WorldWideScience

Sample records for fanac resonance parameter

  1. FANAC - a shape analysis program for resonance parameter extraction from neutron capture data for light and medium-weight nuclei

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1977-11-01

    A least-squares shape analysis program is described which is used at the Karlsruhe Nuclear Research Center for the extraction of resonance parameters from high-resolution capture data. The FORTRAN program was written for light to medium-weight or near-magic target nuclei whose cross sections are characterized on one hand by broad s-wave levels with negligible Doppler broadening but pronounced multi-level interference, on the other hand by narrow p-, d- ... wave resonances with negligible multi-level interference but pronounced Doppler broadening. Accordingly the Reich-Moore multi-level formalism without Doppler broadening is used for s-wave levels, and a single-level description with Doppler braodening for p-, d- ... wave levels. Calculated capture yields are resolution broadened. Multiple-collision events are simulated by Monte Carlo techniques. Up to five different time-of-flight capture data sets can be fitted simultaneously for samples containing up to ten isotopes. Input and output examples are given and a FORTRAN list is appended. (orig.)

  2. Review of 241 Pu resonance parameters

    International Nuclear Information System (INIS)

    Derrien, H.

    1981-10-01

    The status of 241 Pu resonance parameters is reviewed. The most important recent results are compared in some energy ranges, both from single level and multilevel point of view. It appears that an accurate set of resonance parameters is not still obtained for a general description of the cross-sections in the resonance region. Some recommendations are given for further experiments or evaluations

  3. Integral data analysis for resonance parameters determination

    International Nuclear Information System (INIS)

    Larson, N.M.; Leal, L.C.; Derrien, H.

    1997-09-01

    Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications

  4. Neutron resonance parameters of CM isotopes

    International Nuclear Information System (INIS)

    Belanova, T.S.; Kolesov, A.G.; Poruchikov, V.A.

    1977-01-01

    The total neutron cross sections of isotopes 244, 245, 246, 248 Curium have been measured on reactor CM-2 using the time-of-flight method. Single-level Breit-Wigner resonance parameters: energy E 0 , neutron width 2g GITAn, total width GITA, total neutron cross section in resonance sigma 0 have been obtained by the shape and area methods

  5. Resonance parameter analysis with SAMMY

    International Nuclear Information System (INIS)

    Larson, N.M.; Perey, F.G.

    1988-01-01

    The multilevel R-matrix computer code SAMMY has evolved over the past decade to become an important analysis tool for neutron data. SAMMY uses the Reich-Moore approximation to the multilevel R-matrix and includes an optional logarithmic parameterization of the external R-function. Doppler broadening is simulated either by numerical integration using the Gaussian approximation to the free gas model or by a more rigorous solution of the partial differential equation equivalent to the exact free gas model. Resolution broadening of cross sections and derivatives also has new options that more accurately represent the experimental situation. SAMMY treats constant normalization and some types of backgrounds directly and treats other normalizations and/or backgrounds with the introduction of user-generated partial derivatives. The code uses Bayes' method as an efficient alternative to least squares for fitting experimental data. SAMMY allows virtually any parameter to be varied and outputs values, uncertainties, and covariance matrix for all varied parameters. Versions of SAMMY exist for VAX, FPS, and IBM computers

  6. Multilevel resonance parameters of 241Pu

    International Nuclear Information System (INIS)

    Weston, L.W.; Todd, J.H.

    1978-01-01

    The data previously reported by the authors on the neutron fission and capture cross sections of 241 Pu were simultaneously fit with the Adler formalism to obtain multilevel resonance parameters. The neutron energy range of the fit was 0.01 to 100 eV. The 241 Pu cross sections in the resonance region of neutron energies are complex, and the Adler parameters present an efficient method of representing these cross sections, which are important for plutonium-fueled reactors. The parameters represent the data to an accuracy within the quoted experimental errors. 5 figures, 2 tables

  7. The LIPAR-5 resonance parameter library

    International Nuclear Information System (INIS)

    Abagyan, L.P.

    1997-08-01

    The LIPAR-5 neutron resolved resonance parameter library has been elaborated. It contains data for 94 isotopes. The author's evaluations are included in LIPAR. Other authors' results are also included after re-evaluation. The codes used for the evaluation are described briefly. Tables of results are included for every isotope: the boundaries of the resolved resonance region, the numbers of s- and p-resonances, the thermal neutron partial cross-sections and the resonance integrals. The parameters are presented in ENDF/B-6 format. LIPAR is part of the nuclear data library of the MCU Monte Carlo code for neutron transport calculations. LIPAR was verified by comparing the benchmark experiment and Monte Carlo calculation results. (author). 44 refs, 6 tabs

  8. Resolved resonance parameters for 236Np

    International Nuclear Information System (INIS)

    Morogovskij, G.B.; Bakhanovich, L.A.

    2002-01-01

    Multilevel Breit-Wigner parameters were obtained for fission cross-section representation in the 0.01-33 eV energy region from evaluation of a 236 Np experimental fission cross-section in the resolved resonance region. (author)

  9. Phenomenological analysis of the Δ resonance parameters

    International Nuclear Information System (INIS)

    Vasan, S.S.

    1976-01-01

    The positions of the poles in the complex energy plane corresponding to the resonances Δ ++ and Δ 0 , and the associated residues, are determined by fitting the π + p and π - p hadronic phase shift data from the CARTER 73 analysis. As an illustration of the use of the Δ pole parameters, their application to the problem of parametrizing the residue function associated with the Δ Regge trajectory is considered. The input for the parametrization is given partly by the pole position and the residue of the Δ(1950), the first recurrence of the Δ(1236). These pole parameters are deduced from fits to the F 37 partial wave data from the AYED 74 phase shift analysis. Together with the Δ(1236) pole parameters, these provide information on the behavior of the Regge residue in the resonance region u less than 0 (in the context of s-channel backward scattering being dominated by u-channel Regge exchanges). Attempts to incorporate this information in parametrizations of the residue by means of real and complex functions lead to the conclusion that both the residue and the trajectory are better represented in the resonance region by complex parametrizations

  10. Rho resonance parameters from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael

    2016-08-01

    We perform a high-precision calculation of the phase shifts for $\\pi$-$\\pi$ scattering in the I = 1, J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark favors ($N_f = 2$). We extract the $\\rho$ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to $m_{\\pi} = 226$MeV and $m_{\\pi} = 315$MeV, and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase-shifts around the resonance for both quark masses. We find that the extrapolated value, $m_{\\rho} = 720(1)(15)$MeV, is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.

  11. Measurement of J/ψ resonance parameters

    International Nuclear Information System (INIS)

    Bai Jingzhi; Chen Guangpei; Chen Shaomin

    1995-01-01

    The cross sections of e + e - →hadrons, e + e - , μ + μ - have been measured in the vicinity of J/ψ resonance at BES/BEPC. The fit of the observed cross sections gives the new results of J/ψ resonance parameters: the partial widths to hadrons, electrons and muons are Γ h = 74.1 +- 8.1 keV, Γ e = 5.14 +- 0.39 keV and Γ μ = 5.13 +-0.52 keV respectively; the total width Γ = 84.4 +- 8.9 keV; the branching fractions Γ h /Γ = (87.8 +- 0.5)%, Γ e /Γ (6.09 +- 0.33)%, and Γ μ /Γ = (6.08 +- 0.33)%

  12. UPSILON'(10.01) resonance parameters

    International Nuclear Information System (INIS)

    Niczyporuk, B.; Zeludziewicz, T.; Chen, K.W.; Hartung, R.

    1980-09-01

    The resonance parameters of the UPSILON'(10.01) were measured using the LENA detector at the DORIS e + e - storage ring. We obtained a mass of M(UPSILON') = (10 013.6 +- 1.2 +- 10.0) MeV and an electronic width of GAMMAsub(ee)(UPSILON') = (0.53 +- 0.07sup(+0.09)sub(-0.05) keV. The upper limit set to the μ-pair branching ratio is 3.8% which implies a lower limit on the total UPSILON' widUPSILON parameters we obtain a mass difference M(UPSILON') - M(UPSILON) = (552.0 +- 1.3 +- 10.0) MeV and GAMMAsub(ee)UPSILON')/ = 0.43 +- 0.07sup(+0.05)sub(-0.00). (orig.)

  13. Neutron resonance parameters for 238U

    International Nuclear Information System (INIS)

    Poortmans, F.; Mewissen, L.; Cornelis, E.; Vanpraet, G.; Rohr, G.; Shelley, R.; Veen, T. van der; Weigmann, H.

    1977-01-01

    A series of total, capture and scattering cross section measurements using the neutron time-of-flight facility at the CBNM linear electron accelerator were performed. The neutron widths have been obtained for more than 400 resonances below 4.3 keV and the total capture width for 73 resonances

  14. Neutron capture measurements and resonance parameters of dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S.G.; Kye, Y.U.; Namkung, W.; Cho, M.H. [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang, Gyeongbuk (Korea, Republic of); Kang, Y.R.; Lee, M.W. [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Ro, T.I. [Dong-A University, Department of Physics, Busan (Korea, Republic of); Danon, Y.; Williams, D. [Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace, and Nuclear Engineering, Troy, NY (United States); Leinweber, G.; Block, R.C.; Barry, D.P.; Rapp, M.J. [Naval Nuclear Laboratory, Knolls Atomic Power Laboratory, Schenectady, NY (United States)

    2017-10-15

    Neutron capture yields of dysprosium isotopes ({sup 161}Dy, {sup 162}Dy, {sup 163}Dy, and {sup 164}Dy) were measured using the time-of-flight method with a 16 segment sodium iodide multiplicity detector. The measurements were made at the 25m flight station at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute. Resonance parameters were obtained using the multilevel R-matrix Bayesian code SAMMY. The neutron capture data for four enriched dysprosium isotopes and one natural dysprosium sample were sequentially fitted. New resonances not listed in ENDF/B-VII.1 were observed. There were 29 and 17 new resonances from {sup 161}Dy and {sup 163}Dy isotopes, respectively. Six resonances from {sup 161}Dy isotope, two resonances from {sup 163}Dy, and four resonances from {sup 164}Dy were not observed. The capture resonance integrals of each isotope were calculated with the resulting resonance parameters and those of ENDF/B-VII.1 in the energy region from 0.5 eV to 20 MeV and were compared to the capture resonance integrals with the resonance parameters from ENDF/B-VII.1. A resonance integral value of the natural dysprosium calculated with present resonance parameters was 1405 ± 3.5 barn. The value is ∝ 0.3% higher than that obtained with the ENDF/B-VII.1 parameters. The distributions of the present and ENDF/B-VII.1 neutron widths were compared to a Porter-Thomas distribution. Neutron strength functions for {sup 161}Dy and {sup 163}Dy were calculated with the present resonance parameters and both values were in between the values of ''Atlas of Neutron Resonances'' and ENDF/B-VII.1. The present radiation width distributions of {sup 161}Dy and {sup 163}Dy were fitted with the χ{sup 2} distribution by varying the degrees of freedom. (orig.)

  15. Average resonance parameters evaluation for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    New evaluated <{Gamma}{sub n}{sup 0}> and values for {sup 238}U, {sup 237}Np, {sup 243}Cm, {sup 245}Cm, {sup 246}Cm and {sup 241}Am nuclei in the resolved resonance region are presented. The applied method based on the idea that experimental resonance missing results in correlated changes of reduced neutron widths and level spacings distributions is discussed. (author)

  16. New evaluation of 238U neutron resonance parameters

    International Nuclear Information System (INIS)

    Derrien, Herve; Leal, Luiz C.; Larson, Nancy M.

    2003-01-01

    The neutron resonance parameters of 238 U were obtained in the energy range 1 keV to 20 keV from a SAMMY Reich-Moore analysis of high resolution transmission measurements performed at ORELA. In the energy range 1 keV to 10 keV, the analysis used as prior values the ENDF/B-VI resonance parameters. The analysis in the energy range 10 keV to 20 keV resulted in the creation of a set of resonance parameters for the representation of the cross section in this energy range. The results are compared to the ENDF/B-VI evaluation. Some statistical properties of the new resonance parameters are examined. (author)

  17. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  18. Influence of resonance parameters' correlations on the resonance integral uncertainty; 55Mn case

    International Nuclear Information System (INIS)

    Zerovnik, Gasper; Trkov, Andrej; Capote, Roberto; Rochman, Dimitri

    2011-01-01

    For nuclides with a large number of resonances the covariance matrix of resonance parameters can become very large and expensive to process in terms of the computation time. By converting covariance matrix of resonance parameters into covariance matrices of background cross-section in a more or less coarse group structure a considerable amount of computer time and memory can be saved. The question is how important is the information that is discarded in the process. First, the uncertainty of the 55 Mn resonance integral was estimated in narrow resonance approximation for different levels of self-shielding using Bondarenko method by random sampling of resonance parameters according to their covariance matrices from two different 55 Mn evaluations: one from Nuclear Research and Consultancy Group NRG (with large uncertainties but no correlations between resonances), the other from Oak Ridge National Laboratory (with smaller uncertainties but full covariance matrix). We have found out that if all (or at least significant part of the) resonance parameters are correlated, the resonance integral uncertainty greatly depends on the level of self-shielding. Second, it was shown that the commonly used 640-group SAND-II representation cannot describe the increase of the resonance integral uncertainty. A much finer energy mesh for the background covariance matrix would have to be used to take the resonance structure into account explicitly, but then the objective of a more compact data representation is lost.

  19. A method for generating subgroup parameters from resonance tables

    International Nuclear Information System (INIS)

    Devan, K.; Mohanakrishnan, P.

    1993-01-01

    A method for generating subgroup or band parameters from resonance tables is described. A computer code SPART was written using this method. This code generates the subgroup parameters for any number of bands within the specified broad groups at different temperatures by reading the required input data from the binary cross section library in the Cadarache format. The results obtained with SPART code for two bands were compared with that obtained from GROUPIE code and a good agreement was obtained. Results of the generation of subgroup parameters in four bands for sample case of 239 Pu from resonance tables of Cadarache Ver.2 library is also presented. (author). 8 refs., 2 tabs

  20. Recommended formulae and formats for a resonance parameter library

    International Nuclear Information System (INIS)

    James, M.F.

    1968-08-01

    It is proposed that a library of neutron resonance parameters be set up, on punched cards and magnetic tape, which will complement the cross section data in the present U.K. Nuclear Data Library. This report gives parametric formulae for the resolved resonance region, based on:- (i) the Breit-Wigner approximation, (ii) other approximations of R-matrix theory and (iii) the formulae of Adler and Adler. In addition, the statistical distributions of the parameters are given. The final section of the report contains the recommended formats for the parameters of the various formulae. (author)

  1. Nuclear data adjustment methodology utilizing resonance parameter sensitivities and uncertainties

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1983-01-01

    This work presents the development and demonstration of a Nuclear Data Adjustment Method that allows inclusion of both energy and spatial self-shielding into the adjustment procedure. The resulting adjustments are for the basic parameters (i.e. resonance parameters) in the resonance regions and for the group cross sections elsewhere. The majority of this development effort concerns the production of resonance parameter sensitivity information which allows the linkage between the responses of interest and the basic parameters. The resonance parameter sensitivity methodology developed herein usually provides accurate results when compared to direct recalculations using existng and well-known cross section processing codes. However, it has been shown in several cases that self-shielded cross sections can be very non-linear functions of the basic parameters. For this reason caution must be used in any study which assumes that a linear relatonship exists between a given self-shielded group cross section and its corresponding basic data parameters. The study also has pointed out the need for more approximate techniques which will allow the required sensitivity information to be obtained in a more cost effective manner

  2. Discrete ambiguity resolution and baryon-resonance parameter determination

    International Nuclear Information System (INIS)

    Chew, D.M; Urban, M.

    1978-04-01

    A partial-wave analysis was performed on elastic π + p data between 1400 and 2200 MeV, using principles of analyticity (to select and amalgamate data), causality and unitarity together with Barrelet zeros are the resonating waves between 1500 and 1800 MeV examined in detail, and it is shown how a new resolution of the discrete ambiguity gives, for the S31 and D33 resonances, different parameters than found in an earlier resolution using less accurate information. In either case, mass degeneracy of these resonances is observed in agreement with general considerations regarding smooth zero trajectories. 18 references

  3. Capture cross section and resonance parameters of thulium-169

    International Nuclear Information System (INIS)

    Arbo, J.C.; Felvinci, J.P.; Melkonian, E.; Havens, W.W. Jr.

    1975-01-01

    The previously analyzed energy range for thulium capture resonance parameters is extended from 1 keV to 2 keV. In addition, point and group averaged thulium cross section curves are extended to above 2 keV and 181 Ta impurity levels are discussed. (SDF)

  4. Measurement of the Z Resonance Parameters at LEP

    CERN Document Server

    Barate, R; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Orteu, S; Pacheco, A; Park, I C; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Bazarko, A; Becker, U; Boix, G; Bird, F; Blucher, E; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Greening, T C; Hagelberg, R; Halley, A W; Hansen, J B; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lazeyras, Pierre; Lehraus, Ivan; Maley, P; Mato, P; May, J; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Veenhof, R; Wiedenmann, W; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Bertelsen, H; Fernley, T; Hansen, F; Hansen, J D; Hansen, J R; Hansen, P H; Lindahl, A; Møllerud, R; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Tanaka, R; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Picchi, P; Colrain, P; ten Have, I; Hughes, I S; Knowles, I G; Lynch, J G; Morton, W T; Raine, C; Reeves, P; O'Shea, V; Scarr, J M; Smith, K; Thompson, A S; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Nash, J; Sciabà, A; Sedgbeer, J K; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Keemer, N R; Robertson, N A; Sloan, Terence; Snow, S W; Williams, M I; Bauerdick, L A T; Van Gemmeren, P; Giehl, I; Jakobs, K; Kasemann, M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmelling, M; Wachsmuth, H W; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Etienne, F; Motsch, F; Payre, P; Rousseau, D; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Edwards, M; Haywood, S J; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Affholderbach, K; Barberio, E; Böhrer, A; Brandt, S; Burkhardt, H; Feigl, E; Grupen, Claus; Hess, J; Lutters, G; Meinhard, H; Minguet-Rodríguez, J A; Mirabito, L; Misiejuk, A; Neugebauer, E; Prange, G; Rivera, F; Saraiva, P; Schäfer, U; Sieler, U; Smolik, L; Stephan, F; Trier, H; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pitis, L; Kim, H; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Cinabro, D; Conway, J S; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; Jin, S; Johnson, R P; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Sharma, V; Walsh, A M; Walsh, J; Wear, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    2000-01-01

    The properties of the Z resonance are measured from the analysis of 4.5 million Z decays into fermion pairs collected with the \\Aleph\\ detector at L EP. The data are consistent with lepton universality. The resonance parameters are measured to be $\\MZ=(91.1885 \\pm 0.0031)~\\Gevcc$, $\\GZ= (2.4951 \\pm 0.0043)~\\GeV$, $\\spol=(41.559 \\pm 0.058)$~nb and, combining the three lepton flavours $\\Rl= 20.725\\pm 0.039$. The corresponding number of light neutrino species is $N_{\

  5. Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator

    Directory of Open Access Journals (Sweden)

    CONSTANTINESCU, F.

    2011-02-01

    Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.

  6. Parameter dependence of resonant spin torque magnetization reversal

    International Nuclear Information System (INIS)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H.W.

    2012-01-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  7. Parameter dependence of resonant spin torque magnetization reversal

    Science.gov (United States)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H. W.

    2012-04-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  8. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    International Nuclear Information System (INIS)

    MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad

    2004-01-01

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176 Hf and 178 Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6 Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the 176 Hf and 178 Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little

  9. OPTIMIZATION OF HEMISPHERICAL RESONATOR GYROSCOPE STANDING WAVE PARAMETERS

    Directory of Open Access Journals (Sweden)

    Olga Sergeevna Khalyutina

    2017-01-01

    Full Text Available Traditionally, the problem of autonomous navigation is solved by dead reckoning navigation flight parameters (NFP of the aircraft (AC. With increasing requirements to accuracy of definition NFP improved the sensors of the prima- ry navigation information: gyroscopes and accelerometers. the gyroscopes of a new type, the so-called solid-state wave gyroscopes (SSVG are currently developed and put into practice. The work deals with the problem of increasing the accu- racy of measurements of angular velocity of the hemispherical resonator gyroscope (HRG. The reduction in the accuracy characteristics of HRG is caused by the presence of defects in the distribution of mass in the volume of its design. The syn- thesis of control system for optimal damping of the distortion parameters of the standing wave due to the influence of the mass defect resonator is adapted. The research challenge was: to examine and analytically offset the impact of the standing wave (amplitude and frequency parameters defect. Research was performed by mathematical modeling in the environment of SolidWorks Simulation for the case when the characteristics of the sensitive element of the HRG met the technological drawings of a particular type of resonator. The method of the inverse dynamics was chosen for synthesis. The research re- sults are presented in graphs the amplitude-frequency characteristics (AFC of the resonator output signal. Simulation was performed for the cases: the perfect distribution of weight; the presence of the mass defect; the presence of the mass defects are shown using the synthesized control action. Evaluating the effectiveness of the proposed control algorithm is deter- mined by the results of the resonator output signal simulation provided the perfect constructive and its performance in the presence of a mass defect in it. It is assumed that the excitation signals are standing waves in the two cases are identical in both amplitude and frequency. In this

  10. Resonances and anti-resonances in the material parameters of 2-D dielectric ENG, MNG, and DNG materials

    DEFF Research Database (Denmark)

    Wu, Yunqiu; Arslanagic, Samel

    The resonant/anti-resonant behavior of parameters extracted by the S-parameter method for two-dimensional epsilon-, mu- and double-negative (ENG, MNG, DNG) materials is investigated. The unit cells consist of infinite dielectric cylinders supporting electric dipole, magnetic dipole, or both....... It is shown that the extraction procedure yields one resonant material parameter, and one anti-resonant material parameter in MNG and ENG configurations. However, both parameters display an over-all resonant response in DNG configurations where electric and magnetic dipole modes are excited simultaneously....

  11. Parameters optimization for magnetic resonance coupling wireless power transmission.

    Science.gov (United States)

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  12. Determination of resonance parameters in QCD by functional analysis methods

    International Nuclear Information System (INIS)

    Ciulli, S.; Geniet, F.; Papadopoulos, N.A.; Schilcher, K.

    1988-01-01

    A mathematically rigorous method based on functional analysis is used to determine resonance parameters of an amplitude from its given asymptotic expression in the space-like region. This method is checked on a model amplitude where both the asymptotic expression and the exact function are known. This method is then applied to the determination of the mass and the width of the ρ-meson from the corresponding space-like asymptotic QCD expression. (orig.)

  13. Nonlinear Parameter Identification of a Resonant Electrostatic MEMS Actuator

    Science.gov (United States)

    Al-Ghamdi, Majed S.; Alneamy, Ayman M.; Park, Sangtak; Li, Beichen; Khater, Mahmoud E.; Abdel-Rahman, Eihab M.; Heppler, Glenn R.; Yavuz, Mustafa

    2017-01-01

    We experimentally investigate the primary superharmonic of order two and subharmonic of order one-half resonances of an electrostatic MEMS actuator under direct excitation. We identify the parameters of a one degree of freedom (1-DOF) generalized Duffing oscillator model representing it. The experiments were conducted in soft vacuum to reduce squeeze-film damping, and the actuator response was measured optically using a laser vibrometer. The predictions of the identified model were found to be in close agreement with the experimental results. We also identified the noise spectral density of process (actuation voltage) and measurement noise. PMID:28505097

  14. Review of methods for level density estimation from resonance parameters

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1983-01-01

    A number of methods are available for statistical analysis of resonance parameter sets, i.e. for estimation of level densities and average widths with account of missing levels. The main categories are (i) methods based on theories of level spacings (orthogonal-ensemble theory, Dyson-Mehta statistics), (ii) methods based on comparison with simulated cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (iii) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The present review will concentrate on (iii) with the aim of clarifying the basic mathematical concepts and the relationship between the various techniques. Recent theoretical progress in the treatment of resolution effects, detectability thresholds and p-wave admixture is described. (Auth.)

  15. A mathematical solution for the parameters of three interfering resonances

    Science.gov (United States)

    Han, X.; Shen, C. P.

    2018-04-01

    The multiple-solution problem in determining the parameters of three interfering resonances from a fit to an experimentally measured distribution is considered from a mathematical viewpoint. It is shown that there are four numerical solutions for a fit with three coherent Breit-Wigner functions. Although explicit analytical formulae cannot be derived in this case, we provide some constraint equations between the four solutions. For the cases of nonrelativistic and relativistic Breit-Wigner forms of amplitude functions, a numerical method is provided to derive the other solutions from that already obtained, based on the obtained constraint equations. In real experimental measurements with more complicated amplitude forms similar to Breit-Wigner functions, the same method can be deduced and performed to get numerical solutions. The good agreement between the solutions found using this mathematical method and those directly from the fit verifies the correctness of the constraint equations and mathematical methodology used. Supported by National Natural Science Foundation of China (NSFC) (11575017, 11761141009), the Ministry of Science and Technology of China (2015CB856701) and the CAS Center for Excellence in Particle Physics (CCEPP)

  16. Set up of a method for the adjustment of resonance parameters on integral experiments

    International Nuclear Information System (INIS)

    Blaise, P.

    1996-01-01

    Resonance parameters for actinides play a significant role in the neutronic characteristics of all reactor types. All the major integral parameters strongly depend on the nuclear data of the isotopes in the resonance-energy regions.The author sets up a method for the adjustment of resonance parameters taking into account the self-shielding effects and restricting the cross section deconvolution problem to a limited energy region. (N.T.)

  17. The thermal neutron absorption cross-sections, resonance integrals and resonance parameters of silicon and its stable isotopes

    International Nuclear Information System (INIS)

    Story, J.S.

    1969-09-01

    The data available up to the end of November 1968 on the thermal neutron absorption cross-sections, resonance absorption integrals, and resonance parameters of silicon and its stable isotopes are collected and discussed. Estimates are given of the mean spacing of the energy levels of the compound nuclei near the neutron binding energy. It is concluded that the thermal neutron absorption cross-section and resonance absorption integral of natural silicon are not well established. The data on these two parameters are somewhat correlated, and three different assessments of the resonance integral are presented which differ over-all by a factor of 230. Many resonances have been detected by charged particle reactions which have not yet been observed in neutron cross-section measurements. One of these resonances of Si 2 8, at E n = 4 ± 5 keV might account for the large resonance integral which is derived, very uncertainly, from integral data. The principal source of the measured resonance integral of Si 3 0 has not yet been located. The thermal neutron absorption cross-section of Si 2 8 appears to result mainly from a negative energy resonance, possibly the resonance at E n = - 59 ± 5 keV detected by the Si 2 8 (d,p) reaction. (author)

  18. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.

    Science.gov (United States)

    McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark

    2018-07-01

    To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Review of the different methods to derive average spacing from resolved resonance parameters sets

    International Nuclear Information System (INIS)

    Fort, E.; Derrien, H.; Lafond, D.

    1979-12-01

    The average spacing of resonances is an important parameter for statistical model calculations, especially concerning non fissile nuclei. The different methods to derive this average value from resonance parameters sets have been reviewed and analyzed in order to tentatively detect their respective weaknesses and propose recommendations. Possible improvements are suggested

  20. Neutron capture resonances in 56Fe and 58Fe in the energy range from 10 to 100 keV

    International Nuclear Information System (INIS)

    Kaeppeler, F.; Wisshak, K.; Hong, L.D.

    1982-11-01

    The neutron capture cross section of 56 Fe and 58 Fe has been measured in the energy range from 10 to 250 keV relative to the gold standard. A pulsed 3 MV Van de Graaff accelerator and the 7 Li(p, n) reaction served as a neutron source. Capture gamma rays were detected by two C 6 D 6 detectors, which were operated in coincidence and anticoincidence mode. Two-dimensional data acquisition allowed to apply the pulse height weighting technique off-line. The samples were located at a flight path of 60 cm. The total time resolution was 1.2 ns thus allowing for an energy resolution of 2 ns/m. The experimental set-up was optimized with respect to low background and low neutron sensitivity. The additional flight path of 4 cm from the sample to the detector was sufficient to discriminate capture of sample scattered neutrons by the additional time of flight. In this way reliable results were obtained even for the strong s-wave resonances of both isotopes. The experimental capture yield was analyzed with the FANAC code. The energy resolution allowed to extract resonance parameters in the energy range from 10 to 100 keV. The individual systematic uncertainties of the experimental method are discussed in detail. They were found to range between 5 and 10% while the statistical uncertainty is 3-5% for most of the resonances. A comparison to the results of other authors exhibits in case of 56 Fe systematic differences of 7-11%. For 58 Fe the present results differ up to 50% from the only other measurement for this isotope. (orig.) [de

  1. Statistical analysis of parameters of the uranium -238 resonances

    International Nuclear Information System (INIS)

    Nikolaev, M.N.; Abagyan, L.P.

    1976-01-01

    It has been shown that the distribution for 238 U p - levels can be in agreement with the theoretical one (Porter - Thomas distribution) only if the significant lack of p - levels in the experiments would be supposed. That means that density of 238 U levels with spin 1/2 is parity dependent, and therefore the whole number of p - resonances is 4.8 (instead of 3) times greater than the number of s - resonances in the same energy internal. With the assumption about spin dependence of strength function it is impossible to agree the experimental distribution with the theoretical one

  2. Stochastic resonance in the presence of slowly varying control parameters

    International Nuclear Information System (INIS)

    Nicolis, C; Nicolis, G

    2005-01-01

    The kinetics of transitions between states in a noisy system is studied in the simultaneous presence of a periodic forcing and a ramp. It is shown that the interaction between stochastic resonance and the action of the ramp may give rise to a new method for the control of the transition rates

  3. Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection

    International Nuclear Information System (INIS)

    Wang Chi; Zhou Yu-Qiu; Shen Gao-Wei; Wu Wen-Wen; Ding Wei

    2013-01-01

    The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the ''soil-mine'' system could be equivalent to a damping ''mass-spring'' resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil—mine system could be investigated by changing the parameter setup in a flexible manner. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Determination of the decay parameters of resonant states

    International Nuclear Information System (INIS)

    Tsoupas, N.

    1975-01-01

    The partial decay proton widths and the relative phases of six of the resonances in 29 P from excitation energies 5.7 to 7.1 MeV were determined. For this determination the angular distributions of protons scattered inelastically from the first 2 + excited state in 28 Si have been measured at 88 energies between E/sub p/ = 3.0 to 5.2 MeV. The coefficients describing the angular distributions were extracted from the experimental data and plotted as a function of C.M. bombarding energy over the resonance region. In addition triple angular correlations in the spin-flip geometry of the inelastically scattered protons from the 2 + first excited state of 28 Si with the γ-rays resulted from the de-excitation of 28 Si to its ground state were performed over the energy region E/sub p/ = 3.0 to 4.7 MeV. The coefficients describing these triple angular correlations were extracted and plotted versus C.M. bombarding energy. To aid in the analysis the experimental data of another triple angular correlation in the Goldfarb-Seyler geometry between the two radiations as in the spin flip angular correlation were used. Further analysis of the experimental data for the extraction of the partial decay widths and phases proceeded by calculating the theoretical expressions of the coefficients versus energy, using a Breit-Wigner formalism including interference between the resonances. The calculated theoretical coefficients were compared with the experimental ones through an on-line interactive program which permitted visual comparisons of the theoretically calculated coefficients to the experimental coefficients. The partial decay proton widths and the relative phases for six of the resonances will be presented in this dissertation

  5. A Short History of ENDF/B Unresolved Resonance Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Dermott E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-10-31

    This paper is designed to address two topics relating to ENDF/B data in the unresolved resonance region, Part 1: For years code users have pointed out and complained that various ENDF data processing codes, in particular PREPRO and NJOY, produce different answers from one another for the cross sections in unresolved resonance region. First I assure code users that NJOY has now been updated to agree with PREPRO, so that this problem has now been solved. Part 2: Next, this paper documents why we saw these differences; the emphasis here is on explaining what my own codes do, but I will also try to briefly outline what other codes do, so the reader can understand why we were producing different answers. The first topic should be of general interest to all readers, particularly users of our codes, whereas the second topic will be of more limited interest only to those readers who are interested in the details of our calculations in the unresolved resonance region. Now that our PREPRO and NJOY results agree we consider this problem solved and no further action is necessary.

  6. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  7. Statistical inference of level densities from resolved resonance parameters

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1983-08-01

    Level densities are most directly obtained by counting the resonances observed in the resolved resonance range. Even in the measurements, however, weak levels are invariably missed so that one has to estimate their number and add it to the raw count. The main categories of missinglevel estimators are discussed in the present review, viz. (I) ladder methods including those based on the theory of Hamiltonian matrix ensembles (Dyson-Mehta statistics), (II) methods based on comparison with artificial cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (III) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The language of mathematical statistics is employed to clarify the basis of, and the relationship between, the various techniques. Recent progress in the treatment of resolution effects, detection thresholds and p-wave admixture is described. (orig.) [de

  8. Characteristics of Schumann Resonance Parameters at Kuju Station

    Directory of Open Access Journals (Sweden)

    Ikeda Akihiro

    2017-01-01

    Full Text Available The ground magnetic field variation in the extremely low frequency (ELF range has been measured by an induction magnetometer at Kuju, Japan (KUJ; M.Lat. = 23.4 degrees, M. Lon. = 201.0 degrees since 2003. The first mode of the Schumann resonance (SR around 8 Hz can be seen at KUJ. The SR in H (horizontal northward component shows maximum peaks around 08 UT and 15 UT. In the case of D (horizontal eastward component, the SR shows its maximum peak around 08 UT. These peaks are coincident with the enhancement of lightning activity in Africa and Asia. Thus, we found the influence of the lightning activity on the observed SR at KUJ.

  9. Electron paramagnetic resonance parameters and local structure for ...

    Indian Academy of Sciences (India)

    HUA-MING ZHANG. 1. , GUANG-DUO LU. 1 ... the above ZFSs, the local structure information for the impurity Gd. 3+ is obtained, i.e., .... parameters, extended X-ray absorption fine-structure (EXAFS) measurements and crystal-field spectrum ...

  10. A method for generating subgroup parameters from resonance tables and the SPART code

    International Nuclear Information System (INIS)

    Devan, K.; Mohanakrishnan, P.

    1995-01-01

    A method for generating subgroup or band parameters from resonance tables is described. A computer code SPART was written using this method. This code generates the subgroup parameters for any number of bands within the specified broad groups at different temperatures by reading the required input data from the binary cross section library in the Cadarache format. The results obtained with SPART code for two bands were compared with that obtained from GROUPIE code and a good agreement was obtained. Results of the generation of subgroup parameters in four bands for sample case of 239 Pu from resonance tables of Cadarache Ver.2 library is also presented. 6 refs, 2 tabs

  11. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium

    International Nuclear Information System (INIS)

    Leinweber, G.; Burke, J.A.; Knox, H.D.; Drindak, N.J.; Mesh, D.W.; Haines, W.T.; Ballad, R.V.; Block, R.C.; Slovacek, R.E.; Werner, C.J.; Trbovich, M.J.; Barry, D.P.; Sato, T.

    2001-01-01

    The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is 149 Sm, which has a large neutron absorption cross section at thermal energies and is a 235 U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with 6 Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D 2 O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in 149 Sm, present measurements agree within estimated uncertainties with En

  12. Determination of Intermediate Resonance Parameter with RMET21 for nTRACER

    International Nuclear Information System (INIS)

    Sohail, Muhammad; Kim, Myung Hyun

    2012-01-01

    Ray Tracing based code nTRACER is being developed in Seoul National University that has the capability of 3-dimensional whole core neutron transport calculation. As a part of development of multi-group neutron cross section library for nTRACER, the current work is intended to accurately determine intermediate resonance parameters. Beside the systematic calculation of subgroup parameters for resonance self shielding calculation, intermediate resonance parameters itself can be as important as the multi-group neutron cross section in the library and its overall accuracy. In this paper lambda factors were computed using RMET21 from ENDF/B-VII.1 for nTRACER to investigate its dependence on temperature and background cross section and replaced with lambda factors from HELIOS multi-group library. The procedure used for determining the intermediate resonance parameter for the isotope under study is introduced in the next section. Oxygen being one of the primary nuclide in PWR fuel has been selected for intermediate resonance parameters calculation

  13. Uncertainty of Doppler reactivity worth due to uncertainties of JENDL-3.2 resonance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zukeran, Atsushi [Hitachi Ltd., Hitachi, Ibaraki (Japan). Power and Industrial System R and D Div.; Hanaki, Hiroshi; Nakagawa, Tuneo; Shibata, Keiichi; Ishikawa, Makoto

    1998-03-01

    Analytical formula of Resonance Self-shielding Factor (f-factor) is derived from the resonance integral (J-function) based on NR approximation and the analytical expression for Doppler reactivity worth ({rho}) is also obtained by using the result. Uncertainties of the f-factor and Doppler reactivity worth are evaluated on the basis of sensitivity coefficients to the resonance parameters. The uncertainty of the Doppler reactivity worth at 487{sup 0}K is about 4 % for the PNC Large Fast Breeder Reactor. (author)

  14. Isoscalar giant resonances and Landau parameters with density-dependent effective interactions

    International Nuclear Information System (INIS)

    Kohno, Michio; Ando, Kazuhiko

    1979-01-01

    Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)

  15. Importance of resonance parameters of fertile nuclei and of 239Pu isotope for fast power reactors

    International Nuclear Information System (INIS)

    Barre, J.Y.; Khairallah, A.

    1975-01-01

    The importance of resonance parameters of fertile nuclei and of 239 Pu isotope for fast power reactors will be restricted, in this presentation, to mixed oxide-uranium-plutonium fuelled sodium-cooled and uranium-oxide-sodium reflected fast reactors. The power range lies between 200 and 2000 MWe. Among the topics of this specialist meeting, the isotopes to be considered are, primarly 239 Pu then 238 U and 240 Pu. Resonance parameters are mainly used in fast power reactor calculations through the well-known concept of self shielding factors. After a short description of the determination and the use of these self-shielding factors, their sensitivities to resonance parameters are characterized from some specific examples: those sensitivities are small. Then, the main design parameters sensitive to the amplitude of self-shielding factors are considered: critical enrichment, global breeding gain. The relative importance of isotope, reaction rate and energy range are mentionned. In a third part, the Doppler effect, sensitive to the temperature variation of self-shielding factors, is considered in the same way. Finally, it is concluded that the present knowledge of resonance parameters for 238 U, 239 Pu and 240 Pu is sufficient for fast power reactors from a designer point of view [fr

  16. Nuclear data project in Korea and resonance parameter evaluation of fission products

    International Nuclear Information System (INIS)

    Chang, Jonghwa; Oh, Soo-Youl

    2000-01-01

    Nuclear data activities in the fields of evaluation, processing, measurement, and service in Korea are presented in this paper. As one of the current activities, the neutron resonance parameters for stable or long-lived nineteen fission products have been evaluated and the results are presented here. (author)

  17. Neutron total cross-sections and resonance parameters of Mo and Ta

    Indian Academy of Sciences (India)

    Linear accelerator; total cross-sections; resonance parameters; SAMMY code. ... Centre for Atomic Research, Kalpakkam 603 102, India; Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Physics, Kyungpook National University, Daegu 702-701, Korea ...

  18. Nuclear statistics of dysprosium resonance parameters in the energy range 10 - 1000 eV

    International Nuclear Information System (INIS)

    Shin, S. G.; Kye, Y. U.; Cho, M. H.; Kim, G. N.; Namkung, W.; Lee, M. W.; Kang, Y. R.; Roe, T. I.

    2016-01-01

    A resonance parameter analysis is often performed in the Resolved Resonance Region (RRR) in order to estimate the average level spacing, distribution of the reduced widths and so on. Neutron Capture experiments on dysprosium isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. The following nuclear statistics of the resonance parameters will be discussed in this paper. The D 0 for 161 Dy and 163 Dy were judged to be constant up to 120.6 and 163.9 eV, respectively. It was assumed that the D 0 of 162 Dy and 164 Dy is constant up to 1000 eV because they have few resonances. The results were compared with the values from Reference 11 as shown in Figure 1. Statistical distributions of reduced neutron were investigated for the three isotopes in the region from 0 to 1000 eV; 161 Dy, 162 Dy, and 163 Dy, but not for 164 Dy because of a few number of resonances. The reduced neutron widths Γ n 0 were divided by the unweighted average reduced neutron width < Γ n 0 > for each isotope. A cumulative distribution of these unitless ratios is compared with the integral of the Porter-Thomas distribution (χ 2 distribution with one degree of freedom). The results agree reasonably with the Porter Thomas distributions.

