WorldWideScience

Sample records for fan noise reduction

  1. Review of noise reduction methods for centrifugal fans

    Science.gov (United States)

    Neise, W.

    1981-11-01

    Several methods for the reduction of centrifugal fan noise are presented, the most of which are aimed at a lower blade passage frequency level. The methods are grouped into five categories: casing modifications to increase the distance between impeller and cutoff, the introduction of a phase shift of the source pressure fluctuations, impeller modifications, radial clearance between impeller eye and inlet nozzle, and acoustical measures. Resonators mounted at the cutoff of centrifugal fans appear to be a highly efficient and simple means of reducing the blade passage tone, and the method can be used for new fan construction and existing installations without affecting the aerodynamic performance of the fan.

  2. Wake Management Strategies for Reduction of Turbomachinery Fan Noise

    Science.gov (United States)

    Waitz, Ian A.

    1998-01-01

    The primary objective of our work was to evaluate and test several wake management schemes for the reduction of turbomachinery fan noise. Throughout the course of this work we relied on several tools. These include 1) Two-dimensional steady boundary-layer and wake analyses using MISES (a thin-shear layer Navier-Stokes code), 2) Two-dimensional unsteady wake-stator interaction simulations using UNSFLO, 3) Three-dimensional, steady Navier-Stokes rotor simulations using NEWT, 4) Internal blade passage design using quasi-one-dimensional passage flow models developed at MIT, 5) Acoustic modeling using LINSUB, 6) Acoustic modeling using VO72, 7) Experiments in a low-speed cascade wind-tunnel, and 8) ADP fan rig tests in the MIT Blowdown Compressor.

  3. Passive Techniques for Fan Noise Reduction in New Turbofan Engines: Review

    Directory of Open Access Journals (Sweden)

    M.Gorj-Bandpy

    2013-03-01

    Full Text Available Among the various environmental concerns, the aircraft noise item has been constantly growing in importance over the past years. Measures for its reduction at the source as well its mitigation around airports must take into account aspects of medicine and technical design as well as legal and land use planning aspects. Fan noise is one of the principal noise sources in turbofan aero-engines. In this paper a review of the main technologies employed for the reduction of fan noise turbofan engines is presented.

  4. Reduction of centrifugal fan noise by use of resonators

    Science.gov (United States)

    Neise, W.; Koopmann, G. H.

    1980-11-01

    A method by which an acoustic resonator can be used to reduce at source the aerodynamic noise generated by turbomachinery has been investigated experimentally. The casing of a small, centrifugal blower was modified by replacing the cut-off of the scroll with the mouth of a quarter-wavelength resonator. The mouth of the resonator was constructed from a series of perforated plates with the same curvature as the cut-off to preserve the original geometry of the casing. Tuning of the resonator was achieved by changing the length via a movable end plug. The noise measurements were made in an anechoically terminated outlet duct at nearly a free delivery operating condition of the blower. With appropriate tuning of the resonator, reductions in the blade passing frequency tones of up to 29 dB were observed with corresponding overall sound pressure levels reductions of up to 7 dB(A). Parameters which influenced the band width of the resonator response were the porosity and the size of the resonator mouth and the flow velocity near the cut-off region. Throughout the tests, the aerodynamic performance of the blower was unaffected by the addition of the resonator to the casing.

  5. Prediction and Reduction of Aerodynamic Noise of the Multiblade Centrifugal Fan

    Directory of Open Access Journals (Sweden)

    Shuiqing Zhou

    2014-08-01

    Full Text Available An aerodynamic and aeroacoustic investigation of the multiblade centrifugal fan is proposed in this paper, and a hybrid technique of combining flow field calculation and acoustic analysis is applied to solve the aeroacoustic problem of multiblade centrifugal fan. The unsteady flow field of the multiblade centrifugal fan is predicted by solving the incompressible Reynolds-averaged Navier-Stokes (RANS equations with conventional computing techniques for fluid dynamics. The principal noise source induced is extracted from the calculation of the flow field by using acoustic principles, and the modeled sources on inner and outer surfaces of the volute are calculated with multiregional boundary element method (BEM. Through qualitative analysis, the sound pressure amplitude distribution of the multiblade centrifugal fan in near field is given and the sound pressure level (SPL spectrum diagram of monitoring points in far field is obtained. Based on the analysis results, the volute tongue structure is adjusted and then a low-noise design for the centrifugal fan is proposed. The comparison of noise tests shows the noise reduction of improved fan model is more obvious, which is in good agreement with the prediction using the hybrid techniques.

  6. Aeroacoustic characteristics and noise reduction of a centrifugal fan for a vacuum cleaner

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Wan Ho; Rew, Ho Seon; Kim, Chang Joon [LG Electronics, Seoul (Korea, Republic of)

    2004-02-01

    The aeroacoustic characteristics of a centrifugal fan for a vacuum cleaner and its noise reduction method are studied in this paper. The major noise source of a vacuum cleaner is the centrifugal fan. The impeller of the fan rotates at over 30000 rpm, and generates very high-level noise. It was revealed that the dominant noise source is the aerodynamic interaction between the rotating impeller and stationary diffuser. The directivity of acoustic pressure showed that most of the noise propagates backward direction of the fan-motor assembly. In order to reduce the high tonal sound generated from the aerodynamic interaction, unevenly pitched impeller and diffuser, and tapered impeller designs were proposed and experiments were performed. Uneven pitch design of the impeller changes the sound quality while the overall Sound Power Level (SPL) and the performance remains similar. The effect of the tapered design of impeller was evaluated. The trailing edge of the tapered fan is inclined. This reduces the flow interaction between the rotating impeller and the stationary diffuser because of some phase shifts. The static efficiency of the new impeller design is slightly lower than the previous design. However, the overall SPL is reduced by about 4 dB(A). The SPL of the fundamental Blade Passing Frequency (BPF) is reduced by about 6 dB(A) and the 2{sup nd} BPF is reduced about 20 dB(A). The vacuum cleaner with the tapered impeller design produces lower noise level than the previous one, and the strong tonal sound was dramatically reduced.

  7. Aeroacoustic characteristics and noise reduction of a centrifugal fan for a vacuum cleaner

    International Nuclear Information System (INIS)

    Jeon, Wan Ho; Rew, Ho Seon; Kim, Chang Joon

    2004-01-01

    The aeroacoustic characteristics of a centrifugal fan for a vacuum cleaner and its noise reduction method are studied in this paper. The major noise source of a vacuum cleaner is the centrifugal fan. The impeller of the fan rotates at over 30000 rpm, and generates very high-level noise. It was revealed that the dominant noise source is the aerodynamic interaction between the rotating impeller and stationary diffuser. The directivity of acoustic pressure showed that most of the noise propagates backward direction of the fan-motor assembly. In order to reduce the high tonal sound generated from the aerodynamic interaction, unevenly pitched impeller and diffuser, and tapered impeller designs were proposed and experiments were performed. Uneven pitch design of the impeller changes the sound quality while the overall Sound Power Level (SPL) and the performance remains similar. The effect of the tapered design of impeller was evaluated. The trailing edge of the tapered fan is inclined. This reduces the flow interaction between the rotating impeller and the stationary diffuser because of some phase shifts. The static efficiency of the new impeller design is slightly lower than the previous design. However, the overall SPL is reduced by about 4 dB(A). The SPL of the fundamental Blade Passing Frequency (BPF) is reduced by about 6 dB(A) and the 2 nd BPF is reduced about 20 dB(A). The vacuum cleaner with the tapered impeller design produces lower noise level than the previous one, and the strong tonal sound was dramatically reduced

  8. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

    Science.gov (United States)

    Hughes, Christoper E.; Gazzaniga, John A.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  9. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    Science.gov (United States)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  10. Fan interaction noise reduction using a wake generator: experiments and computational aeroacoustics

    Science.gov (United States)

    Polacsek, C.; Desbois-Lavergne, F.

    2003-08-01

    A control grid (wake generator) aimed at reducing rotor-stator interaction modes in fan engines when mounted upstream of the rotor has been studied here. This device complements other active noise control systems currently proposed. The compressor model of the instrumented ONERA CERF-rig is used to simulate suitable conditions. The design of the grid is drafted out using semi-empirical models for wake and potential flow, and experimentally achieved. Cylindrical rods are able to generate a spinning mode of the same order and similar level as the interaction mode. Mounting the rods on a rotating ring allows for adjusting the phase of the control mode so that an 8 dB sound pressure level (SPL) reduction at the blade passing frequency is achieved when the two modes are out of phase. Experimental results are assessed by a numerical approach using computational fluid dynamics (CFD). A Reynolds averaged Navier-Stokes 2-D solver, developed at ONERA, is used to provide the unsteady force components on blades and vanes required for acoustics. The loading noise source term of the Ffowcs Williams and Hawkings equation is used to model the interaction noise between the sources, and an original coupling to a boundary element method (BEM) code is realized to take account of the inlet geometry effects on acoustic in-duct propagation. Calculations using the classical analytical the Green function of an infinite annular duct are also addressed. Simple formulations written in the frequency domain and expanded into modes are addressed and used to compute an in-duct interaction mode and to compare with the noise reduction obtained during the tests. A fairly good agreement between predicted and measured SPL is found when the inlet geometry effects are part of the solution (by coupling with the BEM). Furthermore, computed aerodynamic penalties due to the rods are found to be negligible. These results partly validate the computation chain and highlight the potential of the wake generator

  11. Acoustic Performance of Novel Fan Noise Reduction Technologies for a High Bypass Model Turbofan at Simulated Flights Conditions

    Science.gov (United States)

    Elliott, David M.; Woodward, Richard P.; Podboy, Gary G.

    2010-01-01

    Two novel fan noise reduction technologies, over the rotor acoustic treatment and soft stator vane technologies, were tested in an ultra-high bypass ratio turbofan model in the NASA Glenn Research Center s 9- by 15-Foot Low-Speed Wind Tunnel. The performance of these technologies was compared to that of the baseline fan configuration, which did not have these technologies. Sideline acoustic data and hot film flow data were acquired and are used to determine the effectiveness of the various treatments. The material used for the over the rotor treatment was foam metal and two different types were used. The soft stator vanes had several internal cavities tuned to target certain frequencies. In order to accommodate the cavities it was necessary to use a cut-on stator to demonstrate the soft vane concept.

  12. Reduction of Discrete-Frequency Fan Noise Using Slitlike Expansion Chambers

    Directory of Open Access Journals (Sweden)

    Akira Sadamoto

    2003-01-01

    Full Text Available As is generally known, discrete-frequency noises are radiated from fans due to rotor-stator interaction. Their fundamental frequency is the blade-passage frequency, which is determined by the number of rotor blades and their rotating speeds. To reduce such noises, several types of silencers have been designed. Among them, the authors noted a slitlike expansion chamber (hereafter referred to as slit, for simplicity and have studied its performance. A slit is a simple expansion chamber with a very short axial length that is placed in a duct. A slit with a circular cross-section that is concentric with a circular duct may be studied using the same interpretation as is used for a side-branch resonator muffler (closed-end tube connected to a duct; that is, the resonant frequency of a slit depends on its depth (with an open-end correction. It is expected, hence, that a slit might be applicable as a simple and axially compact silencer that is effective on discrete-frequency noises. In this article, the properties of a slit are introduced, and the applicability of a slit to actual rotating machinery is described using experimental data.

  13. Evaluation of Novel Liner Concepts for Fan and Airframe Noise Reduction

    Science.gov (United States)

    Jones, M. G.; Howerton, B. M.

    2016-01-01

    This paper presents a review of four novel liner concepts: soft vanes, over-the-rotor liners, external liners, and flap side-edge liners. A number of similarities in the design and evaluation of these concepts emerged during these investigations. Since these were the first attempts to study these particular liner concepts, there was limited information to guide the design process. In all cases, the target frequencies (or frequency range) were known, but the optimum acoustic impedance and optimum liner placement were typically not known. For these cases, the maximum available surface was used and a c-impedance was targeted based on the assumption the sound field impinges on the surface at normal incidence. This choice proved fruitful for every application. An impedance prediction model was used to design variable-depth liner configurations, and a graphical design code (ILIAD) was developed to aid in this process. The ability to build increasingly complex liner configurations via additive manufacturing was key, such that multiple designs could quickly be tested in a normal incidence impedance tube. The Two-Thickness Method was used to evaluate available bulk materials, such that bulk liners could also be considered for each application. These novel liner concepts provide sufficient noise reduction to warrant further investigations.

  14. Low-frequency noise reduction of fans using the acoustically treated duct; Kyuon duct ni yoru fan soon no teishuhaiki teigen

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K; Fujii, S [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering; Shirasaya, H [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    1994-12-25

    Reducing noise in a low frequency region of 1 kHz or less has become an important problem as a result of emergence of an ultra-high bypass engine in aircraft engines. Therefore, an attempt was made of experimenting and analyzing noise absorption characteristics in low-frequency noises. In the experiment, a low-frequency flow with an air volume of about 3 m{sup 3}/minute was made at a stable operating point of a fan device consisting of moving blades and static blades, with a sound absorbing duct disposed in the forward section. The duct is a 500-mm long steel box with an oblong cross section, in which the top and the bottom parts can move vertically, and a variable air layer was formed between a sound absorbing material (a sheet material made of microfine spherical resin powders solidified to a thickness of 6 mm) and a rigid wall made of iron plate. Noise waves and sound absorption amount were measured on different air layer thicknesses, and analyzed theoretically. As a result, such findings were obtained as: the sound absorption amount is affected by the main stream direction mode of sound pressures in cavity; valleys are formed where the sound absorption amount decreases remarkably in a specific cycle; and peaks are built where the sound absorption amount increases in other regions. 7 refs., 12 figs.

  15. Enhanced Fan Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Krejsa, Eugene A.; Stone, James R.

    2014-01-01

    This report describes work by consultants to Diversitech Inc. for the NASA Glenn Research Center (GRC) to revise the fan noise prediction procedure based on fan noise data obtained in the 9- by 15 Foot Low-Speed Wind Tunnel at GRC. The purpose of this task is to begin development of an enhanced, analytical, more physics-based, fan noise prediction method applicable to commercial turbofan propulsion systems. The method is to be suitable for programming into a computational model for eventual incorporation into NASA's current aircraft system noise prediction computer codes. The scope of this task is in alignment with the mission of the Propulsion 21 research effort conducted by the coalition of NASA, state government, industry, and academia to develop aeropropulsion technologies. A model for fan noise prediction was developed based on measured noise levels for the R4 rotor with several outlet guide vane variations and three fan exhaust areas. The model predicts the complete fan noise spectrum, including broadband noise, tones, and for supersonic tip speeds, combination tones. Both spectra and directivity are predicted. Good agreement with data was achieved for all fan geometries. Comparisons with data from a second fan, the ADP fan, also showed good agreement.

  16. Low Noise Research Fan Stage Design

    Science.gov (United States)

    Hobbs, David E.; Neubert, Robert J.; Malmborg, Eric W.; Philbrick, Daniel H.; Spear, David A.

    1995-01-01

    This report describes the design of a Low Noise ADP Research Fan stage. The fan is a variable pitch design which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes and core stators. This fan stage design was combined with a nacelle and engine core duct to form a powered fan/nacelle, subscale model. This model is intended for use in aerodynamic performance, acoustic and structural testing in a wind tunnel. The model has a 22-inch outer fan diameter and a hub-to-top ratio of 0.426 which permits the use of existing NASA fan and cowl force balance designs and rig drive system. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the PW 17-inch rig previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric analysis at aerodynamic design condition are included. The structural analysis of the fan rotor and attachment is described including the material selections and stress analysis. The blade and attachment are predicted to have adequate low cycle fatigue life, and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the fan exit guide vane and core stator to minimize noise. A fan-FEGV tone analysis developed separately under NASA contract was used to determine these airfoil counts. The fan stage design was matched to a nacelle design to form a fan/nacelle model for wind tunnel testing. The nacelle design was developed under a separate NASA contract. The nacelle was designed with an axisymmetric inlet, cowl and nozzle for convenience in testing and fabrication. Aerodynamic analysis of the nacelle confirmed the required performance at various aircraft operating conditions.

  17. Noise Measurements of the VAIIPR Fan

    Science.gov (United States)

    Mendoza, Jeff; Weir, Don

    2012-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period September 2004 through November 2005 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3- 01136, Task Order 6, Noise Measurements of the VAIIPR Fan. The NASA Task Manager was Dr. Joe Grady, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. The NASA Contract Officer was Mr. Albert Spence, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. This report focuses on the evaluation of internal fan noise as generated from various inflow disturbances based on measurements made from a circumferential array of sensors located near the fan and sensors upstream of a serpentine inlet.

  18. Noise study in laboratories with exhaust fans

    International Nuclear Information System (INIS)

    Shaikh, G.H.; Hashmi, R.; Shareef, A.

    2005-01-01

    Noise study has been carried out in 25 laboratories fitted with exhaust fans. We have studied A- Weighted equivalent sound pressure levels (dB(A) LAeJ and equivalent octave band sound pressure levels (dB L/sub eq/ in each of the laboratories surveyed. The data collected has been analyzed for Preferred Speech Interference Levels (PSIL). The results show that the interior noise levels in these laboratories vary from 59.6 to 72.2 dB(A) L/sub Aeq/, which are very high and much beyond the interior noise limits recommended for laboratories. Some ways and means to limit emission of high-level noise from exhaust fans are also discussed. (author)

  19. Numerical Aerodynamic Evaluation and Noise Investigation of a Bladeless Fan

    OpenAIRE

    mohammad jafari; Hossein Afshin; Bijan Farhanieh; Hamidreza bozorgasareh

    2015-01-01

    Bladeless fan is a novel fan type that has no observable impeller, usually used for domestic applications. Numerical investigation of a Bladeless fan via Finite Volume Method was carried out in this study. The fan was placed in center of a 4×2×2m room and 473 Eppler airfoil profile was used as cross section of the fan. Performance and noise level of the fan by solving continuity and momentum equations as well as noise equations of Broadband Noise Source (BNS) and Ffowcs Williams a...

  20. Advanced Noise Control Fan: A 20-Year Retrospective

    Science.gov (United States)

    Sutliff, Dan

    2016-01-01

    The ANCF test bed is used for evaluating fan noise reduction concepts, developing noise measurement technologies, and providing a database for Aero-acoustic code development. Rig Capabilities: 4 foot 16 bladed rotor @ 2500 rpm, Auxiliary air delivery system (3 lbm/sec @ 6/12 psi), Variable configuration (rotor pitch angle, stator count/position, duct length), synthetic acoustic noise generation (tone/broadband). Measurement Capabilities: 112 channels dynamic data system, Unique rotating rake mode measuremen, Farfield (variable radius), Duct wall microphones, Stator vane microphones, Two component CTA w/ traversing, ESP for static pressures.

  1. Advanced Trailing Edge Blowing Concepts for Fan Noise Control

    Directory of Open Access Journals (Sweden)

    Cezar RIZEA

    2012-03-01

    Full Text Available This study documents trailing edge blowing research performed to reduce rotor / stator interaction noise in turbofan engines. The existing technique of filling every velocity deficit requires a large amount of air and is therefore impractical. The purpose of this research is to investigate new blowing configurations in order to achieve noise reduction with lesser amounts of air. Using the new configurations air is not injected into every fan blade, but is instead varied circumferentially. For example, blowing air may be applied to alternating fan blades. This type of blowing configuration both reduces the amount of air used and changes the spectral shape of the tonal interaction noise. The original tones at the blade passing frequency and its harmonics are reduced and new tones are introduced between them. This change in the tonal spectral shape increases the performance of acoustic liners used in conjunction with trailing edge blowing.

  2. Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Donghui; Cheong, Cheolung [Pusan Nat’l Univ., Busan (Korea, Republic of); Heo Seung [Korea Aerospace Industries, Sacheon (Korea, Republic of); Kim, Tae-Hoon; Jung, Jiwon [LG Electronics, Seoul (Korea, Republic of)

    2017-03-15

    In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

  3. Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method

    International Nuclear Information System (INIS)

    Shin, Donghui; Cheong, Cheolung; Heo Seung; Kim, Tae-Hoon; Jung, Jiwon

    2017-01-01

    In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

  4. Active Control of Fan Noise: Feasibility Study. Volume 3; Active Fan Noise Cancellation in the NASA Lewis Active Noise Control Fan Facility

    Science.gov (United States)

    Pla, Frederic G.; Hu, Ziqiang; Sutliff, Daniel L.

    1996-01-01

    This report describes the Active Noise Cancellation (ANC) System designed by General Electric and tested in the NASA Lewis Research Center's (LERC) 48 inch Active Noise Control Fan (ANCF). The goal of this study is to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for global active noise cancellation of fan tones. The GE ANC system is based on a modal control approach. A known acoustic mode propagating in the fan duct is canceled using an array of flush-mounted compact sound sources. The canceling modal signal is generated by a modal controller. Inputs to the controller are signals from a shaft encoder and from a microphone array which senses the residual acoustic mode in the duct. The key results are that the (6,0) was completely eliminated at the 920 Hz design frequency and substantially reduced elsewhere. The total tone power was reduced 6.8 dB (out of a possible 9.8 dB). Farfield reductions of 15 dB (SPL) were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB PWL decrease. The results indicate that global attenuation of PWL at the target frequency was obtained in the aft quadrant using an ANC actuator and sensor system totally contained within the duct. The quality of the results depended on precise mode generation. High spillover into spurious modes generated by the ANC actuator array caused less than optimum levels of PWL reduction. The variation in spillover is believed to be due to calibration procedure, but must be confirmed in subsequent tests.

  5. Noise source identification for ducted fan systems

    OpenAIRE

    BENNETT, GARETH; FITZPATRICK, JOHN AIDAN

    2008-01-01

    PUBLISHED Coherence based source analysis techniques can be used to identify the contribution of combustion noise in the exhaust of a jet engine and hence enable the design of noise reduction devices. However, when the combustion noise propagates in a non-linear fashion the identified contribution using ordinary coherence methods will be inaccurate. In this paper, an analysis technique to enable the contribution of linear and non-linear mechanisms to the propagated sound ...

  6. Radon reduction using sub floor fans

    International Nuclear Information System (INIS)

    Harley, N.H.; Chittaporn, P.

    1996-01-01

    The basement and second floor 222 Rn concentrations in an energy efficient home were measured hourly for 6 y using continuous monitors of our design. The home had a subslab pipe network installed during construction, and for the past 2 y a 150 cfm fan was operative venting air via ductwork inside the chimney exiting on the roof. During this measurement interval, experiments were conducted with the fan in 3 modes: (1) with the subslab fan off, (2) in the conventional direction auctioning air from beneath the slab to outside, and (3) reversed, blowing outdoor air into the network under the slab. We have a large data base to show that the indoor 222 R n concentration varies inversely with the indoor/outdoor temperature difference. In order to compare the 3 fan modes directly, we selected 50 to 90 d periods when the outdoor temperature was essentially the same. For the 3 modes, the fan off, blowing upward, and blowing downward, the basement concentration averaged 80, 38, and 34 Bq m -3 , respectively. Radon peaks or surges occur over a period of about 1 d during falling barometric pressure. With the fan blowing downward, these 222 Rn peaks tend to be smaller but only marginally so. We conclude that in this home the reduction in 222 Rn with the fan and subslab pipe network operating was essentially the same regardless of the direction of flow from the fan

  7. Active3 noise reduction

    International Nuclear Information System (INIS)

    Holzfuss, J.

    1996-01-01

    Noise reduction is a problem being encountered in a variety of applications, such as environmental noise cancellation, signal recovery and separation. Passive noise reduction is done with the help of absorbers. Active noise reduction includes the transmission of phase inverted signals for the cancellation. This paper is about a threefold active approach to noise reduction. It includes the separation of a combined source, which consists of both a noise and a signal part. With the help of interaction with the source by scanning it and recording its response, modeling as a nonlinear dynamical system is achieved. The analysis includes phase space analysis and global radial basis functions as tools for the prediction used in a subsequent cancellation procedure. Examples are given which include noise reduction of speech. copyright 1996 American Institute of Physics

  8. Advanced Low-Noise Research Fan Stage Design

    Science.gov (United States)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  9. Suppression of tonal noise in a centrifugal fan using guide vanes

    Science.gov (United States)

    Paramasivam, Kishokanna; Rajoo, Srithar; Romagnoli, Alessandro

    2015-11-01

    This paper presents the work aiming for tonal noise reduction in a centrifugal fan. In previous studies, it is well documented that tonal noise is the dominant noise source generated in centrifugal fans. Tonal noise is generated due to the aerodynamic interaction between the rotating impeller and stationary diffuser vanes. The generation of tonal noise is related to the pressure fluctuation at the leading edge of the stationary vane. The tonal noise is periodic in time which occurs at the blade passing frequency (BPF) and its harmonics. Much of previous studies, have shown that the stationary vane causes the tonal noise and generation of non-rotational turbulent noise. However, omitting stationary vanes will lead to the increase of non-rotational turbulent noise resulted from the high velocity of the flow leaving the impeller. Hence in order to reduce the tonal noise and the non-rotational noise, guide vanes were designed as part of this study to replace the diffuser vanes, which were originally used in the chosen centrifugal fan. The leading edge of the guide vane is tapered. This modification reduces the strength of pressure fluctuation resulting from the interaction between the impeller outflow and stationary vane. The sound pressure level at blade passing frequency (BPF) is reduced by 6.8 dB, the 2nd BPF is reduced by 4.1 dB and the 3rd BPF reduced by about 17.5 dB. The overall reduction was 0.9 dB. The centrifugal fan with tapered guide vanes radiates lower tonal noise compared to the existing diffuser vanes. These reductions are achieved without compromising the performance of the centrifugal fan. The behavior of the fluid flow was studied using computational fluid dynamics (CFD) tools and the acoustics characteristics were determined through experiments in an anechoic chamber.

  10. Advanced Subsonic Technology (AST) 22-Inch Low Noise Research Fan Rig Preliminary Design of ADP-Type Fan 3

    Science.gov (United States)

    Jeracki, Robert J. (Technical Monitor); Topol, David A.; Ingram, Clint L.; Larkin, Michael J.; Roche, Charles H.; Thulin, Robert D.

    2004-01-01

    This report presents results of the work completed on the preliminary design of Fan 3 of NASA s 22-inch Fan Low Noise Research project. Fan 3 was intended to build on the experience gained from Fans 1 and 2 by demonstrating noise reduction technology that surpasses 1992 levels by 6 dB. The work was performed as part of NASA s Advanced Subsonic Technology (AST) program. Work on this task was conducted in the areas of CFD code validation, acoustic prediction and validation, rotor parametric studies, and fan exit guide vane (FEGV) studies up to the time when a NASA decision was made to cancel the design, fabrication and testing phases of the work. The scope of the program changed accordingly to concentrate on two subtasks: (1) Rig data analysis and CFD code validation and (2) Fan and FEGV optimization studies. The results of the CFD code validation work showed that this tool predicts 3D flowfield features well from the blade trailing edge to about a chord downstream. The CFD tool loses accuracy as the distance from the trailing edge increases beyond a blade chord. The comparisons of noise predictions to rig test data showed that both the tone noise tool and the broadband noise tool demonstrated reasonable agreement with the data to the degree that these tools can reliably be used for design work. The section on rig airflow and inlet separation analysis describes the method used to determine total fan airflow, shows the good agreement of predicted boundary layer profiles to measured profiles, and shows separation angles of attack ranging from 29.5 to 27deg for the range of airflows tested. The results of the rotor parametric studies were significant in leading to the decision not to pursue a new rotor design for Fan 3 and resulted in recommendations to concentrate efforts on FEGV stator designs. The ensuing parametric study on FEGV designs showed the potential for 8 to 10 EPNdB noise reduction relative to the baseline.

  11. Reactive control of subsonic axial fan noise in a duct.

    Science.gov (United States)

    Liu, Y; Choy, Y S; Huang, L; Cheng, L

    2014-10-01

    Suppressing the ducted fan noise at low frequencies without varying the flow capacity is still a technical challenge. This study examines a conceived device consisting of two tensioned membranes backed with cavities housing the axial fan for suppression of the sound radiation from the axial fan directly. The noise suppression is achieved by destructive interference between the sound fields from the axial fan of a dipole nature and sound radiation from the membrane via vibroacoustics coupling. A two-dimensional model with the flow effect is presented which allows the performance of the device to be explored analytically. The air flow influences the symmetrical behavior and excites the odd in vacuo mode response of the membrane due to kinematic coupling. Such an asymmetrical effect can be compromised with off-center alignment of the axial fan. Tension plays an important role to sustain the performance to revoke the deformation of the membrane during the axial fan operation. With the design of four appropriately tensioned membranes covered by a cylindrical cavity, the first and second blade passage frequencies of the axial fan can be reduced by at least 20 dB. The satisfactory agreement between experiment and theory demonstrates that its feasibility is practical.

  12. On the study of wavy leading-edge vanes to achieve low fan interaction noise

    Science.gov (United States)

    Tong, Fan; Qiao, Weiyang; Xu, Kunbo; Wang, Liangfeng; Chen, Weijie; Wang, Xunnian

    2018-04-01

    The application of wavy leading-edge vanes to reduce a single-stage axial fan noise is numerically studied. The aerodynamic and acoustic performance of the fan is numerically investigated using a hybrid unsteady Reynolds averaged Navier-Stokes (URANS)/acoustic analogy method (Goldstein equations). First, the hybrid URANS/Goldstein method is developed and successfully validated against experiment results. Next, numerical simulations are performed to investigate the noise reduction effects of the wavy leading-edge vanes. The aerodynamic and acoustic performance is assessed for a fan with vanes equipped with two different wavy leading-edge profiles and compared with the performance of conventional straight leading-edge vanes. Results indicate that a fan with wavy leading-edge vanes produces lower interaction noise than the baseline fan without a significant loss in aerodynamic performance. In fact, it is demonstrated that wavy leading-edge vanes have the potential to lead to both aerodynamic and acoustic improvements. The two different wavy leading-edge profiles are shown to successfully reduce the fan tone sound power level by 1.2 dB and 4.3 dB, respectively. Fan efficiency is also improved by about 1% with one of the tested wavy leading-edge profiles. Large eddy simulation (LES) is also performed for a simplified fan stage model to assess the effects of wavy leading-edge vanes on the broadband fan noise. Results indicate that the overall sound power level of a fan can be reduced by about 4 dB with the larger wavy leading-edge profile. Finally, the noise reduction mechanisms are investigated and analysed. It is found that the wavy leading-edge profiles can induce significant streamwise vorticity around the leading-edge protuberances and reduce pressure fluctuations (especially at locations of wavy leading-edge hills) and unsteady forces on the stator vanes. The underlying mechanism of the reduced pressure fluctuations is also discussed by examining the magnitude

  13. Impact of cyclostationarity on fan broadband noise prediction

    Science.gov (United States)

    Wohlbrandt, A.; Kissner, C.; Guérin, S.

    2018-04-01

    One of the dominant noise sources of modern Ultra High Bypass Ratio (UHBR) engines is the interaction of the rotor wakes with the leading edges of the stator vanes in the fan stage. While the tonal components of this noise generation mechanism are fairly well understood by now, the broadband components are not. This calls to further the understanding of the broadband noise generation in the fan stage. This article introduces a new extension to the Random Particle Mesh (RPM) method, which accommodates in-depth studies of the impact of cyclostationary wake characteristics on the broadband noise in the fan stage. The RPM method is used to synthesize a turbulence field in the stator domain using a URANS simulation characterized by time-periodic turbulence and mean flow. The rotor-stator interaction noise is predicted by a two-dimensional CAA computation of the stator cascade. The impact of cyclostationarity is decomposed into various effects, which are separately investigated. This leads to the finding that the periodic turbulent kinetic energy (TKE) and periodic flow have only a negligible effect on the radiated sound power. The impact of the periodic integral length scale (TLS) is, however, substantial. The limits of a stationary representation of the TLS are demonstrated making this new extension to the RPM method indispensable when background and wake TKE are of comparable level. Good agreement of the predictions with measurements obtained from the 2015 AIAA Fan Broadband Noise Prediction Workshop are also shown.

  14. Fan Noise for a Concept Commercial Supersonic Transport

    Science.gov (United States)

    Stephens, David

    2017-01-01

    NASA is currently studying a commercial supersonic transport (CST) aircraft that could carry 35+ passengers at Mach 1.6+ with a 4000+nm range. The aircraft should also meet environmental goals for sonic boom, airport noise and emissions at cruise. With respect to airport noise, considerable effort has been put into predicting the noise due to the jet exhaust. This report describes an internal NASA effort to consider the contribution of fan noise to the overall engine noise of this class of aircraft.

  15. First Test of Fan Active Noise Control (ANC) Completed

    Science.gov (United States)

    2005-01-01

    With the advent of ultrahigh-bypass engines, the space available for passive acoustic treatment is becoming more limited, whereas noise regulations are becoming more stringent. Active noise control (ANC) holds promise as a solution to this problem. It uses secondary (added) noise sources to reduce or eliminate the offending noise radiation. The first active noise control test on the low-speed fan test bed was a General Electric Company system designed to control either the exhaust or inlet fan tone. This system consists of a "ring source," an induct array of error microphones, and a control computer. Fan tone noise propagates in a duct in the form of spinning waves. These waves are detected by the microphone array, and the computer identifies their spinning structure. The computer then controls the "ring source" to generate waves that have the same spinning structure and amplitude, but 180 out of phase with the fan noise. This computer generated tone cancels the fan tone before it radiates from the duct and is heard in the far field. The "ring source" used in these tests is a cylindrical array of 16 flat-plate acoustic radiators that are driven by thin piezoceramic sheets bonded to their back surfaces. The resulting source can produce spinning waves up to mode 7 at levels high enough to cancel the fan tone. The control software is flexible enough to work on spinning mode orders from -6 to 6. In this test, the fan was configured to produce a tone of order 6. The complete modal (spinning and radial) structure of the tones was measured with two builtin sets of rotating microphone rakes. These rakes provide a measurement of the system performance independent from the control system error microphones. In addition, the far-field noise was measured with a semicircular array of 28 microphones. This test represents the first in a series of tests that demonstrate different active noise control concepts, each on a progressively more complicated modal structure. The tests are

  16. Modeling of Broadband Liners Applied to the Advanced Noise Control Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2015-01-01

    The broadband component of fan noise has grown in relevance with an increase in bypass ratio and incorporation of advanced fan designs. Therefore, while the attenuation of fan tones remains a major factor in engine nacelle acoustic liner design, the simultaneous reduction of broadband fan noise levels has received increased interest. As such, a previous investigation focused on improvements to an established broadband acoustic liner optimization process using the Advanced Noise Control Fan (ANCF) rig as a demonstrator. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom liner designs were carried through design, fabrication, and testing. This paper addresses a number of areas for further research identified in the initial assessment of the ANCF study. Specifically, incident source specification and uncertainty in some aspects of the predicted liner impedances are addressed. This information is incorporated in updated predictions of the liner performance and comparisons with measurement are greatly improved. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of various liner designs. This study also provides further confidence in the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  17. Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

    Science.gov (United States)

    Choi, Benjamin; Kauffman, Jeffrey; Duffy, Kirsten; Provenza, Andrew; Morrison, Carlos

    2010-01-01

    The NASA Glenn Research Center is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this paper, a digital resonant control technique emulating passive shunt circuits is used to demonstrate vibration reduction of FAN1 Ti real fan blade at the several target modes. Single-mode control and multi-mode control using one piezoelectric material are demonstrated. Also a conceptual study of how to implement this digital control system into the rotating fan blade is discussed.

  18. Aircraft Noise Reduction Subproject Overview

    Science.gov (United States)

    Fernandez, Hamilton; Nark, Douglas M.; Van Zante, Dale E.

    2016-01-01

    The material presents highlights of propulsion and airframe noise research being completed for the Advanced Air Transport Technology Project. The basis of noise reduction plans along with representative work for the airframe, propulsion, and propulsion-airframe integration is discussed for the Aircraft Noise reduction Subproject.

  19. Wind Noise Reduction in a Non-Porous Subsurface Windscreen

    Science.gov (United States)

    Zuckerwar, Allan J.; Shams, Qamar A.; Knight, H. Keith

    2012-01-01

    Measurements of wind noise reduction were conducted on a box-shaped, subsurface windscreen made of closed cell polyurethane foam. The windscreen was installed in the ground with the lid flush with the ground surface. The wind was generated by means of a fan, situated on the ground, and the wind speed was measured at the center of the windscreen lid with an ultrasonic anemometer. The wind speed was controlled by moving the fan to selected distances from the windscreen. The wind noise was measured on a PCB Piezotronics 3†electret microphone. Wind noise spectra were measured with the microphone exposed directly to the wind (atop the windscreen lid) and with the microphone installed inside the windscreen. The difference between the two spectra comprises the wind noise reduction. At wind speeds of 3, 5, and 7 m/s, the wind noise reduction is typically 15 dB over the frequency range of 0.1-20 Hz.

  20. Noise Reduction Techniques

    Science.gov (United States)

    Hallas, Tony

    There are two distinct kinds of noise - structural and color. Each requires a specific method of attack to minimize. The great challenge is to reduce the noise without reducing the faint and delicate detail in the image. My most-used and favorite noise suppression is found in Photoshop CS 5 Camera Raw. If I cannot get the desired results with the first choice, I will use Noise Ninja, which has certain advantages in some situations that we will cover.

  1. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    Science.gov (United States)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  2. Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tae Gyun; Jeon, Wan Ho [Technical Research Lab., CEDIC Co., Seoul (Korea, Republic of); Minorikawa, Gaku [Dept. of f Mechanical Engineering, Faculty of Science and Engineering, Hosei University, Tokyo (Japan)

    2016-10-15

    The recent development of small and lightweight rack mount servers and computers has resulted in the decrease of the size of cooling fans. However, internal fans still need to achieve a high performance to release the heat generated from interior parts, and they should emit low noise. On the contrary, measurement data, such as flow properties and flow visualizations, cannot be obtained easily when cooling fans are small. Thus, a numerical analysis approach is necessary for the performance evaluation and noise reduction of small cooling fans. In this study, the noise of a small cooling fan used for computers or servers was measured and then compared with the aeroacoustic noise result based on a numerical analysis. Three-dimensional Navier-Stokes equations were solved to predict the unsteady flow field and surface pressure fluctuation according to the blades and casing surface used. The simplified Ffowcs Williams and Hawkings equation was used to predict aeroacoustic noise by assuming that a dipole is the major cause of fan noise. Results of the aeroacoustic noise analysis agreed well with that of the experiment, and a tonal noise whose frequency was lower than the first blade passing frequency could be identified in the noise spectrum. This phenomenon is caused by the shape of the bell mouth. A coherence analysis was performed to examine the correlation between the shape of the cooling fan and the noise.

  3. Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer

    International Nuclear Information System (INIS)

    Lim, Tae Gyun; Jeon, Wan Ho; Minorikawa, Gaku

    2016-01-01

    The recent development of small and lightweight rack mount servers and computers has resulted in the decrease of the size of cooling fans. However, internal fans still need to achieve a high performance to release the heat generated from interior parts, and they should emit low noise. On the contrary, measurement data, such as flow properties and flow visualizations, cannot be obtained easily when cooling fans are small. Thus, a numerical analysis approach is necessary for the performance evaluation and noise reduction of small cooling fans. In this study, the noise of a small cooling fan used for computers or servers was measured and then compared with the aeroacoustic noise result based on a numerical analysis. Three-dimensional Navier-Stokes equations were solved to predict the unsteady flow field and surface pressure fluctuation according to the blades and casing surface used. The simplified Ffowcs Williams and Hawkings equation was used to predict aeroacoustic noise by assuming that a dipole is the major cause of fan noise. Results of the aeroacoustic noise analysis agreed well with that of the experiment, and a tonal noise whose frequency was lower than the first blade passing frequency could be identified in the noise spectrum. This phenomenon is caused by the shape of the bell mouth. A coherence analysis was performed to examine the correlation between the shape of the cooling fan and the noise

  4. Noise Source Identification of Small Fan-BLDC Motor System for Refrigerators

    Directory of Open Access Journals (Sweden)

    Yong-Han Kim

    2006-01-01

    Full Text Available Noise levels in household appliances are increasingly attracting attention from manufacturers and customers. Legislation is becoming more severe on acceptable noise levels and low noise is a major marketing point for many products. The latest trend in the refrigerator manufacturing industry is to use brushless DC (BLDC motors instead of induction motors in order to reduce energy consumption and noise radiation. However, cogging torque from BLDC motor is an undesirable effect that prevents the smooth rotation of the rotor and results in noise. This paper presents a practical approach for identifying the source of excessive noise in the small fan-motor system for household refrigerators. The source is presumed to a mechanical resonance excited by torque ripple of the BLDC motor. By using finite element analysis, natural frequencies and mode shapes of the rotating part of the system are obtained and they are compared with experimental mode shapes obtained by electronic torsional excitation test which uses BLDC motor itself as an exciter. Two experimental validations are carried out to confirm the reduction of excessive noise.

  5. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 3; Validation and Test Cases

    Science.gov (United States)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the third volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by validation studies that were done on three fan rigs. It concludes with recommended improvements and additional studies for BFaNS.

  6. Propulsion Noise Reduction Research in the NASA Advanced Air Transport Technology Project

    Science.gov (United States)

    Van Zante, Dale; Nark, Douglas; Fernandez, Hamilton

    2017-01-01

    The Aircraft Noise Reduction (ANR) sub-project is focused on the generation, development, and testing of component noise reduction technologies progressing toward the NASA far term noise goals while providing associated near and mid-term benefits. The ANR sub-project has efforts in airframe noise reduction, propulsion (including fan and core) noise reduction, acoustic liner technology, and propulsion airframe aeroacoustics for candidate conventional and unconventional aircraft configurations. The current suite of propulsion specific noise research areas is reviewed along with emerging facility and measurement capabilities. In the longer term, the changes in engine and aircraft configuration will influence the suite of technologies necessary to reduce noise in next generation systems.

  7. Low Cost/Low Noise Variable Pitch Ducted Fan, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ACI proposes a design for a Propulsor (Low Cost/Low Noise Variable Pitch Ducted Fan) that has wide application in all sectors of Aviation. Propulsor hardware of this...

  8. Noise reduction by wavelet thresholding

    National Research Council Canada - National Science Library

    Jansen, Maarten

    2001-01-01

    .... I rather present new material and own insights in the que stions involved with wavelet based noise reduction . On the other hand , the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: spar...

  9. Simulation of Broadband Noise Sources of an Axial Fan under Rotating Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-11-01

    Full Text Available Study on the influence of rotating stall on the aerodynamic noise of axial fan has important value to warn of the occurrence of stall through monitoring the noise variations. The present work is to analyze the aerodynamic noise before and after the phenomenon of rotating stall by solving Navier-Stokes equations, coupled with the throttle condition and the broadband noise sources model. The impeller exit rotational Mach number and rotational Reynolds number are separately 0.407 and 8.332 × 106. The results show that the aerodynamic noise source of the fan is mainly the rotation noise under the design condition. The vortex noise accounts for the major part of fan noise after the occurrence of stall, and the maximum acoustic power level of the fan appears in the rotor domains. In the evolution process from the stall inception to the stall cell, the high noise regions of the rotor develop along the radial, circumferential, and axial directions, and the area occupied by high noise regions increases from 33% to 46% impeller channels area. On rotating stall condition, the high noise regions occupying about 46% impeller channels area propagate with the stall cell along the circumferential direction at a half of rotor speed.

  10. The noise power spectrum in CT with direct fan beam reconstruction

    International Nuclear Information System (INIS)

    Baek, Jongduk; Pelc, Norbert J.

    2010-01-01

    The noise power spectrum (NPS) is a useful metric for understanding the noise content in images. To examine some unique properties of the NPS of fan beam CT, the authors derived an analytical expression for the NPS of fan beam CT and validated it with computer simulations. The nonstationary noise behavior of fan beam CT was examined by analyzing local regions and the entire field-of-view (FOV). This was performed for cases with uniform as well as nonuniform noise across the detector cells and across views. The simulated NPS from the entire FOV and local regions showed good agreement with the analytically derived NPS. The analysis shows that whereas the NPS of a large FOV in parallel beam CT (using a ramp filter) is proportional to frequency, the NPS with direct fan beam FBP reconstruction shows a high frequency roll off. Even in small regions, the fan beam NPS can show a sharp transition (discontinuity) at high frequencies. These effects are due to the variable magnification and therefore are more pronounced as the fan angle increases. For cases with nonuniform noise, the NPS can show the directional dependence and additional effects.

  11. An Application of the Acoustic Similarity Law to the Numerical Analysis of Centrifugal Fan Noise

    Science.gov (United States)

    Jeon, Wan-Ho; Lee, Duck-Joo; Rhee, Huinam

    Centrifugal fans, which are frequently used in our daily lives and various industries, usually make severe noise problems. Generally, the centrifugal fan noise consists of tones at the blade passing frequency and its higher harmonics. These tonal sounds come from the interaction between the flow discharged from the impeller and the cutoff in the casing. Prediction of the noise from a centrifugal fan becomes more necessary to optimize the design to meet both the performance and noise criteria. However, only some limited studies on noise prediction method exist because there are difficulties in obtaining detailed information about the flow field and casing effect on noise radiation. This paper aims to investigate the noise generation mechanism of a centrifugal fan and to develop a prediction method for the unsteady flow and acoustic pressure fields. In order to do this, a numerical analysis method using acoustic similarity law is proposed, and it is verified that the method can predict the noise generation mechanism very well by comparing the predicted results with available experimental results.

  12. Evaluating the Acoustic Benefits of Over-the-Rotor Acoustic Treatments Installed on the Advanced Noise Control Fan

    Science.gov (United States)

    Gazella, Matthew R.; Takakura, Tamuto; Sutliff, Daniel L.; Bozak, Richard F.; Tester, Brian J.

    2017-01-01

    Over the last 15 years, over-the-rotor acoustic treatments have been evaluated by NASA with varying success. Recently, NASA has been developing the next generation of over-the-rotor acoustic treatments for fan noise reduction. The NASA Glenn Research Centers Advanced Noise Control Fan was used as a Low Technology Readiness Level test bed. A rapid prototyped in-duct array consisting of 50 microphones was employed, and used to correlate the in-duct analysis to the far-field acoustic levels and to validate an existing beam-former method. The goal of this testing was to improve the Technology Readiness Level of various over-the-rotor acoustic treatments by advancing the understanding of the physical mechanisms and projecting the far-field acoustic benefit.

  13. The Role of Flow Diagnostic Techniques in Fan and Open Rotor Noise Modeling

    Science.gov (United States)

    Envia, Edmane

    2016-01-01

    A principal source of turbomachinery noise is the interaction of the rotating and stationary blade rows with the perturbations in the airstream through the engine. As such, a lot of research has been devoted to the study of the turbomachinery noise generation mechanisms. This is particularly true of fan and open rotors, both of which are the major contributors to the overall noise output of modern aircraft engines. Much of the research in fan and open rotor noise has been focused on developing theoretical models for predicting their noise characteristics. These models, which run the gamut from the semi-empirical to fully computational ones, are, in one form or another, informed by the description of the unsteady flow-field in which the propulsors (i.e., the fan and open rotors) operate. Not surprisingly, the fidelity of the theoretical models is dependent, to a large extent, on capturing the nuances of the unsteady flowfield that have a direct role in the noise generation process. As such, flow diagnostic techniques have proven to be indispensible in identifying the shortcoming of theoretical models and in helping to improve them. This presentation will provide a few examples of the role of flow diagnostic techniques in assessing the fidelity and robustness of the fan and open rotor noise prediction models.

  14. Improved Broadband Liner Optimization Applied to the Advanced Noise Control Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.; Ayle, Earl; Ichihashi, Fumitaka

    2014-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more desirable. This paper describes improvements to a previously established broadband acoustic liner optimization process using the Advanced Noise Control Fan rig as a demonstrator. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom designs are carried through design, fabrication, and testing to validate the efficacy of the design process. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of these liner designs. This study also provides an application for demonstrating the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  15. Sub-harmonic broadband humps and tip noise in low-speed ring fans.

    Science.gov (United States)

    Moreau, Stéphane; Sanjose, Marlène

    2016-01-01

    A joint experimental and numerical study has been achieved on a low-speed axial ring fan in clean inflow. Experimental evidence shows large periodic broadband humps at lower frequencies than the blade passing frequencies and harmonics even at design conditions. These sub-harmonic humps are also found to be sensitive to the fan process and consequently to its tip geometry. Softer fans yield more intense humps more shifted to lower frequencies with respect to the fan harmonics. Unsteady turbulent flow simulations of this ring fan mounted on a test plenum have been achieved by four different methods that have been validated by comparing with overall performances and detailed hot-wire velocity measurements in the wake. Noise predictions are either obtained directly or are obtained through Ffowcs Williams and Hawkings' analogy, and compared with narrowband and third-octave power spectra. All unsteady simulations correctly capture the low flow rates, the coherent vortex dynamics in the tip clearance and consequently the noise radiation dominated by the tip noise in the low- to mid-frequency range. Yet, only the scale-adaptive simulation and the lattice Boltzmann method simulations which can describe most of the turbulent structures accurately provide the proper spectral shape and levels, and consequently the overall sound power level.

  16. The development of a laterally confined laboratory fan delta under sediment supply reduction

    Science.gov (United States)

    Zhang, Xiaofeng; Wang, Siqiang; Wu, Xi; Xu, Shun; Li, Zhangyong

    2016-03-01

    In previous fan delta experiments, the effect of lateral confinement was generally ignored as these fans were usually unconfined with semiconical geometries. However, in gorge areas, fan development is usually laterally confined by valley walls. This study investigates autogenic processes of fan deltas in a laterally confined experimental tank. The experiment is divided into three phases. The sediment supply is held constant within each phase, so the autogenic processes of the fan are separated from the allogenic forcings. Results indicate that laterally confined fan deltas have higher progradation and aggradation potential, more regular channel braiding, and more even transverse sedimentation than unconfined fans. Besides, responses of fan deltas to sediment supply reduction are investigated in this research. At the initiation of the second and third phases, sediment feed rates are instantaneously reduced so that the allogenic forcings are predominant. Observations show that under sediment supply reduction, channelization on fan deltas are more pronounced and durations of the fluvial cycles are longer. The adjustment of fan morphology becomes slower as the self-regulation capacity of the fan decreases with reduced sediment supply.

