WorldWideScience

Sample records for family metal sensor

  1. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  2. Lightweight, Wearable, Metal Rubber Sensor

    Science.gov (United States)

    Hill, Andrea

    2015-01-01

    For autonomous health monitoring. NanoSonic, Inc., has developed comfortable garments with multiple integrated sensors designed to monitor astronaut health throughout long-duration space missions. The combined high electrical conductivity, low mechanical modulus, and environmental robustness of the sensors make them an effective, lightweight, and comfortable alternative to conventional use of metal wiring and cabling.

  3. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...

  4. Surface Embedded Metal Oxide Sensors (SEMOS)

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Talat Ali, Syed; Pleth Nielsen, Lars

    complex and sensors are not easily implemented in the construction. Hence sensor interface and sensor position must therefore be chosen carefully in order to make the sensors as non-intrusive as possible. Metal Oxide Sensors (MOX) for measuring H2, O2 and CO concentration in a fuel cell environment...

  5. Metal/Metal-Oxide Nanoclusters for Gas Sensor Applications

    OpenAIRE

    Ayesh, Ahmad I.

    2016-01-01

    The development of gas sensors that are based on metal/metal-oxide nanoclusters has attracted intensive research interest in the last years. Nanoclusters are suitable candidates for gas sensor applications because of their large surface-to-volume ratio that can be utilized for selective and rapid detection of various gaseous species with low-power consuming electronics. Herein, nanoclusters are used as building blocks for the construction of gas sensor where the electrical conductivity of the...

  6. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  7. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.

    2005-01-01

    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  8. Nanocrystalline Metal Oxides for Methane Sensors: Role of Noble Metals

    Directory of Open Access Journals (Sweden)

    S. Basu

    2009-01-01

    Full Text Available Methane is an important gas for domestic and industrial applications and its source is mainly coalmines. Since methane is extremely inflammable in the coalmine atmosphere, it is essential to develop a reliable and relatively inexpensive chemical gas sensor to detect this inflammable gas below its explosion amount in air. The metal oxides have been proved to be potential materials for the development of commercial gas sensors. The functional properties of the metal oxide-based gas sensors can be improved not only by tailoring the crystal size of metal oxides but also by incorporating the noble metal catalyst on nanocrystalline metal oxide matrix. It was observed that the surface modification of nanocrystalline metal oxide thin films by noble metal sensitizers and the use of a noble metal catalytic contact as electrode reduce the operating temperatures appreciably and improve the sensing properties. This review article concentrates on the nanocrystalline metal oxide methane sensors and the role of noble metals on the sensing properties.

  9. Fluorescence enhancement of photoswitchable metal ion sensors

    Science.gov (United States)

    Sylvia, Georgina; Heng, Sabrina; Abell, Andrew D.

    2016-12-01

    Spiropyran-based fluorescence sensors are an ideal target for intracellular metal ion sensing, due to their biocompatibility, red emission frequency and photo-controlled reversible analyte binding for continuous signal monitoring. However, increasing the brightness of spiropyran-based sensors would extend their sensing capability for live-cell imaging. In this work we look to enhance the fluorescence of spiropyran-based sensors, by incorporating an additional fluorophore into the sensor design. We report a 5-membered monoazacrown bearing spiropyran with metal ion specificity, modified to incorporate the pyrene fluorophore. The effect of N-indole pyrene modification on the behavior of the spiropyran molecule is explored, with absorbance and fluorescence emission characterization. This first generation sensor provides an insight into fluorescence-enhancement of spiropyran molecules.

  10. Metal/Metal-Oxide Nanoclusters for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Ahmad I. Ayesh

    2016-01-01

    Full Text Available The development of gas sensors that are based on metal/metal-oxide nanoclusters has attracted intensive research interest in the last years. Nanoclusters are suitable candidates for gas sensor applications because of their large surface-to-volume ratio that can be utilized for selective and rapid detection of various gaseous species with low-power consuming electronics. Herein, nanoclusters are used as building blocks for the construction of gas sensor where the electrical conductivity of the nanoclusters changes dramatically upon exposure to the target gas. In this review, recent progress in the fabrication of size-selected metallic nanoclusters and their utilization for gas sensor applications is presented. Special focus will be given to the enhancement of the sensing performance through the rational functionalization and utilization of different nanocluster materials.

  11. A tunable strain sensor using nanogranular metals.

    Science.gov (United States)

    Schwalb, Christian H; Grimm, Christina; Baranowski, Markus; Sachser, Roland; Porrati, Fabrizio; Reith, Heiko; Das, Pintu; Müller, Jens; Völklein, Friedemann; Kaya, Alexander; Huth, Michael

    2010-01-01

    This paper introduces a new methodology for the fabrication of strain-sensor elements for MEMS and NEMS applications based on the tunneling effect in nano-granular metals. The strain-sensor elements are prepared by the maskless lithography technique of focused electron-beam-induced deposition (FEBID) employing the precursor trimethylmethylcyclopentadienyl platinum [MeCpPt(Me)(3)]. We use a cantilever-based deflection technique to determine the sensitivity (gauge factor) of the sensor element. We find that its sensitivity depends on the electrical conductivity and can be continuously tuned, either by the thickness of the deposit or by electron-beam irradiation leading to a distinct maximum in the sensitivity. This maximum finds a theoretical rationale in recent advances in the understanding of electronic charge transport in nano-granular metals.

  12. A Tunable Strain Sensor Using Nanogranular Metals

    Directory of Open Access Journals (Sweden)

    Friedemann Völklein

    2010-11-01

    Full Text Available This paper introduces a new methodology for the fabrication of strain-sensor elements for MEMS and NEMS applications based on the tunneling effect in nano-granular metals. The strain-sensor elements are prepared by the maskless lithography technique of focused electron-beam-induced deposition (FEBID employing the precursor trimethylmethylcyclopentadienyl platinum [MeCpPt(Me3]. We use a cantilever-based deflection technique to determine the sensitivity (gauge factor of the sensor element. We find that its sensitivity depends on the electrical conductivity and can be continuously tuned, either by the thickness of the deposit or by electron-beam irradiation leading to a distinct maximum in the sensitivity. This maximum finds a theoretical rationale in recent advances in the understanding of electronic charge transport in nano-granular metals.

  13. A Tunable Strain Sensor Using Nanogranular Metals

    Science.gov (United States)

    Schwalb, Christian H.; Grimm, Christina; Baranowski, Markus; Sachser, Roland; Porrati, Fabrizio; Reith, Heiko; Das, Pintu; Müller, Jens; Völklein, Friedemann; Kaya, Alexander; Huth, Michael

    2010-01-01

    This paper introduces a new methodology for the fabrication of strain-sensor elements for MEMS and NEMS applications based on the tunneling effect in nano-granular metals. The strain-sensor elements are prepared by the maskless lithography technique of focused electron-beam-induced deposition (FEBID) employing the precursor trimethylmethylcyclopentadienyl platinum [MeCpPt(Me)3]. We use a cantilever-based deflection technique to determine the sensitivity (gauge factor) of the sensor element. We find that its sensitivity depends on the electrical conductivity and can be continuously tuned, either by the thickness of the deposit or by electron-beam irradiation leading to a distinct maximum in the sensitivity. This maximum finds a theoretical rationale in recent advances in the understanding of electronic charge transport in nano-granular metals. PMID:22163443

  14. Influence of metal roughness on SPR sensor performance

    Science.gov (United States)

    Agarwal, Sajal; Prajapati, Y. K.; Singh, V.

    2017-01-01

    Roughness of the nano-layer greatly affects the sensor performance. This study is done to quantify the effect of roughness on the sensor performance experimentally. It is seen that the increased thickness of the top metal layer degrades the sensor performance i.e. sensitivity and detection accuracy. The roughness effect on the surface is seen by varying the thickness of intermediate and top metal layers separately. It is seen that 2-5 nm thick intermediate layer and 50 nm thick top layer provides better performance of sensor. Also, mathematical equations are included for the sake of theoretical analysis which indicates the effect of surface roughness on the sensor performance.

  15. Structural elements of metal selectivity in metal sensor proteins.

    Science.gov (United States)

    Pennella, Mario A; Shokes, Jacob E; Cosper, Nathaniel J; Scott, Robert A; Giedroc, David P

    2003-04-01

    Staphylococcus aureus CzrA and Mycobacterium tuberculosis NmtR are homologous zinccobalt-responsive and nickelcobalt-responsive transcriptional repressors in vivo, respectively, and members of the ArsRSmtB superfamily of prokaryotic metal sensor proteins. We show here that Zn(II) is the most potent negative allosteric regulator of czr operatorpromoter binding in vitro with the trend Zn(II)>Co(II)Ni(II), whereas the opposite holds for the binding of NmtR to the nmt operatorpromoter, Ni(II)>Co(II)>Zn(II). Characterization of the metal coordination complexes of CzrA and NmtR by UVvisible and x-ray absorption spectroscopies reveals that metals that form four-coordinate tetrahedral complexes with CzrA [Zn(II) and Co(II)] are potent regulators of DNA binding, whereas metals that form five- or six-coordinate complexes with NmtR [Ni(II) and Co(II)] are the strongest allosteric regulators in this system. Strikingly, the Zn(II) coordination complexes of CzrA and NmtR cannot be distinguished from one another by x-ray absorption spectroscopy, with the best fit a His-3-carboxylate complex in both cases. Inspection of the primary structures of CzrA and NmtR, coupled with previous functional data, suggests that three conserved His and one Asp from the C-terminal alpha5 helix donate ligands to create a four-coordinate complex in both CzrA and NmtR, with NmtR uniquely capable of expanding its coordination number in the Ni(II) and Co(II) complexes by recruiting additional His ligands from a C-terminal extension of the alpha5 helix.