  19. Extended Gersgorin Theorem-Based Parameter Feasible Domain to Prevent Harmonic Resonance in Power Grid

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2017-10-01

    Full Text Available Harmonic resonance may cause abnormal operation and even damage of power facilities, further threatening normal and safe operation of power systems. For renewable energy generations, controlled loads and parallel reactive power compensating equipment, their operating statuses can vary frequently. Therefore, the parameters of equivalent fundamental and harmonic admittance/impedance of these components exist in uncertainty, which will change the elements and eigenvalues of harmonic network admittance matrix. Consequently, harmonic resonance in power grid is becoming increasingly more complex. Hence, intense research about prevention and suppression of harmonic resonance, particularly the parameter feasible domain (PFD which can keep away from harmonic resonance, are needed. For rapid online evaluation of PFD, a novel method without time-consuming pointwise precise eigenvalue computations is proposed. By analyzing the singularity of harmonic network admittance matrix, the explicit sufficient condition that the matrix elements should meet to prevent harmonic resonance is derived by the extended Gersgorin theorem. Further, via the non-uniqueness of similar transformation matrix (STM, a strategy to determine the appropriate STM is proposed to minimize the conservation of the obtained PFD. Eventually, the availability and advantages in computation efficiency and conservation of the method, are demonstrated through four different scale benchmarks.

  20. Parameter allocation of parallel array bistable stochastic resonance and its application in communication systems

    International Nuclear Information System (INIS)

    Liu Jian; Zhai Qi-Qing; Wang You-Guo; Liu Jin

    2016-01-01

    In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system (P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated (BPAM) signal transmissions. The optimal parameter allocation policy of the P-BSR-CS is provided to minimize the bit error rate (BER) and maximize the channel capacity (CC) under the adiabatic approximation condition. On this basis, we further derive the best parameter selection theorem in realistic communication scenarios via variable transformation. Specifically, the P-BSR structure design not only brings the robustness of parameter selection optimization, where the optimal parameter pair is not fixed but variable in quite a wide range, but also produces outstanding system performance. Theoretical analysis and simulation results indicate that in the P-BSR-CS the proposed parameter allocation scheme yields considerable performance improvement, particularly in very low signal-to-noise ratio (SNR) environments. (paper)

  1. On the Methodology to Calculate the Covariance of Estimated Resonance Parameters

    International Nuclear Information System (INIS)

    Becker, B.; Kopecky, S.; Schillebeeckx, P.

    2015-01-01

    Principles to determine resonance parameters and their covariance from experimental data are discussed. Different methods to propagate the covariance of experimental parameters are compared. A full Bayesian statistical analysis reveals that the level to which the initial uncertainty of the experimental parameters propagates, strongly depends on the experimental conditions. For high precision data the initial uncertainties of experimental parameters, like a normalization factor, has almost no impact on the covariance of the parameters in case of thick sample measurements and conventional uncertainty propagation or full Bayesian analysis. The covariances derived from a full Bayesian analysis and least-squares fit are derived under the condition that the model describing the experimental observables is perfect. When the quality of the model can not be verified a more conservative method based on a renormalization of the covariance matrix is recommended to propagate fully the uncertainty of experimental systematic effects. Finally, neutron resonance transmission analysis is proposed as an accurate method to validate evaluated data libraries in the resolved resonance region

  2. A benchmark test of computer codes for calculating average resonance parameters

    International Nuclear Information System (INIS)

    Ribon, P.; Thompson, A.

    1983-01-01

    A set of resonance parameters has been generated from known, but secret, average values; the parameters have then been adjusted to mimic experimental data by including the effects of Doppler broadening, resolution broadening and statistical fluctuations. Average parameters calculated from the dataset by various computer codes are compared with each other, and also with the true values. The benchmark test is fully described in the report NEANDC160-U (NEA Data Bank Newsletter No. 27 July 1982); the present paper is a summary of this document. (Auth.)

  3. Average values of 235U resonance parameters up to 500 eV

    International Nuclear Information System (INIS)

    Leal, L.C.

    1991-01-01

    An R-matrix analysis of 235 U neutron cross sections was recently completed. The analysis was performed with the multilevel-multichannel Reich-Moore computer code SAMMY and extended the resolved resonance region up to 500 eV. Several high resolution measurements namely, transmission, fission and capture data as well as spin separated fission data were analyzed in a consistent manner and a very accurate parametrization up to 500 eV of these data were obtained. The aim of this paper is to present the results of average values of the resonance parameters. 9 refs., 1 tab

  4. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Niobium

    International Nuclear Information System (INIS)

    NJ Drindak; JA Burke; G Leinweber; JA Helm; JG Hoole; RC Block; Y Danon; RE Slovacek; BE Moretti; CJ Werner; ME Overberg; SA Kolda; MJ Trbovich; DP Barry

    2005-01-01

    Epithermal neutron capture and transmission measurements were performed using the time-of-flight method at the RPI linac using metallic Nb samples. The capture measurements were made at the 25-meter flight station with a 16-section sodium iodide multiplicity detector and the transmission measurements at the 25-meter flight station with a Li-6 glass scintillation detector. Resonance parameters were determined for all resonances up to 500eV with a combined analysis of capture and transmission data using the multi-level R-matrix Bayesian code SAMMY. The present results are compared to those presented in ENDF/B-VI, updated through Release 3

  5. Resonance proton scattering use for the beam parameters control of the electrostatic accelerator

    Directory of Open Access Journals (Sweden)

    V. I. Soroka

    2013-12-01

    Full Text Available The paper discusses peculiarities of the resonance proton scattering use for the beam parameters control of the electrostatic accelerators. The expediency of the use has been confirmed by experiment. Peculiarities are caused because elastic resonance scattering through the stage of compound nucleus is always accompanied by potential and Coulomb scattering. These three components interfere and for that reason the resonance form de-pends on a scattering angle and total angular moment of a compound nucleus level. However, possessing neces-sary information in the given field of nuclear spectroscopy enables the selection of resonance with the character-istics suitable for the calibration purpose. Considerable increase of the scattering cross section in the resonance region saves the time and simplifies the experiment technical maintenance. The experiments were performed at the 10 MeV tandem accelerator of the Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, after its modernization. Silicon and oxygen were used as the targets. Silicon targets were of two types of thickness: 1 the target of complete absorption, 2 the target with the thickness in which the loss of protons ener-gy exceeded the width of the selected resonance. The elastic and non elastic scattering from silicon were used in region of the 3,100 MeV proton energy resonance. Oxygen target, as component of the surface oxidizing layer on beryllium had the thickness which in terms of the loss of proton energy was less than the width of the selected elastic narrow resonance at 3,470 MeV proton energy. As result of the measurement the corrections concerning the energy scale of the accelerator and protons energy spread in the beam were proposed.

  6. Evaluation of covariances for resolved resonance parameters of 235U, 238U, and 239Pu in JENDL-3.2

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Shibata, Keiichi

    2003-02-01

    Evaluation of covariances for resolved resonance parameters of 235 U, 238 U, and 239 Pu was carried out. Although a large number of resolved resonances are observed for major actinides, uncertainties in averaged cross sections are more important than those in resonance parameters in reactor calculations. We developed a simple method which derives a covariance matrix for the resolved resonance parameters from uncertainties in the averaged cross sections. The method was adopted to evaluate the covariance data for some important actinides, and the results were compiled in the JENDL-3.2 covariance file. (author)

  7. Total and fission cross-sections of 239Pu - statistical study of resonance parameters

    International Nuclear Information System (INIS)

    Derrien, H.; Blons, J.; Eggermann, C.; Michaudon, A.; Paya, D.; Ribon, P.

    1967-01-01

    The authors measured the total and fission cross-sections of 239 Pu with the linear accelerator at Saclay as a pulsed source of neutrons. The total cross-section was measured in the range from 4 to 700 eV and the best resolution used was 1.5 ns/m; the fission cross-section was measured between 4 eV and 6 keV, the best resolution having been 6 ns/m. The transmission measurements on five samples were made at the temperature of liquid nitrogen, and comparisons made with supplementary experiments at ambient temperature made it possible to determine the Doppler broadening factor (Δ = η√E). The resonances were identified from 4 to 500 eV in the total cross-section; the average level spacing was of the order of 2.4 eV. It would appear that, in this energy range, nearly all the levels were identified. The resonance parameters were determined by analysis of shape in conjunction with a least-squares programme on an IBM-7094 computer. The existence of a large number of broad resonances corresponding to very large fission widths has been shown to exist. Statistical study of the fission widths actually shows the existence of two families of resonances, one corresponding to a mean Γ f of the order of 45 meV and the other to a mean Γ/f of about 750 meV. The authors were therefore able to postulate a classification of resonances in terms of two spin states, the level population ratio in each family being: (2J 1 +1)/(2J 2 +1) = 1/3; J 1 = 0 corresponds to the broad resonances and J 2 = 1 to the narrow ones. The partial widths for radiative capture fluctuate slightly around a mean value of 40 meV. By using a multilevel programme, the authors were able to investigate the extent to which the existence of large fission widths might give rise to fictitious resonances (quasi-resonances) and perturbations and also to make a statistical study of the resonance parameters. (author) [fr

  8. Parameters and definitions in applied technique quality test for nuclear magnetic resonance imaging system (NMRI)

    International Nuclear Information System (INIS)

    Lin Zhikai; Zhao Lancai

    1999-08-01

    During the past two decades, medical diagnostic imaging technique has achieved dramatic development such as CT, MRI, PET, DSA and so on. The most striking examples of them are the application of X ray computerized tomography (CT) and magnetic resonance imaging in the field of medical diagnosis. It can be predicted that magnetic resonance imaging (MRI) will definitely have more widespread prospects of applications and play more and more important role in clinical diagnosis looking forward to the development of image diagnostic technique for 21 st century. The authors also present the measuring methods for some parameters. The parameters described can be used for reference by clinical diagnosticians, operators on MRI and medical physicists who engages in image quality assurance (QA) and control (QC) in performing MRI acceptance test and routine test

  9. Neutron resonance parameters of 96Zr below 100 keV

    International Nuclear Information System (INIS)

    Musgrove, A.R.D.

    1977-08-01

    Transmission data taken at the 80 m station of the Oak Ridge Electron Linear Accelerator have provided resonance parameters for 96 Zr to 100 keV. The average level spacing and neutron strength function for s-wave neutrons were as follows: = 8 +- 2 keV and S 0 = (0.21 +- 0.10) x 10 -4 . The average p-wave neutron strength function was S 1 = (7.4 +- 2.0) x 10 -4 . (Author)

  10. Measurements of the Z boson resonance parameters at SLC [SLAC Linear Collider

    International Nuclear Information System (INIS)

    Hearty, C.

    1989-07-01

    This paper presents the measurement by the Mark II experiment at the SLAC Linear Collider of the parameters of the Z boson resonance. The results are updated from those presented at the SLAC Summer Institute to include all data presented in the most recent Mark II publication, consisting of 19 nb -1 of data at ten different center-of-mass energies between 89.2 and 93.0 GeV. The resonance parameters are extracted by measuring the Z production cross section at a series of center-of-mass energies (scan points) near the Z peak, then fitting these data with the theoretical cross section. The four major aspects of the analysis are the determination at each scan point of the center-of-mass energy (E), the integrated luminosity, the number of Z decays and the expected cross section as a function of the resonance parameters, such as mass and width. I will discuss each of these steps in turn, after a brief description of the Mark II detector, then conclude with the results of the analysis. 7 refs., 9 figs., 3 tabs

  11. Atlas of giant dipole resonances. Parameters and graphs of photonuclear reaction cross sections

    International Nuclear Information System (INIS)

    Varlamov, A.V.; Varlamov, V.V.; Rudenko, D.S.; Stepanov, M.E.

    1999-01-01

    Parameters of giant dipole resonances (GDR) observed in photonuclear reaction cross sections using various beams of incident photons are presented. Data, given for 200 stable isotopes from 2 H to 243 Am including their natural compositions, were collected from papers published over the years 1951-1996. GDR parameters, such as energy positions, amplitudes and widths, are included into the table and organized by element, isotope and reaction. Graphs of the majority of the photonuclear reaction cross sections, included in the international nuclear data library EXFOR by the end of 1998, are presented. The graphs are provided for 182 stable isotopes and natural compositions. (author)

  12. Impact-parameter dependence of giant resonance excitations in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Gruenschloss, A.; Boretzky, K.; Aumann, T.

    1999-09-01

    Angular distributions of Xe fragments produced in peripheral collisions of a 136 Xe beam (700 MeV/nucleon) with 208 Pb and nat Sn targets were measured. Equivalent sharp-cutoff minimum impact parameters were derived on the basis of a semi-classical description for the electromagnetic excitation of one- and two-phonon giant resonances. The results are compared with current standard parametrizations of minimum impact parameters and with the soft-spheres model using realistic mass density distributions for projectile and targets. (orig.)

  13. Resonance parameters for measured keV neutron capture cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, A.R. de L

    1969-05-01

    All available neutron capture cross sections in the keV region ({approx} to 100 keV) have been fitted with resonance parameters. Capture cross sections for nuclides with reasonably well known average s-wave parameters, but no measured cross section, have been calculated and tabulated using p-and d- wave strength functions interpolated between fitted values. Several of these nuclides are of interest in the theory of slow nucleosynthesis of heavy elements in stars, and the product of cosmic abundance (due to the s-process) and capture cross section at 30 keV has been plotted versus mass number. (author)

  14. 56Fe resonance parameters for neutron energies up to 850 keV

    International Nuclear Information System (INIS)

    Perey, C.M.; Perey, F.G.; Harvey, J.A.; Hill, N.W.; Larson, N.M.

    1990-12-01

    High-resolution neutron measurements for 56 Fe-enriched iron targets were made at the Oak Ridge Electron Linear Accelerator (ORELA) in transmission below 20 MeV and in differential elastic scattering below 5 MeV. Transmission measurements were also performed with a natural iron target below 160 keV. The transmission data were analyzed from 5 to 850 keV with the multilevel R-matrix code SAMMY which uses Bayes' theorem for the fitting process. This code provides energies and neutron widths of the resonances inside the 5- to 850-keV energy region, as well as possible parameterization for resonances external to the analyzed region to describe the smooth cross section from a few eV to 850 keV. The resulting set of resonance parameters yields the accepted values for the thermal total and capture cross sections. The differential elastic-scattering data at several scattering angles were compared to theoretical calculations from 40 to 850 keV using the R-matrix code RFUNC based on the Blatt-Biedenharn formalism. Various combinations of spin and parity were tried to predict cross sections for the well defined ell > 0 resonances; comparison of these predictions with the data allowed us to determine the most likely spin and parity assignments for these resonances. The results of a capture data analysis by Corvi et al. (COR84), from 2 to 350 keV, were combined with our results to obtain the radiation widths of the resonances below 350 keV observed in transmission, capture, and differential elastic-scattering experiments

  15. PARAMETERS OF NUCLEAR MAGNETIC RESONANCE IN PATIENTS WITH CONGENITAL NARROWING OF THE LUMBAR SPINAL CANAL

    Directory of Open Access Journals (Sweden)

    ELIU HAZAEL MORALES-RANGEL

    Full Text Available ABSTRACT Objective: To compare the morphological parameters of magnetic resonance in patients with congenital narrowing of the lumbar spinal canal with patients with low back pain. Methods: A descriptive, retrospective, observational study was conducted with measurements in the axial and sagittal magnetic resonance sections of the vertebral body and canal of the lumbar spine of 64 patients with diagnosis of low back pain, which were compared with resonance images taken from 31 Mexican patients with congenital narrowing of the lumbar spinal canal. Results: The results show that patients with congenital narrowing of the lumbar spinal canal in the axial sections have a difference in diameters, being L2<13.9 mm, L3<13.3 mm, L4<12.9 mm, L5<13.1 mm, compared with controls L2<20.5 mm, L3<20.5 mm, L4<19.3 mm, L5<18.1 mm with p = 0.000. Conclusions: We found different measurements in the Mexican population compared to those found by similar studies. With the parameters obtained, it would be possible to make the proper diagnosis, surgical planning, and treatment.

  16. Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy.

    Science.gov (United States)

    Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi

    2017-01-01

    We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).

  17. POLLA/IECTA, ENDF/B Reich-Moore to Adler-Adler Resonance Parameter Conversion

    International Nuclear Information System (INIS)

    Carlson, B.V.; Chalhoub, E.S.; Melnikoff, M.

    1987-01-01

    1 - Description of program or function: POLLA1 transforms Reich-Moore resolved resonance parameters to the corresponding positive momentum Adler-Adler ones. It is designed to run directly on a file in the ENDF/B format, creating a new file in which the Reich-Moore parameterization has been replaced by the Adler-Adler one. 2 - Method of solution: The Adler-Adler poles are obtained by applying Newton's method to the inverse of the determinant of the Reich-Moore pole matrix. The perturbative solution of R.B. Perez and G. de Saussure, Phys. Rev. C10 (1974)187, is used as a first guess. The residues at the poles are calculated using a simple numerical difference method. 3 - Restrictions on the complexity of the problem: As currently dimensioned, the program permits a maximum of 400 coherent resonances. The transformation itself, which neglects all negative momentum poles, is only accurate for heavy nuclei

  18. A measurement of the Z boson resonance parameters at the SLC [Stanford Linear Center

    International Nuclear Information System (INIS)

    Nash, J.

    1989-11-01

    We have measured the resonance parameters of the Z boson using 480 hadronic and Leptonic Z decays collected by the Mark II Detector at the Stanford Linear Collider. We find the Mass to be 91.14 ± 0.12 GeV/c 2 , and the width to be 2.42 +0.45 -0.35 GeV. If we constrain the visible width to its Standard Model value, we find a partial width to invisible decay modes corresponding to 2.8 ± 0.6 neutrino species with a 95% confidence level limit of 3.9. 9 refs., 1 fig., 4 tabs

  19. Determination of resonance parameters at 4.90 eV for Au 197

    International Nuclear Information System (INIS)

    Tellier, Henry; Alix, Michel

    1969-12-01

    A new study of the 4.9 eV resonance of gold was carried out by the time of flight method using the 45 MeV Saclay linac as a pulsed neutron source. Four sample thicknesses were used for the measurements. The four transmission curves were shaped analysed and the following parameters were obtained: E = 4.900 ± 0.005 eV - Γ = 137.5 ± 2.0 meV and Γ n = 15.0 ± 0.2 meV. (author) [fr

  20. A small parameter in the 1/Nsub(c) expansion and narrowness of hadronic resonances

    International Nuclear Information System (INIS)

    Bishari, M.

    1980-01-01

    The dynamical basis for the validity of the 1/Nsub(c) expansion is investigated in the context of QCD in 1+1 dimensions. This is carried out by studying the first non-leading corrections in 1/Nsub(c) to the mass operator in the space of physical states. The correction to the real part of the mass operator has a direct implication for the convergence of the 1/Nsub(c) expansion, since a small effective parameter is identified, where its smallness depends on the dynamical circumstances in a known way. The generated imaginary part of the mass operator provides us with an insight concerning the question of the narrowness of hadronic resonances. In order to have a more realistic contact with our world, we include also effects due to the flavor symmetry group SU(Nsub(f)). This allows us to understand better the validity and usefulness of the notions of resonance dominance and (smooth) Regge behavior. We also discuss the expansion with Nsub(f)/Nsub(c) fixed and compare the results with those obtained from Dual Resonance Model. It is remarked that a non-uniformity exists between the limits Nsub(c) → infinity, Nsub(f) = fixed and Nsub(c) → infinity Nsub(f)/Nsub(c) = fixed, which may affect physical quantities. (author)

  1. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.

    Science.gov (United States)

    Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin

    2014-07-25

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.

  2. Determination of the hadronic resonance parameters of the Zo boson with DELPHI spectrometers at LEP

    International Nuclear Information System (INIS)

    Djama, F.

    1991-05-01

    The work described was achieved on the DELPHI experiment at the LEP e + e - collider. It concerns the determination of the resonance parameters of the Z 0 boson (M z , Γ z and σ o ) through its hadronic decays. The cross-section for the production of quark-antiquark pairs in e + e - collisions was measured at 17 different collision energies close to the resonance peak. At first, a general review of the Standard Model and its predictions for the cross-section of the process e + e - → γ, Z 0 → qantiq are given, followed by a description of the LEP collider and of the DELPHI detector. The different steps of the analysis are then exposed. They concern the luminosity measurement, the selection of the hadronic events and the computation of the experimental cross-sections. Special attention was given to the systematic errors. In order to extract the resonance parameters and to test the Standard Model, the experimental cross-sections were fitted with a theoretical formula which includes the most up-to-date radiative corrections calculations. A three parameter fit gives: M z = 91.183 ± 0.011 (stat) ± 0.02 (LEP) GeV/c 2 Γ z = 2.465 ± 0.020 (stat) ± 0.005 (syst) GeV σ o = 41.92 ± 0.22 (stat) ± 0.33 (syst) ± 0.21 (theo) nb Χ 2 /d.o.f = 8.5/17 - 3. By combining these results with the Standard Model predictions for the leptonic widths, we derived the invisible width of the Z 0 resonance: Γ inv = 486 ± 7 (stat) ± 12 (syst) MeV. This result leads to the following value for the number of the light Dirac neutrino species: N ν = 2.92 ± 0.04 (stat) ± 0.07 (syst). The total and invisible widths were used to derive lower bounds of the masses of new particles predicted either by the Minimal Standard Model (top quark) or by its extensions and alternatives (4 th sequential family, sparticles, excited fermions) [fr

  3. Effect of resonance decays on extracted kinetic freeze-out parameters in heavy ion collisions at RHIC

    International Nuclear Information System (INIS)

    Molnar, Levente; Barannikova, Olga; Wang, Fuqiang

    2006-01-01

    Statistical model fit to particle ratios in Au+Au collisions at RHIC suggests chemical freeze-out near phase transition boundary. Model interpretations of evolution from chemical to kinetic freeze-out vary. Results of the blast-wave fit to the STAR experimental data, where resonance contributions are not accounted for, suggest significant cooling and expansion between the freezeouts for central Au+Au collisions. Other models including resonances, argue for instant single freezeout with temperature close to the phase transition temperature. By combined thermal and blast-wave model parametrization including resonances, we systematically investigate the effect of resonance decays on the extracted kinetic freeze-out parameters. (authors)

  4. Reevaluation and Validation of the 241Pu Resonance Parameters in the Energy Range Thermal to 20 eV

    International Nuclear Information System (INIS)

    Derrien, H.; Leal, L.C.; Courcelle, A.; Santamarina, A.

    2005-01-01

    A new SAMMY analysis of the 241 Pu resonance parameters from thermal to 20 eV is presented. This evaluation takes into account the trends given by integral experiments [post-irradiation experiments performed in French pressurized water reactors (PWRs)]. Compared to the previous evaluations performed by Derrien and de Saussure, the capture cross section increases especially in the 0.26-eV resonance. It is shown that the new resonance parameters proposed in this work improve the prediction of the 242 Pu buildup in a PWR, which was significantly underestimated with the previous evaluations

  5. Simulation Research of Magnetically-coupled Resonant Wireless Power Transfer System with Single Intermediate Coil Resonator Based on S Parameters Using ANSYS

    Directory of Open Access Journals (Sweden)

    Liu Cheng

    2016-01-01

    Full Text Available ANSYS can be a powerful tool to simulate the process of energy exchange in magnetically-coupled resonant wireless power transfer system. In this work, the MCR-WPT system with single intermediate coil resonator is simulated and researched based on scattering parameters using ANSYS Electromagnetics. The change rule of power transfer efficiency is reflected intuitively through the scattering parameters. A new method of calculating the coupling coefficient is proposed. A cascaded 2-port network model using scattering parameters is adopted to research the efficiency of transmission. By changing the relative position and the number of turns of the intermediate coil, we find some factors affecting the efficiency of transmission. Methods and principles of designing the MCR-WPT system with single intermediate coil resonator are obtained. And these methods have practical value with design and optimization of system efficiency.

  6. Computer code ENDSAM for random sampling and validation of the resonance parameters covariance matrices of some major nuclear data libraries

    International Nuclear Information System (INIS)

    Plevnik, Lucijan; Žerovnik, Gašper

    2016-01-01

    Highlights: • Methods for random sampling of correlated parameters. • Link to open-source code for sampling of resonance parameters in ENDF-6 format. • Validation of the code on realistic and artificial data. • Validation of covariances in three major contemporary nuclear data libraries. - Abstract: Methods for random sampling of correlated parameters are presented. The methods are implemented for sampling of resonance parameters in ENDF-6 format and a link to the open-source code ENDSAM is given. The code has been validated on realistic data. Additionally, consistency of covariances of resonance parameters of three major contemporary nuclear data libraries (JEFF-3.2, ENDF/B-VII.1 and JENDL-4.0u2) has been checked.

  7. Resonance parameter and covariance evaluation for 16O up to 6 MeV

    Directory of Open Access Journals (Sweden)

    Leal Luiz

    2016-01-01

    Full Text Available A resolved resonance evaluation was performed for 16O in the energy range 0 eV to 6 MeV using the computer code SAMMY resulting in a set of resonance parameters (RPs that describes well the experimental data used in the evaluation. A RP covariance matrix (RPC was also generated. The RP were converted to the evaluated nuclear data file format using the R-Matrix Limited format and the compact format was used to represent the RPC. In contrast to the customary use of RP, which are frequently intended for the generation of total, capture, and scattering cross sections only, the present RP evaluation permits the computation of angle dependent cross sections. Furthermore, the RPs are capable of representing the (n, α cross section from the energy threshold (2.354 MeV of the (n, α reaction to 6 MeV. The intent of this paper is to describe the procedures used in the evaluation of the RP and RPC, the use of the RPC in benchmark calculations and to assess the impact of the 16O nuclear data uncertainties in the calculate dkeff for critical benchmark experiments.

  8. Operating and mathematical representation of resonances between flow parameters oscillations and structure vibrations of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, K.N.; Yang Shan Afshar, E.; Polyakov, N.I. [Nuclear Power Plant Department of Moscow Power Engineering Institute Technical Univ., Moscow (Russian Federation)

    2007-07-01

    The experimental data that have been obtained from the measurements of noise signals in primary circuit of NPP with reactor of WWER-1000 are presented. The causes of resonant interaction between Eigen-Frequencies of Oscillations of the Coolant Pressure (EFOCP) and structure vibrations are discussed. An application-oriented approach to the problem of identification of abnormal phenomena of thermal-hydraulic parameters is proposed. Logarithmic Decrement {delta} is determined. The bigger damping ratio {zeta} provides bigger {delta} and correspondingly smaller values of Q-factor and amplitude X(t)max. All experimental units intended for NPP severe accident investigation must satisfy to the NPP Q-factor criterion of similarity. (authors)

  9. Operating and mathematical representation of resonances between flow parameters oscillations and structure vibrations of NPP

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Yang Shan Afshar, E.; Polyakov, N.I.

    2007-01-01

    The experimental data that have been obtained from the measurements of noise signals in primary circuit of NPP with reactor of WWER-1000 are presented. The causes of resonant interaction between Eigen-Frequencies of Oscillations of the Coolant Pressure (EFOCP) and structure vibrations are discussed. An application-oriented approach to the problem of identification of abnormal phenomena of thermal-hydraulic parameters is proposed. Logarithmic Decrement δ is determined. The bigger damping ratio ζ provides bigger δ and correspondingly smaller values of Q-factor and amplitude X(t)max. All experimental units intended for NPP severe accident investigation must satisfy to the NPP Q-factor criterion of similarity. (authors)

  10. Auxiliary programs for resonance parameter storage and retrieval system REPSTOR. XTOREP, ETOREP, REPTOINP, REPRENUM, REPIMRG, TREP, PASSIGN, JCONV

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Kikuchi, Yasuyuki; Fukahori, Tokio

    1999-06-01

    This report describes functions and usage of eight auxiliary computer programs for REPSTOR that is a computer program for collecting the resonance parameters and evaluating them. The programs are XTOREP to convert the experimental data in EXFOR to the REPSTOR input data, ETOREP to convert the data in ENDF format to the REPSTOR input data, REPTOINP to change the data in a REPSTOR file into the REPSTOR input format, REPRENUM to renumber the level number of resonance levels, REPIMRG to merge the XTOREP output data sets, TREP to calculate mean values of resonance parameters, widths of individual resonances, etc., PASSIGN to assign orbital angular momentum by using Bayse theorem, and JCONV to assign total spin. (author)

  11. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    Science.gov (United States)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  12. Determination of the resonance parameters for 232Th from high resolution transmission and capture measurements at GELINA

    International Nuclear Information System (INIS)

    Brusegan, A.; Schillebeeckx, P.; Lobo, G.; Borella, A.; Volev, K.; Janeva, N.

    2003-01-01

    To deduce the resonance parameters for 232 Th in the resolved resonance region, high resolution transmission and capture measurements are being performed. The measurements are performed at the Time-Of-Flight facility GELINA. A comparison of experimental data resulting from capture (top) and transmission (bottom) are shown. The transmission measurements are performed at a 50 m flight path. The neutron are detected with a 0.25' thick lithium glass (NE912) placed in an Al sphere and viewed by a 5' EMI KQB photomultiplier orthogonal to the neutron beam axis. The injection of a stabilised light pulse in the detector during the measurements provided an efficient tool to control to better than 1% the gain of the entire electronics. The experimental set-up includes a sample-changer, placed at 23 m from the neutron source, which is driven by the acquisition system. The determination of the flight path length, was based on transmission of the 6.673 eV resonance of 238 U. We summarise, for the different energy regions of interest, the scheduled measurement conditions: the operation frequency of the accelerator and the target thickness. A simultaneous analysis of the data using REFIT will result in the resonance parameters from 0 to 4 keV. We show the result of a resonance shape analysis for the resonances at 21.8 and 23.5 eV. The resulting resonance parameters are important for the energy calibration and normalisation of the capture measurements in both the resolved and unresolved resonance region. The capture measurements are completed and were performed at a 60 m flight path. The sample consisted of a metallic natural thorium disc of 8 cm diameter and 1.0 mm thick, corresponding to a thickness of 3.176 10 -3 at/b. The neutron flux was measured with an ionisation chamber loaded with three back-to-back layers of about 40 μg/cm 2 10 B. The gamma rays, originating from the 232 Th(n,γ) reaction, were detected by four C 6 D 6 -based liquid scintillators (NE230) placed

  13. A measurement of the resonance parameters of the neutral intermediate vector boson

    International Nuclear Information System (INIS)

    Nash, J.A.

    1990-01-01

    This thesis presents a measurement of the Z 0 Boson resonance parameters. The measurement was performed at the Stanford Linear Collider using the Mark II detector. Based on a sample of 480 Hadronic and Leptonic decays, the mass is found to be 91.14 ± 0.12 GeV/c 2 , the total width is 2.42 -0.35 +0.45 GeV, and the peak cross section for all Hadronic events, and for Muon and Tau events with cosθ Thrust < 0. 65 is 45 ± 4 nb. By constraining the visible width to the Standard Model value for 5 quarks and 3 charged leptons, and allowing the invisible width to be a parameter, the width to invisible decay modes is found to be 0.46 ± 0.10 GeV. Assuming this width comes from massless neutrinos, this measurement corresponds to 2.8 ± 0.6 neutrino species. This measurement sets an upper limit of 3.9 neutrino generations at the 95% confidence level, ruling out a fourth generation of Standard Model neutrinos at this level. 54 refs., 65 figs., 11 tabs

  14. Assessment of Abdominal Fat Using High-field Magnetic Resonance Imaging and Anthropometric and Biochemical Parameters.

    Science.gov (United States)

    Al-Radaideh, Ali; Tayyem, Reema; Al-Fayomi, Kholoud; Nimer, Nisreen; Malkawi, Amer; Al-Zu Bi, Rana; Agraib, Lana; Athamneh, Imad; Hijjawi, Nawal

    2016-12-01

    To measure the abdominal subcutaneous fat (SF) and visceral fat (VF) volumes using high-field magnetic resonance imaging (MRI) and to investigate their association with selected anthropometric and biochemical parameters among obese and nonobese apparently healthy participants. A cross-sectional study was conducted by recruiting 167 healthy participants. Abdominal scans were acquired at 3T MRI, and the SF and VF were segmented and their volumes were calculated. Selected anthropometric and biochemical measurements were also determined. A significant difference (P abdominal fat volumes, leptin, resistin, adiponectin and waist circumference. Waist circumferences were measured by tape and MRI. Findings revealed that MRI-measured fat volumes were different between males and females and had a significant (P fat volumes were found to correlate moderately with interleukin-6 and weakly with cholesterol, serum triglyceride and low-density lipoprotein. Except for cholesterol, all measured biochemical variables and abdominal fat volumes in the current study were significantly associated with body mass index. All anthropometric and biochemical parameters showed weak-to-strong associations with the MRI-measured fat volumes. Abdominal fat distribution was different between males and females and their correlations with some lipid profiles were found to be sex dependent. These findings revealed that MRI can be used as an alternative tool for obesity assessment. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  15. n+235U resonance parameters and neutron multiplicities in the energy region below 100 eV

    Directory of Open Access Journals (Sweden)

    Pigni Marco T.

    2017-01-01

    Full Text Available In August 2016, following the recent effort within the Collaborative International Evaluated Library Organization (CIELO pilot project to improve the neutron cross sections of 235U, Oak Ridge National Laboratory (ORNL collaborated with the International Atomic Energy Agency (IAEA to release a resonance parameter evaluation. This evaluation restores the performance of the evaluated cross sections for the thermal- and above-thermal-solution benchmarks on the basis of newly evaluated thermal neutron constants (TNCs and thermal prompt fission neutron spectra (PFNS. Performed with support from the US Nuclear Criticality Safety Program (NCSP in an effort to provide the highest fidelity general purpose nuclear database for nuclear criticality applications, the resonance parameter evaluation was submitted as an ENDF-compatible file to be part of the next release of the ENDF/B-VIII.0 nuclear data library. The resonance parameter evaluation methodology used the Reich-Moore approximation of the R-matrix formalism implemented in the code SAMMY to fit the available time-of-flight (TOF measured data for the thermal induced cross section of n+235U up to 100 eV. While maintaining reasonably good agreement with the experimental data, the validation analysis focused on restoring the benchmark performance for 235U solutions by combining changes to the resonance parameters and to the prompt resonance v̅ below 100 eV.

  16. Features of the effect of the parameters of resonance systems with different configurations on the current-voltage characteristics of resonant-tunneling nanostructures in a subterahertz frequency range

    International Nuclear Information System (INIS)

    Aleksanyan, A.A.; Volchkov, N.A.; Dravin, V.A.; Kazakov, I.P.; Karuzskij, A.L.; Murzin, V.N.; Perestoronin, A.V.; Tskhovrebov, A.M.; Shmelev, S.S.

    2014-01-01

    Features of the effect of a subterahertz microwave field on the current characteristics of a resonant-tunneling diode in resonance systems with different configurations have been studied. Changes in the current characteristics of the resonant-tunneling diode under variation of the electrophysical parameters of dielectric and microstrip resonators, in particular high-Q-factor superconducting microstrip resonators, have been experimentally studied and analyzed [ru

  17. Parameter Diversity Induced Multiple Spatial Coherence Resonances and Spiral Waves in Neuronal Network with and Without Noise

    International Nuclear Information System (INIS)

    Li Yuye; Jia Bing; Gu Huaguang; An Shucheng

    2012-01-01

    Diversity in the neurons and noise are inevitable in the real neuronal network. In this paper, parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated. The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified. The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased. The results suggest that natural nervous system might profit from both parameter diversity and noise, provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise. (general)

  18. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.

    Science.gov (United States)

    Yong, Yook-Kong; Patel, Mihir S; Tanaka, Masako

    2010-08-01

    A novel analytical/numerical method for calculating the resonator Q and its equivalent electrical parameters due to viscoelastic, conductivity, and mounting supports losses is presented. The method presented will be quite useful for designing new resonators and reducing the time and costs of prototyping. There was also a necessity for better and more realistic modeling of the resonators because of miniaturization and the rapid advances in the frequency ranges of telecommunication. We present new 3-D finite elements models of quartz resonators with viscoelasticity, conductivity, and mounting support losses. The losses at the mounting supports were modeled by perfectly matched layers (PMLs). A previously published theory for dissipative anisotropic piezoelectric solids was formulated in a weak form for finite element (FE) applications. PMLs were placed at the base of the mounting supports to simulate the energy losses to a semi-infinite base substrate. FE simulations were carried out for free vibrations and forced vibrations of quartz tuning fork and AT-cut resonators. Results for quartz tuning fork and thickness shear AT-cut resonators were presented and compared with experimental data. Results for the resonator Q and the equivalent electrical parameters were compared with their measured values. Good equivalences were found. Results for both low- and high-Q AT-cut quartz resonators compared well with their experimental values. A method for estimating the Q directly from the frequency spectrum obtained for free vibrations was also presented. An important determinant of the quality factor Q of a quartz resonator is the loss of energy from the electrode area to the base via the mountings. The acoustical characteristics of the plate resonator are changed when the plate is mounted onto a base substrate. The base affects the frequency spectra of the plate resonator. A resonator with a high Q may not have a similarly high Q when mounted on a base. Hence, the base is an

  19. A quantitative analysis of the diurnal evolution of Ionospheric Alfvén resonator magnetic resonance features and calculation of changing IAR parameters

    Directory of Open Access Journals (Sweden)

    S. R. Hebden

    2005-07-01

    Full Text Available Resonance features of the Ionospheric Alfvén Resonator (IAR can be observed in pulsation magnetometer data from Sodankylä, Finland using dynamic spectra visualizations. IAR resonance features were identified on 13 of 30 days in October 1998, with resonance structures lasting for 3 or more hours over 10 intervals. The diurnal evolution of the harmonic features was quantified for these 10 intervals using a manual cursor-clicking technique. The resonance features displayed strong linear relationships between harmonic frequency and harmonic number for all of the time intervals studied, enabling a homogeneous cavity model for the IAR to be adopted to interpret the data. This enabled the diurnal variation of the effective size of the IAR to be obtained for each of the 10 time intervals. The average effective size was found to be 530 km, and to have an average variation of 32% over each time interval: small compared to the average variation in Alfvén velocity of 61%. Thus the diurnal variation of the harmonics is chiefly caused by the changing plasma density within the IAR due to changing insolation. This study confirms Odzimek (2004 that the dominating factor affecting the IAR eigenfrequencies is the variation in the Alfvén velocity at the F-layer ion-density peak, with the changing IAR size affecting the IAR eigenfrequencies to a smaller extent. Another IAR parameter was derived from the analysis of the IAR resonance features associated with the phase matching structure of the standing waves in the IAR. This parameter varied over the time intervals studied by 20% on average, possibly due to changing ionospheric conductivity. Keywords. Ionosphere (Auroral ionosphere;Wave propagation – Radio science (Electromagnetic noise and interference

  20. Set up of a method for the adjustment of resonance parameters on integral experiments; Mise au point d`une methode d`ajustement des parametres de resonance sur des experiences integrales

    Energy Technology Data Exchange (ETDEWEB)

    Blaise, P.

    1996-12-18

    Resonance parameters for actinides play a significant role in the neutronic characteristics of all reactor types. All the major integral parameters strongly depend on the nuclear data of the isotopes in the resonance-energy regions.The author sets up a method for the adjustment of resonance parameters taking into account the self-shielding effects and restricting the cross section deconvolution problem to a limited energy region. (N.T.).

  1. Measurement of resonance parameters of orbitally excited narrow B0 mesons.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-03-13

    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B;{(*)+}pi;{-} using 1.7 fb;{-1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B_{2};{*0} state are measured to be m(B_{2};{*0})=5740.2_{-1.8};{+1.7}(stat)-0.8+0.9(syst) MeV/c;{2} and Gamma(B_{2};{*0})=22.7_{-3.2};{+3.8}(stat)-10.2+3.2(syst) MeV/c;{2}. The mass difference between the B_{2};{*0} and B10 states is measured to be 14.9_{-2.5};{+2.2}(stat)-1.4+1.2(syst) MeV/c;{2}, resulting in a B10 mass of 5725.3_{-2.2};{+1.6}(stat)-1.5+1.4(syst) MeV/c;{2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B_{2};{*0} width.

  2. Estimation of uncertainties in resonance parameters of {sup 56}Fe, {sup 239}Pu, {sup 240}Pu and {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-05-01

    Uncertainties have been estimated for the resonance parameters of {sup 56}Fe, {sup 239}Pu, {sup 240}Pu and {sup 238}U contained in JENDL-3.2. Errors of the parameters were determined from the measurements which the evaluation was based on. The estimated errors have been compiled in the MF32 of the ENDF format. The numerical results are given in tables. (author)

  3. Higgs boson resonance parameters and the finite temperature phase transition in a chirally invariant Higgs-Yukawa model

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)

    2011-12-15

    We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)

  4. Low field magnetic resonance imaging of the lumbar spine: Reliability of qualitative evaluation of disc and muscle parameters

    DEFF Research Database (Denmark)

    Sørensen, Joan Solgaard; Kjaer, Per; Jensen, Tue Secher

    2006-01-01

    PURPOSE: To determine the intra- and interobserver reliability in grading disc and muscle parameters using low-field magnetic resonance imaging (MRI). MATERIAL AND METHODS: MRI scans of 100 subjects representative of the general population were evaluated blindly by two radiologists. Criteria......: Convincing reliability was found in the evaluation of disc- and muscle-related MRI variables....

