide frequency range that is robust against structural disorder.

  15. Comparative Fluorescence Resonance Energy-Transfer Study in Pluronic Triblock Copolymer Micelle and Niosome Composed of Biological Component Cholesterol: An Investigation of Effect of Cholesterol and Sucrose on the FRET Parameters.

    Science.gov (United States)

    Roy, Arpita; Kundu, Niloy; Banik, Debasis; Sarkar, Nilmoni

    2016-01-14

    The formation of pluronic triblock copolymer (F127)-cholesterol-based niosome and its interaction with sugar (sucrose) molecules have been investigated. The morphology of F127-cholesterol -based niosome in the presence of sucrose has been successfully demonstrated using dynamic light scattering (DLS) and transmission electron microscopic (TEM) techniques. The DLS profiles and TEM images clearly suggest that the size of the niosome aggregates increases significantly in the presence of sucrose. In addition to structural characterization, a detailed comparative fluorescence resonance energy transfer (FRET) study has been carried out in these F127-containing aggregates, involving coumarin 153 (C153) as donor (D) and rhodamine 6G (R6G) as an acceptor (A) to monitor the dynamic heterogeneity of the systems. Besides, time-resolved anisotropy and fluorescence correlation spectroscopy measurements have been carried out to monitor the rotational and lateral diffusion motion in these F127-cholesterol-based aggregates using C153 and R6G, respectively. During the course of FRET study, we have observed multiple time constants of FRET inside the F127-cholesterol-based niosomes in contrast with the F127 micelle. This corresponds to the presence of more than one preferential donor-acceptor (D-A) distance in niosomes than in F127 micelle. FRET has also been successfully used to probe the effect of sucrose on the morphology of F127-cholesterol-based niosome. In the presence of sucrose, the time constant of FRET further increases as the D-A distances increase in sucrose-decorated niosome. Finally, the excitation-wavelength-dependent FRET studies have indicated that as the excitation of donor molecules varies from 408 to 440 nm the contribution of the faster rise component of the acceptor enhances considerably, which clearly establishes the dynamics heterogeneity of both systems. Our findings also indicate that FRET is completely intravesicular in nature in these block copolymer

  16. Cryogenic Resonator Complex

    Science.gov (United States)

    Parshin, V. V.; Serov, E. A.; Bubnov, G. M.; Vdovin, V. F.; Koshelev, M. A.; Tretyakov, M. Yu.

    2014-01-01

    We describe a unique new-generation laboratory facility for studying dielectric parameters of gases and condensed media, as well as reflectivity of surfaces (reflection loss) in the frequency range 100-500 GHz and pressure interval from 10-3 Torr to the atmospheric pressure at temperatures of 4 to 370 K. The Fabry-Perot resonators with Q-factors of about 106, in which the studied gas, dielectric, or reflector are located, are the measuring elements of the facility. The backward-wave oscillator stabilized by the wideband phased-lock loop is the radiation source. Using this facility, we were able, in particular, to confirm the presence of water dimers in the atmosphere and study some materials for the reflectors of the "Millimetron" space observatory.

  17. Modeling noisy resonant system response

    Science.gov (United States)

    Weber, Patrick Thomas; Walrath, David Edwin

    2017-02-01

    In this paper, a theory-based model replicating empirical acoustic resonant signals is presented and studied to understand sources of noise present in acoustic signals. Statistical properties of empirical signals are quantified and a noise amplitude parameter, which models frequency and amplitude-based noise, is created, defined, and presented. This theory-driven model isolates each phenomenon and allows for parameters to be independently studied. Using seven independent degrees of freedom, this model will accurately reproduce qualitative and quantitative properties measured from laboratory data. Results are presented and demonstrate success in replicating qualitative and quantitative properties of experimental data.

  18. Fabrication of MEMS Resonators in Thin SOI

    CERN Document Server

    Grogg, D; Ionescu, Adrian Mihai

    2008-01-01

    A simple and fast process for micro-electromechanical (MEM) resonators with deep sub-micron transduction gaps in thin SOI is presented in this paper. Thin SOI wafers are important for advanced CMOS technology and thus are evaluated as resonator substrates for future co-integration with CMOS circuitry on a single chip. As the transduction capacitance scales with the resonator thickness, it is important to fabricate deep sub-micron trenches in order to achieve a good capacitive coupling. Through the combination of conventional UV-lithography and focused ion beam (FIB) milling the process needs only two lithography steps, enabling therefore a way for fast prototyping of MEM-resonators. Different FIB parameters and etching parameters are compared in this paper and their effect on the process are reported.

  19. Hybrid simulation of electron cyclotron resonance heating

    CERN Document Server

    Ropponen, T; Suominen, P; Koponen, T K; Kalvas, T; Koivisto, H

    2008-01-01

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  20. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  1. Resonance and Neck Length for a Spherical Resonator

    Directory of Open Access Journals (Sweden)

    Emily Corning

    2011-06-01

    Full Text Available The relationship between the neck length of a spherical resonator and its period of fundamental resonance was investigated. This was done by measuring the frequency of fundamental resonance of the resonator at 6 different neck lengths. It was found that its resonance resembled Helmholtz resonance but was not that of ideal Helmholtz resonance.

  2. Planar Resonators for Metamaterials

    Directory of Open Access Journals (Sweden)

    M. Blaha

    2012-09-01

    Full Text Available This paper presents the results of an investigation into a combination of electric and magnetic planar resonators in order to design the building element of a volumetric metamaterial showing simultaneously negative electric and magnetic polarizabilities under irradiation by an electromagnetic wave. Two combinations of particular planar resonators are taken into consideration. These planar resonators are an electric dipole, a split ring resonator and a double H-shaped resonator. The response of the single resonant particle composed of a resonator with an electric response and a resonator with a magnetic response is strongly anisotropic. Proper spatial arrangement of these particles can make the response isotropic. This is obtained by proper placement of six planar resonators on the surface of a cube that now represents a metamaterial unit cell. The cells are distributed in space with 3D periodicity.

  3. Experimental study of resonance fiber optic gyroscope employing a dual-ring resonator

    Science.gov (United States)

    Fan, Yue; Wang, Wei

    2016-09-01

    A dual-ring resonator which is available to alter the full width at half maximum (FWHM) without altering the free spectrum range (FSR) for practice applications is analyzed theoretically and set up in practice. The parameters of the dual-ring resonator have been optimized in simulation, the resonance depth and the dynamic range are enhanced. The prototype is set up with single mode fiber of 8 meter and two 95 : 5 couplers for open loop experiment. The FWHM of the dual-ring resonator is demonstrated less than 1.5MHz and the fineness is calculated to be 37 during the frequency sweeping experiment. The frequency locking experiment with demodulation curve method has been accomplished, and the locking time achieves less than 40ms. All these provide a basic reference for optimizing the resonance fiber optic gyro based on dual-ring resonator.

  4. Supergranular Parameters

    Science.gov (United States)

    Udayashankar, Paniveni

    2016-07-01

    I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.

  5. Analytical design of a confocal resonator

    CERN Document Server

    Ferrari, A; Ziemann, Volker; CERN. Geneva. AB Department

    2003-01-01

    A confocal resonator may be used as a pick-up for frequencies in the multi-GHz region, in order to monitor the bunch spacing and/or the bunch length in the CTF3 drive beam. In this note, we collect some formulae regarding the design of a confocal resonator in order to facilitate the estimation of relevant parameters in a later more careful numerical study

  6. Kepler-16b: a resonant survivor

    CERN Document Server

    Popova, E A

    2012-01-01

    The planet Kepler-16b is known to follow a circumbinary orbit around a double system of two main-sequence stars. We construct stability diagrams in the "pericentric distance - eccentricity" plane, which show that Kepler-16b is in a hazardous vicinity to the chaos domain - just between the instability "teeth" in the space of orbital parameters. Kepler-16b survives, because it is close to the half-integer 11/2 orbital resonance with the central binary. The neighbouring resonance cells are vacant, because they are "purged" by Kepler-16b, due to overlap of first-order resonances with the planet.

  7. Resonance enhancement by suitably chosen frequency detuning

    CERN Document Server

    Dutykh, Denys

    2014-01-01

    In this Letter we report new effects of resonance detuning on various dynamical parameters of a generic 3-wave system. Namely, for suitably chosen values of detuning the variation range of amplitudes can be significantly wider than for exact resonance. Moreover, the range of energy variation is not symmetric with respect to the sign of the detuning. Finally, the period of the energy oscillation exhibits non-monotonic dependency on the magnitude of detuning. These results have important theoretical implications where nonlinear resonance analysis is involved, such as geophysics, plasma physics, fluid dynamics. Numerous practical applications are envisageable e.g. in energy harvesting systems.

  8. Subwavelength resonant nanostructured films for sensing

    Energy Technology Data Exchange (ETDEWEB)

    Alvine, Kyle J.; Bernacki, Bruce E.; Suter, Jonathan D.; Bennett, Wendy D.; Edwards, Daniel L.; Mendoza, Albert

    2013-05-29

    We present a novel subwavelength nanostructure architecture that may be utilized for optical standoff sensing applications. The subwavelength structures are fabricated via a combination of nanoimprint lithography and metal sputtering to create metallic nanostructured films encased within a transparent media. The structures are based on the open ring resonator (ORR) architecture and have their analog in resonant LC circuits, which display a resonance frequency that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any perturbation of the nanostructured films due to chemical or environmental effects can alter the inductive or capacitive behavior of the subwavelength features, which can shift the resonant frequency and provide an indication of the external stimulus. This shift in resonance can be interrogated remotely either actively using either laser illumination or passively using hyperspectral or multispectral sensing. These structures may be designed to be either anisotropic or isotropic, which can also provide polarization-sensitive interrogation. Due to the nanometer-scale of the structures, they can be tailored to be optically responsive in the visible or near infrared spectrum with a highly reflective resonant peak that is dependent solely on structural dimensions and material characteristics. We present experimental measurements of the optical response of these structures as a function of wavelength, polarization, and incident angle demonstrating the resonant effect in the near infrared region. Numerical modeling data showing the effect of different fabrication parameters such as structure parameters are also discussed.

  9. Integral resonator gyroscope

    Science.gov (United States)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  10. Partially orthogonal resonators for magnetic resonance imaging

    Science.gov (United States)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  11. High -Factor Wideband Resonators for Millimeter and Submillimeter Applications

    Directory of Open Access Journals (Sweden)

    Tatiana Gaevskaya

    2012-01-01

    Full Text Available Physical principles for designing a multipurpose set of high -factor quasioptical and corrugated resonators with automatic frequency tuning (>6×104, VSWR<1.6 that can operate in the frequency band from 37.5 to 400 GHz are presented. The electrodynamical calculation methods of resonators, the constructive particularities of resonators, the methods and results of the experimental researches are considered. This set of resonators can be used as a universal measuring resonator for measuring radio-signal fluctuations and parameters of different media, in particular, nanotube composites and high-temperature superconductors.

  12. Nanomechanical resonance detector

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  13. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    Examples of planar superconducting resonators Superconducting resonators are usually one of two types either planar, or three dimensional most often...also been employed. The term lumped element is used because the resonator comprises separated inductor and capacitor. In superconducting resonators the...implementation often is a miniature version in which the capacitor and inductor are combined in the same structure. Fig. 5 shows an example for CPW

  14. Spin coupling and resonance

    NARCIS (Netherlands)

    Zielinski, M.L.; van Lenthe, J.H.

    2008-01-01

    The resonating block localize wave function (RBLW) method is introduced, a resonating modification of the block localized wave functions introduced by Mo et al. [Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687].This approach allows the evaluation of resonance energies following Pauling’s r

  15. An alternative method to specify the degree of resonator stability

    Indian Academy of Sciences (India)

    Jogy George; K Ranganathan; T P S Nathan

    2007-04-01

    We present an alternative method to specify the stability of real stable resonators. We introduce the degree of optical stability or the parameter, which specify the stability of resonators in a numerical scale ranging from 0 to 100%. The value of zero corresponds to marginally stable resonator and < 0 corresponds to unstable resonator. Also, three definitions of the S parameter are provided: in terms of &, & R0 and 12. It may be noticed from the present formalism that the maximum degree of stability with = 1 automatically corresponds to 12 = 1/2. We also describe the method to measure the parameter from the output beam characteristics and parameter. A possible correlation between the parameter and the misalignment tolerance is also discussed.

  16. Decouple Design of Current Loop Parameters for PWM Converters Based on Multi-resonant Controllers and Capacitor Current Feedback Active Damping%基于多谐振控制器和电容电流反馈有源阻尼的PWM变换器电流环参数解耦设计

    Institute of Scientific and Technical Information of China (English)

    吕永灿; 林桦; 杨化承; 罗咏

    2013-01-01

    To track the given sinusoidal current under stationary frame and suppress the effect of the low harmonics in the grid, a multi-resonant proportional resonant (PR) controller was adopted for pulse width modulation (PWM) converter with LCL filter based on capacitor current feedback active damping. Because the system is of high order, many parameters and complicated, the effects of the control parameters on the current-loop performance were investigated with frequency theory, i.e. the stability, steady-state error and phase margin. Based on this, a decoupling-simplified analytic design method was proposed. According to the requests of the stability, steady-state error and phase margin, the capacitor-current-feedback coefficient, the relative resonant gain factor and the proportional factor could be designed separately. The proposed method uses the analytic method and simplifies the couple of the parameters without trial-and-error procedure. Finally, a battery storage power conversion system (PCS) was built. Experiment results verify the effectiveness of the proposed design method.%基于电容电流反馈有源阻尼的LCL型脉宽调制(pulse width modulation,PWM)变换器并网电流控制中,通常采用多谐振比例谐振(proportional resonant,PR)控制器来实现静止αβ坐标系下正弦电流给定的无静差跟踪和抑制电网电压特定次谐波影响。针对电流环控制器复杂、参数多、设计难的问题,采用频率域理论分析电容电流反馈系数和准PR控制器各参数对电流环性能的影响。在此基础上,提出一种电流环控制器参数解耦简化解析设计方法,根据稳定性、稳态误差和相位裕度要求,分别设计电容电流反馈系数及PR控制器相对谐振增益系数和比例系数。该设计方法简化了控制器参数之间的耦合关系,且多采用解析计算,不需要反复试凑。实验结果验证了所提出的参数解耦解析设计方法是可行和有效的。

  17. Magnetic resonance energy and topological resonance energy.

    Science.gov (United States)

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference.

  18. Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators

    CERN Document Server

    Sharma, Bhisham

    2015-01-01

    We study the low frequency wave propagation behavior of sandwich beams containing periodically embedded internal resonators. A closed form expression for the propagation constant is obtained using a phased array approach and verified using finite element simulations. We show that local resonance and Bragg bandgaps coexist in such a system and that the width of both bandgaps is a function of resonator parameters as well as their periodicity. The interaction between the two bandgaps is studied by varying the local resonance frequency. We find that a single combined bandgap does not exist for this system and that the Bragg bandgaps transition into sub-wavelength bandgaps when the local resonance frequency is above their associated classical Bragg frequency.

  19. Towards chains of tunable and nonlinear superconducting microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael; Wulschner, Friedrich; Schaumburger, Udo; Haeberlein, Max; Fedorov, Kirill; Goetz, Jan; Xie, Edwar [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Schwarz, Manuel; Eder, Peter; Menzel, Edwin; Zhong, Ling; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    We present an experimental feasibility study of chains of tunable and nonlinear superconducting microwave resonators within the realm of circuit QED. We describe the fabrication and experimental characterization of the components required to realize nonlinear resonators with tunable anharmonicity, capacitively coupled resonator chains and on-chip parallel plate capacitors. We discuss possible error sources in the fabrication and characterization processes. Furthermore, simulations based on existing theories are performed to identify accessible parameter ranges.

  20. Resonator coupled Josephson junctions; parametric excitations and mutual locking

    DEFF Research Database (Denmark)

    Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper

    1991-01-01

    Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...

  1. Characterization of superconducting transmission line resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.

  2. Wireless Magnetoelastic Resonance Sensors: A Critical Review

    Directory of Open Access Journals (Sweden)

    Keat G. Ong

    2002-07-01

    Full Text Available This paper presents a comprehensive review of magnetoelastic environmental sensor technology; topics include operating physics, sensor design, and illustrative applications. Magnetoelastic sensors are made of amorphous metallic glass ribbons or wires, with a characteristic resonant frequency inversely proportional to length. The remotely detected resonant frequency of a magnetoelastic sensor shifts in response to different physical parameters including stress, pressure, temperature, flow velocity, liquid viscosity, magnetic field, and mass loading. Coating the magnetoelastic sensor with a mass changing, chemically responsive layer enables realization of chemical sensors. Magnetoelastic sensors can be remotely interrogated by magnetic, acoustic, or optical means. The sensors can be characterized in the time domain, where the resonant frequency is determined through analysis of the sensor transient response, or in the frequency domain where the resonant frequency is determined from the frequency-amplitude spectrum of the sensor.

  3. Quark-mass dependence of baryon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, M.F.M. [Gesellschaft fuer Schwerionenforschung (GSI), Planck Str. 1, D-64291 Darmstadt (Germany) and Institut fuer Kernphysik, TU Darmstadt, D-64289 Darmstadt (Germany)]. E-mail: m.lutz@gsi.de; Garcia-Recio, C. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain); Kolomeitsev, E.E. [Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nieves, J. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)

    2005-05-30

    We study the quark-mass dependence of JP=12- s-wave and JP=32- d-wave baryon resonances. Parameter-free results are obtained in terms of the leading order chiral Lagrangian. In the 'heavy' SU(3) limit with m{pi}=mK{approx}500 MeV the s-wave resonances turn into bound states forming two octets plus a singlet representations of the SU(3) group. Similarly the d-wave resonances turn into bound states forming an octet and a decuplet in this limit. A contrasted result is obtained in the 'light' SU(3) limit with m{pi}=mK{approx}140 MeV for which no resonances exist.

  4. Sigma photoproduction in the resonance region

    CERN Document Server

    Janssen, S; Debruyne, D; Van Cauteren, T

    2002-01-01

    A study of p(gamma,K)Sigma processes in an isobar model at tree level is reported. By comparing model calculations to the published SAPHIR data, we explore the possible role of different isospin I=1/2 (N*) and I=3/2 (Delta*) resonances in the reaction dynamics. In our analysis, the inclusion of the ``missing'' D_{13}(1895) resonance does only slightly improve the global description of the Sigma photoproduction data. More convincing signals for the presence of such a ``missing'' resonance emerged in the analysis of the isospin related p(gamma,K+)Lambda reaction. Various implementations of the nonresonant part of the Sigma photoproduction amplitude are presented. The sensitivity of the computed observables and extracted resonance parameters to the uncertainties inherent to the treatment of the nonresonant (background) diagrams are discussed.

  5. Vibrational resonance in the Morse oscillator

    Indian Academy of Sciences (India)

    K Abirami; S Rajasekar; M A F Sanjuan

    2013-07-01

    The occurrence of vibrational resonance is investigated in both classical and quantum mechanical Morse oscillators driven by a biharmonic force. The biharmonic force consists of two forces of widely different frequencies and with $ \\gg $. In the damped and biharmonically driven classical Morse oscillator, by applying a theoretical approach, an analytical expression is obtained for the response amplitude at the low-frequency . Conditions are identified on the parameters for the occurrence of resonance. The system shows only one resonance and moreover at resonance the response amplitude is 1/ where is the coefficient of linear damping. When the amplitude of the high-frequency force is varied after resonance the response amplitude does not decay to zero but approaches a nonzero limiting value. It is observed that vibrational resonance occurs when the sinusoidal force is replaced by a square-wave force. The occurrence of resonance and antiresonance of transition probability of quantum mechanical Morse oscillator is also reported in the presence of the biharmonic external field.