  17. Quantum noise and stochastic reduction

    International Nuclear Information System (INIS)

    Brody, Dorje C; Hughston, Lane P

    2006-01-01

    In standard nonrelativistic quantum mechanics the expectation of the energy is a conserved quantity. It is possible to extend the dynamical law associated with the evolution of a quantum state consistently to include a nonlinear stochastic component, while respecting the conservation law. According to the dynamics thus obtained, referred to as the energy-based stochastic Schroedinger equation, an arbitrary initial state collapses spontaneously to one of the energy eigenstates, thus describing the phenomenon of quantum state reduction. In this paper, two such models are investigated: one that achieves state reduction in infinite time and the other in finite time. The properties of the associated energy expectation process and the energy variance process are worked out in detail. By use of a novel application of a nonlinear filtering method, closed-form solutions-algebraic in character and involving no integration-are obtained of both these models. In each case, the solution is expressed in terms of a random variable representing the terminal energy of the system and an independent noise process. With these solutions at hand it is possible to simulate explicitly the dynamics of the quantum states of complicated physical systems

  18. Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans

    Science.gov (United States)

    Zhu, Tao; Lallier-Daniels, Dominic; Sanjosé, Marlène; Moreau, Stéphane; Carolus, Thomas

    2018-03-01

    Noise from axial fans typically increases significantly as the tip clearance is increased. In addition to the broadband tip clearance noise at the design flow rate, narrowband humps also associated with the tip flow are observed in the far-field acoustic spectra at lower flow rate. In this study, both experimental and numerical methods are used to shed more light on the noise generation mechanism of this narrowband tip clearance noise and provide a unified description of this source. Unsteady aeroacoustic predictions with the Lattice-Boltzmann Method (LBM) are successfully compared with experiment. Such a validation allows using LBM data to conduct a detailed modal analysis of the pressure field for detecting rotating coherent flow structures which might be considered as noise sources. As previously found in ring fans the narrowband humps in the far-field noise spectra are found to be related to the tip clearance noise that is generated by an interaction of coherent flow structures present in the tip region with the leading edge of the impeller blades. The visualization of the coherent structures shows that they are indeed part of the unsteady tip clearance vortex structures. They are hidden in a complex, spatially and temporally inhomogeneous flow field, but can be recovered by means of appropriate filtering techniques. Their pressure trace corresponds to the so-called rotational instability identified in previous turbomachinery studies, which brings a unified picture of this tip-noise phenomenon for the first time.

  19. Occupational Noise Reduction in CNC Striping Process

    Science.gov (United States)

    Mahmad Khairai, Kamarulzaman; Shamime Salleh, Nurul; Razlan Yusoff, Ahmad

    2018-03-01

    Occupational noise hearing loss with high level exposure is common occupational hazards. In CNC striping process, employee that exposed to high noise level for a long time as 8-hour contributes to hearing loss, create physical and psychological stress that reduce productivity. In this paper, CNC stripping process with high level noises are measured and reduced to the permissible noise exposure. First condition is all machines shutting down and second condition when all CNC machine under operations. For both conditions, noise exposures were measured to evaluate the noise problems and sources. After improvement made, the noise exposures were measured to evaluate the effectiveness of reduction. The initial average noise level at the first condition is 95.797 dB (A). After the pneumatic system with leakage was solved, the noise reduced to 55.517 dB (A). The average noise level at the second condition is 109.340 dB (A). After six machines were gathered at one area and cover that area with plastic curtain, the noise reduced to 95.209 dB (A). In conclusion, the noise level exposure in CNC striping machine is high and exceed the permissible noise exposure can be reduced to acceptable levels. The reduction of noise level in CNC striping processes enhanced productivity in the industry.

  20. Spreadsheet tool for estimating noise reduction costs

    International Nuclear Information System (INIS)

    Frank, L.; Senden, V.; Leszczynski, Y.

    2009-01-01

    The Northeast Capital Industrial Association (NCIA) represents industry in Alberta's industrial heartland. The organization is in the process of developing a regional noise management plan (RNMP) for their member companies. The RNMP includes the development of a noise reduction cost spreadsheet tool to conduct reviews of practical noise control treatments available for individual plant equipment, inclusive of ranges of noise attenuation achievable, which produces a budgetary prediction of the installed cost of practical noise control treatments. This paper discussed the noise reduction cost spreadsheet tool, with particular reference to noise control best practices approaches and spreadsheet tool development such as prerequisite, assembling data required, approach, and unit pricing database. Use and optimization of the noise reduction cost spreadsheet tool was also discussed. It was concluded that the noise reduction cost spreadsheet tool is an easy interactive tool to estimate implementation costs related to different strategies and options of noise control mitigating measures and was very helpful in gaining insight for noise control planning purposes. 2 tabs.

  1. Effect of discharge duct geometry on centrifugal fan performance and noise emission

    Science.gov (United States)

    Nelson, David A.; Butrymowicz, William; Thomas, Christopher

    2005-09-01

    Non-ideal inlet and discharge duct geometries can cause significant changes to both the aerodynamic performance (``fan curve'') and specific sound power emission of a fan. A proper understanding of actual installed performance, as well as a good estimate of the system backpressure curve, is critical to achieving flow and acoustic goals as well as other criteria such as power consumption, mass and volume. To this end a battery of ISO 10302 tests was performed on a blower assembly which supports the Advanced Animal Habitat, being developed by ORBITEC for deployment on the International Space Station. The blower assembly consists of (4) identical centrifugal fans that, amongst themselves and across two prototypes, incorporated several discharge geometries. The inlet geometries were identical in all cases. Thus by comparing the dimensionless pressure-flow and noise emission characteristics across the cases, significant insight into the nature and potential magnitude of these effects is gained.

  2. Helicopter Flight Procedures for Community Noise Reduction

    Science.gov (United States)

    Greenwood, Eric

    2017-01-01

    A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.

  3. Development of high-performance and low-noise axial-flow fan units in their local operating region

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Seung; Ha, Min Ho; Cheong, Cheol Ung [Pusan National University, Busan (Korea, Republic of); Kim, Tae Hoon [LG Electronics Inc., Changwon (Korea, Republic of)

    2015-09-15

    Aerodynamic and aeroacoustic performances of an axial-flow fan unit are improved by modifying its housing structure without changing the fan blade. The target axial-flow fan system is used to lower temperature of a compressor and a condenser in the machine room of a household refrigerator which has relatively high system resistance due to complex layout of structures inside it. First, the performance of the fan system is experimentally characterized by measuring its volume flow rate versus static pressure using a fan performance tester satisfying the AMCA (Air Movement and Control Association) regulation, AMCA 210-07. The detailed structure of flow driven by the fan is numerically investigated using a virtual fan performance tester based on computational fluid dynamics techniques. The prediction result reveals possible loss due to radial and tangential velocity components in the wake flow downstream of the fan. The length of the fan housing is chosen as a design parameter for improving the aerodynamic and aeroacoustic performances of the fan unit by reducing the identified radial and tangential velocity components. Three fan units with different housing lengths longer than the original are analyzed using the virtual fan performance tester. The results confirm the improved aerodynamic performance of the proposed three designs. The flow field driven by the proposed fan unit is closely examined to find the causes for the observed performance improvements, which ensures that the radial and tangential velocity components in the wake flow are reduced. Finally, the improved performance of the proposed fan systems is validated by comparing the P-Q and efficiency curves measured using the fan performance tester. The noise emission from the household refrigerator is also found to be lessened when the new fan units are installed.

  4. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 1; Setup_BFaNS User's Manual and Developer's Guide

    Science.gov (United States)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the first volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User's Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running Setup_BFaNS. It concludes with technical documentation of the Setup_BFaNS computer program.

  5. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 2; BFaNS User's Manual and Developer's Guide

    Science.gov (United States)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the second volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running BFaNS. It concludes with technical documentation of the BFaNS computer program.

  6. Noise reduction in the beam current monitor

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1982-02-01

    A simple noise reduction system using a pulse transformer and a pair of L C low pass filters has been introduced to the beam current monitor of a current transformer type at the INS electron linac. With this system, the pick-up noise has been reduced to be 1% of the noise without noise reduction. Signal deformation caused by this system is relatively small and the beam current pulse down to 20 mA is successfully monitored in the actual accelerator operation. (author)

  7. Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined Quadrupole-Dipole Model

    Science.gov (United States)

    Koch, L. Danielle

    2012-01-01

    A combined quadrupole-dipole model of fan inflow distortion tone noise has been extended to calculate tone sound power levels generated by obstructions arranged in circumferentially asymmetric locations upstream of a rotor. Trends in calculated sound power level agreed well with measurements from tests conducted in 2007 in the NASA Glenn Advanced Noise Control Fan. Calculated values of sound power levels radiated upstream were demonstrated to be sensitive to the accuracy of the modeled wakes from the cylindrical rods that were placed upstream of the fan to distort the inflow. Results indicate a continued need to obtain accurate aerodynamic predictions and measurements at the fan inlet plane as engineers work towards developing fan inflow distortion tone noise prediction tools.

  8. A conceptual framework for noise reduction

    CERN Document Server

    Benesty, Jacob

    2015-01-01

    Though noise reduction and speech enhancement problems have been studied for at least five decades, advances in our understanding and the development of reliable algorithms are more important than ever, as they support the design of tailored solutions for clearly defined applications. In this work, the authors propose a conceptual framework that can be applied to the many different aspects of noise reduction, offering a uniform approach to monaural and binaural noise reduction problems, in the time domain and in the frequency domain, and involving a single or multiple microphones. Moreover, the derivation of optimal filters is simplified, as are the performance measures used for their evaluation.

  9. The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

    Science.gov (United States)

    Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.

    2013-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from

  10. Evaluation of the Tone Fan Noise Design/Prediction System (TFaNS) at the NASA Glenn Research Center

    Science.gov (United States)

    Koch, L. Danielle

    1999-01-01

    Version 1.4 of TFaNS, the Tone Fan Noise Design/Prediction System. has recently been evaluated at the NASA Glenn Research Center. Data from tests of the Allison Ultra High Bypass Fan (UHBF) were used to compare to predicted farfield directivities for the radial stator configuration. There was good agreement between measured and predicted directivities at low fan speeds when rotor effects were neglected in the TFaNS calculations. At higher fan speeds, TFaNS is shown to be useful in predicting overall trends rather than absolute sound pressure levels.

  11. Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.

  12. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    Science.gov (United States)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2012-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  13. Flap Edge Noise Reduction Fins

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Choudhan, Meelan M. (Inventor)

    2015-01-01

    A flap of the type that is movably connected to an aircraft wing to provide control of an aircraft in flight includes opposite ends, wherein at least a first opposite end includes a plurality of substantially rigid, laterally extending protrusions that are spaced apart to form a plurality of fluidly interconnected passageways. The passageways have openings adjacent to upper and lower sides of the flap, and the passageways include a plurality of bends such that high pressure fluid flows from a high pressure region to a low pressure region to provide a boundary condition that inhibits noise resulting from airflow around the end of the flap.

  14. Principal Components as a Data Reduction and Noise Reduction Technique

    Science.gov (United States)

    Imhoff, M. L.; Campbell, W. J.

    1982-01-01

    The potential of principal components as a pipeline data reduction technique for thematic mapper data was assessed and principal components analysis and its transformation as a noise reduction technique was examined. Two primary factors were considered: (1) how might data reduction and noise reduction using the principal components transformation affect the extraction of accurate spectral classifications; and (2) what are the real savings in terms of computer processing and storage costs of using reduced data over the full 7-band TM complement. An area in central Pennsylvania was chosen for a study area. The image data for the project were collected using the Earth Resources Laboratory's thematic mapper simulator (TMS) instrument.

  15. RANS Analyses of Turbofan Nozzles with Internal Wedge Deflectors for Noise Reduction

    Science.gov (United States)

    DeBonis, James R.

    2009-01-01

    Computational fluid dynamics (CFD) was used to evaluate the flow field and thrust performance of a promising concept for reducing the noise at take-off of dual-stream turbofan nozzles. The concept, offset stream technology, reduces the jet noise observed on the ground by diverting (offsetting) a portion of the fan flow below the core flow, thickening and lengthening this layer between the high-velocity core flow and the ground observers. In this study a wedge placed in the internal fan stream is used as the diverter. Wind, a Reynolds averaged Navier-Stokes (RANS) code, was used to analyze the flow field of the exhaust plume and to calculate nozzle performance. Results showed that the wedge diverts all of the fan flow to the lower side of the nozzle, and the turbulent kinetic energy on the observer side of the nozzle is reduced. This reduction in turbulent kinetic energy should correspond to a reduction in noise. However, because all of the fan flow is diverted, the upper portion of the core flow is exposed to the freestream, and the turbulent kinetic energy on the upper side of the nozzle is increased, creating an unintended noise source. The blockage due to the wedge reduces the fan mass flow proportional to its blockage, and the overall thrust is consequently reduced. The CFD predictions are in very good agreement with experimental flow field data, demonstrating that RANS CFD can accurately predict the velocity and turbulent kinetic energy fields. While this initial design of a large scale wedge nozzle did not meet noise reduction or thrust goals, this study identified areas for improvement and demonstrated that RANS CFD can be used to improve the concept.

  16. Noise reduction with complex bilateral filter.

    Science.gov (United States)

    Matsumoto, Mitsuharu

    2017-12-01

    This study introduces a noise reduction technique that uses a complex bilateral filter. A bilateral filter is a nonlinear filter originally developed for images that can reduce noise while preserving edge information. It is an attractive filter and has been used in many applications in image processing. When it is applied to an acoustical signal, small-amplitude noise is reduced while the speech signal is preserved. However, a bilateral filter cannot handle noise with relatively large amplitudes owing to its innate characteristics. In this study, the noisy signal is transformed into the time-frequency domain and the filter is improved to handle complex spectra. The high-amplitude noise is reduced in the time-frequency domain via the proposed filter. The features and the potential of the proposed filter are also confirmed through experiments.

  17. Low frequency noise case study : identification and mitigation of a severe infrasonic tone from a mine shaft ventilation fan

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.D. [HGC Engineering, Mississauga, ON (Canada)

    2007-07-01

    This paper presented a solution for a severe low frequency infrasound problem experienced at a home near a large mine shaft ventilation fan in Dallas, West Virginia. Strong low frequency acoustic pulsations were detected as far as 200 metres from the fan. HGC Engineering was retained by the coal mine company to investigate the source of the problem and to find solutions. Controlling low frequency sound is a challenge because the wavelengths of sound are long at low frequencies. The relatively high level of acoustic energy of a low frequency sound or infrasound that is loud enough to be heard also presents a problem for noise control. In order to be effective, low frequency noise control measures must usually be large, bulky and expensive. In this study, HGC Engineering readily identified acoustic pulsations in the order of 75 dB at 15 Hz outside the residences. At 15 Hz, the infrasound was not audible at the residence, but was causing rattling of lightweight furnishings inside the home. The measured sound pressure level at 15 Hz was approximately 10 dB greater than the onset of risk for rattling and perceptible vibration. The vibration was also perceptible on the walls and windows of the dwellings. The vibration of the dwelling structure had a high measured coherence with the air-borne pulsations at 15 Hz, suggesting that the vibration was induced by the air-borne infrasonic pulsations. HGC Engineering determined that 15 Hz corresponded to the rotational speed of the fan. A reduction of 15 dB at 15 Hz was targeted, in order to reduce the perceptibility and risk of rattling at the residence. A tuned acoustic plenum was considered to be a viable method to silence the fan. In order to investigate the effectiveness of this approach, HGC Engineering conducted a preliminary analytical design and parametric study of an acoustic plenum tuned to 15 Hz. An analytical model was developed to determine the acoustic behaviour of the plenum. In addition, a numerical boundary

  18. Advanced digital signal processing and noise reduction

    CERN Document Server

    Vaseghi, Saeed V

    2008-01-01

    Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates an

  19. A Mode Propagation Database Suitable for Code Validation Utilizing the NASA Glenn Advanced Noise Control Fan and Artificial Sources

    Science.gov (United States)

    Sutliff, Daniel L.

    2014-01-01

    The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (i) mode blockage, (ii) liner insertion loss, (iii) short ducts, and (iv) mode reflection.

  20. High-Fidelity Simulation of Turbofan Noise, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband fan noise -- closely tied to turbulent flow on and around the fan blades -- represents a key challenge to the noise reduction community due to the...

  1. Noise reduction in optically controlled quantum memory

    Science.gov (United States)

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2018-05-01

    Quantum memory is an essential tool for quantum communications systems and quantum computers. An important category of quantum memory, called optically controlled quantum memory, uses a strong classical beam to control the storage and re-emission of a single-photon signal through an atomic ensemble. In this type of memory, the residual light from the strong classical control beam can cause severe noise and degrade the system performance significantly. Efficiently suppressing this noise is a requirement for the successful implementation of optically controlled quantum memories. In this paper, we briefly introduce the latest and most common approaches to quantum memory and review the various noise-reduction techniques used in implementing them.

  2. Dynamical reduction models with general gaussian noises

    International Nuclear Information System (INIS)

    Bassi, Angelo; Ghirardi, GianCarlo

    2002-02-01

    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the statevector, white noise stochastic processes with non white ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view the most relevant motivation for the approach we propose here derives from the fact that in relativistic models the occurrence of white noises is the main responsible for the appearance of untractable divergences. Therefore, one can hope that resorting to non white noises one can overcome such a difficulty. We investigate stochastic equations with non white noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above mentioned subject but also for the general study of dissipative systems and decoherence. (author)

  3. Dynamical reduction models with general Gaussian noises

    International Nuclear Information System (INIS)

    Bassi, Angelo; Ghirardi, GianCarlo

    2002-01-01

    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the state vector, white-noise stochastic processes with nonwhite ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view, the most relevant motivation for the approach we propose here derives from the fact that in relativistic models intractable divergences appear as a consequence of the white nature of the noises. Therefore, one can hope that resorting to nonwhite noises, one can overcome such a difficulty. We investigate stochastic equations with nonwhite noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above-mentioned subject but also for the general study of dissipative systems and decoherence

  4. Geometric noise reduction for multivariate time series.

    Science.gov (United States)

    Mera, M Eugenia; Morán, Manuel

    2006-03-01

    We propose an algorithm for the reduction of observational noise in chaotic multivariate time series. The algorithm is based on a maximum likelihood criterion, and its goal is to reduce the mean distance of the points of the cleaned time series to the attractor. We give evidence of the convergence of the empirical measure associated with the cleaned time series to the underlying invariant measure, implying the possibility to predict the long run behavior of the true dynamics.

  5. Jet noise reduction via dispersed phase injection

    Science.gov (United States)

    Greska, Brent; Krothapalli, Anjaneyulu; Arakeri, Vijay

    2001-11-01

    A recently developed hot jet aeroacoustics facility at FMRL,FAMU-FSU College of Engineering has been used to study the far field noise characteristics of hot supersonic jets as influenced by the injection of a dispersed phase with low mass loading.The measured SPL from a fully expanded Mach 1.36 hot jet shows a peak value of about 139 dB at 40 deg from the jet axis.By injecting atomized water,the SPL are reduced in the angular region of about 30 deg to 50 deg with the maximum reduction being about 2 dB at 40 deg.However,with the use of non atomized aqueous polymer solution as a dispersed phase the noise levels are reduced over all angular positions by at least 1 dB with the maximum reduction being about 3 dB at 40 deg.The injection of a dispersed phase readily kills the screech; the initial results show promise and optimization studies are underway to find methods of further noise reduction.

  6. Scaling properties of the aerodynamic noise generated by low-speed fans

    Science.gov (United States)

    Canepa, Edward; Cattanei, Andrea; Mazzocut Zecchin, Fabio

    2017-11-01

    The spectral decomposition algorithm presented in the paper may be applied to selected parts of the SPL spectrum, i.e. to specific noise generating mechanisms. It yields the propagation and the generation functions, and indeed the Mach number scaling exponent associated with each mechanism as a function of the Strouhal number. The input data are SPL spectra obtained from measurements taken during speed ramps. Firstly, the basic theory and the implemented algorithm are described. Then, the behaviour of the new method is analysed with reference to numerically generated spectral data and the results are compared with the ones of an existing method based on the assumption that the scaling exponent is constant. Guidelines for the employment of both methods are provided. Finally, the method is applied to measurements taken on a cooling fan mounted on a test plenum designed following the ISO 10302 standards. The most common noise generating mechanisms are present and attention is focused on the low-frequency part of the spectrum, where the mechanisms are superposed. Generally, both propagation and generation functions are determined with better accuracy than the scaling exponent, whose values are usually consistent with expectations based on coherence and compactness of the acoustic sources. For periodic noise, the computed exponent is less accurate, as the related SPL data set has usually a limited size. The scaling exponent is very sensitive to the details of the experimental data, e.g. to slight inconsistencies or random errors.

  7. Wing Leading Edge Concepts for Noise Reduction

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  8. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    Science.gov (United States)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper (also available as NASA/TM-2015-218865). The NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject supported the current work. The fan and open rotor data were obtained under previous efforts supported by the NASA Quiet Aircraft Technology (QAT) Project and the NASA Environmentally Responsible Aviation (ERA) Project of the Integrated Systems Research Program in collaboration with GE Aviation, respectively. The overarching goal of the Advanced Air Transport (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  9. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Simple Modes

    Science.gov (United States)

    Sutliff, Daniel, L.; Brown, Clifford, A.; Walker, Bruce, E.

    2012-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the Langley Research Center s 14- by 22-Foot wind tunnel test of the Hybrid Wing Body (HWB) full three-dimensional 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of candidate engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft and to provide a database for shielding code validation. A range of frequencies, and a parametric study of modes were generated from exhaust and inlet nacelle configurations. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular to the axis of the nacelle (in its 0 orientation) and three planes parallel were acquired from the array sweep. In each plane the linear array traversed five sweeps, for a total span of 160 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Level, and integrated Power Levels are presented in this paper; as well as the in-duct modal structure.

  10. Noise Reduction Potential of Cellular Metals

    Directory of Open Access Journals (Sweden)

    Björn Hinze

    2012-06-01

    Full Text Available Rising numbers of flights and aircrafts cause increasing aircraft noise, resulting in the development of various approaches to change this trend. One approach is the application of metallic liners in the hot gas path of aero-engines. At temperatures of up to 600 °C only metallic or ceramic structures can be used. Due to fatigue loading and the notch effect of the pores, mechanical properties of porous metals are superior to the ones of ceramic structures. Consequently, cellular metals like metallic foams, sintered metals, or sintered metal felts are most promising materials. However, acoustic absorption depends highly on pore morphology and porosity. Therefore, both parameters must be characterized precisely to analyze the correlation between morphology and noise reduction performance. The objective of this study is to analyze the relationship between pore morphology and acoustic absorption performance. The absorber materials are characterized using image processing based on two dimensional microscopy images. The sound absorption properties are measured using an impedance tube. Finally, the correlation of acoustic behavior, pore morphology, and porosity is outlined.

  11. Aero-acoustic design and test of a multiple splitter exhaust noise suppressor for a 0.914m diameter lift fan

    Science.gov (United States)

    Stimpert, D. L.

    1973-01-01

    A lift fan exhaust suppression system to meet future VTOL aircraft noise goals was designed and tested. The test vehicle was a 1.3 pressure ratio, 36 inch (91.44 cm) diameter lift fan with two chord rotor to stator spacing. A two splitter fan exhaust suppression system thirty inches (76.2 cm) long achieved 10 PNdB exhaust suppression in the aft quadrant compared to a design value of 20 PNdB. It was found that a broadband noise floor limited the realizable suppression. An analytical investigation of broadband noise generated by flow over the treatment surfaces provided very good agreement with the measured suppression levels and noise floor sound power levels. A fan thrust decrement of 22% was measured for the fully suppressed configuration of which 11.1% was attributed to the exhaust suppression hardware.

  12. Characteristics of the Aerodynamics and the Noise of a Dual-cascade Centrifugal Fan (Effects of Bare Ratio and Outlet Angle of Scroll Casing)

    OpenAIRE

    畠山, 真; 児玉, 好雄; 佐々木, 壮一; 林, 秀千人; 後藤, 健一

    2002-01-01

    Characteristics of the aerodynamics and the noise of dual-cascade centrifugal fan have been experimentally investigated with respect to the effects of the bare ratio and the outlet angle of scroll casing. It was shown that the performance of the fans became best when the bare ratio was around between 9% to 25%, then the characterisitics of the dualcascade centrifugal fan were superior to that of the single-cascade centrifugal fan. The former was little influenced by the different bare ratio a...

  13. Noise Reduction with Microphone Arrays for Speaker Identification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Z

    2011-12-22

    Reducing acoustic noise in audio recordings is an ongoing problem that plagues many applications. This noise is hard to reduce because of interfering sources and non-stationary behavior of the overall background noise. Many single channel noise reduction algorithms exist but are limited in that the more the noise is reduced; the more the signal of interest is distorted due to the fact that the signal and noise overlap in frequency. Specifically acoustic background noise causes problems in the area of speaker identification. Recording a speaker in the presence of acoustic noise ultimately limits the performance and confidence of speaker identification algorithms. In situations where it is impossible to control the environment where the speech sample is taken, noise reduction filtering algorithms need to be developed to clean the recorded speech of background noise. Because single channel noise reduction algorithms would distort the speech signal, the overall challenge of this project was to see if spatial information provided by microphone arrays could be exploited to aid in speaker identification. The goals are: (1) Test the feasibility of using microphone arrays to reduce background noise in speech recordings; (2) Characterize and compare different multichannel noise reduction algorithms; (3) Provide recommendations for using these multichannel algorithms; and (4) Ultimately answer the question - Can the use of microphone arrays aid in speaker identification?

  14. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    Science.gov (United States)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  15. The effects of noise reduction technologies on the acceptance of background noise.

    Science.gov (United States)

    Lowery, Kristy Jones; Plyler, Patrick N

    2013-09-01

    Directional microphones (D-Mics) and digital noise reduction (DNR) algorithms are used in hearing aids to reduce the negative effects of background noise on performance. Directional microphones attenuate sounds arriving from anywhere other than the front of the listener while DNR attenuates sounds with physical characteristics of noise. Although both noise reduction technologies are currently available in hearing aids, it is unclear if the use of these technologies in isolation or together affects acceptance of noise and/or preference for the end user when used in various types of background noise. The purpose of the research was to determine the effects of D-Mic, DNR, or the combination of D-Mic and DNR on acceptance of noise and preference when listening in various types of background noise. An experimental study in which subjects were exposed to a repeated measures design was utilized. Thirty adult listeners with mild sloping to moderately severe sensorineural hearing loss participated (mean age 67 yr). Acceptable noise levels (ANLs) were obtained using no noise reduction technologies, D-Mic only, DNR only, and the combination of the two technologies (Combo) for three different background noises (single-talker speech, speech-shaped noise, and multitalker babble) for each listener. In addition, preference rankings of the noise reduction technologies were obtained within each background noise (1 = best, 3 = worst). ANL values were significantly better for each noise reduction technology than baseline; and benefit increased significantly from DNR to D-Mic to Combo. Listeners with higher (worse) baseline ANLs received more benefit from noise reduction technologies than listeners with lower (better) baseline ANLs. Neither ANL values nor ANL benefit values were significantly affected by background noise type; however, ANL benefit with D-Mic and Combo was similar when speech-like noise was present while ANL benefit was greatest for Combo when speech spectrum noise was

  16. Complex diffusion process for noise reduction

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Barari, A.

    2014-01-01

    equations (PDEs) in image restoration and de-noising prompted many researchers to search for an improvement in the technique. In this paper, a new method is presented for signal de-noising, based on PDEs and Schrodinger equations, named as complex diffusion process (CDP). This method assumes that variations...... for signal de-noising. To evaluate the performance of the proposed method, a number of experiments have been performed using Sinusoid, multi-component and FM signals cluttered with noise. The results indicate that the proposed method outperforms the approaches for signal de-noising known in prior art....

  17. Identification and reduction of vibration and noise of a glass tempering system

    International Nuclear Information System (INIS)

    Ashhab, M S

    2015-01-01

    The vibration and noise of a glass tempering machine at a factory are studied. Experiments were conducted to identify the sources of vibration and noise. It was found that main sources for vibration and noise are two air barrels, the air pipes from the fans to the glass tempering machine and the fans location. Solutions were suggested to reduce vibration and noise from these three main sources. One of the solutions that were implemented is placing rubber dampers beneath the air barrels and pipes which almost cancelled the horizontal vibrations in the building structure and reduced the vertical vibrations to a low value most likely coming from noise. There are two types of noise, namely, radiation noise from the fans through the fans room walls and transmitted noise through the pipes caused by turbulence. A glass wool noise insulating layer was installed on the wall between the fans room and factory to reduce radiation noise through this wall. Part of the air pipe system in the factory is made of a light material which produced the highest levels of noise above 110 dBA. These air pipes were wrapped by glass wool rolls and the noise level near them was reduced to below 100 dBA which comes from other machine parts. In addition, noise levels were reduced between 2 and 15 dBA at different points in the factory. (paper)

  18. Digitally controlled active noise reduction with integrated speech communication

    NARCIS (Netherlands)

    Steeneken, H.J.M.; Verhave, J.A.

    2004-01-01

    Active noise reduction is a successful addition to passive ear-defenders for improvement of the sound attenuation at low frequencies. Design and assessment methods are discussed, focused on subjective and objective attenuation measurements, stability, and high noise level applications. Active noise

  19. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    Science.gov (United States)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the

  20. Application of system concept in vibration and noise reduction

    Directory of Open Access Journals (Sweden)

    SHENG Meiping

    2017-08-01

    Full Text Available Although certain vibration and noise control technologies are maturing, such as vibration absorption, vibration isolation, sound absorption and sound insulation, and new methods for specific frequency bands or special environments have been proposed unceasingly, there is still no guarantee that practical effective vibration and noise reduction can be obtained. An important constraint for vibration and noise reduction is the lack of a system concept, and the integrity and relevance of such practical systems as ship structure have not obtained enough attention. We have tried to use the system engineering theory in guiding vibration and noise reduction, and have already achieved certain effects. Based on the system concept, the noise control of a petroleum pipeline production workshop has been completed satisfactorily, and the abnormal noise source identification of an airplane has been accomplished successfully. We want to share our experience and suggestions to promote the popularization of the system engineering theory in vibration and noise control.

  1. Adaptive EMG noise reduction in ECG signals using noise level approximation

    Science.gov (United States)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  2. Analysis of Individual Preferences for Tuning Noise-Reduction Algorithms

    NARCIS (Netherlands)

    Houben, Rolph; Dijkstra, Tjeerd M. H.; Dreschler, Wouter A.

    2012-01-01

    There is little research on user preference for different settings of noise reduction, especially for individual users. We therefore measured individual preferences for pairs of audio streams differing in the trade-off between noise reduction and speech distortion. A logistic probability model was

  3. Noise Reduction of Measurement Data using Linear Digital Filters

    Directory of Open Access Journals (Sweden)

    Hitzmann B.

    2007-12-01

    Full Text Available In this paper Butterworth, Chebyshev (Type I and II and Elliptic digital filters are designed for signal noise reduction. On-line data measurements of substrate concentration from E. coli fed-batch cultivation process are used. Application of the designed filters leads to a successful noise reduction of on-line glucose measurements. The digital filters presented here are simple, easy to implement and effective - the used filters allow for a smart compromise between signal information and noise corruption.

  4. How much noise reduction at airports?

    NARCIS (Netherlands)

    Lijesen, M.G.; van der Straaten, J.W.; Dekkers, J.E.C.; van Elk, R.; Blokdijk, J.

    2010-01-01

    Airport noise nuisance is a negative externality especially when it occurring near urban areas. Like all externalities, noise nuisance may be a reason for government intervention. When intervening, governments should set quantitative policy targets with care. In practice, this issue is generally

  5. An Exceptional Purity of Sound: Noise Reduction Technology and the Inevitable Noise of Sound Recording

    NARCIS (Netherlands)

    Kromhout, M.

    2014-01-01

    The phenomenon of noise has resisted many attempts at framing it within a singular conceptual framework. Critically questioning the tendency to do so, this article asserts the complexities of different noise-phenomena by analysing a specific technology: technological noise reduction systems. Whereas

  6. Musical noise reduction using an adaptive filter

    Science.gov (United States)

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  7. Wind Noise Reduction using Non-negative Sparse Coding

    DEFF Research Database (Denmark)

    Schmidt, Mikkel N.; Larsen, Jan; Hsiao, Fu-Tien

    2007-01-01

    We introduce a new speaker independent method for reducing wind noise in single-channel recordings of noisy speech. The method is based on non-negative sparse coding and relies on a wind noise dictionary which is estimated from an isolated noise recording. We estimate the parameters of the model ...... and discuss their sensitivity. We then compare the algorithm with the classical spectral subtraction method and the Qualcomm-ICSI-OGI noise reduction method. We optimize the sound quality in terms of signal-to-noise ratio and provide results on a noisy speech recognition task....

  8. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    Science.gov (United States)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  9. Prewhitening for Rank-Deficient Noise in Subspace Methods for Noise Reduction

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    2005-01-01

    A fundamental issue in connection with subspace methods for noise reduction is that the covariance matrix for the noise is required to have full rank, in order for the prewhitening step to be defined. However, there are important cases where this requirement is not fulfilled, e.g., when the noise...... has narrow-band characteristics, or in the case of tonal noise. We extend the concept of prewhitening to include the case when the noise covariance matrix is rank deficient, using a weighted pseudoinverse and the quotient SVD, and we show how to formulate a general rank-reduction algorithm that works...... also for rank deficient noise. We also demonstrate how to formulate this algorithm by means of a quotient ULV decomposition, which allows for faster computation and updating. Finally we apply our algorithm to a problem involving a speech signal contaminated by narrow-band noise....

  10. Active Control of Low-Speed Fan Tonal Noise Using Actuators Mounted in Stator Vanes: Part III Results

    Science.gov (United States)

    Sutliff, Daniel L.; Remington, Paul J.; Walker, Bruce E.

    2003-01-01

    A test program to demonstrate simplification of Active Noise Control (ANC) systems relative to standard techniques was performed on the NASA Glenn Active Noise Control Fan from May through September 2001. The target mode was the m = 2 circumferential mode generated by the rotor-stator interaction at 2BPF. Seven radials (combined inlet and exhaust) were present at this condition. Several different error-sensing strategies were implemented. Integration of the error-sensors with passive treatment was investigated. These were: (i) an in-duct linear axial array, (ii) an induct steering array, (iii) a pylon-mounted array, and (iv) a near-field boom array. The effect of incorporating passive treatment was investigated as well as reducing the actuator count. These simplified systems were compared to a fully ANC specified system. Modal data acquired using the Rotating Rake are presented for a range of corrected fan rpm. Simplified control has been demonstrated to be possible but requires a well-known and dominant mode signature. The documented results here in are part III of a three-part series of reports with the same base title. Part I and II document the control system and error-sensing design and implementation.

  11. Adaptive noise reduction circuit for a sound reproduction system

    Science.gov (United States)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1995-01-01

    A noise reduction circuit for a hearing aid having an adaptive filter for producing a signal which estimates the noise components present in an input signal. The circuit includes a second filter for receiving the noise-estimating signal and modifying it as a function of a user's preference or as a function of an expected noise environment. The circuit also includes a gain control for adjusting the magnitude of the modified noise-estimating signal, thereby allowing for the adjustment of the magnitude of the circuit response. The circuit also includes a signal combiner for combining the input signal with the adjusted noise-estimating signal to produce a noise reduced output signal.

  12. Jet Noise Reduction by Microjets - A Parametric Study

    Science.gov (United States)

    Zaman, K. B. M. Q.

    2010-01-01

    The effect of injecting tiny secondary jets (microjets ) on the radiated noise from a subsonic primary jet is studied experimentally. The microjets are injected on to the primary jet near the nozzle exit with variable port geometry, working fluid and driving pressure. A clear noise reduction is observed that improves with increasing jet pressure. It is found that smaller diameter ports with higher driving pressure, but involving less thrust and mass fraction, can produce better noise reduction. A collection of data from the present as well as past experiments is examined in an attempt to correlate the noise reduction with the operating parameters. The results indicate that turbulent mixing noise reduction, as monitored by OASPL at a shallow angle, correlates with the ratio of jet to primary jet driving pressures normalized by the ratio of corresponding diameters (p d /pjD). With gaseous injection, the spectral amplitudes decrease at lower frequencies while an increase is noted at higher frequencies. It is apparent that this amplitude crossover is at least partly due to shock-associated noise from the underexpanded jets themselves. Such crossover is not seen with water injection since the flow in that case is incompressible and there is no shock-associated noise. Centerline velocity data show that larger noise reduction is accompanied by faster jet decay as well as significant reduction in turbulence intensities. While a physical understanding of the dependence of noise reduction on p d /pjD remains unclear, given this correlation, an analysis explains the observed dependence of the effect on various other parameters.

  13. Noise reduction performance of thermobonded nonwovens

    OpenAIRE

    Carvalho, R.; Rana, S.; Fangueiro, Raúl; Soutinho, Hélder Filipe Cunha

    2012-01-01

    Acoustic insulation is an important requirement for the human life today, since noise affects the efficiency of day-to-day activities and even cause various health problems Materials based on fibrous structures show very good acoustic insulation properties, which however strongly depends on the type of structures used. The present paper reports the qualitative analysis of the acoustic insulation behavior of various thermo-bonded nonwoven fabrics. The results showed that the acoust...

  14. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    Science.gov (United States)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  15. Noise Reduction in the Time Domain using Joint Diagonalization

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Benesty, Jacob; Jensen, Jesper Rindom

    2014-01-01

    , an estimate of the desired signal is found by subtraction of the noise estimate from the observed signal. The filter can be designed to obtain a desired trade-off between noise reduction and signal distortion, depending on the number of eigenvectors included in the filter design. This is explored through...... simulations using a speech signal corrupted by car noise, and the results confirm that the output signal-to-noise ratio and speech distortion index both increase when more eigenvectors are included in the filter design....

  16. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    Science.gov (United States)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  17. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    Science.gov (United States)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  18. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  19. 3D shape optimization of fan vanes for multiple operating regimes subject to efficiency and noise-related excellence criteria and constraints

    Directory of Open Access Journals (Sweden)

    Ivo Marinić-Kragić

    2016-01-01

    Full Text Available Fully generic 3D shapes of centrifugal roof fan vanes are explored based on a custom-developed numerical workflow with the ability to vary the vane 3D shape by manipulating the control points of parametric surfaces and change the number of vanes and rotation speed. An excellence formulation is based on design flow efficiency, multi-regime operational conditions and noise criteria for various cases, including multi-objective optimization. Multiple cases of optimization demonstrate the suitability of customized and individualized fan designs for specific working environments according to the selected excellence criteria. Noise analysis is considered as an additional decision-making tool for cases where multiple solutions of equal efficiency are generated and as an additional criteria for multi-objective optimization. The 3D vane shape enables further gains in efficiency compared to 2D shape optimization, while multi-objective optimization with noise as an additional criterion shows potential to greatly reduce the roof fan noise with only small losses in efficiency. The developed workflow which comprises (i a 3D parametric shape modeler, (ii an evolutionary optimizer and (iii a computational fluid dynamics (CFD simulator can be viewed as an integral tool for optimizing the designs of roof fans under custom conditions.

  20. METHODS OF NOISE LEVEL REDUCTION OF DRIVE IN LATHES

    Directory of Open Access Journals (Sweden)

    Janusz ROGULA

    2014-06-01

    Full Text Available The aim of this work is method presentation to noise level reduction of fixed headstock of the lathe. It is connected with the causes finding of non-uniform work of lathe headstock, description of recent design and its analysis. Problem of the excessive noise level concern to near 35% of the lathes have been produced. In spite of lack of noise reduction possibility there were no system solution of problem. Design optimisation weren’t done after application the electric motor with inverter. New solution of electric motor control let to reduce number of gear wheels in lathe drive system. For this drive solution there weren’t made the analysis of drive particular parts influence on the noise generation.

  1. Prediction of Landing Gear Noise Reduction and Comparison to Measurements

    Science.gov (United States)

    Lopes, Leonard V.

    2010-01-01

    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.

  2. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    Science.gov (United States)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the

  3. Noise reduction methods for nucleic acid and macromolecule sequencing

    Science.gov (United States)

    Schuller, Ivan K.; Di Ventra, Massimiliano; Balatsky, Alexander

    2018-05-08

    Methods, systems, and devices are disclosed for processing macromolecule sequencing data with substantial noise reduction. In one aspect, a method for reducing noise in a sequential measurement of a macromolecule comprising serial subunits includes cross-correlating multiple measured signals of a physical property of subunits of interest of the macromolecule, the multiple measured signals including the time data associated with the measurement of the signal, to remove or at least reduce signal noise that is not in the same frequency and in phase with the systematic signal contribution of the measured signals.

  4. Active Control of Fan Noise-Feasibility Study. Volume 2: Canceling Noise Source-Design of an Acoustic Plate Radiator Using Piezoceramic Actuators

    Science.gov (United States)

    Pla, F. G.; Rajiyah, H.

    1995-01-01

    The feasibility of using acoustic plate radiators powered by piezoceramic thin sheets as canceling sources for active control of aircraft engine fan noise is demonstrated. Analytical and numerical models of actuated beams and plates are developed and validated. An optimization study is performed to identify the optimum combination of design parameters that maximizes the plate volume velocity for a given resonance frequency. Fifteen plates with various plate and actuator sizes, thicknesses, and bonding layers were fabricated and tested using results from the optimization study. A maximum equivalent piston displacement of 0.39 mm was achieved with the optimized plate samples tested with only one actuator powered, corresponding to a plate deflection at the center of over 1 millimeter. This is very close to the deflection required for a full size engine application and represents a 160-fold improvement over previous work. Experimental results further show that performance is limited by the critical stress of the piezoceramic actuator and bonding layer rather than by the maximum moment available from the actuator. Design enhancements are described in detail that will lead to a flight-worthy acoustic plate radiator by minimizing actuator tensile stresses and reducing nonlinear effects. Finally, several adaptive tuning methods designed to increase the bandwidth of acoustic plate radiators are analyzed including passive, active, and semi-active approaches. The back chamber pressurization and volume variation methods are investigated experimentally and shown to be simple and effective ways to obtain substantial control over the resonance frequency of a plate radiator. This study shows that piezoceramic-based plate radiators can be a viable acoustic source for active control of aircraft engine fan noise.

  5. Aerodynamic modelling and optimization of axial fans

    Energy Technology Data Exchange (ETDEWEB)

    Noertoft Soerensen, Dan

    1998-01-01

    A numerically efficient mathematical model for the aerodynamics of low speed axial fans of the arbitrary vortex flow type has been developed. The model is based on a blade-element principle, whereby the rotor is divided into a number of annular stream tubes. For each of these stream tubes relations for velocity, pressure and radial position are derived from the conservation laws for mass, tangential momentum and energy. The equations are solved using the Newton-Raphson methods, and solutions converged to machine accuracy are found at small computing costs. The model has been validated against published measurements on various fan configurations, comprising two rotor-only fan stages, a counter-rotating fan unit and a stator-rotor stator stage. Comparisons of local and integrated properties show that the computed results agree well with the measurements. Optimizations have been performed to maximize the mean value of fan efficiency in a design interval of flow rates, thus designing a fan which operates well over a range of different flow conditions. The optimization scheme was used to investigate the dependence of maximum efficiency on 1: the number of blades, 2: the width of the design interval and 3: the hub radius. The degree of freedom in the choice of design variable and constraints, combined with the design interval concept, provides a valuable design-tool for axial fans. To further investigate the use of design optimization, a model for the vortex shedding noise from the trailing edge of the blades has been incorporated into the optimization scheme. The noise emission from the blades was minimized in a flow rate design point. Optimizations were performed to investigate the dependence of the noise on 1: the number of blades, 2: a constraint imposed on efficiency and 3: the hub radius. The investigations showed, that a significant reduction of noise could be achieved, at the expense of a small reduction in fan efficiency. (EG) 66 refs.

  6. The reduction of airborne radon daughter concentration by plateout on an air mixing fan

    International Nuclear Information System (INIS)

    Holub, R.F.; Droullard, R.F.; Ho, W.L.; Hopke, P.K.; Parsley, R.; Stukel, J.J.

    1979-01-01

    A series of experiments have been made in the U.S. Bureau of Mines Radon Test Chamber to study the effects of condensation nuclei, humidity and turbulence on the rapid deposition or plateout of radon daughter activity on the chamber walls. Under low humidity conditions the presence of a small fan reduced the working level by 41%. The activity was not deposited on the walls by the turbulent flow from the fan but actually became attached to the fan blades. High relative humidity (> 80%) totally inhibited this observed effect. A detailed mechanism for transport of the daughter species seems to be the critical factor in interpreting the experimental results. (author)

  7. Sound quality measures for speech in noise through a commercial hearing aid implementing digital noise reduction.

    Science.gov (United States)

    Ricketts, Todd A; Hornsby, Benjamin W Y

    2005-05-01

    This brief report discusses the affect of digital noise reduction (DNR) processing on aided speech recognition and sound quality measures in 14 adults fitted with a commercial hearing aid. Measures of speech recognition and sound quality were obtained in two different speech-in-noise conditions (71 dBA speech, +6 dB SNR and 75 dBA speech, +1 dB SNR). The results revealed that the presence or absence of DNR processing did not impact speech recognition in noise (either positively or negatively). Paired comparisons of sound quality for the same speech in noise signals, however, revealed a strong preference for DNR processing. These data suggest that at least one implementation of DNR processing is capable of providing improved sound quality, for speech in noise, in the absence of improved speech recognition.

  8. Reduction of HCCI combustion noise through piston crown design

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2010-01-01

    . The largest and most consistent reduction in noise level was however achieved with a diesel bowl type piston. The increased surface area as well as the larger crevice volumes of the experimental piston crowns generally resulted in lower IMEP than the flat piston. While the crevice volumes can be reduced...... away from the engine. The experiments were conducted in a diesel engine that was run in HCCI combustion mode with a fixed quantity of DME as fuel. The results show that combustion knock is effectively suppressed by limiting the size of the volume in which the combustion occurs. Splitting...... the compression volume into four smaller volumes placed between the perimeter of the piston and the cylinder liner increased the noise to a higher level than that generated with a flat piston crown. This was due to resonance between the four volumes. Using eight volumes instead decreased the noise. The noise...

  9. Reduction of Background Noise in the NASA Ames 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Jaeger, Stephen M.; Allen, Christopher S.; Soderman, Paul T.; Olson, Larry E. (Technical Monitor)

    1995-01-01

    Background noise in both open-jet and closed wind tunnels adversely affects the signal-to-noise ratio of acoustic measurements. To measure the noise of increasingly quieter aircraft models, the background noise will have to be reduced by physical means or through signal processing. In a closed wind tunnel, such as the NASA Ames 40- by 80- Foot Wind Tunnel, the principle background noise sources can be classified as: (1) fan drive noise; (2) microphone self-noise; (3) aerodynamically induced noise from test-dependent hardware such as model struts and junctions; and (4) noise from the test section walls and vane set. This paper describes the steps taken to minimize the influence of each of these background noise sources in the 40 x 80.

  10. Improved multi-microphone noise reduction preserving binaural cues

    NARCIS (Netherlands)

    Koutrouvelis, A.; Hendriks, R.C.; Jensen, J; Heusdens, R.; Dong, Min; Zheng, Thomas Fang

    2016-01-01

    We propose a new multi-microphone noise reduction technique for binaural cue preservation of the desired source and the interferers. This method is based on the linearly constrained minimum variance (LCMV) framework, where the constraints are used for the binaural cue preservation of the desired

  11. A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays

    Science.gov (United States)

    Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.

    2011-01-01

    Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.

  12. Recent technologies for reduction of aircraft propulsion noise. Kokuki engine soon teigenka no saikin no gijutsu shinpo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H [National Aerospace Lab., Chofu, Tokyo (Japan)

    1994-03-10

    Inside the jet engine, the propulsion engine for an aircraft, a high speed air current is flowing, and the rotors such as the fan, compress or, turbine and so forth are rotating with a high speed in its flowing current. The flow itself in which a high speed exhaust jet is discharged in the air from engine exhaust port, and the aerodynamic noise generated by an interaction of the flow with the material bodies are the main noise sources of the aircraft engine. Because the supersonic planes are necessary to fly with mach number 2 - 3 during cruising, the turbojet engine with a large jet exhaust speed or the low bypass ratio turbofan engine is selected. Since a noise reduction by reducing the jet exhaust speed, which was an effective measure for the high subsonic speed passenger plane, can not be applied, a reduction of the supersonic jet noise, which is hard to be reduced, becomes a necessity. In addition, in recent years, a research and development of the advanced turbo prop (ATP) aircraft with a further higher thrust efficiency are advanced as well. The aerodynamical noise reduction technologies of these engines for supersonic airplanes are summarized. 14 refs., 11 figs., 1 tab.

  13. Market Analysis of Soundproof and Noise Reduction Plate

    Directory of Open Access Journals (Sweden)

    Chang Heyu

    2017-01-01

    Full Text Available Since the reform and opening up, China has a booming economy development, transportation industry as an important part of the economic processes has made a considerable progress, and continue to promote the rapid economic development. At the end of 2012, China's highway mileage has reached 4.238 million km and highway mileage ranks first in the world. Transportation in promoting rapid economic development, but also brings the traffic noise which has a tremendous influence on residents’ daily life, and this influence has gradually deepening and widening, in this situation the production of noise reduction panel gradually emerged. In this paper, a noise barriers manufacturer’ business model in Beijing Daxing District and analyze existing data will be analyzed, it will give much guidance and reference for a new noise reduction factory. The study has shown that plant will target all levels of government departments in charge of roads and the property of management department of residence as our customer groups, increasing technological innovation and improving product quality to establish a more extensive business relationships, and gradually formed noise barriers market competitiveness.