  5. Determination of neutron resonance parameters of Neptunium 237 between 0 and 500 eV. The covariance matrices of statistical and of systematic origin, relating the resonance parameters, are also given

    International Nuclear Information System (INIS)

    Lepretre, A.; Herault, N.; Brusegan, A.; Noguere, G.; Siegler, P.

    2002-12-01

    This report is a follow up of the report CEA DAPNIA/SPHN-99-04T of Vincent Gressier. In the frame of a collaboration between the 'Commissariat a l'Energie Atomique (CEA)' and the Institute for Reference Materials and Measurement (IRMM, Geel, Belgique), the resonance parameters of neptunium 237 have been determined in the energy interval between 0 and 500 eV. These parameters have been obtained by using the Refit code in analysing simultaneously three transmission experiments. The covariance matrix of statistical origin is provided. A new method, based on various sensitivity studies is proposed for determining also the covariance matrix of systematic origin, relating the resonance parameters. From an experimental viewpoint, the study indicated that, with a large probability, the background spectrum has structure. A two dimensional profiler for the neutron density has been proved feasible. Such a profiler could, among others, demonstrate the existence of the structured background. (authors)

  6. Sensitivity of reactor integral parameters to #betta##betta# parameter of resolved resonances of fertile isotopes and to the α values, in thermal and epithermal spectra

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    A sensitivity analysis of reactor integral parameter to more 10% variation in the resolved resonance parameters #betta##betta# of the fertile isotope and the variations of more 10% in the α values (#betta# sub(#betta#)/#betta# sub(f)) of fissile isotopes of PWR fuel elements, is done. The analysis is made with thermal and epithermal spectra, those last generated in a fuel cell with low V sub(M)/V sub(F). The HAMMER system, the interface programs HELP and LITHE and the HAMMER computer codes, were used as a base for this study. (E.G.) [pt

  7. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  8. POLLA-NESC, Resonance Parameter R-Matrix to S-Matrix Conversion by Reich-Moore Method

    International Nuclear Information System (INIS)

    Saussure, G. de; Perez, R.B.

    1975-01-01

    1 - Description of problem or function: The program transforms a set of r-matrix nuclear resonance parameters into a set of equivalent s-matrix (or Kapur-Peierls) resonance parameters. 2 - Method of solution: The program utilizes the multilevel formalism of Reich and Moore and avoids diagonalization of the level matrix. The parameters are obtained by a direct partial fraction expansion of the Reich-Moore expression of the collision matrix. This approach appears simpler and faster when the number of fission channels is known and small. The method is particularly useful when a large number of levels must be considered because it does not require diagonalization of a large level matrix. 3 - Restrictions on the complexity of the problem: By DIMENSION statements, the program is limited to maxima of 100 levels and 5 channels

  9. Multi-objective Optimization of Large Wind Farm Parameters for Harmonic Instability and Resonance Conditions

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    wind farms in order to reduce the resonance probability and guarantee harmonic stability. In fact, a general multiobjective optimization procedure based on the genetic algorithm is proposed to set the poles of the wind farm in a desired location in order to minimize the number of the resonance...

  10. Investigation of parameters of the working substance - low temperature plasma in the ionization resonator chamber of the RF reactive engine

    International Nuclear Information System (INIS)

    Vdovin, V.S.; Zajtzev, B.V.; Kobetz, A.F.; Bomko, V.A.; Rashkovan, V.M.; Bazyma, L.A.; Belokon, V.I.

    2003-01-01

    This paper is the extension of investigations of the RF engine designed for orientation and stabilization of the spacecrafts orbit, and it is undertaken for measuring of plasma parameters of RF discharge in the ionization resonator chamber. The experiments were performed at the frequency of 80 MHz on the model engine, in which a length of coaxial line with shortening capacities at the ends was used as the ionization resonator chamber. As the result of the experiments, conditions of the RF discharge ignition in the resonator chamber are studied; dependencies of plasma density and temperature versus applied power and working body pressure are obtained for various gases. The measurements of the thrust were performed at the special-purpose test bench

  11. New WIMS library generation from ENDF/B6 and effect of resonance group structure on cell parameters

    International Nuclear Information System (INIS)

    Pazirandeh, Ali; Tabesh, Alireza

    2002-01-01

    Due to inaccessibility to NJOY, steps were taken to create WIMS library, which can be extracted from ENDF/B6 without using NJOY. In addition to using preprocessing codes few programs were written to calculate integral resonance, slowing down power per unit lethargy, potential scattering, and differential scattering cross section, scattering matrices. For neutrons with energy above 4 eV, isotropic elastic scattering was assumed. For neutrons below 4 eV the free gas model was used, except for light elements, which tabulated values of S(α,β) in ENDF/B6 used. The Goldstein-Cohen factors are taken from WIMKAL88.Lib. The integral resonance with self absorption per unit lethargy was obtained from GROUPIE output. The P 1 scattering matrices are calculated only for four elements, namely H, D, C and O at 300 K. In order to examine the created libraries, k eff , δ 28 , ρ 28 , ρ 25 and CR are calculated using new WIMS library, WIMKAL88.Lib and NEA329.Lib. The results showed general agreement. The controversial issue of WIMS library group structure, particularly in resonance region has raised the question of whether the number of resonance group i.e., 13 is optimized. We generated different WIMS libraries consisting of 5, 8, 13, 18 and 23 resonance groups. The main aim was to examine the effect to resonance group structure on calculated core parameters, mainly, k eff , δ 28 , ρ 28 , ρ 25 and CR. These parameters are also calculated and compared with those obtained using WIMKAL88, and NEA329 libraries. (author)

  12. Determination of neutron resonance parameters of Neptunium 237 between 0 and 500 eV. The covariance matrices of statistical and of systematic origin, relating the resonance parameters, are also given; Determination des parametres des resonances neutroniques du neptunium 237, en dessous de 500eV, et obtention des matrices de covariances statistiques et systematiques entre les parametres de ces resonances

    Energy Technology Data Exchange (ETDEWEB)

    Lepretre, A.; Herault, N. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Brusegan, A.; Noguere, G.; Siegler, P. [Institut des Materiaux et des Metrologies - IRMM, Joint Research Centre, Gell (Belgium)

    2002-12-01

    This report is a follow up of the report CEA DAPNIA/SPHN-99-04T of Vincent Gressier. In the frame of a collaboration between the 'Commissariat a l'Energie Atomique (CEA)' and the Institute for Reference Materials and Measurement (IRMM, Geel, Belgique), the resonance parameters of neptunium 237 have been determined in the energy interval between 0 and 500 eV. These parameters have been obtained by using the Refit code in analysing simultaneously three transmission experiments. The covariance matrix of statistical origin is provided. A new method, based on various sensitivity studies is proposed for determining also the covariance matrix of systematic origin, relating the resonance parameters. From an experimental viewpoint, the study indicated that, with a large probability, the background spectrum has structure. A two dimensional profiler for the neutron density has been proved feasible. Such a profiler could, among others, demonstrate the existence of the structured background. (authors)

  13. RESEND, Infinitely Dilute Point Cross-Sections Calculation from ENDF/B Resonance Parameter. ADLER, ENDF/B Adler-Adler Resonance Parameter to Point Cross-Sections with Doppler Broadening

    International Nuclear Information System (INIS)

    Bhat, M.R.; Ozer, O.

    1982-01-01

    1 - Description of problem or function: RESEND generates infinitely- dilute, un-broadened, point cross sections in the ENDF format by combining ENDF File 3 background cross sections with points calculated from ENDF File 2 resonance parameter data. ADLER calculates total, capture, and fission cross sections from the corresponding Adler-Adler parameters in the ENDF/B File 2 Version II data and also Doppler-broadens cross sections. 2 - Method of solution: RESEND calculations are done in two steps by two separate sections of the program. The first section does the resonance calculation and stores the results on a scratch file. The second section combines the data from the scratch file with background cross sections and prints the results. ADLER uses the Adler-Adler formalism. 3 - Restrictions on the complexity of the problem: RESEND expects its input to be a standard mode BCD ENDF file (Version II/III). Since the output is also a standard mode BCD ENDF file, the program is limited by the six significant figure accuracy inherent in the ENDF formats. (If the cross section has been calculated at two points so close in energy that only their least significant figures differ, that interval is assumed to have converged, even if other convergence criteria may not be satisfied.) In the unresolved range the cross sections have been averaged over a Porter-Thomas distribution. In some regions the calculated resonance cross sections may be negative. In such cases the standard convergence criterion would cause an unnecessarily large number of points to be produced in the region where the cross section becomes zero. For this reason an additional input convergence criterion (AVERR) may be used. If the absolute value of the cross section at both ends of an interval is determined to be less than AVERR then the interval is assumed to have converged. There are no limitations on the total number of points generated. The present ENDF (Version II/III) formats restrict the total number of

  14. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  15. Resolved resonance parameters for uranium 238 from 4 to 6 keV

    International Nuclear Information System (INIS)

    Olsen, D.K.; Meszaros, P.S.

    1982-01-01

    Neutron widths for 145 resonances from 4 to 6 keV are reported from a least-squares shape analysis of the ORELA 150-m, 4-sample 238 U transmission data. The resultant s-wave strength function from 4 to 6 keV is found to be substantially smaller than that from 0 to 4 keV

  16. A computer code for calculating neutron cross-sections from resonance parameter data

    International Nuclear Information System (INIS)

    Mill, A.J.

    1979-08-01

    A computer code, XSEC, has been written which calculates neutron cross-sections from resonance data. Although the program was originally written in order to identify neutron 'windows' in enriched nuclides, it may be used to evaluate the total neutron cross-section of any medium mass nuclide at intermediate energies. XSEC has proved very useful in identifying suitable nuclides for use as neutron filters at intermediate energies. (author)

  17. Calculation of quasi-stationary states parameters within the algebraic version of the resonating group method

    International Nuclear Information System (INIS)

    Okhrimenko, I.P.

    1984-01-01

    The dynamical equations of the algebraic version of the resonating group method are used to determine the positions and the widths of quasi-stationary states or to find the poles of the S-matrix in the fourth quadrant of the K-plane. Concrete calculations are performed by the example of an α-decay of 8 Be. A comparison with the results of the other authors and experiment is made

  18. Mechanical design parameters for detection of nuclear signals by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Moore, G.J.; Hanlon, J.A.; Lamartine, B.; Hawley, M.; Solem, J.C.; Signer, S.; Jarmer, J.J.; Penttila, S.; Sillerud, L.O.; Pryputniewicz, R.J.

    1993-01-01

    Recent theoretical work has shown that mechanical detection of magnetic resonance from a single nuclear spin is in principle possible. This theory has recently been experimentally validated by the mechanical detection of electron spin resonance signals using microscale cantilevers. Currently we are extending this technology in an attempt to detect nuclear signals which are extending this technology in an attempt to detect nuclear signals which are three orders of magnitude lower in intensity than electron signals. In order to achieve the needed thousand-fold improvement in sensitivity we have undertaken the development of optimized mechanical cantilevers and highly polarized samples. Finite element modeling is used as a tool to simulate cantilever beam dynamics and to optimize the mechanical properties including Q, resonant frequency, amplitude of vibration and spring constant. Simulations are compared to experiments using heterodyne hologram interferometry. Nanofabrication of optimized cantilevers via ion milling will be directed by the outcome of these simulations and experiments. Highly polarized samples are developed using a three-fold approach: (1) high magnetic field strength (2.5T), (2) low temperature (1K), and (3) use of samples polarized by dynamic nuclear polarization. Our recent experiments have demonstrated nuclear polarizations in excess of 50% in molecules of toulene

  19. Order parameters in lanthanum gallate lightly doped with manganese and paramagnetic resonance

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Guseva, V. B.

    2010-09-01

    The Cr3+ centers have been revealed, transitions at room temperature have been identified, and spin Hamiltonian parameters have been determined for the Cr3+ and Fe3+ triclinic centers in lanthanum gallate lightly doped with manganese. The principal axes of the fourth-rank fine-structure tensor for the Fe3+ triclinic centers have been established and used to determine the order parameters, i.e., the angles of rotation of oxygen octahedra of lanthanum gallate with respect to the perovskite structure. The order parameter in the rhombohedral phase has been estimated.

  20. Neutron Transmission and Capture Measurements and Resonance Parameter Analysis of Neodymium from 1eV to 500 eV

    International Nuclear Information System (INIS)

    DP Barry; MJ Trbovich; Y Danon; RC Block; RE Slovacek

    2005-01-01

    Neodymium is a 235 U fission product and is important for reactor neutronic calculations. The aim of the present work is to improve upon the existing neutron cross section data of neodymium. Neutron capture and transmission measurements were performed by the time-off-light technique at the Rensselaer Polytechnic Institute LINAC laboratory using metallic neodymium samples. The capture measurements were made at the 25-m flight station with a 16-segment NaI multiplicity detector, and the transmission measurements were performed at 15-m and 25-m flight stations, respectively, with 6 Li glass scintillation detectors. After the data were collected and reduced, resonance parameters were determined by combined fitting of the transmission and capture data with the multilevel R-matrix Bayesian code SAMMY. The resonance parameters for all naturally occurring neodymium isotopes were deduced within the energy range of 1 eV to 500 eV. The resulting resonance parameters were used to calculate the capture resonance integrals from this energy. The RPI parameters gave a resonance integral value of 32 ± 1 barns that is approximately 7% lower than that obtained with the ENDF-B/VI parameters. The current measurements significantly reduce the uncertainties on the resonance parameters when compared with previously published parameters

  1. Spectroscopic parameters and decays of the resonance Z{sub b}(10610)

    Energy Technology Data Exchange (ETDEWEB)

    Agaev, S.S. [Baku State University, Institute for Physical Problems, Baku (Azerbaijan); Azizi, K. [Dogus University, Department of Physics, Istanbul (Turkey); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Sundu, H. [Kocaeli University, Department of Physics, Izmit (Turkey)

    2017-12-15

    The resonance Z{sub b}(10610) is investigated as the diquark-antidiquark Z{sub b} = [bu][bd] state with spin-parity J{sup P} = 1{sup +}. The mass and current coupling of the resonance Z{sub b}(10610) are evaluated using QCD two-point sum rule and taking into account the vacuum condensates up to ten dimensions. We study the vertices Z{sub b}Υ(nS)π (n = 1, 2, 3) by applying the QCD light-cone sum rule to compute the corresponding strong couplings g{sub Z{sub bΥ(nS)π}} and widths of the decays Z{sub b} → Υ(nS)π. We explore also the vertices Z{sub b}h{sub b}(mP)π (m = 1, 2) and calculate the couplings g{sub Z{sub bh{sub b(mP)π}}} and the widths of the decay channels Z{sub b} → h{sub b}(mP)π. To this end, we calculate the mass and decay constants of the h{sub b}(1P) and h{sub b}(2P) mesons. The results obtained are compared with experimental data of the Belle Collaboration. (orig.)

  2. Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series.

    Science.gov (United States)

    Hoppe, Elisabeth; Körzdörfer, Gregor; Würfl, Tobias; Wetzl, Jens; Lugauer, Felix; Pfeuffer, Josef; Maier, Andreas

    2017-01-01

    The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.

  3. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... is obtained for d and ?s in Xe2. For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other...

  4. Apparent Diffusion Coefficient and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Pancreatic Cancer: Characteristics and Correlation With Histopathologic Parameters.

    Science.gov (United States)

    Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi

    2016-01-01

    To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.

  5. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.

  6. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.; Arafa, Nadim M.; Abdel-Rahman, Ehab

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack's position, length and plate spacing are the three main parameters that have been investigated in this study. Stack's position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine's most powerful operating point.

  7. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    Science.gov (United States)

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  8. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.

    Science.gov (United States)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha

    2007-10-28

    Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the

  9. Resonance self-shielding effect in uncertainty quantification of fission reactor neutronics parameters

    International Nuclear Information System (INIS)

    Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2014-01-01

    In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  10. RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS

    Directory of Open Access Journals (Sweden)

    GO CHIBA

    2014-06-01

    Full Text Available In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  11. Resonance Damping and Parameter Design Method for LCL-LC Filter Interfaced Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Li, Zipeng; Jiang, Aiting; Shen, Pan

    2016-01-01

    , this paper presents a systematic design method for the LCL-LC filtered grid-connected photovoltaic (PV) system. With this method, controller parameters and the active damping feedback coefficient are easily obtained by specifying the system stability and dynamic performance indices, and it is more convenient......-frequency harmonics attenuation ability, but the resonant problem affects the system stability remarkably. In this paper, active damping based on the capacitor voltage feedback is proposed using the concept of the equivalent virtual impedance in parallel with the capacitor. With the consideration of system delay...... to optimize the system performance according to the predefined satisfactory region. Finally, the simulation results are presented to validate the proposed design method and control scheme....

  12. Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation

    International Nuclear Information System (INIS)

    Kutzelnigg, Werner; Liu Wenjian

    2009-01-01

    The calculation of NMR parameters from relativistic quantum theory in a Gaussian basis expansion requires some care. While in the absence of a magnetic field the expansion in a kinetically balanced basis converges for the wave function in the mean and for the energy with any desired accuracy, this is not necessarily the case for magnetic properties. The results for the magnetizability or the nuclear magnetic shielding are not even correct in the nonrelativistic limit (nrl) if one expands the original Dirac equation in a kinetically balanced Gaussian basis. This defect disappears if one starts from the unitary transformed Dirac equation as suggested by Kutzelnigg [Phys. Rev. A 67, 032109 (2003)]. However, a new difficulty can arise instead if one applies the transformation in the presence of the magnetic field of a point nucleus. If one decomposes certain contributions, the individual terms may diverge, although their sum is regular. A controlled cancellation may become difficult and numerical instabilities can arise. Various ways exist to avoid these singularities and at the same time get the correct nrl. There are essentially three approaches intermediate between the transformed and the untransformed formulation, namely, the bispinor decomposition, the decomposition of the lower component, and the hybrid unitary transformation partially at operator and partially at matrix level. All three possibilities were first considered by Xiao et al. [J. Chem. Phys. 126, 214101 (2007)] in a different context and in a different nomenclature. Their analysis and classification in a more general context are given here for the first time. Use of an extended balanced basis has no advantages and has other drawbacks and is not competitive, while the use of a restricted magnetic balance basis can be justified.

  13. Production of a hot ion plasma at the lower hybrid resonance and measurement of its parameters

    International Nuclear Information System (INIS)

    Glagolev, V.M.; Dyubajlov, A.G.; Krivov, N.A.; Martynenko, V.V.; Skosyrev, Yu.V.

    1975-01-01

    Electromagnetic fields delayed along a magnetic field have been created within a plasma with the aid of a coil encircling the plasma column. When these waves were propagated transversely in relation to the magnetic field in a plasma with density rising along its radius, they were delayed in the direction of propagation. The amplitude and phase distributions of the electromagentic fields along the radius of the plasma column were measured at different moments in time. The existence of an absorption band of these waves within the plasma was detected. The absorption band was shifted towards the outer boundary from the plasma when plasma density was increased. By four independent methods it was established that the gas-kinetic pressure of the plasma, measured according to its diamagnetism, is determined by the ion component. It was found that the energy of electrons at right angles to the magnetic field is considerably less than that of the ions. The cause of limited heating was an increase in density and energy losses in the charge-exchange process. In order to improve vacuum conditions, the coil around the plasma was placed in a metallic chamber, and the UHF plasma source used in the original experiments was replaced by a hydride-film source. This made it possible to increase the internal energy of the plasma to 3x10 15 eV cm -3 at a density of (1-3)x10 12 cm -3 . The mean energy of atoms leaving the plasma at right angles to the magnetic field as a result of charge exchange reached 1 keV. The region of change in plasma parameters (density and magnetic field) for which heating was observed corresponded to the linear transformation theory. Non-linear effects could occur only in the first stage of heating, when the electric fields were strong, but plasma temperature was low. Heating efficiency was measured by a reflectometer installed in the coaxial line connecting the generator and the HF input coil to the plasma. The measurements showed that about 20% of the power

  14. Strain and order-parameter coupling in Ni-Mn-Ga Heusler alloys from resonant ultrasound spectroscopy

    Science.gov (United States)

    Salazar Mejía, C.; Born, N.-O.; Schiemer, J. A.; Felser, C.; Carpenter, M. A.; Nicklas, M.

    2018-03-01

    Resonant ultrasound spectroscopy and magnetic susceptibility experiments have been used to characterize strain coupling phenomena associated with structural and magnetic properties of the shape-memory Heusler alloy series Ni50 +xMn25 -xGa25 (x =0 , 2.5, 5.0, and 7.5). All samples exhibit a martensitic transformation at temperature TM and ferromagnetic ordering at temperature TC, while the pure end member (x =0 ) also has a premartensitic transition at TP M, giving four different scenarios: TC>TP M>TM,TC>TM without premartensitic transition, TC≈TM , and TCparameters relating to magnetic ordering, a soft mode, and the electronic instability responsible for the large strains typical of martensitic transitions. Linear-quadratic or biquadratic coupling between these order parameters, either directly or indirectly via the common strains, is then used to explain the stabilities of the different structures. Acoustic losses are attributed to critical slowing down at the premartensite transition, to the mobility of interphases between coexisting phases at the martensitic transition, and to mobility of some aspect of the twin walls under applied stress down to the lowest temperatures at which measurements were made.

  15. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    Energy Technology Data Exchange (ETDEWEB)

    Isselhardt, Brett H. [Univ. of California, Berkeley, CA (United States)

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  16. Relationships between nuclear magnetic resonance parameters used to characterize weathering spilled oil and soil toxicity in central Patagonia.

    Science.gov (United States)

    Ríos, Stella Maris; Barquin, Mercedes; Katusich, Ofelia; Nudelman, Norma

    2014-01-01

    Oil spill in the Central Patagonian zone was studied to evaluate if any relationship exists between the parameters used to characterize weathering spilled oil and soil toxicity for two plant species and to evaluate if the phytotoxicity to local species would be a good index for the soil contamination. Nuclear magnetic resonance (NMR) structural indexes and column chromatography compositional indexes were determined to characterize the oil spill in the soil samples. Bioassays were also carried out using Lactuca sativa L (reference) and Atriplex lampa (native species) as test organisms. Measurements of the total petroleum hydrocarbon (TPH) and the electrical conductivity (EC) of the soil were carried out to evaluate the effect on the bioassays. The principal components analysis of the parameters determined by NMR, compositional indexes, EC, TPH, and toxicology data shows that the first three principal components accounted for the 78% of the total variance (40%, 25%, and 13% for the first, second, and third PC, respectively). A good agreement was found between information obtained by compositional indexes and NMR structural indexes. Soil toxicity increases with the increase of EC and TPH. Other factors, such as, the presence of branched and aromatic hydrocarbons is also significant. The statistical evaluation showed that the Euclidean distances (3D) between the background and each one of the samples might be a better indicator of the soil contamination, compared with chemical criterion of TPH.

  17. Evaluation of resonance parameters of Mo, Tc, Te, Ba, La, Ce, Pr, Nd, Pm, Sm and Eu isotopes for JENDL-2 fission product file

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki; Togawa, Orihiko; Nakagawa, Tsuneo

    1986-03-01

    The resonance parameters of 39 fission product nuclides have been evaluated. The present work is a part of the evaluation of 100 fission product nuclei for JENDL-2 by Japanese Nuclear Data Committee. All the available experimental data were collected, stored in REPSTOR system and compared with one another. The evaluation was made on the basis of the experimental data. The precise description of the evaluation is given in this report. The presently evaluated resonance parameters are tabulated in Appendix with the experimental data. (author)

  18. Program RECENT (version 79-1): reconstruction of energy-dependent neutron cross sections from resonance parameters in the ENDF/B format

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1979-01-01

    Program RECENT reconstructs energy-dependent neutron total, elastic, capture, and fission cross sections from a combination of resonance parameters and tabulated background cross sections in the ENDF/B format. Entire evaluations, not just cross sections, are written to the result file, which is in ENDF/B format. The output includes the original resonance parameters in a form that can be used in Doppler broadening and self-shielding calculations. A listing of the source deck is available on request. 5 figures, 5 tables

  19. Predicting Collateral Status With Magnetic Resonance Perfusion Parameters: Probabilistic Approach With a Tmax-Derived Prediction Model.

    Science.gov (United States)

    Lee, Mi Ji; Son, Jeong Pyo; Kim, Suk Jae; Ryoo, Sookyung; Woo, Sook-Young; Cha, Jihoon; Kim, Gyeong-Moon; Chung, Chin-Sang; Lee, Kwang Ho; Bang, Oh Young

    2015-10-01

    Good collateral flow is an important predictor for favorable responses to recanalization therapy and successful outcomes after acute ischemic stroke. Magnetic resonance perfusion-weighted imaging (MRP) is widely used in patients with stroke. However, it is unclear whether the perfusion parameters and thresholds would predict collateral status. The present study evaluated the relationship between hypoperfusion severity and collateral status to develop a predictive model for good collaterals using MRP parameters. Patients who were eligible for recanalization therapy that underwent both serial diffusion-weighted imaging and serial MRP were enrolled into the study. A collateral flow map derived from MRP source data was generated through automatic postprocessing. Hypoperfusion severity, presented as proportions of every 2-s Tmax strata to the entire hypoperfusion volume (Tmax≥2 s), was compared between patients with good and poor collaterals. Prediction models for good collaterals were developed with each Tmax strata proportion and cerebral blood volumes. Among 66 patients, 53 showed good collaterals based on MRP-based collateral grading. Although no difference was noted in delays within 16 s, more severe Tmax delays (Tmax16-18 s, Tmax18-22 s, Tmax22-24 s, and Tmax>24 s) were associated with poor collaterals. The probability equation model using Tmax strata proportion demonstrated high predictive power in a receiver operating characteristic analysis (area under the curve=0.9303; 95% confidence interval, 0.8682-0.9924). The probability score was negatively correlated with the volume of infarct growth (P=0.030). Collateral status is associated with more severe Tmax delays than previously defined. The present Tmax severity-weighted model can determine good collaterals and subsequent infarct growth. © 2015 American Heart Association, Inc.

  20. Impact of the Parameter Variation on the Image Blurring in 3 T Magnetic Resonance Imaging: A Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woo; Lee, Sang Hoon; Kim, Nam Kug; Cho, Kyung Sik; Lee, Jin Seong [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2013-04-15

    To evaluate the effects of the key imaging-parameter alterations on the four MR sequences in a phantom study. Magnetic resonance (MR) imaging was performed on a MR phantom with an 8-channel head coil by using a 3 T MR system. The images were obtained in the axial plane on four MR sequences [T1-weighted, T2-weighted, Proton-density, and 3 dimensional (3D) fast spin echo (FSE)] with controlled variations in the following key parameters: 1) echo train length (ETL), 2) repetition time (TR), and 3) echo time (TE). The image blurring was determined by the degree of the gradient angle; i.e., the blurring increased as the gradient angle decreases. The increasing ETL was observed to cause an increase in the image blurring on all pulse sequences with a statistical significance (p = 0.004) on the 3D FSE. Increasing the TR appeared to have no effect except a statistically significant decrease on the T1-weighted images (p = 0.011). Increasing TE showed no effect on the T1-weighted images (p = 0.932); however, it caused an increase of blurring on the proton density images (p = 0.016) as well as the T2-weighted images (p < 0.001), and a decrease on the 3D FSE (p = 0.001). To reduce the image blurring, short ETL and long TE for 3D FSE, long TR for T1-weighted images and short TE for proton-density and T2-weighted images should be applied.

  1. Determination of the neutron resonance parameters for 206Pb and of the thermal neutron capture cross section for 206Pb and 209Bi

    International Nuclear Information System (INIS)

    Borella, A.

    2005-01-01

    Chapter 1 describes the motivation of the measurements (accelerator driven systems, stellar nucleosynthesis, neutron induced reactions on 206 Pb), the present status of the neutron capture data for 206 Pb and 209 Bi and the structure of this work. In Chapter 2 the basic reaction theory underlying this work is described. The neutron induced reaction mechanism and formalism are explained. The parameterisation of the cross section in terms of R-matrix theory is discussed and we put particular emphasis on the statistical behaviour of the resonance parameters and the impact of the angular distribution of gamma rays following neutron capture. The relation between experimental observables and the resonance parameters is discussed together with general comments related to resonance shape analysis. Chapter 3 is focused on the determination of resonance parameters for 206 Pb. We performed high-resolution transmission and capture measurements at the Time-Of-Flight (TOF) facility GELINA of the IRMM at Geel (B) and determined the resonance parameters. For nuclei like 206 Pb, where the total width is dominated by Γ n , the capture area allows to determine G . Transmission measurements were carried out to determine Γ n , and the statistical factor g of resonances. Before performing a Resonance Shape Analysis (RSA) on the transmission and capture data, we verified the neutron flux and resolution at GELINA. We also compared the characteristics of GELINA with those of the n-TOF facility at CERN. A special emphasis is placed on the total energy detection technique using C 6 D 6 detectors. This technique was applied for the determination of the capture cross section. To reduce systematic bias effects on the capture cross section, the response of the detectors was determined by Monte Carlo simulations, which has been validated by experiments. Using these response functions the partial capture cross sections for individual resonances of 206 Pb have been deduced, by unfolding the

  2. Magnetic resonance imaging in assessment of stress urinary incontinence in women: Parameters differentiating urethral hypermobility and intrinsic sphincter deficiency.

    Science.gov (United States)

    Macura, Katarzyna Jadwiga; Thompson, Richard Eugene; Bluemke, David Alan; Genadry, Rene

    2015-11-28

    To define the magnetic resonance imaging (MRI) parameters differentiating urethral hypermobility (UH) and intrinsic sphincter deficiency (ISD) in women with stress urinary incontinence (SUI). The static and dynamic MR images of 21 patients with SUI were correlated to urodynamic (UD) findings and compared to those of 10 continent controls. For the assessment of the urethra and integrity of the urethral support structures, we applied the high-resolution endocavitary MRI, such as intraurethral MRI, endovaginal or endorectal MRI. For the functional imaging of the urethral support, we performed dynamic MRI with the pelvic phased array coil. We assessed the following MRI parameters in both the patient and the volunteer groups: (1) urethral angle; (2) bladder neck descent; (3) status of the periurethral ligaments, (4) vaginal shape; (5) urethral sphincter integrity, length and muscle thickness at mid urethra; (6) bladder neck funneling; (7) status of the puborectalis muscle; (8) pubo-vaginal distance. UDs parameters were assessed in the patient study group as follows: (1) urethral mobility angle on Q-tip test; (2) Valsalva leak point pressure (VLPP) measured at 250 cc bladder volume; and (3) maximum urethral closure pressure (MUCP). The UH type of SUI was defined with the Q-tip test angle over 30 degrees, and VLPP pressure over 60 cm H2O. The ISD incontinence was defined with MUCP pressure below 20 cm H2O, and VLPP pressure less or equal to 60 cm H2O. We considered the associations between the MRI and clinical data and UDs using a variety of statistical tools to include linear regression, multivariate logistic regression and receiver operating characteristic (ROC) analysis. All statistical analyses were performed using STATA version 9.0 (StataCorp LP, College Station, TX). In the incontinent group, 52% have history of vaginal delivery trauma as compared to none in control group (P continent volunteers and incontinent patients in body habitus as assessed by the body mass

  3. New experimental determination of the neutron resonance parameters of {sup 99}Tc; Nouvelle determination experimentale des parametres de resonances neutroniques de {sup 99}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Brienne-Raepsaet, C. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee]|[Aix-Marseille-1 Univ., 13 - Marseille (France)

    1999-04-01

    In order to improve nuclear data for nuclear waste transmutation cross-sections of Tc{sup 99} in the resonance energy region have been performed using the time-of-flight method at the pulsed white neutron source GELINA of the Institute for Reference Materials and Measurements, Geel, Belgium. The energy range studied spreads from 3 eV to 100 KeV. 2 kinds of measurements have been performed: capture and transmission measurements. In the energy range between 0 and 2 KeV, more than 220 resonances have been analyzed. About 130 resonances which had stayed previously undiscovered, have been detected and analyzed. Because of instability problems concerning the process of measuring itself, the systematic error is not yet determined. The accuracy which takes into account statistical and systematic errors is expected to be between 4 and 5%.

  4. New experimental determination of the neutronic resonance parameters of {sup 237}Np below 500 eV; Nouvelle determination experimentale des parametres de resonances neutroniques de {sup 237}Np en dessous de 500 eV

    Energy Technology Data Exchange (ETDEWEB)

    Gressier, V

    1999-10-01

    For studies of future nuclear reactors dedicated to nuclear waste transmutation, an improvement of the accuracy of the neutron radiative capture cross section of {sup 237}Np appears necessary. In the framework of a collaboration between the Commissariat a l'Energie atomique (CEA) and Institute for Reference Materials and Measurement (IRMM, Geel, Bergium), a new determination of the resonance parameters of {sup 237}Np has been performed. Two types of experiments are carried out at GELINA, the IRMM pulsed neutron source, using the time of flight method: a transmission experiment which is related to the neutron total cross section and a capture experiment which gives the neutron radiative capture cross section. The resonance parameters presented in this work are extracted from the transmission data between 0 and 500 eV with the least square code REFIT, using the Reich-Moore formalism. In parallel, the Doppler effect is investigated. The commonly used free gas model appears inadequate below 20 eV for neptunium dioxide at room temperature. By the use of the program DOPUSH, which calculates the Doppler broadening with a harmonic crystal model according to Lamb's theory, we are able to produce abetter fit of the experimental data for the resonances of {sup 237}Np in NpO{sub 2} at low energy or temperatures. In addition to the resonance parameters, a study of their mean value and distribution is included in this work. (authors)

  5. ZZ-CENPL, Chinese Evaluated Nuclear Parameter Library. ZZ CENPL-DLS, Discrete Level Schemes and Gamma Branching Ratios Library; ZZ CENPL-FBP, Fission Barrier Parameter Library; ZZ CENPL-GDRP, Giant Dipole Resonance Parameter Library; ZZ CENPL-NLD, Nuclear Level Density Parameter Library; ZZ CENPL-MCC, Nuclear Ground State Atomic Masses Library; ZZ CENPL-OMP, Optical Model Parameter Library

    International Nuclear Information System (INIS)

    Su Zongdi

    1995-01-01

    Description of program or function: CENPL - GDRP (Giant Dipole Resonance Parameters for Gamma-Ray): - Format: special format described in documentation; - Nuclides: V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Lu, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, Th, U, Np, Pu. - Origin: Experimental values offered by S.S. Dietrich and B.L. Berman. CENPL - FBP (Fission Barrier Parameter Sub-Library): - Format: special format described in documentation; - Nuclides: (1) 51 nuclei region from Th-230 to Cf-255, (2) 46 nuclei region from Th-229 to Cf-253, (3) 24 nuclei region from Pa-232 to Cf-253; - Origin: (1) Lynn, (2) Analysis of experimental data by Back et al., (3) Ohsawa. CENPL - DLS (Discrete level scheme and branch ratio of gamma decay: - Format: Special format described in documentation; - Origin: ENSDF - BNL. CENPL - NLD (Nuclear Level Density): - Format: Special format described in documentation; - Origin: Huang Zhongfu et al. CENPL - OMP (Optical model parameter sub-library): - Format: special format described in documentation ; - Origin: CENDL, ENDF/B-VI, JENDL-3. CENPL - MC (I) and (II) (Atomic masses and characteristic constants for nuclear ground states) : - Format: Brief table format; - Nuclides: 4760 nuclides ranging from Z=0 A=1 to Z=122 A=318. - Origin: Experimental data and systematic results evaluated by Wapstra, theoretical results calculated by Moller, ENSDF - BNL and Nuclear Wallet Cards. CENPL contains the following six sub-libraries: 1. Atomic Masses and Characteristic Constants for nuclear ground states (MCC). This data consists of calculated and in most cases also measured mass excesses, atomic masses, total binding energies, spins, parities, and half-lives of nuclear ground states, abundances, etc. for 4800 nuclides. 2. Discrete Level Schemes and branching ratios of gamma decay (DLS). The data on nuclear discrete levels are based on the Evaluated

  6. Effect of the resonant magnetic perturbation on the plasma parameters in COMPASS tokamak’s divertor region

    Science.gov (United States)

    Dimitrova, M.; Cahyna, P.; Peterka, M.; Hasan, E.; Popov, Tsv K.; Ivanova, P.; Vasileva, E.; Panek, R.; Cavalier, J.; Seidl, J.; Markovic, T.; Havlicek, J.; Dejarnac, R.; Weinzettl, V.; Hacek, P.; Tomes, M.; the COMPASS Team; the EUROfusion MST1 Team

    2018-02-01

    The resonant magnetic perturbation (RMP) has proven to be a useful way to suppress edge-localized modes that under certain conditions can damage the device by the large power fluxes carried from the bulk plasma to the wall. The effect of RMP on the L-mode plasma parameters in the divertor region of the COMPASS tokamak was studied using the array of 39 Langmuir probes embedded into the divertor target. The current-voltage (IV) probe characteristics were processed by the first-derivative probe technique to obtain the plasma potential and the electron energy distribution function (EEDF) which was approximated by a bi-Maxwellian EEDF with a low-energy (4-6 eV) fraction and a high-energy (11-35 eV) one, the both factions having similar electron density. Clear splitting was observed during the RMP pulse in the low-field-side scrape-off-layer profiles of the floating potential U fl and the ion saturation current density J sat; these two quantities were obtained both by direct continuous measurement and by evaluation of the IV characteristics of probes with swept bias. The negative peaks of U fl induced by RMP spatially overlaps with the local minima of J sat (and n e) rather than with its local maxima which is partly caused by the spatial variation of the plasma potential and partly by the changed shape of the EEDF. The effective temperature of the whole EEDF is not correlated with the negative peaks of U fl, and the profile of the parallel power flux density shows secondary maxima due to RMP which mimic those of J sat.

  7. Inter- and intra-rater reproducibility of semiautomatic determination of volume parameters in cardiac magnetic resonance imaging

    International Nuclear Information System (INIS)

    Trieb, Thomas; Glodny, Bernhard; Scheiblhofer, Martin; Wolf, Christian; Metzler, Bernhard; Pachinger, Otmar; Jaschke, Werner R.; Schocke, Michael F.H.

    2008-01-01

    Purpose: The purpose of this study was to evaluate inter- and intra-rater reproducibility in volume assessment using cardiac magnetic resonance imaging (CMRI). Methods: Twenty-five healthy volunteers and 106 patients were included into this retrospective study and received CMRI. The patients were divided in three groups (group I, 80 patients with arrhythmia; group II, 20 patients with cardiomyopathy; group III, 6 patients after correction of septum defects). Therefore, the images were semiautomatically segmented by an experienced and an unexperienced radiologists. The analysis of end-diastolic volume (EDV), end-systolic volume (ESV) and stroke volume (SV) as well as ejection fraction (EF) and myocardial mass (MM) were performed twice by an experienced and an unexperienced radiologists. The intra-class correlation coefficients (ICC) were determined for the evaluation of inter- and intra-rater variance. Results: The intra-rater reproducibility for determination of EF, ESV, EDV and MM was excellent with ICCs ranging from 0.88 to 0.99 (all p < 0.001). The inter-observer reproducibility for these parameters was also excellent with ICCs ranging from 0.91 to 0.98 (all p < 0.001). The assessment of the SV showed an excellent intra-rater agreement with ICCs of 0.96 and 0.92 (both p < 0.001), but only a moderate ICC for the inter-rater reproducibility (0.54, p < 0.001). Conclusions: Our study shows that assessment of cardiac volumes can be performed on CMRIs with an excellent reproducibility by both experienced and unexperienced investigators

  8. Europium resonance parameters from neutron capture and transmission measurements in the energy range 0.01–200 eV

    International Nuclear Information System (INIS)

    Leinweber, G.; Barry, D.P.; Burke, J.A.; Rapp, M.J.; Block, R.C.; Danon, Y.; Geuther, J.A.; Saglime III, F.J.

    2014-01-01

    Highlights: • Metal samples were sealed and imaged with X-rays to determine sample uniformity. • Eleven new resonances were identified below 100 eV. • The resonance regions of 151 Eu and 153 Eu have been extended from 100 to 200 eV. • The thermal total cross section for 151 Eu was measured, up (9 ± 3)% from ENDF/B-VII.1. • Radiation widths were assigned for all resonances from experimental data. - Abstract: Europium is a good absorber of neutrons suitable for use as a nuclear reactor control material. It is also a fission product in the low-yield tail at the high end of the fission fragment mass distribution. Measurements have been made of the stable isotopes with natural and enriched samples. The linear electron accelerator center (LINAC) at the Rensselaer Polytechnic Institute (RPI) was used to explore neutron interactions with europium in the energy region from 0.01 to 200 eV. Neutron capture and transmission measurements were performed by the time-of-flight technique. Two transmission measurements were performed at flight paths of 15 and 25 m with 6 Li glass scintillation detectors. The neutron capture measurements were performed at a flight path of 25 m with a 16-segment sodium iodide multiplicity detector. Resonance parameters were extracted from the data using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. To prevent air oxidation metal samples were sealed in airtight aluminum cans in an inert environment. Metal samples of natural europium, 47.8 atom% 151 Eu, 52.2 atom% 153 Eu, as well as metal samples enriched to 98.77 atom% 153 Eu were measured. The measured neutron capture resonance integral for 153 Eu is (9.9 ± 0.4)% larger than ENDF/B-VII.1. The capture resonance integral for 151 Eu is (7 ± 1)% larger than ENDF/B-VII.1. Another significant finding from these measurements was a significant increase in thermal total cross section for 151 Eu, up (9 ± 3)% from ENDF/B-VII.1

  9. Resonance parameters of the 6.67-, 20.9-, and 36.8-eV levels in 238U

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Perez, R.B.; Difilippo, F.C.