  6. Transmission Measurement and Resonance Parameter Determination of 169Tm

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The transmission rate of 169Tm, ranging from 0.01 to 100 eV, were measured with n-TOF method at the Pohang Neutron Facility (PNF), which consists of an electron linac, a water-cooled Ta target, and a 12

  7. Multichannel Anomaly of the Resonance Pole Parameters Resolved

    OpenAIRE

    Ceci, Sasa; Stahov, Jugoslav; Svarc, Alfred; Watson, Shon; Zauner, Branimir

    2006-01-01

    Inspired by anomalies which the standard scattering matrix pole-extraction procedures have produced in a mathematically well defined coupled-channel model, we have developed a new method based solely on the assumption of partial-wave analyticity. The new method is simple and applicable not only to theoretical predictions but to the empirical partial-wave data as well. Since the standard pole-extraction procedures turn out to be the lowest-order term of the proposed method the anomalies are un...

  8. Multichannel Anomaly of the Resonance Pole Parameters Resolved

    CERN Document Server

    Ceci, S; Svarc, A; Watson, S; Zauner, B; Ceci, Sasa; Stahov, Jugoslav; Svarc, Alfred; Watson, Shon; Zauner, Branimir

    2006-01-01

    Inspired by anomalies which the standard scattering matrix pole-extraction procedures have produced in a mathematically well defined coupled-channel model, we have developed a new method based solely on the assumption of partial-wave analyticity. The new method is simple and applicable not only to theoretical predictions but to the empirical partial-wave data as well. Since the standard pole-extraction procedures turn out to be the lowest-order term of the proposed method the anomalies are understood and resolved.

  9. Resonant Behavior of an Augmented Railgun

    CERN Document Server

    Bahder, Thomas B

    2011-01-01

    We consider a lumped circuit model of an augmented electromagnetic railgun that consists of a gun circuit and an augmentation circuit that is inductively coupled to the gun circuit. The gun circuit is driven by a d.c. voltage generator, and the augmentation circuit is driven by an a.c. voltage generator. Using sample parameters, we numerically solve the three non-linear dynamical equations that describe this system. We find that there is a resonant behavior in the armature kinetic energy as a function of the frequency of the voltage generator in the augmentation circuit. This resonant behavior may be exploited to increase armature kinetic energy. Alternatively, if the presence of the kinetic energy resonance is not taken into account, parameters may be chosen that result in less than optimal kinetic energy and efficiency.

  10. EMPIRE ULTIMATE EXPANSION: RESONANCES AND COVARIANCES.

    Energy Technology Data Exchange (ETDEWEB)

    HERMAN,M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.; PIGNI, M.T.; KAWANO, T.; CAPOTE, R.; ZERKIN, V.; TRKOV, A.; SIN, M.; CARSON, B.V.; WIENKE, H. CHO, Y.-S.

    2007-04-22

    The EMPIRE code system is being extended to cover the resolved and unresolved resonance region employing proven methodology used for the production of new evaluations in the recent Atlas of Neutron Resonances. Another directions of Empire expansion are uncertainties and correlations among them. These include covariances for cross sections as well as for model parameters. In this presentation we concentrate on the KALMAN method that has been applied in EMPIRE to the fast neutron range as well as to the resonance region. We also summarize role of the EMPIRE code in the ENDF/B-VII.0 development. Finally, large scale calculations and their impact on nuclear model parameters are discussed along with the exciting perspectives offered by the parallel supercomputing.

  11. Resonance fluorescence of a cold atom in a high-finesse resonator

    CERN Document Server

    Bienert, M; Torres, J M; Zippilli, S; Bienert, Marc; Morigi, Giovanna; Zippilli, Stefano

    2007-01-01

    We study the spectra of emission of a system composed by an atom, tightly confined inside a high-finesse resonator, when the atom is driven by a laser and is at steady state of the cooling dynamics induced by laser and cavity field. In general, the spectrum of resonance fluorescence and the spectrum at the cavity output contain complementary information about the dynamics undergone by the system. In certain parameter regimes, quantum interference effects between the scattering processes induced by cavity and laser field lead to the selective suppression of features of the resonance fluorescence spectrum, which are otherwise visible in the spectrum of laser-cooled atoms in free space.

  12. Strong and tunable mode coupling in carbon nanotube resonators

    NARCIS (Netherlands)

    Castellanos Gomez, A.; Meerwaldt, H.B.; Ventra, W.J.; Van der Zant, H.S.J.; Steele, G.A.

    2012-01-01

    The nonlinear interaction between two mechanical resonances of the same freely suspended carbon nanotube resonator is studied. We find that, in the Coulomb-blockade regime, the nonlinear modal interaction is dominated by single-electron-tunneling processes and that the mode-coupling parameter can be

  13. Implementation of the Resonance Analysis Code SAMMY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The multi-level multi-channel R-matrix SAMMY code is used for making the resonance parameters,which was developed by Oak Ridge National Laboratory (ORNL), and widely used around the USA(ORELA, KAPL, LANL, TUNL...) and around the world (Belgium, Japan, France, Bulgaria, etc.).Thecode SAMMY is an important program to CNDC.

  14. The resonant body transistor.

    Science.gov (United States)

    Weinstein, Dana; Bhave, Sunil A

    2010-04-14

    This paper introduces the resonant body transistor (RBT), a silicon-based dielectrically transduced nanoelectromechanical (NEM) resonator embedding a sense transistor directly into the resonator body. Combining the benefits of FET sensing with the frequency scaling capabilities and high quality factors (Q) of internal dielectrically transduced bar resonators, the resonant body transistor achieves >10 GHz frequencies and can be integrated into a standard CMOS process for on-chip clock generation, high-Q microwave circuits, fundamental quantum-state preparation and observation, and high-sensitivity measurements. An 11.7 GHz bulk-mode RBT is demonstrated with a quality factor Q of 1830, marking the highest frequency acoustic resonance measured to date on a silicon wafer.

  15. Dynamically generated resonances

    CERN Document Server

    Oset, E; Sarkar, S; Sun, Bao Xi; Vacas, M J Vicente; González, P; Vijande, J; Jido, D; Sekihara, T; Torres, A Martinez; Khemchandani, K

    2009-01-01

    In this talk I report on recent work related to the dynamical generation of baryonic resonances, some made up from pseudoscalar meson-baryon, others from vector meson-baryon and a third type from two meson-one baryon systems. We can establish a correspondence with known baryonic resonances, reinforcing conclusions previously drawn and bringing new light on the nature of some baryonic resonances of higher mass.

  16. Entanglement resonances of driven multi-partite quantum systems

    CERN Document Server

    Sauer, Simeon; Buchleitner, Andreas

    2011-01-01

    We show that periodic driving of a weakly interacting set of qubits can generate strongly entangled multi-partite dressed states. Floquet theory allows to predict, from single particle dynamics only, the driving parameters at which such "entanglement resonances" occur.

  17. Acoustic resonances in HID lamps: model and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, John [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Baumann, Bernd; Wolff, Marcus [Hamburg University of Applied Sciences, Institute for Physical Sensors, Berliner Tor 21, 20099 Hamburg (Germany); Bhosle, Sounil [Universite Paul Sabatier, Toulouse (France); Valdivia Barrientos, Ricardo, E-mail: john.hirsch@philips.co [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)

    2010-06-16

    A finite element model including plasma simulation is used to calculate the amplitude of acoustic resonances in HID lamps in a 2D axisymmetric geometry. Simulation results are presented for different operation parameters and are compared with experimental data.

  18. Quadrupole Induced Resonant Particle Transport

    Science.gov (United States)

    Gilson, Erik; Fajans, Joel

    1999-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Malmberg-Penning trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Malmberg-Penning traps. (ATHENA Collaboration.)

  19. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  20. Magnetoacoustic resonance in magnetoelectric bilayers

    Science.gov (United States)

    Filippov, D. A.; Bichurin, M. I.; Petrov, V. M.; Srinivasan, G.

    2004-03-01

    Layered composites of ferrite and ferroelectric single crystal thin films are of interest for studies on magnetoelectric interactions [1,2]. Such interactions result in unique and novel effects that are absent in single phase materials. For example, in a single crystal composite it is possible to control the ferromagnetic resonance (FMR) parameters for the ferrite by means of hypersonic oscillations induced in the ferroelectric phase. The absorption of acoustic oscillations by the ferrite results in variation in FMR line shape and power absorbed. One anticipates resonance absorption of elastic waves when the frequency of elastic waves coincides with the precession frequency of magnetization vector. This work is concerned with the nature of FMR under the influence of acoustic oscillations with the same frequency as FMR. Bilayers of ferrite and piezoelectric single crystals are considered. Hypersonic waves induced in the piezoelectric phase transmit acoustic power into ferrite due to mechanical connectivity between the phases. That transmission depends strongly on interface coupling [3]. We estimate the resulting variations in ferromagnetic resonance line shape. Estimates of magnetoelectric effect at magnetoacoustic resonance are also given. In addition, dependence of absorption of acoustic power on sample dimensions and compliances, electric and magnetic susceptibilities, piezoelectric and magnetostriction coefficients is discussed. The theory provided here is important for an understanding of interface coupling and the nature of magnetoelastic interactions in the composites. 1. M. I. Bichurin and V. M. Petrov, Zh. Tekh. Fiz. 58, 2277 (1988) [Sov. Phys. Tech. Phys. 33, 1389 (1988)]. 2. M.I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan. Phys. Rev. B 64, 094409 (2001). 3. M. I. Bichurin, V. M. Petrov, and G. Srinivasan, J. Appl. Phys. 92, 7681 (2002). This work was supported by grants from the Russian Ministry of Education (

  1. Effective resonant stability of Mercury

    CERN Document Server

    Sansottera, M; Lemaître, A

    2015-01-01

    Mercury is the unique known planet that is situated in a 3:2 spin-orbit resonance nowadays. Observations and models converge to the same conclusion: the planet is presently deeply trapped in the resonance and situated at the Cassini state $1$, or very close to it. We investigate the complete non-linear stability of this equilibrium, with respect to several physical parameters, in the framework of Birkhoff normal form and Nekhoroshev stability theory. We use the same approach adopted for the 1:1 spin-orbit case with a peculiar attention to the role of Mercury's non negligible eccentricity. The selected parameters are the polar moment of inertia, the Mercury's inclination and eccentricity and the precession rates of the perihelion and node. Our study produces a bound to both the latitudinal and longitudinal librations (of 0.1 radians) for a long but finite time (greatly exceeding the age of the solar system). This is the so-called effective stability time. Our conclusion is that Mercury, placed inside the 3:2 s...

  2. Observation of resonant interactions among surface gravity waves

    CERN Document Server

    Bonnefoy, F; Michel, G; Semin, B; Humbert, T; Aumaître, S; Berhanu, M; Falcon, E

    2016-01-01

    We experimentally study resonant interactions of oblique surface gravity waves in a large basin. Our results strongly extend previous experimental results performed mainly for perpendicular or collinear wave trains. We generate two oblique waves crossing at an acute angle, while we control their frequency ratio, steepnesses and directions. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory with no fitting parameter. Off-resonance experiments are also reported and the relevant theoretical analysis is conducted and validated.

  3. Design of a superconducting low beta niobium resonator

    Indian Academy of Sciences (India)

    Prakash Potukuchi; Amit Roy

    2012-04-01

    The proposed high current injector for the superconducting Linac at the InterUniversity Accelerator Centre will have several accelerating structures, including a superconducting module which will contain low beta niobium resonators. A prototype resonator for the low beta module has been designed. The resonator has been carefully modelled to optimize the electromagnetic parameters. In order to validate them, a room-temperature copper model has been built and tested. In this paper we present details of the electromagnetic design of the low beta resonator, briefly discuss the mechanical and engineering design, and present results from the measurements on the room-temperature copper model.

  4. Spin measurement and neutron resonance spectroscopy for ^155Gd

    Science.gov (United States)

    Baramsai, Bayarbadrakh; Mitchell, G. E.; Chyzh, A.; Dashdorj, D.; Walker, C.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Wouters, J. M.; Ullmann, J. L.; Viera, D. J.; Agvaanluvsan, U.; Becvar, F.; Krticka, M.

    2009-05-01

    The ^155Gd(n,γ) reaction has been measured with the DANCE calorimeter at Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture γ - rays. With this information the spins of the neutron capture resonances have been determined. The improved sensitivity of this method allowed the determination of the spins of even weak and unresolved resonances. With these new spin assignments as well as previously determined resonance parameters, level spacings and neutron strength functions are determined separately for s-wave resonances with J = 1 and 2.

  5. Baryon resonances as dynamically generated states in chiral dynamics

    CERN Document Server

    Jido, Dasiuke

    2012-01-01

    We discuss baryon resonances which are dynamically generated in hadron dynamics based on chiral coupled channels approach. With the dynamical description of the baryon resonance, we discuss the origin of the resonance pole, finding that for the description of N(1535) some other components than meson and baryon are necessary. Since the chiral unitary model provides a microscopic description in terms of constituent hadrons, it is straightforward to calculate transition amplitudes and form factors of resonances without introducing further parameters. Finally we briefly discuss few-body nuclear kaonic systems as hadronic molecular states.

  6. Parametric resonances of convection belt system

    Institute of Scientific and Technical Information of China (English)

    Zhi-an YANG; Gao-feng LI

    2009-01-01

    Based on the Coriolis acceleration and the Lagrangian strain formula,a generalized equation for the transverse vibration system of convection belts is derived using Newton's second law.The method of multiple scales is directly applied to the governing equations,and an approximate solution of the primary parameter resonance of the system is obtained.The detuning parameter,cross-section area,elastic and viscoelastic parameters,and axial moving speed have a significant influences on the amplitudes of steady-state response and their existence boundaries.Some new dynamical phenomena are revealed.

  7. Neutrino Production of Resonances

    CERN Document Server

    Paschos, E A; Yu, J Y; Paschos, Emmanuel A.; Sakuda, Makoto; Yu, Ji--Young

    2004-01-01

    We take a fresh look at the analysis of resonance production by neutrinos. We consider three resonances $P_{33}, P_{11}$ and $S_{11}$ with a detailed discussion of their form factors. The article presents results for free proton and neutron targets and discusses the corrections which appear on nuclear targets. The Pauli suppression factor is derived in the Fermi gas model and shown to apply to resonance production. The importance of the various resonances is demonstrated with numerical calculations. The $\\Delta$-resonance is described by two formfactors and its differential cross sections are compared with experimental data. The article is self-contained and could be helpful to readers who wish to reproduce and use these cross sections.

  8. Monolithic MACS micro resonators

    Science.gov (United States)

    Lehmann-Horn, J. A.; Jacquinot, J.-F.; Ginefri, J. C.; Bonhomme, C.; Sakellariou, D.

    2016-10-01

    Magic Angle Coil Spinning (MACS) aids improving the intrinsically low NMR sensitivity of heterogeneous microscopic samples. We report on the design and testing of a new type of monolithic 2D MACS resonators to overcome known limitations of conventional micro coils. The resonators' conductors were printed on dielectric substrate and tuned without utilizing lumped element capacitors. Self-resonance conditions have been computed by a hybrid FEM-MoM technique. Preliminary results reported here indicate robust mechanical stability, reduced eddy currents heating and negligible susceptibility effects. The gain in B1 /√{ P } is in agreement with the NMR sensitivity enhancement according to the principle of reciprocity. A sensitivity enhancement larger than 3 has been achieved in a monolithic micro resonator inside a standard 4 mm rotor at 500 MHz. These 2D resonators could offer higher performance micro-detection and ease of use of heterogeneous microscopic substances such as biomedical samples, microscopic specimens and thin film materials.

  9. Fundamentals of nanomechanical resonators

    CERN Document Server

    Schmid, Silvan; Roukes, Michael Lee

    2016-01-01

    This authoritative book introduces and summarizes the latest models and skills required to design and optimize nanomechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The authors cover the electrical and mechanical aspects of nano electromechanical system (NEMS) devices. The introduced mechanical models are also key to the understanding and optimization of nanomechanical resonators used e.g. in optomechanics. Five comprehensive chapters address: The eigenmodes derived for the most common continuum mechanical structures used as nanomechanical resonators; The main sources of energy loss in nanomechanical resonators; The responsiveness of micro and nanomechanical resonators to mass, forces, and temperature; The most common underlying physical transduction mechanisms; The measurement basics, including amplitude and frequency noise. The applied approach found in this book is appropriate for engineering students and researchers working with micro and nanomechanical...

  10. Photonic Feshbach resonance

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Feshbach resonance is a resonance for two-atom scattering with two or more channels,in which a bound state is achieved in one channel.We show that this resonance phenomenon not only exists during the collisions of massive particles,but also emerges during the coherent transport of massless particles,that is,photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system(TLS).When the TLS is coupled to one array to form a bound state in this setup,the vanishing transmission appears to display the photonic Feshbach resonance.This process can be realized through various experimentally feasible solid state systems,such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line.The numerical simulation based on the finite-different time-domain(FDTD) method confirms our assumption about the physical implementation.

  11. Cardiovascular Magnetic Resonance Imaging

    Science.gov (United States)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  12. Evaluation of stable tungsten isotopes in the resolved resonance region

    Directory of Open Access Journals (Sweden)

    Schillebeeckx P.

    2013-03-01

    Full Text Available In the last decade benchmark experiments and simulations, together with newly obtained neutron cross section data, have pointed out deficiencies in evaluated data files of W isotopes. The role of W as a fundamental structural material in different nuclear applications fully justifies a new evaluation of 182, 183, 184, 186W neutron resonance parameters. In this regard transmission and capture cross section measurements on natural and enriched tungsten samples were performed at the GELINA facility of the EC-JRC-IRMM. A resonance parameter file used as input in the resonance shape analysis was prepared based on the available literature and adjusted in first instance to transmission data.

  13. Middle range wireless power transfer systems with multiple resonators

    Institute of Scientific and Technical Information of China (English)

    陈新; 张桂香

    2015-01-01

    The equivalent two-port network model of a middle range wireless power transfer (WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.

  14. Observability of stochastic resonance in neutron scattering.

    Science.gov (United States)

    Condat, C A; Lamberti, P W

    1999-10-01

    The observability of the stochastic resonance phenomenon in a neutron scattering experiment is investigated, considering that the scatterer can hop between two sites. Under stochastic resonance conditions scattered intensity is transferred from the quasielastic region to two inelastic peaks. The magnitude of the signal-to-noise ratio is shown to be similar to that arising in the corresponding power spectrum. Effects of potential asymmetry are discussed in detail. Asymmetry leads to a reduction of the signal-to-noise ratio by a factor of 1-xi(2), where xi is an asymmetry parameter which is zero for symmetric problems and equal to unity in a completely asymmetric case.

  15. Floating Rydberg crystals formed by resonant excitation

    CERN Document Server

    Gärttner, M; Gasenzer, T; Evers, J

    2013-01-01

    The dynamics of a cloud of ultra-cold Rydberg atoms is studied at off-resonant laser driving. We find that excitation crystals are formed dynamically as a consequence of interaction-induced resonant excitations. These crystals have lattice constants independent of the trap length, are spatially not localized with respect to the trap, and sensitively depend on the shape of the interaction potential. Compared to previously proposed crystals, this leads to qualitatively different results for the spatial excitation density, the Mandel $Q$ parameter, and the total number of excitations.