  14. Low frequency noise reduction using stiff light composite panels

    Institute of Scientific and Technical Information of China (English)

    DENG Yongchang; LIN Weizheng

    2003-01-01

    The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel.

  15. Image noise reduction algorithm for digital subtraction angiography: clinical results.

    Science.gov (United States)

    Söderman, Michael; Holmin, Staffan; Andersson, Tommy; Palmgren, Charlotta; Babic, Draženko; Hoornaert, Bart

    2013-11-01

    To test the hypothesis that an image noise reduction algorithm designed for digital subtraction angiography (DSA) in interventional neuroradiology enables a reduction in the patient entrance dose by a factor of 4 while maintaining image quality. This clinical prospective study was approved by the local ethics committee, and all 20 adult patients provided informed consent. DSA was performed with the default reference DSA program, a quarter-dose DSA program with modified acquisition parameters (to reduce patient radiation dose exposure), and a real-time noise-reduction algorithm. Two consecutive biplane DSA data sets were acquired in each patient. The dose-area product (DAP) was calculated for each image and compared. A randomized, blinded, offline reading study was conducted to show noninferiority of the quarter-dose image sets. Overall, 40 samples per treatment group were necessary to acquire 80% power, which was calculated by using a one-sided α level of 2.5%. The mean DAP with the quarter-dose program was 25.3% ± 0.8 of that with the reference program. The median overall image quality scores with the reference program were 9, 13, and 12 for readers 1, 2, and 3, respectively. These scores increased slightly to 12, 15, and 12, respectively, with the quarter-dose program imaging chain. In DSA, a change in technique factors combined with a real-time noise-reduction algorithm will reduce the patient entrance dose by 75%, without a loss of image quality. RSNA, 2013

  16. Objective Measures of Listening Effort: Effects of Background Noise and Noise Reduction

    Science.gov (United States)

    Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin

    2009-01-01

    Purpose: This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. Method: To address this, the hypothesis…

  17. Noise pollution of air compressor and its noise reduction procedures by using an enclosure

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2012-01-01

    Conclusions: An overall noise reduction by 25 dB with the use of mineral wool as an extra liner on the inside of the enclosure, suggests that the effectiveness of the enclosure can be increased by using such absorber materials.

  18. Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    Science.gov (United States)

    Sutliff, Daniel L.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.

  19. Reduction of vibration forces transmitted from a radiator cooling fan to a vehicle body

    Science.gov (United States)

    Lim, Jonghyuk; Sim, Woojeong; Yun, Seen; Lee, Dongkon; Chung, Jintai

    2018-04-01

    This article presents methods for reducing transmitted vibration forces caused by mass unbalance of the radiator cooling fan during vehicle idling. To identify the effects of mass unbalance upon the vibration characteristics, vibration signals of the fan blades were experimentally measured both with and without an added mass. For analyzing the vibration forces transmitted to the vehicle body, a dynamic simulation model was established that reflected the vibration characteristics of the actual system. This process included a method described herein for calculating the equivalent stiffness and the equivalent damping of the shroud stators and rubber mountings. The dynamic simulation model was verified by comparing its results with experimental results of the radiator cooling fan. The dynamic simulation model was used to analyze the transmitted vibration forces at the rubber mountings. Also, a measure was established to evaluate the effects of varying the design parameters upon the transmitted vibration forces. We present design guidelines based on these analyses to reduce the transmitted vibration forces of the radiator cooling fan.

  20. A Design of Experiments Investigation of Offset Streams for Supersonic Jet Noise Reduction

    Science.gov (United States)

    Henderson, Brenda; Papamoschou, Dimitri

    2014-01-01

    An experimental investigation into the noise characteristics of a dual-stream jet with four airfoils inserted in the fan nozzle was conducted. The intent of the airfoils was to deflect the fan stream relative to the core stream and, therefore, impact the development of the secondary potential core and noise radiated in the peak jet-noise direction. The experiments used a full-factorial Design of Experiments (DoE) approach to identify parameters and parameter interactions impacting noise radiation at two azimuthal microphone array locations, one of which represented a sideline viewing angle. The parameters studied included airfoil angle-of-attack, airfoil azimuthal location within the fan nozzle, and airfoil axial location relative to the fan-nozzle trailing edge. Jet conditions included subsonic and supersonic fan-stream Mach numbers. Heated jets conditions were simulated with a mixture of helium and air to replicate the exhaust velocity and density of the hot jets. The introduction of the airfoils was shown to impact noise radiated at polar angles in peak-jet noise direction and to have no impact on noise radiated at small and broadside polar angles and to have no impact on broadband-shock-associated noise. The DoE analysis showed the main effects impacting noise radiation at sideline-azimuthal-viewing angles included airfoil azimuthal angle for the airfoils on the lower side of the jet near the sideline array and airfoil trailing edge distance (with airfoils located at the nozzle trailing edge produced the lowest sound pressure levels). For an array located directly beneath the jet (and on the side of the jet from which the fan stream was deflected), the main effects impacting noise radiation included airfoil angle-of-attack and airfoil azimuthal angle for the airfoils located on the observation side of the jet as well and trailing edge distance. Interaction terms between multiple configuration parameters were shown to have significant impact on the radiated

  1. Gene regulation and noise reduction by coupling of stochastic processes

    Science.gov (United States)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  2. Gene regulation and noise reduction by coupling of stochastic processes.

    Science.gov (United States)

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  3. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    Science.gov (United States)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  4. Study of noise reduction characteristics of double-wall panels

    Science.gov (United States)

    Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.

    1983-05-01

    The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.

  5. Image reconstruction with shift-variant filtration and its implication for noise and resolution properties in fan-beam computed tomography

    International Nuclear Information System (INIS)

    Pan Xiaochuan; Yu Lifeng

    2003-01-01

    In computed tomography (CT), the fan-beam filtered backprojection (FFBP) algorithm is used widely for image reconstruction. It is known that the FFBP algorithm can significantly amplify data noise and aliasing artifacts in situations where the focal lengths are comparable to or smaller than the size of the field of measurement (FOM). In this work, we propose an algorithm that is less susceptible to data noise, aliasing, and other data inconsistencies than is the FFBP algorithm while retaining the favorable resolution properties of the FFBP algorithm. In an attempt to evaluate the noise properties in reconstructed images, we derive analytic expressions for image variances obtained by use of the FFBP algorithm and the proposed algorithm. Computer simulation studies are conducted for quantitative evaluation of the spatial resolution and noise properties of images reconstructed by use of the algorithms. Numerical results of these studies confirm the favorable spatial resolution and noise properties of the proposed algorithm and verify the validity of the theoretically predicted image variances. The proposed algorithm and the derived analytic expressions for image variances can have practical implications for both estimation and detection/classification tasks making use of CT images, and they can readily be generalized to other fan-beam geometries

  6. An Assessment of Psychological Noise Reduction by Landscape Plants

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2011-04-01

    Full Text Available The emphasis in the term ‘Green Transportation’ is on the word ‘green’. Green transportation focuses on the construction of a slow transport system with a visually pleasing, easy and secure trip environment composed of urban parks, green roadside spaces and some other space that is full of landscape plants. This trip environment encourages residents to make trip choices that reduce fuel consumption and pollution and is one of the most important ways of popularizing green transportation. To study the psychological benefits provided by urban parks and other landscape environments, we combined a subjective approach (a questionnaire with an objective quantitative approach (emotional tests using an electroencephalogram; EEG. Using a questionnaire survey, we found that 90% of the subjects believed that landscape plants contribute to noise reduction and that 55% overrated the plants’ actual ability to attenuate noise. Two videos (showing a traffic scene and a plant scene were shown to 40 participants on video glasses. We detected and recorded EEG values with a portable electroencephalograph, and a comparison between the results of the two groups revealed that there was a highly significant asymmetry between the EEG activity of the vegetation scene and traffic scene groups. The results suggest that the emotions aroused by noise and visual stimuli are manifested in the synchronization of beta frequency band and the desynchronization of alpha frequency band, indicating that landscape plants can moderate or buffer the effects of noise. These findings indicate that landscape plants provide excess noise attenuating effects through subjects’ emotional processing, which we term ‘psychological noise reduction’.

  7. Joint models for noise annoyance and willingness to pay for road noise reduction

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Bue Bjørner, Thomas

    2006-01-01

    Recent contingent valuation (CV) studies of the willingness to pay (WTP) for road noise reduction have used stated annoyance as an independent variable. We argue that this may be inappropriate due to potential endogeneity bias. Instead, an alternative model is proposed that treats both WTP...... and annoyance as endogenous variables in a simultaneous equation model as a combination of a linear regression with an ordered probit with correlated error terms and possibly common parameters. Thus, information on stated annoyance is utilised to estimate WTP with increased efficiency. Application of the model...... to a dataset from Copenhagen indicates a potential for improving the precision of the estimate of WTP for noise reduction with CV data....

  8. Design features of fans, blowers, and compressors

    Science.gov (United States)

    Cheremisinoff, N. P.; Cheremisinoff, P. N.

    Fan engineering and compression machines are discussed. Basic aspects of fan performance and design are reviewed, and the design and performance characteristics of radial-flow fans, axial-flow fans, and controllable pitch fans are examined in detail. Air-conditioning systems are discussed, and noise, vibration, and mechanical considerations in fans are extensively examined. The thermodynamic principles governing compression machines are reviewed, and piston compressors, rotary compressors, blowers, and centrifugal compressors are discussed.

  9. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    Science.gov (United States)

    Sutliff, Daniel L.; Brown, Cliff; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations - a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 inches. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed 4 sweeps, for a total span of 168 inches acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels.

  10. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    Science.gov (United States)

    Sutliff, Daniel l.; Brown, Clifford A.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels

  11. The reduction of noise from hydraulic equipments; La reduction du bruit provenant des equipements hydrauliques

    Energy Technology Data Exchange (ETDEWEB)

    Gential, R.

    1996-09-01

    Noise pollution from hydraulic equipments (bath filling, toilets taps, waste waters flow, vibrations, knocks in water pipes, dilatation clattering in heating pipes, hissing of heater taps etc..) are one of the principal causes of nuisance inside residential buildings. Solutions exist and consist in the replacement of old cocks and fittings, the use of soundproof clamps for pipes and noise absorbing supports for baths etc.. This paper summarizes the available modern equipments with a low-noise warranty (cocks and fittings, noise dampers, anti-backflow valves, pressure reducers) and the practical solutions for the modification of existing installations (increase of pipe diameters, reduction of pipe lengths, use of flexible fittings, hydraulic counterbalancing of water flows in heaters etc..). (J.S.)

  12. Application of Circulation Control Technology to Airframe Noise Reduction

    Science.gov (United States)

    Ahuja, K. K.; Sankar, L. N.; Englar, R. J.; Munro, Scott E.; Li, Yi; Gaeta, R. J.

    2003-01-01

    This report is a summary of the work performed by Georgia Tech Research Institute (GTRI) under NASA Langley Grant NAG-1-2146, which was awarded as a part of NASA's Breakthrough Innovative Technologies (BIT) initiative. This was a three-year program, with a one-year no-cost extension. Each year's study has been an integrated effort consisting of computational fluid dynamics, experimental aerodynamics, and detailed noise and flow measurements. Year I effort examined the feasibility of reducing airframe noise by replacing the conventional wing systems with a Circulation Control Wing (CCW), where steady blowing was used through the trailing edge of the wing over a Coanda surface. It was shown that the wing lift increases with CCW blowing and indeed for the same lift, a CCW wing was shown to produce less noise. Year 2 effort dealt with a similar study on the role of pulsed blowing on airframe noise. The main objective of this portion of the study was to assess whether pulse blowing from the trailing edge of a CCW resulted in more, less, or the same amount of radiated noise to the farfield. Results show that a reduction in farfield noise of up to 5 dB is measured when pulse flow is compared with steady flow for an equivalent lift configuration. This reduction is in the spectral region associated with the trailing edge jet noise. This result is due to the unique advantage that pulsed flow has over steady flow. For a range of frequencies, more lift is experienced with the same mass flow as the steady case. Thus, for an equivalent lift and slot height, the pulsed system can operate at lower jet velocities, and hence lower jet noise. The computational analysis showed that for a given time-averaged mass flow rate, pulsed jets give a higher value of C(sub l) and a higher L/D than equivalent steady jets. This benefit is attributable to higher instantaneous jet velocities, and higher instantaneous C(sub mu) values for the pulsed jet. Pulsed jet benefits increase at higher

  13. Evaluation of a Noise Reduction Procedure for Chest Radiography

    Science.gov (United States)

    Fukui, Ryohei; Ishii, Rie; Kodani, Kazuhiko; Kanasaki, Yoshiko; Suyama, Hisashi; Watanabe, Masanari; Nakamoto, Masaki; Fukuoka, Yasushi

    2013-01-01

    Background The aim of this study was to evaluate the usefulness of noise reduction procedure (NRP), a function in the new image processing for chest radiography. Methods A CXDI-50G Portable Digital Radiography System (Canon) was used for X-ray detection. Image noise was analyzed with a noise power spectrum (NPS) and a burger phantom was used for evaluation of density resolution. The usefulness of NRP was evaluated by chest phantom images and clinical chest radiography. We employed the Bureau of Radiological Health Method for scoring chest images while carrying out our observations. Results NPS through the use of NRP was improved compared with conventional image processing (CIP). The results in image quality showed high-density resolution through the use of NRP, so that chest radiography examination can be performed with a low dose of radiation. Scores were significantly higher than for CIP. Conclusion In this study, use of NRP led to a high evaluation in these so we are able to confirm the usefulness of NRP for clinical chest radiography. PMID:24574577

  14. Supersonic impinging jet noise reduction using a hybrid control technique

    Science.gov (United States)

    Wiley, Alex; Kumar, Rajan

    2015-07-01

    Control of the highly resonant flowfield associated with supersonic impinging jet has been experimentally investigated. Measurements were made in the supersonic impinging jet facility at the Florida State University for a Mach 1.5 ideally expanded jet. Measurements included unsteady pressures on a surface plate near the nozzle exit, acoustics in the nearfield and beneath the impingement plane, and velocity field using particle image velocimetry. Both passive control using porous surface and active control with high momentum microjet injection are effective in reducing nearfield noise and flow unsteadiness over a range of geometrical parameters; however, the type of noise reduction achieved by the two techniques is different. The passive control reduces broadband noise whereas microjet injection attenuates high amplitude impinging tones. The hybrid control, a combination of two control methods, reduces both broadband and high amplitude impinging tones and surprisingly its effectiveness is more that the additive effect of the two control techniques. The flow field measurements show that with hybrid control the impinging jet is stabilized and the turbulence quantities such as streamwise turbulence intensity, transverse turbulence intensity and turbulent shear stress are significantly reduced.

  15. Low Delay Noise Reduction and Dereverberation for Hearing Aids

    Directory of Open Access Journals (Sweden)

    Heinrich W. Löllmann

    2009-01-01

    Full Text Available A new system for single-channel speech enhancement is proposed which achieves a joint suppression of late reverberant speech and background noise with a low signal delay and low computational complexity. It is based on a generalized spectral subtraction rule which depends on the variances of the late reverberant speech and background noise. The calculation of the spectral variances of the late reverberant speech requires an estimate of the reverberation time (RT which is accomplished by a maximum likelihood (ML approach. The enhancement with this blind RT estimation achieves almost the same speech quality as by using the actual RT. In comparison to commonly used post-filters in hearing aids which only perform a noise reduction, a significantly better objective and subjective speech quality is achieved. The proposed system performs time-domain filtering with coefficients adapted in the non-uniform (Bark-scaled frequency-domain. This allows to achieve a high speech quality with low signal delay which is important for speech enhancement in hearing aids or related applications such as hands-free communication systems.

  16. Reduction of airfoil trailing edge noise by trailing edge blowing

    International Nuclear Information System (INIS)

    Gerhard, T; Carolus, T; Erbslöh, S

    2014-01-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length

  17. Objective measures of listening effort: effects of background noise and noise reduction.

    Science.gov (United States)

    Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin

    2009-10-01

    This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. To address this, the hypothesis tested here is that the positive effects of NR might be to reduce cognitive effort directed toward speech reception, making it available for other tasks. Normal-hearing individuals participated in 2 dual-task experiments, in which 1 task was to report sentences or words in noise set to various signal-to-noise ratios. Secondary tasks involved either holding words in short-term memory or responding in a complex visual reaction-time task. At low values of signal-to-noise ratio, although NR had no positive effect on speech reception thresholds, it led to better performance on the word-memory task and quicker responses in visual reaction times. Results from both dual tasks support the hypothesis that NR reduces listening effort and frees up cognitive resources for other tasks. Future hearing aid research should incorporate objective measurements of cognitive benefits.

  18. Centrifugal fans: Similarity, scaling laws, and fan performance

    Science.gov (United States)

    Sardar, Asad Mohammad

    Centrifugal fans are rotodynamic machines used for moving air continuously against moderate pressures through ventilation and air conditioning systems. There are five major topics presented in this thesis: (1) analysis of the fan scaling laws and consequences of dynamic similarity on modelling; (2) detailed flow visualization studies (in water) covering the flow path starting at the fan blade exit to the evaporator core of an actual HVAC fan scroll-diffuser module; (3) mean velocity and turbulence intensity measurements (flow field studies) at the inlet and outlet of large scale blower; (4) fan installation effects on overall fan performance and evaluation of fan testing methods; (5) two point coherence and spectral measurements conducted on an actual HVAC fan module for flow structure identification of possible aeroacoustic noise sources. A major objective of the study was to identity flow structures within the HVAC module that are responsible for noise and in particular "rumble noise" generation. Possible mechanisms for the generation of flow induced noise in the automotive HVAC fan module are also investigated. It is demonstrated that different modes of HVAC operation represent very different internal flow characteristics. This has implications on both fan HVAC airflow performance and noise characteristics. It is demonstrated from principles of complete dynamic similarity that fan scaling laws require that Reynolds, number matching is a necessary condition for developing scale model fans or fan test facilities. The physical basis for the fan scaling laws derived was established from both pure dimensional analysis and also from the fundamental equations of fluid motion. Fan performance was measured in a three times scale model (large scale blower) in air of an actual forward curved automotive HVAC blower. Different fan testing methods (based on AMCA fan test codes) were compared on the basis of static pressure measurements. Also, the flow through an actual HVAC

  19. Bit-rate reduction strategies for noise suppression with a remote wireless microphone

    NARCIS (Netherlands)

    Cvijanovic, N.; Sadiq, O.; Srinivasan, S.

    2012-01-01

    In single channel non-stationary noise reduction it is paramount that a good noise reference is available in a timely manner to maintaina high quality speech signal. Using a remote wireless microphone placed close to a noise source, a good estimate of the noise power spectral density (PSD) can be

  20. Bit rate reduction strategies for noise suppression using a remote wireless microphone

    NARCIS (Netherlands)

    Cvijanovic, N.; Sadiq, O.; Srinivasan, S.

    2012-01-01

    In single-channel non-stationary noise reduction it is paramount that a good noise reference is available in a timely manner to maintain a high quality speech signal. Using a remote wireless microphone placed close to a noise source, a good estimate of the noise power spectral density (PSD) can be

  1. Noise Reduction with Optimal Variable Span Linear Filters

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2016-01-01

    In this paper, the problem of noise reduction is addressed as a linear filtering problem in a novel way by using concepts from subspace-based enhancement methods, resulting in variable span linear filters. This is done by forming the filter coefficients as linear combinations of a number...... included in forming the filter. Using these concepts, a number of different filter designs are considered, like minimum distortion, Wiener, maximum SNR, and tradeoff filters. Interestingly, all these can be expressed as special cases of variable span filters. We also derive expressions for the speech...... demonstrate the advantages and properties of the variable span filter designs, and their potential performance gain compared to widely used speech enhancement methods....

  2. Phonon squeezed states: quantum noise reduction in solids

    Science.gov (United States)

    Hu, Xuedong; Nori, Franco

    1999-03-01

    This article discusses quantum fluctuation properties of a crystal lattice, and in particular, phonon squeezed states. Squeezed states of phonons allow a reduction in the quantum fluctuations of the atomic displacements to below the zero-point quantum noise level of coherent phonon states. Here we discuss our studies of both continuous-wave and impulsive second-order Raman scattering mechanisms. The later approach was used to experimentally suppress (by one part in a million) fluctuations in phonons. We calculate the expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments. Further information, including preprints and animations, are available in http://www-personal.engin.umich.edu/∼nori/squeezed.html.

  3. Foundations of Active Control - Active Noise Reduction Helmets

    DEFF Research Database (Denmark)

    Elmkjær, Torsten Haaber Leth

    2008-01-01

    rate is increased which in turn most likely also will lead to an increased ANR bandwidth. The hybrid system is also constituted from a continuous-time feedback system (FBS) and a discrete-time FBS. The continuous-time FBS is primarily responsible for additional broadband noise reduction, whereas...... the discrete-time FBS primarily is responsible for the attenuation of periodic signals. Owing to the requirement on causal operation of a physical AC system time delays will also to a large extent determine the achievable performance in FFS design and in particular in FBS design. A quantity referred...... on a head and torso simulator (HATS), is exposed to diffuse sound field illumination. By applying the JCRSA method the spatially-weighted-averaged acquisition lead times provided by the reference sensors relative to the performance sensors are estimated to be as much as 800-900μs. The thesis also includes...

  4. Research of noise emission sources in railway transport and effective ways of their reduction

    Directory of Open Access Journals (Sweden)

    Zvolenský Peter

    2017-01-01

    Full Text Available In the EU conditions attention is systematically paid to noise reduction on the railways. Because TSI rules systematically tighten limits for noise emissions from railway vehicles, noise research must be addressed by all Member States, as the main technical solutions for railway vehicles and construction technological aspects of railway operations can result in lower noise exposure of affected areas or objects. The paper focuses on theoretical investigation of sources and paths of sound propagation, possibilities of noise reduction both on vehicles and by infrastructure and experimental measurements of the situation in transport practice. Methodology for reducing railway noise around tracks has been presented, too.

  5. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors

    Directory of Open Access Journals (Sweden)

    Shoji Kawahito

    2016-11-01

    Full Text Available This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs. This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC. The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median: 0.29 e−rms when compared with the CMS gain of two (2.4 e−rms, or 16 (1.1 e−rms.

  6. Identification and Reduction of Turbomachinery Noise, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Communities near airports are often exposed to high noise levels due to low flying aircraft in the takeoff and landing phases of flight. Propulsion source noise is...

  7. Flap Side Edge Liners for Airframe Noise Reduction

    Science.gov (United States)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  8. Survey of Traffic Noise Reduction Products, Materials, and Technologies.

    Science.gov (United States)

    2008-12-01

    Noise is one of the most pervasive forms of environmental pollution. It is everywhere and affects our lives at : home, work and play. By definition, noise is any unwanted or excessive sound. Highway traffic noise is a : major issue for transportation...

  9. SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation

    Energy Technology Data Exchange (ETDEWEB)

    Maitree, R; Guzman, G; Chundury, A; Roach, M; Yang, D [Washington University School of Medicine, St Louis, MO (United States)

    2016-06-15

    Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness of available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert ranking) and

  10. SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation

    International Nuclear Information System (INIS)

    Maitree, R; Guzman, G; Chundury, A; Roach, M; Yang, D

    2016-01-01

    Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness of available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert ranking) and

  11. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    Science.gov (United States)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  12. Comparison of measured and predicted airfoil self-noise with application to wind turbine noise reduction

    International Nuclear Information System (INIS)

    Dassen, T.; Parchen, R.; Guidati, G.; Wagner, S.; Kang, S.; Khodak, A.E.

    1998-01-01

    In the ongoing JOULE-III project 'Development of Design Tools for Reduced Aerodynamic Noise Wind Turbines (DRAW)', prediction codes for inflow-turbulence (IT) noise and turbulent boundary layer trailing-edge (TE) noise, are developed and validated. It is shown that the differences in IT noise radiation between airfoils having a different shape, are correctly predicted. The first, preliminary comparison made between predicted and measured TE noise spectra yields satisfactory results. 17 refs

  13. Multi-objective optimization design and experimental investigation of centrifugal fan performance

    Science.gov (United States)

    Zhang, Lei; Wang, Songling; Hu, Chenxing; Zhang, Qian

    2013-11-01

    Current studies of fan performance optimization mainly focus on two aspects: one is to improve the blade profile, and another is only to consider the influence of single impeller structural parameter on fan performance. However, there are few studies on the comprehensive effect of the key parameters such as blade number, exit stagger angle of blade and the impeller outlet width on the fan performance. The G4-73 backward centrifugal fan widely used in power plants is selected as the research object. Based on orthogonal design and BP neural network, a model for predicting the centrifugal fan performance parameters is established, and the maximum relative errors of the total pressure and efficiency are 0.974% and 0.333%, respectively. Multi-objective optimization of total pressure and efficiency of the fan is conducted with genetic algorithm, and the optimum combination of impeller structural parameters is proposed. The optimized parameters of blade number, exit stagger angle of blade and the impeller outlet width are seperately 14, 43.9°, and 21 cm. The experiments on centrifugal fan performance and noise are conducted before and after the installation of the new impeller. The experimental results show that with the new impeller, the total pressure of fan increases significantly in total range of the flow rate, and the fan efficiency is improved when the relative flow is above 75%, also the high efficiency area is broadened. Additionally, in 65% -100% relative flow, the fan noise is reduced. Under the design operating condition, total pressure and efficiency of the fan are improved by 6.91% and 0.5%, respectively. This research sheds light on the considering of comprehensive effect of impeller structrual parameters on fan performance, and a new impeller can be designed to satisfy the engineering demand such as energy-saving, noise reduction or solving air pressure insufficiency for power plants.

  14. Reduction of environmental MHz noise for SQUID application

    Energy Technology Data Exchange (ETDEWEB)

    Araya, T. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: araya@sup.ee.es.osaka-u.ac.jp; Kitamura, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Kamishiro, M. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Sakuta, K. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Itozaki, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: itozaki@ee.es.osaka-u.ac.jp

    2006-10-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise.

  15. Reduction of environmental MHz noise for SQUID application

    International Nuclear Information System (INIS)

    Araya, T.; Kitamura, Y.; Kamishiro, M.; Sakuta, K.; Itozaki, H.

    2006-01-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise

  16. REDUCTION OF CLASSROOM NOISE LEVELS USING GROUP CONTINGENCIES

    OpenAIRE

    Ring, Brandon M.; Sigurdsson, Sigurdur O.; Eubanks, Sean L.; Silverman, Kenneth

    2014-01-01

    The therapeutic workplace is an employment-based abstinence reinforcement intervention for unemployed drug users where trainees receive on-the-job employment skills training in a classroom setting. The study is an extension of prior therapeutic workplace research, which suggested that trainees frequently violated noise standards. Participants received real-time graphed feedback of noise levels and had the opportunity to earn monetary group reinforcement for maintaining a low number of noise v...

  17. Identification and Reduction of Turbomachinery Noise, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Noise has become a primary consideration in the design and development of many products, particulary in aerospace, automotive and consumer product industries....

  18. 40 CFR 211.207 - Computation of the noise -reduction rating (NRR).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Computation of the noise -reduction... of the noise -reduction rating (NRR). Calculate the NRR for hearing protective devices by... “A”-weighting relative response corrections applied to any sound levels at the indicated octave band...

  19. Acoustical and Perceptual Comparison of Noise Reduction and Compression in Hearing Aids

    NARCIS (Netherlands)

    Brons, Inge; Houben, Rolph; Dreschler, Wouter A.

    2015-01-01

    Noise reduction and dynamic-range compression are generally applied together in hearing aids but may have opposite effects on amplification. This study evaluated the acoustical and perceptual effects of separate and combined processing of noise reduction and compression. Recordings of the output of

  20. Filtering out the noise: evaluating the impact of noise and sound reduction strategies on sleep quality for ICU patients.

    Science.gov (United States)

    Bosma, Karen J; Ranieri, V Marco

    2009-01-01

    The review article by Xie and colleagues examines the impact of noise and noise reduction strategies on sleep quality for critically ill patients. Evaluating the impact of noise on sleep quality is challenging, as it must be measured relative to other factors that may be more or less disruptive to patients' sleep. Such factors may be difficult for patients, observers, and polysomnogram interpreters to identify, due to our limited understanding of the causes of sleep disruption in the critically ill, as well as the challenges in recording and quantifying sleep stages and sleep fragmentation in the intensive care unit. Furthermore, most research in this field has focused on noise level, whereas acousticians typically evaluate additional parameters such as noise spectrum and reverberation time. The authors highlight the disparate results and limitations of existing studies, including the lack of attention to other acoustic parameters besides sound level, and the combined effects of different sleep disturbing factors.

  1. Noise-based tube current reduction method with iterative reconstruction for reduction of radiation exposure in coronary CT angiography

    International Nuclear Information System (INIS)

    Shen, Junlin; Du, Xiangying; Guo, Daode; Cao, Lizhen; Gao, Yan; Bai, Mei; Li, Pengyu; Liu, Jiabin; Li, Kuncheng

    2013-01-01

    Purpose: To investigate the potential of noise-based tube current reduction method with iterative reconstruction to reduce radiation exposure while achieving consistent image quality in coronary CT angiography (CCTA). Materials and methods: 294 patients underwent CCTA on a 64-detector row CT equipped with iterative reconstruction. 102 patients with fixed tube current were assigned to Group 1, which was used to establish noise-based tube current modulation formulas, where tube current was modulated by the noise of test bolus image. 192 patients with noise-based tube current were randomly assigned to Group 2 and Group 3. Filtered back projection was applied for Group 2 and iterative reconstruction for Group 3. Qualitative image quality was assessed with a 5 point score. Image noise, signal intensity, volume CT dose index, and dose-length product were measured. Results: The noise-based tube current modulation formulas were established through regression analysis using image noise measurements in Group 1. Image noise was precisely maintained at the target value of 35.00 HU with small interquartile ranges for Group 2 (34.17–35.08 HU) and Group 3 (34.34–35.03 HU), while it was from 28.41 to 36.49 HU for Group 1. All images in the three groups were acceptable for diagnosis. A relative 14% and 41% reduction in effective dose for Group 2 and Group 3 were observed compared with Group 1. Conclusion: Adequate image quality could be maintained at a desired and consistent noise level with overall 14% dose reduction using noise-based tube current reduction method. The use of iterative reconstruction further achieved approximately 40% reduction in effective dose

  2. Health Assessment of Cooling Fan Bearings Using Wavelet-Based Filtering

    Directory of Open Access Journals (Sweden)

    Qiang Miao

    2012-12-01

    Full Text Available As commonly used forced convection air cooling devices in electronics, cooling fans are crucial for guaranteeing the reliability of electronic systems. In a cooling fan assembly, fan bearing failure is a major failure mode that causes excessive vibration, noise, reduction in rotation speed, locked rotor, failure to start, and other problems; therefore, it is necessary to conduct research on the health assessment of cooling fan bearings. This paper presents a vibration-based fan bearing health evaluation method using comblet filtering and exponentially weighted moving average. A new health condition indicator (HCI for fan bearing degradation assessment is proposed. In order to collect the vibration data for validation of the proposed method, a cooling fan accelerated life test was conducted to simulate the lubricant starvation of fan bearings. A comparison between the proposed method and methods in previous studies (i.e., root mean square, kurtosis, and fault growth parameter was carried out to assess the performance of the HCI. The analysis results suggest that the HCI can identify incipient fan bearing failures and describe the bearing degradation process. Overall, the work presented in this paper provides a promising method for fan bearing health evaluation and prognosis.

  3. Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration

    Science.gov (United States)

    Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.

    2014-01-01

    A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger

  4. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    Science.gov (United States)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  5. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation.

    Science.gov (United States)

    Hu, Yi

    2010-05-01

    Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.

  6. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Zhang, Yadong; Zhang, Jiye; Li, Tian; Zhang, Liang; Zhang, Weihua

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  7. Effects of directional microphone and adaptive multichannel noise reduction algorithm on cochlear implant performance.

    Science.gov (United States)

    Chung, King; Zeng, Fan-Gang; Acker, Kyle N

    2006-10-01

    Although cochlear implant (CI) users have enjoyed good speech recognition in quiet, they still have difficulties understanding speech in noise. We conducted three experiments to determine whether a directional microphone and an adaptive multichannel noise reduction algorithm could enhance CI performance in noise and whether Speech Transmission Index (STI) can be used to predict CI performance in various acoustic and signal processing conditions. In Experiment I, CI users listened to speech in noise processed by 4 hearing aid settings: omni-directional microphone, omni-directional microphone plus noise reduction, directional microphone, and directional microphone plus noise reduction. The directional microphone significantly improved speech recognition in noise. Both directional microphone and noise reduction algorithm improved overall preference. In Experiment II, normal hearing individuals listened to the recorded speech produced by 4- or 8-channel CI simulations. The 8-channel simulation yielded similar speech recognition results as in Experiment I, whereas the 4-channel simulation produced no significant difference among the 4 settings. In Experiment III, we examined the relationship between STIs and speech recognition. The results suggested that STI could predict actual and simulated CI speech intelligibility with acoustic degradation and the directional microphone, but not the noise reduction algorithm. Implications for intelligibility enhancement are discussed.

  8. Reduction of external noise of mobile energy facilities by using active noise control system in muffler

    Science.gov (United States)

    Polivaev, O. I.; Kuznetsov, A. N.; Larionov, A. N.; Beliansky, R. G.

    2018-03-01

    The paper describes a method for the reducing emission of low-frequency noise of modern automotive vehicles into the environment. The importance of reducing the external noise of modern mobile energy facilities made in Russia is substantiated. Standard methods for controlling external noise in technology are of low efficiency when low-frequency sound waves are reduced. In this case, it is in the low-frequency zone of the sound range that the main power of the noise emitted by the machinery lies. The most effective way to reduce such sound waves is to use active noise control systems. A design of a muffler using a similar system is presented. This muffler allowed one to reduce the emission of increased noise levels into the environment by 7-11 dB and to increase acoustic comfort at the operator's workplace by 3-5 dB.

  9. Noise Reduction in High-Throughput Gene Perturbation Screens

    Science.gov (United States)

    Motivation: Accurate interpretation of perturbation screens is essential for a successful functional investigation. However, the screened phenotypes are often distorted by noise, and their analysis requires specialized statistical analysis tools. The number and scope of statistical methods available...

  10. Noise and its reduction in graphene based nanopore devices

    International Nuclear Information System (INIS)

    Kumar, Ashvani; Park, Kyeong-Beom; Kim, Hyun-Mi; Kim, Ki-Bum

    2013-01-01

    Ionic current fluctuations in graphene nanopore devices are a ubiquitous phenomenon and are responsible for degraded spatial and temporal resolution. Here, we descriptively investigate the impact of different substrate materials (Si and quartz) and membrane thicknesses on noise characteristics of graphene nanopore devices. To mitigate the membrane fluctuations and pin-hole defects, a SiN x membrane is transferred onto the substrate and a pore of approximately 70 nm in diameter is perforated prior to the graphene transfer. Comprehensive noise study reveals that the few layer graphene transferred onto the quartz substrate possesses low noise level and higher signal to noise ratio as compared to single layer graphene, without deteriorating the spatial resolution. The findings here point to improvement of graphene based nanopore devices for exciting opportunities in future single-molecule genomic screening devices. (paper)

  11. A Noise Reduction Preprocessor for Mobile Voice Communication

    Directory of Open Access Journals (Sweden)

    Rainer Martin

    2004-07-01

    Full Text Available We describe a speech enhancement algorithm which leads to significant quality and intelligibility improvements when used as a preprocessor to a low bit rate speech coder. This algorithm was developed in conjunction with the mixed excitation linear prediction (MELP coder which, by itself, is highly susceptible to environmental noise. The paper presents novel as well as known speech and noise estimation techniques and combines them into a highly effective speech enhancement system. The algorithm is based on short-time spectral amplitude estimation, soft-decision gain modification, tracking of the a priori probability of speech absence, and minimum statistics noise power estimation. Special emphasis is placed on enhancing the performance of the preprocessor in nonstationary noise environments.

  12. High Velocity Jet Noise Source Location and Reduction. Task 6. Noise Abatement Nozzle Design Guide.

    Science.gov (United States)

    1979-04-01

    the Conical Nozzle 255 on the Bertin Aerotrain . xvi ji4 ’ . _______ p .. LIST OF ILLUSTRATIONS (Continued) Figure Page D-37. Predicted and Measured...Moving-Frame Noise from the 256 Conical Nozzle on the Bertin Aerotrain . D-38. Predicted and Measured Static Noise from the 104-Tube 257 Nozzle on the...Bertin Aerotrain . D-39. Predicted and Measured Moving-Frame Noise from the 104- 258 Tube Nozzle on the Bertin Aerotrain . D-40. Relative Velocity Index m

  13. Binaural noise reduction via cue-preserving MMSE filter and adaptive-blocking-based noise PSD estimation

    Science.gov (United States)

    Azarpour, Masoumeh; Enzner, Gerald

    2017-12-01

    Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome

  14. Thermal noise reduction for present and future gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Amico, P.; Bosi, L.; Gammaitoni, L.; Losurdo, G.; Marchesoni, F.; Mazzoni, M.; Punturo, M. E-mail: michele.punturo@pg.infn.it; Stanga, R.; Toncelli, A.; Tonelli, M.; Travasso, F.; Vetrano, F.; Vocca, H

    2004-02-01

    Thermal noise in mirror suspension is and will be the most severe fundamental limit to the low-frequency sensitivity of interferometric gravitational wave detectors currently under construction. The technical solutions, adopted in the Virgo detector, optimize the current suspension scheme, but new materials and new designs are needed to further reduce the suspension thermal noise. Silicon fibers are promising candidates both for room temperature advanced detectors and for future cryogenic interferometric detectors.

  15. Simulated dose reduction by adding artificial noise to measured raw data: A validation study

    International Nuclear Information System (INIS)

    Soederberg, M.; Gunnarsson, M.; Nilsson, M.

    2010-01-01

    The purpose of this study was to verify and validate a noise simulation tool called Dose Tutor (VAMP GmbH) in terms of level and texture of the simulated noise. By adding artificial noise to measured computed tomography (CT) raw data, a scan acquired with a lower dose (mAs) than the actual one can be simulated. A homogeneous polyethylene phantom and an anthropomorphic chest phantom were scanned for different mAs levels, tube voltages, slice thicknesses and reconstruction kernels. The simulated noise levels were compared with the noise levels in real transverse slice images actually acquired with corresponding mAs values. In general, the noise comparisons showed acceptable agreement in magnitude (<20% deviation in pixel standard deviation). Also, the calculated noise power spectra were similar, which indicates that the noise texture is correctly reproduced. In conclusion, this study establishes that the Dose Tutor might be a useful tool for estimating the dose reduction potential for CT protocols. (authors)

  16. The iterative shrinkage method for impulsive noise reduction from images

    International Nuclear Information System (INIS)

    Beygi, Sajjad; Kafashan, Mohammadmehdi; Bahrami, Hamid Reza; Mugler, Dale H

    2012-01-01

    In this paper, we present a novel scheme to compensate impulsive noise from images using the sparse shrinkage method. In this scheme, we assume the remaining noise after using a simple median filtering in place of corrupted pixels, found by boundary discriminative noise detection method, to be Gaussian additive noise. This assumption will later be verified by the means of simulation. Knowing that the pure image in the discrete wavelet transform (DWT) domain is a sparse vector, we define an optimization problem to minimize the l 0 -norm of the estimated image vector from the noisy one in the DWT domain. l 0 -norm makes the optimization problem a combinatorial optimization problem which is NP-hard to solve. To come up with a solution for our optimization problem, we convert the l 0 -norm problem to a continuous optimization problem which is then solved to find the estimated image with reduced noise. In the simulation and discussion part, the performance of our proposed method in reducing impulsive noise is compared to that of existing methods in the literature. We show that our proposed algorithm generally performs better in terms of both subjective and objective evaluations and is less complex. (paper)

  17. Analysis of Beamformer Directed Single-Channel Noise Reduction System for Hearing Aid Applications

    DEFF Research Database (Denmark)

    Jensen, Jesper; Pedersen, Michael Syskind

    2015-01-01

    We study multi-microphone noise reduction systems consisting of a beamformer and a single-channel (SC) noise reduction stage. In particular, we present and analyse a maximum likelihood (ML) method for jointly estimating the target and noise power spectral densities (psd's) entering the SC filter....... We show that the estimators are minimum variance and unbiased, and provide closed-form expressions for their mean-square error (MSE). Furthermore, we show that the MSE of the noise psd estimator is particularly simple: it is independent of target signal characteristics, frequency, and microphone...

  18. Railway noise reduction by the application of CHFC material on the rail

    Directory of Open Access Journals (Sweden)

    Brigita ALTENBAHER

    2015-06-01

    Full Text Available Traffic is the most widespread source of environmental noise. Railway noise has become increasingly common in urban areas in the past few decades. Therefore environmental requirements for railway operations regarding noise are becoming very strict and will become even tighter in future. In the present paper we present actual track-based field test performed on Slovenian Railways. The significant noise reduction (up to 30dBA was achieved by the application of CHFC material on the rail using CL-E1 top anti noise system.

  19. Minimizing noise in fiberglass aquaculture tanks: Noise reduction potential of various retrofits

    Science.gov (United States)

    Equipment used in intensive aquaculture systems, such as pumps and blowers can produce underwater sound levels and frequencies within the range of fish hearing. The impacts of underwater noise on fish are not well known, but limited research suggests that subjecting fish to noise could result in imp...

  20. Detection threshold for sound distortion resulting from noise reduction in normal-hearing and hearing-impaired listeners

    NARCIS (Netherlands)

    Brons, Inge; Dreschler, Wouter A.; Houben, Rolph

    2014-01-01

    Hearing-aid noise reduction should reduce background noise, but not disturb the target speech. This objective is difficult because noise reduction suffers from a trade-off between the amount of noise removed and signal distortion. It is unknown if this important trade-off differs between

  1. Advanced supersonic propulsion study. [with emphasis on noise level reduction

    Science.gov (United States)

    Sabatella, J. A. (Editor)

    1974-01-01

    A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.

  2. Flow Control by Slot Position and Noise Baffle in a Self-Recirculation Casing Treatment on an Axial Fan-Rotor

    Directory of Open Access Journals (Sweden)

    Xiangjun Li

    2017-01-01

    Full Text Available To address the situations where the casing treatment needs to be used to stabilize axial compressors through strong recirculation, this paper initiated a CFD study to investigate how the flow could be suitably controlled in the casing treatment to minimize the efficiency penalty and increase the flow range. A counter-swirl self-recirculation casing treatment was first designed on a low speed axial fan rotor as a baseline case. Then three different slot positions and the influence of including the noise baffle were numerically studied. Based on the understanding of their coeffects, the shorter noise baffle was considered and it was found that the highest efficiency was achieved in the case of the upstream slot when the length of baffle was suitably adjusted to balance the incoming flow and recirculation. The largest flow range was achieved by locating the slot at the most downstream position and using a 50% length baffle since it suitably controlled the recirculating flow and relieved the separation at the low-span region. An optimization study showed that the optimum length of the baffle for efficiency was always larger than for the flow range. Both of the two optimum values reduce as the slot moves downstream.

  3. Single-photoelectron noise reduction in scintillation detectors

    International Nuclear Information System (INIS)

    Marvin, T.P.

    1995-10-01

    The 1994--95 search at SLAC for mulicharged particles used four 21 x 21 x 130-cm 3 Bicron 408 scintillation counters to detect a signal at the single-photoelectron level. The competing noise requiring minimization was due to a combination of PM tube (8-inch Thorne EMI 9353KA) afterpulsing and ambient radiation-induced scintillator luminescence. A very slow decay (> 30 μs) component was observed and received particular attention. Efforts to reduce the SPE noise included photomultiplier tube base modifications, detector shielding and cooling, signal amplification, and veto procedures

  4. Mastication noise reduction method for fully implantable hearing aid using piezo-electric sensor.

    Science.gov (United States)

    Na, Sung Dae; Lee, Gihyoun; Wei, Qun; Seong, Ki Woong; Cho, Jin Ho; Kim, Myoung Nam

    2017-07-20

    Fully implantable hearing devices (FIHDs) can be affected by generated biomechanical noise such as mastication noise. To reduce the mastication noise using a piezo-electric sensor, the mastication noise is measured with the piezo-electric sensor, and noise reduction is practiced by the energy difference. For the experiment on mastication noise, a skull model was designed using artificial skull model and a piezo-electric sensor that can measure the vibration signals better than other sensors. A 1 kHz pure-tone sound through a standard speaker was applied to the model while the lower jawbone of the model was moved in a masticatory fashion. The correlation coefficients and signal-to-noise ratio (SNR) before and after application of the proposed method were compared. It was found that the signal-to-noise ratio and correlation coefficients increased by 4.48 dB and 0.45, respectively. The mastication noise is measured by piezo-electric sensor as the mastication noise that occurred during vibration. In addition, the noise was reduced by using the proposed method in conjunction with MATLAB. In order to confirm the performance of the proposed method, the correlation coefficients and signal-to-noise ratio before and after signal processing were calculated. In the future, an implantable microphone for real-time processing will be developed.

  5. Research on noise and vibration reduction at DB to improve the environmental friendliness of railway traffic

    Science.gov (United States)

    Schulte-Werning, B.; Beier, M.; Degen, K. G.; Stiebel, D.

    2006-06-01

    One of the most prominent keywords relating to the environmental friendliness of railway traffic is noise reduction. Thus, the research and development programme "Low Noise Railway" of Deutsche Bahn (DB) is under way to treat the noise of the vehicles and infrastructure. The noise reduction of the trains and the rail/wheel system are being tackled within several projects. The direct noise experienced by railway-lineside residents due to train movements on the track can be reduced by minimising the sound radiation directly at the source. This is the first-choice solution, as it proves to be the most effective countermeasure regarding a cost-benefit relation. The limit values for the noise emission as specified in the technical specification for interoperability are an essential criterion to be confirmed during the procurement process of railway vehicles. A recently developed acoustical quality management scheme establishes systematic noise management to complete the vehicle procurement process in the phases of concept, design, construction and manufacturing. In freight traffic quiet railway wheels for block brake operation will play an important role in the future to meet the goal of a low-noise railway system. A first attempt to realise successfully the low-noise potential of such optimised wheels was performed, even if with mixed results. To show ways of reducing the noise of the cooling ventilation in locomotives, DB is a partner in a development project led by Siemens. A notable 8 dB(A) noise reduction was measured. Concerning bridge noise, a project was started based on an effective and cost-efficient combination of experiments and simulations in order to develop specifications for the construction of generic low-noise bridges.

  6. Techniques for the reduction of low frequency noise in buildings

    NARCIS (Netherlands)

    Zuada Coelho, B.A.; Koopman, A.

    2012-01-01

    Vibration isolation of buildings is often achieved by introducing spring systems at the foundation level. This can be an effective measure, especially against vibrations induced by noise, but it is also very costly. Due to the current usage of the cities space, where buildings and infrastructures

  7. Reduction of Impact Noise of Trams on a Major Bridge

    NARCIS (Netherlands)

    Dittrich, M.G.; Bosshaart, C.; Wessels, P.W.

    2015-01-01

    As part of a recent renovation of the Erasmus bridge in Rotterdam, improvements were made to reduce impact noise caused by trams passing a series of rai! joints. The bridge inciudes several different sections inciuding a bascule bridge and is in an inner city tocation with new adjacent apartment

  8. Reduction of Classroom Noise Levels Using Group Contingencies

    Science.gov (United States)

    Ring, Brandon M.; Sigurdsson, Sigurdur O.; Eubanks, Sean L.; Silverman, Kenneth

    2014-01-01

    The therapeutic workplace is an employment-based abstinence reinforcement intervention for unemployed drug users where trainees receive on-the-job employment skills training in a classroom setting. The study is an extension of prior therapeutic workplace research, which suggested that trainees frequently violated noise standards. Participants…

  9. GPR random noise reduction using BPD and EMD

    Science.gov (United States)

    Ostoori, Roya; Goudarzi, Alireza; Oskooi, Behrooz

    2018-04-01

    Ground-penetrating radar (GPR) exploration is a new high-frequency technology that explores near-surface objects and structures accurately. The high-frequency antenna of the GPR system makes it a high-resolution method compared to other geophysical methods. The frequency range of recorded GPR is so wide that random noise recording is inevitable due to acquisition. This kind of noise comes from unknown sources and its correlation to the adjacent traces is nearly zero. This characteristic of random noise along with the higher accuracy of GPR system makes denoising very important for interpretable results. The main objective of this paper is to reduce GPR random noise based on pursuing denoising using empirical mode decomposition. Our results showed that empirical mode decomposition in combination with basis pursuit denoising (BPD) provides satisfactory outputs due to the sifting process compared to the time-domain implementation of the BPD method on both synthetic and real examples. Our results demonstrate that because of the high computational costs, the BPD-empirical mode decomposition technique should only be used for heavily noisy signals.

  10. Adaptive mean filtering for noise reduction in CT polymer gel dosimetry

    International Nuclear Information System (INIS)

    Hilts, Michelle; Jirasek, Andrew

    2008-01-01

    X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR ∼20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR ∼5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur

  11. Perceptual effects of noise reduction by time-frequency masking of noisy speech.

    Science.gov (United States)

    Brons, Inge; Houben, Rolph; Dreschler, Wouter A

    2012-10-01

    Time-frequency masking is a method for noise reduction that is based on the time-frequency representation of a speech in noise signal. Depending on the estimated signal-to-noise ratio (SNR), each time-frequency unit is either attenuated or not. A special type of a time-frequency mask is the ideal binary mask (IBM), which has access to the real SNR (ideal). The IBM either retains or removes each time-frequency unit (binary mask). The IBM provides large improvements in speech intelligibility and is a valuable tool for investigating how different factors influence intelligibility. This study extends the standard outcome measure (speech intelligibility) with additional perceptual measures relevant for noise reduction: listening effort, noise annoyance, speech naturalness, and overall preference. Four types of time-frequency masking were evaluated: the original IBM, a tempered version of the IBM (called ITM) which applies limited and non-binary attenuation, and non-ideal masking (also tempered) with two different types of noise-estimation algorithms. The results from ideal masking imply that there is a trade-off between intelligibility and sound quality, which depends on the attenuation strength. Additionally, the results for non-ideal masking suggest that subjective measures can show effects of noise reduction even if noise reduction does not lead to differences in intelligibility.