  16. Metal selectivity determinants in a family of transition metal transporters.

    Science.gov (United States)

    Podar, Dorina; Scherer, Judith; Noordally, Zeenat; Herzyk, Pawel; Nies, Dietrich; Sanders, Dale

    2012-01-27

    Metal tolerance proteins (MTPs) are plant members of the cation diffusion facilitator (CDF) transporter family involved in cellular metal homeostasis. Members of the CDF family are ubiquitously found in all living entities and show principal selectivity for Zn(2+), Mn(2+), and Fe(2+). Little is known regarding metal selectivity determinants of CDFs. We identified a novel cereal member of CDFs in barley, termed HvMTP1, that localizes to the vacuolar membrane. Unlike its close relative AtMTP1, which is highly selective for Zn(2+), HvMTP1 exhibits selectivity for both Zn(2+) and Co(2+) as assessed by its ability to suppress yeast mutant phenotypes for both metals. Expression of HvMTP1/AtMTP1 chimeras in yeast revealed a five-residue sequence within the AtMTP1 N-segment of the His-rich intracytoplasmic loop that confines specificity to Zn(2+). Furthermore, mutants of AtMTP1 generated through random mutagenesis revealed residues embedded within transmembrane domain 3 that additionally specify the high degree of Zn(2+) selectivity. We propose that the His-rich loop, which might play a role as a zinc chaperone, determines the identity of the metal ions that are transported. The residues within transmembrane domain 3 can also influence metal selectivity, possibly through conformational changes induced at the cation transport site located within the membrane or at the cytoplasmic C-terminal domain.

  17. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    Directory of Open Access Journals (Sweden)

    Marsha C. Kanan

    2009-10-01

    Full Text Available A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO based sensors for the selective and sensitive detection of various environmental pollutants is presented.

  18. Metal Rubber Sensor Appliquis for Rotor Blade Air Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thin film Metal RubberTM sensor appliqus have the potential to reduce the time, complexity and cost of measuring air flow-induced skin friction during the...

  19. Advanced Metal Rubber Sensors for Hypersonic Decelerator Entry Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to design and develop light-weight, low-modulus, and durable Metal Rubber™ sensors for aeroelastic analysis of Hypersonic Decelerator Entry...

  20. Measurement system for resistive metal oxide sensors matrix

    Science.gov (United States)

    Róg, Piotr; Rydosz, Artur; Brudnik, Andrzej

    2016-12-01

    The measurement system for laboratory array of gas sensors was constructed. The system can be used to measure the response characteristic of resistive metal oxide (MOx) gas sensors. Proposed system is flexible and reconfigurable easy, to perform high and low resistivity measurements.

  1. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa

    2015-01-01

    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  2. DNA as sensors and imaging agents for metal ions.

    Science.gov (United States)

    Xiang, Yu; Lu, Yi

    2014-02-17

    Increasing interest in detecting metal ions in many chemical and biomedical fields has created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal-ion-dependent DNAzymes and metal-ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attachment of these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detection. These sensors are highly sensitive (with a detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of "dipstick tests", portable fluorometers, computer-readable disks, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal-ion sensing and imaging in many fields of applications.

  3. Development of oxygen sensors for use in liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, Rudi [Institutt for Energiteknikk, Halden, (Norway); Ejenstam, Jesper; Szakalos, Peter [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Stockholm, (Sweden)

    2015-07-01

    For generation IV reactor concepts, based on liquid metal cooling, there is a need for robust oxygen sensors which can be used in the core of the reactor since corrosion can only be kept sufficiently low by controlling the dissolved oxygen content in the liquid metal. A robust, ceramic membrane type sensor has been developed at IFE/Halden (Norway) and tested in an autoclave system at KTH (Sweden). The sensor has been tested in lead-bismuth at 550 deg. C and performed well. (authors)

  4. Chemical sensors based on molecularly modified metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haick, Hossam [Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2007-12-07

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  5. Soft metal constructs for large strain sensor membrane

    Science.gov (United States)

    Michaud, Hadrien O.; Teixidor, Joan; Lacour, Stéphanie P.

    2015-03-01

    Thin gold films on silicone display large reversible change in electrical resistance upon stretching. Eutectic liquid metal conductors maintain bulk metal conductivity, even upon extensive elongation. When integrated together, the soft metals enable multidirectional, large strain sensor skin. Their fabrication process combines thermal evaporation of thin gold film patterns through stencil mask with microplotting of eutectic gallium indium microwires, and packaging in silicone rubber. Using three-element rectangular rosettes, we demonstrate a sensor skin that can reliably and locally quantify the plane strain vector in surfaces subject to stretch (up to 50% strain) and indentation. This hybrid technology will find applications in soft robotics, prosthetics and wearable health monitoring systems.

  6. Metal oxide blended ZSM-5 nanocomposites as ethanol sensors

    Indian Academy of Sciences (India)

    MADHURI LAKHANE; RAJENDRA KHAIRNAR; MEGHA MAHABOLE

    2016-10-01

    Nano-ZSM-5 is synthesized without organic template via microwave-assisted hydrothermal technique. The synthesized nano-ZSM-5 zeolite is blended with metal oxides (ZnO and TiO$_2$) to have novel composites as ethanol sensors. The composites are characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques. A study on ethanol sensing behaviour of metal oxide blended composite screen-printed thick films is carried out and the effect of metal oxide concentration on various ethanol sensing features, specifically operating temperature, response/recovery time and active region of the sensor, are investigated. XRD and FTIR confirm the blending of metal oxides in ZSM-5 matrix. Both, ZnO and TiO$_2$ blended, composite films are sensitive to ethanol. It can be concluded that metal oxide blending improves the preformance of sensor for ethanol detection. The response/recovery time and active sensing regions depend upon the concentration of metal oxide in host zeolite. The ZnO/ZSM-5 and TiO$_2$/ZSM-5 composite films are the excellent ethanol sensors.

  7. Development of metal oxide impregnated stilbite thick film ethanol sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mahabole, M. P., E-mail: kashinath.bogle@gmail.com; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded - 431606 (India)

    2016-05-06

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO{sub 2} and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  8. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  9. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    OpenAIRE

    Zhenzhong Guo; Anca Florea; Mengjuan Jiang; Yong Mei; Weiying Zhang; Aidong Zhang; Robert Săndulescu; Nicole Jaffrezic-Renault

    2016-01-01

    The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF) for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclu...

  10. Family of lifetime sensors for medical purposes

    Science.gov (United States)

    Lippitsch, Max E.; Draxler, Sonja

    1995-05-01

    A family of indicators has been developed for fluorescence lifetime-based measurement of oxygen, pH, carbon dioxide, and potassium, all the indicators being derivatives of the same chemical compound and having identical spectral and lifetime properties. The indicators show an absorption accessible to low- cast light sources, a large Stokes shift, and long fluorescence decay time. all indicators can be excited at the same excitation wavelength, monitored at the same emission wavelength, and measured within the same time range. This opens the possibility of building a compact lifetime-based instrument to simultaneously measure blood gases and cations.

  11. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  12. Miniaturized metal oxide pH sensors for bacteria detection.

    Science.gov (United States)

    Uria, Naroa; Abramova, Natalia; Bratov, Andrey; Muñoz-Pascual, Francesc-Xavier; Baldrich, Eva

    2016-01-15

    It is well known that the metabolic activity of some microorganisms results in changes of pH of the culture medium, a phenomenon that can be used for detection and quantification of bacteria. However, conventional glass electrodes that are commonly used for pH measurements are bulky, fragile and expensive, which hinders their application in miniaturized systems and encouraged to the search for alternatives. In this work, two types of metal oxide pH sensors have been tested to detect the metabolic activity of the bacterium Escherichia coli (E. coli). These pH sensors were produced on silicon chips with platinum metal contacts, onto which thin layers of IrOx or Ta2O5 were incorporated by two different methods (electrodeposition and e-beam sputtering, respectively). In order to facilitate measurement in small sample volumes, an Ag/AgCl pseudo-reference was also screen-printed in the chip and was assayed in parallel to an external Ag/AgCl reference electrode. As it is shown, the developed sensors generated results indistinguishable from those provided by a conventional glass pH-electrode but could be operated in significantly smaller sample volumes. After optimization of the detection conditions, the metal oxide sensors are successfully applied for detection of increasing concentrations of viable E. coli, with detection of less than 10(3)cfu mL(-1) in undiluted culture medium in just 5h.

  13. New radiation sensor embedded in a metal detection unit

    Energy Technology Data Exchange (ETDEWEB)

    Osovizky, A.; Cohen-Zada, I.; Vulasky, E.; Ginzburg, D.; Manor, A.; Ankry, N.; Pushkarsky, V.; Lefevre, M. [Health Physics Instrumentation Department, Rotem Industries Ltd. (Israel); Ghelman, M.; Marcus, E.; Kadmon, Y.; Cohen, Y. [Electronics and Control Laboratories, Nuclear Research Center - Negev, Beer-Sheva (Israel)

    2009-07-01

    This work introduces the embedment of a radiation detection unit within a metal detector. The radiation sensor, based on the Silicon Photomultiplier (SiPM) coupled to a scintillation crystal, was successfully incorporated into a common metal detection unit. The results for sensitivity are presented. The study also shows that SiPM is not affected by microphone noises (which make PIN-diodes improper to some applications) and by the alternating type of the voltage supply (which means that SiPM can be used either in portable or in stationary applications)

  14. In Vivo Metal Ion Imaging Using Fluorescent Sensors.

    Science.gov (United States)

    Van de Bittner, Genevieve C; Hirayama, Tasuku

    2016-01-01

    In vivo imaging in living animals provides the ability to monitor alterations of signaling molecules, ions, and other biological components during various life stages and in disease. The data gained from in vivo imaging can be used for biological discovery or to determine elements of disease progression and can inform the development and translation of therapeutics. Herein, we present theories behind small-molecule, fluorescent, metal ion sensors as well as the methods for their successful application to in vivo metal ion imaging, including ex vivo validation.