    1976-01-01

    The ENDF/B-IV 238 U cross sections (MAT-1262) yield an effective capture resonance integral in strongly self-shielded situations which is too high. This situation suggests that the ENDF/B capture widths for the first few s-wave levels may be too large. Recent ORELA measurements of transmission through 238 U have been analyzed with a multilevel formula to determine the parameters of the 6.67-, 20.9-, and 36.6-eV levels. These three levels provide 86 percent of the infinitely dilute capture resonance integral

  10. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1980-01-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)

  11. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1978-07-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.) [de

  12. Strain tuneable whispering gallery mode resonators in the estimation of the elasto-optic parameters of soft materials

    Science.gov (United States)

    Pissadakis, Stavros; Milenko, Karolina; Aluculesei, Alina; Fytas, George

    2016-04-01

    In this manuscript we present the fabrication and characterization of a novel, polymer whispering gallery modes (WGMs) spherical micro-resonator, formed around the waist of an optical fiber taper. Fiber taper with well attached spheroid works as a cord, fixed on two ends enabling strain application to the resonator body. Controllable elastic elongation of the encapsulated fiber taper causes a change in the shape of the spheroid, which modifies the diameter and directional refractive index of the cavity. These changes influence the wavelength position of the WGMs resonances with a linear blue shift up to 0.6 nm, with corresponding strains up to 700Μɛ. The strain induced WGMs shift with respect to resonator diameter and annealing process is presented and analyzed.

  13. Photoionization using the xchem approach: Total and partial cross sections of Ne and resonance parameters above the 2 s22 p5 threshold

    Science.gov (United States)

    Marante, Carlos; Klinker, Markus; Kjellsson, Tor; Lindroth, Eva; González-Vázquez, Jesús; Argenti, Luca; Martín, Fernando

    2017-08-01

    The XCHEM approach interfaces well established quantum chemistry packages with scattering numerical methods in order to describe single-ionization processes in atoms and molecules. This should allow one to describe electron correlation in the continuum at the same level of accuracy as quantum chemistry methods do for bound states. Here we have applied this method to study multichannel photoionization of Ne in the vicinity of the autoionizing states lying between the 2 s22 p5 and 2 s 2 p6 ionization thresholds. The calculated total photoionization cross sections are in very good agreement with the absolute measurement of Samson et al. [J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002), 10.1016/S0368-2048(02)00026-9], and with independent benchmark calculations performed at the same level of theory. From these cross sections, we have extracted resonance positions, total autoionization widths, Fano profile parameters, and correlation parameters for the lowest three autoionizing states. The values of these parameters are in good agreement with those reported in earlier theoretical and experimental work. We have also evaluated β asymmetry parameter and partial photoionization cross sections and, from the latter, partial autoionization widths and Starace parameters for the same resonances, not yet available in the literature. Resonant features in the calculated β parameter are in good agreement with the experimental observations. We have found that the three lowest resonances preferentially decay into the 2 p-1ɛ d continuum rather than into the 2 p-1ɛ s one [Phys. Rev. A 89, 043415 (2014), 10.1103/PhysRevA.89.043415], in agreement with previous expectations, and that in the vicinity of the resonances the partial 2 p-1ɛ s cross section can be larger than the 2 p-1ɛ d one, in contrast with the accepted idea that the latter should amply dominate in the whole energy range. These results show the potential of the XCHEM approach to describe highly correlated process

  14. Optimization of input parameters of supra-threshold stochastic resonance image processing algorithm for the detection of abdomino-pelvic tumors on PET/CT scan

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Saroha, Kartik; Patel, C.D.; Bal, C.S.; Kumar, Rakesh

    2016-01-01

    Administration of diuretics increases the urine output to clear radioactive urine from kidneys and bladder. Hence post-diuretic pelvic PET/CT scan enhances the probability of detection of abdomino-pelvic tumor. However, it causes discomfort in patients and has some side effects also. Application of supra threshold stochastic resonance (SSR) image processing algorithm on Pre-diuretic PET/CT scan may also increase the probability of detection of these tumors. Amount of noise and threshold are two variable parameters that effect the final image quality. This study was conducted to investigate the effect of these two variable parameters on the detection of abdomen-pelvic tumor

  15. Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging in patients with rectal cancer: Correlation with microvascular density and vascular endothelial growth factor expression

    International Nuclear Information System (INIS)

    Kim, Yeo Eun; Lim, Joon Seok; Kim, Myeong Jin; Kim, Ki Whang; Choi, Jun Jeong; Kim, Dae Hong; Myoung, Sung Min

    2013-01-01

    To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer (K trans ) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters (K trans , Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p 0.662 for K trans ; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p 0.741 for K trans ; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). DCE-MRI perfusion parameters, K trans and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.

  16. Photon energy dependence of left-right asymmetry parameters of Kr 4p photoelectrons in the vicinity of 3d resonant excitations

    International Nuclear Information System (INIS)

    Ricz, S.; Holste, K.; Borovik, Jr.A.A.; Bernhardt, D.; Schippers, S.; Muller, A.; Kover, A.; Varga, D.

    2011-01-01

    Complete text of publication follows. A left-right asymmetry was observed experimentally for the outer s-shell photoelectrons of noble gases and of the H 2 molecule in our previous studies (see the cited articles for the definition of 'left' and 'right' as well as for the details of the experimental method). Recently, the angular distribution of 4p photoelectrons of Kr was measured with linearly polarized synchrotron radiation in the photon energy range (90 - 94.4 eV) of the 3d -1 → np resonant excitations in order to determine the anisotropy parameters. Now, also the left-right asymmetry parameters have been determined from the measured spectra of Ref. [3]. The experiment was performed at beamline BW3 of the DORIS III storage ring at HASYLAB (Hamburg, Germany). The emitted electrons were analyzed using the ESA-22D electrostatic electron spectrometer. Fig. 1 shows the measured left-right asymmetry parameters (A LR ) of the two fine structure components of Kr 4p photoelectrons. The asymmetry parameters (A LR ) are increasing with increasing photon energies reaching a maximum value of 0.04, definitely different from zero when considering the error bars. Furthermore, the left-right asymmetry parameters oscillate around the (3d 3/2,5/2 ) -1 → 5p resonant excitation for both fine structure components. Currently, we do not know what kind of interaction can produce a left-right asymmetry in photon-atom collisions but the shape of the oscillations shows interference between the unknown and the resonant excitation channels. One of the most important observations is that the sign of A LR changes from positive to negative and then back again to positive just within a narrow photon energy range of only 250 meV around the (3d 5/2 ) -1 → 5p resonant excitation. Within such a narrow range artificial asymmetry of the experimental setup is totally unconceivable. Acknowledgements. The authors thank the DORIS III staff for providing excellent working conditions. This work was

  17. RAHAB calculation of lattice parameters for CANDU-type lattices using Monte Carlo calculations for resolved resonance capture

    International Nuclear Information System (INIS)

    Craig, D.S.; Festarini, G.L.

    1986-07-01

    The Monte Carlo code, REPC, has been used to calculate resonance reaction rates for the thermal test lattices TRX-1 and MIT-4, and for the CRNL lattices ZEEP-1, 19 UO 2 and 37 UO 2 . These reaction rates were used in the RAHAB cell code to calculate k eff , conversion ratios, and fast fission ratios, for comparison with experimental values. The calculations used the cluster geometry for the 19-, 28-, and 37-element clusters. Calculations were also made using annular representations of the cluster for comparison of the rates with those obtained using the discrete ordinate code OZMA

  18. Initial experience of correlating parameters of intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging at 3.0 T in nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Qian-Jun; Zhang, Shui-Xing; Chen, Wen-Bo; Liang, Long; Zhou, Zheng-Gen; Liu, Zai-Yi; Zeng, Qiong-Xin; Liang, Chang-Hong [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Qiu, Qian-Hui [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Otolaryngology, Guangzhou, Guangdong Province (China)

    2014-12-15

    To determine the correlation between intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters. Thirty-eight newly diagnosed NPC patients were prospectively enrolled. Diffusion-weighted images (DWI) at 13 b-values were acquired using a 3.0-T MRI system. IVIM parameters including the pure molecular diffusion (D), perfusion-related diffusion (D*), perfusion fraction (f), DCE-MRI parameters including maximum slope of increase (MSI), enhancement amplitude (EA) and enhancement ratio (ER) were calculated by two investigators independently. Intra- and interobserver agreement were evaluated using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. Relationships between IVIM and DCE-MRI parameters were evaluated by calculation of Spearman's correlation coefficient. Intra- and interobserver reproducibility were excellent to relatively good (ICC = 0.887-0.997; narrow width of 95 % limits of agreement). The highest correlation was observed between f and EA (r = 0.633, P < 0.001), with a strong correlation between f and MSI (r = 0.598, P = 0.001). No correlation was observed between f and ER (r = -0.162; P = 0.421) or D* and DCE parameters (r = 0.125-0.307; P > 0.119). This study suggests IVIM perfusion imaging using 3.0-T MRI is feasible in NPC, and f correlates significantly with EA and MSI. (orig.)

  19. Monitoring Tumor Response to Carbogen Breathing by Oxygen-Sensitive Magnetic Resonance Parameters to Predict the Outcome of Radiation Therapy: A Preclinical Study

    Energy Technology Data Exchange (ETDEWEB)

    Cao-Pham, Thanh-Trang; Tran, Ly-Binh-An; Colliez, Florence; Joudiou, Nicolas [Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels (Belgium); El Bachiri, Sabrina [Université Catholique de Louvain, IMMAQ Technological Platform, Methodology and Statistical Support, Louvain-la-Neuve (Belgium); Grégoire, Vincent [Université Catholique de Louvain, Institute of Experimental and Clinical Research, Center for Molecular Imaging, Radiotherapy and Oncology, Brussels (Belgium); Levêque, Philippe; Gallez, Bernard [Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels (Belgium); Jordan, Bénédicte F., E-mail: benedicte.jordan@uclouvain.be [Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels (Belgium)

    2016-09-01

    Purpose: In an effort to develop noninvasive in vivo methods for mapping tumor oxygenation, magnetic resonance (MR)-derived parameters are being considered, including global R{sub 1}, water R{sub 1}, lipids R{sub 1}, and R{sub 2}*. R{sub 1} is sensitive to dissolved molecular oxygen, whereas R{sub 2}* is sensitive to blood oxygenation, detecting changes in dHb. This work compares global R{sub 1}, water R{sub 1}, lipids R{sub 1}, and R{sub 2}* with pO{sub 2} assessed by electron paramagnetic resonance (EPR) oximetry, as potential markers of the outcome of radiation therapy (RT). Methods and Materials: R{sub 1}, R{sub 2}*, and EPR were performed on rhabdomyosarcoma and 9L-glioma tumor models, under air and carbogen breathing conditions (95% O{sub 2}, 5% CO{sub 2}). Because the models demonstrated different radiosensitivity properties toward carbogen, a growth delay (GD) assay was performed on the rhabdomyosarcoma model and a tumor control dose 50% (TCD50) was performed on the 9L-glioma model. Results: Magnetic resonance imaging oxygen-sensitive parameters detected the positive changes in oxygenation induced by carbogen within tumors. No consistent correlation was seen throughout the study between MR parameters and pO{sub 2}. Global and lipids R{sub 1} were found to be correlated to pO{sub 2} in the rhabdomyosarcoma model, whereas R{sub 2}* was found to be inversely correlated to pO{sub 2} in the 9L-glioma model (P=.05 and .03). Carbogen increased the TCD50 of 9L-glioma but did not increase the GD of rhabdomyosarcoma. Only R{sub 2}* was predictive (P<.05) for the curability of 9L-glioma at 40 Gy, a dose that showed a difference in response to RT between carbogen and air-breathing groups. {sup 18}F-FAZA positron emission tomography imaging has been shown to be a predictive marker under the same conditions. Conclusion: This work illustrates the sensitivity of oxygen-sensitive R{sub 1} and R{sub 2}* parameters to changes in tumor oxygenation. However, R{sub 1

  20. Monitoring Tumor Response to Carbogen Breathing by Oxygen-Sensitive Magnetic Resonance Parameters to Predict the Outcome of Radiation Therapy: A Preclinical Study

    International Nuclear Information System (INIS)

    Cao-Pham, Thanh-Trang; Tran, Ly-Binh-An; Colliez, Florence; Joudiou, Nicolas; El Bachiri, Sabrina; Grégoire, Vincent; Levêque, Philippe; Gallez, Bernard; Jordan, Bénédicte F.

    2016-01-01

    Purpose: In an effort to develop noninvasive in vivo methods for mapping tumor oxygenation, magnetic resonance (MR)-derived parameters are being considered, including global R_1, water R_1, lipids R_1, and R_2*. R_1 is sensitive to dissolved molecular oxygen, whereas R_2* is sensitive to blood oxygenation, detecting changes in dHb. This work compares global R_1, water R_1, lipids R_1, and R_2* with pO_2 assessed by electron paramagnetic resonance (EPR) oximetry, as potential markers of the outcome of radiation therapy (RT). Methods and Materials: R_1, R_2*, and EPR were performed on rhabdomyosarcoma and 9L-glioma tumor models, under air and carbogen breathing conditions (95% O_2, 5% CO_2). Because the models demonstrated different radiosensitivity properties toward carbogen, a growth delay (GD) assay was performed on the rhabdomyosarcoma model and a tumor control dose 50% (TCD50) was performed on the 9L-glioma model. Results: Magnetic resonance imaging oxygen-sensitive parameters detected the positive changes in oxygenation induced by carbogen within tumors. No consistent correlation was seen throughout the study between MR parameters and pO_2. Global and lipids R_1 were found to be correlated to pO_2 in the rhabdomyosarcoma model, whereas R_2* was found to be inversely correlated to pO_2 in the 9L-glioma model (P=.05 and .03). Carbogen increased the TCD50 of 9L-glioma but did not increase the GD of rhabdomyosarcoma. Only R_2* was predictive (P<.05) for the curability of 9L-glioma at 40 Gy, a dose that showed a difference in response to RT between carbogen and air-breathing groups. "1"8F-FAZA positron emission tomography imaging has been shown to be a predictive marker under the same conditions. Conclusion: This work illustrates the sensitivity of oxygen-sensitive R_1 and R_2* parameters to changes in tumor oxygenation. However, R_1 parameters showed limitations in terms of predicting the outcome of RT in the tumor models studied, whereas R_2* was found to be

  1. Multivariate modelling of prostate cancer combining magnetic resonance derived T2, diffusion, dynamic contrast-enhanced and spectroscopic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Riches, S.F.; Payne, G.S.; Morgan, V.A.; DeSouza, N.M. [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, CRUK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Dearnaley, D. [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Department of Urology and Department of Academic Radiotherapy, Sutton, Surrey (United Kingdom); Morgan, S. [The Ottawa Hospital Cancer Centre and the University of Ottawa, Division of Radiation Oncology, Ottawa, Ontario (Canada); Partridge, M. [The Institute of Cancer Research, Section of Radiotherapy and Imaging, Sutton, Surrey (United Kingdom); University of Oxford, The Gray Institute for Radiation Oncology and Biology, Oxford (United Kingdom); Livni, N. [Royal Marsden NHS Foundation Trust Chelsea, Department of Histopathology, London (United Kingdom); Ogden, C. [Royal Marsden NHS Foundation Trust Chelsea, Department of Urology, London (United Kingdom)

    2015-05-01

    The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist. Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T{sub 2}-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T{sub 2,} Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (K{sup trans},K{sub ep},V{sub e}), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer. Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively. The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data. (orig.)

  2. Re-evaluation of {sup 58}Ni and {sup 60}Ni resonance parameters in the neutron energy range thermal to 800 keV

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, H.; Leal, L.C.; Guber, K.H.; Wiarda, D.; Arbanas, G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2009-07-01

    The previous {sup 58}Ni and {sup 60}Ni set of resonance parameters (Endf/B7.O, Jeff-3, etc.) was based on the SAMMY analysis of Oak Ridge National Laboratory neutron transmission, scattering cross section and capture cross section measurements by C.M. Perey et al. The present results were obtained by adding to the SAMMY experimental database the capture cross sections measured recently at the Oak Ridge Linear Electron Accelerator by Guber et al. and the Geel Electron Linear Accelerator and very high-resolution neutron transmission measurements performed by Brusegan et al. A complete resonance parameter covariance matrix (RPCM) was obtained from the SAMMY analysis of the experimental database. The data sets were made consistent, when needed, by adjusting the neutron energy scales, the normalization coefficients, and the background corrections. The RPCM allows the calculation of the cross section uncertainties due mainly to statistical errors in the experimental data. The systematic uncertainties of the experimental data, estimated from the preliminary analyses of the experimental database, were taken into account in the cross section covariance matrix (CSCM) for total, scattering, and capture cross sections. The diagonal elements of the CSCM were obtained by quadratic combination of the different components of the uncertainties. Because of a lack of experimental information, the energy correlations were not obtained, and a value of 0.5 was arbitrarily taken for all the CSCM nondiagonal elements. The average capture cross-sections are significantly smaller than those calculated form Endf/B7.0

  3. Cardiac Magnetic Resonance Imaging in Myocarditis Reveals Persistent Disease Activity Despite Normalization of Cardiac Enzymes and Inflammatory Parameters at 3-Month Follow-Up.

    Science.gov (United States)

    Berg, Jan; Kottwitz, Jan; Baltensperger, Nora; Kissel, Christine K; Lovrinovic, Marina; Mehra, Tarun; Scherff, Frank; Schmied, Christian; Templin, Christian; Lüscher, Thomas F; Heidecker, Bettina; Manka, Robert

    2017-11-01

    There is a major unmet need to identify high-risk patients in myocarditis. Although decreasing cardiac and inflammatory markers are commonly interpreted as resolving myocarditis, this assumption has not been confirmed as of today. We sought to evaluate whether routine laboratory parameters at diagnosis predict dynamic of late gadolinium enhancement (LGE) as persistent LGE has been shown to be a risk marker in myocarditis. Myocarditis was diagnosed based on clinical presentation, high-sensitivity troponin T, and cardiac magnetic resonance imaging, after exclusion of obstructive coronary artery disease by angiography. Cardiac magnetic resonance imaging was repeated at 3 months. LGE extent was analyzed with the software GT Volume. Change in LGE >20% was considered significant. Investigated cardiac and inflammatory markers included high-sensitivity troponin T, creatine kinase, myoglobin, N-terminal B-type natriuretic peptide, C-reactive protein, and leukocyte count. Twenty-four patients were enrolled. Absolute levels of cardiac enzymes and inflammatory markers at baseline did not predict change in LGE at 3 months. Cardiac and inflammatory markers had normalized in 21 patients (88%). LGE significantly improved in 16 patients (67%); however, it persisted to a lesser degree in 17 of them (71%) and increased in a small percentage (21%) despite normalization of cardiac enzymes. This is the first study reporting that cardiac enzymes and inflammatory parameters do not sufficiently reflect LGE in myocarditis. Although a majority of patients with normalizing laboratory markers experienced improved LGE, in a small percentage LGE worsened. These data suggest that cardiac magnetic resonance imaging might add value to currently existing diagnostic tools for risk assessment in myocarditis. © 2017 American Heart Association, Inc.

  4. A search for optimal parameters of resonance circuits ensuring damping of electroelastic structure vibrations based on the solution of natural vibration problem

    Science.gov (United States)

    Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.

    2017-06-01

    In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.

  5. Resonant alteration of propagation in guiding structures with complex Robin parameter and its magnetic-field-induced restoration

    International Nuclear Information System (INIS)

    Olendski, O.

    2011-01-01

    Highlights: → Solutions of the wave equation are analyzed for the confined circular geometry with complex Robin boundary conditions. → Sharp extremum is found in the energy dependence on the imaginary part of the extrapolation length. → Nonzero real part of the Robin length or/and magnetic field wipe out the resonance. - Abstract: Solutions of the scalar Helmholtz wave equation are derived for the analysis of the transport and thermodynamic properties of the two-dimensional disk and three-dimensional infinitely long straight wire in the external uniform longitudinal magnetic field B under the assumption that the Robin boundary condition contains extrapolation length Λ with nonzero imaginary part Λ i . As a result of this complexity, the self-adjointness of the Hamiltonian is lost, its eigenvalues E become complex too and the discrete bound states of the disk characteristic for the real Λ turn into the corresponding quasibound states with their lifetime defined by the eigenenergies imaginary parts E i . Accordingly, the longitudinal flux undergoes an alteration as it flows along the wire with its attenuation/amplification being E i -dependent too. It is shown that, for zero magnetic field, the component E i as a function of the Robin imaginary part exhibits a pronounced sharp extremum with its magnitude being the largest for the zero real part Λ r of the extrapolation length. Increasing magnitude of Λ r quenches the E i - Λ i resonance and at very large Λ r the eigenenergies E approach the asymptotic real values independent of Λ i . The extremum is also wiped out by the magnetic field when, for the large B, the energies tend to the Landau levels. Mathematical and physical interpretations of the obtained results are provided; in particular, it is shown that the finite lifetime of the disk quasibound states stems from the Λ i -induced currents flowing through the sample boundary. Possible experimental tests of the calculated effect are discussed; namely

  6. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging

    International Nuclear Information System (INIS)

    Marlovits, Stefan; Striessnig, Gabriele; Resinger, Christoph T.; Aldrian, Silke M.; Vecsei, Vilmos; Imhof, Herwig; Trattnig, Siegfried

    2004-01-01

    To evaluate articular cartilage repair tissue after biological cartilage repair, we propose a new technique of non-invasive, high-resolution magnetic resonance imaging (MRI) and define a new classification system. For the definition of pertinent variables the repair tissue of 45 patients treated with three different techniques for cartilage repair (microfracture, autologous osteochondral transplantation, and autologous chondrocyte transplantation) was analyzed 6 and 12 months after the procedure. High-resolution imaging was obtained with a surface phased array coil placed over the knee compartment of interest and adapted sequences were used on a 1 T MRI scanner. The analysis of the repair tissue included the definition and rating of nine pertinent variables: the degree of filling of the defect, the integration to the border zone, the description of the surface and structure, the signal intensity, the status of the subchondral lamina and subchondral bone, the appearance of adhesions and the presence of synovitis. High-resolution MRI, using a surface phased array coil and specific sequences, can be used on every standard 1 or 1.5 T MRI scanner according to the in-house standard protocols for knee imaging in patients who have had cartilage repair procedures without substantially prolonging the total imaging time. The new classification and grading system allows a subtle description and suitable assessment of the articular cartilage repair tissue

  7. Investigation of some parameters influencing the sensitivity of human tooth enamel to gamma radiation using electron paramagnetic resonance

    International Nuclear Information System (INIS)

    El-Faramawy, N.

    2008-01-01

    Electron paramagnetic resonance (EPR) has been successfully used as a physical technique for gamma radiation dose reconstruction using calcified tissues. To minimize potential discrepancies between EPR readings in future studies, the effects of cavity response factor, tooth position and donor gender on the estimated gamma radiation dose were studied. It was found that the EPR response per sample mass used for assessment of doses in teeth outside of the 70-100 mg range should be corrected by a factor which is a function of the sample mass. In the EPR measurements, the difference in sensitivity of different tooth positions to γ-radiation was taken into consideration. It was determined that among all the premolars and molars tooth positions, the relative standard deviation of sensitivity was 6.5%, with the wisdom teeth and the first molars having the highest and lowest sensitivity to γ-radiation, respectively. The current results reveal no effect of the donor gender on the sensitivity to γ-radiation. (author)

  8. Mean cross sections of fast neutrons radiative capture, transmission and mean resonance parameters for the tin isotopes

    International Nuclear Information System (INIS)

    Timokhov, V.M.; Bokhovko, M.V.; Kazakov, L.E.; Kononov, V.N.; Manturov, G.N.; Poletaev, E.D.

    1988-01-01

    Results of measurements of neutron radiative capture cross sections in the energy range of 20-450 keV and of neutron transmission in the energy range of 20-1400 keV for 112,114,115,116,117,118,119,120,122 ,124S n isotopes and natural mixture of tin are presented. Analysis of the experimental data in the framework of nuclear reactions statistical theory is carried out, as a result of which data on neutron and radiation strength functions, potential scattering radii for S- and P-neutrons, as well as nuclear levels density parameters, are obtained

  9. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning

    Directory of Open Access Journals (Sweden)

    Atefeh Shirvani

    2017-01-01

    Full Text Available Background: In radiation therapy, computed tomography (CT simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. Materials and Methods: In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. Results: According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P 4 cm and image fusion quality was <25%. Conclusion: The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle.

  10. Comparison of morphological and kinetic parameters in distinction of benign and malignant breast lesions in dynamic contrast enhanced magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Direnç Özlem Aksoy

    2013-12-01

    Full Text Available Objective: To evaluate the value of qualitative morphologicaland kinetic data and quantitative kinetic data indistinction of malignancy in dynamic contrast enhancedmagnetic resonance imaging (DCE-MRI of the breast.Methods: DCE-MRIs of 49 subjects were evaluated.Morphological and contrast enhancement parameters of95 lesions were recorded in these subjects. Post-contrastkinetic behavior of these lesions were also investigated.Among the quantitative parameters, relative enhancements(E1, E2, Epeak, time-to-peak (Tpeak, slope ofcurve (Slope, signal enhancement ratio (SER, and maximumintensity time ratio (MITR were calculated. Theseresults were compared with the pathological diagnosis.Results: Spiculated contour (100%, rim enhancement(97.87%, irregular shape (95.74%, and irregular margin(91.49% were the most specific morphological featuresof malignancy in mass lesions. In non-mass lesions, focalzone (91.49% was the most specific feature of malignancy.74.5% of the benign lesions showed type 1, 77.1%of the malignant lesions showed type 2 and 3 curves accordingto the kinetic curve evaluation. All quantitativeparameters except Epeak were found to be statisticallysignificant in distinction of malignancy.Conclusion: None of the morphological features of thebenign lesions were found to be significantly specific.More specific features can be described for malignantlesions. Early behavior of the kinetic curve is not usefulfor diagnosis of malignancy but the intermediate and latebehavior gives useful information. Quantitative data involvedin this study might be promising.Key words: Morphological, kinetic, breast lesions, magnetic resonance imaging, dynamic

  11. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Carlo, E-mail: c.liguori@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Pitocco, Francesca, E-mail: f.pitocco@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Di Giampietro, Ilenia, E-mail: i.digiampietro@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Vivo, Aldo Eros de, E-mail: devivoeros@gmail.com [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Unit of Measurements and Biomedical Instrumentation, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Cianciulli, Paolo, E-mail: CIANCIULLI.PAOLO@aslrmc.it [Thalassemia Unit, Ospedale Sant Eugenio, Piazzale dell’Umanesimo 10, 00143 Rome (Italy); Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy)

    2013-09-15

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients.

  12. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    International Nuclear Information System (INIS)

    Liguori, Carlo; Pitocco, Francesca; Di Giampietro, Ilenia; Vivo, Aldo Eros de; Schena, Emiliano; Cianciulli, Paolo; Zobel, Bruno Beomonte

    2013-01-01

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients

  13. Incorporating doubly resonant $W^\\pm$ data in a global fit of SMEFT parameters to lift flat directions

    CERN Document Server

    Berthier, Laure; Trott, Michael

    2016-09-27

    We calculate the double pole contribution to two to four fermion scattering through $W^{\\pm}$ currents at tree level in the Standard Model Effective Field Theory (SMEFT). We assume all fermions to be massless, $\\rm U(3)^5$ flavour and $\\rm CP$ symmetry. Using this result, we update the global constraint picture on SMEFT parameters including LEPII data on these charged current processes, and also include modifications to our fit procedure motivated by a companion paper focused on $W^{\\pm}$ mass extractions. The fit reported is now to 177 observables and emphasises the need for a consistent inclusion of theoretical errors, and a consistent treatment of observables. Including charged current data lifts the two-fold degeneracy previously encountered in LEP (and lower energy) data, and allows us to set simultaneous constraints on 20 of 53 Wilson coefficients in the SMEFT, consistent with our assumptions. This allows the model independent inclusion of LEP data in SMEFT studies at LHC, which are projected into the S...

  14. Modifications in Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameters After α-Particle-Emitting {sup 227}Th-trastuzumab Therapy of HER2-Expressing Ovarian Cancer Xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Heyerdahl, Helen, E-mail: Helen.Heyerdahl@rr-research.no [Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo (Norway); Røe, Kathrine [Department of Oncology, Division of Medicine, Akershus University Hospital, Lørenskog (Norway); Brevik, Ellen Mengshoel [Department of Research and Development, Algeta ASA, Oslo (Norway); Dahle, Jostein [Nordic Nanovector AS, Oslo (Norway)

    2013-09-01

    Purpose: The purpose of this study was to investigate the effect of α-particle-emitting {sup 227}Th-trastuzumab radioimmunotherapy on tumor vasculature to increase the knowledge about the mechanisms of action of {sup 227}Th-trastuzumab. Methods and Materials: Human HER2-expressing SKOV-3 ovarian cancer xenografts were grown bilaterally in athymic nude mice. Mice with tumor volumes 253 ± 36 mm{sup 3} (mean ± SEM) were treated with a single injection of either {sup 227}Th-trastuzumab at a dose of 1000 kBq/kg body weight (treated group, n=14 tumors) or 0.9% NaCl (control group, n=10 tumors). Dynamic T1-weighted contrast-enhanced magnetic resonance imaging (DCEMRI) was used to study the effect of {sup 227}Th-trastuzumab on tumor vasculature. DCEMRI was performed before treatment and 1, 2, and 3 weeks after therapy. Tumor contrast-enhancement curves were extracted voxel by voxel and fitted to the Brix pharmacokinetic model. Pharmacokinetic parameters for the tumors that underwent radioimmunotherapy were compared with the corresponding parameters of control tumors. Results: Significant increases of k{sub ep}, the rate constant of diffusion from the extravascular extracellular space to the plasma (P<.05), and k{sub el,} the rate of clearance of contrast agent from the plasma (P<.01), were seen in the radioimmunotherapy group 2 and 3 weeks after injection, compared with the control group. The product of k{sub ep} and the amplitude parameter A, associated with increased vessel permeability and perfusion, was also significantly increased in the radioimmunotherapy group 2 and 3 weeks after injection (P<.01). Conclusions: Pharmacokinetic modeling of MRI contrast-enhancement curves evidenced significant alterations in parameters associated with increased tumor vessel permeability and tumor perfusion after {sup 227}Th-trastuzumab treatment of HER2-expressing ovarian cancer xenografts.

  15. A Measurement of the Effective Electron Neutral Current Coupling Parameters from Polarized Bhabha Scattering at the Z0 Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Langston, Matthew D

    2003-07-15

    The effective electron neutral current coupling parameters, {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c}, have been measured from analyzing 43,222 polarized Bhabha scattered events (e{sup +}e{sup -} {yields} e{sup +}e{sup -}) using the SLAC Large Detector (SLD) experiment at the Stanford Linear Accelerator Center (SLAC). The SLAC Linear Collider (SLC) produced the Bhabha scattered events by colliding polarized electrons, with an average polarization of 74%, with unpolarized positrons at an average center-of-mass energy of 91.25 GeV. The analysis used the entire SLD data sample collected between 1994 and 1998 (the last year the SLD detector collected data). The results are {bar g}{sub V}{sup e} = -0.0469 {+-} 0.0024 (stat.) {+-} 0.0004 (sys.); {bar g}{sub A}{sup e} = -0.5038 {+-} 0.0010 (stat.) {+-} 0.0043 (sys.). All Bhabha scattered events within the angular acceptance of the SLD calorimeter subsystems were used in this analysis, including both small-angle events (28 mrad. {le} theta {le} 68 mrad.) measured by the Silicon/Tungsten Luminosity Monitor (LUM), and large angle events (0 {le} |cos{theta}| {le} 0.9655) measured by the Liquid Argon Calorimeter (LAC). Using all of the data in this manner allows for the high-precision measurement of the luminosity provided by the LUM to constrain the uncertainty on {bar g}{sub V}{sup e} and {bar g}{sub A}{sup e}. The measured integrated luminosity for the combined 1993 through 1998 SLD data sample is L{sub Integrated} = 19,247 {+-} 17 (stat.) {+-} 146 (sys.) nb{sup -1}. In contrast with other SLD precision measurements of the effective weak mixing angle, which are sensitive to the ratio {bar g}{sub V}{sup e}/{bar g}{sub A}{sup e}, this result independently determines {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c}. The analysis techniques to measure {bar g}{sub V}{sup 3} and {bar g}{sub A}{sup c} are described, and the results are compared with other SLD measurements as well as other experiments.

  16. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Chiu, Su-Chin; Cheng, Cheng-Chieh; Chang, Hing-Chiu; Chung, Hsiao-Wen; Chiu, Hui-Chu; Liu, Yi-Jui; Hsu, Hsian-He; Juan, Chun-Jung

    2016-01-01

    Purpose: To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). Methods: This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. Results: NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s"−"1) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s"−"1, respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). Conclusions: On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.

  17. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Su-Chin [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan, Republic of China and Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan (China); Cheng, Cheng-Chieh [Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115 (United States); Chang, Hing-Chiu [Department of Diagnostic Radiology, The University of Hong Kong (Hong Kong); Chung, Hsiao-Wen [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan (China); Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan (China); Department of Radiology, National Defense Medical Center, Taipei 114, Taiwan (China); Chiu, Hui-Chu [Ph.D. Program of Technology Management, Chung Hua University, Hsinchu 300, Taiwan (China); Liu, Yi-Jui [Department of Automatic Control Engineering, Feng-Chia University, Taichung 407, Taiwan (China); Hsu, Hsian-He; Juan, Chun-Jung, E-mail: peterjuancj@yahoo.com.tw [Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan and Department of Radiology, National Defense Medical Center, Taipei 114, Taiwan (China)

    2016-04-15

    Purpose: To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). Methods: This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. Results: NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s{sup −1}) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s{sup −1}, respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). Conclusions: On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.

  18. An analytical method for estimating the 14N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    International Nuclear Information System (INIS)

    Iselin, L.H.

    1992-01-01

    The use of 14 N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14 N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14 N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation

  19. An analytical method for estimating the 14N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    Energy Technology Data Exchange (ETDEWEB)

    Iselin, Louis Henry [Univ. of Florida, Gainesville, FL (United States)

    1992-01-01

    The use of 14N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  20. Contrast-enhanced magnetic resonance imaging of the breast: the value of pharmacokinetic parameters derived from fast dynamic imaging during initial enhancement in classifying lesions

    International Nuclear Information System (INIS)

    Veltman, J.; Stoutjesdijk, M.; Mann, R.; Huisman, H.J.; Barentsz, J.O.; Blickman, J.G.; Boetes, C.

    2008-01-01

    The value of pharmacokinetic parameters derived from fast dynamic imaging during initial enhancement in characterizing breast lesions on magnetic resonance imaging (MRI) was evaluated. Sixty-eight malignant and 34 benign lesions were included. In the scanning protocol, high temporal resolution imaging was combined with high spatial resolution imaging. The high temporal resolution images were recorded every 4.1 s during initial enhancement (fast dynamic analysis). The high spatial resolution images were recorded at a temporal resolution of 86 s (slow dynamic analysis). In the fast dynamic evaluation pharmacokinetic parameters (K trans , V e and k ep ) were evaluated. In the slow dynamic analysis, each lesion was scored according to the BI-RADS classification. Two readers evaluated all data prospectively. ROC and multivariate analysis were performed. The slow dynamic analysis resulted in an AUC of 0.85 and 0.83, respectively. The fast dynamic analysis resulted in an AUC of 0.83 in both readers. The combination of both the slow and fast dynamic analyses resulted in a significant improvement of diagnostic performance with an AUC of 0.93 and 0.90 (P = 0.02). The increased diagnostic performance found when combining both methods demonstrates the additional value of our method in further improving the diagnostic performance of breast MRI. (orig.)

  1. Combined Clinical Parameters and Multiparametric Magnetic Resonance Imaging for Advanced Risk Modeling of Prostate Cancer-Patient-tailored Risk Stratification Can Reduce Unnecessary Biopsies.

    Science.gov (United States)

    Radtke, Jan Philipp; Wiesenfarth, Manuel; Kesch, Claudia; Freitag, Martin T; Alt, Celine D; Celik, Kamil; Distler, Florian; Roth, Wilfried; Wieczorek, Kathrin; Stock, Christian; Duensing, Stefan; Roethke, Matthias C; Teber, Dogu; Schlemmer, Heinz-Peter; Hohenfellner, Markus; Bonekamp, David; Hadaschik, Boris A

    2017-12-01

    Multiparametric magnetic resonance imaging (mpMRI) is gaining widespread acceptance in prostate cancer (PC) diagnosis and improves significant PC (sPC; Gleason score≥3+4) detection. Decision making based on European Randomised Study of Screening for PC (ERSPC) risk-calculator (RC) parameters may overcome prostate-specific antigen (PSA) limitations. We added pre-biopsy mpMRI to ERSPC-RC parameters and developed risk models (RMs) to predict individual sPC risk for biopsy-naïve men and men after previous biopsy. We retrospectively analyzed clinical parameters of 1159 men who underwent mpMRI prior to MRI/transrectal ultrasound fusion biopsy between 2012 and 2015. Multivariate regression analyses were used to determine significant sPC predictors for RM development. The prediction performance was compared with ERSPC-RCs, RCs refitted on our cohort, Prostate Imaging Reporting and Data System (PI-RADS) v1.0, and ERSPC-RC plus PI-RADSv1.0 using receiver-operating characteristics (ROCs). Discrimination and calibration of the RM, as well as net decision and reduction curve analyses were evaluated based on resampling methods. PSA, prostate volume, digital-rectal examination, and PI-RADS were significant sPC predictors and included in the RMs together with age. The ROC area under the curve of the RM for biopsy-naïve men was comparable with ERSPC-RC3 plus PI-RADSv1.0 (0.83 vs 0.84) but larger compared with ERSPC-RC3 (0.81), refitted RC3 (0.80), and PI-RADS (0.76). For postbiopsy men, the novel RM's discrimination (0.81) was higher, compared with PI-RADS (0.78), ERSPC-RC4 (0.66), refitted RC4 (0.76), and ERSPC-RC4 plus PI-RADSv1.0 (0.78). Both RM benefits exceeded those of ERSPC-RCs and PI-RADS in the decision regarding which patient to receive biopsy and enabled the highest reduction rate of unnecessary biopsies. Limitations include a monocentric design and a lack of PI-RADSv2.0. The novel RMs, incorporating clinical parameters and PI-RADS, performed significantly better

  2. Evaluating the Uncertainty in Exchange Parameters Determined from Off-Resonance R1ρ Relaxation Dispersion for Systems in Fast Exchange

    Science.gov (United States)

    Bothe, Jameson R.; Stein, Zachary W.; Al-Hashimi, Hashim M.