  16. HTS nonlinearities in microwave disk resonators

    Science.gov (United States)

    Collado, Carlos; Mateu, Jordi; Shaw, Timothy J.; O'Callaghan, Juan M.

    2002-08-01

    This article describes a procedure for the calculation of the intermodulation behavior of the TM0 1 0 mode in high temperature superconducting (HTS) disk resonators from a description of the local HTS nonlinearities. Successful cross-checks are performed by comparing the theoretical results with experimental measurements and simulations based on the multiport harmonic balance algorithm for a specific model of HTS nonlinearity. The application of this procedure to the determination of nonlinear material parameters from disk resonator measurements is illustrated and compared to theoretical predictions.

  17. Resonance regions of extended Mathieu equation

    Science.gov (United States)

    Semyonov, V. P.; Timofeev, A. V.

    2016-02-01

    One of the mechanisms of energy transfer between degrees of freedom of dusty plasma system is based on parametric resonance. Initial stage of this process can de described by equation similar to Mathieu equation. Such equation is studied by analytical and numerical approach. The numerical solution of the extended Mathieu equation is obtained for a wide range of parameter values. Boundaries of resonance regions, growth rates of amplitudes and times of onset are obtained. The energy transfer between the degrees of freedom of dusty plasma system can occur over a wide range of frequencies.

  18. Resonance Radiation and Excited Atoms

    Science.gov (United States)

    Mitchell, Allan C. G.; Zemansky, Mark W.

    2009-06-01

    1. Introduction; 2. Physical and chemical effects connected with resonance radiation; 3. Absorption lines and measurements of the lifetime of the resonance state; 4. Collision processes involving excited atoms; 5. The polarization of resonance radiation; Appendix; Index.

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses ... of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical ...

  20. Sign-Reversal Coupling in Coupled-Resonator Optical Waveguide

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Zhang, Baile

    2016-01-01

    Coupled-resonator optical waveguides (CROWs), which play a significant role in modern photonics, achieve waveguiding through near-field coupling between tightly localized resonators. The coupling factor, a critical parameter in CROW theory, determines the coupling strength between two resonators and the waveguiding dispersion of a CROW. However, the original CROW theory proposed by Yariv et al. only demonstrated one value of coupling factor for a multipole resonance mode. Here, by imaging the tight-binding Bloch waves on a CROW consisting of designer-surface-plasmon resonators in the microwave regime, we demonstrate that the coupling factor in the CROW theory can reverse its sign for a multipole resonance mode. This determines two different waveguiding dispersion curves in the same frequency range, experimentally confirmed by matching Bloch wavevectors and frequencies in the CROW. Our study supplements and extends the original CROW theory, and may find novel use in functional photonic systems.

  1. LABCOM resonator Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Keres, L.J.

    1990-11-01

    The purpose of this project was to develop quartz crystal resonator designs, production processes, and test capabilities for 5-MHz, 6.2-MHz, and 10-MHz resonators for Tactical Miniature Crystal Oscillator (TMXO) applications. GE Neutron Devices (GEND) established and demonstrated the capability to produce and test quartz crystal resonators for use in the TMXO developed by the US Army ERADCOM (now LABCOM). The goals in this project were based on the ERADCOM statement of work. The scope of work indicated that the resonator production facilities for this project would not be completely independent, but that they would be supported in part by equipment and processes in place at GEND used in US Department of Energy (DOE) work. In addition, provisions for production test equipment or or eventual technology transfer costs to a commercial supplier were clearly excluded from the scope of work. The demonstrated technical capability of the deep-etched blank design is feasible and practical. It can be manufactured in quantity with reasonable yield, and its performance is readily predictable. The ceramic flatpack is a very strong package with excellent hermeticity. The four-point mount supports the crystal to reasonable shock levels and does not perturb the resonator's natural frequency-temperature behavior. The package can be sealed with excellent yields. The high-temperature, high-vacuum processing developed for the TMXO resonator, including bonding the piezoid to its mount with conductive polyimide adhesive, is consistent with precision resonator fabrication. 1 fig., 6 tabs.

  2. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  3. Systematics of nuclear level density parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bucurescu, Dorel [Horia Hulubei National Institute of Physics and Nuclear Engineering, R-76900 Bucharest (Romania); Egidy, Till von [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany)

    2005-10-01

    The level density parameters for the back-shifted Fermi gas (both without and with energy-dependent level density parameter) and the constant temperature models have been determined for 310 nuclei between {sup 18}F and {sup 251}Cf by fitting the complete level schemes at low excitation energies and the s-wave neutron resonance spacings at the neutron binding energies. Simple formulae are proposed for the description of the two parameters of each of these models, which involve only quantities available from the mass tables. These formulae may constitute a reliable tool for extrapolating to nuclei far from stability, where nuclear level densities cannot be measured.

  4. R-matrix parameters in reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, R.N.

    1992-01-01

    The key role of the resonance phenomena in reactor applications manifests through the self-shielding effect. The basic issue involves the application of the microscopic cross sections in the macroscopic reactor lattices consisting of many nuclides that exhibit resonance behavior. To preserve the fidelity of such a effect requires the accurate calculations of the cross sections and the neutron flux in great detail. This clearly not possible without viable resonance data. Recently released ENDF/B VI resonance data in the resolved range especially reflect the dramatic improvement in two important areas; namely, the significant extension of the resolved resonance ranges accompanied by the availability of the R-matrix parameters of the Reich-Moore type. Aside from the obvious increase in computing time required for the significantly greater number of resonances, the main concern is the compatibility of the Riech-Moore representation to the existing reactor processing codes which, until now, are based on the traditional cross section formalisms. This purpose of this paper is to summarize our recent efforts to facilitate implementation of the proposed methods into the production codes at ANL.

  5. Resonant power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2012-01-01

    This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit

  6. Spin Resonance Strength Calculations

    Science.gov (United States)

    Courant, E. D.

    2009-08-01

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  7. Spin resonance strength calculations

    Energy Technology Data Exchange (ETDEWEB)

    Courant,E.D.

    2008-10-06

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  8. Tunable multiwalled nanotube resonator

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alex K [Kensington, CA; Jensen, Kenneth J [Berkeley, CA; Girit, Caglar [Albany, CA; Mickelson, William E [San Francisco, CA; Grossman, Jeffrey C [Berkeley, CA

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  9. Tunable multiwalled nanotube resonator

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  10. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  11. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children and Radiation ...

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children and Radiation Safety ...

  13. Probing the resonance of Dirac particle by the application of complex momentum representation

    CERN Document Server

    Li, Niu; Guo, Jian-You; Niu, Zhong-Ming; Liang, Haozhao

    2016-01-01

    Resonance plays critical roles in the formation of many physical phenomena, and several methods have been developed for the exploration of resonance. In this work, we propose a new scheme for resonance by solving the Dirac equation in complex momentum representation, in which the resonant states are exposed clearly in complex momentum plane and the resonance parameters can be determined precisely without imposing unphysical parameters. Combining with the relativistic mean-field theory, this method is applied to probe the resonances in $^{120}$Sn with the energies, widths, and wavefunctions being obtained. Comparing with other methods, this method is not only very effective for narrow resonances, but also can be reliably applied to broad resonances.

  14. Random search for a dark resonance

    Science.gov (United States)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2017-02-01

    A pair of resonant laser fields can drive a three-level system into a dark state where it ceases to absorb and emit radiation due to destructive interference. We propose a scheme to search for this resonance by randomly changing the frequency of one of the fields each time a fluorescence photon is detected. The longer the system is probed, the more likely the frequency is close to resonance and the system populates the dark state. Due to the correspondingly long waiting times between detection events, the evolution is nonergodic and the precision of the frequency estimate does not follow from the conventional Cramér-Rao bound of parameter estimation. Instead, a Lévy statistical analysis yields the scaling of the estimation error with time for precision probing of this kind.

  15. Resonant interactions of perturbations in MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Sagalakov, A.M.; Shtern, V.N.

    1977-01-17

    The nonlinear theory of hydrodynamic stability differentiates three types of interactions: deformation of the initial velocity profile by Reynolds stress pulsations, multiplication of harmonics, and the resonant interaction of harmonics with dissimilar wave numbers and frequencies. This article analyzes an approach considering the first and third of these non-linear mechanisms, producing an acceptable approximation of the averaged characteristics of a developing pulsation movement, particularly the averaged turbulent velocity profile. The approach consists in analysis of triharmonic oscillations, the parameters of which satisfy the resonant relationships. A model of a triharmonic pulsation mode is studied which is applicable to MHD flows. It is shown in particular how a magnetic field transverse to the flow plane suppresses the resonant interaction of three-dimensional perturbations. This agrees with experimental studies on two-dimensional turbulence conducted earlier. 11 references, 3 figures.

  16. Operation States Analysis of the Series-Parallel resonant Converter Working Above Resonance Frequency

    Directory of Open Access Journals (Sweden)

    Jaroslav Durdik

    2007-01-01

    Full Text Available Operation states analysis of a series-parallel converter working above resonance frequency is described in the paper. Principal equations are derived for individual operation states. On the basis of them the diagrams are made out. The diagrams give the complex image of the converter behaviour for individual circuit parameters. The waveforms may be utilised at designing the inverter individual parts.

  17. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  18. Piezoelectric MEMS resonators

    CERN Document Server

    Piazza, Gianluca

    2017-01-01

    This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...

  19. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others

    2016-04-15

    We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  20. Resonance Production in Jet

    CERN Document Server

    Markert, Christina

    2007-01-01

    Hadronic resonances with short life times and strong coupling to the dense medium may exhibit mass shifts and width broadening as signatures of chiral symmetry restoration at the phase transition between hadronic and partonic matter. Resonances with different lifetimes are also used to extract information about the time evolution and temperature of the expanding hadronic medium. In order to collect information about the early stage (at the phase transition) of a heavy-ion collision, resonances and decay particles which are unaffected by the hadronic medium have to be used. We explore a possible new technique to extract signals from the early stage through the selection of resonances from jets. A first attempt of this analysis, using the reconstructed $\\phi$(1020) from 200 GeV Au+Au collisions in STAR, is presented.

  1. Resonant Thermoelectric Nanophotonics

    CERN Document Server

    Mauser, Kelly W; Kim, Seyoon; Fleischman, Dagny; Atwater, Harry A

    2016-01-01

    Photodetectors are typically based on photocurrent generation from electron-hole pairs in semiconductor structures and on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performance. In this work, we demonstrate subwavelength thermoelectric nanostructures designed for resonant spectrally selective absorption, which creates large enough localized temperature gradients to generate easily measureable thermoelectric voltages. We show that such structures are tunable and are capable of highly wavelength specific detection, with an input power responsivity of up to 119 V/W (referenced to incident illumination), and response times of nearly 3 kHz, by combining resonant absorption and thermoelectric junctions within a single structure, yielding a bandgap-independent photodetection mechanism. We report results for both resonant nanophotonic bismuth telluride-antimony telluride structures and chromel-alumel...

  2. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  3. Triple-resonant transducers.

    Science.gov (United States)

    Butler, Stephen C

    2012-06-01

    A detailed analysis is presented of two novel multiple-resonant transducers which produce a wider transmit response than that of a conventional Tonpilz-type transducer. These multi-resonant transducers are Tonpilz-type longitudinal vibrators that produce three coupled resonances and are referred to as triple-resonant transducers (TRTs). One of these designs is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, second central mass, second compliant spring, and a piston-radiating head mass. The other TRT design is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, and head mass with a quarter-wave matching layer of poly(methyl methacrylate) on the head mass. Several prototype transducer element designs were fabricated that demonstrated proof-of-concept.

  4. Resonant Diphoton Phenomenology Simplified

    CERN Document Server

    Panico, Giuliano; Wulzer, Andrea

    2016-01-01

    A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J >= 2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonance production.

  5. Resonances in QCD

    Science.gov (United States)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  6. Resonances in QCD

    CERN Document Server

    Lutz, Matthias F M; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B; Metag, Volker; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Steve L; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2015-01-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with ${\\it up}$, ${\\it down}$ and ${\\it strange}$ quark content were considered. For heavy-light and heavy-heavy meson systems, those with ${\\it charm}$ quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  7. Perspective on resonances of metamaterials.

    Science.gov (United States)

    Min, Li; Huang, Lirong

    2015-07-27

    Electromagnetic resonance as the most important characteristic of metamaterials enables lots of exotic phenomena, such as invisible, negative refraction, man-made magnetism, etc. Conventional LC-resonance circuit model as the most authoritative and classic model is good at explaining and predicting the fundamental resonance wavelength of a metamaterial, while feels hard for high-order resonances, especially for resonance intensity (strength of resonance, determining on the performance and efficiency of metamaterial-based devices). In present work, via an easy-to-understand mass-spring model, we present a different and comprehensive insight for the resonance mechanism of metamaterials, through which both the resonance wavelengths (including the fundamental and high-order resonance wavelengths) and resonance intensities of metamaterials can be better understood. This developed theory has been well verified by different-material and different-structure resonators. This perspective will provide a broader space for exploring novel optical devices based on metamaterials (or metasurfaces).

  8. Hexagonal quartz resonator

    Science.gov (United States)

    Peters, Roswell D. M.

    1982-01-01

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

  9. Resonant dielectric metamaterials

    Science.gov (United States)

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  10. Geometric Stochastic Resonance

    CERN Document Server

    Ghosh, Pulak Kumar; Savel'ev, Sergey E; Nori, Franco

    2015-01-01

    A Brownian particle moving across a porous membrane subject to an oscillating force exhibits stochastic resonance with properties which strongly depend on the geometry of the confining cavities on the two sides of the membrane. Such a manifestation of stochastic resonance requires neither energetic nor entropic barriers, and can thus be regarded as a purely geometric effect. The magnitude of this effect is sensitive to the geometry of both the cavities and the pores, thus leading to distinctive optimal synchronization conditions.

  11. 锌磷酸盐玻璃掺杂VO2+吸收光谱和EPR谱研究%Theoretical Investigation of the Electron Paramagnetic Resonance Parameters and Local Structures for Zinc Phosphate Glass Doped wi th VO2+

    Institute of Scientific and Technical Information of China (English)

    李超英; 黄先恺; 涂虬; 王伟杨; 郑雪梅

    2015-01-01

    As an important model system ,3 d1 ions (VO2+ ,V4+ et al) have been extensively investigated by means of electron paramagnetic resonance (EPR) ,and many experimental results of EPR parameters were also measured .The optical absorption and EPR parameters (g factors g‖ ,g⊥ and hyperfine structure constants A‖ ,A⊥ ) of a tetragonal V4+ center in zinc phosphate glass are theoretically investigated ,using the perturbation formulas for a 3 d1 ion in tetragonally compressed octahedra .Since the spin‐orbit coupling parameter ζ0p (≈150 cm -1 ) of ligand O2 - is close to that ζ0d (≈248 cm -1 ) of the central 3 d1 ion in zinc phos‐phate glass doped VO2+ ,the effect of the spin‐orbit coupling parameter ζp0 on the EPR spectra and optical absorption spectra should be taken into account .In this work ,the relationship between the EPR parameters as well as the optical absorption spectra and the local structure of the impurity center are established based on the superposition model .By fitting the calculated EPR pa‐rameters and optical absorption spectra for V 4+ center in zinc phosphate glass to the experimental data ,the local structure pa‐rameters of [VO6 ]8 - cluster are obtained .According to the investigation ,the magnitudes of the metal‐ligand distances parallel and perpendicular to the C4‐axis of [VO6 ]8 - cluster are ,respectively ,R‖ ≈0.175 nm and R⊥ ≈0.197 nm ,the local structure a‐round the V4+ ions possesses a compressed tetragonal distortion along C4 axis .Theoretical results of EPR parameters and optical absorption spectra are in good agreement with experimental data ,the validity of the calculated results has also been discussed . Thus ,perturbation method is effective to the studies the EPR parameters and optical spectra of transition‐metal 3d1 ions in crys‐tals .In addition ,based on the studies of the hyperfine structure constants (A‖ and A⊥ ) ,one can found that the large value of κindicates a large contribution to

  12. The Influence of Mechanical Resonance & Compensation Method in CNC Heavy Cutting

    Institute of Scientific and Technical Information of China (English)

    WU Yuguo; HUANG Yunlin; SONG Chongzhi

    2006-01-01

    In CNC heavy cutting servo system, mechanical driving system has a torture feedback on electrical speed-adjustment system, thus it's possible to generate the mechanical resonance. The mechanical resonance makes the feature parameters of mechanical driving system influence the dynamic performance of the electrical speed-adjustment system. This paper has studied the resistance ratio of ζmech and q parameters ,and put forward the compensation method to decrease the mechanical resonance influence.

  13. Piezoelectric resonators with mechanical damping and resistance in current conduction

    Institute of Scientific and Technical Information of China (English)

    Yook-Kong; YONG; Mihir; S; PATEL

    2007-01-01

    A novel design method for high Q piezoelectric resonators was presented and proposed using the 3-D equations of linear piezoelectricity with quasi-electrostatic approximation which include losses attributed to mechanical damping in solid and resistance in current conduction. There is currently no finite element software for estimating the Q of a resonator without apriori assumptions of the resonator impedance or damping. There is a necessity for better and more realistic modeling of resonators and filters due to miniaturization and the rapid advances in frequency ranges in telecommunication.We presented new three-dimensional finite element models of quartz and barium titanate resonators with mechanical damping and resistance in current conduction. Lee, Liu and Ballato's 3-D equations of linear piezoelectricity with quasi-electro- static approximation which include losses attributed to mechanical damping in solid and resistance in current conduction were formulated in a weak form and implemented in COMSOL. The resulting finite element model could predict the Q and other electrical parameters for any piezoelectric resonator without apriori assumptions of damping or resistance. Forced and free vibration analyses were performed and the results for the Q and other electrical parameters were obtained. Comparisons of the Q and other electrical parameters obtained from the free vibration analysis with their corresponding values from the forced vibration analysis were found to be in excellent agreement. Hence, the frequency spectra obtained from the free vibration analysis could be used for designing high Q resonators. Results for quartz thickness shear AT-cut and SC-cut resonators and thickness stretch poled barium titanate resonators were presented. An unexpected benefit of the model was the prediction of resonator Q with energy losses via the mounting supports.

  14. New Efimov resonances in an ultracold cesium gas

    Energy Technology Data Exchange (ETDEWEB)

    Zenesini, Alessandro; Berninger, Martin; Besler, Stefan; Naegerl, Hanns-Christoph; Ferlaino, Francesca [Institut fuer Experimentalphysik, Universitaet Innsbruck, 6020 Innsbruck (Austria); Huang, Bo; Grimm, Rudolf [Institut fuer Experimentalphysik, Universitaet Innsbruck, 6020 Innsbruck (Austria); Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, 6020 Innsbruck (Austria)

    2011-07-01

    Efimov trimer states represent the paradigm of universality in few-body physics. Although these exotic three-body weakly-bound states have been experimentally investigated in an increasing number of ultracold atomic systems, many fundamental aspects remain unclear. An intriguing open question is related to how short-range physics influences the Efimov effect in real systems. Short range contributions are commonly included in universal theory via a single parameter, known as ''three-body parameter''. An open question is whether this parameter is constant or whether it can vary significantly when Feshbach resonances are employed for interaction tuning. Cesium is a very promising candidate to address this issue because of the many broad and narrow Feshbach resonances with different partial-wave character. Our experimental results reveal new Efimov features close to different Feshbach resonances and shed new light on the three-body parameter.