  15. Hydrogen sensor based on metallic photonic crystal slabs.

    Science.gov (United States)

    Nau, D; Seidel, A; Orzekowsky, R B; Lee, S-H; Deb, S; Giessen, H

    2010-09-15

    We present a hydrogen sensor based on metallic photonic crystal slabs. Tungsten trioxide (WO(3)) is used as a waveguide layer below an array of gold nanowires. Hydrogen exposure influences the optical properties of this photonic crystal arrangement by gasochromic mechanisms, where the photonic crystal geometry leads to sharp spectral resonances. Measurements reveal a change of the transmission depending on the hydrogen concentration. Theoretical limits for the detection range and sensitivity of this approach are discussed.

  16. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    George F. Fine

    2010-06-01

    Full Text Available Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition.

  17. Characterization of a New Family of Metal Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Mary Lou Geurinot; David Eide

    2002-04-29

    Metal ions are critical nutrients, yet overaccumulation of these same metals can also be toxic. To maintain appropriate intracellular levels, cells require specific metal uptake systems that are subject to precise homeostatic regulation. The long-range goal of our research is to define the molecular mechanism(s) and regulation of metal ion uptake in eukaryotic cells. Integrating genetic, molecular biological and biochemical approaches, we have examined these processes in the yeast Saccharomyces cerevisiae and the plant Arabidopsis thaliana. Both are proven model systems for studying fundamental cellular processes. Our work has focused on the ZIP family of metal transporters which we identified; this family has representatives in bacteria, fungi, plants and animals. IRT, one of the founding members of the ZIP family, is an essential cation transporter that is expressed in the epidermal cells of iron deficient plant roots and is responsible for uptake of iron from the soil. We now know that there are 15 ZIP genes in the Arabidopsis and the similarities among their encoded gene products. The ZIP family members display different substrate specificities for metals and different tissue distributions in Arabidopsis. Moreover, the family members respond differentially to metal deficiencies. For example, IRT1, ZIP6 and ZIP9 mRNA are expressed mainly in the roots of iron deficient plants whereas ZIP4 responds to both iron and zinc deficiency. Work in both yeast and Arabidopsis has addressed substrate specificity as well as how these transporters are regulated in response to metal availability

  18. Ultrafast response sensor to formaldehyde gas based on metal oxide.

    Science.gov (United States)

    Choi, N-J; Lee, H-K; Moon, S E; Kim, J; Yang, W S

    2014-08-01

    Thick film semiconductor gas sensors based on indium oxide were fabricated on Si substrate. The sensing materials on Si substrate were characterized using optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and so on. They were very fine and uniform and we found out that particle sizes were about 20~30 nm through XRD analysis. Gas responses of fabricated sensors were measured in a chamber where gas flow was controlled by mass flow controller (MFC). Their resistance changes were monitored in real time by using data acquisition board and personal computer. Gas response characteristics were examined for formaldehyde (HCHO) gas which was known as the cause of sick building syndrome. Particularly, the sensors showed responses to formaldehyde gas at sub ppm (cf, standard of natural environment in building is about 80 ppb by ministry of environment in Korea), as a function of operating temperatures and gas concentrations. Also, we investigated sensitivity, repetition, selectivity, response speed and reproducibility of the sensors. The lowest detection limit is HCHO 25 ppb and sensitivity at 800 ppb is over 25% at 350 °C operating temperature. The response time (8 s) and recovery time (15 s) to HCHO gas at 200 ppb were very fast compared to other commercial products in flow type measurement condition. Repetition measurement was very good with ±3% in full measurement range. The fabricated metal oxide gas sensor showed good performance to HCHO gas and proved that it could be adaptable to indoor environment in building.

  19. A Wireless Sensor Network for Monitoring Atmospheric Aggressiveness in Metals

    Directory of Open Access Journals (Sweden)

    Pablo Pancardo

    2011-12-01

    Full Text Available Humid tropical climate favours the existence of a c orrosive atmosphere that causes deterioration of me tals. This article describes an automated system for moni toring environmental values (temperature and relati ve humidity in order to know the time of wetness (TOW , which is key factor in determining the atmospher ic aggressiveness which are exposed the metals used, f or example, in industrial facilities. System is implemented on a wireless sensor network and the ma in function of the software developed is to count t he time of wetness which is considered the effective t ime in which metals corrode. System was designed considering the user requirements as the selection of the frequency of measurements, the calculation o f TOW and verification of the residual energy of sens or nodes. The results show the effectiveness of the technology used, so that, we can conclude that this type of networks represent a feasible alternative for automated monitoring of corrosion in metals.

  20. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    Science.gov (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2011-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  1. Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors

    Science.gov (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  2. Organic Membranes for Selectivity Enhancement of Metal Oxide Gas Sensors

    Directory of Open Access Journals (Sweden)

    Thorsten Graunke

    2016-01-01

    Full Text Available We present the characterization of organic polyolefin and thermoplastic membranes for the enhancement of the selectivity of metal oxide (MOX gas sensors. The experimental study is done based on theoretical considerations of the membrane characteristics. Through a broad screening of dense symmetric homo- and copolymers with different functional groups, the intrinsic properties such as the mobility or the transport of gases through the matrix were examined in detail. A subset of application-relevant gases was chosen for the experimental part of the study: H2, CH4, CO, CO2, NO2, ethanol, acetone, acetaldehyde, and water vapor. The gases have similar kinetic diameters and are therefore difficult to separate but have different functional groups and polarity. The concentration of the gases was based on the international indicative limit values (TWA, STEL. From the results, a simple relationship was to be found to estimate the permeability of various polar and nonpolar gases through gas permeation (GP membranes. We used a broadband metal oxide gas sensor with a sensitive layer made of tin oxide with palladium catalyst (SnO2:Pd. Our aim was to develop a low-cost symmetrical dense polymer membrane to selectively detect gases with a MOX sensor.

  3. High-Resolution Plasmonic Refractive-Index Sensor Based on a Metal-Insulator-Metal Structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-Hu; HUANG Xu-Guang; MEI Xian

    2011-01-01

    @@ A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matched layer absorbing boundary condition.Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing.Based on the relationship,the refractive index of the material can be obtained from the detection of one of the resonant wavelengths.The resolution of refractive index of the nanometeric plasmonic sensor can reach as high as 10-6,giving the wavelength resolution of 0.01 nm.It could be applied to highly-resolution biological sensing.%A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matcted layer absorbing boundary conditition. Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing. Based on the relationship, the refractive index of the material can be obtained from the detection of one of the resonant wavelengths. The resolutio of refractive index of the nanometeric plasmonic sensor can reach as high as 1O-6, giving the wavelength resolution of 0.01 nm. It could be applied to highly- resolution biological sensing.

  4. Synthesis of Novel Metal Ion Sensors Based on DNA-Metal Interactions

    Institute of Scientific and Technical Information of China (English)

    Akira Ono; Shiqi Cao; Humika Togashi; Yoko Miyake

    2005-01-01

    @@ 1Introduction The interactions of metal ions with nucleic acids, nucleosides, and nucleo-bases have been extensively investigated[1,2]. We have reported that thymine-thymine (T-T) and cytosine-cytosine (C- C) miss base pairs in DNA duplexes highly selectively capture HgⅡ ion and Ag Ⅰ ion, which result in formations of metal-mediated base pairs, T-HgⅡ -T and C-AgⅠ -C, in duplexes[3]. The phenomenon is expected to be useful for a variety of studies such as synthesis of nano-wires containing metal ions, developing metal-ion sensing methods, etc.Here, we report novel oligodeoxyribonucleotide (ODN)-based sensors that detect HgⅡ ions and AgⅠ ions in aqueous solutions.

  5. Nanoscale temperature sensor based on Fano resonance in metal-insulator-metal waveguide

    Science.gov (United States)

    Kong, Yan; Wei, Qi; Liu, Cheng; Wang, Shouyu

    2017-02-01

    In order to realize temperature measurements with high sensitivity using compact structure, a nanoscale metal-insulator-metal waveguide based sensor combining with Fano resonance is proposed in this paper. Sealed ethanol in resonant cavity is adopted to further improve sensing performance. Additionally, dual resonant cavity based configuration is designed to generate a Fano-based sharp and asymmetric spectrum, providing high figure of merit in measurements. Moreover, structural parameters are optimized considering both transmission rate and spectral peak width. Certified by numerical calculation, sensitivity of 0.36 nm/°C is acquired with the optimized structure, indicating the designed sensor can play an important role in the nano-integrated plasmonic devices for high-accurate temperature detection.

  6. Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yuqiao Zeng

    2014-01-01

    Full Text Available We report the formation of enzyme-free electrochemical glucose sensors by electrochemical dealloying palladium-containing Pd-Ni-P metallic glasses. When metallic glasses with different Pd contents are used as the dealloying precursor alloys, palladium-based nanoporous metals with different ligament and pore sizes can be obtained. The chemical compositions of the nanoporous metals also vary according to the different precursor compositions. All the as-obtained nanoporous metals exhibit electrochemical catalytic activity towards the oxidation of d-glucose, indicating that the nanoporous metals prepared by dealloying the Pd-Ni-P metallic glasses are promising materials for enzyme-free electrochemical glucose sensor.