  12. Optimised Sound Absorbing Trim Panels for the Reduction of Aircraft Cabin Noise

    NARCIS (Netherlands)

    Hannink, M.H.C.; Wijnant, Ysbrand H.; de Boer, Andries; Ivanov, N.I.; Crocker, M.J.

    2004-01-01

    The EU project FACE (Friendly Aircraft Cabin Environment) aims to improve the environmental comfort in aircraft cabins. As part of this project, this paper focuses on the reduction of noise in aircraft cabins. For modern aircraft flying at cruise conditions, this cabin noise is known to be dominated

  13. Mobility and Noise Pollution. Noise-reduction Traditional Strategies and Green Mobility Ones

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2011-07-01

    Full Text Available The urbanized territories are quite complex environments in many ways, whose management requires, on the one hand, adequate skills to mediate among the different needs, often conflicting, and on the other hand a clear idea of the target to hit.One of these aspects is the need to ensure mobility in urban areas and, simultaneously, reduce noise levels below the values   that are compatible with the well-being of citizens.There are several sources of noise in an urban context  such as vehicle and rail traffic, the fixed sound sources due to craft and trade activities, as well as to equipment for buildings, to human activities related to recreation and tourism.It must be emphasized, however, that not all noise content has a negative value but there are noise sources such as the noise produced by the local markets and/or that produced by craft activities with historical value, the noise, or rather, the sounds perceived in public parks, town centres and/or areas on the sea which, on the contrary, have a positive value.They represent, in fact, the set of sounds that contribute to the perception of the “soundscape” of an area, which are to be preserved as they are not only appreciated but also sought after by citizens.The noise generated by vehicle traffic, however, while not disregarding the contribution to noise pollution produced by other infrastructure for mobility in urban area, represents one of the major contributor to the noise levels recorded in urban areas, disturbing, firstly, people exposed to it and, secondly, masking the perception of pleasant sounds by altering the “soundscape” of the area.In this context, strategies and interventions to reduce noise caused by road traffic, both the traditional ones (regulations on vehicles, circulation, road, city planning and the new ones related to green mobility, have a twofold purpose as they not only reduce the amount of noise generated by road traffic, but at the same time, help to bring

  14. Analysis of Dual Rotating Rake Data from the NASA Glenn Advanced Noise Control Fan Duct with Artificial Sources

    Science.gov (United States)

    Dahl, Milo D.; Sutliff, Daniel L.

    2014-01-01

    The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. Initially, the mode amplitudes and phases were quantified from a single rake measurement at one axial location. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was then extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. Validation experiments have been conducted using artificial acoustic sources. Results are shown for the measurement of the standing waves in the duct from sound generated by one and two acoustic sources that are separated into the component modes propagating in both directions within the duct. Measured reflection coefficients from the open end of the duct are compared to analytical predictions.

  15. Noise reduction in real time x-ray images

    International Nuclear Information System (INIS)

    Tsuda, Motohisa; Kimura, Yutaro

    1986-01-01

    The signal-to-noise ratio of real-time digital X-ray imaging systems consisting of an X-ray image intensifer-television chain was investigated while concentrating on the effect of the X-ray quantum nature. Along with conventional signal accumulation, logarithmic conversion and subtraction, a new technique called the peak hold method is introduced. Theoretical and simulational studies were made with practical parameters. Theory and simulation showed good agreement. An accumulation of signal is most effective for improving the signal-to-noise ratio; the peak-hold method comes next. The peak hold method, however, offers a new image-display mode. Moreover, this method is superior to signal accumulation for specific conditions. (author)

  16. Blade vortex interaction noise reduction techniques for a rotorcraft

    Science.gov (United States)

    Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)

    1996-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  17. Adaptive Subband Filtering Method for MEMS Accelerometer Noise Reduction

    Directory of Open Access Journals (Sweden)

    Piotr PIETRZAK

    2008-12-01

    Full Text Available Silicon microaccelerometers can be considered as an alternative to high-priced piezoelectric sensors. Unfortunately, relatively high noise floor of commercially available MEMS (Micro-Electro-Mechanical Systems sensors limits the possibility of their usage in condition monitoring systems of rotating machines. The solution of this problem is the method of signal filtering described in the paper. It is based on adaptive subband filtering employing Adaptive Line Enhancer. For filter weights adaptation, two novel algorithms have been developed. They are based on the NLMS algorithm. Both of them significantly simplify its software and hardware implementation and accelerate the adaptation process. The paper also presents the software (Matlab and hardware (FPGA implementation of the proposed noise filter. In addition, the results of the performed tests are reported. They confirm high efficiency of the solution.

  18. Noise Reduction Design of the Volute for a Centrifugal Compressor

    Science.gov (United States)

    Song, Zhen; Wen, Huabing; Hong, Liangxing; Jin, Yudong

    2017-08-01

    In order to effectively control the aerodynamic noise of a compressor, this paper takes into consideration a marine exhaust turbocharger compressor as a research object. According to the different design concept of volute section, tongue and exit cone, six different volute models were established. The finite volume method is used to calculate the flow field, whiles the finite element method is used for the acoustic calculation. Comparison and analysis of different structure designs from three aspects: noise level, isentropic efficiency and Static pressure recovery coefficient. The results showed that under the concept of volute section model 1 yielded the best result, under the concept of tongue analysis model 3 yielded the best result and finally under exit cone analysis model 6 yielded the best results.

  19. Sensitivity of PPI analysis to differences in noise reduction strategies.

    Science.gov (United States)

    Barton, M; Marecek, R; Rektor, I; Filip, P; Janousova, E; Mikl, M

    2015-09-30

    In some fields of fMRI data analysis, using correct methods for dealing with noise is crucial for achieving meaningful results. This paper provides a quantitative assessment of the effects of different preprocessing and noise filtering strategies on psychophysiological interactions (PPI) methods for analyzing fMRI data where noise management has not yet been established. Both real and simulated fMRI data were used to assess these effects. Four regions of interest (ROIs) were chosen for the PPI analysis on the basis of their engagement during two tasks. PPI analysis was performed for 32 different preprocessing and analysis settings, which included data filtering with RETROICOR or no such filtering; different filtering of the ROI "seed" signal with a nuisance data-driven time series; and the involvement of these data-driven time series in the subsequent PPI GLM analysis. The extent of the statistically significant results was quantified at the group level using simple descriptive statistics. Simulated data were generated to assess statistical improvement of different filtering strategies. We observed that different approaches for dealing with noise in PPI analysis yield differing results in real data. In simulated data, we found RETROICOR, seed signal filtering and the addition of data-driven covariates to the PPI design matrix significantly improves results. We recommend the use of RETROICOR, and data-driven filtering of the whole data, or alternatively, seed signal filtering with data-driven signals and the addition of data-driven covariates to the PPI design matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Landing Gear Door Liners for Airframe Noise Reduction

    Science.gov (United States)

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)

    2014-01-01

    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  1. Noise Reduction and Correction in the IPNS Linac ESEM

    Science.gov (United States)

    Dooling, J. C.; Brumwell, F. R.; Donley, L.; McMichael, G. E.; Stipp, V. F.

    2004-11-01

    The Energy Spread and Energy Monitor (ESEM) is an on-line, non-intrusive diagnostic used to characterize the output beam from the 200-MHz, 50-MeV IPNS linac. The energy spread is determined from a 3-size, longitudinal emittance measurement; whereas the energy is derived from time of flight (TOF) analysis. Signals are detected on 50-ohm, stripline beam position monitors (BPMs) terminated in their characteristic impedance. Each BPM is constructed with four striplines: top, bottom, left and right. The ESEM signals are taken from the bottom stripline in four separate BPM locations in the 50-MeV transport line between the linac and the synchrotron. Deterministic linac noise is sampled before and after the 70-microsecond macropulse. The noise phasor is vectorially subtracted from the beam signal. Noise subtraction is required at several frequencies, especially the fundamental and fifth harmonics (200 MHz and 1 GHz). It is also necessary to correct for attenuation and dispersion in the co-axial signal cables. Presently, the analysis assumes a single particle distribution to determine energy and energy spread. Work is on-going to allow for more realistic longitudinal distributions to be included in the analysis.

  2. Noise Reduction for Nonlinear Nonstationary Time Series Data using Averaging Intrinsic Mode Function

    Directory of Open Access Journals (Sweden)

    Christofer Toumazou

    2013-07-01

    Full Text Available A novel noise filtering algorithm based on averaging Intrinsic Mode Function (aIMF, which is a derivation of Empirical Mode Decomposition (EMD, is proposed to remove white-Gaussian noise of foreign currency exchange rates that are nonlinear nonstationary times series signals. Noise patterns with different amplitudes and frequencies were randomly mixed into the five exchange rates. A number of filters, namely; Extended Kalman Filter (EKF, Wavelet Transform (WT, Particle Filter (PF and the averaging Intrinsic Mode Function (aIMF algorithm were used to compare filtering and smoothing performance. The aIMF algorithm demonstrated high noise reduction among the performance of these filters.

  3. Noise reduction techniques used on the high power klystron modulators at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Russell, T.J.

    1993-01-01

    The modulators used in the Advanced Photon Source at Argonne National Laboratory have been redesigned with an emphasis on electrical noise reduction. Since the modulators are 100 MW modulators with <700 ns rise time, electrical noise can be coupled very easily to other electronic equipment in the area. This paper will detail the efforts made to reduce noise coupled to surrounding equipment. Shielding and sound grounding techniques accomplished the goal of drastically reducing the noise induced in surrounding equipment. The approach used in grounding and shielding will be discussed, and data will be presented comparing earlier designs to the improved design

  4. Ensemble empirical mode decomposition based fluorescence spectral noise reduction for low concentration PAHs

    Science.gov (United States)

    Wang, Shu-tao; Yang, Xue-ying; Kong, De-ming; Wang, Yu-tian

    2017-11-01

    A new noise reduction method based on ensemble empirical mode decomposition (EEMD) is proposed to improve the detection effect for fluorescence spectra. Polycyclic aromatic hydrocarbons (PAHs) pollutants, as a kind of important current environmental pollution source, are highly oncogenic. Using the fluorescence spectroscopy method, the PAHs pollutants can be detected. However, instrument will produce noise in the experiment. Weak fluorescent signals can be affected by noise, so we propose a way to denoise and improve the detection effect. Firstly, we use fluorescence spectrometer to detect PAHs to obtain fluorescence spectra. Subsequently, noises are reduced by EEMD algorithm. Finally, the experiment results show the proposed method is feasible.

  5. Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting.

    Science.gov (United States)

    Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay

    2016-04-09

    Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e(-) read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor.

  6. Research on Noise Reduction of Reed Valves of a Hermetic Refrigerator Compressor

    Science.gov (United States)

    He, Zhilong; Chen, Qian; Li, Dantong; Wang, Ju; Xia, Pu; Wang, Tao

    2017-08-01

    The noise level of the refrigerator compressor has received more and more attention in recent years. As the key component of a compressor, reed valve is its main noise source. In this paper, a new noise reduction technology of coating on reed valve surface is proposed and verified by experiments. Firstly, the reed valves were coated, and their surface characteristics were checked. Then, the refrigerator compressor p-V diagram test was carried out to investigate the influence of doped diamond-like carbon (DLC) coating on power consumption. Finally, the noise test rig for the refrigerator compressor was set up. Based on the standard test method, noise spectrum was measured in a semi-anechoic room under standard working condition. Research results showed that the compressor noise was significantly reduced by 1.8dB (A) after coating. Moreover, the effect of aerodynamic noise reduction at suction side is better than that at discharge side. However, the influence of the film thickness on noise reduction value is little. The COP was reduced by 0.6% as compared to the compressor with uncoated reed valves.

  7. Application of an active device for helicopter noise reduction in JAXA

    International Nuclear Information System (INIS)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada

    2010-01-01

    Important issues in noise problems for current helicopters are described. An active tab (AT) was developed as a new active device for noise/vibration reduction under research cooperation between Japan Aerospace Exploration Agency (JAXA) and Kawada Industries, Inc. The wind tunnel test was conducted in order to investigate the effectiveness of the AT on the aeroacoustic characteristics of a helicopter. From the wind tunnel test, the capability of reducing blade vortex interaction (BVI) noise by an AT was verified. A new control law using instantaneous pressure change on a blade during BVI phenomena was introduced and applied to the wind tunnel testing. This new control law shows reasonable controllability for helicopter noise reduction. Furthermore, in order to analyze noise characteristics, the advanced computational fluid dynamics (CFD) code named JAXA o v3d was developed in JAXA and extended to include CFD-CSD (computational structure dynamics) coupling by using the beam theory for blade deformation. (invited paper)

  8. Blade-Mounted Flap Control for BVI Noise Reduction Proof-of-Concept Test

    Science.gov (United States)

    Dawson, Seth; Hassan, Ahmed; Straub, Friedrich; Tadghighi, Hormoz

    1995-01-01

    This report describes a wind tunnel test of the McDonnell Douglas Helicopter Systems (MDHS) Active Flap Model Rotor at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The test demonstrated that BVI noise reductions and vibration reductions were possible with the use of an active flap. Aerodynamic results supported the acoustic data trends, showing a reduction in the strength of the tip vortex with the deflection of the flap. Acoustic results showed that the flap deployment, depending on the peak deflection angle and azimuthal shift in its deployment schedule, can produce BVI noise reductions as much as 6 dB on the advancing and retreating sides. The noise reduction was accompanied by an increase in low frequency harmonic noise and high frequency broadband noise. A brief assessment of the effect of the flap on vibration showed that significant reductions were possible. The greatest vibration reductions (as much as 76%) were found in the four per rev pitching moment at the hub. Performance improvement cam results were inconclusive, as the improvements were predicted to be smaller than the resolution of the rotor balance.

  9. Prediction and reduction of aircraft noise in outdoor environments

    Science.gov (United States)

    Tong, Bao N.

    This dissertation investigates the noise due to an en-route aircraft cruising at high altitudes. It offers an improved understanding into the combined effects of atmospheric propagation, ground reflection, and source motion on the impact of en-route aircraft noise. A numerical model has been developed to compute pressure time-histories due to a uniformly moving source above a flat ground surface in the presence of a horizontally stratified atmosphere. For a moving source at high elevations, contributions from a direct and specularly reflected wave are sufficient in predicting the sound field close to the ground. In the absence of wind effects, the predicted sound field from a single overhead flight trajectory can be used to interpolate pressure time histories at all other receiver locations via a simplified ray model for the incoherent sound field. This approach provides an efficient method for generating pressure time histories in a three-dimensional space for noise impact studies. A variety of different noise propagation methods are adapted to a uniformly moving source to evaluate the accuracy and efficiency of their predictions. The techniques include: analytical methods, the Fast Field Program (FFP), and asymptotic analysis methods (e.g., ray tracing and more advanced formulations). Source motion effects are introduced via either a retarded time analysis or a Lorentz transform approach depending on the complexity of the problem. The noise spectrum from a single emission frequency, moving source has broadband characteristics. This is a consequence of the Doppler shift which continuously modifies the perceived frequency of the source as it moves relative to a stationary observer on the ground. Thus, the instantaneous wavefronts must be considered in both the frequency dependent ground impedance model and the atmospheric absorption model. It can be shown that the Doppler factor is invariant along each ray path. This gives rise to a path dependent atmospheric

  10. Helicopter Noise Reduction Design Trade-Off Study

    Science.gov (United States)

    1977-01-01

    teeth . f orces gene ratea duriffg geaIr mIteshijog exl’ U: shaft vi brit ion which is’ trarvImi tted struc- ,tjyr, iy to th~e (,tsri 5Oli,&t through...mroticns , IJse uclo d, Lui goner oted usingq separate rotor performance cal cula Lion Ilvethods. bef- rotor. Perfornancef- cal culationl methods used...rotor noise directionality, the existence of a well defined minimum near the rotor plane is universally accepted. This minimum can be very sharp with

  11. Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction

    Science.gov (United States)

    Malpica, Carlos; Greenwood, Eric; Sim, Ben W.

    2016-01-01

    An acoustics parametric analysis of the effect of fuselage drag and pitching moment on the Blade-Vortex Interaction (BVI) noise radiated by a medium lift helicopter (S-70UH-60) in a descending flight condition was conducted. The comprehensive analysis CAMRAD II was used for the calculation of vehicle trim, wake geometry and integrated air loads on the blade. The acoustics prediction code PSU-WOPWOP was used for calculating acoustic pressure signatures for a hemispherical grid centered at the hub. This paper revisits the concept of the X-force controller for BVI noise reduction, and investigates its effectiveness on an S-70 helicopter. The analysis showed that further BVI noise reductions were achievable by controlling the fuselage pitching moment. Reductions in excess of 6 dB of the peak BVI noise radiated towards the ground were demonstrated by compounding the effect of airframe drag and pitching moment simultaneously.

  12. Reduction of noise in the neonatal intensive care unit using sound-activated noise meters.

    Science.gov (United States)

    Wang, D; Aubertin, C; Barrowman, N; Moreau, K; Dunn, S; Harrold, J

    2014-11-01

    To determine if sound-activated noise meters providing direct audit and visual feedback can reduce sound levels in a level 3 neonatal intensive care unit (NICU). Sound levels (in dB) were compared between a 2-month period with noise meters present but without visual signal fluctuation and a subsequent 2 months with the noise meters providing direct audit and visual feedback. There was a significant increase in the percentage of time the sound level in the NICU was below 50 dB across all patient care areas (9.9%, 8.9% and 7.3%). This improvement was not observed in the desk area where there are no admitted patients. There was no change in the percentage of time the NICU was below 45 or 55 dB. Sound-activated noise meters seem effective in reducing sound levels in patient care areas. Conversations may have moved to non-patient care areas preventing a similar change there. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Adaptive Autoregressive Model for Reduction of Noise in SPECT

    Directory of Open Access Journals (Sweden)

    Reijo Takalo

    2015-01-01

    Full Text Available This paper presents improved autoregressive modelling (AR to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM reconstruction images (AR-OSEM-AR method. The performance of this method was compared with filtered back projection (FBP preceded by Butterworth filtering (BW-FBP method and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method. A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR% and the full width at half maximum (FWHM of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects.

  14. The effectiveness of environmental strategies on noise reduction in a pediatric intensive care unit: creation of single-patient bedrooms and reducing noise sources.

    Science.gov (United States)

    Kol, Emine; Aydın, Perihan; Dursun, Oguz

    2015-07-01

    Noise is a substantial problem for both patients and healthcare workers in hospitals. This study aimed to determine the effectiveness of environmental strategies (creating single-patient rooms and reducing noise sources) in noise reduction in a pediatric intensive care unit. Noise measurement in the unit was conducted in two phases. In the first phase, measurements aimed at determining the unit's present level of noise were performed over 4 weeks in December 2013. During the month following the first measurement phase, the intensive care unit (ICU) was moved to a new location and noise-reducing strategies were implemented. The second phase, in May 2014, measured noise levels in the newly constructed environment. The noise levels before and after environmental changes were statistically significant at 72.6 dB-A and 56 dB-A, respectively (p noise-reducing strategies can be effective in controlling environmental noise in the ICU. © 2015, Wiley Periodicals, Inc.

  15. Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    2007-01-01

    We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both...... with working Matlab code and applications in speech processing....

  16. Low-Frequency Noise Reduction by Earmuffs with Flax Fibre-Reinforced Polypropylene Ear Cups

    Directory of Open Access Journals (Sweden)

    Linus Yinn Leng Ang

    2018-01-01

    Full Text Available Soldiers and supporting engineers are frequently exposed to high low-frequency (<500 Hz cabin noise in military vehicles. Despite the use of commercial hearing protection devices, the risk of auditory damage is still imminent because the devices may not be optimally customised for such applications. This study considers flax fibre-reinforced polypropylene (Flax-PP as an alternative to the material selection for the ear cups of commercial earmuffs, which are typically made of acrylonitrile butadiene styrene (ABS. Different weaving configurations (woven and nonwoven and various noise environments (pink noise, cabin booming noise, and firing noise were considered to investigate the feasibility of the proposed composite earmuffs for low-frequency noise reduction. The remaining assembly components of the earmuff were kept consistent with those of a commercial earmuff, which served as a benchmark for results comparison. In contrast to the commercial earmuff, the composite earmuffs were shown to be better in mitigating low-frequency noise by up to 16.6 dB, while compromising midfrequency acoustical performance. Consequently, the proposed composite earmuffs may be an alternative for low-frequency noise reduction in vehicle cabins, at airports, and at construction sites involving heavy machineries.

  17. Speckle Noise Reduction via Nonconvex High Total Variation Approach

    Directory of Open Access Journals (Sweden)

    Yulian Wu

    2015-01-01

    Full Text Available We address the problem of speckle noise removal. The classical total variation is extensively used in this field to solve such problem, but this method suffers from the staircase-like artifacts and the loss of image details. In order to resolve these problems, a nonconvex total generalized variation (TGV regularization is used to preserve both edges and details of the images. The TGV regularization which is able to remove the staircase effect has strong theoretical guarantee by means of its high order smooth feature. Our method combines the merits of both the TGV method and the nonconvex variational method and avoids their main drawbacks. Furthermore, we develop an efficient algorithm for solving the nonconvex TGV-based optimization problem. We experimentally demonstrate the excellent performance of the technique, both visually and quantitatively.

  18. Light aircraft sound transmission studies - Noise reduction model

    Science.gov (United States)

    Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.

    1987-01-01

    Experimental tests conducted on the fuselage of a single-engine Piper Cherokee light aircraft suggest that the cabin interior noise can be reduced by increasing the transmission loss of the dominant sound transmission paths and/or by increasing the cabin interior sound absorption. The validity of using a simple room equation model to predict the cabin interior sound-pressure level for different fuselage and exterior sound field conditions is also presented. The room equation model is based on the sound power flow balance for the cabin space and utilizes the measured transmitted sound intensity data. The room equation model predictions were considered good enough to be used for preliminary acoustical design studies.

  19. Noise reduction in muon tomography for detecting high density objects

    International Nuclear Information System (INIS)

    Benettoni, M; Checchia, P; Cossutta, L; Furlan, M; Gonella, F; Pegoraro, M; Garola, A Rigoni; Ronchese, P; Vanini, S; Viesti, G; Bettella, G; Bonomi, G; Donzella, A; Subieta, M; Zenoni, A; Calvagno, G; Cortelazzo, G; Zanuttigh, P; Calvini, P; Squarcia, S

    2013-01-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented

  20. Impact of Noise and Noise Reduction on Processing Effort: A Pupillometry Study

    DEFF Research Database (Denmark)

    Wendt, Dorothea; Hietkamp, Renskje K; Lunner, Thomas

    2017-01-01

    of noise (intelligibility level) and different NR schemes on effort were evaluated by measuring the pupil dilation of listeners. In 2 different experiments, performance accuracy and peak pupil dilation (PPD) were measured in 24 listeners with hearing impairment while they performed a speech recognition...... task. The listeners were tested at 2 different signal to noise ratios corresponding to either the individual 50% correct (L50) or the 95% correct (L95) performance level in a 4-talker babble condition with and without the use of a NR scheme. In experiment 1, the PPD differed in response to both changes...... in the speech intelligibility level (L50 versus L95) and NR scheme. The PPD increased with decreasing intelligibility, indicating higher processing effort under the L50 condition compared with the L95 condition. Moreover, the PPD decreased when the NR scheme was applied, suggesting that the processing effort...

  1. Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material.

    Science.gov (United States)

    Kim, Jaehwan; Lee, Joong-Kuen

    2002-09-01

    The possibility of a broadband noise reduction of piezoelectric smart panels is experimentally studied. A piezoelectric smart panel is basically a plate structure on which piezoelectric patches with electrical shunt circuits are mounted and sound-absorbing material is bonded on the surface of the structure. Sound-absorbing material can absorb the sound transmitted at the midfrequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonance frequencies, piezoelectric damping using the measured electrical impedance model is adopted. A resonant shunt circuit for piezoelectric shunt damping is composed of resistor and inductor in series, and they are determined by maximizing the dissipated energy through the circuit. The transmitted noise-reduction performance of smart panels is tested in an acoustic tunnel. The tunnel is a square cross-sectional tube and a loudspeaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. When an absorbing material is bonded on a single plate, a remarkable transmitted noise reduction in the midfrequency region is observed except for the fundamental resonance frequency of the plate. By enabling the piezoelectric shunt damping, noise reduction is achieved at the resonance frequency as well. Piezoelectric smart panels incorporating passive absorbing material and piezoelectric shunt damping is a promising technology for noise reduction over a broadband of frequencies.

  2. Noise Reduction Evaluation of Multi-Layered Viscoelastic Infinite Cylinder under Acoustical Wave Excitation

    Directory of Open Access Journals (Sweden)

    M.R. Mofakhami

    2008-01-01

    Full Text Available In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic properties of the structure are rigorously taken into account with a power law technique that models the viscoelastic damping of the cylinder. A parametric study is also performed for the two layered infinite cylinders to obtain the effect of viscoelastic layer characteristics such as thickness, material type and frequency dependency of viscoelastic properties on the noise reduction. It is shown that using constant and frequency dependent viscoelastic material with high loss factor leads to the uniform noise reduction in the frequency domain. It is also shown that the noise reduction obtained for constant viscoelastic material property is subjected to some errors in the low frequency range with respect to those obtained for the frequency dependent viscoelastic material.

  3. Engine-propeller power plant aircraft community noise reduction key methods

    Science.gov (United States)

    Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.

    2018-04-01

    Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.

  4. Design of High Quality Chemical XOR Gates with Noise Reduction.

    Science.gov (United States)

    Wood, Mackenna L; Domanskyi, Sergii; Privman, Vladimir

    2017-07-05

    We describe a chemical XOR gate design that realizes gate-response function with filtering properties. Such gate-response function is flat (has small gradients) at and in the vicinity of all the four binary-input logic points, resulting in analog noise suppression. The gate functioning involves cross-reaction of the inputs represented by pairs of chemicals to produce a practically zero output when both are present and nearly equal. This cross-reaction processing step is also designed to result in filtering at low output intensities by canceling out the inputs if one of the latter has low intensity compared with the other. The remaining inputs, which were not reacted away, are processed to produce the output XOR signal by chemical steps that result in filtering at large output signal intensities. We analyze the tradeoff resulting from filtering, which involves loss of signal intensity. We also discuss practical aspects of realizations of such XOR gates. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Novel Signal Noise Reduction Method through Cluster Analysis, Applied to Photoplethysmography.

    Science.gov (United States)

    Waugh, William; Allen, John; Wightman, James; Sims, Andrew J; Beale, Thomas A W

    2018-01-01

    Physiological signals can often become contaminated by noise from a variety of origins. In this paper, an algorithm is described for the reduction of sporadic noise from a continuous periodic signal. The design can be used where a sample of a periodic signal is required, for example, when an average pulse is needed for pulse wave analysis and characterization. The algorithm is based on cluster analysis for selecting similar repetitions or pulses from a periodic single. This method selects individual pulses without noise, returns a clean pulse signal, and terminates when a sufficiently clean and representative signal is received. The algorithm is designed to be sufficiently compact to be implemented on a microcontroller embedded within a medical device. It has been validated through the removal of noise from an exemplar photoplethysmography (PPG) signal, showing increasing benefit as the noise contamination of the signal increases. The algorithm design is generalised to be applicable for a wide range of physiological (physical) signals.

  6. Prototype Morphing Fan Nozzle Demonstrated

    Science.gov (United States)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  7. Experimental identification of noise reduction properties of honeycomb panels using a small cabin

    OpenAIRE

    D'Ortona, Vittorio; Vivolo, Marianna; Pluymers, Bert; Vandepitte, Dirk; Desmet, Wim

    2013-01-01

    A procedure to identify the noise reduction properties of panels by means of a single cabin test setup is discussed. The complexity of the sound pressure field that builds up in the acoustic volume requires the support of advanced numerical techniques allowing for the evaluation of noise and vibration performances. Numerical models are used to predict the structural dynamics and the vibro-acoustic behaviour of the tested panel. Both Finite Element and Boundary Element simulations are validate...

  8. Noise reduction in Arterial Spin Labeling based Functional Connectivity using nuisance variables

    Directory of Open Access Journals (Sweden)

    Kay Jann

    2016-08-01

    Full Text Available Arterial Spin Labeling (ASL perfusion image series have recently been utilized for functional connectivity (FC analysis in healthy volunteers and children with autism spectrum disorders (ASD. Noise reduction by using nuisance variables has been shown to be necessary to minimize potential confounding effects of head motion and physiological signals on BOLD based FC analysis. The purpose of the present study is to systematically evaluate the effectiveness of different noise reduction strategies using nuisance variables to improve perfusion based FC analysis in two cohorts of healthy adults using state of the art 3D background-suppressed (BS GRASE pseudo-continuous ASL (pCASL and dual-echo 2D-EPI pCASL sequences. Five different noise reduction strategies (NRS were performed in healthy volunteers to compare their performance. We then compared seed-based FC analysis using 3D BS GRASE pCASL in a cohort of 12 children with ASD (3f/9m, age 12.8±1.3y and 13 typically developing (TD children (1f/12m; age 13.9±3years in conjunction with noise reduction strategies. Regression of different combinations of nuisance variables affected FC analysis from a seed in the posterior cingulate cortex (PCC to other areas of the default mode network (DMN in both BOLD and pCASL data sets. Consistent with existing literature on BOLD-FC, we observed improved spatial specificity after physiological noise reduction and improved long-range connectivity using head movement related regressors. Furthermore, 3D BS GRASE pCASL shows much higher temporal SNR compared to dual-echo 2D-EPI pCASL and similar effects of noise reduction as those observed for BOLD. Seed-based FC analysis using 3D BS GRASE pCASL children with ASD and TD children showed that noise reduction including physiological and motion related signals as nuisance variables is crucial for identifying altered long-range connectivity from PCC to frontal brain areas associated with ASD. This is the first study that

  9. CT urography in the urinary bladder: To compare excretory phase images using a low noise index and a high noise index with adaptive noise reduction filter

    International Nuclear Information System (INIS)

    Takeyama, Nobuyuki; Hayashi, Takaki; Ohgiya, Yoshimitsu

    2011-01-01

    Background: Although CT urography (CTU) is widely used for the evaluation of the entire urinary tract, the most important drawback is the radiation exposure. Purpose: To evaluate the effect of a noise reduction filter (NRF) using a phantom and to quantitatively and qualitatively compare excretory phase (EP) images using a low noise index (NI) with those using a high NI and postprocessing NRF (pNRF). Material and Methods: Each NI value was defined for a slice thickness of 5 mm, and reconstructed images with a slice thickness of 1.25 mm were assessed. Sixty patients who were at high risk of developing bladder tumors (BT) were divided into two groups according to whether their EP images were obtained using an NI of 9.88 (29 patients; group A) or an NI of 20 and pNRF (31 patients; group B). The CT dose index volume (CTDI vol ) and the contrast-to-noise ratio (CNR) of the bladder with respect to the anterior pelvic fat were compared in both groups. Qualitative assessment of the urinary bladder for image noise, sharpness, streak artifacts, homogeneity, and the conspicuity of polypoid or sessile-shaped BTs with a short-axis diameter greater than 10 mm was performed using a 3-point scale. Results: The phantom study showed noise reduction of approximately 40% and 76% dose reduction between group A and group B. CTDI vol demonstrated a 73% reduction in group B (4.6 ± 1.1 mGy) compared with group A (16.9 ± 3.4 mGy). The CNR value was not significantly different (P = 0.60) between group A (16.1 ± 5.1) and group B (16.6 ± 7.6). Although group A was superior (P < 0.01) to group B with regard to image noise, other qualitative analyses did not show significant differences. Conclusion: EP images using a high NI and pNRF were quantitatively and qualitatively comparable to those using a low NI, except with regard to image noise

  10. Reduction of broadband noise in vehicles by means of active feedforward control

    OpenAIRE

    Misol, Malte; Haase, Thomas; Monner, Hans Peter

    2015-01-01

    Broadband noise in a vehicle’s interior is an important issue because of its negative impact on the passengersʼ comfort and wellbeing. The perception of this broadband noise can increase due to the use of new, less noisy drive concepts and the accompanying loss of masking noise compo-nents. This contribution focuses on the reduction of the transmission of external broadband distur-bances through lightweight panel structures (e.g. a car’s roof liner or an aircraft sidewall panel) by means of a...

  11. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms recorded with a multimode laser.

    Science.gov (United States)

    Pan, Feng; Yang, Lizhi; Xiao, Wen

    2017-09-04

    In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.

  12. Acoustic performance design and optimal allocation of sound package in ship cabin noise reduction

    Directory of Open Access Journals (Sweden)

    YANG Deqing

    2017-08-01

    Full Text Available The sound package in noise reduction design of ship cabins has become the main approach for the future. The sound package is a specially designed acoustic component consisting of damping materials, absorption materials, sound isolation materials and base structural materials which can achieve the prescribed performance of noise reduction. Based on the Statistical Energy Analysis(SEAmethod, quick evaluation and design methods, and the optimal allocation theory of sound packages are investigated. The standard numerical acoustic performance evaluation model, sound package optimization design model and sound package optimal allocation model are presented. A genetic algorithm is applied to solve the presented optimization problems. Design examples demonstrate the validity and efficiency of the proposed models and solutions. The presented theory and methods benefit the standardization and programming of sound package design, and decrease noise reduction costs.

  13. Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction.

    Science.gov (United States)

    Chong, Tze Pei; Dubois, Elisa

    2016-08-01

    This paper reports an aeroacoustic investigation of a NACA0012 airfoil with a number of poro-serrated trailing edge devices that contain porous materials of various air flow resistances at the gaps between adjacent members of the serrated-sawtooth trailing edge. The main objective of this work is to determine whether multiple-mechanisms on the broadband noise reduction can co-exist on a poro-serrated trailing edge. When the sawtooth gaps are filled with porous material of low-flow resistivity, the vortex shedding tone at low-frequency could not be completely suppressed at high-velocity, but a reasonably good broadband noise reduction can be achieved at high-frequency. When the sawtooth gaps are filled with porous material of very high-flow resistivity, no vortex shedding tone is present, but the serration effect on the broadband noise reduction becomes less effective. An optimal choice of the flow resistivity for a poro-serrated configuration has been identified, where it can surpass the conventional serrated trailing edge of the same geometry by achieving a further 1.5 dB reduction in the broadband noise while completely suppressing the vortex shedding tone. A weakened turbulent boundary layer noise scattering at the poro-serrated trailing edge is reflected by the lower-turbulence intensity at the near wake centreline across the whole spanwise wavelength of the sawtooth.

  14. A study for reduction of radiation pressure noise in gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, S; Sugamoto, A [Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 (Japan); Leonhardt, V; Kawamura, S; Sato, S; Yamazaki, T; Fukushima, M [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Numata, K [NASA Goddard Space Flight Center, CRESST, Code 663, Greenbelt, MD 20771 (United States); Miyakawa, O [LIGO Laboratory 18-34, California Institute of Technology, Pasadena, CA 91125 (United States); Nishizawa, A [Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan); Furusawa, A [Department of Applied Physics, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)], E-mail: shihori.sakata@nao.ac.jp

    2008-07-15

    We describe an experimental conceptual design for observation and reduction of radiation pressure noise. The radiation pressure noise is increased in a high finesse cavity with a small mass mirror. In our experiment a Fabry-Perot Michelson interferometer with a homodyne detection scheme will be built with Fabry-Perot cavities of finesse of 10000 containing suspended mirrors of 23 mg. To observe the radiation pressure noise, the goal sensitivity is set to 1x10{sup -17} [m/ {radical}Hz] at 1 kHz. Then the radiation pressure noise is reduced by adjusting the homodyne phase. To achieve the sensitivity, the other noise sources such as thermal noises, seismic noise and laser frequency noise should be suppressed below 1x10{sup -18} [m/{radical} Hz] at 1kHz. The whole interferometer is suspended as a double pendulum on double-layer stacks. As a preliminary setup, a Fabry-Perot cavity of finesse of 800 with a suspended mirror of 100 mg was locked. The current best sensitivity is 1x10{sup -15} [m/ {radical}Hz] at 1 kHz.

  15. Investigation and reduction of excess low-frequency noise in rf superconducting quantum interference devices

    International Nuclear Information System (INIS)

    Mueck, M.; Heiden, C.; Clarke, J.

    1994-01-01

    A detailed study has been made of the low-frequency excess noise of rf superconducting quantum interference devices (SQUIDs), fabricated from thin niobium films and operated at 4.2 K, with rf bias frequencies of 0.15, 1.7, and 3 GHz. When the SQUIDs were operated in an open-loop configuration in the absence of low-frequency flux modulation, the demodulated rf voltage exhibited a substantial level 1/f noise, which was essentially independent of the rf bias frequency. As the rf bias frequency was increased, the crossover frequency at which the 1/f noise power was equal to the white noise power moved to higher frequencies, because of the reduction in white noise. On the other hand, when the SQUID was flux modulated at 50 kHz and operated in a flux locked loop, no 1/f noise was observed at frequencies above 0.5 Hz. A detailed description of how the combination of rf bias and flux modulation removes 1/f noise due to critical current fluctuations is given. Thus, the results demonstrate that the 1/f noise observed in these SQUIDs is generated by critical current fluctuations, rather than by the hopping of flux vortices in the niobium films

  16. DFT-Domain Based Single-Microphone Noise Reduction for Speech Enhancement

    DEFF Research Database (Denmark)

    C. Hendriks, Richard; Gerkmann, Timo; Jensen, Jesper

    As speech processing devices like mobile phones, voice controlled devices, and hearing aids have increased in popularity, people expect them to work anywhere and at any time without user intervention. However, the presence of acoustical disturbances limits the use of these applications, degrades...... their performance, or causes the user difficulties in understanding the conversation or appreciating the device. A common way to reduce the effects of such disturbances is through the use of single-microphone noise reduction algorithms for speech enhancement. The field of single-microphone noise reduction...

  17. Statistical CT noise reduction with multiscale decomposition and penalized weighted least squares in the projection domain

    International Nuclear Information System (INIS)

    Tang Shaojie; Tang Xiangyang

    2012-01-01

    Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation of interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of “salt-and-pepper” noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain

  18. The effect of multimicrophone noise reduction systems on sound source localization by users of binaural hearing aids.

    Science.gov (United States)

    Van den Bogaert, Tim; Doclo, Simon; Wouters, Jan; Moonen, Marc

    2008-07-01

    This paper evaluates the influence of three multimicrophone noise reduction algorithms on the ability to localize sound sources. Two recently developed noise reduction techniques for binaural hearing aids were evaluated, namely, the binaural multichannel Wiener filter (MWF) and the binaural multichannel Wiener filter with partial noise estimate (MWF-N), together with a dual-monaural adaptive directional microphone (ADM), which is a widely used noise reduction approach in commercial hearing aids. The influence of the different algorithms on perceived sound source localization and their noise reduction performance was evaluated. It is shown that noise reduction algorithms can have a large influence on localization and that (a) the ADM only preserves localization in the forward direction over azimuths where limited or no noise reduction is obtained; (b) the MWF preserves localization of the target speech component but may distort localization of the noise component. The latter is dependent on signal-to-noise ratio and masking effects; (c) the MWF-N enables correct localization of both the speech and the noise components; (d) the statistical Wiener filter approach introduces a better combination of sound source localization and noise reduction performance than the ADM approach.

  19. Spatial-temporal noise reduction method optimized for real-time implementation

    Science.gov (United States)

    Romanenko, I. V.; Edirisinghe, E. A.; Larkin, D.

    2013-02-01

    Image de-noising in the spatial-temporal domain has been a problem studied in-depth in the field of digital image processing. However complexity of algorithms often leads to high hardware resource usage, or computational complexity and memory bandwidth issues, making their practical use impossible. In our research we attempt to solve these issues with an optimized implementation of a practical spatial-temporal de-noising algorithm. Spatial-temporal filtering was performed in Bayer RAW data space, which allowed us to benefit from predictable sensor noise characteristics and reduce memory bandwidth requirements. The proposed algorithm efficiently removes different kinds of noise in a wide range of signal to noise ratios. In our algorithm the local motion compensation is performed in Bayer RAW data space, while preserving the resolution and effectively improving the signal to noise ratios of moving objects. The main challenge for the use of spatial-temporal noise reduction algorithms in video applications is the compromise between the quality of the motion prediction and the complexity of the algorithm and required memory bandwidth. In photo and video applications it is very important that moving objects should stay sharp, while the noise is efficiently removed in both the static background and moving objects. Another important use case is the case when background is also non-static as well as the foreground where objects are also moving. Taking into account the achievable improvement in PSNR (on the level of the best known noise reduction techniques, like VBM3D) and low algorithmic complexity, enabling its practical use in commercial video applications, the results of our research can be very valuable.

  20. Compressed air noise reductions from using advanced air gun nozzles in research and development environments.

    Science.gov (United States)

    Prieve, Kurt; Rice, Amanda; Raynor, Peter C

    2017-08-01

    The aims of this study were to evaluate sound levels produced by compressed air guns in research and development (R&D) environments, replace conventional air gun models with advanced noise-reducing air nozzles, and measure changes in sound levels to assess the effectiveness of the advanced nozzles as engineering controls for noise. Ten different R&D manufacturing areas that used compressed air guns were identified and included in the study. A-weighted sound level and Z-weighted octave band measurements were taken simultaneously using a single instrument. In each area, three sets of measurements, each lasting for 20 sec, were taken 1 m away and perpendicular to the air stream of the conventional air gun while a worker simulated typical air gun work use. Two different advanced noise-reducing air nozzles were then installed. Sound level and octave band data were collected for each of these nozzles using the same methods as for the original air guns. Both of the advanced nozzles provided sound level reductions of about 7 dBA, on average. The highest noise reductions measured were 17.2 dBA for one model and 17.7 dBA for the other. In two areas, the advanced nozzles yielded no sound level reduction, or they produced small increases in sound level. The octave band data showed strong similarities in sound level among all air gun nozzles within the 10-1,000 Hz frequency range. However, the advanced air nozzles generally had lower noise contributions in the 1,000-20,000 Hz range. The observed decreases at these higher frequencies caused the overall sound level reductions that were measured. Installing new advanced noise-reducing air nozzles can provide large sound level reductions in comparison to existing conventional nozzles, which has direct benefit for hearing conservation efforts.

  1. Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images

    Directory of Open Access Journals (Sweden)

    Fereydoon Nowshiravan Rahatabad

    2015-09-01

    Full Text Available Introduction One of the most important pre-processing steps in optical coherence tomography (OCT is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on OCT and test images. Objective evaluation of both types of images was performed, using various image metrics such as peak signal-to-noise ratio (PSNR, root mean square error, correlation coefficient and elapsed time. For the purpose of recovery, Kuan filter was used as an input for edge enhancement. Also, a spatial filter was applied to improve image quality. Results The obtained results were presented as statistical tables and images. Based on statistical measures and visual quality of OCT images, Enhanced Lee filter (3×3 with a PSNR value of 43.6735 in low noise variance and Kuan filter (3×3 with a PSNR value of 37.2850 in high noise variance showed superior performance over other filters. Conclusion Based on the obtained results, by using speckle reduction filters such as Enhanced Lee and Kuan filters on OCT images, the number of compounded images, required to achieve a given image quality, could be reduced. Moreover, use of Kuan filters for promoting the edges allowed smoothing of speckle regions, while preserving image tissue texture.

  2. Noise reduction in long‐period seismograms by way of array summing

    Science.gov (United States)

    Ringler, Adam; Wilson, David; Storm, Tyler; Marshall, Benjamin T.; Hutt, Charles R.; Holland, Austin

    2016-01-01

    Long‐period (>100  s period) seismic data can often be dominated by instrumental noise as well as local site noise. When multiple collocated sensors are installed at a single site, it is possible to improve the overall station noise levels by applying stacking methods to their traces. We look at the noise reduction in long‐period seismic data by applying the time–frequency phase‐weighted stacking method of Schimmel and Gallart (2007) as well as the phase‐weighted stacking (PWS) method of Schimmel and Paulssen (1997) to four collocated broadband sensors installed in the quiet Albuquerque Seismological Laboratory underground vault. We show that such stacking methods can improve vertical noise levels by as much as 10 dB over the mean background noise levels at 400 s period, suggesting that greater improvements could be achieved with an array involving multiple sensors. We also apply this method to reduce local incoherent noise on horizontal seismic records of the 2 March 2016 Mw 7.8 Sumatra earthquake, where the incoherent noise levels at very long periods are similar in amplitude to the earthquake signal. To maximize the coherency, we apply the PWS method to horizontal data where relative azimuths between collocated sensors are estimated and compared with a simpler linear stack with no azimuthal rotation. Such methods could help reduce noise levels at various seismic stations where multiple high‐quality sensors have been deployed. Such small arrays may also provide a solution to improving long‐period noise levels at Global Seismographic Network stations.

  3. Application of a TiO2 nanocomposite in earplugs, a case study of noise reduction.

    Science.gov (United States)

    Ibrahimi Ghavamabadi, Leila; Fouladi Dehaghi, Behzad; Hesampour, Morteza; Ahmadi Angali, Kambiz

    2018-03-13

    Use of hearing protection devices (HPDs) has become necessary when other control measures cannot reduce noise to a safe and standard level. In most countries, more effective hearing protection devices are in demand. The aim of this study was to examine the effects of titanium dioxide (TiO 2 ) nanoparticles on noise reduction efficiency in a polyvinyl chloride (PVC) earplug. An S-60 type PVC polymer as main matrix and TiO 2 with 30 nm size were used. PVC/TiO 2 nanocomposite was mixed at a temperature of 160 °C and 40 rounds per minute (rpm) and the samples were prepared with 0, 0.2 and 0.5 wt% of TiO 2 nanoparticle concentrations. Earplug samples with PVC/TiO 2 (0.2, 0.5 wt%) nanoparticles, when compared with raw earplugs, showed almost equal noise attenuation at low frequencies (500- 125 Hz). However, at high frequencies (2-8 kHz), the power of noise reduction of earplugs containing TiO 2 nanoparticles was significantly increased. The results of the present study showed that samples containing nanoparticles of TiO 2 had more noticeable noise reduction abilities at higher frequencies in comparison with samples without the nanoparticles.

  4. Acoustic noise reduction in T 1- and proton-density-weighted turbo spin-echo imaging.

    Science.gov (United States)

    Ott, Martin; Blaimer, Martin; Breuer, Felix; Grodzki, David; Heismann, Björn; Jakob, Peter

    2016-02-01

    To reduce acoustic noise levels in T 1-weighted and proton-density-weighted turbo spin-echo (TSE) sequences, which typically reach acoustic noise levels up to 100 dB(A) in clinical practice. Five acoustic noise reduction strategies were combined: (1) gradient ramps and shapes were changed from trapezoidal to triangular, (2) variable-encoding-time imaging was implemented to relax the phase-encoding gradient timing, (3) RF pulses were adapted to avoid the need for reversing the polarity of the slice-rewinding gradient, (4) readout bandwidth was increased to provide more time for gradient activity on other axes, (5) the number of slices per TR was reduced to limit the total gradient activity per unit time. We evaluated the influence of each measure on the acoustic noise level, and conducted in vivo measurements on a healthy volunteer. Sound recordings were taken for comparison. An overall acoustic noise reduction of up to 16.8 dB(A) was obtained by the proposed strategies (1-4) and the acquisition of half the number of slices per TR only. Image quality in terms of SNR and CNR was found to be preserved. The proposed measures in this study allowed a threefold reduction in the acoustic perception of T 1-weighted and proton-density-weighted TSE sequences compared to a standard TSE-acquisition. This could be achieved without visible degradation of image quality, showing the potential to improve patient comfort and scan acceptability.

  5. Experimental demonstration of wind turbine noise reduction through optimized airfoil shape and trailing-edge serrations

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S. [National Aerospace Laboratory NLR, Emmeloord (Netherlands); Schepers, J.G. [Unit Wind Energy, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Guidati, G.; Wagner, S. [Institut fuer Aerodynamik und Gasdynamik IAG, Universitaet Stuttgart (Germany)

    2001-07-15

    The objective of the European project DATA (Design and Testing of Acoustically Optimized Airfoils for Wind Turbines) is a reduction of trailing-edge (TE) noise by modifying the airfoil shape and/or the application of trailing-edge serrations. This paper describes validation measurements that were performed in the DNW-LLF wind tunnel, on a model scale wind turbine with a two-bladed 4.5 m diameter rotor which was designed in the project. Measurements were done for one reference- and two acoustically optimized rotors, for varying flow conditions. The aerodynamic performance of the rotors was measured using a torque meter in the hub, and further aerodynamic information was obtained from flow visualization on the blades. The acoustic measurements were done with a 136 microphone out-of-flow acoustic array. Besides the location of the noise sources in the (stationary) rotor plane, a new acoustic processing method enabled identification of dominant noise source regions on the rotating blades. The results show dominant noise sources at the trailing-edge of the blade, close to the tip. The optimized airfoil shapes result in a significant reduction of TE noise levels with respect to the reference rotor, without loss in power production. A further reduction can be achieved by the application of trailing-edge serrations. The aerodynamic measurements are generally in good agreement with the aerodynamic predictions made during the design of the model turbine.