  15. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    Energy Technology Data Exchange (ETDEWEB)

    Naqui, J.; Su, L., E-mail: lijuan.suri.su@gmail.com; Mata, J.; Martín, F., E-mail: Ferran.Martin@uab.es

    2015-06-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc.

  16. Pattern recognition using inverse resonance filtration

    CERN Document Server

    Sofina, Olga; Kvetnyy, Roman

    2010-01-01

    An approach to textures pattern recognition based on inverse resonance filtration (IRF) is considered. A set of principal resonance harmonics of textured image signal fluctuations eigen harmonic decomposition (EHD) is used for the IRF design. It was shown that EHD is invariant to textured image linear shift. The recognition of texture is made by transfer of its signal into unstructured signal which simple statistical parameters can be used for texture pattern recognition. Anomalous variations of this signal point on foreign objects. Two methods of 2D EHD parameters estimation are considered with the account of texture signal breaks presence. The first method is based on the linear symmetry model that is not sensitive to signal phase jumps. The condition of characteristic polynomial symmetry provides the model stationarity and periodicity. Second method is based on the eigenvalues problem of matrices pencil projection into principal vectors space of singular values decomposition (SVD) of 2D correlation matrix....

  17. Magnetic resonance imaging; Imagerie par resonance magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Fontanel, F. [Centre Hospitalier, 40 - Mont-de -Marsan (France); Clerc, T. [Centre Hospitalier Universitaire, 76 - Rouen (France); Theolier, S. [Hospice Civils de Lyon, 69 - Lyon (France); Verdenet, J. [Centre Hospitalier Universitaire, 25 - Besancon (France)

    1997-04-01

    The last improvements in nuclear magnetic resonance imaging are detailed here, society by society with an expose of their different devices. In the future the different technological evolutions will be on a faster acquisition, allowing to reduce the examination time, on the development of a more acute cardiac imaging, of a functional neuro-imaging and an interactive imaging for intervention. With the contrast products, staying a longer time in the vascular area, the angiography will find its place. Finally, the studies on magnetic fields should allow to increase the volume to examine. (N.C.).

  18. Not-so-resonant, resonant absorption

    Science.gov (United States)

    Brunel, F.

    1987-07-01

    When an intense electromagnetic wave is incident obliquely on a sharply bounded overdense plasma, strong energy absorption can be accounted for by the electrons that are dragged into the vacuum and sent back into the plasma with velocities v~=vosc. This mechanism is more efficient than usual resonant absorption for vosc/ω>L, with L being the density gradient length. In the very high-intensity CO2-laser-target interaction, this mechanism may account for most of the energy absorption.

  19. Tuning Leaky Nanocavity Resonances - Perturbation Treatment

    CERN Document Server

    Shlafman, Michael; Salzman, Joseph

    2010-01-01

    Adiabatic frequency tuning of finite-lifetime-nanocavity electromagnetic modes affects also their quality-factor (Q). Perturbative Q change resulting from (real) frequency tuning, is a controllable parameter. Here, the influence of dielectric constant modulation (DCM) on cavity resonances is presented, by first order perturbation analysis for a 3D cavity with radiation losses. Semi-analytical expressions for DCM induced cavity mode frequency and Q changes are derived. The obtained results are in good agreement with numerical calculations.

  20. Mercury's resonant rotation from secular orbital elements

    OpenAIRE

    Stark, Alexander; Oberst, Jürgen; Hussmann, Hauke

    2015-01-01

    We used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet’s measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury’s interior structure. In particular, we derive a mean orbital period o...

  1. Programming of inhomogeneous resonant guided wave networks.

    Science.gov (United States)

    Feigenbaum, Eyal; Burgos, Stanley P; Atwater, Harry A

    2010-12-06

    Photonic functions are programmed by designing the interference of local waves in inhomogeneous resonant guided wave networks composed of power-splitting elements arranged at the nodes of a nonuniform waveguide network. Using a compact, yet comprehensive, scattering matrix representation of the network, the desired photonic function is designed by fitting structural parameters according to an optimization procedure. This design scheme is demonstrated for plasmonic dichroic and trichroic routers in the infrared frequency range.

  2. Introduction to Magnetic Resonance Imaging Techniques

    OpenAIRE

    2009-01-01

    It is quite possible to acquire images with an MR scanner without understanding the principles behind it, but choosing the best parameters and methods, and interpreting images and artifacts, requires understanding. This text serves as an introduction to magnetic resonance imaging techniques. It is aimed at beginners in possession of only a minimal level of technical expertise, yet it introduces aspects of MR that are typically considered technically challenging. The notes were written in conn...

  3. 移相控制全桥零压零流软开关功率变换器谐振过程分析和参数设计方法%Resonant procedure analysis and parameters design approach for phase-shift controlled full-bridge power converter with zero-voltage and zero-current soft-switching

    Institute of Scientific and Technical Information of China (English)

    夏铸亮; 朱志明; 陈俊杰

    2013-01-01

    移相控制全桥软开关功率变换器广泛应用于各种电弧焊接与切割电源.针对焊接电孤的宽负载工作范围,为实现全负载范围的滞后臂功率器件软开关,对变压器一次侧串联饱和电感和隔直电容的移相控制全桥软开关功率变换器的谐振工作过程进行了深入的理论分析,提出实现滞后臂功率器件软开关的饱和电感设计准则,并对不同脉冲宽度和负载电流下的滞后臂功率器件软开关状态进行了仿真研究,验证了理论分析的正确性.在理论分析和仿真研究的基础上,给出了饱和电感总磁通和隔直电容大小的参数设计和选取方法.%The phase -shift controlled full -bridge soft -switching power converter has been widely applied in various electric arc welding and cutting power supplies.Aimed at the wide operating range of welding arc load,the in-depth theoretical analysis is carried out with the resonant procedure of the phase-shift controlled full-bridge soft-switching power converter, in which an saturation inductor and blocking capacitor is connected in series with the primary of transformer, in order to realize the soft-switching of lagging-leg power semiconductors in full load range, and then a design criterion of saturation inductor, to achieved the soft-switching of lagging-leg power semiconductor,is proposed.After that,the simulation study is made to the soft-switching situation of lagging-leg power semiconductors with different pulse width and load current,and the correctness of theoretical analysis is validated.Based on the theoretical analysis and simulation study,the parameters design and selection approach is given for the total magnetic flux of saturation inductor and the value of blocking capacitor.

  4. Hyperbolic Resonances of Metasurface Cavities

    CERN Document Server

    Keene, David

    2015-01-01

    We propose a new class of optical resonator structures featuring one or two metasurface reflectors or metacavities and predict that such resonators support novel hyperbolic resonances. As an example of such resonances we introduce hyperbolic Tamm plasmons (HTPs) and hyperbolic Fabry-Perot resonances (HFPs). The hyperbolic optical modes feature low-loss incident power re-distribution over TM and TE polarization output channels, clover-leaf anisotropic dispersion, and other unique properties which are tunable and are useful for multiple applications.

  5. Theoretical sensitivity analysis of quadruple Vernier racetrack resonators designed for fabrication on the silicon-on-insulator platform

    Science.gov (United States)

    Boeck, Robert; Chrostowski, Lukas; Jaeger, Nicolas A. F.

    2014-09-01

    Vernier racetrack resonators offer advantages over single racetrack resonators such as extending the free spectral range (FSR).1-3 Here, we have presented a theoretical sensitivity analysis on quadruple Vernier racetrack resonators based on varying, one at a time, various fabrication dependent parameters. These parameters include the waveguide widths, heights, and propagation losses. We have shown that it should be possible to design a device that meets typical commercial specifications while being tolerant to changes in these parameters.

  6. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  7. Split-ball resonator

    CERN Document Server

    Kuznetsov, Arseniy I; Fu, Yuan Hsing; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Kivshar, Yuri; Pickard, Daniel S; Lukiyanchuk, Boris

    2014-01-01

    We introduce a new concept of split-ball resonator and demonstrate a strong omnidirectional magnetic dipole response for both gold and silver spherical plasmonic nanoparticles with nanometer-scale cuts. Tunability of the magnetic dipole resonance throughout the visible spectral range is demonstrated by a change of the depth and width of the nanoscale cut. We realize this novel concept experimentally by employing the laser-induced transfer method to produce near-perfect spheres and helium ion beam milling to make cuts with the nanometer resolution. Due to high quality of the spherical particle shape, governed by strong surface tension forces during the laser transfer process, and the clean, straight side walls of the cut made by helium ion milling, magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. Structuring arbitrary features on the surface of ideal spherical resonators with nanoscale dimensions provides new ways of engineering hybrid resonant modes and ultra-high near-f...

  8. The Resonant Transneptunian Populations

    CERN Document Server

    Gladman, B; Petit, J-M; Kavelaars, J; Jones, R L; Parker, J Wm; Van Laerhoven, C; Nicholson, P; Rousselot, P; Bieryla, A; Ashby, M L N

    2012-01-01

    The transneptunian objects (TNOs) trapped in mean-motion resonances with Neptune were likely emplaced there during planet migration late in the giant-planet formation process. We perform detailed modelling of the resonant objects detected in the Canada-France Ecliptic Plane Survey (CFEPS) in order to provide population estimates and, for some resonances, constrain the complex internal orbital element distribution. Detection biases play a critical role because phase relationships with Neptune make object discovery more likely at certain longitudes. This paper discusses the 3:2, 5:2, 2:1, 3:1, 5:1, 4:3, 5:3, 7:3, 5:4, and 7:4 mean-motion resonances, all of which had CFEPS detections, along with our upper limit on 1:1 Neptune Trojans (which is consistent with their small population estimated elsewhere). For the plutinos (TNOs in the 3:2 resonance) we refine the orbital element distribution given in Kavelaars et al. (2009) and show that steep H-magnitude distributions (N(H) proportional to 10aH, with a=0.8-0.9) a...

  9. Overview of baryon resonances

    Directory of Open Access Journals (Sweden)

    Downie E.J.

    2014-06-01

    Full Text Available The quest to understand the physics of any system cannot be said to be complete as long as one cannot predict and fully understand its resonance spectrum. Despite this, due to the experimental challenge of the required double polarization measurements and the difficulty in achieving unambiguous, model-independent extraction and interpretation of the nucleon resonance spectrum of many broad and overlapping resonances, understanding of the structure and dynamics of the nucleon has suffered. The recent improvement in statistical quality and kinematic range of the data made available by such full-solid-angle systems as the CB and TAPS constellation at MAMI, coupled with the high flux polarized photon beam provided by the Glasgow Photon Tagger, and the excellent properties of the Mainz Frozen Spin Target, when paired with new developments in Partial Wave Analysis (PWA methodology make this a very exciting and fruitful time in nucleon resonance studies. Here the recent influx of data and PWA developments are summarized, and the requirements for a complete, unambiguous PWA solution over the first and second resonance region are briefly reviewed.

  10. Microwave Absorption in Electron Cyclotron Resonance Plasma

    Institute of Scientific and Technical Information of China (English)

    LIU Ming-Hai; HU Xi-Wei; WU Qin-Chong; YU Guo-Yang

    2000-01-01

    The microwave power absorption in electron cyclotron resonance plasma reactor was investigated with a twodimensional hybrid-code. Simulation results indicated that there are two typical power deposition profiles over the entire parameter region: (1) microwave power deposition peaks on the axis and decreases in radial direction,(2) microwave power deposition has its maximum at some radial position, i.e., a hollow distribution. The spatial distribution of electron temperature resembles always to the microwave power absorption profile. The dependence of plasma parameter on the gas pressure is discussed also.

  11. Association between echocardiography derived right ventricular function parameters with cardiac magnetic resonance derived right ventricular ejection fraction and 6-minute walk distance in pulmonary hypertension patients%超声心动图与心脏核磁共振评估肺高血压患者右心室功能的比较

    Institute of Scientific and Technical Information of China (English)

    王臻臻; 杨振文; 万征; 于铁链; 贾莉莉; 杜鑫; 黄灿亮

    2014-01-01

    目的 比较经胸超声心动图(TTE)评价肺高血压(PH)患者右心室功能的各指标与心脏核磁共振成像技术(CMR)测得的右心室射血分数(RVEF)及6 min步行距离(6MWD)的相关性.方法 入选天津医科大学总医院心血管内科2011年3月至2013年3月住院的Ⅰ类和Ⅳ类PH患者40例.入院后行右心导管(RHC)检查,确诊患者在病情稳定及治疗无变化1周内行CMR、TTE、6MWD试验.分别对CMR、TTE、6MWD指标进行相关性分析,并对TTE检测的各指标与CMR获得的RVEF(RVEF-CMR)的相关系数由大到小进行排序.结果 TTE评价右心室功能的指标中,游离壁三尖瓣环收缩期纵向收缩最大速度(S')、游离壁三尖瓣环收缩期峰值位移(TAPSE)、右心室面积变化分数(FAC)、游离壁三尖瓣环等容收缩期加速度(IVA)、心肌做功指数(MPI)与RVEF-CMR均存在相关性,相关系数依次是r =0.69(P <0.001)、r=0.65(P <0.001)、r=0.62(P <0.001)、r=0.43(P =0.006)和r=-0.38(P <0.05).S '、TAPSE、FAC、IVA、MPI与6MWD无相关性.RVEF-CMR与6MWD无相关性.最准确指示RVEF-CMR≤20%的指标是S'<8.79 cm/s,ROC曲线下面积0.92(95% CI:0.72 ~0.84),敏感度0.91,特异度0.80.结论 S'与RVEF相关性最强,S '<8.79 cm/s能准确指示出RVEF≤20%的患者.RVEF-CMR、S '、TAPSE与6MWD均无相关性.%Objective To explore the association between transthoracic echocardiography (TFE) derived right ventricular (RV) function parameters with cardiovascular magnetic resonance imaging (CMR)derived RV ejection fraction (RVEF) and 6 minute walk distance (6MWD) in pulmonary hypertension (PH) patients.Methods A total of 40 PH patients (37 pulmonary artery hypertension (PAH) and 3 chronic thromboembolic pulmonary hypertension (CTEPH)) hospitalized in our department between March 2011 and March 2013 were enrolled in this study.PH diagnosis was established by right heart catheterization and TTE,CMR and 6MWT were performed within one week post TTE

  12. Full investigation of the resonant frequency servo loop for resonator fiber-optic gyro.

    Science.gov (United States)

    Ma, Huilian; Lu, Xiao; Yao, Linzhi; Yu, Xuhui; Jin, Zhonghe

    2012-07-20

    Resonator fiber-optic gyro (RFOG) is a high-accuracy inertial rotation sensor based on the Sagnac effect. A high-accuracy resonant frequency servo loop is indispensable for a high-performance RFOG. It is composed of a frequency discriminator, a loop filter, and a laser actuator. Influences of the loop parameters are fully developed. Optimized loop parameters are obtained by considering the noise reduction and wide dynamic performance of the RFOG. As a result, with the integration time of 10 s, the accuracy of the resonant frequency loop is increased to 0.02 Hz (1σ). It is equivalent to a rotation rate of 0.067°/h, which is close to the shot noise limit for the RFOG, while a minimum rotation of ±0.05°/s has been carried out simultaneously. These are the best results reported to date, to the best of our knowledge, for an RFOG using the miniature semiconductor laser that benefits from the optimization of the resonant frequency servo-loop parameters.

  13. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    Science.gov (United States)

    Cosci, Alessandro; Berneschi, Simone; Giannetti, Ambra; Farnesi, Daniele; Cosi, Franco; Baldini, Francesco; Nunzi Conti, Gualtiero; Soria, Silvia; Barucci, Andrea; Righini, Giancarlo; Pelli, Stefano

    2016-01-01

    This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system. PMID:27589761

  14. A resonance without resonance. Scrutinizing the diphoton excess at 750 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Soo; Rolbiecki, Krzysztof [IFT-UAM/CSIC, Madrid (Spain). Inst. de Fisica Teorica; Reuter, Juergen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ruiz de Austri, Roberto [IFIC-UV/CSIC, Valencia (Spain). Inst. de Fisica Corpuscular

    2015-12-15

    Motivated by the recent diphoton excesses reported by both ATLAS and CMS collaborations, we suggest that a new heavy spinless particle is produced in gluon fusion at the LHC and decays to a couple of lighter pseudoscalars which then decay to photons. The new resonances could arise from a new strongly interacting sector and couple to Standard Model gauge bosons only via the corresponding Wess-Zumino-Witten anomaly. We present a detailed recast of the newest 13 TeV data from ATLAS and CMS together with the 8 TeV data to scan the consistency of the parameter space for those resonances.

  15. Superdimensional Metamaterial Resonators

    CERN Document Server

    Greenleaf, Allan; Kurylev, Yaroslav; Lassas, Matti; Uhlmann, Gunther

    2014-01-01

    We propose a fundamentally new method for the design of metamaterial arrays, valid for any waves modeled by the Helmholtz equation, including scalar optics and acoustics. The design and analysis of these devices is based on eigenvalue and eigenfunction asymptotics of solutions to Schr\\"odinger wave equations with harmonic and degenerate potentials. These resonators behave superdimensionally, with a higher local density of eigenvalues and greater concentration of waves than expected from the physical dimension, e.g., planar resonators function as 3- or higher-dimensional media, and bulk material as effectively of dimension 4 or higher. Applications include antennas with a high density of resonant frequencies and giant focussing, and are potentially broadband.

  16. Quartz resonator processing system

    Science.gov (United States)

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  17. Resonance vector mode locking

    CERN Document Server

    Kolpakov, Stanislav A; Loika, Yuri; Tarasov, Nikita; Kalashnikov, Vladimir; Agrawal, Govind P

    2015-01-01

    A mode locked fibre laser as a source of ultra-stable pulse train has revolutionised a wide range of fundamental and applied research areas by offering high peak powers, high repetition rates, femtosecond range pulse widths and a narrow linewidth. However, further progress in linewidth narrowing seems to be limited by the complexity of the carrier-envelope phase control. Here for the first time we demonstrate experimentally and theoretically a new mechanism of resonance vector self-mode locking where tuning in-cavity birefringence leads to excitation of the longitudinal modes sidebands accompanied by the resonance phase locking of sidebands with the adjacent longitudinal modes. An additional resonance with acoustic phonons provides the repetition rate tunability and linewidth narrowing down to Hz range that drastically reduces the complexity of the carrier-envelope phase control and so will open the way to advance lasers in the context of applications in metrology, spectroscopy, microwave photonics, astronomy...

  18. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  19. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A. [Fermilab; Fox, Patrick J. [Fermilab; Kearney, John [Fermilab

    2017-05-23

    We study models that produce a Higgs boson plus photon ($h^0 \\gamma$) resonance at the LHC. When the resonance is a $Z'$ boson, decays to $h^0 \\gamma$ occur at one loop. If the $Z'$ boson couples at tree-level to quarks, then the $h^0 \\gamma$ branching fraction is typically of order $10^{-5}$ or smaller. Nevertheless, there are models that would allow the observation of $Z' \\to h^0 \\gamma$ at $\\sqrt{s} = 13$ TeV with a cross section times branching fraction larger than 1 fb for a $Z'$ mass in the 200--450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The 1-loop decay of the $Z'$ into lepton pairs competes with $h^0 \\gamma$, even if the $Z'$ couplings to leptons vanish at tree level. We also present a model in which a $Z'$ boson decays into a Higgs boson and a pair of collimated photons, mimicking an $h^0 \\gamma$ resonance. In this model, the $h^0 \\gamma$ resonance search would be the discovery mode for a $Z'$ as heavy as 2 TeV. When the resonance is a scalar, although decay to $h^0 \\gamma$ is forbidden by angular momentum conservation, the $h^0$ plus collimated photons channel is allowed. We comment on prospects of observing an $h^0 \\gamma$ resonance through different Higgs decays, on constraints from related searches, and on models where $h^0$ is replaced by a nonstandard Higgs boson.