  7. Proton conducting ceramics for potentiometric hydrogen sensors for molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Borland, H.; Llivina, L.; Colominas, S.; Abellà, J., E-mail: jordi.abella@iqs.edu

    2013-10-15

    Highlights: • Synthesis and chemical characterization of proton conductor ceramics. • Qualification of ceramics for hydrogen sensors in molten lithium–lead. • Ceramics have well-defined grains with a wide distribution of sizes. • Good agreement with predictions obtained with BaZrY, BaCeZrY and SrFeCo ceramics. -- Abstract: Tritium monitoring in lithium–lead eutectic (Pb–15.7Li) is of great importance for the performance of liquid blankets in fusion reactors. Also, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. Potentiometric hydrogen sensors for molten lithium–lead eutectic have been designed at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS) at Barcelona and are under development and qualification. The probes are based on the use of solid state electrolytes and works as proton exchange membranes (PEM). In this work the following compounds: BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−α}, Sr(Ce{sub 0.6}-Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−α} and Sr{sub 3}Fe{sub 1.8}Co{sub 2}O{sub 7} have been synthesized in order to be tested as PEM H-probes. Potentiometric measurements of the synthesized ceramic elements at 500 °C have been performed at a fixed hydrogen concentration. The sensors constructed using the proton conductor elements BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} and Sr{sub 3}Fe{sub 1.8}Co{sub 0.2}O{sub 7−δ} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation (deviation around 60 mV). In contrast, the sensor constructed using the proton conductor element Sr(Ce{sub 0.6}–Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−δ} showed a deviation higher than 100 mV between experimental an theoretical data.

  8. Research on the Detection of Metal Debris with Microplane Inductance Sensor

    Directory of Open Access Journals (Sweden)

    Bendong Liu

    2013-01-01

    Full Text Available The debris detection system is simulated and analyzed with the software of Maxwell 14 in this paper. The magnetic induction intensity and the magnetic density of the detection system with metal debris are simulated. The static experimental system is designed to measure the inductance caused by different metal debris. The simulation and experimental result indicate that the nonferromagnetic metal debris reduces the inductance of microplane inductance sensor and that ferromagnetic metal debris increases the inductance of microplane sensor. The detection of metal debris with microplane sensor is feasibly proved by the research. This paper provides a model for detecting the debris with a plane eddy current sensor and a case for the 3D simulation of the eddy current. This work may have some significance for improving the efficiency of the plane eddy current sensor.

  9. Angular output of hollow, metal-lined, waveguide Raman sensors

    Energy Technology Data Exchange (ETDEWEB)

    Biedrzycki, Stephen; Buric, Michael P.; Falk, Joel; Woodruff, Steven D.

    2012-04-20

    Hollow, metal-lined waveguides used as gas sensors based on spontaneous Raman scattering are capable of large angular collection. The collection of light from a large solid angle implies the collection of a large number of waveguide modes. An accurate estimation of the propagation losses for these modes is required to predict the total collected Raman power. We report a theory/experimental comparison of the Raman power collected as a function of the solid angle and waveguide length. New theoretical observations are compared with previous theory appropriate only for low-order modes. A cutback experiment is demonstrated to verify the validity of either theory. The angular distribution of Raman light is measured using aluminum and silver-lined waveguides of varying lengths.

  10. Magneto-inductive Sensors for Metallic Ropes in Lift Application

    Directory of Open Access Journals (Sweden)

    Aldo CANOVA

    2010-12-01

    Full Text Available In this paper an innovative system for the contemporary, selective and reliable control of integrity of multiple rope plants is presented. The system is based on magneto-inductive technology and is composed by a magnetic detector connected to an acquisition system. The core of the detector is constituted by an array of Hall sensors properly placed inside the instrument. After a brief introduction to the Non Destructive Techniques applied to the control of metallic ropes, the first part paper deals with the design and behavior of the detector and the acquisition system. In the second part of the paper a performance analysis for different rope size and experimental results on an elevator plants is presented and discussed.

  11. Design of Highly Sensitive Surface Plasmon Resonance Sensors Using Planar Metallic Films Closely Coupled to Nanogratings

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Yan; XIE Wen-Chong; LIU De-Ming

    2008-01-01

    We investigate the sensitivity enhancement of surface plasmon resonance(SPR)sensors using planar metallic films closely coupled to nanogratings.The strong coupling between localized surface plasmon resonances(LSPRs)presenting in metallic nanostructures and surface plasmon polaritons(SPPs)propagating at the metallic film surface leads to changes of resonance reflection properties,resulting in enhanced sensitivity of SPR sensors.The effects of thickness of the metallic films,grating period and metal materials on the refractive index sensitivity of the device are investigated.The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 543 nm/RIU(refractive index unit)using optimized structure parameters.Our study on SPR sensors using planar metallic films closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity.

  12. A Novel Electrochemical Oxygen Sensor for Determination of Ultra-low Oxygen Contents in Molten Metal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel electrochemical oxygen sensor has been developed by using La-Al2O3 as solid electrolyte and Cr+Cr2O3 as reference electrode. The sensor not only can be used as normal oxygen sensor but also as an ultra-low oxygen sensor. Especially, it is very sensitive to measure ultra-low oxygen in molten metal. For estimating the accuracy of La-Al2O3 oxygen sensor, two series of oxygen activities in molten iron at different oxygen contents and different temperature were measured by both La-Al2O3 oxygen sensor and ZrO2 oxygen sensor. The theoretical values of oxygen activities in molten iron (3.30%C, in mass fraction) at 1723K and 1745K were also evaluated for comparing the measuring results of two sensors. At last, the error of measurement for La-Al2O3 oxygen sensor was discussed too.

  13. Tunable magnetic flux sensor using a metallic Rashba ring with half-metal electrodes

    Science.gov (United States)

    Chen, J.; Jalil, M. B. A.; Tan, S. G.

    2011-04-01

    We propose a magnetic field sensor consisting of a square ring made of metal with a strong Rashba spin-orbital coupling (RSOC) and contacted to half-metal electrodes. Due to the Aharonov-Casher effect, the presence of the RSOC imparts a spin-dependent geometric phase to conduction electrons in the ring. The combination of the magnetic flux emanating from the magnetic sample placed below the ring, and the Aharonov-Casher effect due to RSOC results in spin interference, which modulates the spin transport in the ring nanostructure. By using the tight-binding nonequilibrium Green's function formalism to model the transport across the nanoring detector, we theoretically show that with proper optimization, the Rashba ring can function as a sensitive and tunable magnetic probe to detect magnetic flux.

  14. Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks.

    Science.gov (United States)

    Campbell, Michael G; Liu, Sophie F; Swager, Timothy M; Dincă, Mircea

    2015-11-04

    Applications of porous metal-organic frameworks (MOFs) in electronic devices are rare, owing in large part to a lack of MOFs that display electrical conductivity. Here, we describe the use of conductive two-dimensional (2D) MOFs as a new class of materials for chemiresistive sensing of volatile organic compounds (VOCs). We demonstrate that a family of structurally analogous 2D MOFs can be used to construct a cross-reactive sensor array that allows for clear discrimination between different categories of VOCs. Experimental data show that multiple sensing mechanisms are operative with high degrees of orthogonality, establishing that the 2D MOFs used here are mechanistically unique and offer advantages relative to other known chemiresistor materials.

  15. Preparation and Application of Film Sensor for Metal Structure Crack Monitoring

    Directory of Open Access Journals (Sweden)

    Bo HOU

    2015-11-01

    Full Text Available A crack monitoring technique is desired to ensure the safety and reliability of metallic structures. In the present study, a conductive film sensor was presented to monitor structural cracks in metal structures in real-time based on the electrical potential method. First, a Ti/TiN film sensor was prepared on the fatigue critical portion of a 2A12-T4 aluminum alloy specimen by vacuum ion plating technology, which allows firm integration with the metal surface. A finite element model (FEM of the Ti/TiN film sensor was then constructed and the changes in the output of the sensor along with corresponding changes in crack propagation were discussed. The results indicated that the Ti/TiN film sensor has high sensitivity to cracks and it is feasible to monitor structural surface cracks using the sensor. Finally, crack monitoring experiments were carried out based on the Ti/TiN film sensor. Experimental results showed that the output potential curve of the Ti/TiN film sensor contained several regions, which corresponded to plastic deformation accumulation, crack propagation, and sensor failure, respectively. Therefore, the information on the origination and propagation of structural cracks can be gained through analyzing changes in slope of the output potential values of the Ti/TiN film sensor with respect to time.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9623

  16. Metal Rubber^TM Sensors for Skin Friction Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop conformal thin film sensors and sensor arrays for the direct measurement and mapping of distributed skin...

  17. Surface functionalization by gold nanoparticles and its prospects for application in conductometric metal oxide gas sensors

    Science.gov (United States)

    Korotcenkov, G.; Brinzari, V.; Cho, B. K.

    2017-03-01

    Approaches to surface functionalizing by gold nanoparticles of metal oxides aimed for gas sensors applications are discussed in this paper. It is demonstrated that surface modification by gold nanoparticles is accompanied by improvement of sensor performance. However, analysis of obtained results has shown that the achievement of strong improvement of gas sensor parameters is not a trivial task. For its reduction, it is necessary to ensure several specific conditions related to the size and density of gold clusters on the surface of metal oxide crystallites, the state of gold in the cluster, and to the properties of the metal oxide support used. It is also demonstrated that additional studies are required before conductometric gas sensors modified by gold nanoclusters will appear in gas-sensor market.

  18. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review

    OpenAIRE

    2015-01-01

    The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1) descr...

  19. Portable Sensor for Rapid In Situ Measurement of Trace Toxic Metals in Water Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a sensor to detect select trace toxic heavy metals (Ag, Cd, Mn, Ni, and Zn) in water is proposed. Using an automatic side-stream sampling technique,...