  6. In vivo evaluation of mastication noise reduction for dual channel implantable microphone.

    Science.gov (United States)

    Woo, SeongTak; Jung, EuiSung; Lim, HyungGyu; Lee, Jang Woo; Seong, Ki Woong; Won, Chul Ho; Kim, Myoung Nam; Cho, Jin Ho; Lee, Jyung Hyun

    2014-01-01

    Input for fully implantable hearing devices (FIHDs) is provided by an implantable microphone under the skin of the temporal bone. However, the implanted microphone can be affected when the FIHDs user chews. In this paper, a dual implantable microphone was designed that can filter out the noise from mastication. For the in vivo experiment, a fabricated microphone was implanted in a rabbit. Pure-tone sounds of 1 kHz through a standard speaker were applied to the rabbit, which was given food simultaneously. To evaluate noise reduction, the measured signals were processed using a MATLAB program based adaptive filter. To verify the proposed method, the correlation coefficients and signal to-noise ratio before and after signal processing were calculated. By comparing the results, signal-to-noise ratio and correlation coefficients are enhanced by 6.07dB and 0.529 respectively.

  7. Study on ventilation and noise reduction in the main transformer room in indoor substation

    Directory of Open Access Journals (Sweden)

    Hu Sheng

    2016-01-01

    Full Text Available The noise emission should be considered in the ventilation and cooling design for the main transformer room of indoor substation. In this study, based on Soundplan software, effects of four common ventilation and cooling schemes on the cooling and sound insulation were compared. The research showed that the region with low noise requirement, the ventilation could be set on the outer wall or on the door of the main transformer room, while the region with high noise requirement, air inlet muffler or ventilation through the cable interlayer under the main transformer room must be used. All of the four kinds of ventilation schemes, ventilation through the cable interlayer is the best in cooling and noise reduction.

  8. Reduction of 1/f noise in graphene after electron-beam irradiation

    International Nuclear Information System (INIS)

    Zahid Hossain, Md.; Rumyantsev, Sergey; Shur, Michael S.; Balandin, Alexander A.

    2013-01-01

    We investigated experimentally the effect of the electron-beam irradiation on the level of the low-frequency 1/f noise in graphene devices. It was found that 1/f noise in graphene reduces with increasing concentration of defects induced by irradiation. The increased amount of structural disorder in graphene under irradiation was verified with micro-Raman spectroscopy. The bombardment of graphene devices with 20-keV electrons reduced the noise spectral density, S I /I 2 (I is the source-drain current) by an order-of magnitude at the radiation dose of 10 4 μC/cm 2 . We analyzed the observed noise reduction in the limiting cases of the mobility and carrier number fluctuation mechanisms. The obtained results are important for the proposed graphene applications in analog, mixed-signal, and radio-frequency systems, integrated circuits and sensors.

  9. Noise reduction and estimation in multiple micro-electro-mechanical inertial systems

    International Nuclear Information System (INIS)

    Waegli, Adrian; Skaloud, Jan; Guerrier, Stéphane; Parés, Maria Eulàlia; Colomina, Ismael

    2010-01-01

    This research studies the reduction and the estimation of the noise level within a redundant configuration of low-cost (MEMS-type) inertial measurement units (IMUs). Firstly, independent observations between units and sensors are assumed and the theoretical decrease in the system noise level is analyzed in an experiment with four MEMS-IMU triads. Then, more complex scenarios are presented in which the noise level can vary in time and for each sensor. A statistical method employed for studying the volatility of financial markets (GARCH) is adapted and tested for the usage with inertial data. This paper demonstrates experimentally and through simulations the benefit of direct noise estimation in redundant IMU setups

  10. Effect of digital noise reduction on the accuracy of endodontic file length determination

    International Nuclear Information System (INIS)

    Mehdizadeh, Mojdeh; Khademi, Abbas Ali; Shokraneh, Ali; Farhadi, Nastaran

    2013-01-01

    The aim of the present study was to evaluate the measurement accuracy of endodontic file length on periapical digital radiography after application of noise reduction digital enhancement. Thirty-five human single-rooted permanent teeth with canals measuring 20-24 mm in length were selected. ISO no.08 endodontic files were placed in the root canals of the teeth. The file lengths were measured with a digital caliper as the standard value. Standard periapical digital images were obtained using the Digora digital radiographic system and a dental X-ray unit. In order to produce the enhanced images, the noise reduction option was applied. Two blinded radiologists measured the file lengths on the original and enhanced images. The measurements were compared by repeated measures ANOVA and the Bonferroni test (a=0.05). Both the original and enhanced digital images provided significantly longer measurements compared with the standard value (P 0.05). Noise reduction digital enhancement did not influence the measurement accuracy of the length of the thin endodontic files on the digital periapical radiographs despite the fact that noise reduction could result in the elimination of fine details of the images.

  11. Study on the Noise Reduction of Vehicle Exhaust NOX Spectra Based on Adaptive EEMD Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2017-01-01

    Full Text Available It becomes a key technology to measure the concentration of the vehicle exhaust components with the transmission spectra. But in the conventional methods for noise reduction and baseline correction, such as wavelet transform, derivative, interpolation, polynomial fitting, and so forth, the basic functions of these algorithms, the number of decomposition layers, and the way to reconstruct the signal have to be adjusted according to the characteristics of different components in the transmission spectra. The parameter settings of the algorithms above are not transcendental, so with them, it is difficult to achieve the best noise reduction effect for the vehicle exhaust spectra which are sharp and drastic in the waveform. In this paper, an adaptive ensemble empirical mode decomposition (EEMD denoising model based on a special normalized index optimization is proposed and used in the spectral noise reduction of vehicle exhaust NOX. It is shown with the experimental results that the method can effectively improve the accuracy of the spectral noise reduction and simplify the denoising process and its operation difficulty.

  12. Two Methods of Mechanical Noise Reduction of Recorded Speech During Phonation in an MRI devic

    Czech Academy of Sciences Publication Activity Database

    Přibil, J.; Horáček, Jaromír; Horák, Petr

    2011-01-01

    Roč. 11, č. 3 (2011), s. 92-98 ISSN 1335-8871 R&D Projects: GA ČR GA102/09/0989 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z20670512 Keywords : speech processing * noise reduction * NMR imaging Subject RIV: BI - Acoustics Impact factor: 0.418, year: 2011

  13. Noise reduction in binaural hearing aids : Analyzing the benefit over monaural systems

    NARCIS (Netherlands)

    Srinivasan, S.

    2008-01-01

    Binaural beamforming using signals from both left and right hearing aids offers greater potential for noise reduction than using signals from a single aid. However, wireless transmission of data imposes power constraints. Since most modern hearing aids have multiple microphones and are capable of

  14. A novel modulation scheme for noise reduction in analog fiber optic links

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; van Etten, Wim

    2006-01-01

    A novel noise reduction scheme called Balanced Modulation and Detection (BMD) is proposed. In this scheme, the modulating RF signal is half-wave rectified in the optical domain, eliminating the DC optical power resulting from pre-biasing of the optical source. A link model employing this scheme has

  15. Measured and calculated noise reduction of rail dampers and absorption plates on a high speed slab track

    NARCIS (Netherlands)

    Dittrich, M.G.; Graafland, F.; Eisses, A.R.; Nijhof, M.J.J.

    2015-01-01

    Rail dampers and sound absorbing plates have been tested on a high speed railway slab track in a walled cutting at a noise sensitive location. Their noise reduction has been determined from pass-by measurements during service and predicted using BEM calculations. The cutting depth, noise barrier

  16. weiqiang fan

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. WEIQIANG FAN. Articles written in Journal of Genetics. Volume 96 Issue 6 December 2017 pp 867-872 RESEARCH ARTICLE. A genetic variant in COL11A1 is functionally associated with lumbar disc herniation in Chinese population · WENJUN LIU GUISEN SUN LONGSHENG GUO ...

  17. Noise abatement in air-water heat pump systems. Basic considerations, guidelines for practice; Laermreduktion bei Luft/Wasser-Waermepumpenanlagen. Grundlagen und Massnahmen

    Energy Technology Data Exchange (ETDEWEB)

    Graf, H.R.

    2002-07-01

    With increasing numbers of installations of air/water heat pumps the issue of noise emissions is becoming more of a concern. In reaction to this situation, the company Sulzer Innotec has developed these guidelines by order of the Swiss Federal Office of Energy. Typically, more than 90% of the noise emitted outdoors is produced by the fan. Due to the strong tonal components, the noise emitted is substantially more annoying than a reference broadband noise of the same intensity. For further noise reduction mainly the fan noise must be addressed. Despite the dominance of fan noise, other noise sources must not be neglected. The most promising countermeasures are: Reduction of fan noise by (i) low blade tip speed (prerequisite is a pressure drop in the air channels including the evaporator as low as possible), (ii) improvement of flow geometry in the vicinity of the fan, (iii) insulation of air ducts with acoustic foam (thickness 50 mm or more), (iv) elbows in the air duct line for sound dissipation. Reduction of compressor noise by (i) a highly effective acoustic enclosure, (ii) vibration insulation of structure-borne noise by elastic mounts, (iii) decoupling of refrigerant pipes. (author)

  18. Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2018-04-01

    Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.

  19. Noise reduction and image enhancement using a hardware implementation of artificial neural networks

    Science.gov (United States)

    David, Robert; Williams, Erin; de Tremiolles, Ghislain; Tannhof, Pascal

    1999-03-01

    In this paper, we present a neural based solution developed for noise reduction and image enhancement using the ZISC, an IBM hardware processor which implements the Restricted Coulomb Energy algorithm and the K-Nearest Neighbor algorithm. Artificial neural networks present the advantages of processing time reduction in comparison with classical models, adaptability, and the weighted property of pattern learning. The goal of the developed application is image enhancement in order to restore old movies (noise reduction, focus correction, etc.), to improve digital television images, or to treat images which require adaptive processing (medical images, spatial images, special effects, etc.). Image results show a quantitative improvement over the noisy image as well as the efficiency of this system. Further enhancements are being examined to improve the output of the system.

  20. Detection threshold for sound distortion resulting from noise reduction in normal-hearing and hearing-impaired listeners.

    Science.gov (United States)

    Brons, Inge; Dreschler, Wouter A; Houben, Rolph

    2014-09-01

    Hearing-aid noise reduction should reduce background noise, but not disturb the target speech. This objective is difficult because noise reduction suffers from a trade-off between the amount of noise removed and signal distortion. It is unknown if this important trade-off differs between normal-hearing (NH) and hearing-impaired (HI) listeners. This study separated the negative effect of noise reduction (distortion) from the positive effect (reduction of noise) to allow the measurement of the detection threshold for noise-reduction (NR) distortion. Twelve NH subjects and 12 subjects with mild to moderate sensorineural hearing loss participated in this study. The detection thresholds for distortion were determined using an adaptive procedure with a three-interval, two-alternative forced-choice paradigm. Different levels of distortion were obtained by changing the maximum amount of noise reduction. Participants were also asked to indicate their preferred NR strength. The detection threshold for overall distortion was higher for HI subjects than for NH subjects, suggesting that stronger noise reduction can be applied for HI listeners without affecting the perceived sound quality. However, the preferred NR strength of HI listeners was closer to their individual detection threshold for distortion than in NH listeners. This implies that HI listeners tolerate fewer audible distortions than NH listeners.

  1. The effect of hearing aid noise reduction on listening effort in hearing-impaired adults.

    Science.gov (United States)

    Desjardins, Jamie L; Doherty, Karen A

    2014-01-01

    The purpose of the present study was to evaluate the effect of a noise-reduction (NR) algorithm on the listening effort hearing-impaired participants expend on a speech in noise task. Twelve hearing-impaired listeners fitted with behind-the-ear hearing aids with a fast-acting modulation-based NR algorithm participated in this study. A dual-task paradigm was used to measure listening effort with and without the NR enabled in the hearing aid. The primary task was a sentence-in-noise task presented at fixed overall speech performance levels of 76% (moderate listening condition) and 50% (difficult listening condition) correct performance, and the secondary task was a visual-tracking test. Participants also completed measures of working memory (Reading Span test), and processing speed (Digit Symbol Substitution Test) ability. Participants' speech recognition in noise scores did not significantly change with the NR algorithm activated in the hearing aid in either listening condition. The NR algorithm significantly decreased listening effort, but only in the more difficult listening condition. Last, there was a tendency for participants with faster processing speeds to expend less listening effort with the NR algorithm when listening to speech in background noise in the difficult listening condition. The NR algorithm reduced the listening effort adults with hearing loss must expend to understand speech in noise.

  2. Single-Channel Noise Reduction using Unified Joint Diagonalization and Optimal Filtering

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Benesty, Jacob; Jensen, Jesper Rindom

    2014-01-01

    consider two cases, where, respectively, no distortion and distortion are incurred on the desired signal. The former can be achieved when the covariance matrix of the desired signal is rank deficient, which is the case, for example, for voiced speech. In the latter case, the covariance matrix......In this paper, the important problem of single-channel noise reduction is treated from a new perspective. The problem is posed as a filtering problem based on joint diagonalization of the covariance matrices of the desired and noise signals. More specifically, the eigenvectors from the joint...

  3. Median Filter Noise Reduction of Image and Backpropagation Neural Network Model for Cervical Cancer Classification

    Science.gov (United States)

    Wutsqa, D. U.; Marwah, M.

    2017-06-01

    In this paper, we consider spatial operation median filter to reduce the noise in the cervical images yielded by colposcopy tool. The backpropagation neural network (BPNN) model is applied to the colposcopy images to classify cervical cancer. The classification process requires an image extraction by using a gray level co-occurrence matrix (GLCM) method to obtain image features that are used as inputs of BPNN model. The advantage of noise reduction is evaluated by comparing the performances of BPNN models with and without spatial operation median filter. The experimental result shows that the spatial operation median filter can improve the accuracy of the BPNN model for cervical cancer classification.

  4. Electrocardiogram (ECG Signal Modeling and Noise Reduction Using Hopfield Neural Networks

    Directory of Open Access Journals (Sweden)

    F. Bagheri

    2013-02-01

    Full Text Available The Electrocardiogram (ECG signal is one of the diagnosing approaches to detect heart disease. In this study the Hopfield Neural Network (HNN is applied and proposed for ECG signal modeling and noise reduction. The Hopfield Neural Network (HNN is a recurrent neural network that stores the information in a dynamic stable pattern. This algorithm retrieves a pattern stored in memory in response to the presentation of an incomplete or noisy version of that pattern. Computer simulation results show that this method can successfully model the ECG signal and remove high-frequency noise.

  5. Utilisation of polyurethane composit with 50% composition of roystonea regia fiber as noise reduction panel on car hood

    Science.gov (United States)

    Ikhwansyah; Mulia; Gunawan, S.; Lubis, R. D. W.

    2018-02-01

    The objective is to get the characteristics of noise reduction, noise reduction level, variety of measurement spaces, and knowing the process in making acoustic material of natural fiber becomes noise reduction on a car hood. The process of making noise reduction material used casting method and pressed by using molded press. The composition of noise reduction material consist of 50% roystonea regia by 32 mesh and 50% combined by gypsum and polyurethane. The result shows that the average result of noise reduction at X1- side is 5,7% and X2- side is 3,9%, X1+ side is 0,9% and X2+ side is 6,2%, Z1- side is 8,9% and Z2- side is 10,1%, Z1+ side is 9,7% and Z2+ side is 10,01%. The main conclusion of the study shows that a noise reduction which made of roystonea regia with 32 mesh mixed by matrix of polyurethane and gypsum is appropriate for noise reduction on car hood.

  6. The design of the motor bracket for reduction of structure-borne noise in package air-conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Hyoun Jin; Lee, Sung Jin; Oh, Jae Eung [Hanyang University, Seoul (Korea, Republic of); Kang, Tae Ho [WiniaMando, Asan (Korea, Republic of); Lee, Jung Yoon [Kyonggi University, Suwon (Korea, Republic of)

    2006-02-15

    As the economic power is improved and the customer's demand is hard to please, the noise and vibration is the most important yardstick that can determine the quality of the product. Especially, as the air-conditioner's demand increase suddenly, the product of quality and the noise is becoming a decisive factor of determining whether purchase the product or not. Therefore, every manufactory is investing a lot of money and research to cut down the unpleasantness induced from noise and vibration. And they are emphasizing their product's difference by advertising a silence very actively. With these reason, the demand of a silent indoor air-conditioner is the essential research filed when the product is developed. In this study, the noise and vibration is visualized in the space and frequency domain by using experimental methods such as Operational Deflection Shape (ODS), modal testing and sound intensity. Also the location of noise source and its characteristic is analyzed in an acoustical point of view to reduce the structure borne noise that come from the fan motor, and the pertinent control method is suggested. Furthermore, the most suitable shape of the motor bracket is suggested by applying FEM and DOE (Design of Experiments) in the noise and vibration point a view.

  7. The design of the motor bracket for reduction of structure-borne noise in package air-conditioner

    International Nuclear Information System (INIS)

    Sim, Hyoun Jin; Lee, Sung Jin; Oh, Jae Eung; Kang, Tae Ho; Lee, Jung Yoon

    2006-01-01

    As the economic power is improved and the customer's demand is hard to please, the noise and vibration is the most important yardstick that can determine the quality of the product. Especially, as the air-conditioner's demand increase suddenly, the product of quality and the noise is becoming a decisive factor of determining whether purchase the product or not. Therefore, every manufactory is investing a lot of money and research to cut down the unpleasantness induced from noise and vibration. And they are emphasizing their product's difference by advertising a silence very actively. With these reason, the demand of a silent indoor air-conditioner is the essential research filed when the product is developed. In this study, the noise and vibration is visualized in the space and frequency domain by using experimental methods such as Operational Deflection Shape (ODS), modal testing and sound intensity. Also the location of noise source and its characteristic is analyzed in an acoustical point of view to reduce the structure borne noise that come from the fan motor, and the pertinent control method is suggested. Furthermore, the most suitable shape of the motor bracket is suggested by applying FEM and DOE (Design of Experiments) in the noise and vibration point a view

  8. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  9. On the dynamics of the preference-performance relation for hearing aid noise reduction

    DEFF Research Database (Denmark)

    Fischer, Rosa-Linde; Wagener, Kirsten C.; Vormann, Matthias

    on the data collected during the first laboratory assessment of the study. In particular, the influence of hearing aid experience and individual noise sensitivity on the preference-performance relation will be presented and discussed. REFERENCES S. Getzmann, E. Wascher and M. Falkenstein (2015). "What does......Previous research has shown that hearing aid users can differ substantially in their preference for noise reduction (NR) strength, and that preference for and speech recognition with NR processing typically are not correlated (e.g. Neher 2014; Serman et al. 2016). In other words, hearing aid users...... may prefer a certain NR setting, but perform better with a different one. The aim of the present work was to investigate the influence of individual noise sensitivity, hearing aid experience and acclimatization on the preference-performance relation for different NR settings. For this purpose...

  10. Image processing methods for noise reduction in the TJ-II Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informatica y Automatica, UNED, Madrid 28040 (Spain); Farias, G. [Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Vega, J.; Pastor, I. [Asociacion EURATOM/CIEMAT para Fusion, Madrid 28040 (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We describe an approach in order to reduce or mitigate the stray-light on the images and show the exceptional results. Black-Right-Pointing-Pointer We analyze the parameters to take account in the proposed process. Black-Right-Pointing-Pointer We report a simplified exampled in order to explain the proposed process. - Abstract: The Thomsom Scattering diagnostic of the TJ-II stellarator provides temperature and density profiles. The CCD camera acquires images corrupted with noise that, in some cases, can produce unreliable profiles. The main source of noise is the so-called stray-light. In this paper we describe an approach that allows mitigation of the effects that stray-light has on the images: extraction regions with connected-components. In addition, the robustness and effectiveness of the noise reduction technique is validated in two ways: (1) supervised classification and (2) comparison of electron temperature profiles.

  11. Finite element analysis using NASTRAN applied to helicopter transmission vibration/noise reduction

    Science.gov (United States)

    Howells, R. W.; Sciarra, J. J.

    1975-01-01

    A finite element NASTRAN model of the complete forward rotor transmission housing for the Boeing Vertol CH-47 helicopter was developed and applied to reduce transmission vibration/noise at its source. In addition to a description of the model, a technique for vibration/noise prediction and reduction is outlined. Also included are the dynamic response as predicted by NASTRAN, test data, the use of strain energy methods to optimize the housing for minimum vibration/noise, and determination of design modifications which will be manufactured and tested. The techniques presented are not restricted to helicopters but are applicable to any power transmission system. The transmission housing model developed can be used further to evaluate static and dynamic stresses, thermal distortions, deflections and load paths, fail-safety/vulnerability, and composite materials.

  12. Design of a Low-Power VLSI Macrocell for Nonlinear Adaptive Video Noise Reduction

    Directory of Open Access Journals (Sweden)

    Sergio Saponara

    2004-09-01

    Full Text Available A VLSI macrocell for edge-preserving video noise reduction is proposed in the paper. It is based on a nonlinear rational filter enhanced by a noise estimator for blind and dynamic adaptation of the filtering parameters to the input signal statistics. The VLSI filter features a modular architecture allowing the extension of both mask size and filtering directions. Both spatial and spatiotemporal algorithms are supported. Simulation results with monochrome test videos prove its efficiency for many noise distributions with PSNR improvements up to 3.8 dB with respect to a nonadaptive solution. The VLSI macrocell has been realized in a 0.18 μm CMOS technology using a standard-cells library; it allows for real-time processing of main video formats, up to 30 fps (frames per second 4CIF, with a power consumption in the order of few mW.

  13. Sensor locations and noise reduction in high-purity batch distillation control loops

    Directory of Open Access Journals (Sweden)

    Oisiovici R.M.

    2000-01-01

    Full Text Available The influence of the sensor locations on the composition control of high-purity batch distillation columns has been investigated. Using concepts of the nonlinear control theory, an input-output linearizing controller was implemented to keep the distillate composition constant at a desired value by varying the reflux ratio. An Extended Kalman Filter was developed to estimate the compositions required in the control algorithm using temperature measurements. In the presence of measurement noise, the control performance depended greatly on the sensor locations. Placing the sensors further from the top stages reduced the detrimental effects of noise but increased the inference error. To achieve accurate composition control, both noise reduction and composition estimate accuracy should be considered in the selection of the sensor locations.

  14. Generative Adversarial Networks for Noise Reduction in Low-Dose CT.

    Science.gov (United States)

    Wolterink, Jelmer M; Leiner, Tim; Viergever, Max A; Isgum, Ivana

    2017-12-01

    Noise is inherent to low-dose CT acquisition. We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise. A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization. An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images. The performance of this discriminator was used as an adversarial loss for the generator. Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images. The phantom and patients were scanned at 20% and 100% routine clinical dose. Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss. The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images. However, CNNs trained with adversarial loss captured image statistics of routine-dose images better. Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels. Testing took less than 10 s per CT volume. CNN-based low-dose CT noise reduction in the image domain is feasible. Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images.

  15. Noise Reduction in Arterial Spin Labeling Based Functional Connectivity Using Nuisance Variables.

    Science.gov (United States)

    Jann, Kay; Smith, Robert X; Rios Piedra, Edgar A; Dapretto, Mirella; Wang, Danny J J

    2016-01-01

    Arterial Spin Labeling (ASL) perfusion image series have recently been utilized for functional connectivity (FC) analysis in healthy volunteers and children with autism spectrum disorders (ASD). Noise reduction by using nuisance variables has been shown to be necessary to minimize potential confounding effects of head motion and physiological signals on BOLD based FC analysis. The purpose of the present study is to systematically evaluate the effectiveness of different noise reduction strategies (NRS) using nuisance variables to improve perfusion based FC analysis in two cohorts of healthy adults using state of the art 3D background-suppressed (BS) GRASE pseudo-continuous ASL (pCASL) and dual-echo 2D-EPI pCASL sequences. Five different NRS were performed in healthy volunteers to compare their performance. We then compared seed-based FC analysis using 3D BS GRASE pCASL in a cohort of 12 children with ASD (3f/9m, age 12.8 ± 1.3 years) and 13 typically developing (TD) children (1f/12m; age 13.9 ± 3 years) in conjunction with NRS. Regression of different combinations of nuisance variables affected FC analysis from a seed in the posterior cingulate cortex (PCC) to other areas of the default mode network (DMN) in both BOLD and pCASL data sets. Consistent with existing literature on BOLD-FC, we observed improved spatial specificity after physiological noise reduction and improved long-range connectivity using head movement related regressors. Furthermore, 3D BS GRASE pCASL shows much higher temporal SNR compared to dual-echo 2D-EPI pCASL and similar effects of noise reduction as those observed for BOLD. Seed-based FC analysis using 3D BS GRASE pCASL in children with ASD and TD children showed that noise reduction including physiological and motion related signals as nuisance variables is crucial for identifying altered long-range connectivity from PCC to frontal brain areas associated with ASD. This is the first study that systematically evaluated the effects of

  16. Enhanced ground bounce noise reduction in a low-leakage CMOS multiplier

    Science.gov (United States)

    Verma, Bipin Kumar; Akashe, Shyam; Sharma, Sanjay

    2015-09-01

    In this paper, various parameters are used to reduce leakage power, leakage current and noise margin of circuits to enhance their performance. A multiplier is proposed with low-leakage current and low ground bounce noise for the microprocessor, digital signal processors (DSP) and graphics engines. The ground bounce noise problem appears when a conventional power-gating circuit transits from sleep-to-active mode. This paper discusses a reduction in leakage current in the stacking power-gating technique by three modes - sleep, active and sleep-to-active. The simulation results are performed on a 4 × 4 carry-save multiplier for leakage current, active power, leakage power and ground bounce noise, and comparison made for different nanoscales. Ground bounce noise is limited to 90%. The leakage current of the circuit is decimated up to 80% and the active power is reduced to 31%. We performed simulations using cadence virtuoso 180 and 45 nm at room temperature at various supply voltages.

  17. HF DBD plasma actuators for reduction of cylinder noise in flow

    Science.gov (United States)

    Kopiev, V. F.; Kazansky, P. N.; Kopiev, V. A.; Moralev, I. A.; Zaytsev, M. Yu

    2017-11-01

    Surface high frequency dielectric barrier discharge (HF DBD) was used to reduce flow-induced noise, radiated by circular cylinder in cross flow. Effect of HF DBD actuators is studied for flow velocity up to 80 m s-1 (Reynolds numbers up to 2.18 · 105), corresponding to the typical aircraft landing approach speed. Noise measurements were performed by microphone array in anechoic chamber; averaged flow parameters were studied by particle image velocimetry (PIV). Actuator was powered by high-frequency voltage in hundreds kHz range in steady or modulated mode with the modulation frequency of 0.3-20 kHz (Strouhal number St of 0.4 to 20). It is demonstrated that upstream directed plasma actuators are able to reduce the vortex noise of a cylinder by 10 dB. Noise reduction is accompanied by significant reorganization of the wake behind a cylinder, decreasing both wake width and turbulence level. The physical mechanism related to broadband noise control by HF DBD actuator is also discussed.

  18. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography

    International Nuclear Information System (INIS)

    Comani, S; Mantini, D; Alleva, G; Luzio, S Di; Romani, G L

    2005-01-01

    The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally filter magnetocardiographic recordings. At present, no systematic evaluation of filters' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type filters with zero-phase and stable impulse response; the most commonly used band-pass filters were implemented combining high-pass and low-pass filters. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same filter setting might be applied to both conditions. Band-pass filters (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz

  19. HF DBD plasma actuators for reduction of cylinder noise in flow

    International Nuclear Information System (INIS)

    Kopiev, V F; Kopiev, V A; Zaytsev, M Yu; Kazansky, P N; Moralev, I A

    2017-01-01

    Surface high frequency dielectric barrier discharge (HF DBD) was used to reduce flow-induced noise, radiated by circular cylinder in cross flow. Effect of HF DBD actuators is studied for flow velocity up to 80 m s −1 (Reynolds numbers up to 2.18 · 10 5 ), corresponding to the typical aircraft landing approach speed. Noise measurements were performed by microphone array in anechoic chamber; averaged flow parameters were studied by particle image velocimetry (PIV). Actuator was powered by high-frequency voltage in hundreds kHz range in steady or modulated mode with the modulation frequency of 0.3–20 kHz (Strouhal number St of 0.4 to 20). It is demonstrated that upstream directed plasma actuators are able to reduce the vortex noise of a cylinder by 10 dB. Noise reduction is accompanied by significant reorganization of the wake behind a cylinder, decreasing both wake width and turbulence level. The physical mechanism related to broadband noise control by HF DBD actuator is also discussed. (paper)

  20. Evidence of "hidden hearing loss" following noise exposures that produce robust TTS and ABR wave-I amplitude reductions.

    Science.gov (United States)

    Lobarinas, Edward; Spankovich, Christopher; Le Prell, Colleen G

    2017-06-01

    In animals, noise exposures that produce robust temporary threshold shifts (TTS) can produce immediate damage to afferent synapses and long-term degeneration of low spontaneous rate auditory nerve fibers. This synaptopathic damage has been shown to correlate with reduced auditory brainstem response (ABR) wave-I amplitudes at suprathreshold levels. The perceptual consequences of this "synaptopathy" remain unknown but have been suggested to include compromised hearing performance in competing background noise. Here, we used a modified startle inhibition paradigm to evaluate whether noise exposures that produce robust TTS and ABR wave-I reduction but not permanent threshold shift (PTS) reduced hearing-in-noise performance. Animals exposed to 109 dB SPL octave band noise showed TTS >30 dB 24-h post noise and modest but persistent ABR wave-I reduction 2 weeks post noise despite full recovery of ABR thresholds. Hearing-in-noise performance was negatively affected by the noise exposure. However, the effect was observed only at the poorest signal to noise ratio and was frequency specific. Although TTS >30 dB 24-h post noise was a predictor of functional deficits, there was no relationship between the degree of ABR wave-I reduction and degree of functional impairment. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Active control of the noise

    International Nuclear Information System (INIS)

    Rodriguez V, Luis Alfonso; Lopez Q, Jose German

    2001-01-01

    The problems of acoustic noise are more and more preponderant in the measure in that the amount of equipment and industrial machinery is increased such as fans, transformers, compressors etc. the use of devices passive mechanics for the reduction of the noise is effective and very appreciated because its effects embrace a wide range of acoustic frequency. However, to low frequencies, such devices become too big and expensive besides that present a tendency to do not effective. The control of active noise, CAN, using the electronic generation anti-noise, constitutes an interesting solution to the problem because their operation principle allows achieving an appreciable reduction of the noise by means of the use of compact devices. The traditional techniques for the control of acoustic noise like barriers and silenced to attenuate it, are classified as passive and their works has been accepted as norm as for the treatment of problems of noise it refers. Such techniques are considered in general very effective in the attenuation of noise of wide band. However, for low frequency, the required passive structures are too big and expensive; also, their effectiveness diminishes flagrantly, that which makes them impractical in many applications. The active suppression is profiled like a practical alternative for the reduction of acoustic noise. The idea in the active treatment of the noise it contemplates the use of a device electro-acoustic, like a speaker for example that it cancels to the noise by the generation of sounds of Same width and of contrary phase (anti-noise). The cancellation phenomenon is carried out when the ant-noise combines acoustically with the noise, what is in the cancellation of both sounds. The effectiveness of the cancellation of the primary source of noise depends on the precision with which the width and the phase of the generated ant-noise are controlled. The active control of noise, ANC (activates noise control), it is being investigated for

  2. Acoustic Power Transmission Through a Ducted Fan

    Science.gov (United States)

    Envia, Ed

    2016-01-01

    For high-speed ducted fans, when the rotor flowfield is shock-free, the main contribution to the inlet radiated acoustic power comes from the portion of the rotor stator interaction sound field that is transmitted upstream through the rotor. As such, inclusion of the acoustic transmission is an essential ingredient in the prediction of the fan inlet noise when the fan tip relative speed is subsonic. This paper describes a linearized Euler based approach to computing the acoustic transmission of fan tones through the rotor. The approach is embodied in a code called LINFLUX was applied to a candidate subsonic fan called the Advanced Ducted Propulsor (ADP). The results from this study suggest that it is possible to make such prediction with sufficient fidelity to provide an indication of the acoustic transmission trends with the fan tip speed.

  3. A combined noise reduction and torque enhancement system for an I. C. engine

    Energy Technology Data Exchange (ETDEWEB)

    Hutchins, S.M.; Stothers, Ian; McDougall, N.M.

    1993-02-10

    The present invention provides a combined noise reduction and torque enhancement system for an internal combustion engine. It comprises means for periodically constricting or occluding the exhaust and/or inlet at least one frequency related to the rotation frequency of the engine. In a preferred embodiment of the invention, the constriction means comprises a plug member arranged to be oscillated in an aperture along the axis of flow of gas in the exhaust and/or inlet. (author)

  4. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gunja, Ateka; Pandey, Yagya [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Xie, Hui [Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL (United States); Faculty of Health Sciences, Simon Fraser University, Burnaby, BC (Canada); Wolska, Beata M. [Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL (United States); Shroff, Adhir R.; Ardati, Amer K. [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States)

    2017-04-15

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm{sup 2}). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm{sup 2} ± 74.0 vs. 41.9 mGy cm{sup 2} ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image-noise

  5. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Gunja, Ateka; Pandey, Yagya; Xie, Hui; Wolska, Beata M.; Shroff, Adhir R.; Ardati, Amer K.; Vidovich, Mladen I.

    2017-01-01

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm"2). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm"2 ± 74.0 vs. 41.9 mGy cm"2 ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image-noise compared to

  6. Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both...... diagonal (eigenvalue and singular value) decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV and ULLIV). In addition we show how the subspace-based algorithms can be evaluated and compared by means of simple FIR filter interpretations. The algorithms are illustrated...... with working Matlab code and applications in speech processing....

  7. A bulk-controlled ring-VCO with 1/f-noise reduction for frequency ΔΣ modulator

    DEFF Research Database (Denmark)

    Tuan Vu, CAO; Wisland, Dag T.; Lande, Tor Sverre

    The paper introduces a bulk-controlled ring-VCO with a tail transistor utilizing flicker-noise (1/f-noise) reduction techniques for a frequency-based DeltaSigma modulator (FDSM). This VCO converts an analog input voltage to phase information under various bias conditions ranging from sub-threshol......The paper introduces a bulk-controlled ring-VCO with a tail transistor utilizing flicker-noise (1/f-noise) reduction techniques for a frequency-based DeltaSigma modulator (FDSM). This VCO converts an analog input voltage to phase information under various bias conditions ranging from sub...

  8. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    Science.gov (United States)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  9. Reducing Radiation Dose in Coronary Angiography and Angioplasty Using Image Noise Reduction Technology.

    Science.gov (United States)

    Kastrati, Mirlind; Langenbrink, Lukas; Piatkowski, Michal; Michaelsen, Jochen; Reimann, Doris; Hoffmann, Rainer

    2016-08-01

    This study sought to quantitatively evaluate the reduction of radiation dose in coronary angiography and angioplasty with the use of image noise reduction technology in a routine clinical setting. Radiation dose data from consecutive 605 coronary procedures (397 consecutive coronary angiograms and 208 consecutive coronary interventions) performed from October 2014 to April 2015 on a coronary angiography system with noise reduction technology (Allura Clarity IQ) were collected. For comparison, radiation dose data from consecutive 695 coronary procedures (435 coronary angiograms and 260 coronary interventions) performed on a conventional coronary angiography system from October 2013 to April 2014 were evaluated. Patient radiation dosage was evaluated based on the cumulative dose area product. Operators and operator practice did not change between the 2 evaluated periods. Patient characteristics were collected to evaluate similarity of patient groups. Image quality was evaluated on a 5-grade scale in 30 patients of each group. There were no significant differences between the 2 evaluated groups in gender, age, weight, and fluoroscopy time (6.8 ± 6.1 vs 6.9 ± 6.3 minutes, not significant). The dose area product was reduced from 3195 ± 2359 to 983 ± 972 cGycm(2) (65%, p technology. Image quality was graded as similar between the evaluated systems (4.0 ± 0.7 vs 4.2 ± 0.6, not significant). In conclusion, a new x-ray technology with image noise reduction algorithm provides a substantial reduction in radiation exposure without the need to prolong the procedure or fluoroscopy time. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    Science.gov (United States)

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  11. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    Science.gov (United States)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  12. Retrofitting reciprocating compressors for noise control

    International Nuclear Information System (INIS)

    Frank, L.; Qualfe, R.

    1992-01-01

    The Alberta Energy Resources Conservation Board recently enacted their noise control directive ID 88-1. The effects of this regulation on the operation of an oil and gas facility are discussed, and a specific case history is presented to provide a disciplined strategy for noise attenuation retrofits. An investigation was carried out into sound sources at a reciprocating compressor gas plant, revealing several sound sources: engine exhaust stacks, engine exhaust silencer shells, direct-drive fan cooler inlets, direct drive fan cooler outlets, aerial cooler inlets and aerial cooler outlets. Details are presented of the investigative techniques and order-ranking of sources by decibel level. When controlling engine exhaust noise, silencers or mufflers are the preferred treatment. Choice of type (reactive or absorptive) and specification of acoustical performance of a silencer are discussed. The gas plant achieved noise reductions of 6-13 dB, measured at affected residences, through the use of engine exhaust silencers. 4 figs., 2 tabs

  13. Improved Kalman Filter Method for Measurement Noise Reduction in Multi Sensor RFID Systems

    Directory of Open Access Journals (Sweden)

    Min Chul Kim

    2011-10-01

    Full Text Available Recently, the range of available Radio Frequency Identification (RFID tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less Mean Squared Error (MSE than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.

  14. Trends in magnetic resonance imaging. Technical trends in MRI, noise reduction and fast imaging

    International Nuclear Information System (INIS)

    Sugimoto, Hiroshi

    2007-01-01

    At MRI examination, patients suffer the machine noise and long tight lying as well as an oppressive feeling. This paper describes the technological efforts against the former two. The noise is generated from the force (thumb-ward) to vibrate the magnetic field gradient coil according to the left-hand rule. Authors have developed a MRI machine (Pianissimo) where the coil is placed in vacuum and its actual noise level is found reduced from 105 - 112 to 84 dB(A) at 1.5T. Fast imaging to shorten the imaging time is attained by combination of parallel imaging where MR signals are into multiple high frequency receiver coils, and the usual pulse sequence imaging, which results in the increased encoding in a given time. Together with these, MR angiography and diffusion weighted imaging of abdomen for cancer examination are becoming popular as an additional MRI diagnosis, also acceptable to patients. Future progress of MRI machines conceivably accompanies the unavoidable noise increase and possibly significant magnetic effects on human body, and efforts for their reduction will be continued at patients' viewpoint. (T.I.)

  15. Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction.

    Science.gov (United States)

    Lam, Frank; Lu, Hsiang-Wei; Wu, Chung-Che; Aliyazicioglu, Zekeriya; Kang, James S

    2017-01-01

    Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C , peripheral resistance R , aortic impedance r , and the inertia of blood L , to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies.

  16. Improved Kalman filter method for measurement noise reduction in multi sensor RFID systems.

    Science.gov (United States)

    Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon

    2011-01-01

    Recently, the range of available radio frequency identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less mean squared error (MSE) than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.

  17. Innovative Technique for Noise Reduction in Spacecraft Doppler Tracking for Planetary Interior Studies

    Science.gov (United States)

    Notaro, V.; Armstrong, J. W.; Asmar, S.; Di Ruscio, A.; Iess, L.; Mariani, M., Jr.

    2017-12-01

    Precise measurements of spacecraft range rate, enabled by two-way microwave links, are used in radio science experiments for planetary geodesy including the determination of planetary gravitational fields for the purpose of modeling the interior structure. The final accuracies in the estimated gravity harmonic coefficients depend almost linearly on the Doppler noise in the link. We ran simulations to evaluate the accuracy improvement attainable in the estimation of the gravity harmonic coefficients of Venus (with a representative orbiter) and Mercury (with the BepiColombo spacecraft), using our proposed innovative noise-cancellation technique. We showed how the use of an additional, smaller and stiffer, receiving-only antenna could reduce the leading noise sources in a Ka-band two-way link such as tropospheric and antenna mechanical noises. This is achieved through a suitable linear combination (LC) of Doppler observables collected at the two antennas at different times. In our simulations, we considered a two-way link either from NASA's DSS 25 antenna in California or from ESA's DSA-3 antenna in Malargüe (Argentina). Moreover, we selected the 12-m Atacama Pathfinder EXperiment (APEX) in Chile as the three-way antenna and developed its tropospheric noise model using available atmospheric data and mechanical stability specifications. For an 8-hour Venus orbiter tracking pass in Chajnantor's winter/night conditions, the accuracy of the simulated LC Doppler observable at 10-s integration time is 6 mm/s, to be compared to 23 mm/s for the two-way link. For BepiColombo, we obtained 16.5 mm/s and 35 mm/s, respectively for the LC and two-way links. The benefits are even larger at longer time scales. Numerical simulations indicate that such noise reduction would provide significant improvements in the determination of Venus's and Mercury's gravity field coefficients. If implemented, this noise-reducing technique will be valuable for planetary geodesy missions, where the

  18. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients.

    Science.gov (United States)

    Lai, Ying-Hui; Tsao, Yu; Lu, Xugang; Chen, Fei; Su, Yu-Ting; Chen, Kuang-Chao; Chen, Yu-Hsuan; Chen, Li-Ching; Po-Hung Li, Lieber; Lee, Chin-Hui

    2018-01-20

    We investigate the clinical effectiveness of a novel deep learning-based noise reduction (NR) approach under noisy conditions with challenging noise types at low signal to noise ratio (SNR) levels for Mandarin-speaking cochlear implant (CI) recipients. The deep learning-based NR approach used in this study consists of two modules: noise classifier (NC) and deep denoising autoencoder (DDAE), thus termed (NC + DDAE). In a series of comprehensive experiments, we conduct qualitative and quantitative analyses on the NC module and the overall NC + DDAE approach. Moreover, we evaluate the speech recognition performance of the NC + DDAE NR and classical single-microphone NR approaches for Mandarin-speaking CI recipients under different noisy conditions. The testing set contains Mandarin sentences corrupted by two types of maskers, two-talker babble noise, and a construction jackhammer noise, at 0 and 5 dB SNR levels. Two conventional NR techniques and the proposed deep learning-based approach are used to process the noisy utterances. We qualitatively compare the NR approaches by the amplitude envelope and spectrogram plots of the processed utterances. Quantitative objective measures include (1) normalized covariance measure to test the intelligibility of the utterances processed by each of the NR approaches; and (2) speech recognition tests conducted by nine Mandarin-speaking CI recipients. These nine CI recipients use their own clinical speech processors during testing. The experimental results of objective evaluation and listening test indicate that under challenging listening conditions, the proposed NC + DDAE NR approach yields higher intelligibility scores than the two compared classical NR techniques, under both matched and mismatched training-testing conditions. When compared to the two well-known conventional NR techniques under challenging listening condition, the proposed NC + DDAE NR approach has superior noise suppression capabilities and gives less distortion

  19. Improvement of road noise by reduction of acoustic radiation from body panels; Panel no hoshaon teigen ni yoru road noise no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kamura, T; Utsunomiya, A; Sugihara, T; Tobita, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    This paper describes road noise reduction methods accomplished by reducing acoustic power radiated from body panels. Fundamental study of acoustic and dynamic characteristics with rectangular panels revealed following results: (1) The lower stiffness panel had lower radiation efficiency and made damping materials work more effective to reduce the acoustic power. (2) The acoustic power was also reduced by designing the panel so that it can generate the vibration of (2, 2) mode, which has the lowest radiation efficiency, in road noise frequency region. By applying these methods to a vehicle floor, we confirmed the improvement of road noise performance. 3 refs., 12 figs.

  20. Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise Associated with Aircraft Systems

    Science.gov (United States)

    Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)

    2016-01-01

    A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.

  1. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  2. Reward Pays the Cost of Noise Reduction in Motor and Cognitive Control.

    Science.gov (United States)

    Manohar, Sanjay G; Chong, Trevor T-J; Apps, Matthew A J; Batla, Amit; Stamelou, Maria; Jarman, Paul R; Bhatia, Kailash P; Husain, Masud

    2015-06-29

    Speed-accuracy trade-off is an intensively studied law governing almost all behavioral tasks across species. Here we show that motivation by reward breaks this law, by simultaneously invigorating movement and improving response precision. We devised a model to explain this paradoxical effect of reward by considering a new factor: the cost of control. Exerting control to improve response precision might itself come at a cost--a cost to attenuate a proportion of intrinsic neural noise. Applying a noise-reduction cost to optimal motor control predicted that reward can increase both velocity and accuracy. Similarly, application to decision-making predicted that reward reduces reaction times and errors in cognitive control. We used a novel saccadic distraction task to quantify the speed and accuracy of both movements and decisions under varying reward. Both faster speeds and smaller errors were observed with higher incentives, with the results best fitted by a model including a precision cost. Recent theories consider dopamine to be a key neuromodulator in mediating motivational effects of reward. We therefore examined how Parkinson's disease (PD), a condition associated with dopamine depletion, alters the effects of reward. Individuals with PD showed reduced reward sensitivity in their speed and accuracy, consistent in our model with higher noise-control costs. Including a cost of control over noise explains how reward may allow apparent performance limits to be surpassed. On this view, the pattern of reduced reward sensitivity in PD patients can specifically be accounted for by a higher cost for controlling noise. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Usefulness of acoustic noise reduction in brain MRI using Quiet-T{sub 2}-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Jy [Dept. of Medical science Graduate school, Chonnam National University, Gwangju (Korea, Republic of); Kim, Young Keun [Dept. of Radiotechnology, Gwangju Health university, Gwangju (Korea, Republic of)

    2016-03-15

    Acoustic noise during magnetic resonance imaging (MRI) is the main source for patient discomfort. we report our preliminary experience with this technique in neuroimaging with regard to subjective and objective noise levels and image quality. 60 patients(29 males, 31 females, average age of 60.1) underwent routine brain MRI with 3.0 Tesla (MAGNETOM Tim Trio; Siemens, Germany) system and 12-channel head coil. Q-T{sub 2} and T{sub 2} sequence were performed. Measurement of sound pressure levels (SPL) and heart rate on Q-T{sub 2} and T{sub 2} was performed respectively. Quantitative analysis was carried out by measuring the SNR, CNR, and SIR values of Q-T{sub 2}, T{sub 2} and a statistical analysis was performed using independent sample T-test. Qualitative analysis was evaluated by the eyes for the overall quality image of Q-T{sub 2} and T{sub 2}. A 5-point evaluation scale was used, including excellent(5), good(4), fair(3), poor(2), and unacceptable(1). The average noise and peak noise decreased by 15dBA and 10dBA on T2 and Q-T2 test. Also, the average value of heartbeat rate was lower in Q-T2 for 120 seconds in each test, but there was no statistical significance. The quantitative analysis showed that there was no significant difference between CNR and SIR, and there was a significant difference (p<0.05) as SNR had a lower average value on Q-T{sub 2}. According to the qualitative analysis, the overall quality image of 59 case T{sub 2} and Q-T{sub 2} was evaluated as excellent at 5 points, and 1 case was evaluated as good at 4 points due to a motion artifact. Q-T{sub 2} is a promising technique for acoustic noise reduction and improved patient comfort.

  4. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    Science.gov (United States)

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  5. Study of performance of acoustic fixture for using in noise reduction rate tests of hearing protection devices

    Directory of Open Access Journals (Sweden)

    zam Biabani

    2016-06-01

    Full Text Available Introduction:One of the recommended methods for evaluation effectiveness of hearing protection is use the acoustic fixture accordance with standard ISO 4869-3. The aim of this study was evaluate the acoustic performance of fixture for using in noise reduction rate tests of hearing protection devices in the laboratory. Methods: In this cross-sectional study , noise reduction rates of five common ear muffs used in the Iran industries were investigated based on the ISO 11904 standard, microphone in real ear method, using noise dosimeter (SVANTEK , Model SV102 equipped with microphone SV25 model which can install inside the ear on 30 subjects under laboratory conditions. Also, noise reduction rate of earmuffs was determined using the fixture model AVASINA9402 accordance with standard procedures. Data were analyzed using the software SPSS21. Results: The results showed the real noise reduction rates of the earmuffs on the studied subjects are from 59% to 94% nominal reduction rates. That rates for the ear muffs on the studied fixture are from 64% to 92.The results showed that the noise reduction rates of the ear muffs on subjects compared with and noise reduction rates of the ear muffs on fixture were not statistically significant (p> 0.05. Conclusion: The results showed the accuracy of noise reduction rate of earmuffs using the fixture compared with real subjects is acceptable. Hence, the fixture is good choice for environments where there’s no possibility of acoustic evaluation on real subjects, also for quality control of productions in the earmuff manufacturers.

  6. Experimental and theoretical sound transmission. [reduction of interior noise in aircraft

    Science.gov (United States)

    Roskam, J.; Muirhead, V. U.; Smith, H. W.; Durenberger, D. W.

    1978-01-01

    The capabilities of the Kansas University- Flight Research Center for investigating panel sound transmission as a step toward the reduction of interior noise in general aviation aircraft were discussed. Data obtained on panels with holes, on honeycomb panels, and on various panel treatments at normal incidence were documented. The design of equipment for panel transmission loss tests at nonnormal (slanted) sound incidence was described. A comprehensive theory-based prediction method was developed and shows good agreement with experimental observations of the stiffness controlled, the region, the resonance controlled region, and the mass-law region of panel vibration.

  7. Reduction of background noise induced by wind tunnel jet exit vanes

    Science.gov (United States)

    Martin, R. M.; Brooks, T. F.; Hoad, D. R.

    1985-01-01

    The NASA-Langley 4 x 7 m wind tunnel develops low frequency flow pulsations at certain velocity ranges during open throat mode operation, affecting the aerodynamics of the flow and degrading the resulting model test data. Triangular vanes attached to the trailing edge of flat steel rails, mounted 10 cm from the inside of the jet exit walls, have been used to reduce this effect; attention is presently given to methods used to reduce the inherent noise generation of the vanes while retaining their pulsation reduction features.