    2014-01-01

    Spin relaxation in the rotating frame (R1ρ) is a powerful NMR technique for characterizing fast microsecond timescale exchange processes directed toward short-lived excited states in biomolecules. At the limit of fast exchange, only kex = k1 + k−1 and Φıx = pGpE(Δω)2 can be determined from R1ρ data limiting the ability to characterize the structure and energetics of the excited state conformation. Here, we use simulations to examine the uncertainty with which exchange parameters can be determined for two state systems in intermediate-to-fast exchange using off-resonance R1ρ relaxation dispersion. R1ρ data computed by solving the Bloch-McConnell equations reveals small but significant asymmetry with respect to offset (R1ρ(ΔΩ) ≠ R1ρ(−ΔΩ)), which is a hallmark of slow-to-intermediate exchange, even under conditions of fast exchange for free precession chemical exchange line broadening (kex/Δω > 10). A grid search analysis combined with bootstrap and Monte-Carlo based statistical approaches for estimating uncertainty in exchange parameters reveals that both the sign and magnitude of Δω can be determined at a useful level of uncertainty for systems in fast exchange (kex/Δω exchange parameters. Results from simulations are complemented by analysis of experimental R1ρ data measured in three nucleic acid systems with exchange processes occurring on the slow (kex/Δω = 0.2; pE = ~ 0.7%), fast (kex/Δω = ~10–16; pE = ~13%) and very fast (kex = 39,000 s−1) chemical shift timescales. PMID:24819426

  3. Relation between pO2, 31P magnetic resonance spectroscopy parameters and treatment outcome in patients with high-grade soft tissue sarcomas treated with thermoradiotherapy

    International Nuclear Information System (INIS)

    Dewhirst, Mark W.; Poulson, Jean M.; Yu Daohai; Sanders, Linda; Lora-Michiels, Michael; Vujaskovic, Zeljko; Jones, Ellen L.; Samulski, Thaddeus V.; Powers, Barbara E.; Brizel, David M.; Prosnitz, Leonard R.; Charles, H. Cecil

    2005-01-01

    Purpose: In a prior study, the combination of 31 P magnetic resonance spectroscopy (MRS)-based intracellular pH (pHi) and T2 relaxation time was highly predictive of the pathologic complete response (pCR) rate in a small series of patients with soft tissue sarcomas (STSs) treated with thermoradiotherapy. Changes in the magnetic resonance metabolite ratios and pO 2 were related to the pCR rate. Hypoxia also correlated with a greater likelihood for the development of metastases. Because of the limited number of patients in the prior series, we initiated this study to determine whether the prior observations were repeatable and whether 31 P MRS lipid-related resonances were related to a propensity for metastasis. Methods and materials: Patients with high-grade STSs were enrolled in an institutional review board-approved Phase II thermoradiotherapy trial. All tumors received daily external beam radiotherapy (1.8-2.0 Gy, five times weekly) to a total dose of 30-50 Gy. Hyperthermia followed radiotherapy by 31 P metabolite ratios, pHi, and T2 relaxation time. The median pO 2 and hypoxic fraction were determined using pO 2 histography. Comparisons between experimental endpoints and the pCR rate and metastasis-free and overall survival were made. Results: Of 35 patients, 21 and 28 had reportable pretreatment MRS/MRI and pO 2 data, respectively. The cutpoints for a previously tested receiver operating curve for a pCR were T2 = 100 and pHi = 7.3. In the current series, few tumors fell below the cutpoints so validation was not possible. The phosphodiester (PDE)/inorganic phosphate (Pi) ratio and hypoxic fraction correlated inversely with the pCR rate in the current series (Spearman correlation coefficient -0.51, p = 0.017; odds ratio of percentage of necrosis ≥95% = 0.01 for a 1% increase in the hypoxic fraction; Wald p = 0.036). The pretreatment phosphomonoester (PME)/Pi ratio also correlated inversely with the pCR rate (odds ratio of percentage of necrosis ≥95% = 0

  4. A novel diagnostic parameter, foraminal stenotic ratio using three-dimensional magnetic resonance imaging, as a discriminator for surgery in symptomatic lumbar foraminal stenosis.

    Science.gov (United States)

    Yamada, Kentaro; Abe, Yuichiro; Satoh, Shigenobu; Yanagibashi, Yasushi; Hyakumachi, Takahiko; Masuda, Takeshi

    2017-08-01

    No previous studies have reported the radiological features of patients requiring surgery in symptomatic lumbar foraminal stenosis (LFS). This study aims to investigate the diagnostic accuracy of a novel technique, foraminal stenotic ratio (FSR), using three-dimensional magnetic resonance imaging for LFS at L5-S by comparing patients requiring surgery, patients with successful conservative treatment, and asymptomatic patients. This is a retrospective radiological comparative study. We assessed the magnetic resonance imaging (MRI) results of 84 patients (168 L5-S foramina) aged ≥40 years without L4-L5 lumbar spinal stenosis. The foramina were divided into three groups following standardized treatment: stenosis requiring surgery (20 foramina), stenosis with successful conservative treatment (26 foramina), and asymptomatic stenotic foramen (122 foramina). Foraminal stenotic ratio was defined as the ratio of the length of the stenosis to the length of the foramen on the reconstructed oblique coronal image, referring to perineural fat obliterations in whole oblique sagittal images. We also evaluated the foraminal nerve angle and the minimum nerve diameter on reconstructed images, and the Lee classification on conventional T1 images. The differences in each MRI parameter between the groups were investigated. To predict which patients require surgery, receiver operating characteristic (ROC) curves were plotted after calculating the area under the ROC curve. The FSR showed a stepwise increase when comparing asymptomatic, conservative, and surgical groups (mean, 8.6%, 38.5%, 54.9%, respectively). Only FSR was significantly different between the surgical and conservative groups (p=.002), whereas all parameters were significantly different comparing the symptomatic and asymptomatic groups. The ROC curve showed that the area under the curve for FSR was 0.742, and the optimal cutoff value for FSR for predicting a surgical requirement in symptomatic patients was 50

  5. Theoretical studies of the local structure and electron paramagnetic resonance parameters for tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping [Chongqing Jiaotong Univ. (China). School of Science; Li, Ling [Sichuan University of Arts and Science, Dazhou (China). Dept. of Maths and Finance-Economics

    2015-07-01

    The optical spectra, electron paramagnetic resonance parameters (i.e., the spin Hamiltonian parameters, including paramagnetic g factors and the hyperfine structure constants A{sub i}) and the local distortion structure for the tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7} are theoretically studied based on the crystal-field theory and three-order perturbation formulas of a 3d{sup 1} centre in tetragonal site. The magnitude of orbital reduction factor, core polarisation constant κ, and local structure parameters are obtained by fitting the calculated optical spectra and electron paramagnetic resonance parameters to the experimental values. The theoretical results are in reasonable agreement with the experimental values.

  6. Quantitative cardiovascular magnetic resonance in pregnant women: cross-sectional analysis of physiological parameters throughout pregnancy and the impact of the supine position.

    Science.gov (United States)

    Rossi, Alexia; Cornette, Jerome; Johnson, Mark R; Karamermer, Yusuf; Springeling, Tirza; Opic, Petra; Moelker, Adriaan; Krestin, Gabriel P; Steegers, Eric; Roos-Hesselink, Jolien; van Geuns, Robert-Jan M

    2011-06-27

    There are physiological reasons for the effects of positioning on hemodynamic variables and cardiac dimensions related to altered intra-abdominal and intra-thoracic pressures. This problem is especially evident in pregnant women due to the additional aorto-caval compression by the enlarged uterus. The purpose of this study was to investigate the effect of postural changes on cardiac dimensions and function during mid and late pregnancy using cardiovascular magnetic resonance (CMR). Healthy non-pregnant women, pregnant women at 20th week of gestation and at 32nd week of gestation without history of cardiac disease were recruited to the study and underwent CMR in supine and left lateral positions. Cardiac hemodynamic parameters and dimensions were measured and compared between both positions. Five non-pregnant women, 6 healthy pregnant women at mid pregnancy and 8 healthy pregnant women at late pregnancy were enrolled in the study. In the group of non-pregnant women left ventricular (LV) cardiac output (CO) significantly decreased by 9% (p=0.043) and right ventricular (RV) end-diastolic volume (EDV) significantly increased by 5% (p=0.043) from the supine to the left lateral position. During mid pregnancy LV ejection fraction (EF), stroke volume (SV), left atrium lateral diameter and left atrial supero-inferior diameter increased significantly from the supine position to the left lateral position: 8%, 27%, 5% and 11%, respectively (ppregnancy a significant increment of LV EF, EDV, SV and CO was observed in the left lateral position: 11%, 21%, 35% and 24% (ppregnancy positional changes affect significantly cardiac hemodynamic parameters and dimensions. Pregnant women who need serial studies by CMR should be imaged in a consistent position. From as early as 20 weeks the left lateral position should be preferred on the supine position because it positively affects venous return, SV and CO.

  7. Quantitative cardiovascular magnetic resonance in pregnant women: cross-sectional analysis of physiological parameters throughout pregnancy and the impact of the supine position

    Directory of Open Access Journals (Sweden)

    Moelker Adriaan

    2011-06-01

    Full Text Available Abstract Background There are physiological reasons for the effects of positioning on hemodynamic variables and cardiac dimensions related to altered intra-abdominal and intra-thoracic pressures. This problem is especially evident in pregnant women due to the additional aorto-caval compression by the enlarged uterus. The purpose of this study was to investigate the effect of postural changes on cardiac dimensions and function during mid and late pregnancy using cardiovascular magnetic resonance (CMR. Methods Healthy non-pregnant women, pregnant women at 20th week of gestation and at 32nd week of gestation without history of cardiac disease were recruited to the study and underwent CMR in supine and left lateral positions. Cardiac hemodynamic parameters and dimensions were measured and compared between both positions. Results Five non-pregnant women, 6 healthy pregnant women at mid pregnancy and 8 healthy pregnant women at late pregnancy were enrolled in the study. In the group of non-pregnant women left ventricular (LV cardiac output (CO significantly decreased by 9% (p = 0.043 and right ventricular (RV end-diastolic volume (EDV significantly increased by 5% (p = 0.043 from the supine to the left lateral position. During mid pregnancy LV ejection fraction (EF, stroke volume (SV, left atrium lateral diameter and left atrial supero-inferior diameter increased significantly from the supine position to the left lateral position: 8%, 27%, 5% and 11%, respectively (p Conclusions During pregnancy positional changes affect significantly cardiac hemodynamic parameters and dimensions. Pregnant women who need serial studies by CMR should be imaged in a consistent position. From as early as 20 weeks the left lateral position should be preferred on the supine position because it positively affects venous return, SV and CO.

  8. Contrasts between the vibronic contributions in the tris-(2,2'-bipyridyl)osmium(II) emission spectrum and the implications of resonance-Raman parameters.

    Science.gov (United States)

    Ondongo, Onduru S; Endicott, John F

    2009-04-06

    The emission spectrum of the tris-(2,2'-bipyridine)osmium(II) metal-to-ligand charge transfer (MLCT) excited-state frozen solution at 77 K differs qualitatively from that expected based on its reported resonance-Raman (rR) parameters in that (1) the dominant vibronic contributions to the emission spectrum are in the low frequency regime (corresponding to nuclear displacements in largely to metal-ligand vibrational modes) and these contributions are negligible in the rR; and (2) the amplitude of the emission sideband components that correspond to envelopes of largely bpy centered vibrational modes is about 40% of that expected (relative to the amplitude observed for the band origin) for a simple vibronic progression in these modes. The distortions in low frequency vibrational modes are attributable to configurational mixing between metal centered (LF) and MLCT excited states, and the small amplitudes of the bpy-mode vibronic components may be a consequence of some intrinsic differences of the distortions of the (3)MLCT and (1)MLCT excited states such as the zero-field splitting of the (3)MLCT excited state and the different distortions of these excited-state components.

  9. χ_{c1} and χ_{c2} Resonance Parameters with the Decays χ_{c1,c2}→J/ψμ^{+}μ^{-}.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Atzeni, M; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bordyuzhin, I; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Chapman, M G; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hu, W; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Keizer, F; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Kress, F; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Luchinsky, A; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malecki, B; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombächer, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pisani, F; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Weisser, C; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, M; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2017-12-01

    The decays χ_{c1}→J/ψμ^{+}μ^{-} and χ_{c2}→J/ψμ^{+}μ^{-} are observed and used to study the resonance parameters of the χ_{c1} and χ_{c2} mesons. The masses of these states are measured to be m(χ_{c1})=3510.71±0.04(stat)±0.09(syst)  MeV and m(χ_{c2})=3556.10±0.06(stat)±0.11(syst)  MeV, where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m(χ_{c2})-m(χ_{c1})=45.39±0.07(stat)±0.03(syst)  MeV. The natural width of the χ_{c2} meson is measured to be Γ(χ_{c2})=2.10±0.20(stat)±0.02(syst)  MeV. These results are in good agreement with and have comparable precision to the current world averages.

  10. Evaluation of Tumor Angiogenesis Using Dynamic Enhanced Magnetic Resonance Imaging: Comparison of Plasma Vascular Endothelial Growth Factor, Hemodynamic, and Pharmacokinetic Parameters

    International Nuclear Information System (INIS)

    Ikeda, O.; Nishimura, R.; Miyayama, H.; Yasunaga, T.; Ozaki, Y.; Tuji, A.; Yamashita, Y.

    2004-01-01

    Purpose: To assess whether tumor angiogenesis of breast cancers can be predicted on the basis of dynamic magnetic resonance imaging (MRI). Material and Methods: Seventy-one patients with 71 breast cancers underwent Gd-DTPA enhanced dynamic MRI. Two regions of interest measurements were obtained in the periphery and in the center of the breast cancers. Hemodynamic parameters obtained by dynamic MRI included peak time, contrast enhancement ratio (CE ratio), and washout ratio. The triexponential concentration curve of Gd-DTPA was fitted to a theoretical model based on compartmental analysis. The transfer constant (or permeability surface product per unit volume of compartment 'k') was obtained using this method. Tumor angiogenesis was assessed by plasma vascular endothelial growth factor (P-VEGF). Results: The P-VEGF was positive in 28 of 71 tumors (39%). The CE ratio, washout ratio, and k in the periphery in P-VEGF positive breast cancers (mean 178%, 18%, and 1.5x10 -2 (s-1)) were significantly greater (P -2 (s-1)). The peak time in the periphery in P-VEGF positive breast cancers was more marked than for P-VEGF negative breast cancers, but this difference was not significant. Conclusion: The hemodynamic and pharmacokinetic analysis of MRI provides valuable information about angiogenesis of breast cancers

  11. A laser gyro with a four-mirror square resonator: formulas for simulating the dynamics of the synchronisation zone parameters of the frequencies of counterpropagating waves during the device operation in the self-heating regime

    International Nuclear Information System (INIS)

    Bondarenko, E A

    2014-01-01

    For a laser gyro with a four-mirror square resonator we have developed a mathematical model, which allows one to simulate the temporal behaviour of the synchronisation zone parameters of the frequencies of counterpropagating waves in a situation when the device operates in the self-heating regime and is switched-on at different initial temperatures. (laser gyroscopes)

  12. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose–Volume Parameters and First Clinical Results

    International Nuclear Information System (INIS)

    Dimopoulos, Johannes C.A.; Schmid, Maximilian P.; Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Pötter, Richard

    2012-01-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45–50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model (α/β = 10 Gy for tumor; α/β = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV (± 1 standard deviation) at diagnosis was 45.3 (±30) cm 3 , and the mean GTV at brachytherapy was 10 (±14) cm 3 . The mean D90 for the HRCTV was 86 (±13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 (±20) Gy, 76 (±16) Gy, 70 (±9) Gy, and 60 (±9) Gy, respectively. After a median follow-up of 43 months (range, 19–87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and organs at risk are in a comparable

  13. Voxelwise comparison of perfusion parameters estimated using dynamic contrast enhanced (DCE) computed tomography and DCE-magnetic resonance imaging in locally advanced cervical cancer

    International Nuclear Information System (INIS)

    Kallehauge; Jesper; Nielsen, Thomas; Haack, Soeren

    2013-01-01

    Purpose: Dynamic contrast enhanced (DCE) imaging has gained interest as an imaging modality for assessment of tumor characteristics and response to cancer treatment. However, for DCE-magnetic resonance imaging (MRI) tissue contrast enhancement may vary depending on imaging sequence and temporal resolution. The aim of this study is to compare DCE-MRI to DCE-computed tomography (DCE-CT) as the gold standard. Material and methods: Thirteen patients with advanced cervical cancer were scanned once prior to chemo-radiation and during chemo-radiation with DCE-CT and -MRI in immediate succession. A total of 22 paired DCE-CT and -MRI scans were acquired for comparison. Kinetic modeling using the extended Tofts model was applied to both image series. Furthermore the similarity of the spatial distribution was evaluated using a G analysis. The correlation between the two imaging techniques was evaluated using Pe arson's correlation and the parameter means were compared using a Student's t-test (p trans (r = 0.9), flux rate constant k ep (r = 0.77), extracellular volume fraction v e (r = 0.58) and blood plasma volume fraction v p (r = 0.83). All quantitative parameters were found to be significantly different as estimated by DCE-CT and -MRI. The G analysis in normalized maps revealed that 45 % of the voxels failed to find a voxel with the corresponding value allowing for an uncertainty of 3 mm in position and 3 % in value (G 3,3 ). By reducing the criteria, the G-failure rates were: G 3,5 (37 % failure), G 3,10 (26% failure) and at G 3,15 (19 % failure). Conclusion: Good to excellent correlations but significant bias was found between DCE-CT and -MRI. Both the Pearson's correlation and the G analysis proved that the spatial information was similar when analyzing the two sets of DCE data using the extended Tofts model. Improvement of input function sampling is needed to improve kinetic quantification using DCE-MRI

  14. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose-Volume Parameters and First Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Johannes C.A. [Department of Radiation Oncology, Metropolitan Hospital, Athens (Greece); Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria); Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria)

    2012-04-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and

  15. Resonance and Fractal Geometry

    NARCIS (Netherlands)

    Broer, Henk W.

    The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena

  16. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance

    Science.gov (United States)

    Gerhard, FRANZ; Ralf, MEYER; Markus-Christian, AMANN

    2017-12-01

    Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance (ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine- and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe, plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V) characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar- and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the non-invasive optical method of emission spectroscopy, particularly actinometry, was investigated, and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and

  17. Atlas of neutron resonances

    CERN Document Server

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  18. Accurate computer-aided quantification of left ventricular parameters : experience in 1555 cardiac magnetic resonance studies from the Framingham Heart Study

    NARCIS (Netherlands)

    Hautvast, G.L.T.F.; Salton, C.J.; Chuang, M.L.; Breeuwer, M.; O'Donnel, C.J.; Manning, W.J.

    2011-01-01

    Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases.

  19. A comparison of lattice parameters for CANDU-type lattices obtained using MCNP, WIMS, and WIMS with resonance reaction rates from MCNP

    International Nuclear Information System (INIS)

    Craig, D.S.

    1989-03-01

    The Monte Carlo code MCNP was used to check the accuracy of the WIMS calculation of the resolved resonance capture rate in CANDU-type lattices. Reactivities, relative conversion ratios, and fast fission factors are compared with experiments. Values of ρ 28 and reaction rates for U-238 are given as a function of position in the fuel bundle. A check was made on the correction made in WIMS to allow for endcaps on the fuel bundles. (26 refs)

  20. Intra- and inter-observer reproducibility of global and regional magnetic resonance feature tracking derived strain parameters of the left and right ventricle

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Björn, E-mail: bjoernschmidt1989@gmx.de [Department of Radiology, University Hospital of Cologne, Kerpener Str. 62, D-50937, Cologne (Germany); Dick, Anastasia, E-mail: anastasia-dick@web.de [Department of Radiology, University Hospital of Cologne, Kerpener Str. 62, D-50937, Cologne (Germany); Treutlein, Melanie, E-mail: melanie-treutlein@web.de [Department of Radiology, University Hospital of Cologne, Kerpener Str. 62, D-50937, Cologne (Germany); Schiller, Petra, E-mail: petra.schiller@uni-koeln.de [Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Kerpener Str. 62, D-50937, Cologne (Germany); Bunck, Alexander C., E-mail: alexander.bunck@uk-koeln.de [Department of Radiology, University Hospital of Cologne, Kerpener Str. 62, D-50937, Cologne (Germany); Maintz, David, E-mail: david.maintz@uk-koeln.de [Department of Radiology, University Hospital of Cologne, Kerpener Str. 62, D-50937, Cologne (Germany); Baeßler, Bettina, E-mail: bettina.baessler@uk-koeln.de [Department of Radiology, University Hospital of Cologne, Kerpener Str. 62, D-50937, Cologne (Germany)

    2017-04-15

    Highlights: • Left and right ventricular CMR feature tracking is highly reproducible. • The only exception is radial strain and strain rate. • Sample size estimations are presented as a practical reference for future studies. - Abstract: Objectives: To investigate the reproducibility of regional and global strain and strain rate (SR) parameters of both ventricles and to determine sample sizes for all investigated strain and SR parameters in order to generate a practical reference for future studies. Materials and methods: The study population consisted of 20 healthy individuals and 20 patients with acute myocarditis. Cine sequences in three horizontal long axis views and a stack of short axis views covering the entire left and right ventricle (LV, RV) were retrospectively analysed using a dedicated feature tracking (FT) software algorithm (TOMTEC). For intra-observer analysis, one observer analysed CMR images of all patients and volunteers twice. For inter-observer analysis, three additional blinded observers analysed the same datasets once. Intra- and inter-observer reproducibility were tested in all patients and controls using Bland-Altman analyses, intra-class correlation coefficients (ICCs) and coefficients of variation. Results: Intra-observer reproducibility of global LV strain and SR parameters was excellent (range of ICCs: 0.81–1.00), the only exception being global radial SR with a poor reproducibility (ICC 0.23). On a regional level, basal and midventricular strain and SR parameters were more reproducible when compared to apical parameters. Inter-observer reproducibility of all LV parameters was slightly lower than intra-observer reproducibility, yet still good to excellent for all global and regional longitudinal and circumferential strain and SR parameters (range of ICCs: 0.66–0.93). Similar to the LV, all global RV longitudinal and circumferential strain and SR parameters showed an excellent reproducibility, (range of ICCs: 0.75–0

  1. Intra- and inter-observer reproducibility of global and regional magnetic resonance feature tracking derived strain parameters of the left and right ventricle

    International Nuclear Information System (INIS)

    Schmidt, Björn; Dick, Anastasia; Treutlein, Melanie; Schiller, Petra; Bunck, Alexander C.; Maintz, David; Baeßler, Bettina

    2017-01-01

    Highlights: • Left and right ventricular CMR feature tracking is highly reproducible. • The only exception is radial strain and strain rate. • Sample size estimations are presented as a practical reference for future studies. - Abstract: Objectives: To investigate the reproducibility of regional and global strain and strain rate (SR) parameters of both ventricles and to determine sample sizes for all investigated strain and SR parameters in order to generate a practical reference for future studies. Materials and methods: The study population consisted of 20 healthy individuals and 20 patients with acute myocarditis. Cine sequences in three horizontal long axis views and a stack of short axis views covering the entire left and right ventricle (LV, RV) were retrospectively analysed using a dedicated feature tracking (FT) software algorithm (TOMTEC). For intra-observer analysis, one observer analysed CMR images of all patients and volunteers twice. For inter-observer analysis, three additional blinded observers analysed the same datasets once. Intra- and inter-observer reproducibility were tested in all patients and controls using Bland-Altman analyses, intra-class correlation coefficients (ICCs) and coefficients of variation. Results: Intra-observer reproducibility of global LV strain and SR parameters was excellent (range of ICCs: 0.81–1.00), the only exception being global radial SR with a poor reproducibility (ICC 0.23). On a regional level, basal and midventricular strain and SR parameters were more reproducible when compared to apical parameters. Inter-observer reproducibility of all LV parameters was slightly lower than intra-observer reproducibility, yet still good to excellent for all global and regional longitudinal and circumferential strain and SR parameters (range of ICCs: 0.66–0.93). Similar to the LV, all global RV longitudinal and circumferential strain and SR parameters showed an excellent reproducibility, (range of ICCs: 0.75–0

  2. Determination of neutron cross sections and resonance parameters for vanadium, the stable thallium isotopes, and the stable tellurium isotopes. Progress report, October 1, 1976--October 31, 1977

    International Nuclear Information System (INIS)

    Winters, R.R.

    1977-10-01

    The analysis of the neutron capture cross section data for 51 V + n has now been completed up to 215 keV. Using a few neutron widths and spin and parity assignments from the literature, the capture data has yielded estimates of radiative widths for 45 s-wave resonances and capture areas for 139 resonances. Of particular interest is the very large s-wave radiative widths for this reaction and the rather broad distribution of radiative widths. A paper describing these results is included with this report. The analysis of the neutron capture cross sections for the reaction 205 Tl(n,γ) is presently being extended to incident neutron energy 115 keV. The study of the scattered-beam sensitivity of the total energy detectors at the ORELA capture facility continues. This small but troublesome effect has now been parameterized, but the errors to be assigned to the parameterization are not yet well defined. However, in obtaining additional data for the parameterization, a series of 208 Pb(n,γ) cross section measurements were made. The analysis of these data led to results important in understanding stellar nucleosynthesis and are reported in a paper included with this report. the analysis of the Te(n,γ) data proceeds methodically but slowly

  3. Investigation of the G and H parameters for the reaction. gamma. p. -->. n. pi. /sup +/ in the region of the first. pi. N resonance

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A.A.; Get' man, V.A.; Gorbenko, V.G.; Guschin, V.A.; Derkach, A.Y.; Zhebrovskii, Y.V.; Karnaukhov, I.M.; Kolesnikov, L.Y.; Lukhanin, A.A.; Ovchinnik, V.D.; Omelaenko, A.S.; Rubashkin, A.L.; Sobol' , M.V.; Sorokin, P.V.; Sporov, E.A.; Storozhenko, Y.O.; Telegin, Y.N.

    1984-07-01

    The first experimental results are reported in a study of the G and H parameters for the reaction ..gamma..p..-->..n..pi../sup +/ in a double-polarization experiment carried out in a beam of linearly polarized photons with use of a polarized-proton target with polarization in the reaction plane. We describe a technique which permits determination in one measurement individually of the values of the G and H parameters. Investigations were carried out at photon energies 320, 350, and 380 MeV. The experimental results are compared with the predictions of the phenomenological multipole analyses of Metcalf and Walker and of Feller et al.

  4. The association of trunk muscle cross-sectional area and magnetic resonance image parameters with isokinetic and psychophysical lifting strength and static back muscle endurance in men.

    Science.gov (United States)

    Gibbons, L E; Latikka, P; Videman, T; Manninen, H; Battié, M C

    1997-10-01

    The relationship between trunk muscle morphology as measured on transverse magnetic resonance images and isokinetic lifting, psychophysical lifting, and static back muscle endurance testing was examined in 110 men, ages 35-67 years (mean, 48 years), who had been chosen based on their exposure to a wide variety of occupational and leisure-time physical activities. The computed T2-relaxation times and the T2-weighted and proton density-weighted signal intensities of the erector spinae, quadratus lumborum, and psoas major muscles had almost no association with any of the strength tests. The cross-sectional areas of the muscles had good correlations with isokinetic lifting strength (r = 0.46-0.53). They did not correlate well with psychophysical lifting and static back muscle endurance. Other characteristics or neurological or psychological factors may have more influence on those tests.

  5. Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme

    Energy Technology Data Exchange (ETDEWEB)

    Soares, T. A. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Daura, X. [Universitat Autonoma de Barcelona, InstitucioCatalana de Recerca i Estudis Avancats and Institut de Biotecnologia i Biomedicina (Spain); Oostenbrink, C. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Smith, L. J. [University of Oxford, Oxford Centre for Molecular Sciences, Central Chemistry Laboratory (United Kingdom); Gunsteren, W. F. van [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland)], E-mail: wfvgn@igc.phys.chem.ethz.ch

    2004-12-15

    The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, {sup 3}J{sub NH{alpha}} and {sup 3}J{sub {alpha}}{sub {beta}} coupling constants, and {sup 1}5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone {sup 3}J{sub HN{alpha}}-coupling constants and {sup 1}H- {sup 1}5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain {sup 3}J{sub {alpha}}{sub {beta}}-coupling constants and {sup 1}H- {sup 1}5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the

  6. Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme

    International Nuclear Information System (INIS)

    Soares, T. A.; Daura, X.; Oostenbrink, C.; Smith, L. J.; Gunsteren, W. F. van

    2004-01-01

    The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, 3 J NHα and 3 J αβ coupling constants, and 1 5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone 3 J HNα -coupling constants and 1 H- 1 5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain 3 J αβ -coupling constants and 1 H- 1 5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result

  7. Polarization parameters. sigma. , T, and P for the reaction. gamma. p. -->. p. pi. /sup 0/ in the region of the first resonance

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A.A.; Get' man, V.A.; Gorbenko, V.G.; Gushchin, V.A.; Derkach, A.Y.; Zhebrovskii, Y.V.; Karnaukhov, I.M.; Kolesnikov, L.Y.; Lukhanin, A.A.; Rubashkin, A.L.; Sorokin, P.V.; Sporov, E.A.; Telegin, Y.N.

    1982-03-01

    We report an experimental study of the ..sigma.., T, and P parameters of the cross section for the reaction ..gamma..p..-->..p..pi../sup 0/ for photon energies 300, 320, 350, 380, 400, 420 MeV in the range of pion emission angles 60--135/sup 0/ c.m.s. The technique of a double polarization experiment with use of linearly polarized photons and a polarized proton target is described. The experimental results are compared with the predictions of theoretical analyses.

  8. Supplementation of Antipsychotic Treatment with the Amino Acid Sarcosine Influences Proton Magnetic Resonance Spectroscopy Parameters in Left Frontal White Matter in Patients with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Dominik Strzelecki

    2015-10-01

    Full Text Available Dysfunction of the glutamatergic system, the main stimulating system in the brain, has a major role in pathogenesis of schizophrenia. The frontal white matter (WM is partially composed of axons from glutamatergic pyramidal neurons and glia with glutamatergic receptors. The natural amino acid sarcosine, a component of a normal diet, inhibits the glycine type 1 transporter, increasing the glycine level. Thus, it modulates glutamatergic transmission through the glutamatergic ionotropic NMDA (N-methyl-d-aspartate receptor, which requires glycine as a co-agonist. To evaluate the concentrations of brain metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine, and γ-aminobutyric acid (GABA; mI, myo-inositol; Cr, creatine; Cho, choline in the left frontal WM, Proton Nuclear Magnetic Resonance (1H-NMR spectroscopy was used. Twenty-five patients randomly chosen from a group of fifty with stable schizophrenia (DSM-IV-TR and dominant negative symptoms, who were receiving antipsychotic therapy, were administered 2 g of sarcosine daily for six months. The remaining 25 patients received placebo. Assignment was double blinded. 1H-NMR spectroscopy (1.5 T was performed twice: before and after the intervention. NAA, Glx and mI were evaluated as Cr and Cho ratios. All patients were also assessed twice with the Positive and Negative Syndrome Scale (PANSS. Results were compared between groups and in two time points in each group. The sarcosine group demonstrated a significant decrease in WM Glx/Cr and Glx/Cho ratios compared to controls after six months of therapy. In the experimental group, the final NAA/Cr ratio significantly increased and Glx/Cr ratio significantly decreased compared to baseline values. Improvement in the PANSS scores was significant only in the sarcosine group. In patients with schizophrenia, sarcosine augmentation can reverse the negative effect of glutamatergic system overstimulation, with a simultaneous beneficial increase

  9. Measurement of the parity-violation parameters Ab and Ac from the left-right forward-backward asymmetry of leptons in hadronic events at the Z0 resonance

    International Nuclear Information System (INIS)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Ash, W.W.; Aston, D.; Bacchetta, N.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D'Oliveira, A.; Damerell, C.J.S.; Dasu, S.; De Sangro, R.; De Simone, P.; Dell'Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Pescara, L.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; Saxton, O.H.; Schalk, T.

    1995-01-01

    The parity-violating parameters A b and A c are directly measured by the SLD experiment at the SLAC Linear Collider in e + e - collisions with polarized electrons at the Z 0 resonance. Leptons with distinctive total and transverse momenta are used to select and analyze Z 0 →bcbar events. A b and A c are extracted by forming the left-right forward-backward asymmetry in electron beam polarization and quark polar angle. From our 1993 sample of 1.8 pb --1 of Z 0 decay data with an average electron beam polarization of 63% we find A b =0.91±0.14 (stat) ±0.07 (syst) and A c =0.37±0.23 (stat) ±0.21 (syst)

  10. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    Correia de Verdier, Maria; Wikstroem, Johan

    2016-01-01

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  11. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Correia de Verdier, Maria; Wikstroem, Johan [Uppsala University Hospital, Department of Radiology, Uppsala University, Uppsala (Sweden)

    2016-05-15

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  12. Tables of Shore and Fano parameters for the helium resonances 2s21S, 2p21D, and 2s 2p 1P excited in p-He collisions E/sub p/ = 33 to 150 keV

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Merchez, H.

    1976-01-01

    Absolute values of Shore and Fano parameters are tabulated for the helium atom 2s 2 1 S, 2p 2 1 D, and 2s 2p 1 P resonances produced by a proton beam. Observations were made on the spectra of ejected electrons. The important variation of the shape of the resonances with ejection angle is illustrated for E/sub p/ = 100 keV; the variation with proton energy is shown at 30 0

  13. Modifications in dynamic contrast-enhanced magnetic resonance imaging parameters after α-particle-emitting ²²⁷Th-trastuzumab therapy of HER2-expressing ovarian cancer xenografts.

    Science.gov (United States)

    Heyerdahl, Helen; Røe, Kathrine; Brevik, Ellen Mengshoel; Dahle, Jostein

    2013-09-01

    The purpose of this study was to investigate the effect of α-particle-emitting (227)Th-trastuzumab radioimmunotherapy on tumor vasculature to increase the knowledge about the mechanisms of action of (227)Th-trastuzumab. Human HER2-expressing SKOV-3 ovarian cancer xenografts were grown bilaterally in athymic nude mice. Mice with tumor volumes 253 ± 36 mm(3) (mean ± SEM) were treated with a single injection of either (227)Th-trastuzumab at a dose of 1000 kBq/kg body weight (treated group, n=14 tumors) or 0.9% NaCl (control group, n=10 tumors). Dynamic T1-weighted contrast-enhanced magnetic resonance imaging (DCEMRI) was used to study the effect of (227)Th-trastuzumab on tumor vasculature. DCEMRI was performed before treatment and 1, 2, and 3 weeks after therapy. Tumor contrast-enhancement curves were extracted voxel by voxel and fitted to the Brix pharmacokinetic model. Pharmacokinetic parameters for the tumors that underwent radioimmunotherapy were compared with the corresponding parameters of control tumors. Significant increases of kep, the rate constant of diffusion from the extravascular extracellular space to the plasma (PTh-trastuzumab treatment of HER2-expressing ovarian cancer xenografts. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Microstrip resonators for electron paramagnetic resonance experiments

    Science.gov (United States)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  15. Microstrip resonators for electron paramagnetic resonance experiments.

    Science.gov (United States)

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  16. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  17. Histogram analysis parameters of dynamic contrast-enhanced magnetic resonance imaging can predict histopathological findings including proliferation potential, cellularity, and nucleic areas in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Surov, Alexey; Meyer, Hans Jonas; Leifels, Leonard; Höhn, Anne-Kathrin; Richter, Cindy; Winter, Karsten

    2018-04-20

    Our purpose was to analyze possible associations between histogram analysis parameters of dynamic contrast-enhanced magnetic resonance imaging DCE MRI and histopathological findings like proliferation index, cell count and nucleic areas in head and neck squamous cell carcinoma (HNSCC). 30 patients (mean age 57.0 years) with primary HNSCC were included in the study. In every case, histogram analysis parameters of K trans , V e , and K ep were estimated using a mathlab based software. Tumor proliferation index, cell count, and nucleic areas were estimated on Ki 67 antigen stained specimens. Spearman's non-parametric rank sum correlation coefficients were calculated between DCE and different histopathological parameters. KI 67 correlated with K trans min ( p = -0.386, P = 0.043) and s K trans skewness ( p = 0.382, P = 0.045), V e min ( p = -0.473, P = 0.011), Ve entropy ( p = 0.424, P = 0.025), and K ep entropy ( p = 0.464, P = 0.013). Cell count correlated with K trans kurtosis ( p = 0.40, P = 0.034), V e entropy ( p = 0.475, P = 0.011). Total nucleic area correlated with V e max ( p = 0.386, P = 0.042) and V e entropy ( p = 0.411, P = 0.030). In G1/2 tumors, only K trans entropy correlated well with total ( P =0.78, P =0.013) and average nucleic areas ( p = 0.655, P = 0.006). In G3 tumors, KI 67 correlated with Ve min ( p = -0.552, P = 0.022) and V e entropy ( p = 0.524, P = 0.031). Ve max correlated with total nucleic area ( p = 0.483, P = 0.049). Kep max correlated with total area ( p = -0.51, P = 0.037), and K ep entropy with KI 67 ( p = 0.567, P = 0.018). We concluded that histogram-based parameters skewness, kurtosis and entropy of K trans , V e , and K ep can be used as markers for proliferation activity, cellularity and nucleic content in HNSCC. Tumor grading influences significantly associations between perfusion and histopathological parameters.

  18. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  19. Accidental degeneracy of resonances

    International Nuclear Information System (INIS)

    Hernandez, E.; Mondragon, A.; Jauregui, A.

    2001-01-01

    Full text: It will be shown that a degeneracy of resonances is associated with a second rank pole in the scattering matrix and a Jordan cycle of generalized eigenfunctions of the radial Schrodinger equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an expansion in complex resonance energy eigenfunctions. In this orthonormal basis, the Hamiltonian is represented by a non-diagonal complex matrix with a Jordan block of rank two. Some general properties of the degeneracy of resonances will be exhibited and discussed in an explicit example of degeneracy of resonant states and double poles in the scattering matrix of a double barrier potential. The cross section, scattering wave functions and Jordan-Gamow eigenfunctions are computed at degeneracy and their properties as functions of the control parameters of the system are discussed. (Author)

  20. Measurement of the Z boson resonance parameters

    International Nuclear Information System (INIS)

    Feldman, G.J.

    1989-11-01

    Using the Mark II detector at the SLC, we measure the Z mass and width to be 91.17 ± 0.18 GeV/c 2 and 1.95 +0. 40 -0.30 GeV, respectively. From a fit in which the visible Z width is constrained to its Standard Model value, the number of neutrino species is determined to be 3.0 ± or <4.4 at the 95% confidence level. 13 refs., 20 figs., 4 tabs

  1. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sigal, R.

    1988-01-01

    This book is an introduction to magnetic resonance imaging (MRI). The basic principles for the interpretation of MR images are developed. The book is divided into five chapters: introduction, tissue, parameters, acquisition parameters, contribution to diagnosis, and practical management of an MR examination. Eight exercises allow the reader to test the knowledge he has acquired. Signal localization and MR artefacts are reviewed in an appendix

  2. Atomic and molecular resonance ionization

    International Nuclear Information System (INIS)

    Botter, R.; Petit, A.

    1990-01-01

    Published in summary form only the paper recalls the principle of resonance photoionization, transition probability, selectivity and critical parameters. Examples of applications are briefly treated: Trace analysis by resonance ionization mass spectroscopy for detection of Fe in Zr F 4 for fabrication of optical fibers and laser isotopic separation of U 235 and Gd 157 [fr

  3. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  4. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  5. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  6. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  7. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  8. Tables of Shore and Fano parameters for the helium resonances 2s/sup 2/ /sup 1/S, 2p/sup 2/ /sup 1/D, and 2s 2p /sup 1/P excited in p-He collisions E/sub p/ = 33 to 150 keV

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Merchez, H.

    1976-02-01

    Absolute values of Shore and Fano parameters are tabulated for the helium atom 2s/sup 2/ /sup 1/S, 2p/sup 2/ /sup 1/D, and 2s 2p /sup 1/P resonances produced by a proton beam. Observations were made on the spectra of ejected electrons. The important variation of the shape of the resonances with ejection angle is illustrated for E/sub p/ = 100 keV; the variation with proton energy is shown at 30/sup 0/.

  9. Cyclotron resonance for electrons over helium in resonator

    CERN Document Server

    Shikin, V B

    2002-01-01

    The problem on the cyclotron resonance (CR) for electrons on the helium film, positioned in the resonator lower part, is solved. It is shown, that it relates to one of the examples of the known problem on the oscillations of the coupled oscillators system. The coupling constant between these oscillators constituting the variable function of the problem parameters. It is minimal in the zero magnetic field and reaches its maximum under the resonance conditions, when the cyclotron frequency coincides with one of the resonator modes. The CR details of the Uhf CR-energy absorption coupled by the electrons + resonator system, are calculated. The applications of the obtained results to the available CR experiments for electrons over helium

  10. Resonance detection of Moessbauer radiation

    International Nuclear Information System (INIS)

    Morozov, V.V.

    1985-01-01

    The resonance detection method as compared with the usual method of registering Moessbauer spectra has a number of advantages, one of which is the increase of resolution of the Moessbauer spectrum. The method is based on the modulation of a secondary radiation of a converter tuned in the resonance with the Moessbauer gamma-quantum source. The resonance detection method with account of supression, secondary radiation outgoing from the converter is investigated. The converter represents a substrate enriched by the Moessbauer isotope placed either inside the gas counter, or coupled with any other detecting device. Analytical expressions for Moessbauer spectrum parameters: effect, area and width of the spectral line are derived. It is shown that the joint application of usual and resonance detection methods for registering the Moessbauer spectrum allows one to determine parameters of the source, converter and the investigated absorber

  11. Multiquark Resonances

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  12. Neuroaesthetic Resonance

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2013-01-01

    Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....

  13. Baryon Resonances

    International Nuclear Information System (INIS)

    Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.

    2010-01-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.

  14. The Resonance Integral of Gold

    Energy Technology Data Exchange (ETDEWEB)

    Jirlow, K; Johansson, E

    1959-04-15

    The resonance activation integral of gold has been determined, by means of cadmium ratio measurements of thin foils in a neutron beam. Comparison was made with a 1/v detector, and the neutron spectra were measured with a chopper. The resonance integral, RI, is defined as {integral}{sub 0.5}{sup {infinity}}{sigma}{sub r}(E)dE/E, where {sigma}{sub r}(E) is the differenc between the total absorption cross section and the 1/v part. An experimental value of 1490 {+-} 40 barns has been obtained. RI has also been computed from resonance parameter data with the result 1529 {+-} 70 barns.