  20. Flexible Conformal Metal Rubber Sensors for Entry/Landing Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to design and develop light-weight, low-modulus, and durable Metal Rubber sensors for aeroelastic analysis of inflatable/flexible entry, descent,...

  1. Performances of different metals in optical fibre-based surface plasmon resonance sensor

    Indian Academy of Sciences (India)

    Navneet K Sharma

    2012-03-01

    The capability of various metals used in optical fibre-based surface plasmon resonance (SPR) sensing is studied theoretically. Four metals, gold (Au), silver (Ag), copper (Cu) and aluminium (Al) are considered for the present study. The performance of the optical fibre-based SPR sensor with four different metals is obtained numerically and compared in detail. The performance of optical fibre-based SPR sensor has been analysed in terms of sensitivity, signal-to-noise (SNR) ratio and quality parameter. It is found that the performance of optical fibre-based SPR sensor with Au metal is better than that of the other three metals. The sensitivity of the optical fibre-based SPR sensor with 50 nm thick and 10 mm long Au metal film of exposed sensing region is 2.373 m/RIU with good linearity, SNR is 0.724 and quality parameter is 48.281 RIU-1. The thickness of the metal film and the length of the exposed sensing region of the optical fibre-based SPR sensor for each metal are also optimized.

  2. Improvements in separation of non-ferrous scrap metals using an electromagnetic sensor

    NARCIS (Netherlands)

    Mesina, M.B.; De Jong, T.P.R.; Dalmijn, W.L.

    2003-01-01

    This article describes a new method for identification and separation of non-ferrous scrap metals using an electromagnetic sensor that is based on the eddy current principle. The electromagnetic sensor (EMS) is a prototype system that has been developed by Delft University of Technology in co-operat

  3. Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices.

    Science.gov (United States)

    Campbell, Michael G; Dincă, Mircea

    2017-05-12

    In the past decade, advances in electrically conductive metal-organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices.

  4. A New Fluorescent Sensor for Transition Metal Ions in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new fluorescent sensor consisted of fluorenyl and dioxotetraaza unit, namely, 2,10-dimethyl-6-(9-fluorenyl)-1,4,8,11-tetraazaundencane-5,7-dione (L), was synthesized. It is a fluorescent sensor for transition metal ions in aqueous solution.

  5. Improvements in separation of non-ferrous scrap metals using an electromagnetic sensor

    NARCIS (Netherlands)

    Mesina, M.B.; De Jong, T.P.R.; Dalmijn, W.L.

    2003-01-01

    This article describes a new method for identification and separation of non-ferrous scrap metals using an electromagnetic sensor that is based on the eddy current principle. The electromagnetic sensor (EMS) is a prototype system that has been developed by Delft University of Technology in

  6. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    Science.gov (United States)

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay.

  7. Resistive sensor and electromagnetic actuator for feedback stabilization of liquid metal walls in fusion reactors

    CERN Document Server

    Mirhoseini, S H M

    2016-01-01

    Liquid metal walls in fusion reactors will be subject to instabilities, turbulence, induced currents, error fields and temperature gradients that will make them locally bulge, thus entering in contact with the plasma, or deplete, hence exposing the underlying solid substrate. To prevent this, research has begun to actively stabilize static or flowing liquid metal layers by locally applying forces in feedback with thickness measurements. Here we present resistive sensors of liquid metal thickness and demonstrate jxB actuators, to locally control it.

  8. The Application of Metal Oxide Nanomaterials for Chemical Sensor Development

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.

    2007-01-01

    NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.

  9. Prospects of steady state magnetic diagnostic of fusion reactors based on metallic Hall sensors

    Science.gov (United States)

    Ďuran, I.; Sentkerestiová, J.; Kovařík, K.; Viererbl, L.

    2012-06-01

    Employment of sensors based on Hall effect (Hall sensors) is one of the candidate approaches to detection of almost steady state magnetic fields in future fusion reactors based on magnetic confinement (tokamaks, stellarators etc.), and also in possible fusion-fission hybrid systems having these fusion reactors as a neutron source and driver. This contribution reviews the initial considerations concerning application of metallic Hall sensors in fusion reactor harsh environment that include high neutron loads (>1018 cm-2) and elevated temperatures (>200°C). In particular, the candidate sensing materials, candidate technologies for sensors production, initial analysis of activation and transmutation of sensors under reactor relevant neutron loads and the tests of the the first samples of copper Hall sensors are presented.

  10. A Compact Ionic Polymer Metal Composite (IPMC System with Inductive Sensor for Closed Loop Feedback

    Directory of Open Access Journals (Sweden)

    Jiaqi Wang

    2015-05-01

    Full Text Available Ionic polymer metal composite (IPMC, of which a low actuating voltage (<5 V, high power efficiency and biocompatibility makes it a proven candidate for low power devices. However, due to its inherent nonlinear behaviour and time-variance, feedback control, as well as reliable sensing means, are required for accurate operations. This paper presents an IPMC actuator implemented with an inductive sensor to enhance the reliability and compactness of the overall device. A practical, low cost and importantly, compact inductive sensor fabricated on a printed circuit board (PCB is proposed here. Target material selections and coil design considerations are discussed. It is experimentally determined that the inductive sensor has comparable performance to a laser sensor. Based on a proportional-integral-derivative (PID control results the inductive sensor has demonstrated to be an alternative to a laser sensor allowing devices using IPMC actuators to be compact.

  11. Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria

    Directory of Open Access Journals (Sweden)

    Olesja Bondarenko

    2008-11-01

    Full Text Available A set of nine recombinant heavy metal-specific luminescent bacterial sensors belonging to Gram-negative (Escherichia and Pseudomonas and Gram-positive (Staphylococcus and Bacillus genera and containing various types of recombinant metalresponse genetic elements was characterized for heavy metal bioavailability studies. All nine strains were induced by Hg and Cd and five strains also by Zn. As a lowest limit, the sensors were detecting 0.03 μg·L-1 of Hg, 2 μg·L-1 of Cd and 400 μg·L-1 of Zn. Limit of determination of the sensors depended mostly on metal-response element, whereas the toxicity of those metals towards the sensor bacteria was mostly dependent on the type of the host bacterium, with Gram-positive strains being more sensitive than Gram-negative ones. The set of sensors was used to evaluate bioavailability of Hg, Cd and Zn in spiked soils. The bioavailable fraction of Cd and Zn in soil suspension assay (2.6 – 5.1% and 0.32 – 0.61%, of the total Cd and Zn, respectively was almost comparable for all the sensors, whereas the bioavailability of Hg was about 10-fold higher for Gram-negative sensor cells (30.5% of total Hg, compared to Gram-positive ones (3.2% of the total Hg. For Zn, the bioavailable fraction in soil-water suspensions and respective extracts was comparable (0.37 versus 0.33% of the total Zn. However, in the case of Cd, for all the sensors used and for Hg concerning only Gram-negative sensor strains, the bioavailable fraction in soilwater suspensions exceeded the water-extracted fraction about 14-fold, indicating that upon direct contact, an additional fraction of Cd and Hg was mobilized by those sensor bacteria. Thus, for robust bioavailability studies of heavy metals in soils any type of genetic metal-response elements could be used for the construction of the sensor strains. However, Gram-positive and Gram-negative senor strains should be used in

  12. Lightweight Metal RubberTM Sensors and Interconnects Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed program is to develop lightweight and highly elastic electrically conducting interconnects and strain sensor arrays for next generation...

  13. New urea sensor based on a metal island coated ion sensitive swelling polymer device

    Science.gov (United States)

    Schalkhammer, Thomas G. M.; Lobmaier, Christina; Pittner, Fritz; Leitner, Alfred; Brunner, Harald; Aussenegg, Franz R.

    1995-09-01

    An optical reflectivity change induced by a change of the micro environment around metal island is used to construct various sensors and biosensors. To obtain a sensitive micro sensor either the island density at the surface of the sensor device or the distance of an island layer film to a solid metal surface or to another island film can be varied. Polyvinylpyrrolidone crosslinked with sulfonated bisazidostilbenes shows chaotropic ion dependent nanometric shrinking and swelling which can be observed by using this polymer as interlayer in a metal island device. This volume change of the sensing polymer is transduced to an optical signal using a metal island film, followed by a thin layer of an optically transparent welling polymer and a further metal island film as the topmost layer, exposed to the analyte. This new set-up enables the spectroscopic monitoring of the reflectance change from the backside of the sensor chip not exposed to the analyte solution. For the construction of a biosensor the device was either covered by a photo-structured polyvinylpyrrolidone membrane incorporating the desired enzymes or combined with a micro enzyme reactor. The fully reversible response of the sensor is induced by carbonate and ammonium ions liberated from urea by immobilized urease.

  14. A combined sensor for simultaneous high resolution 2-D imaging of oxygen and trace metals fluxes

    DEFF Research Database (Denmark)

    Stahl, Henrik; Warnken, Kent W.; Sochaczewski, Lukasz

    2012-01-01

    A new sandwich sensor, consisting of an O-2 planar optode overlain by a thin (90 mu m) DGT layer is presented. This sensor can simultaneously resolve 2-D O-2 dynamics and trace metal fluxes in benthic substrates at a high spatial resolution. The DGT layer accumulates metals on a small particle size...... (0.2 mu m) chelating resin and records the locally induced trace metal flux during the deployment, whereas the planar optode resolves the O-2 dynamic in near real time at the same location in the sediment. Despite its ultrathin composition, the DGT layer has high carrying capacity for trace metals...... with no saturation problems during application to typical coastal-or contaminated sediments. Combined with laser ablation, accumulated metal fluxes could be resolved at a resolution of similar to 200 mu m, whereas the O-2 images had a resolution of similar to 100 mu m. A 2-D diffusion-reaction model showed...