  8. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  9. Damping layout optimization for ship's cabin noise reduction based on statistical energy analysis

    Directory of Open Access Journals (Sweden)

    WU Weiguo

    2017-08-01

    Full Text Available An optimization analysis study concerning the damping control of ship's cabin noise was carried out in order to improve the effect and reduce the weight of damping. Based on the Statistical Energy Analysis (SEA method, a theoretical deduction and numerical analysis of the first-order sensitivity analysis of the A-weighted sound pressure level concerning the damping loss factor of the subsystem were carried out. On this basis, a mathematical optimization model was proposed and an optimization program developed. Next, the secondary development of VA One software was implemented through the use of MATLAB, while the cabin noise damping control layout optimization system was established. Finally, the optimization model of the ship was constructed and numerical experiments of damping control optimization conducted. The damping installation region was divided into five parts with different damping thicknesses. The total weight of damping was set as an objective function and the A-weighted sound pressure level of the target cabin was set as a constraint condition. The best damping thickness was obtained through the optimization program, and the total damping weight was reduced by 60.4%. The results show that the damping noise reduction effect of unit weight is significantly improved through the optimization method. This research successfully solves the installation position and thickness selection problems in the acoustic design of damping control, providing a reliable analysis method and guidance for the design.

  10. Speckle noise reduction for optical coherence tomography based on adaptive 2D dictionary

    Science.gov (United States)

    Lv, Hongli; Fu, Shujun; Zhang, Caiming; Zhai, Lin

    2018-05-01

    As a high-resolution biomedical imaging modality, optical coherence tomography (OCT) is widely used in medical sciences. However, OCT images often suffer from speckle noise, which can mask some important image information, and thus reduce the accuracy of clinical diagnosis. Taking full advantage of nonlocal self-similarity and adaptive 2D-dictionary-based sparse representation, in this work, a speckle noise reduction algorithm is proposed for despeckling OCT images. To reduce speckle noise while preserving local image features, similar nonlocal patches are first extracted from the noisy image and put into groups using a gamma- distribution-based block matching method. An adaptive 2D dictionary is then learned for each patch group. Unlike traditional vector-based sparse coding, we express each image patch by the linear combination of a few matrices. This image-to-matrix method can exploit the local correlation between pixels. Since each image patch might belong to several groups, the despeckled OCT image is finally obtained by aggregating all filtered image patches. The experimental results demonstrate the superior performance of the proposed method over other state-of-the-art despeckling methods, in terms of objective metrics and visual inspection.

  11. Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography.

    Science.gov (United States)

    Bianco, V; Paturzo, M; Memmolo, P; Finizio, A; Ferraro, P; Javidi, B

    2013-03-01

    Holographic imaging may become severely degraded by a mixture of speckle and incoherent additive noise. Bayesian approaches reduce the incoherent noise, but prior information is needed on the noise statistics. With no prior knowledge, one-shot reduction of noise is a highly desirable goal, as the recording process is simplified and made faster. Indeed, neither multiple acquisitions nor a complex setup are needed. So far, this result has been achieved at the cost of a deterministic resolution loss. Here we propose a fast non-Bayesian denoising method that avoids this trade-off by means of a numerical synthesis of a moving diffuser. In this way, only one single hologram is required as multiple uncorrelated reconstructions are provided by random complementary resampling masks. Experiments show a significant incoherent noise reduction, close to the theoretical improvement bound, resulting in image-contrast improvement. At the same time, we preserve the resolution of the unprocessed image.

  12. Shot noise reduction in the AlGaAs/GaAs- and InGaP/GaAs-based HBTs

    Science.gov (United States)

    Sakalas, Paulius; Schroeter, Michael; Zampardi, Peter; Zirath, Herbert

    2003-05-01

    Noise parameters of AlGaAs/GaAs and InGaP/GaAs HBTs were measured in microwave frequency range and modeled using the small-signal equivalent circuit approach. Correlated current noise sources in the base and collector currents with thermal noise in the circuit resistive elements were accounted for by the model and yielded good agreement with the measured data. This enabled an extraction of the different noise source contributions to minimum noise figure (NFmin) in AlGaAs/GaAs and InGaP/GaAs HBTs. Decomposition of the (NFmin) in to the different contributors showed that the main noise sources in investigated HBTs are correlated base and collector current shot noise. The observed minimum of NFmin versus frequency at lower collector current is explained by the reduction of the emitter/base junction shot noise component due to the spike in the emitter/base junction and associated accumulation of the quasi-thermalized electrons forming a space charge, which screens the electron transfer through the barrier. The bias (VCE) increase creates an efficient electric field in collector/base junction, capable of 'washing out' the accumulated charge. Such shot noise reduction in HBTs could be exploited in the LNA for the RF application.

  13. Background reduction and noise discrimination in the proportional counting of tritium using pulse-shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hochel, R C; Hayes, D W [Du Pont de Nemours (E.I.) and Co., Aiken, S.C. (USA). Savannah River Lab.

    1975-12-01

    A pulse-shape analysis (PSA) unit of commercial design has been incorporated into a proportional counting system to determine the effectiveness of pulse-shape discrimination in increasing the sensitivity of tritium counting. It was found that a quantitative determination of tritium could be obtained directly from the PSA time spectrum eliminating the need for beta-ray energy selection used in the pulse-shape discrimination (PSD) technique. The performance of the proportional counting system was tested using the PSA unit and anticoincidence shielding, both singly and combined, under several types of background. A background reduction factor of 169 was obtained from the combined PSA-anticoincidence system with only a 2% loss in tritium counting efficiency. The PSA method was also found to offer significant reductions in noise background.

  14. Background reduction and noise discrimination in the proportional counting of tritium using pulse-shape analysis

    International Nuclear Information System (INIS)

    Hochel, R.C.; Hayes, D.W.

    1975-01-01

    A pulse-shape analysis (PSA) unit of commercial design has been incorporated into a proportional counting system to determine the effectiveness of pulse-shape discrimination in increasing the sensitivity of tritium counting. It was found that a quantitative determination of tritium could be obtained directly from the PSA time spectrum eliminating the need for beta-ray energy selection used in the pulse-shape discrimination (PSD) technique. The performance of the proportional counting system was tested using the PSA unit and anticoincidence shielding, both singly and combined, under several types of background. A background reduction factor of 169 was obtained from the combined PSA-anticoincidence system with only a 2% loss in tritium counting efficiency. The PSA method was also found to offer significant reductions in noise background. (Auth.)

  15. Directional Processing and Noise Reduction in Hearing Aids: Individual and Situational Influences on Preferred Setting.

    Science.gov (United States)

    Neher, Tobias; Wagener, Kirsten C; Fischer, Rosa-Linde

    2016-09-01

    A better understanding of individual differences in hearing aid (HA) outcome is a prerequisite for more personalized HA fittings. Currently, knowledge of how different user factors relate to response to directional processing (DIR) and noise reduction (NR) is sparse. To extend a recent study linking preference for DIR and NR to pure-tone average hearing thresholds (PTA) and cognitive factors by investigating if (1) equivalent links exist for different types of DIR and NR, (2) self-reported noise sensitivity and personality can account for additional variability in preferred DIR and NR settings, and (3) spatial target speech configuration interacts with individual DIR preference. Using a correlational study design, overall preference for different combinations of DIR and NR programmed into a commercial HA was assessed in a complex speech-in-noise situation and related to PTA, cognitive function, and different personality traits. Sixty experienced HA users aged 60-82 yr with controlled variation in PTA and working memory capacity took part in this study. All of them had participated in the earlier study, as part of which they were tested on a measure of "executive control" tapping into cognitive functions such as working memory, mental flexibility, and selective attention. Six HA settings based on unilateral (within-device) or bilateral (across-device) DIR combined with inactive, moderate, or strong single-microphone NR were programmed into a pair of behind-the-ear HAs together with individually prescribed amplification. Overall preference was assessed using a free-field simulation of a busy cafeteria situation with either a single frontal talker or two talkers at ±30° azimuth as the target speech. In addition, two questionnaires targeting noise sensitivity and the "Big Five" personality traits were administered. Data were analyzed using multiple regression analyses and repeated-measures analyses of variance with a focus on potential interactions between the HA

  16. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter

    Science.gov (United States)

    Sindelar, Charles V.; Grigorieff, Nikolaus

    2012-01-01

    The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the “single-particle Wiener filter”) to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation. PMID:22613568

  17. Effects of cavity resonances on sound transmission into a thin cylindrical shell. [noise reduction in aircraft fuselage

    Science.gov (United States)

    Koval, L. R.

    1978-01-01

    In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the effects of internal cavity resonances on sound transmission into a thin cylindrical shell. The 'noise reduction' of the cylinder is defined and computed, with and without including the effects of internal cavity resonances. As would be expected, the noise reduction in the absence of cavity resonances follows the same qualitative pattern as does transmission loss. Numerical results show that cavity resonances lead to wide fluctuations and a general decrease of noise reduction, especially at cavity resonances. Modest internal absorption is shown to greatly reduce the effect of cavity resonances. The effects of external airflow, internal cabin pressurization, and different acoustical properties inside and outside the cylinder are also included and briefly examined.

  18. The correlation study of parallel feature extractor and noise reduction approaches

    Energy Technology Data Exchange (ETDEWEB)

    Dewi, Deshinta Arrova; Sundararajan, Elankovan; Prabuwono, Anton Satria [Industrial Computing Research Group, Centre for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

    2015-05-15

    This paper presents literature reviews that show variety of techniques to develop parallel feature extractor and finding its correlation with noise reduction approaches for low light intensity images. Low light intensity images are normally displayed as darker images and low contrast. Without proper handling techniques, those images regularly become evidences of misperception of objects and textures, the incapability to section them. The visual illusions regularly clues to disorientation, user fatigue, poor detection and classification performance of humans and computer algorithms. Noise reduction approaches (NR) therefore is an essential step for other image processing steps such as edge detection, image segmentation, image compression, etc. Parallel Feature Extractor (PFE) meant to capture visual contents of images involves partitioning images into segments, detecting image overlaps if any, and controlling distributed and redistributed segments to extract the features. Working on low light intensity images make the PFE face challenges and closely depend on the quality of its pre-processing steps. Some papers have suggested many well established NR as well as PFE strategies however only few resources have suggested or mentioned the correlation between them. This paper reviews best approaches of the NR and the PFE with detailed explanation on the suggested correlation. This finding may suggest relevant strategies of the PFE development. With the help of knowledge based reasoning, computational approaches and algorithms, we present the correlation study between the NR and the PFE that can be useful for the development and enhancement of other existing PFE.

  19. The correlation study of parallel feature extractor and noise reduction approaches

    International Nuclear Information System (INIS)

    Dewi, Deshinta Arrova; Sundararajan, Elankovan; Prabuwono, Anton Satria

    2015-01-01

    This paper presents literature reviews that show variety of techniques to develop parallel feature extractor and finding its correlation with noise reduction approaches for low light intensity images. Low light intensity images are normally displayed as darker images and low contrast. Without proper handling techniques, those images regularly become evidences of misperception of objects and textures, the incapability to section them. The visual illusions regularly clues to disorientation, user fatigue, poor detection and classification performance of humans and computer algorithms. Noise reduction approaches (NR) therefore is an essential step for other image processing steps such as edge detection, image segmentation, image compression, etc. Parallel Feature Extractor (PFE) meant to capture visual contents of images involves partitioning images into segments, detecting image overlaps if any, and controlling distributed and redistributed segments to extract the features. Working on low light intensity images make the PFE face challenges and closely depend on the quality of its pre-processing steps. Some papers have suggested many well established NR as well as PFE strategies however only few resources have suggested or mentioned the correlation between them. This paper reviews best approaches of the NR and the PFE with detailed explanation on the suggested correlation. This finding may suggest relevant strategies of the PFE development. With the help of knowledge based reasoning, computational approaches and algorithms, we present the correlation study between the NR and the PFE that can be useful for the development and enhancement of other existing PFE

  20. Improved CEEMDAN-wavelet transform de-noising method and its application in well logging noise reduction

    Science.gov (United States)

    Zhang, Jingxia; Guo, Yinghai; Shen, Yulin; Zhao, Difei; Li, Mi

    2018-06-01

    The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k-1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k-1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.

  1. Noise reduction by sparse representation in learned dictionaries for application to blind tip reconstruction problem

    International Nuclear Information System (INIS)

    Jóźwiak, Grzegorz

    2017-01-01

    Scanning probe microscopy (SPM) is a well known tool used for the investigation of phenomena in objects in the nanometer size range. However, quantitative results are limited by the size and the shape of the nanoprobe used in experiments. Blind tip reconstruction (BTR) is a very popular method used to reconstruct the upper boundary on the shape of the probe. This method is known to be very sensitive to all kinds of interference in the atomic force microscopy (AFM) image. Due to mathematical morphology calculus, the interference makes the BTR results biased rather than randomly disrupted. For this reason, the careful choice of methods used for image enhancement and denoising, as well as the shape of a calibration sample are very important. In the paper, the results of thorough investigations on the shape of a calibration standard are shown. A novel shape is proposed and a tool for the simulation of AFM images of this calibration standard was designed. It was shown that careful choice of the initial tip allows us to use images of hole structures to blindly reconstruct the shape of a probe. The simulator was used to test the impact of modern filtration algorithms on the BTR process. These techniques are based on sparse approximation with function dictionaries learned on the basis of an image itself. Various learning algorithms and parameters were tested to determine the optimal combination for sparse representation. It was observed that the strong reduction of noise does not guarantee strong reduction in reconstruction errors. It seems that further improvements will be possible by the combination of BTR and a noise reduction procedure. (paper)

  2. Prediction of broadband trailing edge noise from a NACA0012 airfoil using wall-modeled large-eddy simulation

    Science.gov (United States)

    Mehrabadi, Mohammad; Bodony, Daniel

    2017-11-01

    In modern high-bypass ratio turbofan engines, the reduction of jet exhaust noise through engine design has increased the acoustic importance of the main fan to the point where it can be the primary source of noise in the fight direction of an airplane. While fan noise has been reduced by improved fan designs, its broadband component, originating from the interaction of turbulent flow with a solid surface, still remains an issue. Broadband fan noise is generated by several mechanisms, usually involving a turbulent boundary layer interacting with a solid surface. To prepare for a wall modeled large eddy simulation (WMLES) of the NASA/GE source diagnostic test fan, we study the broadband noise due to the turbulent flow on a NACA0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000, and a Mach number of 0.115 using WMLES. We investigate the prediction of transition-to-turbulence and sound generation from the WMLES and examine its predictability compared with available experimental and DNS datasets for the same flow conditions. Verification of WMLES for such a canonical problem is crucial since it provides useful insight about the WMLES approach before using it for broadband fan noise prediction. AeroAcoustics Research Consortium.

  3. Noise Reduction of Ocean-Bottom Pressure Data Toward Real-Time Tsunami Forecasting

    Science.gov (United States)

    Tsushima, H.; Hino, R.

    2008-12-01

    We discuss a method of noise reduction of ocean-bottom pressure data to be fed into the near-field tsunami forecasting scheme proposed by Tsushima et al. [2008a]. In their scheme, the pressure data is processed in real time as follows: (1) removing ocean tide components by subtracting the sea-level variation computed from a theoretical tide model, (2) applying low-pass digital filter to remove high-frequency fluctuation due to seismic waves, and (3) removing DC-offset and linear-trend component to determine a baseline of relative sea level. However, it turns out this simple method is not always successful in extracting tsunami waveforms from the data, when the observed amplitude is ~1cm. For disaster mitigation, accurate forecasting of small tsunamis is important as well as large tsunamis. Since small tsunami events occur frequently, successful tsunami forecasting of those events are critical to obtain public reliance upon tsunami warnings. As a test case, we applied the data-processing described above to the bottom pressure records containing tsunami with amplitude less than 1 cm which was generated by the 2003 Off-Fukushima earthquake occurring in the Japan Trench subduction zone. The observed pressure variation due to the ocean tide is well explained by the calculated tide signals from NAO99Jb model [Matsumoto et al., 2000]. However, the tide components estimated by BAYTAP-G [Tamura et al., 1991] from the pressure data is more appropriate for predicting and removing the ocean tide signals. In the pressure data after removing the tide variations, there remain pressure fluctuations with frequencies ranging from about 0.1 to 1 mHz and with amplitudes around ~10 cm. These fluctuations distort the estimation of zero-level and linear trend to define relative sea-level variation, which is treated as tsunami waveform in the subsequent analysis. Since the linear trend is estimated from the data prior to the origin time of the earthquake, an artificial linear trend is

  4. The ART of representation: Memory reduction and noise tolerance in a neural network vision system

    Science.gov (United States)

    Langley, Christopher S.

    The Feature Cerebellar Model Arithmetic Computer (FCMAC) is a multiple-input-single-output neural network that can provide three-degree-of-freedom (3-DOF) pose estimation for a robotic vision system. The FCMAC provides sufficient accuracy to enable a manipulator to grasp an object from an arbitrary pose within its workspace. The network learns an appearance-based representation of an object by storing coarsely quantized feature patterns. As all unique patterns are encoded, the network size grows uncontrollably. A new architecture is introduced herein, which combines the FCMAC with an Adaptive Resonance Theory (ART) network. The ART module categorizes patterns observed during training into a set of prototypes that are used to build the FCMAC. As a result, the network no longer grows without bound, but constrains itself to a user-specified size. Pose estimates remain accurate since the ART layer tends to discard the least relevant information first. The smaller network performs recall faster, and in some cases is better for generalization, resulting in a reduction of error at recall time. The ART-Under-Constraint (ART-C) algorithm is extended to include initial filling with randomly selected patterns (referred to as ART-F). In experiments using a real-world data set, the new network performed equally well using less than one tenth the number of coarse patterns as a regular FCMAC. The FCMAC is also extended to include real-valued input activations. As a result, the network can be tuned to reject a variety of types of noise in the image feature detection. A quantitative analysis of noise tolerance was performed using four synthetic noise algorithms, and a qualitative investigation was made using noisy real-world image data. In validation experiments, the FCMAC system outperformed Radial Basis Function (RBF) networks for the 3-DOF problem, and had accuracy comparable to that of Principal Component Analysis (PCA) and superior to that of Shape Context Matching (SCM), both

  5. Noise Reduction of MEMS Gyroscope Based on Direct Modeling for an Angular Rate Signal

    Directory of Open Access Journals (Sweden)

    Liang Xue

    2015-02-01

    Full Text Available In this paper, a novel approach for processing the outputs signal of the microelectromechanical systems (MEMS gyroscopes was presented to reduce the bias drift and noise. The principle for the noise reduction was presented, and an optimal Kalman filter (KF was designed by a steady-state filter gain obtained from the analysis of KF observability. In particular, the true angular rate signal was directly modeled to obtain an optimal estimate and make a self-compensation for the gyroscope without needing other sensor’s information, whether in static or dynamic condition. A linear fit equation that describes the relationship between the KF bandwidth and modeling parameter of true angular rate was derived from the analysis of KF frequency response. The test results indicated that the MEMS gyroscope having an ARW noise of 4.87°/h0.5 and a bias instability of 44.41°/h were reduced to 0.4°/h0.5 and 4.13°/h by the KF under a given bandwidth (10 Hz, respectively. The 1σ estimated error was reduced from 1.9°/s to 0.14°/s and 1.7°/s to 0.5°/s in the constant rate test and swing rate test, respectively. It also showed that the filtered angular rate signal could well reflect the dynamic characteristic of the input rate signal in dynamic conditions. The presented algorithm is proved to be effective at improving the measurement precision of the MEMS gyroscope.

  6. Noise Reduction Properties of an Experimental Bituminous Slurry with Crumb Rubber Incorporated by the Dry Process

    Directory of Open Access Journals (Sweden)

    Moisés Bueno

    2014-08-01

    Full Text Available Nowadays, cold technology for asphalt pavement in the field of road construction is considered as an alternative solution to conventional procedures from both an economic and environmental point of view. Among these techniques, bituminous slurry surfacing is obtaining an important role due to the properties of the obtained wearing course. The functional performance of this type of surfaces is directly related to its rough texture. Nevertheless, this parameter has a significant influence on the tire/road noise generation. To reduce this undesirable effect on the sound performance, new designs of elastic bituminous slurries have been developed. Within the FENIX project, this work presents the acoustical characterization of an experimental bituminous slurry with crumb rubber from wasted automobile tires incorporated by the dry process. The obtained results show that, under controlled operational parameters, the close proximity sound levels associated to the experimental slurry are considerably lower than those emitted by a conventional slurry wearing course. However, after one year of supporting traffic loads and different weather conditions, the evaluated bituminous slurry, although it conserves the original noise reduction properties in relation to the conventional one, noticeably increases the generated sound emission. Therefore, it is required to continue improving the design of experimental surfaces in order to enhance its long-term performance.

  7. A blood pressure monitor with robust noise reduction system under linear cuff inflation and deflation.

    Science.gov (United States)

    Usuda, Takashi; Kobayashi, Naoki; Takeda, Sunao; Kotake, Yoshifumi

    2010-01-01

    We have developed the non-invasive blood pressure monitor which can measure the blood pressure quickly and robustly. This monitor combines two measurement mode: the linear inflation and the linear deflation. On the inflation mode, we realized a faster measurement with rapid inflation rate. On the deflation mode, we realized a robust noise reduction. When there is neither noise nor arrhythmia, the inflation mode incorporated on this monitor provides precise, quick and comfortable measurement. Once the inflation mode fails to calculate appropriate blood pressure due to body movement or arrhythmia, then the monitor switches automatically to the deflation mode and measure blood pressure by using digital signal processing as wavelet analysis, filter bank, filter combined with FFT and Inverse FFT. The inflation mode succeeded 2440 measurements out of 3099 measurements (79%) in an operating room and a rehabilitation room. The new designed blood pressure monitor provides the fastest measurement for patient with normal circulation and robust measurement for patients with body movement or severe arrhythmia. Also this fast measurement method provides comfortableness for patients.

  8. Two dimension MDW OCDMA code cross-correlation for reduction of phase induced intensity noise

    Science.gov (United States)

    Ahmed, Israa Sh.; Aljunid, Syed A.; Nordin, Junita M.; Dulaimi, Layth A. Khalil Al; Matem, Rima

    2017-11-01

    In this paper, we first review 2-D MDW code cross correlation equations and table to be improved significantly by using code correlation properties. These codes can be used in the synchronous optical CDMA systems for multi access interference cancellation and maximum suppress the phase induced intensity noise. Low Psr is due to the reduction of interference noise that is induced by the 2-D MDW code PIIN suppression. High data rate causes increases in BER, requires high effective power and severely deteriorates the system performance. The 2-D W/T MDW code has an excellent system performance where the value of PIIN is suppressed as low as possible at the optimum Psr with high data bit rate. The 2-D MDW code shows better tolerance to PIIN in comparison to others with enhanced system performance. We prove by numerical analysis that the PIIN maximally suppressed by MDW code through the minimizing property of cross correlation in comparison to 2-D PDC and 2-D MQC OCDMA code.scheme systems.

  9. Two dimension MDW OCDMA code cross-correlation for reduction of phase induced intensity noise

    Directory of Open Access Journals (Sweden)

    Sh. Ahmed Israa

    2017-01-01

    Full Text Available In this paper, we first review 2-D MDW code cross correlation equations and table to be improved significantly by using code correlation properties. These codes can be used in the synchronous optical CDMA systems for multi access interference cancellation and maximum suppress the phase induced intensity noise. Low Psr is due to the reduction of interference noise that is induced by the 2-D MDW code PIIN suppression. High data rate causes increases in BER, requires high effective power and severely deteriorates the system performance. The 2-D W/T MDW code has an excellent system performance where the value of PIIN is suppressed as low as possible at the optimum Psr with high data bit rate. The 2-D MDW code shows better tolerance to PIIN in comparison to others with enhanced system performance. We prove by numerical analysis that the PIIN maximally suppressed by MDW code through the minimizing property of cross correlation in comparison to 2-D PDC and 2-D MQC OCDMA code.scheme systems.

  10. Optimal design of minimum mean-square error noise reduction algorithms using the simulated annealing technique.

    Science.gov (United States)

    Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan

    2009-02-01

    The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.

  11. An Interactive Procedure to Preserve the Desired Edges during the Image Processing of Noise Reduction

    Directory of Open Access Journals (Sweden)

    Lin-Tsang Lee

    2010-01-01

    Full Text Available The paper propose a new procedure including four stages in order to preserve the desired edges during the image processing of noise reduction. A denoised image can be obtained from a noisy image at the first stage of the procedure. At the second stage, an edge map can be obtained by the Canny edge detector to find the edges of the object contours. Manual modification of an edge map at the third stage is optional to capture all the desired edges of the object contours. At the final stage, a new method called Edge Preserved Inhomogeneous Diffusion Equation (EPIDE is used to smooth the noisy images or the previously denoised image at the first stage for achieving the edge preservation. The Optical Character Recognition (OCR results in the experiments show that the proposed procedure has the best recognition result because of the capability of edge preservation.

  12. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    Science.gov (United States)

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  13. A two-microphone noise reduction system for cochlear implant users with nearby microphones. Part II: Performance Evaluation

    OpenAIRE

    Kompis, Martin; Bertram, Matthias; Senn, Pascal; Müller, Joachim; Pelizzone, Marco; Häusler, Rudolf

    2008-01-01

    Users of cochlear implants (auditory aids, which stimulate the auditory nerve electrically at the inner ear) often suffer from poor speech understanding in noise. We evaluate a small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. The system is evaluated in simulated and real, anechoic and reverberant environments. Results from simulations show improvements of 3.4 to 9.3 dB in signa...

  14. Noise Reduction of Steel Cord Conveyor Belt Defect Electromagnetic Signal by Combined Use of Improved Wavelet and EMD

    Directory of Open Access Journals (Sweden)

    Hong-Wei Ma

    2016-09-01

    Full Text Available In order to reduce the noise of a defect electromagnetic signal of the steel cord conveyor belt used in coal mines, a new signal noise reduction method by combined use of the improved threshold wavelet and Empirical Mode Decomposition (EMD is proposed. Firstly, the denoising method based on the improved threshold wavelet is applied to reduce the noise of a defect electromagnetic signal obtained by an electromagnetic testing system. Then, the EMD is used to decompose the denoised signal and then the effective Intrinsic Mode Function (IMF is extracted by the dominant eigenvalue strategy. Finally, the signal reconstruction is carried out by utilizing the obtained IMF. In order to verify the proposed noise reduction method, the experiments are carried out in two cases including the defective joint and steel wire rope break. The experimental results show that the proposed method in this paper obtains the higher Signal to Noise Ratio (SNR for the defect electromagnetic signal noise reduction of steel cord conveyor belts.

  15. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  16. Do hearing loss and cognitive function modulate benefit from different binaural noise-reduction settings?

    Science.gov (United States)

    Neher, Tobias; Grimm, Giso; Hohmann, Volker; Kollmeier, Birger

    2014-01-01

    Although previous research indicates that cognitive skills influence benefit from different types of hearing aid algorithms, comparatively little is known about the role of, and potential interaction with, hearing loss. This holds true especially for noise reduction (NR) processing. The purpose of the present study was thus to explore whether degree of hearing loss and cognitive function modulate benefit from different binaural NR settings based on measures of speech intelligibility, listening effort, and overall preference. Forty elderly listeners with symmetrical sensorineural hearing losses in the mild to severe range participated. They were stratified into four age-matched groups (with n = 10 per group) based on their pure-tone average hearing losses and their performance on a visual measure of working memory (WM) capacity. The algorithm under consideration was a binaural coherence-based NR scheme that suppressed reverberant signal components as well as diffuse background noise at mid to high frequencies. The strength of the applied processing was varied from inactive to strong, and testing was carried out across a range of fixed signal-to-noise ratios (SNRs). Potential benefit was assessed using a dual-task paradigm combining speech recognition with a visual reaction time (VRT) task indexing listening effort. Pairwise preference judgments were also collected. All measurements were made using headphone simulations of a frontal speech target in a busy cafeteria. Test-retest data were gathered for all outcome measures. Analysis of the test-retest data showed all data sets to be reliable. Analysis of the speech scores showed that, for all groups, speech recognition was unaffected by moderate NR processing, whereas strong NR processing reduced intelligibility by about 5%. Analysis of the VRT scores revealed a similar data pattern. That is, while moderate NR did not affect VRT performance, strong NR impaired the performance of all groups slightly. Analysis of the

  17. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    International Nuclear Information System (INIS)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  18. Noise Exposure of Teachers in Nursery Schools-Evaluation of Measures for Noise Reduction When Dropping DUPLO Toy Bricks into Storage Cases by Sound Analyses.

    Science.gov (United States)

    Gebauer, Konstanze; Scharf, Thomas; Baumann, Uwe; Groneberg, David A; Bundschuh, Matthias

    2016-07-04

    Although noise is one of the leading work-related health risk factors for teachers, many nursery schools lack sufficient noise reduction measures. This intervention study evaluated the noise exposure of nursery school teachers when dropping DUPLO toy bricks into storage cases. Sound analyses of the impact included assessment of the maximum sound pressure level (LAFmax) as well as frequency analyses with 1/3 octave band filter. For the purpose of standardization, a customized gadget was developed. Recordings were performed in 11 cases of different materials and designs to assess the impact on sound level reduction. Thereby, the acoustic effects of three damping materials (foam rubber, carpet, and PU-foam) were investigated. The lowest LAFmax was measured in cases consisting of "metal grid" (90.71 dB) or of a woven willow "basket" (91.61 dB), whereas a case of "aluminium" (103.34 dB) generated the highest impact LAFmax. The frequency analyses determined especially low LAFmax in the frequency bands between 80 and 2500 Hz in cases designs "metal grid" and "basket". The insertion of PU-foam achieved the most significant attenuation of LAFmax (-13.88 dB) and, in the frequency analyses, the best sound damping. The dropping of DUPLO bricks in cases contributes to the high noise level in nursery schools, but measured LAFmax show no evidence for the danger of acute hearing loss. However, continuous exposure may lead to functional impairment of the hair cells and trigger stress reactions. We recommend noise reduction by utilizing cases of woven "basket" with an insert of PU-foam.

  19. Noise Exposure of Teachers in Nursery Schools—Evaluation of Measures for Noise Reduction When Dropping DUPLO Toy Bricks into Storage Cases by Sound Analyses

    Directory of Open Access Journals (Sweden)

    Konstanze Gebauer

    2016-07-01

    Full Text Available Background: Although noise is one of the leading work-related health risk factors for teachers, many nursery schools lack sufficient noise reduction measures. Methods: This intervention study evaluated the noise exposure of nursery school teachers when dropping DUPLO toy bricks into storage cases. Sound analyses of the impact included assessment of the maximum sound pressure level (LAFmax as well as frequency analyses with 1/3 octave band filter. For the purpose of standardization, a customized gadget was developed. Recordings were performed in 11 cases of different materials and designs to assess the impact on sound level reduction. Thereby, the acoustic effects of three damping materials (foam rubber, carpet, and PU-foam were investigated. Results: The lowest LAFmax was measured in cases consisting of “metal grid” (90.71 dB or of a woven willow “basket” (91.61 dB, whereas a case of “aluminium” (103.34 dB generated the highest impact LAFmax. The frequency analyses determined especially low LAFmax in the frequency bands between 80 and 2500 Hz in cases designs “metal grid” and “basket”. The insertion of PU-foam achieved the most significant attenuation of LAFmax (−13.88 dB and, in the frequency analyses, the best sound damping. Conclusion: The dropping of DUPLO bricks in cases contributes to the high noise level in nursery schools, but measured LAFmax show no evidence for the danger of acute hearing loss. However, continuous exposure may lead to functional impairment of the hair cells and trigger stress reactions. We recommend noise reduction by utilizing cases of woven “basket” with an insert of PU-foam.

  20. Application of the fourier and wavelet transforms in noise reduction of the out of the ordinary data

    International Nuclear Information System (INIS)

    Tafreshi, M. A.; Sadeghi, Y.

    2006-01-01

    In this article the noise reduction of the experimental data by the Fourier and the wavelet transforms has been investigated. Using both simulated and experimental data (from the plasma focus facility, Dena), the sensitive features of the application of the Fourier transform are visualized and discussed. Then, the main idea of the wavelet transform and the results of the noise reduction with this transform are presented. Due to this investigation, for the cases such as the current derivative of the Dena facility, where the reliability of the Fourier transform can be doubtful, the wavelet transform can be considered as a more accurate alternative approach

  1. Pediatric CT: implementation of ASIR for substantial radiation dose reduction while maintaining pre-ASIR image noise.

    Science.gov (United States)

    Brady, Samuel L; Moore, Bria M; Yee, Brian S; Kaufman, Robert A

    2014-01-01

    To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current-modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude

  2. Pediatric cT: Implementation of ASIR for Substantial Radiation Dose Reduction While Maintaining Pre-ASIR Image Noise1

    Science.gov (United States)

    Brady, Samuel L.; Moore, Bria M.; Yee, Brian S.; Kaufman, Robert A.

    2015-01-01

    Purpose To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. Materials and Methods The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current–modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. Results With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Conclusion Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose

  3. The effect of oblique angle of sound incidence, realistic edge conditions, curvature and in-plane panel stresses on the noise reduction characteristics of general aviation type panels

    Science.gov (United States)

    Grosveld, F.; Lameris, J.; Dunn, D.

    1979-01-01

    Experiments and a theoretical analysis were conducted to predict the noise reduction of inclined and curved panels. These predictions are compared to the experimental results with reasonable agreement between theory and experiment for panels under an oblique angle of sound incidence. Theoretical as well as experimental results indicate a big increase in noise reduction when a flat test panel is curved. Further curving the panel slightly decreases the noise reduction. Riveted flat panels are shown to give a higher noise reduction in the stiffness-controlled frequency region, while bonded panels are superior in this region when the test panel is curved. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial in-plane stresses are presented and discussed. These test results indicate an important improvement in the noise reduction of these panels in the frequency range below the fundamental panel/cavity frequency.

  4. Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT

    Directory of Open Access Journals (Sweden)

    Baojun Li

    2013-01-01

    Full Text Available Purpose. Dual-energy CT imaging tends to suffer from much lower signal-to-noise ratio than single-energy CT. In this paper, we propose an improved anticorrelated noise reduction (ACNR method without causing cross-contamination artifacts. Methods. The proposed algorithm diffuses both basis material density images (e.g., water and iodine at the same time using a novel correlated diffusion algorithm. The algorithm has been compared to the original ACNR algorithm in a contrast-enhanced, IRB-approved patient study. Material density accuracy and noise reduction are quantitatively evaluated by the percent density error and the percent noise reduction. Results. Both algorithms have significantly reduced the noises of basis material density images in all cases. The average percent noise reduction is 69.3% and 66.5% with the ACNR algorithm and the proposed algorithm, respectively. However, the ACNR algorithm alters the original material density by an average of 13% (or 2.18 mg/cc with a maximum of 58.7% (or 8.97 mg/cc in this study. This is evident in the water density images as massive cross-contaminations are seen in all five clinical cases. On the contrary, the proposed algorithm only changes the mean density by 2.4% (or 0.69 mg/cc with a maximum of 7.6% (or 1.31 mg/cc. The cross-contamination artifacts are significantly minimized or absent with the proposed algorithm. Conclusion. The proposed algorithm can significantly reduce image noise present in basis material density images from dual-energy CT imaging, with minimized cross-contaminations compared to the ACNR algorithm.

  5. A Two-Sensor Noise Reduction System: Applications for Hands-Free Car Kit

    Directory of Open Access Journals (Sweden)

    Guérin Alexandre

    2003-01-01

    Full Text Available This paper presents a two-microphone speech enhancer designed to remove noise in hands-free car kits. The algorithm, based on the magnitude squared coherence, uses speech correlation and noise decorrelation to separate speech from noise. The remaining correlated noise is reduced using cross-spectral subtraction. Particular attention is focused on the estimation of the different spectral densities (noise and noisy signals power spectral densities which are critical for the quality of the algorithm. We also propose a continuous noise estimation, avoiding the need of vocal activity detector. Results on recorded signals are provided, showing the superiority of the two-sensor approach to single microphone techniques.

  6. Noise Reduction Efforts for Special Operations C-130 Aircraft Using Active Synchrophaser Control

    National Research Council Canada - National Science Library

    Hammond, Daryl; McKinley, Richard; Hale, Bill

    1998-01-01

    .... A more complicated approach uses an active noise cancellation (ANC) system, which offers improved performance that can augment passive methods to significantly reduce both internal and external aircraft noise...

  7. Underwater noise reduction of marine pile driving using a double pile.

    Science.gov (United States)

    2015-12-01

    Impact pile driving of steel piles in marine environments produces extremely high sound levels in the water. : It has been shown that current pile driving noise attenuation techniques, such as bubble curtains and : cofferdams, provide limited noise r...

  8. NASA ISS Portable Fan Assembly Acoustics

    Science.gov (United States)

    Boone, Andrew; Allen, Christopher S.; Hess, Linda F.

    2018-01-01

    The Portable Fan Assembly (PFA) is a variable speed fan that can be used to provide additional ventilation inside International Space Station (ISS) modules as needed for crew comfort or for enhanced mixing of the ISS atmosphere. This fan can also be configured with a Shuttle era lithium hydroxide (LiOH) canister for CO2 removal in confined areas partially of fully isolated from the primary Environmental Control and Life Support System (ECLSS) on ISS which is responsible for CO2 removal. This report documents noise emission levels of the PFA at various speed settings and configurations. It also documents the acoustic attenuation effects realized when circulating air through the PFA inlet and outlet mufflers and when operating in its CO2 removal configuration (CRK) with a LiOH canister (sorbent bed) installed over the fan outlet.

  9. Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

    CERN Document Server

    British Standards Institution. London

    1998-01-01

    Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

  10. Observation of modulation speed enhancement, frequency modulation suppression, and phase noise reduction by detuned loading in a coupled-cavity semiconductor laser

    OpenAIRE

    Vahala, Kerry; Paslaski, Joel; Yariv, Amnon

    1985-01-01

    Simultaneous direct modulation response enhancement, phase noise (linewidth) reduction, and frequency modulation suppression are produced in a coupled-cavity semiconductor laser by the detuned loading mechanism.

  11. Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

    Science.gov (United States)

    Yang, Sejung; Lee, Byung-Uk

    2015-01-01

    In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138

  12. Reduction of Non-stationary Noise using a Non-negative Latent Variable Decomposition

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Larsen, Jan

    2008-01-01

    We present a method for suppression of non-stationary noise in single channel recordings of speech. The method is based on a non-negative latent variable decomposition model for the speech and noise signals, learned directly from a noisy mixture. In non-speech regions an over complete basis...... is learned for the noise that is then used to jointly estimate the speech and the noise from the mixture. We compare the method to the classical spectral subtraction approach, where the noise spectrum is estimated as the average over non-speech frames. The proposed method significantly outperforms...

  13. Design of indoor furniture with acoustic insulation and noise reduction function

    Science.gov (United States)

    Chen, Ziqiang; Lyu, Jianhua; Chen, Ming

    2018-05-01

    In this article, the current status of noise pollution research is analyzed and indoor noise pollution hazard on human body is discussed taking noise pollution as entry point to better understand people's needs in this concern, and it comes to the conclusion that indoor furniture with noise insulation function is required; In addition, the design status and necessity of indoor furniture with noise insulation function are expounded and the material property, structure design essentials and form design are analyzed according to sound transmission principles. In the end, design case study is presented to provide an effective way for design of indoor furniture with acoustic insulation function that meets people's needs.

  14. Meta-Analysis of Free-Response Studies, 1992-2008: Assessing the Noise Reduction Model in Parapsychology

    Science.gov (United States)

    Storm, Lance; Tressoldi, Patrizio E.; Di Risio, Lorenzo

    2010-01-01

    We report the results of meta-analyses on 3 types of free-response study: (a) ganzfeld (a technique that enhances a communication anomaly referred to as "psi"); (b) nonganzfeld noise reduction using alleged psi-enhancing techniques such as dream psi, meditation, relaxation, or hypnosis; and (c) standard free response (nonganzfeld, no noise…

  15. The effect of training on noise reduction in neonatal intensive care units.

    Science.gov (United States)

    Calikusu Incekar, Mujde; Balci, Serap

    2017-07-01

    Noise, an environmental stimulus, is especially important in the neurobehavioral development of newborns and brain development of infants at high risk. Conditions in the neonatal intensive care units (NICUs) may cause certain sensory stimuli that are not appropriate for the development of newborns, especially preterm infants. This study was conducted in order to determine noise levels in the NICU and to evaluate the effect of training provided for noise control. This study was conducted as a pretest-posttest quasiexperimental design between September and November 2014 in a 30-bed NICU of a tertiary hospital in Istanbul. A sample group consisting of 30 people (26 nurses, 4 care workers). Noise measurement devices were used in the Training Program of Noise Control. Of the health professionals, 96.7% were women, 86.7% were nurses, and 63.3% were university graduates. Some 36.7% of the health professionals had worked within the unit for more than 5 years. Noise measurements of full implementations were made over three 24-h periods. Noise measurements were taken before and after the training on Monday, Friday, and Sunday. Noise levels after training diminished in all three measurements, and the decrease was found statistically significant (P Noise Control Training for health professionals who work in NICUs is an effective way of reducing noise. We recommend that this training should be given to NICU health professionals and noise levels should be determined through measurements at specific times. © 2017 Wiley Periodicals, Inc.

  16. Reduction of noise influence during the periodical inspection of the nuclear power plant

    International Nuclear Information System (INIS)

    Hikono, Masaru

    2002-01-01

    At the nuclear power plant under the regular inspection, the sound level and the worker's impression of the environmental noises were measured. The environmental noise was the level with a possibility to cause the noise-induced deafness and have the psychological influence on the workers such as ''Get irritated''. These results imply the necessity of the noise countermeasure. For the noise influence relaxation, we examined the effectiveness of ear protections (e.g., ear plugs) and the intelligibility improvement of the paging system, prepared the noise management manual and the educational leaflet for the support of worker's self-defense. The results of the examinations showed that ear plug was effective especially in the high-noise environment and that the improvement of paging system increased the intelligibility. (author)

  17. Reduction of noise influence during the periodical inspection of the nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hikono, Masaru [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    At the nuclear power plant under the regular inspection, the sound level and the worker's impression of the environmental noises were measured. The environmental noise was the level with a possibility to cause the noise-induced deafness and have the psychological influence on the workers such as ''Get irritated''. These results imply the necessity of the noise countermeasure. For the noise influence relaxation, we examined the effectiveness of ear protections (e.g., ear plugs) and the intelligibility improvement of the paging system, prepared the noise management manual and the educational leaflet for the support of worker's self-defense. The results of the examinations showed that ear plug was effective especially in the high-noise environment and that the improvement of paging system increased the intelligibility. (author)

  18. A reliable ground bounce noise reduction technique for nanoscale CMOS circuits

    Science.gov (United States)

    Sharma, Vijay Kumar; Pattanaik, Manisha

    2015-11-01

    Power gating is the most effective method to reduce the standby leakage power by adding header/footer high-VTH sleep transistors between actual and virtual power/ground rails. When a power gating circuit transitions from sleep mode to active mode, a large instantaneous charge current flows through the sleep transistors. Ground bounce noise (GBN) is the high voltage fluctuation on real ground rail during sleep mode to active mode transitions of power gating circuits. GBN disturbs the logic states of internal nodes of circuits. A novel and reliable power gating structure is proposed in this article to reduce the problem of GBN. The proposed structure contains low-VTH transistors in place of high-VTH footer. The proposed power gating structure not only reduces the GBN but also improves other performance metrics. A large mitigation of leakage power in both modes eliminates the need of high-VTH transistors. A comprehensive and comparative evaluation of proposed technique is presented in this article for a chain of 5-CMOS inverters. The simulation results are compared to other well-known GBN reduction circuit techniques at 22 nm predictive technology model (PTM) bulk CMOS model using HSPICE tool. Robustness against process, voltage and temperature (PVT) variations is estimated through Monte-Carlo simulations.

  19. Impact of Noise Reduction Algorithm in Cochlear Implant Processing on Music Enjoyment.

    Science.gov (United States)

    Kohlberg, Gavriel D; Mancuso, Dean M; Griffin, Brianna M; Spitzer, Jaclyn B; Lalwani, Anil K

    2016-06-01

    Noise reduction algorithm (NRA) in speech processing strategy has positive impact on speech perception among cochlear implant (CI) listeners. We sought to evaluate the effect of NRA on music enjoyment. Prospective analysis of music enjoyment. Academic medical center. Normal-hearing (NH) adults (N = 16) and CI listeners (N = 9). Subjective rating of music excerpts. NH and CI listeners evaluated country music piece on three enjoyment modalities: pleasantness, musicality, and naturalness. Participants listened to the original version and 20 modified, less complex versions created by including subsets of musical instruments from the original song. NH participants listened to the segments through CI simulation and CI listeners listened to the segments with their usual speech processing strategy, with and without NRA. Decreasing the number of instruments was significantly associated with increase in the pleasantness and naturalness in both NH and CI subjects (p  0.05): this was true for the original and the modified music segments with one to three instruments (p > 0.05). NRA does not affect music enjoyment in CI listener or NH individual with CI simulation. This suggests that strategies to enhance speech processing will not necessarily have a positive impact on music enjoyment. However, reducing the complexity of music shows promise in enhancing music enjoyment and should be further explored.

  20. A Fan Solution for the Philips Airfryer

    OpenAIRE

    Gibernau Torres, Octavi

    2012-01-01

    The thesis on hand has been carried out at Philips Consumer Lifestyle Drachten that, together with Delft University of Technology, aims to develop a computed tool that determines the performance and efficiency curve of any centrifugal fan operating in the Philips Airfryer. The Airfryer is a Philips kitchen appliance that, thanks to the use of Rapid Air Technology, enables to fry food with a reduction of unhealthy fat up to 80%. Philips aims at reducing the total cost of the cooking fan an...

  1. The performance of a centrifugal fan with enlarged impeller

    International Nuclear Information System (INIS)

    Li Chunxi; Song Lingwang; Jia Yakui

    2011-01-01

    Highlights: → The influence of impeller enlargement is evaluated numerically and experimentally. → Variation equations of the operation points for enlarged impellers are derived. → Impeller enlargement leads to louder fan noise due to reduced impeller-volute gap. - Abstract: The influence of enlarged impeller in unchanged volute on G4-73 type centrifugal fan performance is investigated in this paper. Comparisons are conducted between the fan with original impeller and two larger impellers with the increments in impeller outlet diameter of 5% and 10% respectively in the numerical and experimental investigations. The internal characteristics are obtained by the numerical simulation, which indicate there is more volute loss in the fan with larger impeller. Experiment results show that the flow rate, total pressure rise, shaft power and sound pressure level have increased, while the efficiency have decreased when the fan operates with larger impeller. Variation equations on the performance of the operation points for the fan with enlarged impellers are suggested. Comparisons between experiment results and the trimming laws show that the trimming laws for usual situation can predict the performance of the enlarged fan impeller with less error for higher flow rate, although the situation of application is not in agreement. The noise frequency analysis shows that higher noise level with the larger impeller fan is caused by the reduced impeller-volute gap.

  2. The performance of a centrifugal fan with enlarged impeller

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunxi, E-mail: leechunxi@163.com [School of Energy and Power Engineering, North China Electric Power University, 071003 Baoding, Hebei (China); Song Lingwang [School of Energy and Power Engineering, North China Electric Power University, 071003 Baoding, Hebei (China); Jia Yakui [Hebei Electric Power Design and Research Institute, 050031 Shijiazhuang, Hebei (China)

    2011-08-15

    Highlights: {yields} The influence of impeller enlargement is evaluated numerically and experimentally. {yields} Variation equations of the operation points for enlarged impellers are derived. {yields} Impeller enlargement leads to louder fan noise due to reduced impeller-volute gap. - Abstract: The influence of enlarged impeller in unchanged volute on G4-73 type centrifugal fan performance is investigated in this paper. Comparisons are conducted between the fan with original impeller and two larger impellers with the increments in impeller outlet diameter of 5% and 10% respectively in the numerical and experimental investigations. The internal characteristics are obtained by the numerical simulation, which indicate there is more volute loss in the fan with larger impeller. Experiment results show that the flow rate, total pressure rise, shaft power and sound pressure level have increased, while the efficiency have decreased when the fan operates with larger impeller. Variation equations on the performance of the operation points for the fan with enlarged impellers are suggested. Comparisons between experiment results and the trimming laws show that the trimming laws for usual situation can predict the performance of the enlarged fan impeller with less error for higher flow rate, although the situation of application is not in agreement. The noise frequency analysis shows that higher noise level with the larger impeller fan is caused by the reduced impeller-volute gap.

  3. [Evaluation of a transient noise reduction strategy on the loudness perception and sound quality].

    Science.gov (United States)

    Liu, Haihong; Zhang, Hua; Chen, Xueqing; Wu, Yanjun; Kong, Ying; Wang, Shuo; Li, Jing

    2010-10-01

    A current technology for detecting and controlling transient noise in hearing aids (AntiShock) was evaluated. The objective was to evaluate AntiShock on loudness control and whether results in negative changes in sound quality of speech, transient noise and environmental noise and provide implications for hearing aid fitting. Twenty-four subjects with sensorineural hearing loss participated in the study. In a single-blinded paradigm, the subjects were asked to rate loudness of transient noise and distortion of speech, transient noise and environmental noise with the AntiShock in both on and off conditions. (1) The percentage of the transient noise rated as soft, comfortable, loud, too loud was 3.0%, 72.7%, 22.9% and 1.4%, respectively. There were significant differences in mean scores of loudness perception among listening conditions and between genders by a Two-Way ANOVA, the P values were 0.009 and 0.001, respectively. (2) The percentage of the speech rated as mild distorted, understandable, clear and very clear was 2.5%, 30.6%, 32.9% and 34.0%, respectively. There were significant differences in mean scores of speech distortion under different listening conditions by an One-Way ANOVA (P 0.05). (4) The percentage of the environmental noise rated as mild distorted, clear but soft, clear and natural was 0.4%, 0.8% and 98.8%, respectively. No significant differences in mean scores of nature of environmental noise was found between different listening conditions by an Independent-Samples T Test (P > 0.05). AntiShock showed positive effects on the loudness control of the transient noise. Quality of speech, transient noise and environmental noise were not impacted by AntiShock.

  4. High Temperature Smart Structures for Engine Noise Reduction and Performance Enhancement, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Noise mitigation for subsonic transports is a continuing high priority, and recent work has identified successful exhaust mixing enhancement devices (chevrons) that...