  15. 996 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...

  16. 817 RESONANCE September 2013

    Indian Academy of Sciences (India)

    IAS Admin

    817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...

  17. 369 RESONANCE April 2016

    Indian Academy of Sciences (India)

    IAS Admin

    369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.

  18. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. These resonances occur when the betatron oscillation wave numbers ν/sub x/ or ν/sub y/ and the synchrotron wave number ν/sub s/ satisfy the relation (ν/sub x,y/ - mν/sub s/) = 5, with m an integer denoting the m/sup th/ satellite. The main difference between SPEAR II and SPEAR I is the value of ν/sub s/, which in SPEAR II is approximately 0.04, an order of magnitude larger than in SPEAR I. An ad hoc meeting was held at the 1975 Particle Accelerator Conference, where details of the SPEAR II results were presented and various possible mechanisms for producing these resonances were discussed. Later, experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  19. Autostereogram resonators

    Science.gov (United States)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  20. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  1. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars

    2017-01-08

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  2. Low-profile wireless passive resonators for sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xun; An, Linan

    2017-04-04

    A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.

  3. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars; Alias, Mohd Sharizal B.; Ng, Tien Khee; Ooi, Boon S.

    2017-01-01

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  4. Resonating Statements

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Jensen, Tina Blegind

    2015-01-01

    IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... as part of a feedback loop to re-attach the localized IT project to the broader national discourse. The paper concludes with reflections on how to actively build on resonating statements as a strategic resource for legitimizing IT projects...

  5. Gravitoelectromagnetic resonances

    International Nuclear Information System (INIS)

    Tsagas, Christos G.

    2011-01-01

    The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.

  6. Calculations of resonances parameters for the ((2s2) 1Se, (2s2p) 1,3P0) and ((3s2) 1Se, (3s3p) 1,3P0) doubly excited states of helium-like ions with Z≤10 using a complex rotation method implemented in Scilab

    International Nuclear Information System (INIS)

    Gning, Youssou; Sow, Malick; Traoré, Alassane; Dieng, Matabara; Diakhate, Babacar; Biaye, Mamadi; Wagué, Ahmadou

    2015-01-01

    In the present work a special computational program Scilab (Scientific Laboratory) in the complex rotation method has been used to calculate resonance parameters of ((2s 2 ) 1 S e , (2s2p) 1,3 P 0 ) and ((3s 2 ) 1 S e , (3s3p) 1,3 P 0 ) states of helium-like ions with Z≤10. The purpose of this study required a mathematical development of the Hamiltonian applied to Hylleraas wave function for intrashell states, leading to analytical expressions which are carried out under Scilab computational program. Results are in compliance with recent theoretical calculations. - Highlights: • Resonance energy and widths computed for doubly excited states of helium-like ions. • Well-comparable results to the theoretical literature values up to Z=10. • Satisfactory agreements with theoretical calculations for widths

  7. Magnetic resonance annual 1986

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  8. Isoscalar giant resonances

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, D. H. [Texas A and M Univ., College Station (USA). Cyclotron Inst.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    The current status of the knowledges of giant quadrupole resonance (GQR), low energy octupole resonance (LEOR), and giant monopole resonance (GMR), is described. In the lowest order of multipole resonance, both isoscalar and isovector modes can occur. The characteristics of the GQR in light nuclei are apparent in the experimental result for Mg-24. All of the isoscalar E2 strength are known in Mg-24. The Goldhaber-Teller model is preferred over the Steinwedel-Jensen model for the giant dipole resonance (GDR) transition density. A few interesting and puzzling features have been seen in Pb-208. There is some conflict between inelastic alpha and electron scatterings. About LEOR, the RPA calculation of Liu and Brown was compared to the data for 3/sup -/ strength in Ca-40, Zr-90 and Pb-208. The calculation was employed the residual interaction of the Skyrme type. The agreement in Zr-90 was excellent. The effect of quadrupole deformation on the LEOR in Sm isotopes was large. The inelastic alpha scattering data on Al-27, Ca-40, Ti-48, Ni-58, Zn-64 and 66, Zr-90, Sn-116, 118, 120 and 124, Sm-144, 148 and 154, and Pb-208 were utilized in order to identify the GMR, and the GMR parameters were obtained. The GMR exhausting a large fraction of the sum rule was apparent in the nuclei with mass larger than 90. The splitting of the GDR and the broadening of the GQR in permanently deformed nuclei were established. The splitting of GMR was seen in Sm-154. The studies with heavy ions are also described.

  9. 1004 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    1004. RESONANCE │ November 2013. Page 2. 1005. RESONANCE │ November 2013. Page 3. 1006. RESONANCE │ November 2013. Page 4. 1007. RESONANCE │ November 2013. Page 5. 1008. RESONANCE │ November 2013. Page 6. 1009. RESONANCE │ November 2013. Page 7. 1010. RESONANCE ...

  10. Even order snake resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1993-01-01

    We found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune shift of imperfection resonances, each snake resonance splits into two

  11. An analytical approximation for resonance integral

    International Nuclear Information System (INIS)

    Magalhaes, C.G. de; Martinez, A.S.

    1985-01-01

    It is developed a method which allows to obtain an analytical solution for the resonance integral. The problem formulation is completely theoretical and based in concepts of physics of general character. The analytical expression for integral does not involve any empiric correlation or parameter. Results of approximation are compared with pattern values for each individual resonance and for sum of all resonances. (M.C.K.) [pt

  12. Nested trampoline resonators for optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, M. J., E-mail: mweaver@physics.ucsb.edu; Pepper, B.; Luna, F.; Perock, B. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de [Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands); Bouwmeester, D. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands)

    2016-01-18

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si{sub 3}N{sub 4} with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  13. Nested trampoline resonators for optomechanics

    International Nuclear Information System (INIS)

    Weaver, M. J.; Pepper, B.; Luna, F.; Perock, B.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si 3 N 4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators

  14. Nested trampoline resonators for optomechanics

    Science.gov (United States)

    Weaver, M. J.; Pepper, B.; Luna, F.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Perock, B.; Heeck, K.; de Man, S.; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si3N4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  15. Vibrational resonance in the Morse oscillator

    Indian Academy of Sciences (India)

    In the damped and biharmonically driven classical Morse oscillator, by applying a theoretical approach, an analytical expression is obtained for the response amplitude at the low-frequency . Conditions are identified on the parameters for the occurrence of resonance. The system shows only one resonance and moreover ...

  16. Calculations of resonances parameters for the ((2s2) 1Se, (2s2p) 1,3P0) and ((3s2) 1Se, (3s3p) 1,3P0) doubly excited states of helium-like ions with Z≤10 using a complex rotation method implemented in Scilab

    Science.gov (United States)

    Gning, Youssou; Sow, Malick; Traoré, Alassane; Dieng, Matabara; Diakhate, Babacar; Biaye, Mamadi; Wagué, Ahmadou

    2015-01-01

    In the present work a special computational program Scilab (Scientific Laboratory) in the complex rotation method has been used to calculate resonance parameters of ((2s2) 1Se, (2s2p) 1,3P0) and ((3s2) 1Se, (3s3p) 1,3P0) states of helium-like ions with Z≤10. The purpose of this study required a mathematical development of the Hamiltonian applied to Hylleraas wave function for intrashell states, leading to analytical expressions which are carried out under Scilab computational program. Results are in compliance with recent theoretical calculations.

  17. Buncher system parameter optimization

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1981-01-01

    A least-squares algorithm is presented to calculate the RF amplitudes and cavity spacings for a series of buncher cavities each resonating at a frequency that is a multiple of a fundamental frequency of interest. The longitudinal phase-space distribution, obtained by particle tracing through the bunching system, is compared to a desired distribution function of energy and phase. The buncher cavity parameters are adjusted to minimize the difference between these two distributions. Examples are given for zero space charge. The manner in which the method can be extended to include space charge using the 3-D space-charge calculation procedure is indicated

  18. Inventory parameters

    CERN Document Server

    Sharma, Sanjay

    2017-01-01

    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  19. On meson resonances and chiral symmetry

    International Nuclear Information System (INIS)

    Lutz, M.F.M.

    2003-07-01

    We study meson resonances with quantum numbers J P = 1 + in terms of the chiral SU(3) Lagrangian. At leading order a parameter-free prediction is obtained for the scattering of Goldstone bosons off vector mesons with J P = 1 - once we insist on approximate crossing symmetry of the unitarized scattering amplitude. A resonance spectrum arises that is remarkably close to the empirical pattern. In particular, we find that the strangeness-zero resonances h 1 (1380), f 1 (1285) and b 1 (1235) are formed due to strong K anti K μ and K K μ channels. This leads to large coupling constants of those resonances to the latter states. (orig.)

  20. Micro-machined resonator oscillator

    Science.gov (United States)

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  1. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  2. Measurement of resonance parameters of cross-sections affecting fast-neutron propagation in various media; Mesure des parametres de resonance de sections efficaces lies a la propagation des neutrons dans differents milieux; Izmerenie parametrov rezonansnoj struktury sechenij, vliyayushchikh na rasprostranenie bystrykh nejtronov v sredakh; Medicion de los parametros de resonancia de las secciones eficaces que afectan a la propagacion de los neutrones rapidos en distintos medios

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, M N; Filippov, V V; Bondarenko, I I [Academy of Sciences, Moscow, Union of Soviet Socialist Republics (Russian Federation)

    1962-03-15

    In compiling a system of multi-group constants for fast- and intermediate-reactor calculations, it is frequently necessary to account for the self-shielding effect associated with the resonance structure of the cross-sections. The energy region in which the resonance structure has a considerable influence on neutron propagation in the material extends up to several decades of kilo-electron- volts for heavy nuclei and to several mega-electron-volts for intermediate nuclei. To compute resonance effects in calculating group parameters, it is essential to know not only the average interaction cross-sections between neutrons and materials, but also values such as (1/{Sigma}{sub t}), (1/{Sigma}{sub t}{sup 2}), etc. - the brackets signify averaging over the energy group. Present information about resonance parameters for fast neutrons is not sufficient to calculate these values with the necessary precision. In this connection it is interesting to take direct measurements of the values (1/{Sigma}{sub t}), (1/{Sigma}{sub t}{sup 2}) and other analogous characteristics. The paper describes the results obtained from measurements of a number of parameters such as ({Sigma}{sub t}), ({Sigma}{sub t}{sup 2}), (1/{Sigma}{sub t}), (1/{Sigma}{sub t}{sup 2}), (1/{Sigma}{sub t}{sup 3}), etc. which characterize the cross-section structure of a number of intermediate nuclei within the range from 300 keV to 3 MeV. These values were arrived at by an analysis of transmission curves obtained by good geometry for transmissions up to {approx}10{sup -2}. The data show that resonance effects exercise a strong influence on the diffusion characteristics of the material. (author) [French] Lorsqu'on etablit un systeme de constantes multi-groupes pour les calculs de reacteurs a neutrons rapides et intermediaires, il est souvent necessaire de tenir compte de l'effet d'auto-protectio n lie a la structure de resonance des sections efficaces. Le domaine d'energie dans lequel la structure de resonance a

  3. Narrow dibaryon resonances

    International Nuclear Information System (INIS)

    Kajdalov, A.B.

    1986-01-01

    Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered

  4. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  5. Restrictions in the realisation of multipass unstable resonators

    International Nuclear Information System (INIS)

    Strakhov, S Yu

    2009-01-01

    Main restrictions in the realisation of multipass unstable resonators caused by intracavity losses and large-scale aberrations are considered. The influence of intracavity losses on the laser radiation power and divergence is analysed based on the numerical simulation of an unstable resonator. The efficiency criterion for the unstable multipass resonator is proposed, which is proportional to the radiation brightness and takes into account the influence of the misalignment, thermal deformation and the main parameters of the active medium and resonator on the parameters of laser radiation. (resonators)

  6. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  7. Resonances, resonance functions and spectral deformations

    International Nuclear Information System (INIS)

    Balslev, E.

    1984-01-01

    The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)

  8. Bomb parameters

    International Nuclear Information System (INIS)

    Kerr, George D.; Young, Rebert W.; Cullings, Harry M.; Christry, Robert F.

    2005-01-01

    The reconstruction of neutron and gamma-ray doses at Hiroshima and Nagasaki begins with a determination of the parameters describing the explosion. The calculations of the air transported radiation fields and survivor doses from the Hiroshima and Nagasaki bombs require knowledge of a variety of parameters related to the explosions. These various parameters include the heading of the bomber when the bomb was released, the epicenters of the explosions, the bomb yields, and the tilt of the bombs at time of explosion. The epicenter of a bomb is the explosion point in air that is specified in terms of a burst height and a hypocenter (or the point on the ground directly below the epicenter of the explosion). The current reassessment refines the energy yield and burst height for the Hiroshima bomb, as well as the locations of the Hiroshima and Nagasaki hypocenters on the modern city maps used in the analysis of the activation data for neutrons and TLD data for gamma rays. (J.P.N.)

  9. Free spectral range adjustment of a silicon rib racetrack resonator

    International Nuclear Information System (INIS)

    Keča, T; Matavulj, P; Headley, W; Mashanovich, G

    2012-01-01

    One of the most important parameters that describe the quality of photonic components and devices is the free spectral range (FSR). In this paper, the measured outgoing power of a silicon rib racetrack resonator was compared with calculated transfer functions derived by coupled mode theory. The influence of geometric parameters on the FSR and resonant wavelength has been investigated. By altering the values of the coupling length and racetrack radius, derived transfer functions were adjusted to match experimental data. This procedure gives the possibility of estimating the FSR and resonant wavelength for different geometric parameters and predicting resonator functionality.

  10. Interference scattering effects on intermediate resonance absorption at operating temperatures

    International Nuclear Information System (INIS)

    Goldstein, R.

    1975-01-01

    Resonance integrals may be accurately calculated using the intermediate resonance (IR) approximation. Results are summarized for the case of an absorber with given potential scattering cross sections and interference scattering parameter admixed with a non absorbing moderator of given cross section and located in a narrow resonance moderating medium. From the form of the IR solutions, it is possible to make some general observations about effects of interference scattering on resonance absorption. 2 figures

  11. Stochastic resonance

    International Nuclear Information System (INIS)

    Wellens, Thomas; Shatokhin, Vyacheslav; Buchleitner, Andreas

    2004-01-01

    We are taught by conventional wisdom that the transmission and detection of signals is hindered by noise. However, during the last two decades, the paradigm of stochastic resonance (SR) proved this assertion wrong: indeed, addition of the appropriate amount of noise can boost a signal and hence facilitate its detection in a noisy environment. Due to its simplicity and robustness, SR has been implemented by mother nature on almost every scale, thus attracting interdisciplinary interest from physicists, geologists, engineers, biologists and medical doctors, who nowadays use it as an instrument for their specific purposes. At the present time, there exist a lot of diversified models of SR. Taking into account the progress achieved in both theoretical understanding and practical application of this phenomenon, we put the focus of the present review not on discussing in depth technical details of different models and approaches but rather on presenting a general and clear physical picture of SR on a pedagogical level. Particular emphasis will be given to the implementation of SR in generic quantum systems-an issue that has received limited attention in earlier review papers on the topic. The major part of our presentation relies on the two-state model of SR (or on simple variants thereof), which is general enough to exhibit the main features of SR and, in fact, covers many (if not most) of the examples of SR published so far. In order to highlight the diversity of the two-state model, we shall discuss several examples from such different fields as condensed matter, nonlinear and quantum optics and biophysics. Finally, we also discuss some situations that go beyond the generic SR scenario but are still characterized by a constructive role of noise

  12. Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress

    Directory of Open Access Journals (Sweden)

    Hilmi Volkan Demir

    2009-11-01

    Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.

  13. Parameter prediction for microwave garnets

    International Nuclear Information System (INIS)

    Ramer, R.

    1996-01-01

    Full text: Linearity of the microwave parameters (resonance linewidth ΔH and effective linewidth ΔH eff ) is demonstrated and their use in the Computer-aided design (CAD)/Computer-aided manufacturing (CAM) of new microwave garnets is proposed. Such an approach would combine a numerical database of microwave data and several computational programs. The model is an applied formulation of the analysis of a wide range of microwave garnets

  14. Recent improvement of the resonance analysis methods

    International Nuclear Information System (INIS)

    Sirakov, I.; Lukyanov, A.

    2000-01-01

    By the use of a two-step method called Combined, the R-matrix Wigner-Eisenbud representation in the resonance reaction theory has been converted into other equivalent representations (parameterizations) of the collision matrix with Poles in E domain. Two of them called Capture Elimination (CE) and Reaction Elimination (RE) representation respectively, have energy independent parameters and are both rigorous and applicable. The CE representation is essentially a generalization of the Reich-Moore (RM) formalism. The RE representation, in turn, offers some distinct advantages when analyzing fissile nuclei. The latter does not require any approximation for the capture channels and does not need any assumption about the number of fission channels in contrast to the RM representation. Unlike the RM parameters the RE ones are uniquely determined for applications in the resonance analysis. When given in the RE representation, neutron cross sections of fissile nuclei in the resolved resonance region are presented through simple scalar expressions without the need of matrix inversion. Various computer codes have been developed to demonstrate the viability of the new method. The RM parameters of the fissile nuclei have been converted into equivalent RE parameters implying the RM assumptions (REFINE code). Conversely, the RE parameters have been converted into corresponding RM parameters when one fission channel is present and the RM parameter set is unique, e.g. Pu-239, J =1 (REVERSE code). To further enhance the flexibility of the proposed method the obtained RE parameters have been converted into equivalent Generalized Pole parameters (REFILE code), which are parameters of the rigorous pole expansion of the collision matrix in √E domain. equi valent sets of RM, RE and GP parameters of 239 Pu are given as an example. It has been pointed out that all the advantages of the newly proposed representation can be implemented through an independent evaluation of the RE resonance

  15. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  16. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  17. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  18. Parametric resonance in an expanding universe

    International Nuclear Information System (INIS)

    Zlatev, I.; Huey, G.; Steinhardt, P.J.

    1998-01-01

    Parametric resonance has been discussed as a mechanism for copious particle production following inflation. Here we present a simple and intuitive calculational method for estimating the efficiency of parametric amplification as a function of parameters. This is important for determining whether resonant amplification plays an important role in the reheating process. We find that significant amplification occurs only for a limited range of couplings and interactions. copyright 1998 The American Physical Society

  19. Determination of neutron cross sections and resonance parameters for the stable tellurium isotopes for thallium 205 and for the osmium isotopes. Progress report, October 1, 1978-March 1, 1979

    International Nuclear Information System (INIS)

    Winters, R.R.

    1979-01-01

    Initial measurements by LLL and NBS of the ratio of the 186 Os capture cross section to that of 187 Os near 30 keV, provided a crucial input parameter for use of the Re-Os chronometer to estimate the duration of nucleosynthesis and hence the age of the universe. The resulting estimate of approx. = 20 billion years was much longer than the estimate from the only other method, U-Th dating. The Re-Os chronometer requires, however, not ratios of cross sections measured at laboratory temperatures, but rather the ratio appropriate to the stellar environment in which nucleosynthesis by the s-process occurs. Hence capture from low lying excited states is important. The capture cross section from the 9.75 keV first excited 187 Os state must be calculated using Hauser--Feshbach calculations. These calculations require estimates of level densities, neutron transmission functions (for ground and excited states) and radiative transmission functions. These calculations can be experimentally checked by measurements of the total and inelastic cross sections near threshold. The inelastic experiment is particularly difficult because of the requirement of low background and relatively high efficiency for detection of approx. = 30 keV neutrons. A proton-recoil detector has been developed which appears to provide adequate efficiency and energy resolution. A novel filter composed of alternate layers of iron, aluminum and air has been designed to eliminate neutrons other than those in the 25 keV Fe and Al window. Major problems in background reduction persist and might be helped with a sample of 187 Os of isotopic greater than that of the presently available 70% 187 Os sample

  20. Microwave oscillator with 'whispering gallery' resonator

    International Nuclear Information System (INIS)

    Kirichenko, A.Ya.; Prokopenko, Yu.V.; Filippov, Yu.F.; Lonin, Yu.F.; Papkovich, V.G.; Ponomarev, A.G.; Prokopenko, Yu.V.; Uvarov, V.T.

    2010-01-01

    It was presented researches of a generation of microwave radiation into system with azimuthally periodical relativistic electron beam current that excites a high-Q quasi-optical dielectric resonator. The Eigen parameters of cylindrical Teflon resonator were determined by numerical computation. Registration of the microwave radiation realizes by a crystal set of 8-mm wavelength range. Research projects of microwave oscillators with high-Q resonators, in which 'whispering gallery' oscillations are excited by an electron flow, are presented. Multiresonator oscillators ideology is based on principles of microwave generation in klystrons with both subcritical and supercritical electron beams currents.

  1. Energy transport in mirror machine LISA at electron cyclotron resonance

    International Nuclear Information System (INIS)

    Cunha Rapozo, C. da; Serbeto, A.; Torres-Silva, H.

    1993-01-01

    It is shown that a classical transport calculation is adequate to predict the steady state temperature of the RF produced plasma in LISA machine for both large and small resonant volumes. Temperature anisotropy ranging from 55 to 305 was found which was larger for small resonant volume, and the temperature relaxation was larger at large resonant one. This agrees with the fact that there is a Coulomb relaxation ν c which is proportional to T e -3/2 . It is also shown that the fitting parameter alpha is larger for large resonant volume than for small resonant one. (L.C.J.A.)

  2. Crossing simple resonances

    International Nuclear Information System (INIS)

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances

  3. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state

  4. Neutron resonance averaging

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs

  5. Crossing simple resonances

    Energy Technology Data Exchange (ETDEWEB)

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.

  6. A Boltzmann equation approach to the damping of giant resonances in nuclei

    International Nuclear Information System (INIS)

    Schuck, P.; Winter, J.

    1983-01-01

    The Vlasov equation plus collision term (Boltzmann equation) represents an appropriate frame for the treatment of giant resonances (zero sound modes) in nuclei. With no adjustable parameters we obtain correct positions and widths for the giant quadrupole resonances. (author)

  7. Pediatric magnetic resonance imaging

    International Nuclear Information System (INIS)

    Cohen, M.D.

    1986-01-01

    This book defines the current clinical potential of magnetic resonance imaging and focuses on direct clinical work with pediatric patients. A section dealing with the physics of magnetic resonance imaging provides an introduction to enable clinicians to utilize the machine and interpret the images. Magnetic resonance imaging is presented as an appropriate imaging modality for pediatric patients utilizing no radiation

  8. Resonant thermonuclear reaction rate

    International Nuclear Information System (INIS)

    Haubold, H.J.; Mathai, A.M.

    1986-01-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-function is discussed in physical terms

  9. Quantum mechanical resonances

    International Nuclear Information System (INIS)

    Cisneros S, A.; McIntosh, H.V.

    1982-01-01

    A discussion of the nature of quantum mechanical resonances is presented from the point of view of the spectral theory of operators. In the case of Bohr-Feshbach resonances, graphs are presented to illustrate the theory showing the decay of a doubly excited metastable state and the excitation of the resonance by an incident particle with proper energy. A characterization of resonances is given as well as a procedure to determine widths using the spectral density function. A sufficient condition is given for the validity of the Breit-Wigner formula for Bohr-Feshbach resonances. (author)

  10. New methodology for analytical calculation of resonance integrals in an heterogeneous medium

    International Nuclear Information System (INIS)

    Campos, T.P.R. de; Martinez, A.S.

    1986-01-01

    A new methodology for analytical calculation of Resonance Integral in a typical fuel cell is presented. The expression obtained for the Resonance Integral presents the advantage of being analytical. Its constituent terms are combinations of the well known function J(xi,β) with its partial derivatives in regard to β. This is a general expression for all types of resonance. The parameters used in this method depend on the resonance type and are obtained as a function of the parameter lambda. A simple expression, depending on resonance parameters is proposed for this variable. (Author) [pt

  11. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  12. Resonator coupled Josephson junctions; parametric excitations and mutual locking

    DEFF Research Database (Denmark)

    Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper

    1991-01-01

    Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...

  13. Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control

    CSIR Research Space (South Africa)

    Loveday, PW

    1998-09-01

    Full Text Available and labs with practical hands-on experience that will give them valuable experiences upon graduation. Another topic Dr. Rogers has made a priority is the introduction of engineering concepts into the science curriculum in the elementary schools. His belief... vibration modes have the same natural frequency, Manuscript received September 4, 1997; accepted December 18, 1997. P. W. Loveday is with Sensor Systems, Division of Material Science and Technology, CSIR, Pretoria, South Africa (e-mail: ploveday...

  14. Resonance shielding in thermal reactor lattices

    International Nuclear Information System (INIS)

    Rothenstein, W.; Taviv, E.; Aminpour, M.

    1982-01-01

    The theoretical foundations of a new methodology for the accurate treatment of resonance absorption in thermal reactor lattice analysis are presented. This methodology is based on the solution of the point-energy transport equation in its integral or integro-differential form for a heterogeneous lattice using detailed resonance cross-section profiles. The methodology is applied to LWR benchmark analysis, with emphasis on temperature dependence of resonance absorption during fuel depletion, spatial and mutual self-shielding, integral parameter analysis and treatment of cluster geometry. The capabilities of the OZMA code, which implements the new methodology are discussed. These capabilities provide a means against which simpler and more rapid resonance absorption algorithms can be checked. (author)

  15. Characterization of superconducting transmission line resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.

  16. High-frequency parameters of magnetic films showing magnetization dispersion

    International Nuclear Information System (INIS)

    Sidorenkov, V.V.; Zimin, A.B.; Kornev, Yu.V.

    1988-01-01

    Magnetization dispersion leads to skewed resonance curves shifted towards higher magnetizing fields, together with considerable reduction in the resonant absorption, while the FMR line width is considerably increased. These effects increase considerably with frequency, in contrast to films showing magnetic-anisotropy dispersion, where they decrease. It is concluded that there may be anomalies in the frequency dependence of the resonance parameters for polycrystalline magnetic films

  17. Progress on Chinese evaluated nuclear parameter library (CENPL) (II)

    International Nuclear Information System (INIS)

    Su Zhongdi; Ge Zhigang; Zhou Chunmei

    1993-01-01

    CENPL collected, evaluated and compiled nuclear basic constants and model parameters. CENPL-1 contain six sub-libraries, they are: (1) Atomic masses and characteristic constants for nuclear ground states; (2) discrete level schemes and branch ratios of γ decay; (3) level density parameters; (4) giant dipole resonance parameters for γ-ray strength function (5) fission barrier parameter; (6) optical model parameters. Their progresses are introduced

  18. Magnetic resonance imaging methodology

    International Nuclear Information System (INIS)

    Moser, Ewald; Stadlbauer, Andreas; Windischberger, Christian; Quick, Harald H.; Ladd, Mark E.

    2009-01-01

    Magnetic resonance (MR) methods are non-invasive techniques to provide detailed, multi-parametric information on human anatomy, function and metabolism. Sensitivity, specificity, spatial and temporal resolution may, however, vary depending on hardware (e.g., field strength, gradient strength and speed) and software (optimised measurement protocols and parameters for the various techniques). Furthermore, multi-modality imaging may enhance specificity to better characterise complex disease patterns. Positron emission tomography (PET) is an interesting, largely complementary modality, which might be combined with MR. Despite obvious advantages, combining these rather different physical methods may also pose challenging problems. At this early stage, it seems that PET quality may be preserved in the magnetic field and, if an adequate detector material is used for the PET, MR sensitivity should not be significantly degraded. Again, this may vary for the different MR techniques, whereby functional and metabolic MR is more susceptible than standard anatomical imaging. Here we provide a short introduction to MR basics and MR techniques, also discussing advantages, artefacts and problems when MR hardware and PET detectors are combined. In addition to references for more detailed descriptions of MR fundamentals and applications, we provide an early outlook on this novel and exciting multi-modality approach to PET/MR. (orig.)

  19. OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING

    OpenAIRE

    Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.

    2016-01-01

    Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cram��r-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experi...

  20. Electron spin resonance investigations on polycarbonate irradiated with U ions

    Energy Technology Data Exchange (ETDEWEB)

    Chipara, M.I.; Reyes-Romero, J

    2001-12-01

    Electron spin resonance investigations on polycarbonate irradiated with uranium ions are reported. The dependence of the resonance line parameters (line intensity, line width, double integral) on penetration depth and dose is studied. The nature of free radicals induced in polycarbonate by the incident ions is discussed in relation with the track structure. The presence of severe exchange interactions among free radicals is noticed.

  1. Synthesis of coupled resonator optical waveguides by cavity aggregation.

    Science.gov (United States)

    Muñoz, Pascual; Doménech, José David; Capmany, José

    2010-01-18

    In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.

  2. Design and construction of superconductor resonators

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Goliak, T.; Holmgren, D.W.; Storm, D.W.

    1984-01-01

    A low beta resonator was fabricated at the Nuclear Physics Laboratory, then plated and successfully tested at Stony Brook. The basic design is a quarter wave, cylindrical cavity excited by a magnetic coupling loop. Before the copper prototype was made the exact design parameters were measured by the construction and RF testing of a brass model

  3. An alternative method to specify the degree of resonator stability

    Indian Academy of Sciences (India)

    Degree of optical stability; parameter; misalignment tolerance. ... The value of zero corresponds to marginally stable resonator and < 0 corresponds ... 452 013, India; School of Physics, University of Hyderabad, Hyderabad 500 134, India ...

  4. Magnetic resonance imaging apparatus

    International Nuclear Information System (INIS)

    Ehnholm, G.J.

    1991-01-01

    This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)

  5. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  6. Ramifide resonators for cyclotrons

    International Nuclear Information System (INIS)

    Smirnov, Yu.V.

    2000-01-01

    The resonators with the conductors ramified form for cyclotrons are systematized and separated into the self-contained class - the ramified resonators for cyclotrons (Carr). The ramified resonators are compared with the quarter-wave and half-wave nonramified resonators, accomplished from the transmitting lines fragments. The CRR are classified into two types: ones with the additional structural element, switched in parallel and in series. The CRR may include several additional structural elements. The CRR calculations may be concluded by analytical methods - the method of matrix calculation or the method of telegraph equations and numerical methods - by means of the ISFEL3D, MAFIA and other programs [ru

  7. Noise in nonlinear nanoelectromechanical resonators

    Science.gov (United States)

    Guerra Vidal, Diego N.

    adjusting the resonator's operating parameters. The device can access one of two stable steady states, according to a specific logic function; this operation is mediated by the noise floor, which can be directly adjusted, or dynamically "tuned" via an adjustment of the underlying nonlinearity of the resonator. The demonstration of this reprogrammable nanomechanical logic gate affords a path to the practical realization of a new generation of mechanical computer.

  8. Proportional-Integral-Resonant AC Current Controller

    Directory of Open Access Journals (Sweden)

    STOJIC, D.

    2017-02-01

    Full Text Available In this paper an improved stationary-frame AC current controller based on the proportional-integral-resonant control action (PIR is proposed. Namely, the novel two-parameter PIR controller is applied in the stationary-frame AC current control, accompanied by the corresponding parameter-tuning procedure. In this way, the proportional-resonant (PR controller, common in the stationary-frame AC current control, is extended by the integral (I action in order to enable the AC current DC component tracking, and, also, to enable the DC disturbance compensation, caused by the voltage source inverter (VSI nonidealities and by nonlinear loads. The proposed controller parameter-tuning procedure is based on the three-phase back-EMF-type load, which corresponds to a wide range of AC power converter applications, such as AC motor drives, uninterruptible power supplies, and active filters. While the PIR controllers commonly have three parameters, the novel controller has two. Also, the provided parameter-tuning procedure needs only one parameter to be tuned in relation to the load and power converter model parameters, since the second controller parameter is directly derived from the required controller bandwidth value. The dynamic performance of the proposed controller is verified by means of simulation and experimental runs.

  9. Tuner and radiation shield for planar electron paramagnetic resonance microresonators

    International Nuclear Information System (INIS)

    Narkowicz, Ryszard; Suter, Dieter

    2015-01-01

    Planar microresonators provide a large boost of sensitivity for small samples. They can be manufactured lithographically to a wide range of target parameters. The coupler between the resonator and the microwave feedline can be integrated into this design. To optimize the coupling and to compensate manufacturing tolerances, it is sometimes desirable to have a tuning element available that can be adjusted when the resonator is connected to the spectrometer. This paper presents a simple design that allows one to bring undercoupled resonators into the condition for critical coupling. In addition, it also reduces radiation losses and thereby increases the quality factor and the sensitivity of the resonator

  10. The Dependence of the Resonance Integral on the Doppler Effect

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, J

    1960-12-15

    The Doppler sensitive contributions to the resonance integral for metal and oxide cylinders have been calculated using tables compiled by Adler, Hinman and Nordheim. The temperatures 20, 200, 350, 500 and 650 deg C have been investigated for the pure metal and 20, 300, 600, 900 and 1200 deg C for the oxide. Contributions from the separate resonances in the resolved region and for certain energies in the unresolved region are accounted for in detail. Integration over adequate statistical distributions has been carried out for the resonance parameters in the unresolved region. The increase in the resonance integral at elevated temperatures due to the Doppler effect is given separately in tables and diagrams.

  11. The theory of coherent resonance tunneling of interacting electrons

    International Nuclear Information System (INIS)

    Elesin, V. F.

    2001-01-01

    Analytical solutions of the Schrödinger equation for a two-barrier structure (resonance-tunnel diode) with open boundary conditions are found within the model of coherent tunneling of interacting electrons. Simple expressions for resonance current are derived which enable one to analyze the current-voltage characteristics, the conditions of emergence of hysteresis, and singularities of the latter depending on the parameters of resonance-tunnel diode. It is demonstrated that the hysteresis is realized if the current exceeds some critical value proportional to the square of resonance level width.

  12. Controlling Parametric Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    the authors review the conditions for the onset of parametric resonance, and propose a nonlinear control strategy in order to both induce the resonant oscillations and to stabilize the unstable motion. Lagrange’s theory is used to derive the dynamics of the system and input–output feedback linearization...

  13. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Electromagnetic resonance waves

    International Nuclear Information System (INIS)

    Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.

    1994-01-01

    We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs

  15. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  16. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  17. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  18. Resonant oscillations in open axisymmetric tubes

    Science.gov (United States)

    Amundsen, D. E.; Mortell, M. P.; Seymour, B. R.

    2017-12-01

    We study the behaviour of the isentropic flow of a gas in both a straight tube of constant cross section and a cone, open at one end and forced at or near resonance at the other. A continuous transition between these configurations is provided through the introduction of a geometric parameter k associated with the opening angle of the cone where the tube corresponds to k=0. The primary objective is to find long-time resonant and near-resonant approximate solutions for the open tube, i.e. k→ 0. Detailed analysis for both the tube and cone in the limit of small forcing (O(ɛ 3)) is carried out, where ɛ 3 is the Mach number of the forcing function and the resulting flow has Mach number O(ɛ ). The resulting approximate solutions are compared with full numerical simulations. Interesting distinctions between the cone and the tube emerge. Depending on the damping and detuning, the responses for the tube are continuous and of O(ɛ ). In the case of the cone, the resonant response involves an amplification of the fundamental resonant mode, usually called the dominant first-mode approximation. However, higher modes must be included for the tube to account for the nonlinear generation of higher-order resonances. Bridging these distinct solution behaviours is a transition layer of O(ɛ 2) in k. It is found that an appropriately truncated set of modes provides the requisite modal approximation, again comparing well to numerical simulations.

  19. Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, C.M.; Furman, M.A.; Vay, J.L.; Grote, D.P.; Ng, J.T.; Pivi, M.F.; Wang, L.F.

    2009-01-01

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l b c , (l b = bunch duration, ω c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ∼ 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed

  20. Modeling of nanofabricated paddle bridges for resonant mass sensing

    International Nuclear Information System (INIS)

    Lobontiu, N.; Ilic, B.; Garcia, E.; Reissman, T.; Craighead, H. G.

    2006-01-01

    The modeling of nanopaddle bridges is studied in this article by proposing a lumped-parameter mathematical model which enables structural characterization in the resonant domain. The distributed compliance and inertia of all three segments composing a paddle bridge are taken into consideration in order to determine the equivalent lumped-parameter stiffness and inertia fractions, and further on the bending and torsion resonant frequencies. The approximate model produces results which are confirmed by finite element analysis and experimental measurements. The model is subsequently utilized to quantify the amount of mass which attaches to the bridge by predicting the modified resonant frequencies in either bending or torsion

  1. Evaluation of stable tungsten isotopes in the resolved resonance region

    Directory of Open Access Journals (Sweden)

    Schillebeeckx P.

    2013-03-01

    Full Text Available In the last decade benchmark experiments and simulations, together with newly obtained neutron cross section data, have pointed out deficiencies in evaluated data files of W isotopes. The role of W as a fundamental structural material in different nuclear applications fully justifies a new evaluation of 182, 183, 184, 186W neutron resonance parameters. In this regard transmission and capture cross section measurements on natural and enriched tungsten samples were performed at the GELINA facility of the EC-JRC-IRMM. A resonance parameter file used as input in the resonance shape analysis was prepared based on the available literature and adjusted in first instance to transmission data.

  2. Fundamentals of nanomechanical resonators

    CERN Document Server

    Schmid, Silvan; Roukes, Michael Lee

    2016-01-01

    This authoritative book introduces and summarizes the latest models and skills required to design and optimize nanomechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The authors cover the electrical and mechanical aspects of nano electromechanical system (NEMS) devices. The introduced mechanical models are also key to the understanding and optimization of nanomechanical resonators used e.g. in optomechanics. Five comprehensive chapters address: The eigenmodes derived for the most common continuum mechanical structures used as nanomechanical resonators; The main sources of energy loss in nanomechanical resonators; The responsiveness of micro and nanomechanical resonators to mass, forces, and temperature; The most common underlying physical transduction mechanisms; The measurement basics, including amplitude and frequency noise. The applied approach found in this book is appropriate for engineering students and researchers working with micro and nanomechanical...

  3. Resonant snubber inverter

    Science.gov (United States)

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  4. Scaling of quantum and classical resonance peaks for the quantum kicked rotor

    International Nuclear Information System (INIS)

    Sadgrove, M.; Wimberger, S.; Parkings, S.; Leonhardt, R.

    2005-01-01

    Full text: We present results which demonstrate the relationship between the quantum resonance peaks of the classical kicked rotor and a classical resonance phenomenon. Both types of behaviour may be described using the same formalism (known as the ε - classical standard map). Furthermore, a scaling law exists for classical and quantum resonances which reduces the dynamics to a stationary function of one parameter. (author)

  5. Status of neutron cross sections of transactinium isotopes in the resonance region - linear accelerator measurements

    International Nuclear Information System (INIS)

    James, G.D.

    1976-01-01

    A review of the status of transactinium isotope cross sections in the resonance region and of resolved resonance parameters is given by summarising the work submitted by fourteen contributors and also by highlighting other work where notable progress has been made in our knowledge of neutron resonance phenomena. (author)

  6. Observation of Resonant Behavior in the Energy Velocity of Diffused Light

    International Nuclear Information System (INIS)

    Sapienza, R.; Garcia, P. D.; Blanco, A.; Lopez, C.; Bertolotti, J.; Wiersma, D. S.; Martin, M. D.; Vina, L.

    2007-01-01

    In this Letter we demonstrate Mie resonances mediated transport of light in randomly arranged, monodisperse dielectric spheres packed at high filling fractions. By means of both static and dynamic optical experiments we show resonant behavior in the key transport parameters and, in particular, we find that the energy transport velocity, which is lower than the group velocity, also displays a resonant behavior

  7. R-matrix parameters in reactor applications

    International Nuclear Information System (INIS)

    Hwang, R.N.