  15. Electrochemical Metal Ion Sensors. Exploiting Amino Acids and Peptides as Recognition Elements

    Directory of Open Access Journals (Sweden)

    Wenrong Yang

    2001-08-01

    Full Text Available Amino acids and peptides are known to bind metal ions, in some cases very strongly. There are only a few examples of exploiting this binding in sensors. The review covers the current literature on the interaction of peptides and metals and the electrochemistry of bound metal ions. Peptides may be covalently attached to surfaces. Of particular interest is the attachment to gold via sulfur linkages. Sulfur-containing peptides (eg cysteine may be adsorbed directly, while any amino group can be covalently attached to a carboxylic acid-terminated thiol. Once at a surface, the possibility for using the attached peptide as a sensor for metal ions becomes realised. Results from the authors’ laboratory and elsewhere have shown the potential for selective monitoring of metal ions at ppt levels. Examples of the use of poly-aspartic acid and the copper binding peptide Gly-Gly-His for detecting copper ions are given.

  16. Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zongchao [College of Environment and Chemical Engineering & Key Lab of Hollow Fiber Membrane Materials & Membrane Process, Tianjin Polytechnic University, Tianjin 300387 (China); Wang, Fengqin, E-mail: wangfengqin@tjpu.edu.cn [College of Environment and Chemical Engineering & Key Lab of Hollow Fiber Membrane Materials & Membrane Process, Tianjin Polytechnic University, Tianjin 300387 (China); Lin, Xiangyi [Suzhou Huihe Pharmaceutical Limited Company, Suzhou 215200 (China); Wang, Chengmiao; Fu, Yiyuan; Wang, Xiaojun [College of Environment and Chemical Engineering & Key Lab of Hollow Fiber Membrane Materials & Membrane Process, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Yongnan [College of Materials and Engineering & Key Lab of Hollow Fiber Membrane Materials & Membrane Process, Tianjin Polytechnic University, Tianjin 300387 (China); Li, Guodong [The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130023 (China)

    2015-12-15

    Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)–based metal-organic frameworks, Zn{sub 3}L{sub 3}(DMF){sub 2} (1) and Zn{sub 3}L{sub 3}(DMA){sub 2}(H{sub 2}O){sub 3} (2) (L=4,4′-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe{sup 3+} and Al{sup 3+} by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significant fluorescence quenching effect for Fe{sup 3+}. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity. - Graphical abstract: Two MOFs have been selected as the fluorescence sensing materials for selectively sensing mitroaromatic compounds and metal ions. The high selectivity makes them promising fluorescence sensors for detecting and recognizing nitroaniline and Fe{sup 3+} or Al{sup 3+}.

  17. Fiber optic macro-bend based sensor for detection of metal loss

    Science.gov (United States)

    Li, Weijie; Ho, Siu Chun Michael; Luo, Mingzhang; Huynh, Quyen; Song, Gangbing

    2017-04-01

    Metal loss in metallic structures, often as a result of corrosion, is a severe problem across multiple industries. Catastrophic consequence of structural failure due to such loss of structural metal requires an accurate determination and assessment of corrosion. Widely used electrochemical methods can only suggest the likelihood of the metal loss due to corrosion while failing to provide a quantitative measure of the accumulated amount of corrosion. Due to its unique advantages such as small size, light weight, resistance to electromagnetic interference and corrosion, fiber optic sensing technique has been emerging as a promising alternative for most sensing applications. In this paper, a novel type of ferromagnetic distance-based metal loss sensor is proposed based on the principle of fiber optic macro-bend loss. The proposed sensor is composed of the bended optical fiber, the magnet and a spring. The magnet is connected to the spring and the fiber bend is attached to the spring in such a way that the movement of the magnet will induce a change in bending radius of the optical fiber. Metal loss in the monitored sample increases the distance between the magnet and the metal surface and thereby reducing the magnetic force. A change in magnetic force will lead to the variation in light intensity loss of the fiber optic macro-bend, thus metal loss, such as in the form of corrosion pits, can be detected by the proposed metal loss sensor. The practicality of the proposed distance sensor for metal loss measurement is validated through scanning the fabricated corrosion samples.

  18. Intelligent Design of Metal Oxide Gas Sensor Arrays Using Reciprocal Kernel Support Vector Regression

    Science.gov (United States)

    Dougherty, Andrew W.

    Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor

  19. High Sensitivity Transmission-Type SPR Sensor by Using Metallic-Dielectric Mixed Gratings

    Institute of Scientific and Technical Information of China (English)

    WU Bin; WANG Qing-Kang

    2008-01-01

    We theoretically investigate transmission-type SPR sensors with novel metallic-dielectric mixed gratings by rigorous coupled-wave analysis (RCWA),compared to the conventional dielectric gratings based structure.It is found that the transmittance efficiency and the full width at half-maximum (FWHM) of the transmission curve can be modulated by increasing or decreasing the metallic part.Therefore,appropriate proportion of metal part will induce enhancement factor of sensor merit.Furthermore,this novel structure will also bring enhancement of resonant angle shift,which can be explained by plasmonic interpretation based on a surface limited increase of interaction area and excitation of localized surface plasmons (LSPs).The proposed configuration has a wide range of potential applications not only as sensor but also other optical devices.

  20. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators

    Directory of Open Access Journals (Sweden)

    Yue Tang

    2017-04-01

    Full Text Available A surface plasmon polariton refractive index sensor based on Fano resonances in metal–insulator–metal (MIM waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.

  1. Metal hydrides for smart window and sensor applications

    NARCIS (Netherlands)

    Yoshimura, K.; Langhammer, C.; Dam, B.

    2013-01-01

    The hydrogenation of metals often leads to changes in optical properties in the visible range. This allows for fundamental studies of the hydrogenation process, as well as the exploration of various applications using these optical effects. Here, we focus on recent developments in metal hydride-base

  2. Catalytic-Metal/PdO(sub x)/SiC Schottky-Diode Gas Sensors

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Lukco, Dorothy

    2006-01-01

    Miniaturized hydrogen- and hydrocarbon-gas sensors, heretofore often consisting of Schottky diodes based on catalytic metal in contact with SiC, can be improved by incorporating palladium oxide (PdOx, where 0 less than or equal to x less than or equal to 1) between the catalytic metal and the SiC. In prior such sensors in which the catalytic metal was the alloy PdCr, diffusion and the consequent formation of oxides and silicides of Pd and Cr during operation at high temperature were observed to cause loss of sensitivity. However, it was also observed that any PdOx layers that formed and remained at PdCr/SiC interfaces acted as barriers to diffusion, preventing further deterioration by preventing the subsequent formation of metal silicides. In the present improvement, the lesson learned from these observations is applied by placing PdOx at the catalytic metal/SiC interfaces in a controlled and uniform manner to form stable diffusion barriers that prevent formation of metal silicides. A major advantage of PdOx over other candidate diffusion-barrier materials is that PdOx is a highly stable oxide that can be incorporated into gas sensor structures by use of deposition techniques that are standard in the semiconductor industry. The PdOx layer can be used in a gas sensor structure for improved sensor stability, while maintaining sensitivity. For example, in proof-of-concept experiments, Pt/PdOx/SiC Schottky-diode gas sensors were fabricated and tested. The fabrication process included controlled sputter deposition of PdOx to a thickness of 50 Angstroms on a 400-m-thick SiC substrate, followed by deposition of Pt to a thickness of 450 Angstroms on the PdOx. The SiC substrate (400 microns in thickness) was patterned with photoresist and a Schottky-diode photomask. A lift-off process completed the definition of the Schottky-diode pattern. The sensors were tested by measuring changes in forward currents at a bias potential of 1 V during exposure to H2 in N2 at temperatures

  3. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors

    Science.gov (United States)

    Çakır, M. Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-01-01

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption–dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively. PMID:27690048

  4. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors

    Directory of Open Access Journals (Sweden)

    M. Cihan Çakır

    2016-09-01

    Full Text Available Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption–dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  5. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review

    Directory of Open Access Journals (Sweden)

    A. S. M. A. Haseeb

    2012-05-01

    Full Text Available Recently one dimensional (1-D nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research.

  6. Progress in the development of semiconducting metal oxide gas sensors: a review

    Science.gov (United States)

    Moseley, Patrick T.

    2017-08-01

    Since the first suggestion, during the 1950s, that high-surface-area metal oxides could be used as conductometric gas sensors enormous efforts have been made to enhance both the selectivity and the sensitivity of such devices, and to reduce their operational power requirements. This development has involved the exploration of response mechanisms, the selection of the most appropriate oxide compositions, the fabrication of two-phase ‘hetero-structures’, the addition of metallic catalyst particles and the optimisation of the manner in which the materials are presented to the gas—the structure and the nanostructure of the sensing elements. Far more of the scientific literature has been devoted to seeking such improvements in metal oxide gas sensors than has been directed at all other solid-state gas sensors together. Recent progress in the research and development of metal oxide gas sensor technology is surveyed in this invited review. The advances that have been made are quite spectacular and the results of individual pieces of work are drawn together here so that trends can be seen. Emerging features include: the significance of n-type/p-type switching, the enhancement of sensing performance of materials through the incorporation of secondary components and the advantages of interrogating sensors with alternating current rather than direct current.

  7. Gas sensors based on one dimensional nanostructured metal-oxides: a review.

    Science.gov (United States)

    Arafat, M M; Dinan, B; Akbar, Sheikh A; Haseeb, A S M A

    2012-01-01

    Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO(2), TiO(2), In(2)O(3), WO(x), AgVO(3), CdO, MoO(3), CuO, TeO(2) and Fe(2)O(3). Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research.