  20. Reconfigurable optical routers based on Coupled Resonator Induced Transparency resonances.

    Science.gov (United States)

    Mancinelli, M; Bettotti, P; Fedeli, J M; Pavesi, L

    2012-10-08

    The interferometric coupling of pairs of resonators in a resonator sequence generates coupled ring induced transparency (CRIT) resonances. These have quality factors an order of magnitude greater than those of single resonators. We show that it is possible to engineer CRIT resonances in tapered SCISSOR (Side Coupled Integrated Space Sequence of Resonator) to realize fast and efficient reconfigurable optical switches and routers handling several channels while keeping single channel addressing capabilities. Tapered SCISSORs are fabricated in silicon-on-insulator technology. Furthermore, tapered SCISSORs show multiple-channel switching behavior that can be exploited in DWDM applications.

  1. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  2. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    CERN Document Server

    Xie, Xueshu

    2014-01-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous; instead, at some resonance isotopic compositions, the kinetics increases, while at off resonance compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error plus or minus 0.05%) experiment to measure the bacterial growth parameters in minimal media with varying isotopic compositions. A number of predicted resonance conditions were tested, which kinetic enhancements as strong as plus 3% discovered at these conditions. The combined evidence extremely strongly supports the existence of isotopic resonances. This phenomenon has numerous implications for the origin of life and astrobiology, and possible application...

  3. Dynamical analysis of the buildup process near resonance

    CERN Document Server

    Villavicencio, J; Villavicencio, Jorge; Romo, Roberto

    2000-01-01

    The time evolution of the buildup process inside a double-barrier system for off-resonance incidence energies is studied by considering the analytic solution of the time dependent Schr\\"{o}dinger equation with cutoff plane wave initial conditions. We show that the buildup process exhibits invariances under arbitrary changes on the system parameters, which can be successfully described by a simple and easy-to-use one-level formula. We find that the buildup of the off-resonant probability density is characterized by an oscillatory pattern modulated by the resonant case which governs the duration of the transient regime. This is evidence that off-resonant and resonant tunneling are two correlated processes, whose transient regime is characterized by the same transient time constant of two lifetimes.

  4. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  5. The dynamics of large-scale arrays of coupled resonators

    Science.gov (United States)

    Borra, Chaitanya; Pyles, Conor S.; Wetherton, Blake A.; Quinn, D. Dane; Rhoads, Jeffrey F.

    2017-03-01

    This work describes an analytical framework suitable for the analysis of large-scale arrays of coupled resonators, including those which feature amplitude and phase dynamics, inherent element-level parameter variation, nonlinearity, and/or noise. In particular, this analysis allows for the consideration of coupled systems in which the number of individual resonators is large, extending as far as the continuum limit corresponding to an infinite number of resonators. Moreover, this framework permits analytical predictions for the amplitude and phase dynamics of such systems. The utility of this analytical methodology is explored through the analysis of a system of N non-identical resonators with global coupling, including both reactive and dissipative components, physically motivated by an electromagnetically-transduced microresonator array. In addition to the amplitude and phase dynamics, the behavior of the system as the number of resonators varies is investigated and the convergence of the discrete system to the infinite-N limit is characterized.

  6. Resonant microsphere gyroscope based on a double Faraday rotator system.

    Science.gov (United States)

    Xie, Chengfeng; Tang, Jun; Cui, Danfeng; Wu, Dajin; Zhang, Chengfei; Li, Chunming; Zhen, Yongqiu; Xue, Chenyang; Liu, Jun

    2016-10-15

    The resonant microsphere gyroscope is proposed based on a double Faraday rotator system for the resonant microsphere gyroscope (RMSG) that is characterized by low insertion losses and does not destroy the reciprocity of the gyroscope system. Use of the echo suppression structure and the orthogonal polarization method can effectively inhibit both the backscattering noise and the polarization error, and reduce them below the system sensitivity limit. The resonance asymmetry rate dropped from 34.2% to 2.9% after optimization of the backscattering noise and the polarization noise, which greatly improved the bias stability and the scale factor linearity of the proposed system. Additionally, based on the optimum parameters for the double Faraday rotator system, a bias stability of 0.04°/s has been established for an integration time of 10 s in 1000 s in a resonator microsphere gyroscope using a microsphere resonator with a diameter of 1 mm and a Q of 7.2×106.

  7. Pygmy resonances and nucleosynthesis

    CERN Document Server

    Tsoneva, Nadia

    2014-01-01

    A microscopic theoretical approach based on a self-consistent density functional theory for the nuclear ground state and QRPA formalism extended with multi-phonon degrees of freedom for the nuclear excited states is implemented in investigations of new low-energy modes called pygmy resonances. Advantage of the method is the unified description of low-energy multiphonon excitations, pygmy resonances and core polarization effects. This is found of crucial importance for the understanding of the fine structure of nuclear response functions at low energies. Aspects of the precise knowledge of nuclear response functions around the neutron threshold are discussed in a connection to nucleosynthesis.

  8. Resonance classes of measures

    Directory of Open Access Journals (Sweden)

    Maria Torres De Squire

    1987-01-01

    Full Text Available We extend F. Holland's definition of the space of resonant classes of functions, on the real line, to the space R(Φpq (1≦p, q≦∞ of resonant classes of measures, on locally compact abelian groups. We characterize this space in terms of transformable measures and establish a realatlonship between R(Φpq and the set of positive definite functions for amalgam spaces. As a consequence we answer the conjecture posed by L. Argabright and J. Gil de Lamadrid in their work on Fourier analysis of unbounded measures.

  9. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2014-07-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state with a continuum one. During the last decade this concept has been applied in plasmonics where the interference between a narrowband polariton and a broader one has been used to generate electromagnetically induced transparency (EIT) (M. Rahmani, et al., Laser Photon. Rev., 7, 329-349, 2013).

  10. Nanoantenna using mechanical resonance

    KAUST Repository

    Chang Hwa Lee,

    2010-11-01

    Nanoantenna using mechanical resonance vibration is made from an indium tin oxide (ITO) coated vertically aligned nanorod array. Only this structure works as a radio with demodulator without any electrical circuit using field emission phenomenon. A top-down fabrication method of an ITO coated nanorod array is proposed using a modified UV lithography. The received radio frequency and the resonance frequency of nanoantenna can be controlled by the fabrication condition through the height of a nanorod array. The modulated signals are received successfully with the transmission carrier wave frequency (248MHz) and the proposed nanoantenna is expected to be used in communication system for ultra small scale sensor. ©2010 IEEE.

  11. Hadronic Resonances from STAR

    Directory of Open Access Journals (Sweden)

    Wada Masayuki

    2012-11-01

    Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.

  12. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  13. Technical aspects of magnetic resonance imaging in parathyroid gland lesions

    Energy Technology Data Exchange (ETDEWEB)

    Hemmingsson, A.; Ericsson, A.; Ljunghall, S.; Juhlin, C.; Jung, B.; Rastad, J.; Thuomas, K.A.; Akerstroem, G.

    Two patients with primary hyperparathyroidism were examined before parathyroid surgery with magnetic resonance imaging at 0.35 telsa in order to analyse optimal methods of visualization. Two large parathyroid glands in the neck had long transverse relaxation times which rendered them clearly visible in T2-weighted images as structures of a signal intensity higher than that of the surrounding. Large parathyroid lesions may thus be easily detected by magnetic resonance imaging provided proper examination parameters are employed.

  14. Parametrics Resonances of a Forced Modified Rayleigh-Duffing Oscillator

    CERN Document Server

    Miwadinou, C H; Chabi, J B

    2013-01-01

    We investigate in this paper the superharmonic and subharmonic resonances of forced modified Rayleigh-Duffing oscillator. We analyse this equation by method of multiple scales and we obtain superharmonic and subharmonic resonances order-two and order-three. We obtain also regions where steady-state subharmonic responses exist. Finally, we use the amplitude-frequency curve for demonstrate the effect of various parameters on the response of the system.

  15. Active plasma resonance spectroscopy: A functional analytic description

    OpenAIRE

    Lapke, Martin; Oberrath, Jens; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2012-01-01

    The term "Active Plasma Resonance Spectroscopy" refers to a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: An signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept h...

  16. Theory of a resonance oscillator with relay interaction

    Science.gov (United States)

    Alekseev, G. A.; Mikhailov, V. I.; Pivovarova, A. G.

    A theoretical analysis is presented of an open-resonator oscillator the operation of which is based on the relay interaction of a broad ribbon-shaped electron beam with the spatial harmonic of the HF field of the resonator. Relations of the general theory of oscillator excitation are used to investigate the dependence of the output characteristics on the parameters of the problem, assuming the distribution of HF amplitude to be uniform along the periodic structure.

  17. Waveguide Model for Thick Complementary Split Ring Resonators

    CERN Document Server

    Pulido-Mancera, Laura Maria

    2014-01-01

    This paper presents a very simple analytical model for the design of Frequency Selective Surfaces based on Complementary Split Ring Resonators (CSRR) within the microwave range. Simple expressions are provided for the most important geometrical parameters of the model, yielding an accurate description of the CSRR resonance frequency and avoiding full-wave numerical simulations. Besides, a qualitative description of the band-pass filter behavior of these structures is described, considering its high quality factor Q.

  18. Optical rogue waves in whispering-gallery-mode resonators

    Science.gov (United States)

    Coillet, Aurélien; Dudley, John; Genty, Goëry; Larger, Laurent; Chembo, Yanne K.

    2014-01-01

    We report a theoretical study showing that rogue waves can emerge in whispering-gallery-mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering-gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we give evidence of a range of parameters where rare and extreme events associated with non-Gaussian statistics of the field maxima are observed.

  19. Optical Rogue Waves in Whispering-Gallery-Mode Resonators

    CERN Document Server

    Coillet, Aurélien; Genty, Goery; Larger, Laurent; Chembo, Yanne K

    2014-01-01

    We report a theoretical study showing that rogue waves can emerge in whispering gallery mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we evidence a range of parameters where rare and extreme events associated with a non-gaussian statistics of the field maxima are observed.

  20. Investigation of Vertical Spiral Resonators for Low Frequency Metamaterial Design

    CERN Document Server

    Zhu, Jiwen; Stevens, Christopher J; Edwards, David J

    2008-01-01

    This paper thoroughly explores the characteristics of vertical spiral resonators (VSR). They exhibit rela-tively high Q factors and sizes around a few percent of the free space wavelength, which make them ideal candi-dates for assembling metamaterial devices. A quasistatic model of VSR is obtained from simple analytical ex-pressions, and the effects of certain geometrical parameters on the resonant frequency are investigated.

  1. Accidental Degeneracy and Berry Phase of Resonant States

    CERN Document Server

    Mondragón, A

    1997-01-01

    We study the complex geometric phase acquired by the resonant states of an open quantum system which evolves irreversibly in a slowly time dependent environment. In analogy with the case of bound states, the Berry phase factors of resonant states are holonomy group elements of a complex line bundle with structure group C*. In sharp contrast with bound states, accidental degeneracies of resonances produce a continuous closed line of singularities formally equivalent to a continuous distribution of "magnetic" charge on a "diabolical" circle, in consequence, we find different classes of topologically inequivalent non-trivial closed paths in parameter space.

  2. Fano resonance between Mie and Bragg scattering in photonic crystals.

    Science.gov (United States)

    Rybin, M V; Khanikaev, A B; Inoue, M; Samusev, K B; Steel, M J; Yushin, G; Limonov, M F

    2009-07-10

    We report the observation of a Fano resonance between continuum Mie scattering and a narrow Bragg band in synthetic opal photonic crystals. The resonance leads to a transmission spectrum exhibiting a Bragg dip with an asymmetric profile, which can be tunably reversed to a Bragg rise. The Fano asymmetry parameter is linked with the dielectric contrast between the permittivity of the filler and the specific value determined by the opal matrix. The existence of the Fano resonance is directly related to disorder due to nonuniformity of a-SiO2 opal spheres. The theoretical "quasi-3D" model produces results in excellent agreement with the experimental data.

  3. Analysis of the electrically forced vibrations of piezoelectric mesa resonators

    Institute of Scientific and Technical Information of China (English)

    He Hui-Jing; Nie Guo-Quan; Liu Jin-Xi; Yang Jia-Shi

    2013-01-01

    We study the electrically forced thickness-shear and thickness-twist vibrations of stepped thickness piezoelectric plate mesa resonators made of polarized ceramics or 6-mm class crystals.A theoretical analysis based on the theory of piezoelectricity is performed,and an analytical solution is obtained using the trigonometric series.The electrical admittance,resonant frequencies,and mode shapes are calculated,and strong energy trapping of the modes is observed.Their dependence on the geometric parameters of the resonator is also examined.

  4. Capture into resonance and phase space dynamics in optical centrifuge

    CERN Document Server

    Armon, Tsafrir

    2016-01-01

    The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1,P2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory.

  5. Resonance flourescence in atomic coherent systems spectral features

    CERN Document Server

    Sandhya, S N

    1999-01-01

    We study resonance flourescence in a four level ladder system and illustrate some novel features due to quantum interference and atomic coherence effects. We find that under three photon resonant conditions, in some region of the parameter space of the rabi frequencies $\\Omega_1,\\Omega_2,\\Omega_3$, emission is dominantly by the level 4 at the line center even though there is an almost equal distribution of populations in all the levels. As one increases 'dynamically collapses' to a two level system. The steady state populations and the the resonance flourescence from all the levels provide adequate evidence to this effect.

  6. Localized spoof surface plasmon resonances at terahertz range

    Science.gov (United States)

    Chen, Lin; Xu, Mengjian; Zang, Xiaofei; Peng, Yan; Zhu, Yiming

    2016-11-01

    The influence of the inner disk radius r, the filling ratio α, numbers of sectors N, and the gap g on transmission response for corrugated metallic disk (CMD) with single C-shaped resonator(CSR) has been fully studied. The results indicate that varying parameters r can efficiently excite the higher order spoof localized surface plasmon modes in corrugated metallic disk. The relationship between the bright dipole and dark multipolar resonances presents the possibility of high Q dark resonances excitation. All results may be of great interest for diverse applications.

  7. Ground and air resonance of bearingless rotors in hover

    Science.gov (United States)

    Jang, Jinseok; Chopra, Inderjit

    1987-01-01

    A finite element formulation is used to investigate ground and air resistence in hover for a bearingless rotor. Aerodynamic forces are studied using quasi-steady strip theory, and unsteady aerodynamic effects are introduced through an inflow dynamics model. Reasonable correlation was found between predicted ground and air resonance results and data obtained from measurements using a 1/8th Froude-scaled dynamic model. Systematic parametric studies of the effects of various design parameters were performed, and lag frequency was found to significantly influence ground resonance stability, whereas pitch-lag coupling, blade sweep and pitch link stiffness had powerful effects on air resonance stability.

  8. Materials for Bulk Acoustic Resonators and Filters

    Science.gov (United States)

    Loebl, Hans-Peter

    2003-03-01

    Highly selective solidly mounted bulk acoustic wave (BAW) band pass filters are suited for mobile and wireless systems in the GHz frequency range between 0.8 and 10 GHz. Electro-acoustic thin film BAW resonators are the building blocks these BAW filters. Piezoelectric materials used in these resonators include mainly AlN or ZnO which can be deposited by dedicated thin film sputter deposition techniques. Using these piezo-electric materials and using suited materials for the acoustic Bragg reflector, BAW resonators with high quality factors can be fabricated. The achievable filter bandwidth is approximately 4Alternatively, also ferroelectric thin films might be used to achieve higher coupling coefficient and thus filter bandwidth. BAW resonators and filters have been designed and fabricated on 6" Silicon and glass wafers. Results are presented for resonators and filters operating between 1.95 and 8 GHz. The talk will give an overview of the material aspects which are important for BAW devices. It will be shown that modeling of the resonator and filter response using 1D electro-acoustic simulation (1,2) which includes losses is essential to extract acoustic and electrical material parameters. (1) Solidly Mounted Bulk Acoustic Wave Filters for the Ghz Frequency Range, H.P. Loebl, C. Metzmacher , D.N.Peligrad , R. Mauczok , M. Klee , W. Brand , R.F. Milsom , P.Lok , F.van Straten , A. Tuinhout , J.W.Lobeek, IEEE 2002 Ultrasonics Symposium Munich, October 2002. (2) Combined Acoustic-Electromagnetic Simulation Of Thin-Film Bulk Acoustic Wave Filters, R.F. Milsom, H-P. Löbl, D.N. Peligrad, J-W. Lobeek, A. Tuinhout, R. H. ten Dolle IEEE 2002 Ultrasonics Symposium Munich, October 2002.

  9. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  10. Redefining solubility parameters: the partial solvation parameters.

    Science.gov (United States)

    Panayiotou, Costas

    2012-03-21

    The present work reconsiders a classical and universally accepted concept of physical chemistry, the solubility parameter. Based on the insight derived from modern quantum chemical calculations, a new definition of solubility parameter is proposed, which overcomes some of the inherent restrictions of the original definition and expands its range of applications. The original single solubility parameter is replaced by four partial solvation parameters reflecting the dispersion, the polar, the acidic and the basic character of the chemical compounds as expressed either in their pure state or in mixtures. Simple rules are adopted for the definition and calculation of these four parameters and their values are tabulated for a variety of common substances. In contrast, however, to the well known Hansen solubility parameters, their design and evaluation does not rely exclusively on the basic rule of "similarity matching" for solubility but it makes also use of the other basic rule of compatibility, namely, the rule of "complementarity matching". This complementarity matching becomes particularly operational with the sound definition of the acidic and basic components of the solvation parameter based on the third σ-moments of the screening charge distributions of the quantum mechanics-based COSMO-RS theory. The new definitions are made in a simple and straightforward manner, thus, preserving the strength and appeal of solubility parameter stemming from its simplicity. The new predictive method has been applied to a variety of solubility data for systems of pharmaceuticals and polymers. The results from quantum mechanics calculations are critically compared with the results from Abraham's acid/base descriptors.

  11. Updated Chinese Evaluated Nuclear Parameter Library (CENPL - 2)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In nuclear model calculations, besides the need of advanced theoretical models, a large volume ofprecise nuclear basic data and reliable nuclear model parameters are also very important. Therefore theChinese Evaluated Nuclear Parameter Library (CENPL) for the model calculations of nuclear reactionswas developed in the past ten years. The CENPL include (1) atomic masses and deformations (AMD);(2)discrete level schemes (DLS); (3) average neutron resonance parameters (ARP); (4) level density

  12. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  13. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  14. Single spin magnetic resonance

    Science.gov (United States)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  15. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  16. Wireless ferroelectric resonating sensor.

    Science.gov (United States)

    Viikari, Ville; Seppa, Heikki; Mattila, Tomi; Alastalo, Ari

    2010-04-01

    This paper presents a passive wireless resonating sensor that is based on a ferroelectric varactor. The sensor replies with its data at an intermodulation frequency when a reader device illuminates it at 2 closely located frequencies. The paper derives a theoretical equation for the response of such a sensor, verifies the theory by simulations, and demonstrates a temperature sensor based on a ferroelectric varactor.