    1992-01-01

    The key role of the resonance phenomena in reactor applications manifests through the self-shielding effect. The basic issue involves the application of the microscopic cross sections in the macroscopic reactor lattices consisting of many nuclides that exhibit resonance behavior. To preserve the fidelity of such a effect requires the accurate calculations of the cross sections and the neutron flux in great detail. This clearly not possible without viable resonance data. Recently released ENDF/B VI resonance data in the resolved range especially reflect the dramatic improvement in two important areas; namely, the significant extension of the resolved resonance ranges accompanied by the availability of the R-matrix parameters of the Reich-Moore type. Aside from the obvious increase in computing time required for the significantly greater number of resonances, the main concern is the compatibility of the Riech-Moore representation to the existing reactor processing codes which, until now, are based on the traditional cross section formalisms. This purpose of this paper is to summarize our recent efforts to facilitate implementation of the proposed methods into the production codes at ANL

  8. Systematics of nuclear level density parameters

    International Nuclear Information System (INIS)

    Bucurescu, Dorel; Egidy, Till von

    2005-01-01

    The level density parameters for the back-shifted Fermi gas (both without and with energy-dependent level density parameter) and the constant temperature models have been determined for 310 nuclei between 18 F and 251 Cf by fitting the complete level schemes at low excitation energies and the s-wave neutron resonance spacings at the neutron binding energies. Simple formulae are proposed for the description of the two parameters of each of these models, which involve only quantities available from the mass tables. These formulae may constitute a reliable tool for extrapolating to nuclei far from stability, where nuclear level densities cannot be measured

  9. Resonances for coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Haroutyunyan, H.L.; Nienhuis, G.

    2004-01-01

    The properties of a Bose-Einstein condensate in a two-well potential can be manipulated by periodic modulation of the potential parameters. We study the effects arising from modulating the barrier height and the difference in well depth. At certain modulation frequencies the system exhibits resonances, which may show up in an enhancement of the tunneling rate between the wells. Resonances can be used to control the particle distribution over the wells. Some of the effects occurring in the two-well system also arise for a Bose-Einstein condensate in an optical lattice

  10. Interaction of plasma vortices with resonant particles

    DEFF Research Database (Denmark)

    Jovanovic, D.; Pécseli, Hans; Juul Rasmussen, J.

    1990-01-01

    Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime...... particles. The evolution equations indicate the possibility of excitation of plasma vortices by electron beams....... they possess localized solutions in the form of dipolar vortices, which can efficiently interact with resonant electrons. In the adiabatic limit, evolution equations are derived for the vortex parameters, describing exchange of the energy, enstrophy, and of the Poynting vector between the vortex and resonant...

  11. Hemispherical Resonator Gyroscope Accuracy Analysis Under Temperature Influence

    Directory of Open Access Journals (Sweden)

    Boran LI

    2014-06-01

    Full Text Available Frequency splitting of hemispherical resonator gyroscope will change as system operating temperature changes. This phenomenon leads to navigation accuracy of hemispherical resonator gyroscope reduces. By researching on hemispherical resonator gyroscope dynamical model and its frequency characteristic, the frequency splitting formula and the precession angle formula of gyroscope vibrating mode based on hemispherical resonator gyroscope dynamic equation parameters are derived. By comparison, gyroscope precession angle deviation caused by frequency splitting can be obtained. Based on analysis of temperature variation against gyroscope resonator, the design of hemispherical resonator gyroscope feedback controller under temperature variation conditions is researched and the maximum theoretical fluctuation of gyroscope dynamical is determined by using a numerical analysis example.

  12. Simulation of a resonant-type ring magnet power supply with multiple resonant cells and energy storage chokes

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Blackmore, E.W.; Reiniger, K.W.

    1992-01-01

    For the TRIUMF KAON Factory Booster Ring, a resonant-type magnet power supply has been proposed for the dipole magnet excitation. The Booster Ring magnet power supply system based on resonant circuits, coupled with distributed energy make-up networks, is a complex system, sensitive to many system parameters. When multiple resonant cells, each with its own energy make-up network, are connected in a ring, it is very difficult to derive closed-form solutions to determine the operating conditions of the power supply system. A meaningful way to understand and analyze such a complex system is to use a simulation tool. This paper presents the analysis of operating conditions of the resonant-type ring magnet power supply with multiple resonant cells, using the circuit simulation tool, SPICE. The focus of the study is on the effect of circuit parameter variations in energy storage chokes

  13. Doubly excited 3Pe resonance states of two-electron positive ions in Debye plasmas

    International Nuclear Information System (INIS)

    Hu, Xiao-Qing; Wang, Yang; Kar, Sabyasachi; Jiang, Zishi; Jiang, Pinghui

    2015-01-01

    We investigate the doubly excited 3 P e resonance states of two-electron positive ions Li + , Be 2+ , B 3+ , and C 4+ by employing correlated exponential wave functions. In the framework of the stabilization method, we calculate two series (3pnp and 3dnd) of 3 P e resonances below the N = 3 threshold. The 3 P e resonance parameters (resonance energies and widths) are reported for the first time as a function of the screening parameter. For free-atomic cases, comparisons are made with the reported results and few resonance states are reported for the first time

  14. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  15. Multiple photon resonances

    International Nuclear Information System (INIS)

    Elliott, C.J.; Feldman, B.J.

    1979-02-01

    A detailed theoretical analysis is presented of the interaction of intense near-resonant monochromatic radiation with an N-level anharmonic oscillator. In particular, the phenomenon of multiple photon resonance, the process by which an N-level system resonantly absorbs two or more photons simultaneously, is investigated. Starting from the Schroedinger equation, diagrammatic techniques are developed that allow the resonant process to be analyzed quantitatively, in analogy with well-known two-level coherent phenomena. In addition, multiple photon Stark shifts of the resonances, shifts absent in two-level theory, are obtained from the diagrams. Insights into the nature of multiple photon resonances are gained by comparing the quantum mechanical system with classical coupled pendulums whose equations of motion possess identical eigenvalues and eigenvectors. In certain limiting cases, including that of the resonantly excited N-level harmonic oscillator and that of the equally spaced N-level system with equal matrix elements, analytic results are derived. The influence of population relaxation and phase-disrupting collisions on the multiple photon process are also analyzed, the latter by extension of the diagrammatic technique to the density matrix equations of motion. 11 figures

  16. Properties of spiral resonators

    International Nuclear Information System (INIS)

    Haeuser, J.

    1989-10-01

    The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de

  17. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  18. Resonant power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2012-01-01

    This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit

  19. Excitation of Nucleon Resonances

    International Nuclear Information System (INIS)

    Burkert, Volker D.

    2001-01-01

    I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure

  20. Dihadronic and dileptonic resonances

    International Nuclear Information System (INIS)

    Gareev, F.A.; Barabanov, M.Yu.; Kazacha, G.S.

    1997-01-01

    Simple phenomenological rules are suggested for calculation of dihadron and dilepton resonance masses. A general interpretation is given for different exotic resonances in nuclear physics: Darmstadt-effect, dibaryon, dipion and other resonances. Information about the inner structure of e ± , proton, neutron, pions and so on can be obtained from the usual reactions of the type e + + e - =>γγ, e ± +γ=>e ± γ, e ± μ ± , e ± N... at low, intermediate and high energies using existing experimental devices

  1. Multiquark resonant states

    International Nuclear Information System (INIS)

    Shahbazian, B.A.

    1982-01-01

    The invariant mass spectra of forty nine hadronic systems with hypercharge, strangeness and baryon number, varied in wide limits have been studied. Resonance peaks have been found in the invariant mass spectra of Y 2 and #betta#pπ 2495 MeV/c 2 resonant states. Three more candidates for anti qq 4 states were found #bettaπ# + π + : 1705, 2072, 2605 MeV/c 2 . The masses of all these candidates are in good agreement with Bag Model predictions. A hypercharge selection rule is suggested: ''The hypercharge of hadronic resonances in weak gravitational fields cannot exceed one Y <= 1

  2. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  3. Writing with resonance

    DEFF Research Database (Denmark)

    Meier, Ninna; Wegener, Charlotte

    2017-01-01

    In this article, we explore what organization and management scholars can do to write with resonance and to facilitate an emotional, bodily, or in other ways sensory connection between the text and the reader. We propose that resonance can be relevant for organization and management scholars in two......, and thus bring forward the field of research in question. We propose that writing with resonance may be a way to further the impact of academic work by extending the modalities with which our readers can relate to and experience our work....

  4. Doubly resonant multiphoton ionization

    International Nuclear Information System (INIS)

    Crance, M.

    1978-01-01

    A particular case of doubly resonant multiphoton ionization is theoretically investigated. More precisely, two levels quasi-resonant with two successive harmonics of the field frequency are considered. The method used is based on the effective operator formalism first introduced for this problem by Armstrong, Beers and Feneuille. The main result is to show the possibility of observing large interference effects on the width of the resonances. Moreover this treatment allows us to make more precise the connection between effective operator formalism and standard perturbation theory

  5. Subwavelength resonant antennas enhancing electromagnetic energy harvesting

    Science.gov (United States)

    Oumbe Tekam, Gabin; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-04-01

    In this work, an electromagnetic energy harvester operating at microwave frequencies is designed based on a cut- wire metasurface. This metamaterial is known to contain a quasistatic electric dipole resonator leading to a strong resonant electric response when illuminated by electromagnetic fields.1 Starting from an equivalent electrical circuit, we analytically design the parameters of the system to tune the resonance frequency of the harvester at the desired frequency band. Subsequently, we compare these results with numerical simulations, which have been obtained using finite elements numerical simulations. Finally, we optimize the design by investigating the best arrangement for energy harvesting by coupling in parallel and in series many single layers of cut-wire metasurfaces. We also discuss the implementation of different geometries and sizes of the cut-wire metasurface for achieving different center frequencies and bandwidths.

  6. Resonances in the proton-6Li scattering

    International Nuclear Information System (INIS)

    Haller, M.

    1986-01-01

    The differential cross section and the analyzing power of the p+ 6 Li scattering were measured in the laboratory energy range from 1.6 respectively 2.8 MeV to 10 MeV at 45 respectively 40 energies in full angular distributions. The data were subjected both to an analysis in the optical model which yielded already hints to resonance effects and to a comphrehensive scattering-phase analysis for L=0, 1, and 2 under inclusion of channel spin and orbital angular momentum mixings. The consistent description of all data required the assumption of broad resonance structures. An approximate parametrization by a Breit-Wigner formula allowed the estimation of the resonance parameters. (orig./HSI) [de

  7. Operation States Analysis of the Series-Parallel resonant Converter Working Above Resonance Frequency

    Directory of Open Access Journals (Sweden)

    Peter Dzurko

    2007-01-01

    Full Text Available Operation states analysis of a series-parallel converter working above resonance frequency is described in the paper. Principal equations are derived for individual operation states. On the basis of them the diagrams are made out. The diagrams give the complex image of the converter behaviour for individual circuit parameters. The waveforms may be utilised at designing the inverter individual parts.

  8. Magnetic Resonance (MR) Defecography

    Science.gov (United States)

    ... to a CD or uploaded to a digital cloud server. Magnetic resonance (MR) defecography is a special ... with you. top of page What are the benefits vs. risks? Benefits MR defecography helps assess pelvic ...

  9. Quantum Proximity Resonances

    International Nuclear Information System (INIS)

    Heller, E.J.

    1996-01-01

    It is well known that at long wavelengths λ an s-wave scatterer can have a scattering cross section σ on the order of λ 2 , much larger than its physical size, as measured by the range of its potential. Very interesting phenomena can arise when two or more identical scatterers are placed close together, well within one wavelength. We show that, for a pair of identical scatterers, an extremely narrow p-wave open-quote open-quote proximity close-quote close-quote resonance develops from a broader s-wave resonance of the individual scatterers. A new s-wave resonance of the pair also appears. The relation of these proximity resonances (so called because they appear when the scatterers are close together) to the Thomas and Efimov effects is discussed. copyright 1996 The American Physical Society

  10. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others

    2016-04-15

    We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  11. Magnetic resonance angiography (MRA)

    International Nuclear Information System (INIS)

    Arlart, I.P.; Guhl, L.

    1992-01-01

    An account is given in this paper of the physical and technical principles underlying the 'time-of-flight' technique for imaging of vessels by magnetic resonance tomography. Major indications for the new procedure of magnetic resonance angiography at present are intracerebral and extracerebral vessels, with digital subtraction angiography quite often being required to cope with minor alterations (small aneurysms, small occlusions). Magnetic resonance angiography and digital subtraction angiography are compared to each other for advantages and disadvantages. Basically, replacement of radiological angiography by magnetic resonance angiography appears to be possible only within limits, since X-ray diagnostics primarily provides morphological information about vessels, whereas flow dynamics is visualized by the 'time-of-flight' technique. (orig.) [de

  12. Magnetic Resonance Cholangiopancreatography (MRCP)

    Science.gov (United States)

    ... radio waves and a computer to evaluate the liver, gallbladder, bile ducts, pancreas and pancreatic duct for disease. It is ... of the hepatobiliary and pancreatic systems, including the liver, gallbladder, bile ducts, pancreas and pancreatic duct . Magnetic resonance imaging (MRI) ...

  13. Piezoelectric MEMS resonators

    CERN Document Server

    Piazza, Gianluca

    2017-01-01

    This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...

  14. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  15. Resonant diphoton phenomenology simplified

    International Nuclear Information System (INIS)

    Panico, Giuliano; Vecchi, Luca; Wulzer, Andrea

    2016-01-01

    A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J≥2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonant diphoton production.

  16. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  17. Magnetic resonance angiography

    Science.gov (United States)

    ... Saunders; 2015:chap 17. Litt H, Carpenter JP. Magnetic resonance imaging. In: Cronenwett JL, Johnston KW, eds. Rutherford's Vascular Surgery . 8th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap ...

  18. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Ethier, R.; Melanson, D.; Peters, T.M.

    1983-01-01

    Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr

  19. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Robertson, Angus

    1990-01-01

    An assessment is made of the clinical benefits of expensive diagnostic technology, such as the magnetic resonance imaging. It is concluded that to most radiologists, magnetic resonance imaging has a definite place in the diagnostic scenario, especially for demonstrating central nervous system lesions in multiple sclerosis. While it is recognized that medical and financial resources are limited, it is emphasised that the cost to society must be balanced against the patient benefit. 17 refs

  20. Comment on resonant absorption

    International Nuclear Information System (INIS)

    Hammerling, P.

    1977-01-01

    An average over angles of incidence of the usual resonant absorption function is presented. This form is appropriate under experimental conditions where the angles of incidence vary greatly and in an unknown manner. For comparison a lens-ellipsoidal mirror illumination system with a known longitudinal aberration is considered. In the latter example the angles of incidence are readily obtained and the resulting resonance absorption function evaluated. The associated fields are calculated in a similar fashion. (author)

  1. Nuclear magnetic resonance gyroscope

    International Nuclear Information System (INIS)

    Grover, B.C.

    1984-01-01

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor

  2. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications

  3. Resonance phenomena near thresholds

    International Nuclear Information System (INIS)

    Persson, E.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1995-12-01

    The trapping effect is investigated close to the elastic threshold. The nucleus is described as an open quantum mechanical many-body system embedded in the continuum of decay channels. An ensemble of compound nucleus states with both discrete and resonance states is investigated in an energy-dependent formalism. It is shown that the discrete states can trap the resonance ones and also that the discrete states can directly influence the scattering cross section. (orig.)

  4. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  5. Covariance as input to and output from resonance analyses

    International Nuclear Information System (INIS)

    Larson, N.M.

    1992-01-01

    Accurate data analysis requires understanding of the roles played by both data and parameter covariance matrices. In this paper the entire data reduction/analysis process is examined, for neutron-induced reactions in the resonance region. Interrelationships between data and parameter covariance matrices are examined and alternative reduction/analysis methods discussed

  6. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    International Nuclear Information System (INIS)

    Naqui, J.; Su, L.; Mata, J.; Martín, F.

    2015-01-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc

  7. Nonlinear effects in varactor-tuned resonators.

    Science.gov (United States)

    Everard, Jeremy; Zhou, Liang

    2006-05-01

    This paper describes the effects of RF power level on the performance of varactor-tuned resonator circuits. A variety of topologies are considered, including series and parallel resonators operating in both unbalanced and balanced modes. As these resonators were designed to produce oscillators with minimum phase noise, the initial small signal insertion loss was set to 6 dB and, hence, QL/Q0 = 1/2. To enable accurate analysis and simulation, S parameter and PSPICE models for the varactors were optimized and developed. It is shown that these resonators start to demonstrate nonlinear operation at very low power levels demonstrating saturation and lowering of the resonant frequency. On occasion squegging is observed for modified bias conditions. The nonlinear effects are dependent on the unloaded Q (Q0), the ratio of loaded to unloaded Q (QL/Q0), the bias voltage, and circuit configurations with typical nonlinear effects occurring at -8 dBm in a circuit with a loaded Q of 63 and a varactor bias voltage of 3 V. Analysis, simulation, and measurements that show close correlation are presented.

  8. Magnetic resonance imaging of chemistry.

    Science.gov (United States)

    Britton, Melanie M

    2010-11-01

    Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.

  9. Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons

    Science.gov (United States)

    Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya

    2015-08-01

    Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude à and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher à and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.

  10. Electron cyclotron resonance plasma photos

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R.; Palinkas, J. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary); University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  11. Electron cyclotron resonance plasma photos

    International Nuclear Information System (INIS)

    Racz, R.; Palinkas, J.; Biri, S.

    2010-01-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  12. Cyclotron resonance in bilayer graphene.

    Science.gov (United States)

    Henriksen, E A; Jiang, Z; Tung, L-C; Schwartz, M E; Takita, M; Wang, Y-J; Kim, P; Stormer, H L

    2008-02-29

    We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B=18 T, we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies are roughly linear in B between the lowest Landau levels, whereas they follow square root[B] for the higher transitions. This highly unusual behavior represents a change from a parabolic to a linear energy dispersion. The density of states derived from our data generally agrees with the existing lowest order tight binding calculation for bilayer graphene. However, in comparing data to theory, a single set of fitting parameters fails to describe the experimental results.

  13. Resonance probe; La sonde a resonance

    Energy Technology Data Exchange (ETDEWEB)

    Lepechinsky, D; Messiaen, A; Rolland, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    After a brief review of papers recently published on the resonance probe as a tool for plasma diagnostics, the main features of the theory proposed by one of us are recalled. In this theory the geometry of the resonator formed by the probe, the ion sheath and the plasma is explicitly taken into account with the quasi-static and cold plasma approximations. Some new results emerging from this theory are indicated and a comparison with experimental data obtained with a spherical probe placed in a quiescent mercury-vapour plasma is made. A good quantitative agreement has been observed, indicating that the theory is satisfactory and justifying the assumptions involved. Nevertheless it appears that in some cases experimental results can only be interpreted when non collisional damping phenomena are taken into consideration. (author) [French] Apres un apercu des etudes recemment publiees sur la sonde a resonance pour le diagnostic des plasmas, on rappelle l'essentiel de la theorie proposee par l'un de nous ou il est tenu compte explicitement de la geometrie du resonateur forme par le systeme sonde-gaine ionique-plasma dans l'approximation quasi-statique et du plasma froid. On indique quelques resultats nouveaux pouvant etre tires de cette theorie et on la confronte avec les donnees experimentales obtenues pour une sonde spherique placee dans un plasma de mercure en equilibre. Un tres bon accord quantitatif a ete constate, indiquant que la theorie est satisfaisante et justifiant les approximations faites dans celle-ci. Il apparait toutefois que certains resultats experimentaux ne peuvent etre interpretes qu'en tenant compte des phenomenes d'amortissement non collisionnels. (auteur)

  14. Booster parameter list

    International Nuclear Information System (INIS)

    Parsa, Z.

    1986-10-01

    The AGS Booster is designed to be an intermediate synchrotron injector for the AGS, capable of accelerating protons from 200 MeV to 1.5 GeV. The parameters listed include beam and operational parameters and lattice parameters, as well as parameters pertaining to the accelerator's magnets, vacuum system, radio frequency acceleration system, and the tunnel. 60 refs., 41 figs

  15. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  16. Comparative analysis of nuclear magnetic resonance well logging and nuclear magnetic resonance mud logging

    International Nuclear Information System (INIS)

    Yuan Zugui

    2008-01-01

    The hydrogen atoms in oil and water are able to resonate and generate signals in the magnetic field, which is used by the NMR (nuclear magnetic resonance) technology in petroleum engineering to research and evaluate rock characteristics. NMR well logging was used to measure the physical property parameters of the strata in well bore, whereas NMR mud logging was used to analyze (while drilling) the physical property parameters of cores, cuttings and sidewall coring samples on surface (drilling site). Based on the comparative analysis of the porosity and permeability parameters obtained by NMR well logging and those from analysis of the cores, cuttings and sidewall coring samples by NMR mud logging in the same depth of 13 wells, these two methods are of certain difference, but their integral tendency is relatively good. (authors)

  17. Transition of EMRIs through resonance: higher order corrections in resonant flux enhancement

    Science.gov (United States)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Extreme mass ratio inspirals (EMRIs) are candidate events for gravitational wave detection in the millihertz range (by detectors like LISA and eLISA). These events involve a stellar-mass black hole, or a similar compact object, descending into the gravitational field of a supermassive black hole, eventually merging with it. Properties of the inspiraling trajectory away from resonance are well known and have been studied extensively, however little is known about the behaviour of these binary systems at resonance, when the radial and lateral frequencies of the orbit become commensurate. There are two resonance models in the literature, the instantaneous frequency function by Gair, Bender, and Yunes, and the standard two timescales approach devised by Flanagan and Hinderer. We argue that the Gair, Bender and Yunes model provides a valid treatment of the resonance problem and extend this solution to higher order in the size of the on-resonance perturbation. The non-linear differential equations which arise in treating resonances are interesting from a mathematical view point. We present our algorithm for perturbative solutions and the results to third order in the infinitesimal parameter, and discuss the scope of this approach. Deyan Mihaylov is funded by the STFC.

  18. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  19. Resonant enhancement in leptogenesis

    Science.gov (United States)

    Dev, P. S. B.; Garny, M.; Klaric, J.; Millington, P.; Teresi, D.

    2018-02-01

    Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this paper, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis.

  20. Resonant ultrasound spectrometer

    Science.gov (United States)

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  1. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  2. Investigation of neutron resonances of 247Cm in the 0.5-20 eV energy range

    International Nuclear Information System (INIS)

    Belanova, T.S.; Kolesov, A.G.; Klinov, A.V.; Nikol'skij, S.N.; Poruchikov, V.A.; Nefedov, V.N.; Artamonov, V.S.; Ivanov, R.N.; Kalebin, S.M.

    1979-01-01

    The neutron resonance parameters of 247 Cm were calculated from the transmission of a curium sample measured by the time-of-flight method. The neutron resonance parameters were calculated by the shape method using the single-level Breit-Wigner formula. Since the neutron resonance parameters of 244 Cm, 245 Cm, 246 Cm, 248 Cm, 243 Am and 240 Pu are well known, it was possible to identify the neutron resonances of 247 Cm from the measured transmission and calculate their parameters. We identified only five neutron resonances of 247 Cm with high values of 2gGAMMAsub(n). This is due to the fact that the 247 Cm content of the sample is low (1.7mg) and the resonances of this isotope are identified against the background of a large number of resonances of 244 Cm, 245 Cm, 246 Cm, 248 Cm, 243 Am and 240 Pu situated in the energy range in question

  3. Correlations between the resonant frequency shifts and the thermodynamic quantities for the α-β transition in quartz

    Science.gov (United States)

    Lider, M. C.; Yurtseven, H.

    2018-05-01

    The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.

  4. Impact of neutron resonance treatments on reactor calculation

    International Nuclear Information System (INIS)

    Leszczynski, F.

    1988-01-01

    The neutron resonance treatment on reactor calculation is one of the not completely resolved problems of reactor theory. The calculation required on design, fuel management and accident analysis of nuclear reactors contains adjust coefficients and semi-empirical values introduced on the computer codes; these values are obtained comparing calculation results with experimental values and more exact calculation results. This is made when the characteristics of the analyzed system are such that this type of comparisons are possible. The impact that one fixed resonance treatment method have on the final evaluation of physics reactor parameters, reactivity, power distribution, etc., is useful to know. In this work, the differences between calculated parameters with two different methods of resonance treatment in cell calculations are shown. It is concluded that improvements on resonance treatment are necessary for growing the reliability on core calculations results. Finally, possible improvements, easy to implement in current computer codes, are presented. (Author) [es

  5. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    Science.gov (United States)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  6. Optimal experiment design for magnetic resonance fingerprinting.

    Science.gov (United States)

    Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L

    2016-08-01

    Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.

  7. A resonance without resonance. Scrutinizing the diphoton excess at 750 GeV

    International Nuclear Information System (INIS)

    Kim, Jong Soo; Rolbiecki, Krzysztof; Ruiz de Austri, Roberto

    2015-12-01

    Motivated by the recent diphoton excesses reported by both ATLAS and CMS collaborations, we suggest that a new heavy spinless particle is produced in gluon fusion at the LHC and decays to a couple of lighter pseudoscalars which then decay to photons. The new resonances could arise from a new strongly interacting sector and couple to Standard Model gauge bosons only via the corresponding Wess-Zumino-Witten anomaly. We present a detailed recast of the newest 13 TeV data from ATLAS and CMS together with the 8 TeV data to scan the consistency of the parameter space for those resonances.

  8. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    Directory of Open Access Journals (Sweden)

    Alessandro Cosci

    2016-08-01

    Full Text Available This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate (PMMA box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.

  9. Evidence for trapping and collectivization of resonances at strong coupling

    International Nuclear Information System (INIS)

    Herzberg, R.D.; Brentano, P. von; Rotter, I.

    1993-01-01

    The behavior of 22 neutron resonances in 53 Cr is investigated as a function of the coupling-strength parameter μ and of the degree of overlapping. Starting from a doorway picture at small μ, the widths of 21 resonances increase with increasing μ at the cost of the width of the original 'single-particle doorway resonance'. At μ≅1, the widths of most states decrease again. At μ→10 the widths of these 'trapped' states vanish while 'collective' states are formed which gather the widths. Thus we again observe a doorway picture at strong coupling. At μ=1, the energies and widths of the resonances are fitted to the experimental data. At this coupling strength, most resonances investigated resemble trapped modes. (orig.)

  10. Nonlinear damping of oblique whistler mode waves through Landau resonance

    Science.gov (United States)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle 10.1002/2016JA023255.

  11. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    Science.gov (United States)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p biotechnology, medicine, chemistry and other areas.

  12. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  13. Helicity amplitudes and electromagnetic decays of hyperon resonances

    International Nuclear Information System (INIS)

    Cauteren, T. van; Ryckebusch, J.; Metsch, B.; Petry, H.R.

    2005-01-01

    We present results for the helicity amplitudes of the lowest-lying hyperon resonances Y * , computed within the framework of the Bonn Constituent-Quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model were fitted to the best-known baryon masses. Accordingly, the results for the helicity amplitudes are genuine predictions. Some hyperon resonances are seen to couple more strongly to a virtual photon with finite Q 2 than to a real photon. Other Y * 's, such as the S 01 (1670) Λ-resonance or the S 11 (1620) Σ-resonance, couple very strongly to real photons. We present a qualitative argument for predicting the behaviour of the helicity asymmetries of baryon resonances at high Q 2 . (orig.)

  14. Resonant microsphere gyroscope based on a double Faraday rotator system.

    Science.gov (United States)

    Xie, Chengfeng; Tang, Jun; Cui, Danfeng; Wu, Dajin; Zhang, Chengfei; Li, Chunming; Zhen, Yongqiu; Xue, Chenyang; Liu, Jun

    2016-10-15

    The resonant microsphere gyroscope is proposed based on a double Faraday rotator system for the resonant microsphere gyroscope (RMSG) that is characterized by low insertion losses and does not destroy the reciprocity of the gyroscope system. Use of the echo suppression structure and the orthogonal polarization method can effectively inhibit both the backscattering noise and the polarization error, and reduce them below the system sensitivity limit. The resonance asymmetry rate dropped from 34.2% to 2.9% after optimization of the backscattering noise and the polarization noise, which greatly improved the bias stability and the scale factor linearity of the proposed system. Additionally, based on the optimum parameters for the double Faraday rotator system, a bias stability of 0.04°/s has been established for an integration time of 10 s in 1000 s in a resonator microsphere gyroscope using a microsphere resonator with a diameter of 1 mm and a Q of 7.2×106.

  15. Josephson junctions array resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  16. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2016-01-01

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  17. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  18. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)

    2017-10-15

    We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)

  19. Catastrophes in the interaction of light waves in anisotropic resonator

    International Nuclear Information System (INIS)

    Mkrtchyan, A.R.; Nersisyan, S.R.; Tabiryan, N.V.

    1993-01-01

    An origin of jump-like and hysteresical phenomena is predicted theoretically. Those are caused by the ruling of the state of non-linear anisotropic resonator with an orthogonal polarization of light waves. The resonator creates a turned connection as well as causes a complex tying between the waves. The later conditions a whole number of the interacting waves regimes because of a big number of ruling parameters. 5 refs

  20. Wave propagation near the lower hybrid resonance in toroidal plasmas

    International Nuclear Information System (INIS)

    Ohkubo, K.; Ohasa, K.; Matsuura, K.

    1975-10-01

    Dielectric tensor and equipotential curves (ray trajectories) of an electrostatic wave near the lower hybrid resonance are investigated for the toroidal plasma with a shear magnetic field. The ray trajectories start from the vicinity of the plasma surface, and rotate in a spiral form around the magnetic axis, and then reach the lower or upper parts of lower hybrid resonance layer. The numerical computations are performed on the parameters of JIPP T-II device with two dimensional inhomogeneity. (auth.)

  1. Direct vs statistical decay of nuclear giant multipole resonances

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Carlson, B.V.; Merchant, A.C.; Adhikari, S.K.

    1986-01-01

    A theoretical framework for the description of the decay of giant multipole resonances id developed. Besides the direct decay, both the pre-equilibrium and statistical (compound) decays are taken into account in a consistent way. It is shown that the statistical decay of the giant resonance is not necessarily described by the Hauser-Feshbach theory owing to the presence of a mixing parameter, which measures the degree of fragmentation. Applications are made to several cases. (Author) [pt

  2. Magnetic resonance annual, 1988

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system

  3. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2014-07-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state with a continuum one. During the last decade this concept has been applied in plasmonics where the interference between a narrowband polariton and a broader one has been used to generate electromagnetically induced transparency (EIT) (M. Rahmani, et al., Laser Photon. Rev., 7, 329-349, 2013).

  4. Giant nuclear resonances

    International Nuclear Information System (INIS)

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  5. Nanoantenna using mechanical resonance

    KAUST Repository

    Chang Hwa Lee,

    2010-11-01

    Nanoantenna using mechanical resonance vibration is made from an indium tin oxide (ITO) coated vertically aligned nanorod array. Only this structure works as a radio with demodulator without any electrical circuit using field emission phenomenon. A top-down fabrication method of an ITO coated nanorod array is proposed using a modified UV lithography. The received radio frequency and the resonance frequency of nanoantenna can be controlled by the fabrication condition through the height of a nanorod array. The modulated signals are received successfully with the transmission carrier wave frequency (248MHz) and the proposed nanoantenna is expected to be used in communication system for ultra small scale sensor. ©2010 IEEE.

  6. Resonant freak microwaves

    International Nuclear Information System (INIS)

    Aguiar, F.M. de

    2011-01-01

    The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.

  7. Physics of Sports: Resonances

    Science.gov (United States)

    Browning, David

    2000-04-01

    When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.

  8. Hadronic Resonances from STAR

    Directory of Open Access Journals (Sweden)

    Wada Masayuki

    2012-11-01

    Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.

  9. Electrostatically driven resonance energy transfer in “cationic” biocompatible indium phosphide quantum dots† †Electronic supplementary information (ESI) available: Detailed experimental methods, the synthesis and characterization of QDs, bioimaging, stability studies, control experiments, and the calculation of various parameters involved in the resonance energy transfer process etc. See DOI: 10.1039/c7sc00592j Click here for additional data file.

    Science.gov (United States)

    Devatha, Gayathri; Roy, Soumendu; Rao, Anish; Mallick, Abhik; Basu, Sudipta

    2017-01-01

    Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer (E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern–Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules. PMID:28626557

  10. NRSC, Neutron Resonance Spectrum Calculation System

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    2004-01-01

    1 - Description of program or function: The NRSC system is a package of four programs for calculating detailed neutron spectra and related quantities, for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening and unresolved resonance level. 2 - Methods: NRSC consists of four programs: GEXSCO, RMET21, ALAMBDA and WLUTIL. GEXSCO prepares the nuclear data from ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening or unresolved resonance level for RMET21 input. RMET21 calculates spectra and related quantities for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using slowing-down algorithms and, in the case of pin cells, the collision probability method. ALAMBDA obtains lambda factors (Goldstein-Cohen intermediate resonance factors in the formalism of WIMSD code) of different isotopes for including on WIMSD-type multigroup libraries for WIMSD or other cell-codes, from output of RMET21 program. WLUTIL is an auxiliary program for extracting tabulated parameters related with RMET21 program calculations from WIMSD libraries for comparisons, and for producing new WIMSD libraries with parameters calculated with RMET21 and ALAMBDA programs. 3 - Restrictions on the complexity of the problem: GEXSCO program has fixed array dimensions that are suitable for processing all reasonable outputs from nuclear data pre-processing programs. RMET21 program uses variable dimension method from a fixed general array. ALAMBDA and WLUTIL programs have fixed arrays that are adapted to standard WIMSD libraries. All programs can be easily modified to adapt to special requirements

  11. Resonant cell of a double nuclear electron resonance spectrometer for performance in a 120-350 Gs magnetic field

    International Nuclear Information System (INIS)

    Baldin, V.I.; Stepanov, A.P.

    1976-01-01

    Spectrometer double-frequency resonance cell construction of a double nuclear electron resonance for operation in 120-350 Gs magnetic fields is described. The cell has been developed from a special decimeter resonator with a concentrated capacitance. The electric and magnetic components of a high frequency field are efficiently divided in the separator. Therefore, the insertion of a measuring coil and a sample in the maximum of the magnetic component of the field does not practically affect the distribution and parameters of the high-frequency field. The double-frequency resonance cell proposed provides for a higher accuracy of measuring amplifications of the nuclear magnetic resonance signals when there is the overhauzer effect for 120-350 Gs magnetic fields

  12. Alfvenic resonant cavities in the solar atmosphere

    International Nuclear Information System (INIS)

    Hollweg, J.V.

    1984-01-01

    We investigate the propagation of Alfven waves in a simple medium consisting of three uniform layers; each layer is characterized by a different value for the Alfven speed, νsub(A). We show how the central layer can act as a resonant cavity under quite general conditions. If the cavity is driven externally, by an incident wave in one of the outer layers, there result resonant transmission peaks, which allow large energy fluxes to enter the cavity from outside. The transmission peaks result from the destructive interference between a wave which leaks out of the cavity, and a directly reflected wave. We show that there are two types of resonances. The first type occurs when the cavity has the largest (or smallest) of the three Alfven speeds; this situation occurs on coronal loops. The second type occurs when the cavity Alfven speed is intermediate between the other two values of νsub(A); this situation may occur on solar spicules. Significant heating of the cavity can occur if the waves are damped. We show that if the energy lost to heat greatly exceeds the energy lost by leakage out of the cavity, then the cavity heating can be independent of the damping rate. This conclusion is shown to apply to coronal resonances and to the spicule resonances. This conclusion agrees with a point made by Ionson in connection with the coronal resonances. Except for a numerical factor of order unity, we recover Ionson's expression for the coronal heating rate. However, Ionson's qualities are much too large. For solar parameters, the maximum quality is of the order of 100, but the heating is independent of the damping rate only when dissipation reduces the quality to less than about 10. (WB)

  13. Uncertainty quantification in resonance absorption

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2012-01-01

    We assess the uncertainty in the resonance escape probability due to uncertainty in the neutron and radiation line widths for the first 21 resonances in 232 Th as given by . Simulation, quadrature and polynomial chaos methods are used and the resonance data are assumed to obey a beta distribution. We find the uncertainty in the total resonance escape probability to be the equivalent, in reactivity, of 75–130 pcm. Also shown are pdfs of the resonance escape probability for each resonance and the variation of the uncertainty with temperature. The viability of the polynomial chaos expansion method is clearly demonstrated.

  14. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  15. Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents.

    Directory of Open Access Journals (Sweden)

    David M Fox

    2017-06-01

    Full Text Available Neuronal membrane potential resonance (MPR is associated with subthreshold and network oscillations. A number of voltage-gated ionic currents can contribute to the generation or amplification of MPR, but how the interaction of these currents with linear currents contributes to MPR is not well understood. We explored this in the pacemaker PD neurons of the crab pyloric network. The PD neuron MPR is sensitive to blockers of H- (IH and calcium-currents (ICa. We used the impedance profile of the biological PD neuron, measured in voltage clamp, to constrain parameter values of a conductance-based model using a genetic algorithm and obtained many optimal parameter combinations. Unlike most cases of MPR, in these optimal models, the values of resonant- (fres and phasonant- (fϕ = 0 frequencies were almost identical. Taking advantage of this fact, we linked the peak phase of ionic currents to their amplitude, in order to provide a mechanistic explanation the dependence of MPR on the ICa gating variable time constants. Additionally, we found that distinct pairwise correlations between ICa parameters contributed to the maintenance of fres and resonance power (QZ. Measurements of the PD neuron MPR at more hyperpolarized voltages resulted in a reduction of fres but no change in QZ. Constraining the optimal models using these data unmasked a positive correlation between the maximal conductances of IH and ICa. Thus, although IH is not necessary for MPR in this neuron type, it contributes indirectly by constraining the parameters of ICa.

  16. Multilevel resonance analysis of sup 59 Co neutron transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    De Saussure, G.; Larson, N.M.; Harvey, J.A.; Hill, N.W. (Oak Ridge National Lab., TN (United States))

    1992-07-01

    Large discrepancies exist between the recent high-resolution neutron transmission data of {sup 59}Co measured at the Oak Ridge Electron Linear Accelerator (ORELA) and transmissions computed from the resolved resonance parameters of the nuclear data collection ENDF/B-VI. In order to provide new resonance parameters consistent with these data, the transmission measurements have been analyzed with the computer code SAMMY in the energy range 200 eV to 100 keV. The resonance parameters reported in this paper provide an accurate total cross section from 10{sup -5} eV to 100 keV and correctly reproduce the thermal capture cross section. Thermal cross-section values and related quantities are also reviewed here. (author).

  17. Imaging by magnetic resonance

    International Nuclear Information System (INIS)

    Duroure, J.F.; Serpolay, H.; Vallens, D.

    1995-01-01

    Here are described the advanced technology for nuclear magnetic resonance imaging: reduction of acquisition times, and rebuilding times, images quality improvement. The tendency is to open the machines at low and middle field, on a market being at 10% of NMR I sales, with economical, scientifical and ergonomic reasons broadly developed by constructors

  18. Neutron resonance spectroscopy

    International Nuclear Information System (INIS)

    Gunsing, F.

    2005-06-01

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  19. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  20. Magnetic resonance fingerprinting.

    Science.gov (United States)

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

  1. Neutron resonance absorption theory

    International Nuclear Information System (INIS)

    Reuss, P.

    1991-11-01

    After some recalls on the physics of neutron resonance absorption during their slowing down, this paper presents the main features of the theoretical developments performed by the french school of reactor physics: the effective reaction rate method so called Livolant-Jeanpierre theory, the generalizations carried out by the author, and the probability table method [fr

  2. Resonance charge exchange processes

    International Nuclear Information System (INIS)

    Duman, E.L.; Evseev, A.V.; Eletskij, A.V.; Radtsig, A.A.; Smirnov, B.M.

    1979-01-01

    The calculation results for the resonance charge exchange cross sections for positive and negative atomic and molecular ions are given. The calculations are performed on the basis of the asymptotic theory. The factors affecting the calculation accuracy are analysed. The calculation data for 28 systems are compared with the experiment

  3. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  4. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Magnetic resonance imaging (MRI) is a new and innovative technique that affords anatomic images in multiple planes and that may provide information about tissue characterization. The magnetic resonance images are obtained by placing the patient or the area of interest within a powerful, highly uniform, static magnetic field. Magnetized protons (hydrogen nuclei) within the patient align like small magnets in this field. Radiofrequency pulses are then used to create an oscillating magnetic field perpendicular to the main field. Magnetic resonance images differ from those produced by x-rays: the latter are associated with absorption of x-ray energy while magnetic resonance images are based on proton density and proton relaxation dynamics. Proton characteristics vary according to the tissue under examination and reflect its physical and chemical properties. To resolve issues regarding safety and efficacy, the Warren Grant Magnuson Clinical Center and the Office of Medical Applications of Research of the National Institutes of Health (NIH) convened a consensus conference about MRI Oct 26 through 28, 1987. At the NIH, the Consensus Development Conference brings together investigators in the biomedical sciences, clinical investigators, practicing physicians, and consumer and special interest groups to make a scientific assessment of technologies, including drugs, devices, and procedures, and to seek agreement on their safety and effectiveness

  5. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  6. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  7. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rueterjans, H.

    1987-01-01

    Contributions by various authors who are working in the field of NMR imaging present the current status and the perspectives of in-vivo nuclear magnetic resonance spectroscopy, explaining not only the scientific and medical aspects, but also technical and physical principles as well as questions concerning practical organisation and training, and points of main interest for further research activities. (orig./TRV) [de

  8. Isotopic effect giant resonances

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; Perrin, G.; Saintignon, P. de; Chauvin, J.; Duhamel, G.

    1981-10-01

    The systematics of the excitation energy of the giant dipole, monopole, and quadrupole resonances are shown to exhibit an isotopic effect. For a given element, the excitation energy of the transition decreases faster with the increasing neutron number than the empirical laws fitting the overall data. This effect is discussed in terms of the available models

  9. Magnetostatic wave tunable resonators

    Science.gov (United States)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  10. Proton resonance spectroscopy

    International Nuclear Information System (INIS)

    Shriner, J.F. Jr.