  8. Design and Fabrication of Complementary Metal-Oxide-Semiconductor Sensor Chip for Electrochemical Measurement

    Science.gov (United States)

    Yamazaki, Tomoyuki; Ikeda, Takaaki; Kano, Yoshiko; Takao, Hidekuni; Ishida, Makoto; Sawada, Kazuaki

    2010-04-01

    An electrochemical sensor has been developed on a single chip in which potentiostat and sensor electrodes are integrated. Sensor chips were fabricated using 5.0 µm complementary metal-oxide-semiconductor (CMOS) technology. All processes including the CMOS process, postprocessing for fabricating sensor electrodes and passivation layers, and packaging were performed at Toyohashi University of Technology. The integration makes it possible to measure electrochemical signals without having to use a bulky external electrochemical system. The potential between the working electrode and the reference electrode was controlled using an on-chip potentiostat composed of CMOS transistors. The chip characteristics were verified by electrochemical measurement, namely, by cyclic voltammetry. Potassium ferricyanide solution was measured to obtain results that fit well to the theoretical formula. A clear proportional relationship between peak height and the concentration of the sample solution was obtained using the proposed sensor chip, and the dynamic range obtained was 0.10 to 8.0 mM.

  9. Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity.

    Science.gov (United States)

    Lin, Kaiqun; Lu, Yonghua; Chen, Junxue; Zheng, Rongsheng; Wang, Pei; Ming, Hai

    2008-11-10

    High sensitivity is obtained at larger resonant incident angle if negative diffraction order of metallic grating is used to excite the surface plasmon. A highly sensitive grating-based surface plasmon resonance (SPR) sensor is designed for the hydrogen detection. A thin palladium (Pd) film deposited on the grating surface is used as transducer. The influences of grating period and the thickness of Pd on the performance of sensor are investigated using rigorous coupled-wave analysis (RCWA) method. The sensitivity as well as the width of the SPR curves and reflective amplitude is considered simultaneously for designing the grating-based SPR hydrogen sensor, and a set of optimized structural parameters is presented. The performance of grating-based SPR sensor is also compared with that of conventional prism-based SPR sensor.

  10. First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors

    Science.gov (United States)

    Mckeeman, I.; Fusiek, G.; Perry, M.; Johnston, M.; Saafi, M.; Niewczas, P.; Walsh, M.; Khan, S.

    2016-09-01

    In this work we present the first large-scale demonstration of metal packaged fibre Bragg grating sensors developed to monitor prestress levels in prestressed concrete. To validate the technology, strain and temperature sensors were mounted on steel prestressing strands in concrete beams and stressed up to 60% of the ultimate tensile strength of the strand. We discuss the methods and calibration procedures used to fabricate and attach the temperature and strain sensors. The use of induction brazing for packaging the fibre Bragg gratings and welding the sensors to prestressing strands eliminates the use of epoxy, making the technique suitable for high-stress monitoring in an irradiated, harsh industrial environment. Initial results based on the first week of data after stressing the beams show the strain sensors are able to monitor prestress levels in ambient conditions.

  11. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  12. Family of fluorescence lifetime sensors for environmental purposes

    Science.gov (United States)

    Draxler, Sonja; Lippitsch, Max E.

    1995-09-01

    A family of indicators has been developed for measuring different analytes, all the indicators being derivatives of the same chemical compound and having identical spectral and lifetime properties. The indicators show an absorption accessible to low-cost light sources, a large Stokes shift, and a long fluorescence decay time. All indicators can be excited at the same excitation wavelength, monitored at the same emission wavelength, and measured within the same time range. This opens the possibility for a compact lifetime-based instrument for water monitoring.

  13. Lightweight Metal RubberTM Sensors and Interconnects Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Phase II program is to develop and increase the Technology Readiness Level of multifunctional Metal RubberTM (MRTM) materials that can be...

  14. Highly Sensitive Sensors Based on Metal-Oxide Nanocolumns for Fire Detection

    Directory of Open Access Journals (Sweden)

    Kwangjae Lee

    2017-02-01

    Full Text Available A fire detector is the most important component in a fire alarm system. Herein, we present the feasibility of a highly sensitive and rapid response gas sensor based on metal oxides as a high performance fire detector. The glancing angle deposition (GLAD technique is used to make the highly porous structure such as nanocolumns (NCs of various metal oxides for enhancing the gas-sensing performance. To measure the fire detection, the interface circuitry for our sensors (NiO, SnO2, WO3 and In2O3 NCs is designed. When all the sensors with various metal-oxide NCs are exposed to fire environment, they entirely react with the target gases emitted from Poly(vinyl chlorides (PVC decomposed at high temperature. Before the emission of smoke from the PVC (a hot-plate temperature of 200 °C, the resistances of the metal-oxide NCs are abruptly changed and SnO2 NCs show the highest response of 2.1. However, a commercial smoke detector did not inform any warning. Interestingly, although the NiO NCs are a p-type semiconductor, they show the highest response of 577.1 after the emission of smoke from the PVC (a hot-plate temperature of 350 °C. The response time of SnO2 NCs is much faster than that of a commercial smoke detector at the hot-plate temperature of 350 °C. In addition, we investigated the selectivity of our sensors by analyzing the responses of all sensors. Our results show the high potential of a gas sensor based on metal-oxide NCs for early fire detection.

  15. Highly Sensitive Sensors Based on Metal-Oxide Nanocolumns for Fire Detection

    Science.gov (United States)

    Lee, Kwangjae; Shim, Young-Seok; Song, Young Geun; Han, Soo Deok; Lee, Youn-Sung; Kang, Chong-Yun

    2017-01-01

    A fire detector is the most important component in a fire alarm system. Herein, we present the feasibility of a highly sensitive and rapid response gas sensor based on metal oxides as a high performance fire detector. The glancing angle deposition (GLAD) technique is used to make the highly porous structure such as nanocolumns (NCs) of various metal oxides for enhancing the gas-sensing performance. To measure the fire detection, the interface circuitry for our sensors (NiO, SnO2, WO3 and In2O3 NCs) is designed. When all the sensors with various metal-oxide NCs are exposed to fire environment, they entirely react with the target gases emitted from Poly(vinyl chlorides) (PVC) decomposed at high temperature. Before the emission of smoke from the PVC (a hot-plate temperature of 200 °C), the resistances of the metal-oxide NCs are abruptly changed and SnO2 NCs show the highest response of 2.1. However, a commercial smoke detector did not inform any warning. Interestingly, although the NiO NCs are a p-type semiconductor, they show the highest response of 577.1 after the emission of smoke from the PVC (a hot-plate temperature of 350 °C). The response time of SnO2 NCs is much faster than that of a commercial smoke detector at the hot-plate temperature of 350 °C. In addition, we investigated the selectivity of our sensors by analyzing the responses of all sensors. Our results show the high potential of a gas sensor based on metal-oxide NCs for early fire detection. PMID:28178216

  16. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    Science.gov (United States)

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication.

  17. Quantum resonance of nanometre-scale metal-ZnO-metal structure and its application in sensors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lijie, E-mail: L.Li@swansea.ac.uk; Rees, Paul [College of Engineering, Swansea University, Swansea, Wales SA2 8PP (United Kingdom)

    2016-01-15

    Analysis of the thickness dependence of the potential profile of the metal-ZnO-metal (MZM) structure has been conducted based on Poisson’s equation and Schottky theory. Quantum scattering theory is then used to calculate the transmission probability of an electron passing through the MZM structure. Results show that the quantum resonance (QR) effect becomes pronounced when the thickness of the ZnO film reaches to around 6 nm. Strain induced piezopotentials are considered as biases to the MZM, which significantly changes the QR according to the analysis. This effect can be potentially employed as nanoscale strain sensors.

  18. An eddy-current-based sensor for preventing knots in metallic wire drawing processes

    Science.gov (United States)

    Esteban, Bernat; Riba, Jordi-Roger; Baquero, Grau; Ferrater, Cèsar

    2011-06-01

    During metallic wire drawing processes, the presence of knots and the failure to detect them can lead to long production interruptions, significant economic losses and a lower quality of final product. Consequently, there is a pressing need to develop methods for real-time detection and prevention of this fault. In this paper, a sensor to prevent the formation of knots during the metallic wire drawing process is presented and evaluated by means of experimental data. This fast, inexpensive, non-contact sensor is based on electromagnetic principles such as eddy current induction, magnetic reluctance variations and magnetic coupling. The proposed sensor without direct contact can detect knots in a target metallic wire by measuring the impedance variations of a calibrated sensing coil caused by either a knot or an unwound loop rising from a wire rod. The incorporation of this type of sensor into a wire-drawing machine can avoid the tightening of the knot, thereby reducing downtime and increasing the security and reliability of the process. Experiments were conducted using a scale model of the above proposed system. This allowed highlighting the sensor's potential by carrying out an automatic, real-time knot detection during steel wire drawing.

  19. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review.

    Science.gov (United States)

    Yang, Ding-Xin; Hu, Zheng; Zhao, Hong; Hu, Hai-Feng; Sun, Yun-Zhe; Hou, Bao-Jian

    2015-12-15

    The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1) describe three electromagnetic coupling based techniques reported in the literature, which include inductive coupling, capacitive coupling, and magnetic resonance coupling; (2) present a detailed review of wireless ultrasonic through-metal-wall power delivery and/or data transmission methods; (3) compare various ultrasonic through-metal-wall systems in modeling, transducer configuration and communication mode with sensors; (4) summarize the characteristics of electromagnetic-based and ultrasound-based systems, evaluate the challenges and development trends. We conclude that electromagnetic coupling methods are suitable for through thin non-ferromagnetic metal wall power delivery and data transmission at a relatively low data rate; piezoelectric transducer-based ultrasonic systems are particularly advantageous in achieving high power transfer efficiency and high data rates; the combination of more than one single technique may provide a more practical and reliable solution for long term operation.