  17. Folded waveguide resonator

    DEFF Research Database (Denmark)

    2013-01-01

    A waveguide resonator comprising a number of side walls defining a cavity enclosed by said sidewalls defining the cavity; and two or more conductive plates extending into the cavity, each conductive plate having a first side and a second side opposite the first side, and wherein the conductive...

  18. Electrically detected ferromagnetic resonance

    NARCIS (Netherlands)

    Goennenwein, S.T.B.; Schink, S.W.; Brandlmaier, A.; Boger, A.; Opel, M.; Gross, R.; Keizer, R.S.; Klapwijk, T.M.; Gupta, A.; Huebl, H.; Bihler, C.; Brandt, M.S.

    2007-01-01

    We study the magnetoresistance properties of thin ferromagnetic CrO2 and Fe3O4 films under microwave irradiation. Both the sheet resistance ρ and the Hall voltage VHall characteristically change when a ferromagnetic resonance (FMR) occurs in the film. The electrically detected ferromagnetic resonanc

  19. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation of...

  20. Resonant scanning mechanism

    Science.gov (United States)

    Wallace, John; Newman, Mike; Gutierrez, Homero; Hoffman, Charlie; Quakenbush, Tim; Waldeck, Dan; Leone, Christopher; Ostaszewski, Miro

    2014-10-01

    Ball Aerospace & Technologies Corp. developed a Resonant Scanning Mechanism (RSM) capable of combining a 250- Hz resonant scan about one axis with a two-hertz triangular scan about the orthogonal axis. The RSM enables a rapid, high-density scan over a significant field of regard (FOR) while minimizing size, weight, and power requirements. The azimuth scan axis is bearing mounted allowing for 30° of mechanical travel, while the resonant elevation axis is flexure and spring mounted with five degrees of mechanical travel. Pointing-knowledge error during quiescent static pointing at room temperature across the full range is better than 100 μrad RMS per axis. The compact design of the RSM, roughly the size of a soda can, makes it an ideal mechanism for use on low-altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) resonant springs which allow for a high-frequency scan axis with low power consumption; and ii) an independent lower-frequency scan axis allowing for a wide FOR. The pointing control system operates each axis independently and employs i) a position loop for the azimuth axis; and ii) a unique combination of parallel frequency and amplitude control loops for the elevation axis. All control and pointing algorithms are hosted on a 200-MHz microcontroller with 516 KB of RAM on a compact 3"×4" digital controller, also of Ball design.

  1. Resonant MEMS tunable VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta;

    2013-01-01

    We demonstrate how resonant excitation of a microelectro-mechanical system can be used to increase the tuning range of a vertical-cavity surface-emitting laser two-fold by enabling both blue- and red-shifting of the wavelength. In this way a short-cavity design enabling wide tuning range can be r...

  2. Transparency windows of the plasmonic nanostructure composed of C-shaped and U-shaped resonators

    Science.gov (United States)

    Zhou, Xin; Ouyang, Min; Tang, Bin; Wang, Zhibing; He, Jun

    2017-02-01

    We in this study investigated numerically the plasmon-induced transparency (PIT) effect on the plasmonic nanostructures composed of C-shaped and U-shaped resonators by using finite difference time domain (FDTD) method. The PIT effect in the nanosystem stemmed from the near field coupling between the bright and dark modes. The nanostructure composed of three resonators exhibited double PIT effect. And the PIT spectral response of the proposed nanostructures was demonstrated having a dependence on the parameters of the compound plasmonic system such as the widths of C-shaped resonator and U-shaped resonator, the resonators spatial arrangement and the edge-to-edge distance between the adjacent resonators. The electric and magnetic field distributions of certain resonance wavelengths were also given to discuss the underlying physics. The resonator design strategy opens up a rich pathway to develop the building block of systems for all optical switching, plasmonic sensing applications.

  3. Collective resonances of atomic xenon from the linear to the nonlinear regime

    CERN Document Server

    Chen, Yi-Jen; Santra, Robin

    2016-01-01

    We explain the origin of the two collective sub-resonances of the $4d$ giant dipole resonance of atomic Xe recently discovered by nonlinear spectroscopy. In the case of one-photon absorption, while a change in the resonant-like feature in the cross section upon the inclusion of electronic correlations has been commonly attributed to a change of the resonance parameters of a single resonance state, we show that this modification is a result of switching between the relative visibilities of the underlying resonance states. In addition, we predict hitherto undiscovered collective $4d$ resonance states in Xe that can only be accessed through multiphoton absorption. Unlike any known collective feature in atoms, these resonances are exceptionally long-lived (more than 100 attoseconds), thus opening up possibilities to probe new collective effects in atoms with modern XUV light sources.

  4. The role of anti-resonance frequencies from operational modal analysis in finite element model updating

    Science.gov (United States)

    Hanson, D.; Waters, T. P.; Thompson, D. J.; Randall, R. B.; Ford, R. A. J.

    2007-01-01

    Finite element model updating traditionally makes use of both resonance and modeshape information. The mode shape information can also be obtained from anti-resonance frequencies, as has been suggested by a number of researchers in recent years. Anti-resonance frequencies have the advantage over mode shapes that they can be much more accurately identified from measured frequency response functions. Moreover, anti-resonance frequencies can, in principle, be estimated from output-only measurements on operating machinery. The motivation behind this paper is to explore whether the availability of anti-resonances from such output-only techniques would add genuinely new information to the model updating process, which is not already available from using only resonance frequencies. This investigation employs two-degree-of-freedom models of a rigid beam supported on two springs. It includes an assessment of the contribution made to the overall anti-resonance sensitivity by the mode shape components, and also considers model updating through Monte Carlo simulations, experimental verification of the simulation results, and application to a practical mechanical system, in this case a petrol generator set. Analytical expressions are derived for the sensitivity of anti-resonance frequencies to updating parameters such as the ratio of spring stiffnesses, the position of the centre of gravity, and the beam's radius of gyration. These anti-resonance sensitivities are written in terms of natural frequency and mode shape sensitivities so their relative contributions can be assessed. It is found that the contribution made by the mode shape sensitivity varies considerably depending on the value of the parameters, contributing no new information for significant combinations of parameter values. The Monte Carlo simulations compare the performance of the update achieved when using information from: the resonances only; the resonances and either anti-resonance; and the resonances and both

  5. Computer Simulation Of A CO2 High Power Laser With Folded Resonator

    Science.gov (United States)

    Meisterhofer, E.; Lippitsch, M. E.

    1984-03-01

    Based on the iterative solution of a generalized Kirchhoff-Fresnel integral equation we have developed a computer model for realistic simulation of arbitrary linear or folded resonators. With known parameters of the active medium (small signal gain, saturation intensity, volume) we can determine the optimal parameters for the resonator (e.g. out-put mirror transmission, radius of curvature of mirrors, diameter and place of diaphragms, length of resonator) to get highest output power with a certain mode pattern. The model is tested for linear as well as folded resonators.

  6. Experimental investigation of resonance self-shielding and the Doppler effect in uranium and tantalum

    Science.gov (United States)

    Byoun, T. Y.; Block, R. C.; Semler, T. T.

    1972-01-01

    A series of average transmission and average self-indication ratio measurements were performed in order to investigate the temperature dependence of the resonance self-shielding effect in the unresolved resonance region of depleted uranium and tantalum. The measurements were carried out at 77 K, 295 K and approximately 1000 K with sample thicknesses varying from approximately 0.1 to 1.0 mean free path. The average resonance parameters as well as the temperature dependence were determined by using an analytical model which directly integrates over the resonance parameter distribution functions.

  7. Design of Square Shaped Miniaturized Split Ring Resonators

    Directory of Open Access Journals (Sweden)

    Najuka Hadkar,

    2015-05-01

    Full Text Available Microwaves are constantly experiencing changes for many years. Microwave circuits use microstrip lines because it allows easy integration of active and passive surface mount components and it is less costly. In addition to a large number of benefits, microstrip lines have some disadvantages such as narrow-band loss, interference and low efficiency. To overcome the disadvantages, metamaterials are introduced. The proposed work shows various concentric U-shaped multi-split ring resonators(SRRs metamaterial structures with & without broadside coupling. As compared to the conventional split ring resonators , broadside coupled resonators shows decrease in the LC resonance frequency and provide an electrically small and easy-tofabricate alternative to the present multi-band metamaterial structures. The multi-band magnetic resonator topologies are simulated using CST Microwave Studio (MWS to compute and compare their electrical sizes. Different types of U-shaped structures with inner and outer rings of SRR are used to realize transmission spectra, resonant frequencies and electrical sizes. This topology has the flexibility of adjusting the resonance frequencies by changing the design parameters such as the gap width, metal width and inter-ring distances. The broadside-coupled multiple U-Shaped magnetic resonator topology is considered to be a useful contribution to multi-band metamaterial research applications.

  8. Toward broadband electroacoustic resonators through optimized feedback control strategies

    Science.gov (United States)

    Boulandet, R.; Lissek, H.

    2014-09-01

    This paper presents a methodology for the design of broadband electroacoustic resonators for low-frequency room equalization. An electroacoustic resonator denotes a loudspeaker used as a membrane resonator, the acoustic impedance of which can be modified through proportional feedback control, to match a target impedance. However, such impedance matching only occurs over a limited bandwidth around resonance, which can limit its use for the low-frequency equalization of rooms, requiring an effective control at least up to the Schroeder frequency. Previous experiments have shown that impedance matching can be achieved over a range of a few octaves using a simple proportional control law. But there is still a limit to the feedback gain, beyond which the feedback-controlled loudspeaker becomes non-dissipative. This paper evaluates the benefits of using PID control and phase compensation techniques to improve the overall performance of the electroacoustic resonator. More specifically, it is shown that some adverse effects due to high-order dynamics in the moving-coil transducer can be mitigated. The corresponding control settings are also identified with equivalent electroacoustic resonator parameters, allowing a straightforward design of the controller. Experimental results using PID control and phase compensation are finally compared in terms of sound absorption performances. As a conclusion the overall performances of electroacoustic resonators for damping the modal resonances inside a duct are presented, along with general discussions on practical implementation and the extension to actual room modes damping.

  9. Graphene-based waveguide resonators for submillimeter-wave applications

    Science.gov (United States)

    Ilić, Andjelija Ž.; Bukvić, Branko; Ilić, Milan M.; Budimir, Djuradj

    2016-08-01

    Utilization of graphene covered waveguide inserts to form tunable waveguide resonators is theoretically explained and rigorously investigated by means of full-wave numerical electromagnetic simulations. Instead of using graphene-based switching elements, the concept we propose incorporates graphene sheets as parts of a resonator. Electrostatic tuning of the graphene surface conductivity leads to changes in the electromagnetic field boundary conditions at the resonator edges and surfaces, thus producing an effect similar to varying the electrical length of a resonator. The presented outline of the theoretical background serves to give phenomenological insight into the resonator behavior, but it can also be used to develop customized software tools for design and optimization of graphene-based resonators and filters. Due to the linear dependence of the imaginary part of the graphene surface impedance on frequency, the proposed concept was expected to become effective for frequencies above 100 GHz, which is confirmed by the numerical simulations. A frequency range from 100 GHz up to 1100 GHz, where the rectangular waveguides are used, is considered. Simple, all-graphene-based resonators are analyzed first, to assess the achievable tunability and to check the performance throughout the considered frequency range. Graphene-metal combined waveguide resonators are proposed in order to preserve the excellent quality factors typical for the type of waveguide discontinuities used. Dependence of resonator properties on key design parameters is studied in detail. Dependence of resonator properties throughout the frequency range of interest is studied using eight different waveguide sections appropriate for different frequency intervals. Proposed resonators are aimed at applications in the submillimeter-wave spectral region, serving as the compact tunable components for the design of bandpass filters and other devices.

  10. Natural and Unnatural Parity Resonance States in the Positron-Hydrogen System with Screened Coulomb Interactions

    Directory of Open Access Journals (Sweden)

    Ye Ning

    2015-12-01

    Full Text Available In the present work, we report calculations of resonances in the positron-hydrogen system interacting with screened Coulomb potentials using the method of complex scaling together with employing correlated Hylleraas wave functions. Resonances with natural and unnatural parities are investigated. For the natural parity case, resonance parameters (energy and width for D-wave resonance states with even parity lying below various positronium and hydrogen thresholds up to the H(N = 4 level are determined. For the unnatural parity case, results for P-even and D-odd resonance states with various screened Coulomb interaction strengths are located below different lower-lying Ps and H thresholds.

  11. Magnetic Metamaterials: A comparative study of resonator geometry and metal conductivity

    Science.gov (United States)

    Rangu, Shashank; Sreekar, Kamireddy; Reddy Annapureddy, Ravinithesh; Basak, Kausik; Bohra, Murtaza; Chowdhury, Dibakar Roy

    2016-10-01

    In this work, split ring resonators based metamaterials are studied for microwave, terahertz and infrared frequency regimes. Two different geometries, circular and rectangular split ring resonators based metamaterials are investigated numerically for different frequency regimes. Our study indicates that the effect of metal conductivity and resonator geometry shows very little impact on the fundamental resonance mode. However the higher order modes go through significant frequency tuning because of the change in resonator geometry. We have further shown that the metal conductivity is an important parameter for the metamaterials employed in infrared domains.

  12. Resonant tunneling and nonlinear current in heterobarrier with complex dispersion of carriers

    CERN Document Server

    Kim, C S; Shtenberg, V B

    2002-01-01

    The study of novel effects in resonant tunneling of electrons in GaAs/Al sub x Ga sub 1 sub - sub x As/GaAs single-barrier structures under an applied electric bias is carried out. GAMMA-X mixing of electron states at the interfaces is responsible for Fano resonance in the barrier transmittance. A motion of Fano resonances and the interaction between Fano and Breit-Wigner resonances in electric field have been investigated. The current-voltage characteristic of the heterobarrier is calculated. It is shown that the differential conductivity presents a way to get the Fano resonance profile and its parameters

  13. Stochastic resonance in Gaussian quantum channels

    Science.gov (United States)

    Lupo, Cosmo; Mancini, Stefano; Wilde, Mark M.

    2013-02-01

    We determine conditions for the presence of stochastic resonance in a lossy bosonic channel with a nonlinear, threshold decoding. The stochastic resonance effect occurs if and only if the detection threshold is outside of a ‘forbidden interval’. We show that it takes place in different settings: when transmitting classical messages through a lossy bosonic channel, when transmitting over an entanglement-assisted lossy bosonic channel and when discriminating channels with different loss parameters. Moreover, we consider a setting in which stochastic resonance occurs in the transmission of a qubit over a lossy bosonic channel with a particular encoding and decoding. In all cases, we assume the addition of Gaussian noise to the signal and show that it does not matter who, between sender and receiver, introduces such a noise. Remarkably, different results are obtained when considering a setting for private communication. In this case, the symmetry between sender and receiver is broken and the ‘forbidden interval’ may vanish, leading to the occurrence of stochastic resonance effects for any value of the detection threshold.

  14. Cardiovascular magnetic resonance: physics and terminology.

    Science.gov (United States)

    Rodgers, Christopher T; Robson, Matthew D

    2011-01-01

    Cardiovascular magnetic resonance (CMR) is the branch of magnetic resonance imaging (MRI) whose acquisition methods are adapted to surmount the particular challenges caused by motion of the heart and blood in vivo. Magnetic resonance imaging is supremely flexible; it can produce images showing the spatial distribution of diverse tissue characteristics, for example, proton density, T(1), T(2), T(2)(⁎), fat concentration, flow rate, and diffusion parameters. The image contrast may usefully be modified by intravenous infusion of contrast agents. Magnetic resonance imaging permits 2-dimensional or 3-dimensional acquisitions with arbitrary slice orientation. Unfortunately, MRI's flexibility is matched by a remarkable complexity not only in its fundamental principles but also in the optimization of applications in the clinic. This article attempts to demystify the basic principles of CMR and provides a primer on the terminology used in CMR. Complete confidence in the principles of CMR is not essential to use the technology. Nevertheless, knowledge of the principal terminology of MRI is a valuable first step when seeking to understand and apply modern methods in a clinical or research setting. Thus, the article closes with a glossary of terminology and references to high-quality educational resources. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Nonlinearly Coupled Superconducting Lumped Element Resonators

    Science.gov (United States)

    Collodo, Michele C.; Potočnik, Anton; Rubio Abadal, Antonio; Mondal, Mintu; Oppliger, Markus; Wallraff, Andreas

    We study SQUID-mediated tunable coupling between two superconducting on-chip resonators in the microwave frequency range. In this circuit QED implementation, we employ lumped-element type resonators, which consist of Nb thin film structured into interdigitated finger shunt capacitors and meander inductors. A SQUID, functioning as flux dependent and intrinsically nonlinear inductor, is placed as a coupling element together with an interdigitated capacitor between the two resonators (cf. A. Baust et al., Phys Rev. B 91 014515 (2015)). We perform a spectroscopic measurement in a dilution refrigerator and find the linear photon hopping rate between the resonators to be widely tunable as well as suppressible for an appropriate choice of parameters, which is made possible due to the interplay of inductively and capacitively mediated coupling. Vanishing linear coupling promotes nonlinear effects ranging from onsite- to cross-Kerr interaction. A dominating cross-Kerr interaction related to this configuration is notable, as it induces a unique quantum state. In the course of analog quantum simulations, such elementary building blocks can serve as a precursor for more complex geometries and thus pave the way to a number of novel quantum phases of light

  16. Nanofibrous Resonant Membrane for Acoustic Applications

    Directory of Open Access Journals (Sweden)

    K. Kalinová

    2011-01-01

    Full Text Available Because the absorption of lower-frequency sound is problematic with fibrous material made up of coarser fibers, highly efficient sound absorption materials must be developed. The focus of this paper is on the development of a new material with high acoustic absorption characteristics. For low-frequency absorption, structures based upon the resonance principle of nanofibrous layers are employed in which the resonance of some elements allows acoustic energy to be converted into thermal energy. A nanofibrous membrane was produced by an electrostatic spinning process from an aqueous solution of polyvinyl alcohol and the acoustic characteristics of the material measured. The resonant frequency prediction for the nanofibrous membrane is based on research into its production parameters. The distance between electrodes during the electrostatic spinning process determines the average diameter of the nanofibers, and the outlet velocity of the material determines its area density. The average diameter of nanofibers was measured using the Lucia software package directly from an electron microscope image. The resonant frequency of nanofibrous membranes was determined from the sound absorption coefficient and transmission loss measurement.

  17. Resonance spectra of caged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2014-11-15

    Recent numerical studies of the coupled Einstein-Klein-Gordon system in a cavity have provided compelling evidence that confined scalar fields generically collapse to form black holes. Motivated by this intriguing discovery, we here use analytical tools in order to study the characteristic resonance spectra of the confined fields. These discrete resonant frequencies are expected to dominate the late-time dynamics of the coupled black-hole-field-cage system. We consider caged Reissner-Nordstroem black holes whose confining mirrors are placed in the near-horizon region x{sub m} ≡ (r{sub m} - r{sub +})/r{sub +} << τ ≡ (r{sub +} - r{sub -})/r{sub +} (here r{sub m} is the radius of the confining mirror and r{sub ±} are the radii of the black-hole horizons). We obtain a simple analytical expression for the fundamental quasinormal resonances of the coupled blackhole- field-cage system: ω{sub n} = -2πT{sub BH}.n [1 + O(x{sub m}{sup n}/τ{sup n})], where T{sub BH} is the temperature of the caged black hole and n = 1, 2, 3,.. is the resonance parameter. (orig.)