  5. High Temperature Smart Structures for Engine Noise Reduction and Performance Enhancement, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Noise mitigation for subsonic transports is a continuing high priority, and recent work has identified successful exhaust mixing enhancement devices that have...

  6. Noise Reduction Efforts for Special Operations C-130 Aircraft Using Active Synchrophaser Control

    National Research Council Canada - National Science Library

    Hammond, Daryl; McKinley, Richard; Hale, Bill

    1998-01-01

    Aircraft noise often inhibits mission effectiveness. As a result, flight crews, ground maintenance personnel, and passengers suffer degraded voice communication, impaired performance, increased fatigue, and hearing loss...

  7. Robust spinal cord resting-state fMRI using independent component analysis-based nuisance regression noise reduction.

    Science.gov (United States)

    Hu, Yong; Jin, Richu; Li, Guangsheng; Luk, Keith Dk; Wu, Ed X

    2018-04-16

    Physiological noise reduction plays a critical role in spinal cord (SC) resting-state fMRI (rsfMRI). To reduce physiological noise and increase the robustness of SC rsfMRI by using an independent component analysis (ICA)-based nuisance regression (ICANR) method. Retrospective. Ten healthy subjects (female/male = 4/6, age = 27 ± 3 years, range 24-34 years). 3T/gradient-echo echo planar imaging (EPI). We used three alternative methods (no regression [Nil], conventional region of interest [ROI]-based noise reduction method without ICA [ROI-based], and correction of structured noise using spatial independent component analysis [CORSICA]) to compare with the performance of ICANR. Reduction of the influence of physiological noise on the SC and the reproducibility of rsfMRI analysis after noise reduction were examined. The correlation coefficient (CC) was calculated to assess the influence of physiological noise. Reproducibility was calculated by intraclass correlation (ICC). Results from different methods were compared by one-way analysis of variance (ANOVA) with post-hoc analysis. No significant difference in cerebrospinal fluid (CSF) pulsation influence or tissue motion influence were found (P = 0.223 in CSF, P = 0.2461 in tissue motion) in the ROI-based (CSF: 0.122 ± 0.020; tissue motion: 0.112 ± 0.015), and Nil (CSF: 0.134 ± 0.026; tissue motion: 0.124 ± 0.019). CORSICA showed a significantly stronger influence of CSF pulsation and tissue motion (CSF: 0.166 ± 0.045, P = 0.048; tissue motion: 0.160 ± 0.032, P = 0.048) than Nil. ICANR showed a significantly weaker influence of CSF pulsation and tissue motion (CSF: 0.076 ± 0.007, P = 0.0003; tissue motion: 0.081 ± 0.014, P = 0.0182) than Nil. The ICC values in the Nil, ROI-based, CORSICA, and ICANR were 0.669, 0.645, 0.561, and 0.766, respectively. ICANR more effectively reduced physiological noise from both tissue motion and CSF pulsation than three alternative methods. ICANR increases the robustness of SC rsf

  8. Modeling speed and width parameters of vehicle tires for prediction of the reduction in vehicle noise pollution

    Directory of Open Access Journals (Sweden)

    Amir Esmael Forouhid

    2016-06-01

    Full Text Available Introduction: Safe driving requires the ability of the driver to receive the messages and complying with them. The most significant consequences of noise pollution are on the human auditory system. Disorders in the auditory system can have harmful side effects for human health. By reducing this kind of pollution in large cities, the quality of life, which is one of the biggest goals of the governments, can be considerably increased. Hence, in the present research, some parameters of vehicle tires were examined as a source of noise pollution, and the results can be taken into consideration in noise pollution reduction. Material and Method: Several vehicles with different tire width were selected for measuring sound level. The sound levels were measured for moving vehicles with the use of the Statistical Pass By Method (SPB, ISO 11819-1. Following sound level measurements for moving vehicles and by considering tire width, mathematical model of noise level was predicted on the basis of the obtained information and by usage of SPSS program and considering vehicle tire parameters. Result: The result of this study showed that the vehicle speed and tire width can affect different sound levels emitted by moving tire on road surface. The average speed of vehicles can play an important role in the noise pollution. By increasing speed, rotation of the the tires on the asphalt is increased, as it is a known factors for noise pollution. Moreover, changing the speed of vehicles is accompanied with abnormal sounds of vehicle engine. According to regression model analysis, the obtained value of R2 for the model is 0.8367 which represents the coefficient of determination. Conclusion: The results suggest the main role of the vehicle speed and tire width in increasing the noise reaches to the drivers and consequent noise pollution, which demonstrates the necessity for noise control measures. According to the obtained model, it is understood that changes in noise

  9. Poisson noise reduction from X-ray images by region classification ...

    Indian Academy of Sciences (India)

    Thakur Kirti

    means Poisson noise filter which is one of the current state-of-the-art methods. Benefits of the proposed ... This modality is used to detect fractures in bones, tumours, cough or ..... metric peak signal to noise ratio (PSNR). It is observed from ...

  10. Phase noise reduction by self-phase locking in semiconductor lasers using phase conjugate feedback

    DEFF Research Database (Denmark)

    Petersen, Lykke; Gliese, Ulrik Bo; Nielsen, Torben Nørskov

    1994-01-01

    noise takes a finite-low value corresponding to a state of first-order self-phase locking of the laser. As a result, the spectral shape of the laser signal does not remain Lorentzian but collapses around the carrier to a delta function with a close to carrier noise level of less than -137 d...

  11. Technical Note: On the efficiency of variance reduction techniques for Monte Carlo estimates of imaging noise.

    Science.gov (United States)

    Sharma, Diksha; Sempau, Josep; Badano, Aldo

    2018-02-01

    Monte Carlo simulations require large number of histories to obtain reliable estimates of the quantity of interest and its associated statistical uncertainty. Numerous variance reduction techniques (VRTs) have been employed to increase computational efficiency by reducing the statistical uncertainty. We investigate the effect of two VRTs for optical transport methods on accuracy and computing time for the estimation of variance (noise) in x-ray imaging detectors. We describe two VRTs. In the first, we preferentially alter the direction of the optical photons to increase detection probability. In the second, we follow only a fraction of the total optical photons generated. In both techniques, the statistical weight of photons is altered to maintain the signal mean. We use fastdetect2, an open-source, freely available optical transport routine from the hybridmantis package. We simulate VRTs for a variety of detector models and energy sources. The imaging data from the VRT simulations are then compared to the analog case (no VRT) using pulse height spectra, Swank factor, and the variance of the Swank estimate. We analyze the effect of VRTs on the statistical uncertainty associated with Swank factors. VRTs increased the relative efficiency by as much as a factor of 9. We demonstrate that we can achieve the same variance of the Swank factor with less computing time. With this approach, the simulations can be stopped when the variance of the variance estimates reaches the desired level of uncertainty. We implemented analytic estimates of the variance of Swank factor and demonstrated the effect of VRTs on image quality calculations. Our findings indicate that the Swank factor is dominated by the x-ray interaction profile as compared to the additional uncertainty introduced in the optical transport by the use of VRTs. For simulation experiments that aim at reducing the uncertainty in the Swank factor estimate, any of the proposed VRT can be used for increasing the relative

  12. Noise reduction in a Mach 5 wind tunnel with a rectangular rod-wall sound shield

    Science.gov (United States)

    Creel, T. R., Jr.; Keyes, J. W.; Beckwith, I. E.

    1980-01-01

    A rod wall sound shield was tested over a range of Reynolds numbers of 0.5 x 10 to the 7th power to 8.0 x 10 to the 7th power per meter. The model consisted of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Suitable measurement techniques were used to determine properties of the flow and acoustic disturbance in the shield and transition in the rod boundary layers. Measurements indicated that for a Reynolds number of 1.5 x 10 to the 9th power the noise in the shielded region was significantly reduced, but only when the flow is mostly laminar on the rods. Actual nozzle input noise measured on the nozzle centerline before reflection at the shield walls was attenuated only slightly even when the rod boundary layer were laminar. At a lower Reynolds number, nozzle input noise at noise levels in the shield were still too high for application to a quiet tunnel. At Reynolds numbers above 2.0 x 10 the the 7th power per meter, measured noise levels were generally higher than nozzle input levels, probably due to transition in the rod boundary layers. The small attenuation of nozzle input noise at intermediate Reynolds numbers for laminar rod layers at the acoustic origins is apparently due to high frequencies of noise.

  13. Elastomeric Structural Attachment Concepts for Aircraft Flap Noise Reduction - Challenges and Approaches to Hyperelastic Structural Modeling and Analysis

    Science.gov (United States)

    Sreekantamurthy, Thammaiah; Turner, Travis L.; Moore, James B.; Su, Ji

    2014-01-01

    Airframe noise is a significant part of the overall noise of transport aircraft during the approach and landing phases of flight. Airframe noise reduction is currently emphasized under the Environmentally Responsible Aviation (ERA) and Fixed Wing (FW) Project goals of NASA. A promising concept for trailing-edge-flap noise reduction is a flexible structural element or link that connects the side edges of the deployable flap to the adjacent main-wing structure. The proposed solution is distinguished by minimization of the span-wise extent of the structural link, thereby minimizing the aerodynamic load on the link structure at the expense of increased deformation requirement. Development of such a flexible structural link necessitated application of hyperelastic materials, atypical structural configurations and novel interface hardware. The resulting highly-deformable structural concept was termed the FLEXible Side Edge Link (FLEXSEL) concept. Prediction of atypical elastomeric deformation responses from detailed structural analysis was essential for evaluating feasible concepts that met the design constraints. The focus of this paper is to describe the many challenges encountered with hyperelastic finite element modeling and the nonlinear structural analysis of evolving FLEXSEL concepts. Detailed herein is the nonlinear analysis of FLEXSEL concepts that emerged during the project which include solid-section, foamcore, hollow, extended-span and pre-stressed concepts. Coupon-level analysis performed on elastomeric interface joints, which form a part of the FLEXSEL topology development, are also presented.

  14. Acoustic Performance of the GEAE UPS Research Fan in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel

    Science.gov (United States)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel in 1994. The Universal Propulsion Simulator fan was designed and manufactured by General Electric Aircraft Engines, and included an active core, as well as bypass, flow paths. The fan was tested with several rotors featuring unswept, forward-swept and aft-swept designs of both metal and composite construction. Sideline acoustic data were taken with both hard and acoustically treated walls in the flow passages. The fan was tested within an airflow at a Mach number of 0.20, which is representative of aircraft takeoff/approach conditions. All rotors showed similar aerodynamic performance. However, the composite rotors typically showed higher noise levels than did corresponding metal rotors. Aft and forward rotor sweep showed at most modest reductions of transonic multiple pure tone levels. However, rotor sweep often introduced increased rotor-stator interaction tone levels. Broadband noise was typically higher for the composite rotors and also for the aft-swept metal rotor. Transonic MPT generation was reduced with increasing fan axis angle of attack (AOA); however, higher downstream noise levels did increase with AOA resulting in higher overall Effective Perceived Noise Level.

  15. Speckle noise reduction technique for Lidar echo signal based on self-adaptive pulse-matching independent component analysis

    Science.gov (United States)

    Xu, Fan; Wang, Jiaxing; Zhu, Daiyin; Tu, Qi

    2018-04-01

    Speckle noise has always been a particularly tricky problem in improving the ranging capability and accuracy of Lidar system especially in harsh environment. Currently, effective speckle de-noising techniques are extremely scarce and should be further developed. In this study, a speckle noise reduction technique has been proposed based on independent component analysis (ICA). Since normally few changes happen in the shape of laser pulse itself, the authors employed the laser source as a reference pulse and executed the ICA decomposition to find the optimal matching position. In order to achieve the self-adaptability of algorithm, local Mean Square Error (MSE) has been defined as an appropriate criterion for investigating the iteration results. The obtained experimental results demonstrated that the self-adaptive pulse-matching ICA (PM-ICA) method could effectively decrease the speckle noise and recover the useful Lidar echo signal component with high quality. Especially, the proposed method achieves 4 dB more improvement of signal-to-noise ratio (SNR) than a traditional homomorphic wavelet method.

  16. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    Science.gov (United States)

    Ho, Jen-Hsuan; Berkhoff, Arthur

    2014-03-01

    This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural-acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.

  17. A noise-reduction program in a pediatric operation theatre is associated with surgeon's benefits and a reduced rate of complications: a prospective controlled clinical trial.

    Science.gov (United States)

    Engelmann, Carsten R; Neis, Jan Philipp; Kirschbaum, Clemens; Grote, Gudela; Ure, Benno M

    2014-05-01

    We assessed the impact of a noise-reduction program in a pediatric operating theatre. Adverse effects from noise pollution in theatres have been demonstrated. In 156 operations spatially resolved, sound levels were measured before and after a noise-reduction program on the basis of education, rules, and technical devices (Sound Ear). Surgical complications were recorded. The surgeon's biometric (saliva cortisol, electrodermal activity) and behavioral stress responses (questionnaires) were measured and correlated with mission protocols and individual noise sensitivity. Median noise levels in the control group versus the interventional group were reduced by -3 ± 3 dB(A) (63 vs 59 dB(A), P 0.05). Spontaneous noise during pediatric operations attains the magnitude of a lawn mower and peaks resemble a passing truck. The sound intensity could be reduced by 50% by specific measures. This reduction was associated with a significantly lowered number of postoperative complications. The surgeon's benefits are idiosyncratic with "responders" experiencing marked improvements.

  18. Noise and vibration reduction technology in hybrid vehicle development; Hybrid sha kaihatsu ni okeru shindo soon teigen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioa, T.; Sugita, H. [Toyota Motor Corp., Aichi (Japan)

    2000-03-01

    Accomplishing both environmental protection and good NVH performance has become a significant task in automotive development The first-in-the-world hybrid passenger car of mass production. 'Prius', has achieved superior NV performance compared with conventional vehicles with a 1.5-liter engine along with 50% reduction of fuel consumption and CO{sub 2} emissions. low HC, CO and NO{sub x} emissions. This paper describes NV reduction technology for solving problems peculiar to the hybrid vehicle such as engine start/stop vibration, drone noise at low engine speed and motor/generator noise and vibration. It also mentions application technology of low rolling resistance tires with light weight wheels and recycled material for sound proofing. (author)

  19. Gear ratting noise reduction of diesel engine; Diesel engine no gear hauchi soon teigen

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Miura, Y [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    Gear raffling noise of diesel engine at idling condition is required to reduce for keeping quiet environment and comfort of driver and passengers on track and bus. Decrease of gear backlash is generally adopted for reducing gear rattling noise. On the other hand, it has been found that newly devised measurement of gear teeth speed and gear meshing error has clarified phenomena of gear rattling between the crankshaft gear and the camshaft gear of the diesel engine. And it has been also found that gear ratting noise is reduced by changing meshing between the crankshaft gear and the camshaft gear. 2 refs., 10 figs.

  20. Radio frequency interference noise reduction using a field programmable gate array for SQUID applications

    International Nuclear Information System (INIS)

    Sakuta, K; Narita, Y; Itozaki, H

    2007-01-01

    It is important to remove large environmental noise in superconducting quantum interference device (SQUID) measurement without magnetic shielding. Active noise control (ANC) is one of the effective methods to reduce environmental noise. Recently, SQUIDs have been used in various applications at high frequencies, such as nuclear quadrupole resonance (NQR). The NQR frequency from explosives is in the range 0.5-5 MHz. In this case, an NQR sensor is exposed to AM radio frequency interference (RFI). The feasibility of the ANC system for RFI that used digital signal processing was studied. Our investigation showed that this digital ANC system can be applied to SQUID measurements for RFI suppression

  1. Speckle noise reduction in breast ultrasound images: SMU (srad median unsharp) approch

    International Nuclear Information System (INIS)

    Njeh, I.; Sassi, O. B.; Ben Hamida, A.; Chtourou, K.

    2011-01-01

    Image denoising has become a very essential for better information extraction from the image and mainly from so noised ones, such as ultrasound images. In certain cases, for instance in ultrasound images, the noise can restrain information which is valuable for the general practitioner. Consequently medical images are very inconsistent, and it is crucial to operate case to case. This paper presents a novel algorithm SMU (Srad Median Unsharp) for noise suppression in ultrasound breast images in order to realize a computer aided diagnosis (CAD) for breast cancer.

  2. Origin and Reduction of 1 /f Magnetic Flux Noise in Superconducting Devices

    Science.gov (United States)

    Kumar, P.; Sendelbach, S.; Beck, M. A.; Freeland, J. W.; Wang, Zhe; Wang, Hui; Yu, Clare C.; Wu, R. Q.; Pappas, D. P.; McDermott, R.

    2016-10-01

    Magnetic flux noise is a dominant source of dephasing and energy relaxation in superconducting qubits. The noise power spectral density varies with frequency as 1 /fα, with α ≲1 , and spans 13 orders of magnitude. Recent work indicates that the noise is from unpaired magnetic defects on the surfaces of the superconducting devices. Here, we demonstrate that adsorbed molecular O2 is the dominant contributor to magnetism in superconducting thin films. We show that this magnetism can be reduced by appropriate surface treatment or improvement in the sample vacuum environment. We observe a suppression of static spin susceptibility by more than an order of magnitude and a suppression of 1 /f magnetic flux noise power spectral density of up to a factor of 5. These advances open the door to the realization of superconducting qubits with improved quantum coherence.

  3. Characterization and reduction of noise in Mo/Au transition edge sensors

    International Nuclear Information System (INIS)

    Lindeman, Mark A.; Bandler, Simon; Brekosky, Regis P.; Chervenak, James A.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Saab, Tarek; Stahle, Caroline K.

    2004-01-01

    We measured noise in a variety of Mo/Au transition-edge sensor (TES) X-ray calorimeters. We investigated the relationship between the noise, bias, and the superconducting phase transition in the TESs. Our square TES calorimeters have achieved very good energy resolutions (2.4 eV at 1.5 keV) but their resolutions have been limited by broadband white excess noise generated by the TES when it is biased in the phase transition. We have recently fabricated Mo/Cu TESs with interdigitated normal metal bars deposited on top of the bilayer. The new TES calorimeters have demonstrated little or no excess noise in the phase transition. These results point the way to development of TES calorimeters with higher energy resolution

  4. Control source development for reduction of noise transmitted through a double panel structure

    OpenAIRE

    Ho, J.

    2014-01-01

    A double panel structure, which consists of two panels with air in between, is widely adopted in many applications such as aerospace, automotive industries, and buildings due to its low sound transmission at high frequencies, low heat transmission, and low weight. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel’s noise control performance. Applying active structural acoustic control to the panels or active noise control ...

  5. New image-processing and noise-reduction software reduces radiation dose during complex endovascular procedures.

    Science.gov (United States)

    Kirkwood, Melissa L; Guild, Jeffrey B; Arbique, Gary M; Tsai, Shirling; Modrall, J Gregory; Anderson, Jon A; Rectenwald, John; Timaran, Carlos

    2016-11-01

    A new proprietary image-processing system known as AlluraClarity, developed by Philips Healthcare (Best, The Netherlands) for radiation-based interventional procedures, claims to lower radiation dose while preserving image quality using noise-reduction algorithms. This study determined whether the surgeon and patient radiation dose during complex endovascular procedures (CEPs) is decreased after the implementation of this new operating system. Radiation dose to operators, procedure type, reference air kerma, kerma area product, and patient body mass index were recorded during CEPs on two Philips Allura FD 20 fluoroscopy systems with and without Clarity. Operator dose during CEPs was measured using optically stimulable, luminescent nanoDot (Landauer Inc, Glenwood, Ill) detectors placed outside the lead apron at the left upper chest position. nanoDots were read using a microStar ii (Landauer Inc) medical dosimetry system. For the CEPs in the Clarity group, the radiation dose to surgeons was also measured by the DoseAware (Philips Healthcare) personal dosimetry system. Side-by-side measurements of DoseAware and nanoDots allowed for cross-calibration between systems. Operator effective dose was determined using a modified Niklason algorithm. To control for patient size and case complexity, the average fluoroscopy dose rate and the dose per radiographic frame were adjusted for body mass index differences and then compared between the groups with and without Clarity by procedure. Additional factors, for example, physician practice patterns, that may have affected operator dose were inferred by comparing the ratio of the operator dose to procedural kerma area product with and without Clarity. A one-sided Wilcoxon rank sum test was used to compare groups for radiation doses, reference air kermas, and operating practices for each procedure type. The analysis included 234 CEPs; 95 performed without Clarity and 139 with Clarity. Practice patterns of operators during

  6. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    Science.gov (United States)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  7. RUO-FAN QIU

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. RUO-FAN QIU. Articles written in Pramana – Journal of Physics. Volume 89 Issue 6 December 2017 pp 81 Research Article. Three-dimensional coupled double-distribution-function lattice Boltzmann models for compressible Navier–Stokes equations · RUO-FAN QIU ...

  8. yi fan zheng

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. YI FAN ZHENG. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1329-1333. Synthesis and enhanced photocatalytic activity of g-C 3 N 4 hybridized CdS nanoparticles · QING YING LIU YI LING QI YI FAN ZHENG XU CHUN SONG.

  9. SWITCHING POWER FAN CONTROL OF COMPUTER

    Directory of Open Access Journals (Sweden)

    Oleksandr I. Popovskyi

    2010-10-01

    Full Text Available Relevance of material presented in the article, due to extensive use of high-performance computers to create modern information systems, including the NAPS of Ukraine. Most computers in NAPS of Ukraine work on Intel Pentium processors at speeds from 600 MHz to 3 GHz and release a lot of heat, which requires the installation of the system unit 2-3 additional fans. The fan is always works on full power, that leads to rapid deterioration and high level (up to 50 dB noise. In order to meet ergonomic requirements it is proposed to іnstall a computer system unit and an additional control unit ventilators, allowing independent control of each fan. The solution is applied at creation of information systems planning research in the National Academy of Pedagogical Sciences of Ukraine on Internet basis.

  10. Resolution improvement and noise reduction in human pinhole SPECT using a multi-ray approach and the SHINE method

    International Nuclear Information System (INIS)

    Seret, A.; Vanhove, C.; Defrise, M.

    2009-01-01

    Purpose: This work aimed at quantifying the gains in spatial resolution and noise that could be achieved when using resolution modelling based on a multi-ray approach and additionally the Statistical and Heuristic Noise Extraction (SHINE) method in human pinhole single photon emission tomography (PH-SPECT). Methods: PH-SPECT of two line phantoms and one homogeneous cylinder were recorded using parameters suited for studies of the human neck area. They were reconstructed using pinhole dedicated ordered subsets expectation maximisation algorithm including a resolution recovery technique based on 7 or 21 rays. Optionally, the SPECT data were SHINE pre-processed. Transverse and axial full widths at half-maximum (FWHM) were obtained from the line phantoms. The noise was quantified using the coefficient of variation (COV) derived from the uniform phantom. Two human PH-SPECT studies of the thyroid (a hot nodule and a very low uptake) were processed with the same algorithms. Results: Depending on the number of iterations, FWHM decreased by 30 to 50% when using the multi-ray approach in the reconstruction process. The SHINE method did not affect the resolution but decreased the COV by at least 20% and by 45% when combined with the multi-ray method. The two human studies illustrated the gain in spatial resolution and the decrease in noise afforded both by the multi-ray reconstruction and the SHINE method. Conclusion: Iterative reconstruction with resolution modelling allows to obtain high resolution human PH-SPECT studies with reduced noise content. The SHINE method affords an additional noise reduction without compromising the resolution. (orig.)

  11. Experimental Study for Reduction of Noises and Vibrations in Hermetic Type Compressor

    Science.gov (United States)

    Sano, Kiyoshi; Kawahara, Sadao; Akazawa, Teruyuki; Ishii, Noriaki

    A brushless DC motor with a permanent magnet rotor has been adopted for a scroll compressor for domestic-use air-conditioners because of a demand for compressor high efficiency. A waveform of the driving voltage in the inverter power supply unit is chopped by the PWM signal. Its duty ratio is increased/decreased to control the DC voltage in order to provide a wide range of rotation frequencies for the compressor. The driving voltage includes the carrier frequency and its harmonic components, which produce an electro-magnetic force in the moter, resulting in high electro-magnetic noise. In the present report, the author clarifies the relationships between the noise and the waveform of driving voltage and frequency response function of the motor. A method to improve the frequency response function by changing the stator shape in order to reduce electro-magnetic noise is presented. Subsequently, the influence on electro-magnetic noise from the waveform of driving voltage is examined. Furthermore, the electro-magnetic noises during inverter driving of an induction motor are presented.

  12. A noise reduction technique based on nonlinear kernel function for heart sound analysis.

    Science.gov (United States)

    Mondal, Ashok; Saxena, Ishan; Tang, Hong; Banerjee, Poulami

    2017-02-13

    The main difficulty encountered in interpretation of cardiac sound is interference of noise. The contaminated noise obscures the relevant information which are useful for recognition of heart diseases. The unwanted signals are produced mainly by lungs and surrounding environment. In this paper, a novel heart sound de-noising technique has been introduced based on a combined framework of wavelet packet transform (WPT) and singular value decomposition (SVD). The most informative node of wavelet tree is selected on the criteria of mutual information measurement. Next, the coefficient corresponding to the selected node is processed by SVD technique to suppress noisy component from heart sound signal. To justify the efficacy of the proposed technique, several experiments have been conducted with heart sound dataset, including normal and pathological cases at different signal to noise ratios. The significance of the method is validated by statistical analysis of the results. The biological information preserved in de-noised heart sound (HS) signal is evaluated by k-means clustering algorithm and Fit Factor calculation. The overall results show that proposed method is superior than the baseline methods.

  13. A critical review of hearing-aid single-microphone noise-reduction studies in adults and children.

    Science.gov (United States)

    Chong, Foong Yen; Jenstad, Lorienne M

    2017-10-26

    Single-microphone noise reduction (SMNR) is implemented in hearing aids to suppress background noise. The purpose of this article was to provide a critical review of peer-reviewed studies in adults and children with sensorineural hearing loss who were fitted with hearing aids incorporating SMNR. Articles published between 2000 and 2016 were searched in PUBMED and EBSCO databases. Thirty-two articles were included in the final review. Most studies with adult participants showed that SMNR has no effect on speech intelligibility. Positive results were reported for acceptance of background noise, preference, and listening effort. Studies of school-aged children were consistent with the findings of adult studies. No study with infants or young children of under 5 years old was found. Recent studies on noise-reduction systems not yet available in wearable hearing aids have documented benefits of noise reduction on memory for speech processing for older adults. This evidence supports the use of SMNR for adults and school-aged children when the aim is to improve listening comfort or reduce listening effort. Future research should test SMNR with infants and children who are younger than 5 years of age. Further development, testing, and clinical trials should be carried out on algorithms not yet available in wearable hearing aids. Testing higher cognitive level for speech processing and learning of novel sounds or words could show benefits of advanced signal processing features. These approaches should be expanded to other populations such as children and younger adults. Implications for rehabilitation The review provides a quick reference for students and clinicians regarding the efficacy and effectiveness of SMNR in wearable hearing aids. This information is useful during counseling session to build a realistic expectation among hearing aid users. Most studies in the adult population suggest that SMNR may provide some benefits to adult listeners in terms of listening

  14. Effective data-domain noise and streak reduction for X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi; Zamyatin, Alexander A. [Toshiba Medical Research Institute USA, Inc., Vernon Hills, IL (United States); Akino, Naruomi [Toshiba Medical System Corporation, Tokyo (Japan)

    2011-07-01

    Streaks and noise caused by photon starvation can seriously impair the diagnostic value of the CT imaging. Existing processing methods often have several parameters to tune. The parameters can be ad hoc to the data sets. Iterative methods can achieve better results, however, at the cost of more hardware resources or longer processing time. This paper reports a new scheme of adaptive Gaussian filtering, which is based on the diffusion-derived scale-space concept. In scale-space view, filtering by Gaussians of different sizes is similar to decompose the data into a sequence of scales. The scale measure, which is the variance of the filter, should be linearly related to the noise standard deviation instead of the variance of the noise. This is a fundamental deviation in the way of using filters. The new filter has only one parameter that remains stable once tuned. Singlepass processing can usually reach the desired results. (orig.)

  15. Effect of a television digital noise reduction device on fluoroscopic image quality and dose rate

    International Nuclear Information System (INIS)

    Jaffe, C.C.; Orphanoudakis, S.C.; Ablow, R.C.

    1982-01-01

    In conventional fluoroscopy, the current, and therefore the dose rate, is usually determined by the level at which the radiologist visualizes a just tolerable amount of photon ''mottle'' on the video monitor. In this study, digital processing of the analogue video image reduced noise and generated a television image at half the usual exposure rate. The technique uses frame delay to compare an incoming frame with the preceding output frame. A first-order recursive filter implemented under a motion-detection scheme operates on the image of a point-by-point basis. This effective motion detection algorithm permits noise suppression without creating noticeable lag in moving structures. Eight radiologists evaluated images of vesicoureteral reflux in the pig for noise, contrast, resolution, and general image quality on a five-point preferential scale. They rated the digitally processed fluoroscopy images equivalent in diagnostic value to unprocessed images

  16. Noise Reduction planar bone imaging nuclear medicine with the use of wavelet transform: an assessment of its quality

    International Nuclear Information System (INIS)

    Casas Cardoso, Maria del Carmen; Perez Diaz, Marlen; Casas Cardoso, Gladis; Lorenzo Ginori, Juan; Paz Viera, Juan Enrique; Roque Diaz, Reinaldo; Cardenas Barreras, Julian

    2009-01-01

    Diagnostic imaging of Nuclear Medicine (MN), is highly used in Oncology, as it constitutes a noninvasive technique that allows early detection of tumors and assessment of therapeutic response of patients under treatment. However, particularly planar scintigraphy images, can be prone to problems of detectability of small lesions, because they are contaminated with noise, a phenomenon which is accentuated by the inability to increase the dose of the radiopharmaceutical or time acquisition of images of the patient over 'certain levels'. The aim of this work is to improve the detectability of tumors of bone. We describe an algorithm for random noise reduction using the wavelet transform (TW). The quality of the resulting images are evaluated through quantitative metrics such as Signal to Noise Ratio (SNR), the Mean Square Error (NMSEA) and Structural Similarity Index (SSIM). It also includes a subjective assessment of image quality by expert criteria, using a variant of the methodology FROC (Free-Response ROC). It was found that some of the filters designed in the wavelet domain, significantly improve the quality of planar bone imaging in terms of increased signal to noise ratio without implying notable structural distortions, which facilitates clinical diagnosis. (author)

  17. Real-time noise reduction for Mössbauer spectroscopy through online implementation of a modified Kalman filter

    Energy Technology Data Exchange (ETDEWEB)

    Abrecht, David G., E-mail: david.abrecht@pnnl.gov [National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States); Schwantes, Jon M. [National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States); Kukkadapu, Ravi K. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States); McDonald, Benjamin S.; Eiden, Gregory C.; Sweet, Lucas E. [National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States)

    2015-02-11

    Spectrum-processing software that incorporates a Gaussian smoothing kernel within the statistics of first-order Kalman filtration has been developed to provide cross-channel spectral noise reduction for increased real-time signal-to-noise ratios for Mössbauer spectroscopy. The filter was optimized for the breadth of the Gaussian using the Mössbauer spectrum of natural iron foil, and comparisons among the peak broadening, signal-to-noise ratios, and shifts in the calculated hyperfine parameters are presented. The results of optimization give a maximum improvement in the signal-to-noise ratio of 51.1% over the unfiltered spectrum at a Gaussian breadth of 27 channels, or 2.5% of the total spectrum width. The full-width half-maximum of the spectrum peaks showed an increase of 19.6% at this optimum point, indicating a relatively weak increase in the peak broadening relative to the signal enhancement, leading to an overall increase in the observable signal. Calculations of the hyperfine parameters showed that no statistically significant deviations were introduced from the application of the filter, confirming the utility of this filter for spectroscopy applications.

  18. Evaluation of model-based versus non-parametric monaural noise-reduction approaches for hearing aids.

    Science.gov (United States)

    Harlander, Niklas; Rosenkranz, Tobias; Hohmann, Volker

    2012-08-01

    Single channel noise reduction has been well investigated and seems to have reached its limits in terms of speech intelligibility improvement, however, the quality of such schemes can still be advanced. This study tests to what extent novel model-based processing schemes might improve performance in particular for non-stationary noise conditions. Two prototype model-based algorithms, a speech-model-based, and a auditory-model-based algorithm were compared to a state-of-the-art non-parametric minimum statistics algorithm. A speech intelligibility test, preference rating, and listening effort scaling were performed. Additionally, three objective quality measures for the signal, background, and overall distortions were applied. For a better comparison of all algorithms, particular attention was given to the usage of the similar Wiener-based gain rule. The perceptual investigation was performed with fourteen hearing-impaired subjects. The results revealed that the non-parametric algorithm and the auditory model-based algorithm did not affect speech intelligibility, whereas the speech-model-based algorithm slightly decreased intelligibility. In terms of subjective quality, both model-based algorithms perform better than the unprocessed condition and the reference in particular for highly non-stationary noise environments. Data support the hypothesis that model-based algorithms are promising for improving performance in non-stationary noise conditions.

  19. Noise reduction in Lidar signal using correlation-based EMD combined with soft thresholding and roughness penalty

    Science.gov (United States)

    Chang, Jianhua; Zhu, Lingyan; Li, Hongxu; Xu, Fan; Liu, Binggang; Yang, Zhenbo

    2018-01-01

    Empirical mode decomposition (EMD) is widely used to analyze the non-linear and non-stationary signals for noise reduction. In this study, a novel EMD-based denoising method, referred to as EMD with soft thresholding and roughness penalty (EMD-STRP), is proposed for the Lidar signal denoising. With the proposed method, the relevant and irrelevant intrinsic mode functions are first distinguished via a correlation coefficient. Then, the soft thresholding technique is applied to the irrelevant modes, and the roughness penalty technique is applied to the relevant modes to extract as much information as possible. The effectiveness of the proposed method was evaluated using three typical signals contaminated by white Gaussian noise. The denoising performance was then compared to the denoising capabilities of other techniques, such as correlation-based EMD partial reconstruction, correlation-based EMD hard thresholding, and wavelet transform. The use of EMD-STRP on the measured Lidar signal resulted in the noise being efficiently suppressed, with an improved signal to noise ratio of 22.25 dB and an extended detection range of 11 km.

  20. Adaptive non-local means on local principle neighborhood for noise/artifacts reduction in low-dose CT images.

    Science.gov (United States)

    Zhang, Yuanke; Lu, Hongbing; Rong, Junyan; Meng, Jing; Shang, Junliang; Ren, Pinghong; Zhang, Junying

    2017-09-01

    Low-dose CT (LDCT) technique can reduce the x-ray radiation exposure to patients at the cost of degraded images with severe noise and artifacts. Non-local means (NLM) filtering has shown its potential in improving LDCT image quality. However, currently most NLM-based approaches employ a weighted average operation directly on all neighbor pixels with a fixed filtering parameter throughout the NLM filtering process, ignoring the non-stationary noise nature of LDCT images. In this paper, an adaptive NLM filtering scheme on local principle neighborhoods (PC-NLM) is proposed for structure-preserving noise/artifacts reduction in LDCT images. Instead of using neighboring patches directly, in the PC-NLM scheme, the principle component analysis (PCA) is first applied on local neighboring patches of the target patch to decompose the local patches into uncorrelated principle components (PCs), then a NLM filtering is used to regularize each PC of the target patch and finally the regularized components is transformed to get the target patch in image domain. Especially, in the NLM scheme, the filtering parameter is estimated adaptively from local noise level of the neighborhood as well as the signal-to-noise ratio (SNR) of the corresponding PC, which guarantees a "weaker" NLM filtering on PCs with higher SNR and a "stronger" filtering on PCs with lower SNR. The PC-NLM procedure is iteratively performed several times for better removal of the noise and artifacts, and an adaptive iteration strategy is developed to reduce the computational load by determining whether a patch should be processed or not in next round of the PC-NLM filtering. The effectiveness of the presented PC-NLM algorithm is validated by experimental phantom studies and clinical studies. The results show that it can achieve promising gain over some state-of-the-art methods in terms of artifact suppression and structure preservation. With the use of PCA on local neighborhoods to extract principal structural

  1. Noise suppression in duct

    International Nuclear Information System (INIS)

    Ahmed, A.; Barfeh, M.A.G.

    2001-01-01

    In air-conditioning system the noise generated by supply fan is carried by conditioned air through the ductwork. The noise created in ductwork run may be transmission, regenerative and ductborne. Transmission noise is fan noise, regenerative noise is due to turbulence in flow and ductborne noise is the noise radiating from duct to surroundings. Some noise is attenuated in ducts also but if noise level is high then it needs to be attenuated. A simple mitre bend can attenuate-noise. This principle is extended to V and M-shape ducts with inside lining of fibreglass, which gave maximum attenuation of 77 dB and 62 dB respectively corresponding to 8 kHz frequency as compared to mitre, bend giving maximum 18 dB attenuation. Sound level meter measured sound levels with octave band filter and tests were conducted in anechoic room. A V-shape attenuator can be used at fan outlet and high frequency noise can be minimized greatly. (author)

  2. Acoustic plane waves normally incident on a clamped panel in a rectangular duct. [to explain noise reduction curves for reducing interior noise in aircraft

    Science.gov (United States)

    Unz, H.; Roskam, J.

    1979-01-01

    The theory of acoustic plane wave normally incident on a clamped panel in a rectangular duct is developed. The coupling theory between the elastic vibrations of the panel (plate) and the acoustic wave propagation in infinite space and in the rectangular duct is considered. The partial differential equation which governs the vibration of the panel (plate) is modified by adding to its stiffness (spring) forces and damping forces, and the fundamental resonance frequency and the attenuation factor are discussed. The noise reduction expression based on the theory is found to agree well with the corresponding experimental data of a sample aluminum panel in the mass controlled region, the damping controlled region, and the stiffness controlled region. All the frequency positions of the upward and downward resonance spikes in the sample experimental data are identified theoretically as resulting from four cross interacting major resonance phenomena: the cavity resonance, the acoustic resonance, the plate resonance, and the wooden back panel resonance.

  3. Study on electromagnetic noise reduction in building spaces. Propagation of electromagnetic noise generated by an elevator and its countermeasurement; Kenchiku kukan no denjiha noise hogyo no kenkyu. Elevator kara hasseisuru denjiha noise no denpa jokyo to taisaku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Y.; Yoshida, K.; Zama, A. [Obayashi Corp., Tokyo (Japan)

    1995-08-10

    With the progress of power-electronics, a inverter has been generally applied to building facility equipment. This equipment go by chapping a current in high frequency, so secondarily generates electromagnetic noise. The characteristics and propagation of electromagnetic noise generated by an elevator machine were measured. From this, it was recognized that high-level spectrum was included in the frequencies under 100kHz, and electromagnetic noise was scattered a wide area on the roof and the highest floor of the building. By intercepting the conductive noise on the motor main distribution line, the area influenced by the noise was restricted to only a small area around the elevator machine room. 4 refs., 8 figs., 2 tabs.

  4. Noise reduction by support vector regression with a Ricker wavelet kernel

    International Nuclear Information System (INIS)

    Deng, Xiaoying; Yang, Dinghui; Xie, Jing

    2009-01-01

    We propose a noise filtering technology based on the least-squares support vector regression (LS-SVR), to improve the signal-to-noise ratio (SNR) of seismic data. We modified it by using an admissible support vector (SV) kernel, namely the Ricker wavelet kernel, to replace the conventional radial basis function (RBF) kernel in seismic data processing. We investigated the selection of the regularization parameter for the LS-SVR and derived a concise selecting formula directly from the noisy data. We used the proposed method for choosing the regularization parameter which not only had the advantage of high speed but could also obtain almost the same effectiveness as an optimal parameter method. We conducted experiments using synthetic data corrupted by the random noise of different types and levels, and found that our method was superior to the wavelet transform-based approach and the Wiener filtering. We also applied the method to two field seismic data sets and concluded that it was able to effectively suppress the random noise and improve the data quality in terms of SNR

  5. Noise reduction by support vector regression with a Ricker wavelet kernel

    Science.gov (United States)

    Deng, Xiaoying; Yang, Dinghui; Xie, Jing

    2009-06-01

    We propose a noise filtering technology based on the least-squares support vector regression (LS-SVR), to improve the signal-to-noise ratio (SNR) of seismic data. We modified it by using an admissible support vector (SV) kernel, namely the Ricker wavelet kernel, to replace the conventional radial basis function (RBF) kernel in seismic data processing. We investigated the selection of the regularization parameter for the LS-SVR and derived a concise selecting formula directly from the noisy data. We used the proposed method for choosing the regularization parameter which not only had the advantage of high speed but could also obtain almost the same effectiveness as an optimal parameter method. We conducted experiments using synthetic data corrupted by the random noise of different types and levels, and found that our method was superior to the wavelet transform-based approach and the Wiener filtering. We also applied the method to two field seismic data sets and concluded that it was able to effectively suppress the random noise and improve the data quality in terms of SNR.

  6. Reduction of Air Pollution Levels Downwind of a Road with an Upwind Noise Barrier

    Science.gov (United States)

    We propose a dispersion model to characterize the impact of an upwind solid noise barrier next to a highway on air pollution concentrations downwind of the road. The model is based on data from wind tunnel experiments conducted by Heist et al. (2009). The model assumes that the...

  7. A novel modulation scheme for noise reduction in analog fiber optic links

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; van Etten, Wim; Megret, P.; Wuilpart, M.; Bette, S.; Staquet, N.

    2005-01-01

    A novel balanced modulation and detection scheme for analog fiber optic links is proposed to overcome the limitations in signal-to-noise ratio (SNR) and dynamic range (DR).In this scheme, the modulating signal is split into positive and negative halves and applied to a pair of laser diodes. Both

  8. An artificial neural network approach for aerodynamic performance retention in airframe noise reduction design of a 3D swept wing model

    Directory of Open Access Journals (Sweden)

    Tao Jun

    2016-10-01

    Full Text Available With the progress of high-bypass turbofan and the innovation of silencing nacelle in engine noise reduction, airframe noise has now become another important sound source besides the engine noise. Thus, reducing airframe noise makes a great contribution to the overall noise reduction of a civil aircraft. However, reducing airframe noise often leads to aerodynamic performance loss in the meantime. In this case, an approach based on artificial neural network is introduced. An established database serves as a basis and the training sample of a back propagation (BP artificial neural network, which uses confidence coefficient reasoning method for optimization later on. Then the most satisfactory configuration is selected for validating computations through the trained BP network. On the basis of the artificial neural network approach, an optimization process of slat cove filler (SCF for high lift devices (HLD on the Trap Wing is presented. Aerodynamic performance of both the baseline and optimized configurations is investigated through unsteady detached eddy simulations (DES, and a hybrid method, which combines unsteady DES method with acoustic analogy theory, is employed to validate the noise reduction effect. The numerical results indicate not merely a significant airframe noise reduction effect but also excellent aerodynamic performance retention simultaneously.

  9. A continuous wave fan beam tomography system having a best estimating filter

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    A continuous wave fan beam tomographic system is described which continuously samples X-ray absorption values and a means of providing a best-estimate of the X-ray absorption values at discrete points in time determined by sampling signal s(t). The means to provide the best-estimate include a continuous filter having a frequency range defined by the geometry of the mechanical system. Errors due to the statistical variation in photon emissions of the X-ray source are thereby minimized and the effective signal-to-noise ratio of signals is enhanced, which in turn allows a significant reduction in radiation dosage. (author)

  10. SU-F-18C-15: Model-Based Multiscale Noise Reduction On Low Dose Cone Beam Projection

    International Nuclear Information System (INIS)

    Yao, W; Farr, J

    2014-01-01

    Purpose: To improve image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low dose cone beam CT (CBCT) imaging systems, Poisson process governs the randomness of photon fluence at x-ray source and the detector because of the independent binomial process of photon absorption in medium. On a CBCT projection, the variance of fluence consists of the variance of noiseless imaging structure and that of Poisson noise, which is proportional to the mean (noiseless) of the fluence at the detector. This requires multiscale filters to smoothen noise while keeping the structure information of the imaged object. We used a mathematical model of Poisson process to design multiscale filters and established the balance of noise correction and structure blurring. The algorithm was checked with low dose kilo-voltage CBCT projections acquired from a Varian OBI system. Results: From the investigation of low dose CBCT of a Catphan phantom and patients, it showed that our model-based multiscale technique could efficiently reduce noise and meanwhile keep the fine structure of the imaged object. After the image processing, the number of visible line pairs in Catphan phantom scanned with 4 ms pulse time was similar to that scanned with 32 ms, and soft tissue structure from simulated 4 ms patient head-and-neck images was also comparable with scanned 20 ms ones. Compared with fixed-scale technique, the image quality from multiscale one was improved. Conclusion: Use of projection-specific multiscale filters can reach better balance on noise reduction and structure information loss. The image quality of low dose CBCT can be improved by using multiscale filters

  11. Online Fan Practices and CALL

    Science.gov (United States)

    Sauro, Shannon

    2017-01-01

    This article provides a narrative overview of research on online fan practices for language and literacy learning, use, and identity work. I begin with an introduction to online fan communities and common fan practices found in these online affinity spaces, the best known of which is fan fiction, fictional writing that reinterprets and remixes the…

  12. A multiscale filter for noise reduction of low-dose cone beam projections.

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  13. Airfoil optimization for unsteady flows with application to high-lift noise reduction

    Science.gov (United States)

    Rumpfkeil, Markus Peer

    The use of steady-state aerodynamic optimization methods in the computational fluid dynamic (CFD) community is fairly well established. In particular, the use of adjoint methods has proven to be very beneficial because their cost is independent of the number of design variables. The application of numerical optimization to airframe-generated noise, however, has not received as much attention, but with the significant quieting of modern engines, airframe noise now competes with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated noise. In this thesis, a general framework is formulated to calculate the gradient of a cost function in a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimization algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based optimizer uses the quasi-Newton method BFGS, Newton's method is applied to the nonlinear flow problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence model, which are discretized using structured grids and a finite difference approach. The effectiveness of the unsteady optimization algorithm is demonstrated by applying it to several problems of interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting, and an unsteady trailing-edge flow. In order to address radiated far-field noise, an acoustic wave propagation program based on the Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimization algorithm in order to be able to optimize the shape of airfoils based on their calculated far

  14. The Effects of Hearing Aid Directional Microphone and Noise Reduction Processing on Listening Effort in Older Adults with Hearing Loss.

    Science.gov (United States)

    Desjardins, Jamie L

    2016-01-01

    Older listeners with hearing loss may exert more cognitive resources to maintain a level of listening performance similar to that of younger listeners with normal hearing. Unfortunately, this increase in cognitive load, which is often conceptualized as increased listening effort, may come at the cost of cognitive processing resources that might otherwise be available for other tasks. The purpose of this study was to evaluate the independent and combined effects of a hearing aid directional microphone and a noise reduction (NR) algorithm on reducing the listening effort older listeners with hearing loss expend on a speech-in-noise task. Participants were fitted with study worn commercially available behind-the-ear hearing aids. Listening effort on a sentence recognition in noise task was measured using an objective auditory-visual dual-task paradigm. The primary task required participants to repeat sentences presented in quiet and in a four-talker babble. The secondary task was a digital visual pursuit rotor-tracking test, for which participants were instructed to use a computer mouse to track a moving target around an ellipse that was displayed on a computer screen. Each of the two tasks was presented separately and concurrently at a fixed overall speech recognition performance level of 50% correct with and without the directional microphone and/or the NR algorithm activated in the hearing aids. In addition, participants reported how effortful it was to listen to the sentences in quiet and in background noise in the different hearing aid listening conditions. Fifteen older listeners with mild sloping to severe sensorineural hearing loss participated in this study. Listening effort in background noise was significantly reduced with the directional microphones activated in the hearing aids. However, there was no significant change in listening effort with the hearing aid NR algorithm compared to no noise processing. Correlation analysis between objective and self

  15. The impact of a noise reduction quality improvement project upon sound levels in the open-unit-design neonatal intensive care unit.

    Science.gov (United States)

    Liu, W F

    2010-07-01

    To decrease measured sound levels in the neonatal intensive care unit through implementation of human factor and minor design modification strategies. Prospective time series. Two open-unit-design neonatal centers. Implementation of a coordinated program of noise reduction strategies did not result in any measurable improvement in levels of loudness or quiet. Two centers, using primarily human behavior noise reduction strategies, were unable to demonstrate measurable improvements in sound levels within the occupied open-unit-design neonatal intensive care unit.

  16. Improving the energy efficiency of mine fan assemblages

    International Nuclear Information System (INIS)

    De Souza, Euler

    2015-01-01

    Energy associated with ventilating an underground operation comprises a significant portion of a mine operation's base energy demand and is consequently responsible for a large percentage of the total operating costs. Ventilation systems may account from 25 to 40% of the total energy costs and 40–50% of the energy consumption of a mine operation. Fans are the most important mechanical devices used to ventilate underground mines and the total fan power installed in a single mine operation can easily exceed 10,000 kW. Investigations of a number of mine main fan installations have determined their assemblage to be, in general, very energy inefficient. The author has found that 40–80% of the energy consumed by a main fan is used to overcome the resistance of fan assemblage components. This paper presents how engineering design principles can be applied to improve the performance and efficiency of fan installations, resulting in substantial reductions in power consumption, operating cost and greenhouse gas emissions. A detailed case study is presented to demonstrate that, by designing fan assemblages using proper engineering concepts of fluid physics and industrial ventilation design, main fan systems will operate at efficiencies well above 80–90% (compared to common operating efficiencies of between 20 and 65%), resulting in a drastic reduction in a mine's overall costs and base electrical and energy loads. - Highlights: • Increases in fan assemblage efficiencies with minimum capital investment. • Improved designs for substantial fan power and operating cost savings. • General solutions and tactics for improving existing main fan installations. • Case study presented to demonstrate proper design of fan assemblages.