    1991-11-01

    This report discusses the following topics: Complete Level Scheme for 30 P; A Search for Resonances Suitable for Tests of Detailed-Balance Violation; The Fourier Transform as a Tool for Detecting Chaos; Entrance Channel Correlations in p + 27 Al; The Parity Dependence of Level Densities in 49 V; and A Computer Program for the Calculation of Angular Momentum Coupling

  11. Screening Resonances In Plasmas

    International Nuclear Information System (INIS)

    Winkler, P.

    1998-01-01

    When it was suggested that a new recombination mechanism (Resonant Radiative Recombination (RRR)) which, based on very general physical arguments, should happen in dense plasmas and promises to provide useful information for the local temperature and density diagnostics of plasmas, they assumed the existence of screening resonances. For model potentials the existence of screening resonances has been demonstrated beyond reasonable doubt in a number of calculations. The key question, how well those potentials describe the dominant effects of a real plasma remains open. The relation of theoretical predictions to experimentally measurable effects is an important issue at the present stage of their research. In particular, RRR is expected to account for enhanced recombination rates of low energetic electrons with their ions, since the first stage is the resonant capture of a slow electron by an atom or ion. The mechanism that traps an electron is a combination of complicated many-body interactions of the ions and electrons. For clarity they start here, however, with a discussion in terms of local potential traps the shapes of which are determined predominantly and in an average way by two factors: the degree of screening present at the ionic site and the degree of short-range order in the immediate neighborhood of this ion

  12. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  13. Analysis and design of a coupled coaxial line TEM resonator for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Benahmed, Nasreddine; Feham, Mohammed; Khelif, M'Hamed

    2006-01-01

    In this paper, we have successfully realized a numerical tool to analyse and to design an n-element unloaded coaxial line transverse electromagnetic (TEM) resonator. This numerical tool allows the determination of the primary parameters, matrices [L], [C] and [R], and simulates the frequency response of S 11 at the RF port of the designed TEM resonator. The frequency response permits evaluation of the unloaded quality factor Q 0 . As an application, we present the analysis and the design of an eight-element unloaded TEM resonator for animal studies at 4.7 T. The simulated performance has a -62.81 dB minimum reflection and a quality factor of 260 around 200 MHz

  14. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    Science.gov (United States)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  15. Resonance Spectrum Characteristics of Effective Electromechanical Coupling Coefficient of High-Overtone Bulk Acoustic Resonator

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available A high-overtone bulk acoustic resonator (HBAR consisting of a piezoelectric film with two electrodes on a substrate exhibits a high quality factor (Q and multi-mode resonance spectrum. By analyzing the influences of each layer’s material and structure (thickness parameters on the effective electromechanical coupling coefficient (Keff2, the resonance spectrum characteristics of Keff2 have been investigated systematically, and the optimal design of HBAR has been provided. Besides, a device, corresponding to one of the theoretical cases studied, is fabricated and evaluated. The experimental results are basically consistent with the theoretical results. Finally, the effects of Keff2 on the function of the crystal oscillators constructed with HBARs are proposed. The crystal oscillators can operate in more modes and have a larger frequency hopping bandwidth by using the HBARs with a larger Keff2·Q.

  16. Disorder parameter of confinement

    International Nuclear Information System (INIS)

    Nakamura, N.; Ejiri, S.; Matsubara, Y.; Suzuki, T.

    1996-01-01

    The disorder parameter of confinement-deconfinement phase transition based on the monopole action determined previously in SU(2) QCD are investigated. We construct an operator which corresponds to the order parameter defined in the abelian Higgs model. The operator shows proper behaviors as the disorder parameter in the numerical simulations of finite temperature QCD. (orig.)

  17. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    International Nuclear Information System (INIS)

    Dorogush, E S; Afonenko, A A

    2015-01-01

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  18. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dorogush, E S; Afonenko, A A [Belarusian State University, Minsk (Belarus)

    2015-12-31

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  19. Reduction of centrifugal fan noise by use of resonators

    Science.gov (United States)

    Neise, W.; Koopmann, G. H.

    1980-11-01

    A method by which an acoustic resonator can be used to reduce at source the aerodynamic noise generated by turbomachinery has been investigated experimentally. The casing of a small, centrifugal blower was modified by replacing the cut-off of the scroll with the mouth of a quarter-wavelength resonator. The mouth of the resonator was constructed from a series of perforated plates with the same curvature as the cut-off to preserve the original geometry of the casing. Tuning of the resonator was achieved by changing the length via a movable end plug. The noise measurements were made in an anechoically terminated outlet duct at nearly a free delivery operating condition of the blower. With appropriate tuning of the resonator, reductions in the blade passing frequency tones of up to 29 dB were observed with corresponding overall sound pressure levels reductions of up to 7 dB(A). Parameters which influenced the band width of the resonator response were the porosity and the size of the resonator mouth and the flow velocity near the cut-off region. Throughout the tests, the aerodynamic performance of the blower was unaffected by the addition of the resonator to the casing.

  20. Continuous neutron slowing down theory applied to resonances

    International Nuclear Information System (INIS)

    Segev, M.

    1977-01-01

    Neutronic formalisms that discretize the neutron slowing down equations in large numerical intervals currently account for the bulk effect of resonances in a given interval by the narrow resonance approximation (NRA). The NRA reduces the original problem to an efficient numerical formalism through two assumptions: resonance narrowness with respect to the scattering bands in the slowing down equations and resonance narrowness with respect to the numerical intervals. Resonances at low energies are narrow neither with respect to the slowing down ranges nor with respect to the numerical intervals, which are usually of a fixed lethargy width. Thus, there are resonances to which the NRA is not applicable. To stay away from the NRA, the continuous slowing down (CSD) theory of Stacey was invoked. The theory is based on a linear expansion in lethargy of the collision density in integrals of the slowing down equations and had notable success in various problems. Applying CSD theory to the assessment of bulk resonance effects raises the problem of obtaining efficient quadratures for integrals involved in the definition of the so-called ''moderating parameter.'' The problem was solved by two approximations: (a) the integrals were simplified through a rationale, such that the correct integrals were reproduced for very narrow or very wide resonances, and (b) the temperature-broadened resonant line shapes were replaced by nonbroadened line shapes to enable analytical integration. The replacement was made in such a way that the integrated capture and scattering probabilities in each resonance were preserved. The resulting formalism is more accurate than the narrow-resonance formalisms and is equally as efficient

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  2. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining ...

  3. Nanoelectromechanical resonator for logic operations

    KAUST Repository

    Kazmi, Syed N. R.; Hafiz, Md A. Al; Chappanda, Karumbaiah N.; Ilyas, Saad; Holguin, Jorge; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e

  4. Magnetic Resonance Imaging of Stroke

    NARCIS (Netherlands)

    Bouts, Mark. J. R. J.; Wu, O.; Dijkhuizen, R. M.

    2017-01-01

    Magnetic resonance imaging (MRI) provides a powerful (neuro)imaging modality for the diagnosis and outcome prediction after (acute) stroke. Since MRI allows noninvasive, longitudinal, and three-dimensional assessment of vessel occlusion (with magnetic resonance angiography (MRA)), tissue injury

  5. D-wave resonances in three-body system Ps- with pure Coulomb and screened Coulomb (Yukawa) potentials

    International Nuclear Information System (INIS)

    Kar, S.; Ho, Y.K.

    2009-01-01

    We have investigated the doubly excited 1 D e resonance states of Ps - interacting with pure Coulomb and screened Coulomb (Yukawa) potentials employing highly correlated wave functions. For pure Coulomb interaction, in the framework of stabilization method and complex coordinate rotation method we have obtained two resonances below the n = 2 threshold of the Ps atom. For screened Coulomb interaction, we employ the stabilization method to extract resonance parameters. Resonance energies and widths for the 1 D e resonance states of Ps - for different screening parameter ranging from infinity (pure Coulomb case) to a small value are also reported. (author)

  6. Resonant neutron-induced atomic displacements

    Energy Technology Data Exchange (ETDEWEB)

    Elmaghraby, Elsayed K., E-mail: e.m.k.elmaghraby@gmail.com

    2017-05-01

    Highlights: • Neutron induced atomic displacements was investigated based on scattering of energy of neutron. • Model for cascade function (multiplication of displacements with increasing energy transfer) was proposed and justified. • Parameterizations for the dpa induced in all elements were performed. • Table containing all necessary parameters to calculate the displacement density induced by neutron is given. • Contribution of non resonance displacement and resonant-neutron induced displacements are distinguished. - Abstract: A model for displacement cascade function was modified to account for the continuous variation of displacement density in the material in response to neutron exposure. The model is based on the Gaussian distribution of displacement energies of atoms in a material. Analytical treatment for moderated epithermal neutron field was given in which the displacement density was divided into two terms, discrete-resonance term and continuum term. Calculation are done for all isotopes using ENDF/B VII.1 data files and temperature dependent cross section library. Weighted elemental values were reported a fitting was performed to obtain energy-dependent formula of displacement density and reduce the number of parameters. Results relevant the present specification of the cascade function are tabulated for each element to enable calculation of displacement density at any value of displacement energy in the between 5 eV and 55 eV.

  7. Gravitational wave production from preheating: parameter dependence

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Daniel G. [Theory Division, CERN, 1211 Geneva (Switzerland); Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es [Instituto de Física Teórica IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. (Spain)

    2017-10-01

    Parametric resonance is among the most efficient phenomena generating gravitational waves (GWs) in the early Universe. The dynamics of parametric resonance, and hence of the GWs, depend exclusively on the resonance parameter q . The latter is determined by the properties of each scenario: the initial amplitude and potential curvature of the oscillating field, and its coupling to other species. Previous works have only studied the GW production for fixed value(s) of q . We present an analytical derivation of the GW amplitude dependence on q , valid for any scenario, which we confront against numerical results. By running lattice simulations in an expanding grid, we study for a wide range of q values, the production of GWs in post-inflationary preheating scenarios driven by parametric resonance. We present simple fits for the final amplitude and position of the local maxima in the GW spectrum. Our parametrization allows to predict the location and amplitude of the GW background today, for an arbitrary q . The GW signal can be rather large, as h {sup 2Ω}{sub GW}( f {sub p} ) ∼< 10{sup −11}, but it is always peaked at high frequencies f {sub p} ∼> 10{sup 7} Hz. We also discuss the case of spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.

  8. Differentiation between early rheumatoid arthritis patients and healthy persons by conventional and dynamic contrast-enhanced magnetic resonance imaging

    DEFF Research Database (Denmark)

    Axelsen, Mette Bjørndal; Ejbjerg, B J; Hetland, M L

    2014-01-01

    OBJECTIVES: To identify the magnetic resonance imaging (MRI) parameter that best differentiates healthy persons and patients with early rheumatoid arthritis (RA), and to investigated responsiveness to treatment of various MRI parameters. METHOD: Conventional MRI and dynamic contrast-enhanced (DCE...

  9. Probabilistic interpretation of resonant states

    Indian Academy of Sciences (India)

    The present paper reviews the basic definition of the resonant state in quantum ... We show that particles leak from the central region in the resonant state. The ..... The basic idea is as follows (figure 4): Consider a resonant eigenstate. Φn(x ...

  10. Children's (Pediatric) Magnetic Resonance Imaging

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  11. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  13. Introduction lecture to magnetic resonance

    International Nuclear Information System (INIS)

    Conard, J.

    1980-01-01

    This lecture deals with all that is common either to electron paramagnetic resonance (E.P.R.) or to nuclear magnetic resonance (N.M.R.). It will present, in an as elementary form as possible, the main concepts used in magnetic resonance emphasizing some aspects, specific for interface science. (orig./BHO)

  14. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging ( ... the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  16. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  17. Nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Lambert, R.

    1991-01-01

    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  18. A New Resonance Tube

    Science.gov (United States)

    Bates, Alan

    2017-12-01

    The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at the point where sound is perceived to have maximum loudness, or at the point where the amplitude of the standing wave has maximum value, namely an antinode. An antinode coincides with the position of the tuning fork, beyond the end of the air column, which consequently introduces an end correction. One way to minimize this end correction is to measure the distance between consecutive antinodes.

  19. Resonance of curved nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Calabri, L [CNR-INFM-National Research Center on nanoStructures and bioSystems at Surfaces (S3), Via Campi 213/a, 41100 Modena (Italy); Pugno, N [Department of Structural Engineering and Geotechnics, Politecnico di Torino, Turin (Italy); Ding, W [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111 (United States); Ruoff, R S [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111 (United States)

    2006-08-23

    The effects of non-ideal experimental configuration on the mechanical resonance of boron (B) nanowires (NWs) were studied to obtain the corrected value for the Young's modulus. The following effects have been theoretically considered: (i) the presence of intrinsic curvature (ii) non-ideal clamps (iii) spurious masses (iv) coating layer, and (v) large displacements. An energy-based analytical analysis was developed to treat such effects and their interactions. Here, we focus on treating the effect of the intrinsic curvature on the mechanical resonance. The analytical approach has been confirmed by numerical FEM analysis. A parallax method was used to obtain the three-dimensional geometry of the NW.

  20. Plasmon resonance in multilayer graphene nanoribbons

    DEFF Research Database (Denmark)

    Emani, Naresh Kumar; Wang, Di; Chung, Ting Fung

    2015-01-01

    Plasmon resonances in nanopatterned single-layer graphene nanoribbons (SL-GNRs), double-layer graphene nanoribbons (DL-GNRs) and triple-layer graphene nanoribbons (TL-GNRs) are studied experimentally using 'realistic' graphene samples. The existence of electrically tunable plasmons in stacked...... multilayer graphene nanoribbons was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNRs when compared to SL-GNRs. However, further increase was not observed in TL-GNRs when compared to DL-GNRs. We carried out systematic full......-wave simulations using a finite-element technique to validate and fit experimental results, and extract the carrier-scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for an unpatterned SLG sheet, and a qualitative agreement for a patterned graphene sheet...

  1. Nonlinear relativistic plasma resonance: Renormalization group approach

    Energy Technology Data Exchange (ETDEWEB)

    Metelskii, I. I., E-mail: metelski@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kovalev, V. F., E-mail: vfkvvfkv@gmail.com [Dukhov All-Russian Research Institute of Automatics (Russian Federation); Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.

  2. Photon scattering by the giant dipole resonance

    International Nuclear Information System (INIS)

    Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.

    1979-01-01

    Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables

  3. Antiferromagnetic resonance excited by oscillating electric currents

    Science.gov (United States)

    Sluka, Volker

    2017-12-01

    In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that can be in the terahertz range, making them interesting components for spintronic devices. Here, it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-dependent interplay between spin torque, ac spin accumulation, and magnetic degrees of freedom is studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent conductivity of the normal metal. Further, a comparison is made between spin-current-induced and Oersted-field-induced excitation under the condition of constant power injection.

  4. Measurement of the resonance escape probability

    International Nuclear Information System (INIS)

    Anthony, J.P.; Bacher, P.; Lheureux, L.; Moreau, J.; Schmitt, A.P.

    1957-01-01

    The average cadmium ratio in natural uranium rods has been measured, using equal diameter natural uranium disks. These values correlated with independent measurements of the lattice buckling, enabled us to calculate values of the resonance escape probability for the G1 reactor with one or the other of two definitions. Measurements were performed on 26 mm and 32 mm rods, giving the following values for the resonance escape probability p: 0.8976 ± 0.005 and 0.912 ± 0.006 (d. 26 mm), 0.8627 ± 0.009 and 0.884 ± 0.01 (d. 32 mm). The influence of either definition on the lattice parameters is discussed, leading to values of the effective integral. Similar experiments have been performed with thorium rods. (author) [fr

  5. Ultraminiature resonator accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, D.R.; Kravitz, S.H.; Vianco, P.T.

    1996-04-01

    A new family of microminiature sensors and clocks is being developed with widespread application potential for missile and weapons applications, as biomedical sensors, as vehicle status monitors, and as high-volume animal identification and health sensors. To satisfy fundamental technology development needs, a micromachined clock and an accelerometer have initially been undertaken as development projects. A thickness-mode quartz resonator housed in a micromachined silicon package is used as the frequency-modulated basic component of the sensor family. Resonator design philosophy follows trapped energy principles and temperature compensation methodology through crystal orientation control, with operation in the 20--100 MHz range, corresponding to quartz wafer thicknesses in the 75--15 micron range. High-volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Chemical etching of quartz, as well as micromachining of silicon, achieves the surface and volume mechanical features necessary to fashion the resonating element and the mating package. Integration of the associated oscillator and signal analysis circuitry into the silicon package is inherent to the realization of a size reduction requirement. A low temperature In and In/Sn bonding technology allows assembly of the dissimilar quartz and silicon materials, an otherwise challenging task. Unique design features include robust vibration and shock performance, capacitance sensing with micromachined diaphragms, circuit integration, capacitance-to-frequency transduction, and extremely small dimensioning. Accelerometer sensitivities were measured in the 1--3 ppm/g range for the milligram proof-mass structures employed in the prototypes evaluated to date.

  6. Magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Takavar A

    1993-04-01

    Full Text Available Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I, a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D. factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  7. Magnetic resonance imaging (MRI)

    OpenAIRE

    Takavar A

    1993-01-01

    Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I), a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D.) factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  8. Resonant state expansions

    International Nuclear Information System (INIS)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  9. Study of 234U(n,f) Resonances Measured at the CERN n_TOF Facility

    CERN Document Server

    Leal-Cidoncha, E; Paradela, C; Tarrío, D; Leong, L S; Audouin, L; Tassan-Got, L; Praena, J; Berthier, B; Ferrant, L; Isaev, S; Le Naour, C; Stephan, C; Trubert, D; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Bečvář, F; Berthoumieux, E; Calviño, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P.; Chepel, V; Chiaveri, E.; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S.; Dillmann, I; Domingo-Pardo, C; Dridi, W; Eleftheriadis, C; Embid-Segura, M; Ferrari, A.; Ferreira-Marques, R; Fujii, K; Furman, W; Gonçalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A.; Igashira, M; Jericha, E; Kadi, Y.; Käppeler, F; Karadimos, D; Kerveno, M; Koehler, P; Kossionides, E; Krtička, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papadopoulos, C; Pavlik, A; Pavlopoulos, P.; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T.; Reifarth, R; Rubbia, C.; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L.; Savvidis, I; Tagliente, G; Tain, J L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A.; Villamarin, D; Vincente, M C; Vlachoudis, V.; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2014-01-01

    We present the analysis of the resolved resonance region for the U-234(n,f) cross section data measured at the CERN n\\_TOF facility. The resonance parameters in the energy range from 1 eV to 1500 eV have been obtained with the SAMMY code by using as initial parameters for the fit the resonance parameters of the JENDL-3.3 evaluation. In addition, the statistical analysis has been accomplished, partly with the SAMDIST code, in order to study the level spacing and the Mehta-Dyson correlation.

  10. Reich-Moore and Adler-Adler representations of the 235U cross sections in the resolved resonance region

    International Nuclear Information System (INIS)

    de Saussure, G.; Leal, L.C.; Perez, R.B.

    1990-01-01

    In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters. 25 refs., 4 figs., 5 tabs

  11. Reich-Moore and Adler-Adler representations of the 235U cross sections in the resolved resonance region

    International Nuclear Information System (INIS)

    Saussure, G. de; Leal, L.C.; Perez, R.B.

    1990-01-01

    In the first part of this paper, a reevaluation of the low-energy neutron cross sections of 235 U is described. This reevaluation was motivated by the discrepancy between the measured and computed temperature coefficients of reactivity and is based on recent measurements of the fission cross section and of η in the thermal and subthermal neutron energy regions. In the second part of the paper, we discuss the conversion of the Reich-Moore resonance parameters, describing the neutron cross sections of 235 U in the resolved resonance region, into equivalent Adler-Adler resonance parameters and into equivalent momentum space multipole resonance parameters

  12. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  13. Optical resonator theory

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaeg Won; Cho, Sunh Oh; Jeong, Young Uk; Lee, Byung Cheol; Lee, Jong Min

    2000-10-01

    In this report we present a theoretical study of bare optical resonators having in mind to extend it to active resonators. To compute diffractional losses, phase shifts, intensity distributions and phases of radiation fields on mirrors, we coded a package of numerical procedures on bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, are programmed for finding numeric solutions to the pair of integral equations. The iterative method had been tried by Fox and Li, but it was not applicable to cases for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this report, we implemented the matrix method to extend the computational limit further. A great deal of case studies are carried out with various configurations of stable and unstable resonators. Our results presented in this report show not only a good agreement with the results previously obtained by Fox and Li, but also a legitimacy of our numerical procedures in high Fresnel numbers.

  14. Resonances in atomic few-body systems

    International Nuclear Information System (INIS)

    Mezei, J.Zs.; Kruppa, A.T.

    2005-01-01

    Complete text of publication follows. The variational method using a correlated Gaussian basis (SVM, see [1]) has proved to be an excellent method in calculating the characteristics of bound-states. Its trial and error procedures are very powerful to select an optimal basis, while the simple form of the trial function simplifies the calculations, because most of the matrix elements have analytic form. Combining the SVM with the complex rotational technique we are able to determine auto-ionizing states of Coulombic systems with three or more charged particles. Performing the complex rotation of the coordinates (r → re iθ the complex scaled Hamiltonian of a Coulombic system - only Coulomb interactions act between the particles - is a simple function of the rotational angle H(θ) Te -2iθ + Ve -iθ , where T,V are the kinetic and the potential energies of the system. In order to find the complex eigen energies of the rotated Hamiltonian, we have to solve the equation det/e -i2θ T i,j + e -iθ V ij - EΔ ij / = 0, where T ij and V i,j are the matrix elements of the original kinetic energy operator and the potential energy operator, while Δ ij are the overlap integrals of the basis elements. The SVM optimizes the non-linear parameters of the basis in a very specific way in order to get the best ground state energy. In the calculation of the excited auto-ionizing states we used the same set of parameters as for the ground state, because there are no simple recipes to optimize the parameters of a basis in a resonance state calculation. We have found that with the same set of non- linear parameters as for the ground state, we are able to describe all resonances of the Ps - (e + + e - + e - ) system calculated by Ho. We get almost the same accuracy as Ho, although Ho uses different bases for each resonant state. For the second resonance state in Table 1, our width is an order-of-magnitude smaller than Ho's, but our result is in a good agreement with recent calculations

  15. Injection-controlled laser resonator

    Science.gov (United States)

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  16. Electron paramagnetic resonance field-modulation eddy-current analysis of silver-plated graphite resonators

    Science.gov (United States)

    Mett, Richard R.; Anderson, James R.; Sidabras, Jason W.; Hyde, James S.

    2005-09-01

    Magnetic field modulation is often introduced into a cylindrical TE011 electron paramagnetic resonance (EPR) cavity through silver plating over a nonconductive substrate. The plating thickness must be many times the skin depth of the rf and smaller than the skin depth of the modulation. We derive a parameter that quantifies the modulation field penetration and find that it also depends on resonator dimensions. Design criteria based on this parameter are presented graphically. This parameter is then used to predict the behavior of eddy currents in substrates of moderate conductivity, such as graphite. The conductivity of the graphite permits improved plating uniformity and permits use of electric discharge machining (EDM) techniques to make the resonator. EDM offers precision tolerances of 0.005 mm and is suitable for small, complicated shapes that are difficult to machine by other methods. Analytic predictions of the modulation penetration are compared with the results of finite-element simulations. Simulated magnetic field modulation uniformity and penetration are shown for several elemental coils and structures including the plated graphite TE011 cavity. Fabrication and experimental testing of the structure are discussed. Spatial inhomogeneity of the modulation phase is also investigated by computer simulation. We find that the modulation phase is uniform to within 1% over the TE011 cavity. Structures of lower symmetry have increased phase nonuniformity.

  17. Formalism for neutron cross section covariances in the resonance region using kernel approximation

    Energy Technology Data Exchange (ETDEWEB)

    Oblozinsky, P.; Cho,Y-S.; Matoon,C.M.; Mughabghab,S.F.

    2010-04-09

    We describe analytical formalism for estimating neutron radiative capture and elastic scattering cross section covariances in the resolved resonance region. We use capture and scattering kernels as the starting point and show how to get average cross sections in broader energy bins, derive analytical expressions for cross section sensitivities, and deduce cross section covariances from the resonance parameter uncertainties in the recently published Atlas of Neutron Resonances. The formalism elucidates the role of resonance parameter correlations which become important if several strong resonances are located in one energy group. Importance of potential scattering uncertainty as well as correlation between potential scattering and resonance scattering is also examined. Practical application of the formalism is illustrated on {sup 55}Mn(n,{gamma}) and {sup 55}Mn(n,el).

  18. Persistence, resistance, resonance

    Science.gov (United States)

    Tsadka, Maayan

    Sound cannot travel in a vacuum, physically or socially. The ways in which sound operates are a result of acoustic properties, and the ways by which it is considered to be music are a result of social constructions. Therefore, music is always political, regardless of its content: the way it is performed and composed; the choice of instrumentation, notation, tuning; the medium of its distribution; its inherent hierarchy and power dynamics, and more. My compositional praxis makes me less interested in defining a relationship between music and politics than I am in erasing---or at least blurring---the borders between them. In this paper I discuss the aesthetics of resonance and echo in their metaphorical, physical, social, and musical manifestations. Also discussed is a political aesthetic of resonance, manifested through protest chants. I transcribe and analyze common protest chants from around the world, categorizing and unifying them as universal crowd-mobilizing rhythms. These ideas are explored musically in three pieces. Sumud: Rhetoric of Resistance in Three Movements, for two pianos and two percussion players, is a musical interpretation of the political/social concept of sumud, an Arabic word that literally means "steadfastness" and represents Palestinian non-violent resistance. The piece is based on common protest rhythms and uses the acoustic properties inherent to the instruments. The second piece, Three Piano Studies, extends some of the musical ideas and techniques used in Sumud, and explores the acoustic properties and resonance of the piano. The final set of pieces is part of my Critical Mess Music Project. These are site-specific musical works that attempt to blur the boundaries between audience, performers and composer, in part by including people without traditional musical training in the process of music making. These pieces use the natural structure and resonance of an environment, in this case, locations on the UCSC campus, and offer an active

  19. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  20. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    Science.gov (United States)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  1. Study of some properties of 's' neutron resonance parameters for target nuclei I = 1/2 and I = 3/2 in function of spin value J = I + 1/2 in the energy range 1 {yields} 5000 eV; Etude de quelques proprietes des parametres de resonances des neutrons ''s'' pour des noyaux cibles I = 1/2 et I = 3/2 en fonction de la valeur du spin J = I + 1/2 dans le domaine d'energie 1 eV {yields} 5000 eV

    Energy Technology Data Exchange (ETDEWEB)

    Julien, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-05-15

    Different kinds of experiments and analysis methods allowing to achieve neutron resonances parameters in the low energy range (1 eV {yields} 5000 eV) are described. A great deal of effort to improve experimental conditions and data processing in order to know the spin value J = I {+-} 1/2 has been spent. The time of flight method was used. A few target nuclei I = 3/2 and 1 = 1/2 have been studied. For I = 3/2 (Ga, As, 3r, Au) we find S{sub o} J = 2 {approx_equal} 2 S{sub o} J = 1 and S{sub o} J = 1 {approx_equal} S{sub o} J = 0 for I = 1/2 (Tm, Pt) but {sup 77}Se. Fluctuations of the total radiative width {gamma}{sub {gamma}} depend on the spin value I = I {+-} 1/2 when E1 transition, are enhanced for one of the both spin states. The magnitude of these fluctuations can be explained of the strength of E1 transitions (E{sub {gamma}} {approx} 7 MeV) is supposed to be proportional to E{sup 5}{sub {gamma}} instead of E{sup 3}{sub {gamma}}. The distribution of levels spacings against spin value J are considered and are compared to theoretical predictions. (author) [French] On decrit les differentes methodes d'analyse permettant d'obtenir les parametres des resonances de neutron dans le domaine d'energie 1 eV {yields} 5000 eV. Un effort particulier a ete fait pour connaitre la valeur du spin J = I {+-} 1/2. Les types d'experience et les analyses des donnees, developpes et ameliores pour determiner J sont decrits. Les resultats obtenus ont permis l'etude de differentes proprietes en fonction du spin J. On trouve: S{sub o} J 2 {approx_equal} 2 S{sub o} J = 1 pour les noyaux I = 3/2 etudies (Ga, As, Br, Au) et S{sub o} J = 1 {approx_equal} S{sub o} J = 0 Pour le Tm et {sup 195}Pt de spin I = 1/2. On constate que les largeurs radiatives totales {gamma}{sub {gamma}} fluctuent si des transitions E1 aux premiers etats excites sont favorisees. Ces fluctuations peuvent etre expliquees si on suppose que les intensites de ces transitions sont proportionnelles a E{sup 5}{sub {gamma

  2. Progress on Chinese evaluated nuclear parameters library (CENPL). Pt. 3

    International Nuclear Information System (INIS)

    Su Zongdi; Ge Zhigang; Zhou Chunmei

    1994-01-01

    The progress on Chinese evaluated nuclear parameters library (CENPL) is introduced. The setting up work of each sub-library of CENPL has got some new progresses at the past period. These sub-libraries are atomic mass and characteristic constant for nuclear ground state sub-library, discrete level scheme and batch ratio of γ decay sub-library, level density parameter sub-library, giant dipole resonance parameter for γ-ray strength function sub-library and optical model parameter sub-library

  3. Optimum condition for spatial ion cyclotron resonance in a multiple magnetic mirror field

    International Nuclear Information System (INIS)

    Mieno, Tetsu; Hatakeyama, Rikizo; Sato, Noriyoshi

    1988-01-01

    A Spatial cyclotron resonance of ion beams passing through a multiple magnetic mirror field is investigated experimentally by varying parameters of the multiple mirror field. The optimum resonance condition is realized with a decrease in the cell length of the multiple mirror along the beams to satisfy the local condition of the spatial ion cyclotron resonance. The results show a remarkable increase of nonadiabatic transfer of the beam energy into the transverse direction to the magnetic field. (author)

  4. Analytically continued Fock space multi-reference coupled-cluster theory: Application to the shape resonance

    International Nuclear Information System (INIS)

    Pal, Sourav; Sajeev, Y.; Vaval, Nayana

    2006-01-01

    The Fock space multi-reference coupled-cluster (FSMRCC) method is used for the study of the shape resonance energy and width in an electron-atom/molecule collision. The procedure is based upon combining a complex absorbing potential (CAP) with FSMRCC theory. Accurate resonance parameters are obtained by solving a small non-Hermitian eigen-value problem. We study the shape resonances in e - -C 2 H 4 and e - -Mg

  5. Resonant frequencies of massless scalar field in rotating black-brane spacetime

    Institute of Scientific and Technical Information of China (English)

    Jing Ji-Liang; Pan Qi-Yuan

    2008-01-01

    This paper investigates the resonant frequencies of the massless scalar field in the near extremal Kerr-like black-brahe spacetime. It is shown that the different angular quantum number will present different resonant frequencies. It is also shown that the real part of the resonant frequencies increases as the compact dimensions parameter μi increases, but the magnitude of the imaginary part decreases as μi increases.

  6. Cosmological Parameters 2000

    OpenAIRE

    Primack, Joel R.

    2000-01-01

    The cosmological parameters that I emphasize are the age of the universe $t_0$, the Hubble parameter $H_0 \\equiv 100 h$ km s$^{-1}$ Mpc$^{-1}$, the average matter density $\\Omega_m$, the baryonic matter density $\\Omega_b$, the neutrino density $\\Omega_\

  7. Unresolved resonance self shielding calculation: causes and importance of discrepancies

    International Nuclear Information System (INIS)

    Ribon, P.; Tellier, H.

    1986-09-01

    To compute the self shielding coefficient, it is necessary to know the point-wise cross-sections. In the unresolved resonance region, we do not know the parameters of each level but only the average parameters. Therefore we simulate the point-wise cross-section by random sampling of the energy levels and resonance parameters with respect to the Wigner law and the X 2 distributions, and by computing the cross-section in the same way as in the resolved regions. The result of this statistical calculation obviously depends on the initial parameters but also on the method of sampling, on the formalism which is used to compute the cross-section or on the weighting neutron flux. In this paper, we will survey the main phenomena which can induce discrepancies in self shielding computations. Results are given for typical dilutions which occur in nuclear reactors. 8 refs

  8. Unresolved resonance self shielding calculation: causes and importance of discrepancies

    International Nuclear Information System (INIS)

    Ribon, P.; Tellier, H.

    1986-01-01

    To compute the self shielding coefficient, it is necessary to know the point-wise cross-sections. In the unresolved resonance region, the parameters of each level are not known; only the average parameters. Therefore the authors simulate the point-wise cross-section by random sampling of the energy levels and resonance parameters with respect to the Wigner law and the x 2 distributions, and by computing the cross-section in the same way as in the resolved regions. The result of this statistical calculation obviously depends on the initial parameters but also on the method of sampling, on the formalism which is used to compute the cross-section or on the weighting neutron flux. In this paper, the authors survey the main phenomena which can induce discrepancies in self shielding computations. Results are given for typical dilutions which occur in nuclear reactors

  9. Top partner-resonance interplay in a composite Higgs framework

    Science.gov (United States)

    Yepes, Juan; Zerwekh, Alfonso

    2018-04-01

    Guided us by the scenario of weak scale naturalness and the possible existence of exotic resonances, we have explored in a SO(5) Composite Higgs setup the interplay among three matter sectors: elementary, top partners and vector resonances. We parametrize it through explicit interactions of spin-1 SO(4)-resonances, coupled to the SO(5)-invariant fermionic currents and tensors presented in this work. Such invariants are built upon the Standard Model fermion sector as well as top partners sourced by the unbroken SO(4). The mass scales entailed by the top partner and vector resonance sectors will control the low energy effects emerging from our interplaying model. Its phenomenological impact and parameter spaces have been considered via flavor-dijet processes and electric dipole moments bounds. Finally, the strength of the Nambu-Goldstone symmetry breaking and the extra couplings implied by the top partner mass scales are measured in accordance with expected estimations.

  10. Study on 2D arbitrary geometry coupling resonance method

    International Nuclear Information System (INIS)

    He Lei; Wu Hongchun; Cao Liangzhi

    2014-01-01

    The paper firstly proposes a coupling resonance method in which subgroup method is employed in the serried peak energy region, and wavelet expansion method is employed in single peak energy region. The original subgroup model and wavelet expansion model are improved and coupled through the calculation of scattering source from subgroup to wavelet expansion, so that the self-shielding cross section in the whole energy region can be calculated accurately. To verify these theories and to prove the improvements, a PWR cell benchmark problem is calculated. It is demonstrated that, compared with other traditional multi-group resonance methods and continuous energy resonance method, this coupling resonance method has the ability to accurately calculate the whole energy region's self-shielding cross section while Keeping enough efficiency and finally has an ability to offer the accurate self-shielding parameters for latter transport, calculation. (authors)

  11. Doubly excited P-wave resonance states of H− in Debye plasmas

    International Nuclear Information System (INIS)

    Jiao, L. G.; Ho, Y. K.

    2013-01-01

    We investigate the doubly excited P-wave resonance states of H − system in Debye plasmas modeled by static screened Coulomb potentials. The screening effects of the plasma environment on resonance parameters (energy and width) are investigated by employing the complex-scaling method with Hylleraas-type wave functions for both the shape and Feshbach resonances associated with the H(N = 2 to 6) thresholds. Under the screening conditions, the H(N) threshold states are no longer l degenerate, and all the H − resonance energy levels are shifted away from their unscreened values toward the continuum. The influence of Debye plasmas on resonance widths has also been investigated. The shape resonance widths are broadened with increasing plasma screening strength, whereas the Feshbach resonance widths would generally decrease. Our results associated with the H(N = 2) and H(N = 3) thresholds are compared with others in the literature

  12. Influence of the whispering-gallery mode resonators shape on its inertial movement sensitivity

    Science.gov (United States)

    Filatov, Yuri V.; Kukaev, Alexander S.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2018-01-01

    The optical whispering-gallery mode (WGM) resonators are axially symmetrical resonators with smooth edges, supporting the existence of the WGMs by the total internal reflection on the surface of the resonator. As of today, various types of such resonators have been developed, namely the ball shaped, tor shaped, bottle shaped, disk shaped, etc. The movement of WGM resonators in inertial space causes the changes in their shape. The result is a spectral shift of the WGMs. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement in different manners. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. The work is devoted to investigation of these aspects.

  13. The influence of the whispering gallery modes resonators shape on their sensitivity to the movement

    Science.gov (United States)

    Filatov, Yuri V.; Govorenko, Ekaterina V.; Kukaev, Alexander S.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2017-05-01

    The optical whispering gallery modes resonators are axially symmetrical resonators with smooth edges, supporting the existence of the whispering gallery modes by the total internal reflection on the surface of the resonator. For today various types of such resonators were developed, namely the ball-shaped, tor-shaped, bottle-shaped, disk-shaped etc. The movement of whispering gallery modes resonators in inertial space causes the changes of their shape. The result is a spectral shift of the whispering gallery modes. Optical methods allow to register this shift with high precision. It can be used in particular for the measurement of angular velocities in inertial orientation and navigation systems. However, different types of resonators react to the movement on a miscellaneous. In addition, their sensitivity to movement can be changed when changing the geometric parameters of these resonators. This work is devoted to a research of these aspects.

  14. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  15. String Resonances at Hadron Colliders

    CERN Document Server

    Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R

    2014-01-01

    [Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...

  16. Low rank magnetic resonance fingerprinting.

    Science.gov (United States)

    Mazor, Gal; Weizman, Lior; Tal, Assaf; Eldar, Yonina C

    2016-08-01

    Magnetic Resonance Fingerprinting (MRF) is a relatively new approach that provides quantitative MRI using randomized acquisition. Extraction of physical quantitative tissue values is preformed off-line, based on acquisition with varying parameters and a dictionary generated according to the Bloch equations. MRF uses hundreds of radio frequency (RF) excitation pulses for acquisition, and therefore high under-sampling ratio in the sampling domain (k-space) is required. This under-sampling causes spatial artifacts that hamper the ability to accurately estimate the quantitative tissue values. In this work, we introduce a new approach for quantitative MRI using MRF, called Low Rank MRF. We exploit the low rank property of the temporal domain, on top of the well-known sparsity of the MRF signal in the generated dictionary domain. We present an iterative scheme that consists of a gradient step followed by a low rank projection using the singular value decomposition. Experiments on real MRI data demonstrate superior results compared to conventional implementation of compressed sensing for MRF at 15% sampling ratio.

  17. Strangeness photoproduction and hadronic resonances

    International Nuclear Information System (INIS)

    David, J.C.

    1994-09-01

    The purpose of this thesis is to study the kaon photoproduction off a proton (γp → K + Λ,γp → K + Σ 0 , γp → K 0 Σ + ), with a photon energy between 0.9 and 2.1 GeV. We use an isobaric model where the amplitudes are computed with Feynman diagrams. The insertion of nucleonic resonances with spin 3/2 and 5/2 is necessary to improve the existing models beyond 1.5 GeV. This step is also necessary to extend the elementary process of photoproduction to electroproduction where the data have been taken with photon energies above 2.0 GeV. The parameters of our models are the coupling constants which appear at each Feynman diagram vertex. They are determined by fitting our models to the experimental data (cross sections, polarization asymmetries). Before performing the minimization we drew some informations about coupling constants from mesonic and electromagnetic decays, and from SU(3) and SU(6) symmetries. In conclusion, the models developed here reproduce the experimental data (E γ ≤ 2.0 GeV) and the two main coupling constants are in good agreement with broken SU(3)-symmetry predictions. (author)

  18. Solidly mounted resonators aging under harsh environmental conditions

    International Nuclear Information System (INIS)

    Ivira, B; Fillit, R Y; Ndagijimana, F; Benech, Ph; Boussey, J; Parat, G; Ancey, P

    2006-01-01

    A contribution to reliability studies of Solidly Mounted Resonators (SMR) submitted to harsh environments such as temperature and humidity is presented. Electrical, structural and chemical monitoring of representative parameters is performed by means of RF, DC characterizations and also X-ray diffraction coupled to X-fluorescence to assess aging in microstructures. Results indicate that humidity affects samples stronger than high temperature. From viewpoint of robustness, non-negligible effects of SiO 2 mass-loading on antiresonance and resonance frequencies are reported. Drifts of parameters for a lonely resonator and filter transmission are both in good accordance. Finally, the need of a full sheet passivation layer is demonstrated in order to protect metals and Aluminum Nitride (AlN) against oxidation and pollutant compounds respectively

  19. Resonance frequency analysis

    Directory of Open Access Journals (Sweden)

    Rajiv K Gupta

    2011-01-01

    Full Text Available Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized

  20. Resonant driving of a nonlinear Hamiltonian system

    International Nuclear Information System (INIS)

    Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro

    2013-01-01

    As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.