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: ... Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... The teddy bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... to remain perfectly still and follow breath-holding instructions while the images are being recorded. If you ... Images related to Magnetic Resonance Imaging (MRI) - Head Videos related to Magnetic Resonance Imaging (MRI) - Head Sponsored ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Us News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging ( ... if possible, or removed prior to the MRI scan. Because they can interfere with the magnetic field ...

  3. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves ...

  4. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful magnetic field, radio ...

  5. Resonant photothermal IR spectroscopy of picogram samples with microstring resonator

    DEFF Research Database (Denmark)

    Yamada, Shoko; Schmid, Silvan; Boisen, Anja

    2013-01-01

    Here, we report a demonstration of resonant photothermal IR spectroscopy using microstrings in mid-infrared region providing rapid identification of picogram samples. In our microelectromechanical resonant photothermal IR spectroscopy system, samples are deposited directly on microstrings using...... an in-situ sampling method and the resonance frequency of the string is measured optically. Resonance frequency shifts, proportional to the absorbed heat, are recorded in real time as monochromatic infrared light is being scanned over the mid-infrared range. These resonant photothermal IR spectroscopy...

  6. The design and fabrication on gate type resonant tunneling transistor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In light of fabricating resonant tunneling diode(RTD),in this paper a GaAs-based resonant tunneling transistor with gate structure(GRTT)has been designed and fabricated successfully.A systematic depiction centers on the designs of material structure,device structure,photo lithography mask,fabrication of device and the measurement and analysis of parameters.The fabricated GRTT has a maximum PVCR of 46 and a maximum transconductance of 8 mS.The work lays the foundation for further improvement on the performance and parameters of RTT.

  7. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive medical ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...

  9. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging ( ... the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a ...

  10. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  12. Characterizing coupled MEMS resonators with an electrical resonator

    Science.gov (United States)

    Tao, Guowei; Choubey, Bhaskar

    2016-10-01

    Rapid development in micro/nano fabrication has enabled the shrinking of MEMS devices and the ability to fabricate them in large arrays. However, process variations and device mismatch have also raised testability issues in the MEMS industry. MEMS resonators have been coupled to simplify the characterization of the fabrication process and device performance using their collective behaviour. Perturbation analysis using eigenvalues can therefore be applied to extract the system matrix of coupled resonators. We propose a new way of perturbation analysis by coupling an electrical resonator to an array of MEMS resonators. The electrical resonator is simple in structure and easy to readout. It can also precisely control the amount of perturbation based on two available techniques. Coupling between MEMS resonators and electrical resonator opens a new window for process characterization, device testing, material characterization, as well as large sensors array actuation.

  13. Parallel Magnetic Resonance Imaging

    CERN Document Server

    Uecker, Martin

    2015-01-01

    The main disadvantage of Magnetic Resonance Imaging (MRI) are its long scan times and, in consequence, its sensitivity to motion. Exploiting the complementary information from multiple receive coils, parallel imaging is able to recover images from under-sampled k-space data and to accelerate the measurement. Because parallel magnetic resonance imaging can be used to accelerate basically any imaging sequence it has many important applications. Parallel imaging brought a fundamental shift in image reconstruction: Image reconstruction changed from a simple direct Fourier transform to the solution of an ill-conditioned inverse problem. This work gives an overview of image reconstruction from the perspective of inverse problems. After introducing basic concepts such as regularization, discretization, and iterative reconstruction, advanced topics are discussed including algorithms for auto-calibration, the connection to approximation theory, and the combination with compressed sensing.

  14. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  15. RESONANT CAVITY EXCITATION SYSTEM

    Science.gov (United States)

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  16. Micromachined Resonators: A Review

    Directory of Open Access Journals (Sweden)

    Reza Abdolvand

    2016-09-01

    Full Text Available This paper is a review of the remarkable progress that has been made during the past few decades in design, modeling, and fabrication of micromachined resonators. Although micro-resonators have come a long way since their early days of development, they are yet to fulfill the rightful vision of their pervasive use across a wide variety of applications. This is partially due to the complexities associated with the physics that limit their performance, the intricacies involved in the processes that are used in their manufacturing, and the trade-offs in using different transduction mechanisms for their implementation. This work is intended to offer a brief introduction to all such details with references to the most influential contributions in the field for those interested in a deeper understanding of the material.

  17. Cross resonant optical antenna.

    Science.gov (United States)

    Biagioni, P; Huang, J S; Duò, L; Finazzi, M; Hecht, B

    2009-06-26

    We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.

  18. Resonance Enhanced Tunneling

    CERN Document Server

    Matsumoto, S; Matsumoto, Sh.

    2000-01-01

    Time evolution of tunneling in thermal medium is examined using the real-time semiclassical formalism previously developed. Effect of anharmonic terms in the potential well is shown to give a new mechanism of resonance enhanced tunneling. If the friction from environment is small enough, this mechanism may give a very large enhancement for the tunneling rate. The case of the asymmetric wine bottle potential is worked out in detail.

  19. Cross Resonant Optical Antenna

    Science.gov (United States)

    Biagioni, P.; Huang, J. S.; Duò, L.; Finazzi, M.; Hecht, B.

    2009-06-01

    We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.

  20. Ultraminiature resonator accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, D.R.; Kravitz, S.H.; Vianco, P.T.

    1996-04-01

    A new family of microminiature sensors and clocks is being developed with widespread application potential for missile and weapons applications, as biomedical sensors, as vehicle status monitors, and as high-volume animal identification and health sensors. To satisfy fundamental technology development needs, a micromachined clock and an accelerometer have initially been undertaken as development projects. A thickness-mode quartz resonator housed in a micromachined silicon package is used as the frequency-modulated basic component of the sensor family. Resonator design philosophy follows trapped energy principles and temperature compensation methodology through crystal orientation control, with operation in the 20--100 MHz range, corresponding to quartz wafer thicknesses in the 75--15 micron range. High-volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Chemical etching of quartz, as well as micromachining of silicon, achieves the surface and volume mechanical features necessary to fashion the resonating element and the mating package. Integration of the associated oscillator and signal analysis circuitry into the silicon package is inherent to the realization of a size reduction requirement. A low temperature In and In/Sn bonding technology allows assembly of the dissimilar quartz and silicon materials, an otherwise challenging task. Unique design features include robust vibration and shock performance, capacitance sensing with micromachined diaphragms, circuit integration, capacitance-to-frequency transduction, and extremely small dimensioning. Accelerometer sensitivities were measured in the 1--3 ppm/g range for the milligram proof-mass structures employed in the prototypes evaluated to date.

  1. Optical resonator theory

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaeg Won; Cho, Sunh Oh; Jeong, Young Uk; Lee, Byung Cheol; Lee, Jong Min

    2000-10-01

    In this report we present a theoretical study of bare optical resonators having in mind to extend it to active resonators. To compute diffractional losses, phase shifts, intensity distributions and phases of radiation fields on mirrors, we coded a package of numerical procedures on bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, are programmed for finding numeric solutions to the pair of integral equations. The iterative method had been tried by Fox and Li, but it was not applicable to cases for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this report, we implemented the matrix method to extend the computational limit further. A great deal of case studies are carried out with various configurations of stable and unstable resonators. Our results presented in this report show not only a good agreement with the results previously obtained by Fox and Li, but also a legitimacy of our numerical procedures in high Fresnel numbers.

  2. Stochastic resonance in Gaussian quantum channels

    CERN Document Server

    Lupo, Cosmo; Wilde, Mark M

    2011-01-01

    We determine conditions for the presence of stochastic resonance in a lossy bosonic channel with a nonlinear, threshold decoding. The stochastic resonance noise benefit occurs if and only if the detection threshold is outside of a "forbidden interval." We show how noise benefits can occur in different settings: when transmitting classical messages through a lossy bosonic channel, when transmitting over an entanglement-assisted lossy bosonic channel, and when discriminating channels with different loss parameters. Moreover, we consider a setting in which noise can benefit the faithful transmission of a qubit over a lossy bosonic channel with a particular encoding and decoding. In the latter case, we measure noise benefits in terms of the average channel fidelity and the entanglement preserved between a reference system and the channel output. In all cases, we assume Gaussian noise, allowing us to improve upon the forbidden-interval conditions found in earlier work.

  3. Coherent Dark Resonances in Atomic Barium

    CERN Document Server

    Dammalapati, U; Jungmann, K; Willmann, L

    2007-01-01

    The observation of dark-resonances in the two-electron atom barium and their influence on optical cooling is reported. In heavy alkali earth atoms, i.e. barium or radium, optical cooling can be achieved using n^1S_0-n^1P_1 transitions and optical repumping from the low lying n^1D_2 and n^3D_{1,2} states to which the atoms decay with a high branching ratio. The cooling and repumping transition have a common upper state. This leads to dark resonances and hence make optical cooling less inefficient. The experimental observations can be accurately modelled by the optical Bloch equations. Comparison with experimental results allows us to extract relevant parameters for effective laser cooling of barium.

  4. Plasmon resonance in multilayer graphene nanoribbons

    DEFF Research Database (Denmark)

    Emani, Naresh Kumar; Wang, Di; Chung, Ting Fung

    2015-01-01

    Plasmon resonances in nanopatterned single-layer graphene nanoribbons (SL-GNRs), double-layer graphene nanoribbons (DL-GNRs) and triple-layer graphene nanoribbons (TL-GNRs) are studied experimentally using 'realistic' graphene samples. The existence of electrically tunable plasmons in stacked...... multilayer graphene nanoribbons was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNRs when compared to SL-GNRs. However, further increase was not observed in TL-GNRs when compared to DL-GNRs. We carried out systematic full......-wave simulations using a finite-element technique to validate and fit experimental results, and extract the carrier-scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for an unpatterned SLG sheet, and a qualitative agreement for a patterned graphene sheet...

  5. Passive optical resonator for OSQAR LSW experiment

    Science.gov (United States)

    Kunc, Š.; Messineo, G.; Schott, M.; Šulc, M.

    2016-11-01

    This paper treats the issue of locking a solid state laser, pumped by high power diodes (Verdi V5), to a twenty meter long optical resonator for OSQAR LSW - light shining through the wall, dark matter search experiment. In this paper the optical design and a possible locking scheme are presented. The environmental conditions in SM18 testing hall at CERN, where OSQAR experiment is based, are discussed. The main focus is put on the vibration analysis, cavity transversal modes behaviour, possible clipping in the anticryostat of LHC - Large Hadron Collider magnet bore and locking loop parameters required for future experimental testing. The expected finesse of resonator will be presented and discussed in the sense of OSQAR LSW; its impact on possible new exclusion limits is discussed.

  6. Plasmon Resonance in Multilayer Graphene Nanoribbons

    CERN Document Server

    Emani, Naresh Kumar; Chung, Ting-Fung; Prokopeva, Ludmila J; Kildishev, Alexander V; Shalaev, Vladimir M; Chen, Yong P; Boltasseva, Alexandra

    2015-01-01

    Plasmon resonance in nanopatterned single layer graphene nanoribbon (SL-GNR), double layer graphene nanoribbon (DL-GNR) and triple layer graphene nanoribbon (TL-GNR) structures is studied both experimentally and by numerical simulations. We use 'realistic' graphene samples in our experiments to identify the key bottle necks in both experiments and theoretical models. The existence of electrical tunable plasmons in such stacked multilayer GNRs was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNR when compared to SL-GNRs. However, we do not find a further such increase in TL-GNRs compared to DL-GNRs. We carried out systematic full wave simulations using finite element technique to validate and fit experimental results, and extract the carrier scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for unpatterned SLG sheet, and a qualitative agreement for patterned graphene sheet. W...

  7. Resonance Extraction from the Finite Volume

    Energy Technology Data Exchange (ETDEWEB)

    Doring, Michael [George Washington Univ., Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Molina Peralta, Raquel [George Washington Univ., Washington, DC (United States)

    2016-06-01

    The spectrum of excited hadrons becomes accessible in simulations of Quantum Chromodynamics on the lattice. Extensions of Lüscher's method allow to address multi-channel scattering problems using moving frames or modified boundary conditions to obtain more eigenvalues in finite volume. As these are at different energies, interpolations are needed to relate different eigenvalues and to help determine the amplitude. Expanding the T- or the K-matrix locally provides a controlled scheme by removing the known non-analyticities of thresholds. This can be stabilized by using Chiral Perturbation Theory. Different examples to determine resonance pole parameters and to disentangle resonances from thresholds are dis- cussed, like the scalar meson f0(980) and the excited baryons N(1535)1/2^- and Lambda(1405)1/2^-.

  8. Injection-controlled laser resonator

    Science.gov (United States)

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  9. Study of 234U(n,f) Resonances Measured at the CERN n_TOF Facility

    CERN Document Server

    Leal-Cidoncha, E; Paradela, C; Tarrío, D; Leong, L S; Audouin, L; Tassan-Got, L; Praena, J; Berthier, B; Ferrant, L; Isaev, S; Le Naour, C; Stephan, C; Trubert, D; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Bečvář, F; Berthoumieux, E; Calviño, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P.; Chepel, V; Chiaveri, E.; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S.; Dillmann, I; Domingo-Pardo, C; Dridi, W; Eleftheriadis, C; Embid-Segura, M; Ferrari, A.; Ferreira-Marques, R; Fujii, K; Furman, W; Gonçalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A.; Igashira, M; Jericha, E; Kadi, Y.; Käppeler, F; Karadimos, D; Kerveno, M; Koehler, P; Kossionides, E; Krtička, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papadopoulos, C; Pavlik, A; Pavlopoulos, P.; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T.; Reifarth, R; Rubbia, C.; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L.; Savvidis, I; Tagliente, G; Tain, J L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A.; Villamarin, D; Vincente, M C; Vlachoudis, V.; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2014-01-01

    We present the analysis of the resolved resonance region for the U-234(n,f) cross section data measured at the CERN n\\_TOF facility. The resonance parameters in the energy range from 1 eV to 1500 eV have been obtained with the SAMMY code by using as initial parameters for the fit the resonance parameters of the JENDL-3.3 evaluation. In addition, the statistical analysis has been accomplished, partly with the SAMDIST code, in order to study the level spacing and the Mehta-Dyson correlation.

  10. Persistence, resistance, resonance

    Science.gov (United States)

    Tsadka, Maayan

    Sound cannot travel in a vacuum, physically or socially. The ways in which sound operates are a result of acoustic properties, and the ways by which it is considered to be music are a result of social constructions. Therefore, music is always political, regardless of its content: the way it is performed and composed; the choice of instrumentation, notation, tuning; the medium of its distribution; its inherent hierarchy and power dynamics, and more. My compositional praxis makes me less interested in defining a relationship between music and politics than I am in erasing---or at least blurring---the borders between them. In this paper I discuss the aesthetics of resonance and echo in their metaphorical, physical, social, and musical manifestations. Also discussed is a political aesthetic of resonance, manifested through protest chants. I transcribe and analyze common protest chants from around the world, categorizing and unifying them as universal crowd-mobilizing rhythms. These ideas are explored musically in three pieces. Sumud: Rhetoric of Resistance in Three Movements, for two pianos and two percussion players, is a musical interpretation of the political/social concept of sumud, an Arabic word that literally means "steadfastness" and represents Palestinian non-violent resistance. The piece is based on common protest rhythms and uses the acoustic properties inherent to the instruments. The second piece, Three Piano Studies, extends some of the musical ideas and techniques used in Sumud, and explores the acoustic properties and resonance of the piano. The final set of pieces is part of my Critical Mess Music Project. These are site-specific musical works that attempt to blur the boundaries between audience, performers and composer, in part by including people without traditional musical training in the process of music making. These pieces use the natural structure and resonance of an environment, in this case, locations on the UCSC campus, and offer an active

  11. A new class of Hanbury-Brown/Twiss parameters

    CERN Document Server

    Wiedemann, Urs Achim; Wiedemann, Urs Achim; Heinz, Ulrich

    1997-01-01

    In heavy ion collisions resonances can create strong non-Gaussian effects in the 2-pion correlation data. Hence, the commonly used Gaussian fit parameters do not fully characterize these correlators. We suggest a different set of HBT parameters which does not presuppose a particular shape of the correlator and allows to extract additional (non-Gaussian) information. Within a simple model for an expanding source including resonance decays it is shown that this additional information provides a clean distinction between scenarios with and without transverse flow.

  12. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  13. Tracking stochastic resonance curves using an assisted reference model

    Energy Technology Data Exchange (ETDEWEB)

    Calderón Ramírez, Mario; Rico Martínez, Ramiro [Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Av. Tecnológico y A. García Cubas S/N, Celaya, Guanajuato, 38010 (Mexico); Ramírez Álvarez, Elizeth [Nonequilibrium Chemical Physics, Physik-Department, TU-München, James-Franck-Str. 1, 85748 Garching bei München (Germany); Parmananda, P. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2015-06-15

    The optimal noise amplitude for Stochastic Resonance (SR) is located employing an Artificial Neural Network (ANN) reference model with a nonlinear predictive capability. A modified Kalman Filter (KF) was coupled to this reference model in order to compensate for semi-quantitative forecast errors. Three manifestations of stochastic resonance, namely, Periodic Stochastic Resonance (PSR), Aperiodic Stochastic Resonance (ASR), and finally Coherence Resonance (CR) were considered. Using noise amplitude as the control parameter, for the case of PSR and ASR, the cross-correlation curve between the sub-threshold input signal and the system response is tracked. However, using the same parameter the Normalized Variance curve is tracked for the case of CR. The goal of the present work is to track these curves and converge to their respective extremal points. The ANN reference model strategy captures and subsequently predicts the nonlinear features of the model system while the KF compensates for the perturbations inherent to the superimposed noise. This technique, implemented in the FitzHugh-Nagumo model, enabled us to track the resonance curves and eventually locate their optimal (extremal) values. This would yield the optimal value of noise for the three manifestations of the SR phenomena.

  14. Formalism for neutron cross section covariances in the resonance region using kernel approximation

    Energy Technology Data Exchange (ETDEWEB)

    Oblozinsky, P.; Cho,Y-S.; Matoon,C.M.; Mughabghab,S.F.

    2010-04-09

    We describe analytical formalism for estimating neutron radiative capture and elastic scattering cross section covariances in the resolved resonance region. We use capture and scattering kernels as the starting point and show how to get average cross sections in broader energy bins, derive analytical expressions for cross section sensitivities, and deduce cross section covariances from the resonance parameter uncertainties in the recently published Atlas of Neutron Resonances. The formalism elucidates the role of resonance parameter correlations which become important if several strong resonances are located in one energy group. Importance of potential scattering uncertainty as well as correlation between potential scattering and resonance scattering is also examined. Practical application of the formalism is illustrated on {sup 55}Mn(n,{gamma}) and {sup 55}Mn(n,el).