  17. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    Science.gov (United States)

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-05-31

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  18. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    Directory of Open Access Journals (Sweden)

    Chong Shen

    2016-05-01

    Full Text Available The different noise components in a dual-mass micro-electromechanical system (MEMS gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN, electronic-thermal noise (ETN, flicker noise (FN and Coriolis signal in-phase noise (IPN. The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD and time-frequency peak filtering (TFPF. There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  19. Reduction of Musical Noise in Spectral Subtraction Method Using Subframe Phase Randomization

    Energy Technology Data Exchange (ETDEWEB)

    Seok, J.W.; Bae, K.S. [Kyungpook National University, Taegu (Korea)

    1999-06-01

    The Subframe phase randomization method is applied to the spectral subtraction method to reduce the musical noise in nonvoicing region after speech enhancement. The musical noise in the spectral subtraction method is the result of the narrowband tonal components that appearing somewhat periodically in the spectrogram of unvoiced and silence regions. Thus each synthesis frame in nonvoicing region is divided into several subframes to broaden the narrowband spectrum, and then phases of silence and unvoiced regions are randomized to eliminate the tonal components in the spectrum while keeping the shape of the amplitude spectrum. Performance assessments based on visual inspection of spectrogram, objective measure, and informal subjective listening tests demonstrate the superiority of the proposed algorithm. (author). 7 refs., 5 figs.

  20. Technique Based on Image Pyramid and Bayes Rule for Noise Reduction in Unsupervised Change Detection

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-qiang; HUO hong; FANG Tao; ZHU Ju-lian; GE Wei-li

    2009-01-01

    In this paper, a technique based on image pyramid and Bayes rule for reducing noise effects in unsupervised change detection is proposed. By using Gaussian pyramid to process two multitemporal images respectively, two image pyramids are constructed. The difference pyramid images are obtained by point-by-point subtraction between the same level images of the two image pyramids. By resizing all difference pyramid images to the size of the original multitemporal image and then making product operator among them, a map being similar to the difference image is obtained. The difference image is generated by point-by-point subtraction between the two multitemporal images directly. At last, the Bayes rule is used to distinguish the changed pixels. Both synthetic and real data sets are used to evaluate the performance of the proposed technique. Experimental results show that the map from the proposed technique is more robust to noise than the difference image.

  1. Computational reduction of specimen noise to enable improved thermography characterization of flaws in graphite polymer composites

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  2. Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition

    International Nuclear Information System (INIS)

    Bernini, Maria Belen; Federico, Alejandro; Kaufmann, Guillermo H.

    2008-01-01

    We propose a bidimensional empirical mode decomposition (BEMD) method to reduce speckle noise in digital speckle pattern interferometry (DSPI) fringes. The BEMD method is based on a sifting process that decomposes the DSPI fringes in a finite set of subimages represented by high and low frequency oscillations, which are named modes. The sifting process assigns the high frequency information to the first modes, so that it is possible to discriminate speckle noise from fringe information, which is contained in the remaining modes. The proposed method is a fully data-driven technique, therefore neither fixed basis functions nor operator intervention are required. The performance of the BEMD method to denoise DSPI fringes is analyzed using computer-simulated data, and the results are also compared with those obtained by means of a previously developed one-dimensional empirical mode decomposition approach. An application of the proposed BEMD method to denoise experimental fringes is also presented

  3. Computational Reduction of Specimen Noise to Enable Improved Thermography Characterization of Flaws in Graphite Polymer Composites

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  4. Noise reduction efficiency of Helmholtz resonator in simulated channel of HVAC system

    Directory of Open Access Journals (Sweden)

    Hossein Ali Yousefi Rizi

    2014-01-01

    Conclusions: This research showed that the designed Helmholtz resonators at a certain frequency of low-frequency sound demonstrated the soundest decrease. The increase in the Helmholtz resonators′ chamber volume and their neck′s pass area are negatively associated with the rate of sound resonance. As a result, of determining the effective frequency range of the Helmholtz resonator, the designed resonator could be applied as an effective and efficient instrument of removing or decreasing noise.

  5. Improved Kalman Filter Method for Measurement Noise Reduction in Multi Sensor RFID Systems

    OpenAIRE

    Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon

    2011-01-01

    Recently, the range of available Radio Frequency Identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Perf...

  6. Using phase information to enhance speckle noise reduction in the ultrasonic NDE of coarse grain materials

    Science.gov (United States)

    Lardner, Timothy; Li, Minghui; Gachagan, Anthony

    2014-02-01

    Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.

  7. Using phase information to enhance speckle noise reduction in the ultrasonic NDE of coarse grain materials

    Energy Technology Data Exchange (ETDEWEB)

    Lardner, Timothy; Gachagan, Anthony [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Li, Minghui [School of Engineering, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2014-02-18

    Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.

  8. Simulation of modified hybrid noise reduction algorithm to enhance the speech quality

    International Nuclear Information System (INIS)

    Waqas, A.; Muhammad, T.; Jamal, H.

    2013-01-01

    Speech is the most essential method of correspondence of humankind. Cell telephony, portable hearing assistants and, hands free are specific provisions in this respect. The performance of these communication devices could be affected because of distortions which might augment them. There are two essential sorts of distortions that might be recognized, specifically: convolutive and additive noises. These mutilations contaminate the clean speech and make it unsatisfactory to human audiences i.e. perceptual value and intelligibility of speech signal diminishes. The objective of speech upgrade systems is to enhance the quality and understandability of speech to make it more satisfactory to audiences. This paper recommends a modified hybrid approach for single channel devices to process the noisy signals considering only the effect of background noises. It is a mixture of pre-processing relative spectral amplitude (RASTA) filter, which is approximated by a straight forward 4th order band-pass filter, and conventional minimum mean square error short time spectral amplitude (MMSE STSA85) estimator. To analyze the performance of the algorithm an objective parameter called Perceptual estimation of speech quality (PESQ) is measured. The results show that the modified algorithm performs well to remove the background noises. SIMULINK implementation is also performed and its profile report has been generated to observe the execution time. (author)

  9. Fans af Bruce

    DEFF Research Database (Denmark)

    Vaaben, Nana Katrine

    2007-01-01

    Analysen viser, hvordan det samme ritual under en koncert forener og opdeler de fans, der orienterer sig mod Bruce Springsteen. På den ene side forener ritualet hele publikum i en stor fælles "Intimitet for mange" og på den anden side splitter det dem, fordi det bliver tydeligt, hvem der er de...... rigtige fans, og hvem der tilhører "pøbelen"....

  10. Community noise

    Science.gov (United States)

    Bragdon, C. R.

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  11. Entanglement enhancement through multirail noise reduction for continuous-variable measurement-based quantum-information processing

    Science.gov (United States)

    Su, Yung-Chao; Wu, Shin-Tza

    2017-09-01

    We study theoretically the teleportation of a controlled-phase (cz) gate through measurement-based quantum-information processing for continuous-variable systems. We examine the degree of entanglement in the output modes of the teleported cz-gate for two classes of resource states: the canonical cluster states that are constructed via direct implementations of two-mode squeezing operations and the linear-optical version of cluster states which are built from linear-optical networks of beam splitters and phase shifters. In order to reduce the excess noise arising from finite-squeezed resource states, teleportation through resource states with different multirail designs will be considered and the enhancement of entanglement in the teleported cz gates will be analyzed. For multirail cluster with an arbitrary number of rails, we obtain analytical expressions for the entanglement in the output modes and analyze in detail the results for both classes of resource states. At the same time, we also show that for uniformly squeezed clusters the multirail noise reduction can be optimized when the excess noise is allocated uniformly to the rails. To facilitate the analysis, we develop a trick with manipulations of quadrature operators that can reveal rather efficiently the measurement sequence and corrective operations needed for the measurement-based gate teleportation, which will also be explained in detail.

  12. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    Science.gov (United States)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan

  13. Acoustic Measurements of an Uninstalled Spacecraft Cabin Ventilation Fan Prototype

    Science.gov (United States)

    Koch, L. Danielle; Brown, Clifford A.; Shook, Tony D.; Winkel, James; Kolacz, John S.; Podboy, Devin M.; Loew, Raymond A.; Mirecki, Julius H.

    2012-01-01

    Sound pressure measurements were recorded for a prototype of a spacecraft cabin ventilation fan in a test in the NASA Glenn Acoustical Testing Laboratory. The axial fan is approximately 0.089 m (3.50 in.) in diameter and 0.223 m (9.00 in.) long and has nine rotor blades and eleven stator vanes. At design point of 12,000 rpm, the fan was predicted to produce a flow rate of 0.709 cu m/s (150 cfm) and a total pressure rise of 925 Pa (3.72 in. of water) at 12,000 rpm. While the fan was designed to be part of a ducted atmospheric revitalization system, no attempt was made to throttle the flow or simulate the installed configuration during this test. The fan was operated at six speeds from 6,000 to 13,500 rpm. A 13-microphone traversing array was used to collect sound pressure measurements along two horizontal planes parallel to the flow direction, two vertical planes upstream of the fan inlet and two vertical planes downstream of the fan exhaust. Measurements indicate that sound at blade passing frequency harmonics contribute significantly to the overall audible noise produced by the fan at free delivery conditions.

  14. Wind turbine noise reduction. An indicative cost estimation; Sanering windturbinegeluid. Een indicatieve raming van kosten

    Energy Technology Data Exchange (ETDEWEB)

    Verheijen, E.N.G.; Jabben, J.

    2011-11-15

    Since the 1st of January 2011 new rules apply for wind turbine noise. The rules include a different calculation method and different noise limits, intended for new wind turbines. In order to tackle noise annoyance from existing wind turbines the government is considering to set up a abatement operation, for which a cost estimate is given in this study. At an abatement limit of 47 decibel L{sub den} (Level day-evening-night) approximately 450 dwellings would be eligible for noise remediation. The costs of this operation are estimated at 4.9 million euro. However, in many of these cases the wind turbine is probably owned by the respective residents. It is possible that public funds for noise remediation will not be allocated to the owners of dwellings that directly profit from the turbines. If these cases are excluded, the abatement operation would cover 165 to 275 dwellings with estimated costs for remediation of 1.6 to 2.6 million euro. A tentative cost-benefit analysis suggests that noise remediation will be cost effective in most situations. This means that the benefits of reduced annoyance or sleep disturbance are in balance with the cost of remediation. Only for the small group of wind turbines that are in use for over fifteen years, remediation will not be cost effective. These wind turbines are nearing the end of their lifespan and are therefore ignored in the above estimates. [Dutch] Sinds 1 januari 2011 zijn nieuwe regels rond windturbinegeluid van kracht. Bij de nieuwe regelgeving hoort een andere berekeningsmethode en normstelling, bedoeld voor nieuw te plaatsen windturbines. Voor de aanpak van de geluidhinder door bestaande windturbines overweegt de overheid een saneringsoperatie op te zetten, waarvoor in dit onderzoek een kostenraming wordt gegeven. Bij een saneringsgrenswaarde van 47 decibel zouden ongeveer 450 woningen voor sanering in aanmerking komen. De kosten voor sanering daarvan worden geschat op 4,9 miljoen euro. Bij een groot deel van deze

  15. TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps

    Energy Technology Data Exchange (ETDEWEB)

    Mendrik, Adrienne M; Van Ginneken, Bram; Viergever, Max A [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Vonken, Evert-jan; De Jong, Hugo W; Riordan, Alan; Van Seeters, Tom; Smit, Ewoud J; Prokop, Mathias, E-mail: a.m.mendrik@gmail.com [Radiology Department, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2011-07-07

    Cerebral computed tomography perfusion (CTP) scans are acquired to detect areas of abnormal perfusion in patients with cerebrovascular diseases. These 4D CTP scans consist of multiple sequential 3D CT scans over time. Therefore, to reduce radiation exposure to the patient, the amount of x-ray radiation that can be used per sequential scan is limited, which results in a high level of noise. To detect areas of abnormal perfusion, perfusion parameters are derived from the CTP data, such as the cerebral blood flow (CBF). Algorithms to determine perfusion parameters, especially singular value decomposition, are very sensitive to noise. Therefore, noise reduction is an important preprocessing step for CTP analysis. In this paper, we propose a time-intensity profile similarity (TIPS) bilateral filter to reduce noise in 4D CTP scans, while preserving the time-intensity profiles (fourth dimension) that are essential for determining the perfusion parameters. The proposed TIPS bilateral filter is compared to standard Gaussian filtering, and 4D and 3D (applied separately to each sequential scan) bilateral filtering on both phantom and patient data. Results on the phantom data show that the TIPS bilateral filter is best able to approach the ground truth (noise-free phantom), compared to the other filtering methods (lowest root mean square error). An observer study is performed using CBF maps derived from fifteen CTP scans of acute stroke patients filtered with standard Gaussian, 3D, 4D and TIPS bilateral filtering. These CBF maps were blindly presented to two observers that indicated which map they preferred for (1) gray/white matter differentiation, (2) detectability of infarcted area and (3) overall image quality. Based on these results, the TIPS bilateral filter ranked best and its CBF maps were scored to have the best overall image quality in 100% of the cases by both observers. Furthermore, quantitative CBF and cerebral blood volume values in both the phantom and the

  16. A PWM strategy for acoustic noise reduction for grid-connected single-phase inverters

    Energy Technology Data Exchange (ETDEWEB)

    Shao, R.; Guo, Z.; Chang, L. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Electrical and Computer Engineering

    2006-07-01

    This paper presented a newly proposed and improved pulse width modulation (PWM) strategy for grid-connected single-phase inverters. Small distributed generators using energy from renewable resources such as PV and wind systems typically use grid-connected single-phase inverters as voltage source inverters for good acoustic performance. PWM is generally applied in these inverters in order to achieve good waveforms of output current as required by interconnection standards. In routine simultaneous switching PWM methods, the current ripples through the inverter output filter inductor are at the carrier switching frequency, which is one of the major causes for inverter acoustic noise. The new PWM strategy effectively alleviates acoustic noise and improves output power quality. It is based on the principle of evenly splitting the switching of Insulated Gate Bipolar Transistors (IGBT) in each switching cycle among all IGBTs of the full bridge, thereby using a non-simultaneous mode of PWM which doubles the output current ripple frequency. This increases the inductor current ripple frequency to twice the carrier frequency. It is therefore possible to increase the current ripple frequency, or noise frequency into the range of ultrasonic which is inaudible to the human ear, without increasing the inverter's switching frequency to which the inverter's switching loss is proportional. In addition, this new PWM scheme can reduce the output current harmonics distortion and dc link current ripples. As such, lower capacitance in dc link capacitors and lower inductance of output inductor are needed. The improved PWM scheme was verified in a 3 kW grid-connected single-phase inverter. It was shown that the PWM strategy can be readily implemented with a digital signal processing microcontroller. 8 refs., 11 figs.

  17. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  18. Noise Reduction in Double‿Panel Structures by Cavity and Panel Resonance Control

    OpenAIRE

    Ho, J.; Berkhoff, Arthur P.

    2011-01-01

    This paper presents an investigation of the cavity and the panel resonance control in a double‿panel structure. The double‿panel structure, which consists of two panels with air in the gap, is widely adopted in many applications such as aerospace due to its light weight and effective transmission‿loss at high frequency. However, the resonance of the cavity and the poor transmission‿loss at low frequency limit its noise control performance. Applying active control forces on the panels or utili...

  19. Algorithm for statistical noise reduction in three-dimensional ion implant simulations

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Arias, J.; Jaraiz, M.; Bailon, L.; Barbolla, J.

    2001-01-01

    As integrated circuit devices scale into the deep sub-micron regime, ion implantation will continue to be the primary means of introducing dopant atoms into silicon. Different types of impurity profiles such as ultra-shallow profiles and retrograde profiles are necessary for deep submicron devices in order to realize the desired device performance. A new algorithm to reduce the statistical noise in three-dimensional ion implant simulations both in the lateral and shallow/deep regions of the profile is presented. The computational effort in BCA Monte Carlo ion implant simulation is also reduced

  20. Reduction of shot noise in an interference gravitational-wave detector

    International Nuclear Information System (INIS)

    Troitskii, Yu V

    2001-01-01

    The characteristics of a Michelson interferometer whose arms are formed by reflection Fabri - Perot interferometers (FPIs), which is designed for measurements of ultra-small displacements, are studied. It is shown that the recent advances in the mirror coating technology along with the optimisation of the parameters of the FPI mirrors makes it possible to greatly improve the ratio of the signal to the shot noise. Optimal transmission of the front FPI mirror is approximately equal to the absorption coefficient of the mirrors. (laser applications and other topics in quantum electronics)

  1. Speckle noise reduction on a laser projection display via a broadband green light source.

    Science.gov (United States)

    Yu, Nan Ei; Choi, Ju Won; Kang, Heejong; Ko, Do-Kyeong; Fu, Shih-Hao; Liou, Jiun-Wei; Kung, Andy H; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik; Peng, Lung-Han

    2014-02-10

    A broadband green light source was demonstrated using a tandem-poled lithium niobate (TPLN) crystal. The measured wavelength and temperature bandwidth were 6.5 nm and 100 °C, respectively, spectral bandwidth was 36 times broader than the periodically poled case. Although the conversion efficiency was smaller than in the periodic case, the TPLN device had a good figure of merit owing to the extremely large bandwidth for wavelength and temperature. The developed broadband green light source exhibited speckle noise approximately one-seventh of that in the conventional approach for a laser projection display.

  2. A quantitative comparison of noise reduction across five commercial (hybrid and model-based) iterative reconstruction techniques: an anthropomorphic phantom study.

    Science.gov (United States)

    Patino, Manuel; Fuentes, Jorge M; Hayano, Koichi; Kambadakone, Avinash R; Uyeda, Jennifer W; Sahani, Dushyant V

    2015-02-01

    OBJECTIVE. The objective of our study was to compare the performance of three hybrid iterative reconstruction techniques (IRTs) (ASiR, iDose4, SAFIRE) and their respective strengths for image noise reduction on low-dose CT examinations using filtered back projection (FBP) as the standard reference. Also, we compared the performance of these three hybrid IRTs with two model-based IRTs (Veo and IMR) for image noise reduction on low-dose examinations. MATERIALS AND METHODS. An anthropomorphic abdomen phantom was scanned at 100 and 120 kVp and different tube current-exposure time products (25-100 mAs) on three CT systems (for ASiR and Veo, Discovery CT750 HD; for iDose4 and IMR, Brilliance iCT; and for SAFIRE, Somatom Definition Flash). Images were reconstructed using FBP and using IRTs at various strengths. Nine noise measurements (mean ROI size, 423 mm(2)) on extracolonic fat for the different strengths of IRTs were recorded and compared with FBP using ANOVA. Radiation dose, which was measured as the volume CT dose index and dose-length product, was also compared. RESULTS. There were no significant differences in radiation dose and image noise among the scanners when FBP was used (p > 0.05). Gradual image noise reduction was observed with each increasing increment of hybrid IRT strength, with a maximum noise suppression of approximately 50% (48.2-53.9%). Similar noise reduction was achieved on the scanners by applying specific hybrid IRT strengths. Maximum noise reduction was higher on model-based IRTs (68.3-81.1%) than hybrid IRTs (48.2-53.9%) (p < 0.05). CONCLUSION. When constant scanning parameters are used, radiation dose and image noise on FBP are similar for CT scanners made by different manufacturers. Significant image noise reduction is achieved on low-dose CT examinations rendered with IRTs. The image noise on various scanners can be matched by applying specific hybrid IRT strengths. Model-based IRTs attain substantially higher noise reduction than hybrid

  3. Robust frequency diversity based algorithm for clutter noise reduction of ultrasonic signals using multiple sub-spectrum phase coherence

    Energy Technology Data Exchange (ETDEWEB)

    Gongzhang, R.; Xiao, B.; Lardner, T.; Gachagan, A. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Li, M. [School of Engineering, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2014-02-18

    This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signals through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.

  4. The effects of noise reduction by earmuffs on the physiologic and behavioral responses in very low birth weight preterm infants.

    Science.gov (United States)

    Duran, Rıdvan; Ciftdemir, Nükhet Aladağ; Ozbek, Ulfet Vatansever; Berberoğlu, Ufuk; Durankuş, Ferit; Süt, Necdet; Acunaş, Betül

    2012-10-01

    Preterm infants are exposed to loud noises during their stay in the neonatal intensive care unit which can lead to physiologic and behavioral alterations and even hearing loss. The use of earmuffs can reduce sound level and these changes. The objective of the present study is to evaluate the effectiveness of the earmuffs in preterm infants solely cared for in closed incubators. A comparative prospective study comprising 20 clinically stable preterm infants weighing less than 1500 g cared in closed incubator was conducted. Preterm infants acted as their own controls whereby they were observed without earmuffs (Group 1) for 2 days and with earmuffs (Group 2) on consecutive 2 days. The preterm infants' physiologic responses and Anderson Behavioral State Scoring System (ABSS) scores were assessed over 30s every 2h for 8h during daytime for 4 days. Out of 20 preterm infants, 6 were male and 14 female with a mean birth weight of 1220 ± 209 g, gestational age of 29.9 ± 2.1 weeks. The total number of measurements was 320. The mean ABSS scores of Group 1 and 2 were 3.07±1.1 and 1.34 ± 0.3, respectively. Statistically significant difference was noted between the means of ABSS scores (pNoise level reduction was associated with significant improvement in behavioral states of ABSS. We suggest that noise reduction in preterm infants with earmuffs is helpful by improving sleep efficiency and increasing time of quiet sleep. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. An investigation on the noise reduction performance of profiled rigid median barriers at highways

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Monazzam

    2012-01-01

    Full Text Available Median barriers as a portion of a divided highway are provided to minimize the cross-median crashes. Moreover, median barriers similar to roadside noise barriers could protect people from transportation noise. Thus, there is a need to investigate various median barrier models to identify changes of insertion loss over a simple rigid barrier. In order to estimate the acoustical influence of median barrier′s profile in the shadow zone, different median barrier models are presented and their insertion losses are calculated over a frequency range from 50 to 4000 Hz using a two-dimensional boundary element method. The present investigation has clearly revealed that among the profiled median barriers, T-shape, Y-shape, and L-shape provide better performance than that of the other shapes. It is also found that among inclined barriers, V-shape barrier significantly presents higher values of attenuation. Based on the calculation of different geometrics, it has been shown that a further 2 dB (A in efficiency could be obtained by a better design of the median barrier which is labeled model "L."

  6. Characterizing the continuously acquired cardiovascular time series during hemodialysis, using median hybrid filter preprocessing noise reduction

    Directory of Open Access Journals (Sweden)

    Wilson S

    2015-01-01

    Full Text Available Scott Wilson,1,2 Andrea Bowyer,3 Stephen B Harrap4 1Department of Renal Medicine, The Alfred Hospital, 2Baker IDI, Melbourne, 3Department of Anaesthesia, Royal Melbourne Hospital, 4University of Melbourne, Parkville, VIC, Australia Abstract: The clinical characterization of cardiovascular dynamics during hemodialysis (HD has important pathophysiological implications in terms of diagnostic, cardiovascular risk assessment, and treatment efficacy perspectives. Currently the diagnosis of significant intradialytic systolic blood pressure (SBP changes among HD patients is imprecise and opportunistic, reliant upon the presence of hypotensive symptoms in conjunction with coincident but isolated noninvasive brachial cuff blood pressure (NIBP readings. Considering hemodynamic variables as a time series makes a continuous recording approach more desirable than intermittent measures; however, in the clinical environment, the data signal is susceptible to corruption due to both impulsive and Gaussian-type noise. Signal preprocessing is an attractive solution to this problem. Prospectively collected continuous noninvasive SBP data over the short-break intradialytic period in ten patients was preprocessed using a novel median hybrid filter (MHF algorithm and compared with 50 time-coincident pairs of intradialytic NIBP measures from routine HD practice. The median hybrid preprocessing technique for continuously acquired cardiovascular data yielded a dynamic regression without significant noise and artifact, suitable for high-level profiling of time-dependent SBP behavior. Signal accuracy is highly comparable with standard NIBP measurement, with the added clinical benefit of dynamic real-time hemodynamic information. Keywords: continuous monitoring, blood pressure

  7. Characterizing the continuously acquired cardiovascular time series during hemodialysis, using median hybrid filter preprocessing noise reduction.

    Science.gov (United States)

    Wilson, Scott; Bowyer, Andrea; Harrap, Stephen B

    2015-01-01

    The clinical characterization of cardiovascular dynamics during hemodialysis (HD) has important pathophysiological implications in terms of diagnostic, cardiovascular risk assessment, and treatment efficacy perspectives. Currently the diagnosis of significant intradialytic systolic blood pressure (SBP) changes among HD patients is imprecise and opportunistic, reliant upon the presence of hypotensive symptoms in conjunction with coincident but isolated noninvasive brachial cuff blood pressure (NIBP) readings. Considering hemodynamic variables as a time series makes a continuous recording approach more desirable than intermittent measures; however, in the clinical environment, the data signal is susceptible to corruption due to both impulsive and Gaussian-type noise. Signal preprocessing is an attractive solution to this problem. Prospectively collected continuous noninvasive SBP data over the short-break intradialytic period in ten patients was preprocessed using a novel median hybrid filter (MHF) algorithm and compared with 50 time-coincident pairs of intradialytic NIBP measures from routine HD practice. The median hybrid preprocessing technique for continuously acquired cardiovascular data yielded a dynamic regression without significant noise and artifact, suitable for high-level profiling of time-dependent SBP behavior. Signal accuracy is highly comparable with standard NIBP measurement, with the added clinical benefit of dynamic real-time hemodynamic information.

  8. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    Science.gov (United States)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  9. Mapping DNA methylation by transverse current sequencing: Reduction of noise from neighboring nucleotides

    Science.gov (United States)

    Alvarez, Jose; Massey, Steven; Kalitsov, Alan; Velev, Julian

    Nanopore sequencing via transverse current has emerged as a competitive candidate for mapping DNA methylation without needed bisulfite-treatment, fluorescent tag, or PCR amplification. By eliminating the error producing amplification step, long read lengths become feasible, which greatly simplifies the assembly process and reduces the time and the cost inherent in current technologies. However, due to the large error rates of nanopore sequencing, single base resolution has not been reached. A very important source of noise is the intrinsic structural noise in the electric signature of the nucleotide arising from the influence of neighboring nucleotides. In this work we perform calculations of the tunneling current through DNA molecules in nanopores using the non-equilibrium electron transport method within an effective multi-orbital tight-binding model derived from first-principles calculations. We develop a base-calling algorithm accounting for the correlations of the current through neighboring bases, which in principle can reduce the error rate below any desired precision. Using this method we show that we can clearly distinguish DNA methylation and other base modifications based on the reading of the tunneling current.

  10. Low-Gain, Low-Noise Integrated Neuronal Amplifier for Implantable Artifact-Reduction Recording System

    Directory of Open Access Journals (Sweden)

    Abdelhamid Benazzouz

    2013-09-01

    Full Text Available Brain neuroprostheses for neuromodulation are being designed to monitor the neural activity of the brain in the vicinity of the region being stimulated using a single macro-electrode. Using a single macro-electrode, recent neuromodulation studies show that recording systems with a low gain neuronal amplifier and successive amplifier stages can reduce or reject stimulation artifacts. These systems were made with off-the-shelf components that are not amendable for future implant design. A low-gain, low-noise integrated neuronal amplifier (NA with the capability of recording local field potentials (LFP and spike activity is presented. In vitro and in vivo characterizations of the tissue/electrode interface, with equivalent impedance as an electrical model for recording in the LFP band using macro-electrodes for rodents, contribute to the NA design constraints. The NA occupies 0.15 mm2 and dissipates 6.73 µW, and was fabricated using a 0.35 µm CMOS process. Test-bench validation indicates that the NA provides a mid-band gain of 20 dB and achieves a low input-referred noise of 4 µVRMS. Ability of the NA to perform spike recording in test-bench experiments is presented. Additionally, an awake and freely moving rodent setup was used to illustrate the integrated NA ability to record LFPs, paving the pathway for future implantable systems for neuromodulation.

  11. Speckle noise reduction for computer generated holograms of objects with diffuse surfaces

    Science.gov (United States)

    Symeonidou, Athanasia; Blinder, David; Ahar, Ayyoub; Schretter, Colas; Munteanu, Adrian; Schelkens, Peter

    2016-04-01

    Digital holography is mainly used today for metrology and microscopic imaging and is emerging as an important potential technology for future holographic television. To generate the holographic content, computer-generated holography (CGH) techniques convert geometric descriptions of a 3D scene content. To model different surface types, an accurate model of light propagation has to be considered, including for example, specular and diffuse reflection. In previous work, we proposed a fast CGH method for point cloud data using multiple wavefront recording planes, look-up tables (LUTs) and occlusion processing. This work extends our method to account for diffuse reflections, enabling rendering of deep 3D scenes in high resolution with wide viewing angle support. This is achieved by modifying the spectral response of the light propagation kernels contained by the look-up tables. However, holograms encoding diffuse reflective surfaces depict significant amounts of speckle noise, a problem inherent to holography. Hence, techniques to improve the reduce speckle noise are evaluated in this paper. Moreover, we propose as well a technique to suppress the aperture diffraction during numerical, viewdependent rendering by apodizing the hologram. Results are compared visually and in terms of their respective computational efficiency. The experiments show that by modelling diffuse reflection in the LUTs, a more realistic yet computationally efficient framework for generating high-resolution CGH is achieved.

  12. Reduction of belt CVT gear noise by gear train modification. Optimize vibration characteristics of gear train; Belt CVT no gear noise teigen gijutsu. Gear train shindo tokusei no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Arimatsu, M; Kawakami, T [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    With the reduction of vehicle noise, the requirements for an efficient method to reduce transmission gear noise have become stronger yearly. So far efforts to reduce gear noise have generally focused on ways of improving the gears themselves. In addition to these traditional methods, it proved very beneficial to us to optimize the gear train structure. Nissan has just released the new Belt CVT for 2.0L Front wheel drive vehicles. We have been analyzing vibration of the gear train by using a finite element model since the early development stage, and we could achieve the quiet gears effectively. 2 refs., 9 figs.

  13. Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers

    Energy Technology Data Exchange (ETDEWEB)

    Habruseva, T. [CAPPA, Cork Institute of Technology, Cork (Ireland); Tyndall National Institute, Lee Maltings, Cork (Ireland); Aston University, Aston Triangle, B4 7ET Birmingham (United Kingdom); Arsenijević, D.; Kleinert, M.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Huyet, G.; Hegarty, S. P. [CAPPA, Cork Institute of Technology, Cork (Ireland); Tyndall National Institute, Lee Maltings, Cork (Ireland)

    2014-01-13

    Competing approaches exist, which allow control of phase noise and frequency tuning in mode-locked lasers, but no judgement of pros and cons based on a comparative analysis was presented yet. Here, we compare results of hybrid mode-locking, hybrid mode-locking with optical injection seeding, and sideband optical injection seeding performed on the same quantum dot laser under identical bias conditions. We achieved the lowest integrated jitter of 121 fs and a record large radio-frequency (RF) tuning range of 342 MHz with sideband injection seeding of the passively mode-locked laser. The combination of hybrid mode-locking together with optical injection-locking resulted in 240 fs integrated jitter and a RF tuning range of 167 MHz. Using conventional hybrid mode-locking, the integrated jitter and the RF tuning range were 620 fs and 10 MHz, respectively.

  14. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    Science.gov (United States)

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  15. Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers

    International Nuclear Information System (INIS)

    Habruseva, T.; Arsenijević, D.; Kleinert, M.; Bimberg, D.; Huyet, G.; Hegarty, S. P.

    2014-01-01

    Competing approaches exist, which allow control of phase noise and frequency tuning in mode-locked lasers, but no judgement of pros and cons based on a comparative analysis was presented yet. Here, we compare results of hybrid mode-locking, hybrid mode-locking with optical injection seeding, and sideband optical injection seeding performed on the same quantum dot laser under identical bias conditions. We achieved the lowest integrated jitter of 121 fs and a record large radio-frequency (RF) tuning range of 342 MHz with sideband injection seeding of the passively mode-locked laser. The combination of hybrid mode-locking together with optical injection-locking resulted in 240 fs integrated jitter and a RF tuning range of 167 MHz. Using conventional hybrid mode-locking, the integrated jitter and the RF tuning range were 620 fs and 10 MHz, respectively

  16. Communal Sensor Network for Adaptive Noise Reduction in Aircraft Engine Nacelles

    Science.gov (United States)

    Jones, Kennie H.; Nark, Douglas M.; Jones, Michael G.

    2011-01-01

    Emergent behavior, a subject of much research in biology, sociology, and economics, is a foundational element of Complex Systems Science and is apropos in the design of sensor network systems. To demonstrate engineering for emergent behavior, a novel approach in the design of a sensor/actuator network is presented maintaining optimal noise attenuation as an adaptation to changing acoustic conditions. Rather than use the conventional approach where sensors are managed by a central controller, this new paradigm uses a biomimetic model where sensor/actuators cooperate as a community of autonomous organisms, sharing with neighbors to control impedance based on local information. From the combination of all individual actions, an optimal attenuation emerges for the global system.

  17. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  18. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  19. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    Science.gov (United States)

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  20. Shaking table test study on seismic performance of dehydrogenation fan for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Kaiyan; Shi Weixing; Cao Jialiang; Wang Yang

    2011-01-01

    Seismic performance of the dehydrogenation fan for nuclear power plants was evaluated based on the shaking table test of earthquake simulation. Dynamic characteristics including the orthogonal tri-axial fundamental frequencies and equivalent damping ratios were measured by the white noise scanning method. Artificial seismic waves were generated corresponding to the floor acceleration response spectra for nuclear power plants. Furthermore, five OBE and one SSE shaking table tests for dehydrogenation fan were performed by using the artificial seismic waves as the seismic inputs along the orthogonal axis simultaneity. Operating function of dehydrogenation fan was monitored and observed during all seismic tests, and performance indexes of dehydrogenation fan were compared before and after seismic tests. The results show that the structural integrity and operating function of the dehydrogenation fan are perfect during all seismic tests; and the performance indexes of the dehydrogenation fan can remain consistent before and after seismic tests; the seismic performance of the dehydrogenation fan can satisfy relevant technical requirements. (authors)

  1. A new technique for noise reduction at coronary CT angiography with multi-phase data-averaging and non-rigid image registration

    Energy Technology Data Exchange (ETDEWEB)

    Tatsugami, Fuminari; Higaki, Toru; Nakamura, Yuko; Yamagami, Takuji; Date, Shuji; Awai, Kazuo [Hiroshima University, Department of Diagnostic Radiology, Minami-ku, Hiroshima (Japan); Fujioka, Chikako; Kiguchi, Masao [Hiroshima University, Department of Radiology, Minami-ku, Hiroshima (Japan); Kihara, Yasuki [Hiroshima University, Department of Cardiovascular Medicine, Minami-ku, Hiroshima (Japan)

    2015-01-15

    To investigate the feasibility of a newly developed noise reduction technique at coronary CT angiography (CTA) that uses multi-phase data-averaging and non-rigid image registration. Sixty-five patients underwent coronary CTA with prospective ECG-triggering. The range of the phase window was set at 70-80 % of the R-R interval. First, three sets of consecutive volume data at 70 %, 75 % and 80 % of the R-R interval were prepared. Second, we applied non-rigid registration to align the 70 % and 80 % images to the 75 % image. Finally, we performed weighted averaging of the three images and generated a de-noised image. The image noise and contrast-to-noise ratio (CNR) in the proximal coronary arteries between the conventional 75 % and the de-noised images were compared. Two radiologists evaluated the image quality using a 5-point scale (1, poor; 5, excellent). On de-noised images, mean image noise was significantly lower than on conventional 75 % images (18.3 HU ± 2.6 vs. 23.0 HU ± 3.3, P < 0.01) and the CNR was significantly higher (P < 0.01). The mean image quality score for conventional 75 % and de-noised images was 3.9 and 4.4, respectively (P < 0.01). Our method reduces image noise and improves image quality at coronary CTA. (orig.)

  2. Training in Using Earplugs or Using Earplugs with a Higher than Necessary Noise Reduction Rating? A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    M Salmani Nodoushan

    2014-09-01

    Full Text Available Background: Noise-induced hearing loss (NIHL is one of the most common occupational diseases and the second most common cause of workers' claims for occupational injuries. Objective: Due to high prevalence of NIHL and several reports of improper use of hearing protective devices (HPDs, we conducted this study to compare the effect of face-to-face training in effective use of earplugs with appropriate NRR to overprotection of workers by using earplugs with higher than necessary noise reduction rating (NRR. Methods: In a randomized clinical trial, 150 workers referred to occupational medicine clinic were randomly allocated to three arms—a group wearing earplugs with an NRR of 25 with no training in appropriate use of the device; a group wearing earplugs with an NRR of 25 with training; another group wearing earplugs with an NRR of 30, with no training. Hearing threshold was measured in the study groups by real ear attenuation at threshold (REAT method. This trial is registered with Australian New Zealand clinical trials Registry, number ACTRN00363175. Results: The mean±SD age of the participants was 28±5 (range: 19–39 years. 42% of participants were female. The mean noise attenuation in the group with training was 13.88 dB, significantly higher than those observed in other groups. The highest attenuation was observed in high frequencies (4, 6, and 8 kHz in the group with training. Conclusion: Training in appropriate use of earplugs significantly affects the efficacy of earplugs—even more than using an earplug with higher NRR.

  3. Reduction of Noise from Disc Brake Systems Using Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)

    Science.gov (United States)

    Masoomi, Mohsen; Katbab, Ali Asghar; Nazockdast, Hossein

    2006-09-01

    Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E‧) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.

  4. Fully Convolutional Architecture for Low-Dose CT Image Noise Reduction

    Science.gov (United States)

    Badretale, S.; Shaker, F.; Babyn, P.; Alirezaie, J.

    2017-10-01

    One of the critical topics in medical low-dose Computed Tomography (CT) imaging is how best to maintain image quality. As the quality of images decreases with lowering the X-ray radiation dose, improving image quality is extremely important and challenging. We have proposed a novel approach to denoise low-dose CT images. Our algorithm learns directly from an end-to-end mapping from the low-dose Computed Tomography images for denoising the normal-dose CT images. Our method is based on a deep convolutional neural network with rectified linear units. By learning various low-level to high-level features from a low-dose image the proposed algorithm is capable of creating a high-quality denoised image. We demonstrate the superiority of our technique by comparing the results with two other state-of-the-art methods in terms of the peak signal to noise ratio, root mean square error, and a structural similarity index.

  5. Noise reduction in protein-protein interaction graphs by the implementation of a novel weighting scheme

    Directory of Open Access Journals (Sweden)

    Moschopoulos Charalampos

    2011-06-01

    Full Text Available Abstract Background Recent technological advances applied to biology such as yeast-two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of protein interaction networks. These interaction networks represent a rich, yet noisy, source of data that could be used to extract meaningful information, such as protein complexes. Several interaction network weighting schemes have been proposed so far in the literature in order to eliminate the noise inherent in interactome data. In this paper, we propose a novel weighting scheme and apply it to the S. cerevisiae interactome. Complex prediction rates are improved by up to 39%, depending on the clustering algorithm applied. Results We adopt a two step procedure. During the first step, by applying both novel and well established protein-protein interaction (PPI weighting methods, weights are introduced to the original interactome graph based on the confidence level that a given interaction is a true-positive one. The second step applies clustering using established algorithms in the field of graph theory, as well as two variations of Spectral clustering. The clustered interactome networks are also cross-validated against the confirmed protein complexes present in the MIPS database. Conclusions The results of our experimental work demonstrate that interactome graph weighting methods clearly improve the clustering results of several clustering algorithms. Moreover, our proposed weighting scheme outperforms other approaches of PPI graph weighting.

  6. Coherent scattering noise reduction method with wavelength diversity detection for holographic data storage system

    Science.gov (United States)

    Nakamura, Yusuke; Hoshizawa, Taku; Takashima, Yuzuru

    2017-09-01

    A new method, wavelength diversity detection (WDD), for improving signal quality is proposed and its effectiveness is numerically confirmed. We consider that WDD is especially effective for high-capacity systems having low hologram diffraction efficiencies. In such systems, the signal quality is primarily limited by coherent scattering noise; thus, effective improvement of the signal quality under a scattering-limited system is of great interest. WDD utilizes a new degree of freedom, the spectrum width, and scattering by molecules to improve the signal quality of the system. We found that WDD improves the quality by counterbalancing the degradation of the quality due to Bragg mismatch. With WDD, a higher-scattering-coefficient medium can improve the quality. The result provides an interesting insight into the requirements for material characteristics, especially for a large-M/# material. In general, a larger-M/# material contains more molecules; thus, the system is subject to more scattering, which actually improves the quality with WDD. We propose a pathway for a future holographic data storage system (HDSS) using WDD, which can record a larger amount of data than a conventional HDSS.

  7. Broadband Liner Optimization for the Source Diagnostic Test Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.

    2012-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations.

  8. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    Science.gov (United States)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart

    2014-01-01

    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  9. A Data-Driven Noise Reduction Method and Its Application for the Enhancement of Stress Wave Signals

    Directory of Open Access Journals (Sweden)

    Hai-Lin Feng

    2012-01-01

    Full Text Available Ensemble empirical mode decomposition (EEMD has been recently used to recover a signal from observed noisy data. Typically this is performed by partial reconstruction or thresholding operation. In this paper we describe an efficient noise reduction method. EEMD is used to decompose a signal into several intrinsic mode functions (IMFs. The time intervals between two adjacent zero-crossings within the IMF, called instantaneous half period (IHP, are used as a criterion to detect and classify the noise oscillations. The undesirable waveforms with a larger IHP are set to zero. Furthermore, the optimum threshold in this approach can be derived from the signal itself using the consecutive mean square error (CMSE. The method is fully data driven, and it requires no prior knowledge of the target signals. This method can be verified with the simulative program by using Matlab. The denoising results are proper. In comparison with other EEMD based methods, it is concluded that the means adopted in this paper is suitable to preprocess the stress wave signals in the wood nondestructive testing.

  10. The use of anatomical information for molecular image reconstruction algorithms: Attention/Scatter correction, motion compensation, and noise reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Se Young [School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2016-03-15

    PET and SPECT are important tools for providing valuable molecular information about patients to clinicians. Advances in nuclear medicine hardware technologies and statistical image reconstruction algorithms enabled significantly improved image quality. Sequentially or simultaneously acquired anatomical images such as CT and MRI from hybrid scanners are also important ingredients for improving the image quality of PET or SPECT further. High-quality anatomical information has been used and investigated for attenuation and scatter corrections, motion compensation, and noise reduction via post-reconstruction filtering and regularization in inverse problems. In this article, we will review works using anatomical information for molecular image reconstruction algorithms for better image quality by describing mathematical models, discussing sources of anatomical information for different cases, and showing some examples.

  11. A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential.

    Science.gov (United States)

    Euler, André; Solomon, Justin; Marin, Daniele; Nelson, Rendon C; Samei, Ehsan

    2018-06-01

    The purpose of this study was to assess image noise, spatial resolution, lesion detectability, and the dose reduction potential of a proprietary third-generation adaptive statistical iterative reconstruction (ASIR-V) technique. A phantom representing five different body sizes (12-37 cm) and a contrast-detail phantom containing lesions of five low-contrast levels (5-20 HU) and three sizes (2-6 mm) were deployed. Both phantoms were scanned on a 256-MDCT scanner at six different radiation doses (1.25-10 mGy). Images were reconstructed with filtered back projection (FBP), ASIR-V with 50% blending with FBP (ASIR-V 50%), and ASIR-V without blending (ASIR-V 100%). In the first phantom, noise properties were assessed by noise power spectrum analysis. Spatial resolution properties were measured by use of task transfer functions for objects of different contrasts. Noise magnitude, noise texture, and resolution were compared between the three groups. In the second phantom, low-contrast detectability was assessed by nine human readers independently for each condition. The dose reduction potential of ASIR-V was estimated on the basis of a generalized linear statistical regression model. On average, image noise was reduced 37.3% with ASIR-V 50% and 71.5% with ASIR-V 100% compared with FBP. ASIR-V shifted the noise power spectrum toward lower frequencies compared with FBP. The spatial resolution of ASIR-V was equivalent or slightly superior to that of FBP, except for the low-contrast object, which had lower resolution. Lesion detection significantly increased with both ASIR-V levels (p = 0.001), with an estimated radiation dose reduction potential of 15% ± 5% (SD) for ASIR-V 50% and 31% ± 9% for ASIR-V 100%. ASIR-V reduced image noise and improved lesion detection compared with FBP and had potential for radiation dose reduction while preserving low-contrast detectability.

  12. Study on the performance improvement of multiblade fans. Effects of suction cones; Tayoku fan no seino kaizen ni kansuru kenkyu. Suction cone no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kuratani, F.; Ogawa, T. [Hyogo University of Teacher Education, Hyogo (Japan); Yamamoto, S.

    1999-07-25

    In order to improve the performance of a multiblade fan, the effects of three types of suction cones of the fan casing on the fan efficiency and noise are investigated experimentally. The first type of the suction cone is the insertion type, which is inserted into the inside of the fan impeller. The second type is the extrusion type, which extrudes outside from the casing surface. The third type is the combination type of two types. The results of those three types are compared with those of the commonly used suction cone. The followings are made clear: (1) The insertion type and the extrusion type are effective in improving the efficiency and reducing noise. (2) The optimal lengths of the insertion and the extrusion exist. (3) The combination type is more effective in improving the efficiency. (4) The combination type with the skewed cutoff of the fan casing shows the best effect. (author)

  13. Costs and benefits of energy efficiency improvements in ceiling fans

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  14. ENERGY STAR Certified Ceiling Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=ceiling_fans.pr_crit_ceiling_fans

  15. ENERGY STAR Certified Ventilating Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of October 1, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=vent_fans.pr_crit_vent_fans

  16. The Fabulous Fact Fan.

    Science.gov (United States)

    Couch, Jene P.

    1994-01-01

    Discusses the use and construction of "fact fans," fun and easy-to-make manipulatives that provide elementary school students with the opportunity to explore mathematics operations being studied in the classroom and to practice addition, subtraction, multiplication, and division facts. (BB)

  17. Energy consumption characteristics of transports using the prop-fan concept

    Science.gov (United States)

    1976-01-01

    The fuel saving and economic potentials of the prop-fan high-speed propeller concept were evaluated for twin-engine commercial transport airplanes designed for 3333.6 km range, 180 passengers, and Mach 0.8 cruise. A fuel saving of 9.7% at the design range was estimated for a prop-fan airplane having wing-mounted engines, while a 5.8% saving was estimated for a design having the engines mounted on the aft body. The fuel savings and cost were found to be sensitive to the propeller noise level and to aerodynamic drag effects due to wing-slipstream interaction. Uncertainties in these effects could change the fuel savings as much as + or - 50%. A modest improvement in direct operating cost (DOC) was estimated for the wing-mounted prop-fan at current fuel prices. This improvement could become substantial in the event of further relative increases in the price of oil. The improvement in DOC requires the achievement of the nominal fuel saving and reductions in propeller and gearbox maintenance costs relative to current experience.

  18. Dynamic Analysis for a Geared Turbofan Engine with Variable Area Fan Nozzle

    Science.gov (United States)

    Csank, Jeffrey T.; Thomas, George L.

    2017-01-01

    Aggressive design goals have been set for future aero-propulsion systems with regards to fuel economy, noise, and emissions. To meet these challenging goals, advanced propulsion concepts are being explored and current operating margins are being re-evaluated to find additional concessions that can be made. One advanced propulsion concept being evaluated is a geared turbofan with a variable area fan nozzle (VAFN), developed by NASA. This engine features a small core, a fan driven by the low pressure turbine through a reduction gearbox, and a shape memory alloy (SMA)-actuated VAFN. The VAFN is designed to allow both a small exit area for efficient operation at cruise, while being able to open wider at high power conditions to reduce backpressure on the fan and ensure a safe level of stall margin is maintained. The VAFN is actuated via a SMA-based system instead of a conventional system to decrease overall weight of the system, however, SMA-based actuators respond relatively slowly, which introduces dynamic issues that are investigated in this work. This paper describes both a control system designed specifically for issues associated with SMAs, and dynamic analysis of the geared turbofan VAFN with the SMA actuators. Also, some future recommendations are provided for this type of propulsion system.

  19. Novel noise reduction filter for improving visibility of early computed tomography signs of hyperacute stroke. Evaluation of the filter's performance. Preliminary clinical experience

    International Nuclear Information System (INIS)

    Takahashi, Noriyuki; Ishii, Kiyoshi; Lee, Y.; Tsai, D.Y.

    2007-01-01

    The aim of this study was to evaluate the performance of a novel noise reduction filter for improving the visibility of early computed tomography (CT) signs of hyperacute stroke on nonenhanced CT images. Fourteen patients with a middle cerebral artery occlusion within 4.5 h after onset were evaluated. The signal-to-noise ratio (SNR) of the processed images with the noise reduction filter and that of original images were measured. Two neuroradiologists visually rated all the processed and original images on the visibility of normal and abnormal gray-white matter interfaces. The SNR value of the processed images was approximately eight times as high as that of the original images, and a 87% reduction of noise was achieved using this technique. For the visual assessment, the results showed that the visibility of normal gray-white matter interface and that of the loss of the gray-white matter interface were significantly improved using the proposed method (P<0.05). The noise reduction filter proposed in the present study has the potential to improve the visibility of early CT signs of hyperacute stroke on nonenhanced CT images. (author)

  20. Noise emissions of cooling towers; Geraeuschemissionen von Kuehltuermen

    Energy Technology Data Exchange (ETDEWEB)

    Hinkelmann, Dirk [Mueller-BBM GmbH, Gelsenkirchen (Germany)

    2013-09-01

    Cooling towers are often large structures with high sound emission. The impact of water drops on the water surface in the collecting basin leads to the generation of middle- and high-frequency noise that is emitted via the air intake opening and the outlet. In forced-draft cooling towers, additional noise is generated by drives and fans. The sound emissions can be predicted by means of empirical calculation models. In this way, noise control measures can be taken into account already at an early phase of planning. Different, proven measures for reduction of sound emissions are taken depending on cooling tower design. Regulations on noise acceptance testing for cooling towers are given in various standards. (orig.)