  15. Acoustic control in enclosures using optimally designed Helmholtz resonators

    Science.gov (United States)

    Driesch, Patricia Lynne

    A virtual design methodology is developed to minimize the noise in enclosures with optimally designed, passive, acoustic absorbers (Helmholtz resonators). A series expansion of eigen functions is used to represent the acoustic absorbers as external volume velocities, eliminating the need for a solution of large matrix eigen value problems. A determination of this type (efficient model/reevaluation approach) significantly increases the design possibilities when optimization techniques are implemented. As a benchmarking exercise, this novel methodology was experimentally validated for a narrowband acoustic assessment of two optimally designed Helmholtz resonators coupled to a 2D enclosure. The resonators were tuned to the two lowest resonance frequencies of a 30.5 by 40.6 by 2.5 cm (12 x 16 x 1 inch) cavity with the resonator volume occupying only 2% of the enclosure volume. A maximum potential energy reduction of 12.4 dB was obtained at the second resonance of the cavity. As a full-scale demonstration of the efficacy of the proposed design method, the acoustic response from 90--190 Hz of a John Deere 7000 Ten series tractor cabin was investigated. The lowest cabin mode, referred to as a "boom" mode, proposes a significant challenge to a noise control engineer since its anti-node is located near the head of the operator and often generates unacceptable sound pressure levels. Exploiting the low frequency capability of Helmholtz resonators, lumped parameter models of these resonators were coupled to the enclosure via an experimentally determined acoustic model of the tractor cabin. The virtual design methodology uses gradient optimization techniques as a post processor for the modeling and analysis of the unmodified acoustic interior to determine optimal resonator characteristics. Using two optimally designed Helmholtz resonators; potential energy was experimentally reduced by 3.4 and 10.3 dB at 117 and 167 Hz, respectively.

  16. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    Science.gov (United States)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  17. Estimating Cosmological Parameter Covariance

    CERN Document Server

    Taylor, Andy

    2014-01-01

    We investigate the bias and error in estimates of the cosmological parameter covariance matrix, due to sampling or modelling the data covariance matrix, for likelihood width and peak scatter estimators. We show that these estimators do not coincide unless the data covariance is exactly known. For sampled data covariances, with Gaussian distributed data and parameters, the parameter covariance matrix estimated from the width of the likelihood has a Wishart distribution, from which we derive the mean and covariance. This mean is biased and we propose an unbiased estimator of the parameter covariance matrix. Comparing our analytic results to a numerical Wishart sampler of the data covariance matrix we find excellent agreement. An accurate ansatz for the mean parameter covariance for the peak scatter estimator is found, and we fit its covariance to our numerical analysis. The mean is again biased and we propose an unbiased estimator for the peak parameter covariance. For sampled data covariances the width estimat...

  18. Resonances in open quantum systems

    Science.gov (United States)

    Eleuch, Hichem; Rotter, Ingrid

    2017-02-01

    The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are generally complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scattering wave functions into which the system is embedded. This causes an external mixing (EM) of the states. Mathematically, EM is related to the existence of singular (the so-called exceptional) points. The eigenfunctions of a non-Hermitian operator are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wave functions. At and near an exceptional point (EP), the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under the influence of an EP. At the parameter value of maximum width bifurcation, the phase rigidity approaches the value one, meaning that the two eigenfunctions become orthogonal. However, the eigenfunctions are externally mixed at this parameter value. The S matrix and therewith the cross section do contain, in the one-channel case, almost no information on the EM of the states. The situation is completely different in the case with two (or more) channels where the resonance structure is strongly influenced by the EM of the states and interesting features of non-Hermitian quantum physics are revealed. We provide numerical results for two and three nearby eigenstates of a non-Hermitian Hamilton operator that are embedded in one common continuum and are influenced by two adjoining EPs. The results are discussed. They are of interest for an experimental test of the non-Hermitian quantum physics as well as for applications.

  19. Using genetic algorithm based fuzzy adaptive resonance theory for clustering analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; WANG Yong; WANG Hong-jian

    2006-01-01

    In the clustering applications field, fuzzy adaptive resonance theory system has been widely applied. But, three parameters of fuzzy adaptive resonance theory need to be adjusted manually for obtaining better clustering. It needs much time to test and does not assure a best result. Genetic algorithm is an optimal mathematical search technique based on the principles of natural selection and genetic recombination. So, to make the fuzzy adaptive resonance theory parameters choosing process automation, an approach incorporating genetic algorithm and fuzzy adaptive resonance theory neural network has been applied. Then, the best clustering result can be obtained.Through experiment, it can be proved that the most appropriate parameters of fuzzy adaptive resonance theory can be gained effectively by this approach.

  20. Study of some properties of 's' neutron resonance parameters for target nuclei I = 1/2 and I = 3/2 in function of spin value J = I + 1/2 in the energy range 1 {yields} 5000 eV; Etude de quelques proprietes des parametres de resonances des neutrons ''s'' pour des noyaux cibles I = 1/2 et I = 3/2 en fonction de la valeur du spin J = I + 1/2 dans le domaine d'energie 1 eV {yields} 5000 eV

    Energy Technology Data Exchange (ETDEWEB)

    Julien, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-05-15

    Different kinds of experiments and analysis methods allowing to achieve neutron resonances parameters in the low energy range (1 eV {yields} 5000 eV) are described. A great deal of effort to improve experimental conditions and data processing in order to know the spin value J = I {+-} 1/2 has been spent. The time of flight method was used. A few target nuclei I = 3/2 and 1 = 1/2 have been studied. For I = 3/2 (Ga, As, 3r, Au) we find S{sub o} J = 2 {approx_equal} 2 S{sub o} J = 1 and S{sub o} J = 1 {approx_equal} S{sub o} J = 0 for I = 1/2 (Tm, Pt) but {sup 77}Se. Fluctuations of the total radiative width {gamma}{sub {gamma}} depend on the spin value I = I {+-} 1/2 when E1 transition, are enhanced for one of the both spin states. The magnitude of these fluctuations can be explained of the strength of E1 transitions (E{sub {gamma}} {approx} 7 MeV) is supposed to be proportional to E{sup 5}{sub {gamma}} instead of E{sup 3}{sub {gamma}}. The distribution of levels spacings against spin value J are considered and are compared to theoretical predictions. (author) [French] On decrit les differentes methodes d'analyse permettant d'obtenir les parametres des resonances de neutron dans le domaine d'energie 1 eV {yields} 5000 eV. Un effort particulier a ete fait pour connaitre la valeur du spin J = I {+-} 1/2. Les types d'experience et les analyses des donnees, developpes et ameliores pour determiner J sont decrits. Les resultats obtenus ont permis l'etude de differentes proprietes en fonction du spin J. On trouve: S{sub o} J 2 {approx_equal} 2 S{sub o} J = 1 pour les noyaux I = 3/2 etudies (Ga, As, Br, Au) et S{sub o} J = 1 {approx_equal} S{sub o} J = 0 Pour le Tm et {sup 195}Pt de spin I = 1/2. On constate que les largeurs radiatives totales {gamma}{sub {gamma}} fluctuent si des transitions E1 aux premiers etats excites sont favorisees. Ces fluctuations peuvent etre expliquees si on suppose que les intensites de ces transitions sont

  1. Analysis of Three Body Resonances in the Complex Scaled Orthogonal Condition Model

    Energy Technology Data Exchange (ETDEWEB)

    Odsuren, M., E-mail: odsuren@nucl.sci.hokudai.ac.jp [Meme Media Laboratory, Hokkaido University, Sapporo 060-8628 (Japan); Nuclear Research Center, National University of Mongolia, Ulaanbaatar 210646 (Mongolia); Katō, K.; Aikawa, M. [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2014-06-15

    Although the resonance structures of α+α+n have been studied experimentally and theoretically, it is still necessary to have more accurate and comprehensive understandings of the structure and decay of the low-lying excited states in {sup 9}Be. To perform calculations of an α+α+n system, we investigate five resonant states of α+α subsystem by utilizing different potential parameters and basis functions. In addition, two resonance states of α+n subsystem are computed.

  2. Resonant frequencies of massless scalar field in rotating black-brane spacetime

    Institute of Scientific and Technical Information of China (English)

    Jing Ji-Liang; Pan Qi-Yuan

    2008-01-01

    This paper investigates the resonant frequencies of the massless scalar field in the near extremal Kerr-like black-brahe spacetime. It is shown that the different angular quantum number will present different resonant frequencies. It is also shown that the real part of the resonant frequencies increases as the compact dimensions parameter μi increases, but the magnitude of the imaginary part decreases as μi increases.

  3. Relativistic description of single-particle resonances via phase shift analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zi-Zhen

    2009-01-01

    Single-particle resonant states in spherical nuclei are studied by the real stabilization method in coordinate space within the framework of self-consistent relativistic mean field theory. Taking 122Zr as an example, the resonant parameters, including the energies and widths are extracted by fitting energy and phase shift. Good agreement with the previous calculations has been found. The details of single-particle resonant states are analysed.

  4. Study of the onset of the acoustic streaming in parallel plate resonators with pulse ultrasound.

    Science.gov (United States)

    Castro, Angelica; Hoyos, Mauricio

    2016-03-01

    In a previous study, we introduced pulse mode ultrasound as a new method for reducing and controlling the acoustic streaming in parallel plate resonators (Hoyos and Castro, 2013). Here, by modifying other parameters such as the resonator geometry and the particle size, we have found a threshold for particle manipulation with ultrasonic standing waves in confined resonators without the influence of the acoustic streaming. We demonstrate that pulse mode ultrasound open the possibility of manipulating particles smaller than 1 μm size.

  5. Optimum design of a polymer electro-optic microring resonator switch

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Novel transfer functions are presented for a polymer electro-optic microring resonator switches. The resonating process of the light in the microring is simulated using the formulas. Then the optimization of the structural parameters is performed,and the characteristics are analyzed, such as the resonance time, output spectrum, operation voltage, insertion loss and crosstalk were analyzed. The simulation results show that the designed device exhibits favorable switching functions.

  6. NQR parameters of complexes and polarizability effect.

    Science.gov (United States)

    Egorochkin, Alexey N; Kuznetsova, Olga V; Khamaletdinova, Nadiya M; Domratcheva-Lvova, Lada G

    2012-01-01

    The literature data on substituent influence on the nuclear quadrupole resonance frequencies (ν), quadrupole coupling constants (e(2) Qq ⋅ h(- 1) ), and asymmetry parameters (η) for 36 series of the H-complexes, charge-transfer complexes, transition metal complexes and other donor-acceptor complexes have been considered, using the correlation analysis. Generally the ν, e(2) Qq ⋅ h(- 1) , and η values were first established to depend on the inductive, resonance, polarizability, and steric effects of substituents. The presence or otherwise of certain effects as well as relation between their contributions are determined by the type of series. The polarizability effect owes its existence to the appearance of an excess charge on the indicator centre as a result of the complexation. The contribution of this effect ranges up to 75%.

  7. Double resonance in the system of coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Rahmonov, I. R.; Kulikov, K. V.

    2013-01-01

    The effect of LC shunting on the phase dynamics of coupled Josephson junctions has been examined. It has been shown that additional ( rc) branches appear in the current-voltage characteristics of the junctions when the Josephson frequency ωJ is equal to the natural frequency of the formed resonance circuit ωrc. The effect of the parameters of the system on its characteristics has been studied. Double resonance has been revealed in the system at ωJ = ωrc = 2ωLPW, where ωLPW is the frequency of a longitudinal plasma wave appearing under the parametric-resonance conditions. In this case, electric charge appears in superconducting layers in the interval of the bias current corresponding to the rc branch. The charge magnitude is determined by the accuracy with which the double resonance condition is satisfied. The possibility of the experimental implementation of the effects under study has been estimated.

  8. Delayed stochastic resonance with 1-D chain of binary elements

    Science.gov (United States)

    Ohira, Toru

    2001-03-01

    We discuss a simple model of 1-dimensional chain of binary stochastic elements with delayed interaction. Each element makes transitions between its two states, with probabilities which depends on the fixed-interval-past state of the preceding element in the chain. We show that rather regular spiking behavior emerges with suitably tuned parameters. This can be seen as a stochastic resonance just from noise and delay coupling alone without external oscillatory signals. This phenomena is analyzed theoretically and its applications to communication systems or biological systems are discussed. This is an extension of previous woks on delayed stochastic resonance with single[1] and two units [2]. [1] Toru Ohira and Yuzuru Sato, "Resonance with noise and delay", PRL vol 82, pp.2811-2815 (1999). [2] Toru Ohira and Yuzuru Sato, "Resonance in Delayed Stochastic Dynamics", Statistical Physics, (Tokuyama and Stanley, eds.) , AIP conference Proceedings 519, pp. 628-634 (2000).

  9. Resonator-assisted quantum bath engineering of a flux qubit

    Science.gov (United States)

    Zhang, Xian-Peng; Shen, Li-Tuo; Yin, Zhang-Qi; Wu, Huai-Zhi; Yang, Zhen-Biao

    2015-01-01

    We demonstrate quantum bath engineering for preparation of any orbital state with the controllable phase factor of a superconducting flux qubit assisted by a microwave coplanar waveguide resonator. We investigate the polarization efficiency of the arbitrary direction rotating on the Bloch sphere, and obtain an effective Rabi frequency by using the convergence condition of the Markovian master equation. The processes of polarization can be implemented effectively in a dissipative environment created by resonator photon loss when the spectrum of the microwave resonator matches with the specially tailored Rabi and resonant frequencies of the drive. Our calculations indicate that state-preparation fidelities in excess of 99% and the required time on the order of magnitude of a microsecond are in principle possible for experimentally reasonable sample parameters. Furthermore, our proposal could be applied to other systems with spin-based qubits.

  10. Quark mass dependence of s-wave baryon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Recio, C.; Nieves, J. [Granada Univ. (Spain). Dept. de Fisica Moderna; Lutz, M.F.M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2003-06-01

    We study the quark mass dependence of J{sup P} = 1/2{sup -} s-wave baryon resonances. Parameter free results are obtained in terms of the leading order chiral Lagrangian. In the 'heavy' SU(3) limit with m{sub {pi}} = m{sub K} {approx_equal} 500 MeV the resonances turn into bound states forming two octets plus a singlet representations of the SU(3) group. A contrasted result is obtained in the 'light' SU(3) limit with m{sub {pi}} = m{sub K} {approx_equal} 140 MeV for which no resonances exist. Using physical quark masses our analysis suggests to assign to the S = -2 resonances {xi}(1690) and {xi}(1620) the quantum numbers J{sup P} = 1/2{sup -}. (orig.)

  11. String Resonances at Hadron Colliders

    CERN Document Server

    Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R

    2014-01-01

    [Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...

  12. An Analytic Criterion for Turbulent Disruption of Planetary Resonances

    Science.gov (United States)

    Batygin, Konstantin; Adams, Fred C.

    2017-03-01

    Mean motion commensurabilities in multi-planet systems are an expected outcome of protoplanetary disk-driven migration, and their relative dearth in the observational data presents an important challenge to current models of planet formation and dynamical evolution. One natural mechanism that can lead to the dissolution of commensurabilities is stochastic orbital forcing, induced by turbulent density fluctuations within the nebula. While this process is qualitatively promising, the conditions under which mean motion resonances can be broken are not well understood. In this work, we derive a simple analytic criterion that elucidates the relationship among the physical parameters of the system, and find the conditions necessary to drive planets out of resonance. Subsequently, we confirm our findings with numerical integrations carried out in the perturbative regime, as well as direct N-body simulations. Our calculations suggest that turbulent resonance disruption depends most sensitively on the planet–star mass ratio. Specifically, for a disk with properties comparable to the early solar nebula with α ={10}-2, only planet pairs with cumulative mass ratios smaller than ({m}1+{m}2)/M≲ {10}-5∼ 3{M}\\oplus /{M}ȯ are susceptible to breaking resonance at semimajor axis of order a∼ 0.1 {au}. Although turbulence can sometimes compromise resonant pairs, an additional mechanism (such as suppression of resonance capture probability through disk eccentricity) is required to adequately explain the largely non-resonant orbital architectures of extrasolar planetary systems.

  13. Sensitivity analysis of silicon-on-insulator quadruple Vernier racetrack resonators

    Science.gov (United States)

    Boeck, Robert; Chrostowski, Lukas; Jaeger, Nicolas A. F.

    2015-11-01

    We present a theoretical sensitivity analysis of silicon-on-insulator quadruple Vernier racetrack resonators based on varying, one at a time, various fabrication-dependent parameters. These parameters include the waveguide widths, heights, and propagation losses. We show that it should be possible to design a device that meets typical commercial specifications while being tolerant to changes in these parameters.

  14. Electroexcitation of nucleon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Inna Aznauryan, Volker D. Burkert

    2012-01-01

    We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.

  15. Resonance frequency analysis

    Directory of Open Access Journals (Sweden)

    Rajiv K Gupta

    2011-01-01

    Full Text Available Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized

  16. Controller for Driving a Piezoelectric Actuator at Resonance

    Science.gov (United States)

    Aldrich, Jack; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi; Chang, Zensheu

    2008-01-01

    subalgorithms: a hill-climbing control algorithm, an estimation-based extremum-seeking control (ESC) algorithm, and a supervisory algorithm. The hill-climbing algorithm is useful for coarse tracking to find and remain within the vicinity of the resonance. The ESC algorithm is not capable of coarse resonance tracking, but is capable of fine resonance tracking once the estimates of parameters generated by the hill-climbing algorithm have converged sufficiently. On the basis of the parameter-estimation errors, the supervisory algorithm switches operation to whichever of the other two algorithms performs best at a given time.

  17. Dynamic Stability Parameters

    Science.gov (United States)

    1978-05-01

    resonance. A system of resolvers, filters, and damped digital voltmeters is used to separate the torque signal into in- phase and out-of-phase...lavion A 8 Hz environ). 2.3.4 - Instrumentation embarquge - 1’Aq~.ipoent habitual des maquettes do vol libro destin6 A Is reconnaissance des mouvements s...initialisation de lacquisition), la diterminetion do Ia date du largage (initialisation du vol libro ), Ia datation du passage au droit des bases

  18. Detecting the mass and position of an adsorbate on a drum resonator.

    Science.gov (United States)

    Zhang, Y; Zhao, Y P

    2014-10-08

    The resonant frequency shifts of a circular membrane caused by an adsorbate are the sensing mechanism for a drum resonator. The adsorbate mass and position are the two major (unknown) parameters determining the resonant frequency shifts. There are infinite combinations of mass and position which can cause the same shift of one resonant frequency. Finding the mass and position of an adsorbate from the experimentally measured resonant frequencies forms an inverse problem. This study presents a straightforward method to determine the adsorbate mass and position by using the changes of two resonant frequencies. Because detecting the position of an adsorbate can be extremely difficult, especially when the adsorbate is as small as an atom or a molecule, this new inverse problem-solving method should be of some help to the mass resonator sensor application of detecting a single adsorbate. How to apply this method to the case of multiple adsorbates is also discussed.

  19. Analysis and design of nonlinear resonances via singularity theory

    CERN Document Server

    Cirillo, G I; Kerschen, G; Sepulchre, R

    2016-01-01

    Bifurcation theory and continuation methods are well-established tools for the analysis of nonlinear mechanical systems subject to periodic forcing. We illustrate the added value and the complementary information provided by singularity theory with one distinguished parameter. While tracking bifurcations reveals the qualitative changes in the behaviour, tracking singularities reveals how structural changes are themselves organised in parameter space. The complementarity of that information is demonstrated in the analysis of detached resonance curves in a two-degree-of-freedom system.

  20. Analysis and design of nonlinear resonances via singularity theory

    Science.gov (United States)

    Cirillo, G. I.; Habib, G.; Kerschen, G.; Sepulchre, R.

    2017-03-01

    Bifurcation theory and continuation methods are well-established tools for the analysis of nonlinear mechanical systems subject to periodic forcing. We illustrate the added value and the complementary information provided by singularity theory with one distinguished parameter. While tracking bifurcations reveals the qualitative changes in the behaviour, tracking singularities reveals how structural changes are themselves organised in parameter space. The complementarity of that information is demonstrated in the analysis of detached resonance curves in a two-degree-of-freedom system.