  20. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Ding-Xin Yang

    2015-12-01

    Full Text Available The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1 describe three electromagnetic coupling based techniques reported in the literature, which include inductive coupling, capacitive coupling, and magnetic resonance coupling; (2 present a detailed review of wireless ultrasonic through-metal-wall power delivery and/or data transmission methods; (3 compare various ultrasonic through-metal-wall systems in modeling, transducer configuration and communication mode with sensors; (4 summarize the characteristics of electromagnetic-based and ultrasound-based systems, evaluate the challenges and development trends. We conclude that electromagnetic coupling methods are suitable for through thin non-ferromagnetic metal wall power delivery and data transmission at a relatively low data rate; piezoelectric transducer-based ultrasonic systems are particularly advantageous in achieving high power transfer efficiency and high data rates; the combination of more than one single technique may provide a more practical and reliable solution for long term operation.

  1. A modular platform to develop peptoid-based selective fluorescent metal sensors.

    Science.gov (United States)

    Knight, Abigail S; Kulkarni, Rishikesh U; Zhou, Effie Y; Franke, Jenna M; Miller, Evan W; Francis, Matthew B

    2017-03-25

    Despite the reduction in industrial use of toxic heavy metals, there remain contaminated natural water sources across the world. Herein we present a modular platform for developing selective sensors for toxic metal ions using N-substituted glycine, or peptoid, oligomers coupled to a fluorophore. As a preliminary evaluation of this strategy, structures based on previously identified metal-binding peptoids were synthesized with terminal pyrene moieties. Both derivatives of this initial design demonstrated a turn-off response in the presence of various metal ions. A colorimetric screen was designed to identify a peptoid ligand that chelates Hg(ii). Multiple ligands were identified that were able to deplete Hg(ii) from a solution selectively in the presence of an excess of competing ions. The C-terminal fluoropeptoid derivatives demonstrated similar selectivity to their label-free counterparts. This strategy could be applied to develop sensors for many different metal ions of interest using a variety of fluorophores, leading to a panel of sensors for identifying various water source contaminants.

  2. Computational analysis of metallic nanowire-elastomer nanocomposite based strain sensors

    Directory of Open Access Journals (Sweden)

    Sangryun Lee

    2015-11-01

    Full Text Available Possessing a strong piezoresistivity, nanocomposites of metal nanowires and elastomer have been studied extensively for its use in highly flexible, stretchable, and sensitive sensors. In this work, we analyze the working mechanism and performance of a nanocomposite based stretchable strain sensor by calculating the conductivity of the nanowire percolation network as a function of strain. We reveal that the nonlinear piezoresistivity is attributed to the topological change of percolation network, which leads to a bottleneck in the electric path. We find that, due to enhanced percolation, the linearity of the sensor improves with increasing aspect ratio or volume fraction of the nanowires at the expense of decreasing gauge factor. In addition, we show that a wide range of gauge factors (from negative to positive can be obtained by changing the orientation distribution of nanowires. Our study suggests a way to intelligently design nanocomposite-based piezoresistive sensors for flexible and wearable devices.

  3. Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution

    Directory of Open Access Journals (Sweden)

    Luca ePUJOL

    2014-04-01

    Full Text Available A great challenge in the area of heavy metal trace detection is the development of electrochemical techniques and devices which are user-friendly, robust, selective, with low detection limits and allowing fast analyses. This review presents the major contribution of the French scientific academic community in the field of electrochemical sensors and electroanalytical methods within the last 20 years. From the well-known polarography to the up-to-date generation of functionalized interfaces, the different strategies dedicated to analytical performances improvement are exposed: stripping voltammetry, solid mercury-free electrode, ion selective sensor, carbon based materials, chemically modified electrodes, nano-structured surfaces. The paper particularly emphasizes their advantages and limits face to the last Water Frame Directive devoted to the Environmental Quality Standards for heavy metals. Recent trends on trace metal speciation as well as on automatic on line monitoring devices are also evoked.

  4. Sensing of polymeric sensor-based rhodamine B derivative for metal cations in complete aqueous solution

    Indian Academy of Sciences (India)

    TONG-MOU GENG; XIE WANG; FENG ZHU; HUI JIANG; YU WANG

    2017-02-01

    The water-soluble polymeric chemosensor poly(AM-GRBD) has been synthesized by precipitation copolymerization with the functional monomer, GRBD, which was made of N$"$-(rhodamine B-yl) diethylenetriamineand glycidyl methacrylate (GMA) and a hydrophilic co-monomer acrylamide (AM). The chemical sensor behaved as a fluorescent and chromogenic sensor towards various heavy metal cations and transition metal cations; particularly,Cr$^{3+}$, Fe$^{3+}$ and Hg$^{2+}$ ions in completely aqueous media. The fluorescence of poly(AM-GRBD) was enhanced by Cr$^{3+}, Fe$^{3+}$ and Hg$^{2+}$ metal ions. Moreover, during titration of Cr$^{3+}$, Hg$^{2+}$ or Fe$^{3+}$ to the aqueous solution of poly(AM-GRBD), the visual colour changed from colourless to pink or brown yellow under visible light.

  5. Crack monitoring method based on Cu coating sensor and electrical potential technique for metal structure

    Directory of Open Access Journals (Sweden)

    Hou Bo

    2015-06-01

    Full Text Available Advanced crack monitoring technique is the cornerstone of aircraft structural health monitoring. To achieve real-time crack monitoring of aircraft metal structures in the course of service, a new crack monitoring method is proposed based on Cu coating sensor and electrical potential difference principle. Firstly, insulation treatment process was used to prepare a dielectric layer on structural substrate, such as an anodizing layer on 2A12-T4 aluminum alloy substrate, and then a Cu coating crack monitoring sensor was deposited on the structure fatigue critical parts by pulsed bias arc ion plating technology. Secondly, the damage consistency of the Cu coating sensor and 2A12-T4 aluminum alloy substrate was investigated by static tensile experiment and fatigue test. The results show that strain values of the coating sensor and the 2A12-T4 aluminum alloy substrate measured by strain gauges are highly coincident in static tensile experiment and the sensor has excellent fatigue damage consistency with the substrate. Thirdly, the fatigue performance discrepancy between samples with the coating sensor and original samples was investigated. The result shows that there is no obvious negative influence on the fatigue performance of the 2A12-T4 aluminum alloy after preparing the Cu coating sensor on its surface. Finally, crack monitoring experiment was carried out with the Cu coating sensor. The experimental results indicate that the sensor is sensitive to crack, and crack origination and propagation can be monitored effectively through analyzing the change of electrical potential values of the coating sensor.

  6. Site Characterization and Analysis Penetrometer System (SCAPS) Heavy Metal Sensors

    Science.gov (United States)

    2003-04-01

    bleaches, hydrochloric acid, sulfuric acid, nitric acid, explosive compounds (e.g., lead azide and lead styphnate ), phosphate cleaners, petroleum and...products of these chemicals. Previous investigations have indicated that heavy metals, including arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd...Lake City. It was used by the LCAAP fire department from 1951 to 1967 to burn wooden boxes. Antimony, barium , cadmium, copper, lead, mercury, silver

  7. Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai

    2013-12-01

    Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors, solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.

  8. Hydroponic screening of black locust families for heavy metal tolerance and accumulation.

    Science.gov (United States)

    Župunski, Milan; Borišev, Milan; Orlović, Saša; Arsenov, Danijela; Nikolić, Nataša; Pilipović, Andrej; Pajević, Slobodanka

    2016-01-01

    Present work examines phytoextraction potential of four black locust families (half-sibs 54, 56, 115, and 135) grown hydroponically. Plants were treated with 6 ppm of cadmium (Cd), 100 ppm of nickel (Ni), and 40 ppm of lead (Pb) added in Hoagland nutrient solution, accompanying with simultaneously applied all three metals. Responses to metals exposure among families were different, ranging from severe to slight reduction of root and shoot biomass production of treated plants. Calculated tolerance indices are indicating tested families as highly tolerant (Ti > 60). Family 135 had the lowest tolerance index, pointing that it was highly susceptible to applied metals. Comparing photosynthetic activities of tested families it has been noticed that they were highly sensitive to stress induced by heavy metals. Net photosynthetic rate of nickel treated plants was the most affected by applied concentration. Cadmium and nickel concentrations in stems and leaves of black locust families exceeded 100 mg Cd kg(-1) and 1000 mg Ni kg(-1), in both single and multipollution context. On the contrary, accumulation of lead in above ground biomass was highly affected by multipollution treatment. Tf and BCF significantly varied between investigated treatments and families of black locust. Concerning obtained results of heavy metals accumulation and tolerance of black locust families can be concluded that tested families might be a promising tool for phytoextraction purposes, but it takes to be further confirmed in field trials.

  9. Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization

    Science.gov (United States)

    Vandeparre, H.; Watson, D.; Lacour, S. P.

    2013-11-01

    Microfabricated capacitive sensors prepared with elastomeric foam dielectric films and stretchable metallic electrodes display robustness to extreme conditions including stretching and tissue-like folding and autoclaving. The open cellular structure of the elastomeric foam leads to significant increase of the capacitance upon compression of the dielectric membrane. The sensor sensitivity can be adjusted locally with the foam density to detect normal pressure in the 1 kPa to 100 kPa range. Such pressure transducers will find applications in interfaces between the body and support surfaces such as mattresses, joysticks or prosthetic sockets, in artificial skins and wearable robotics.

  10. Doped thin metal oxide films for catalytic gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gyoergy, E. [Lasers Department, Institute of Atomic Physics, P.O. Box MG 36, 76900 Bucharest V (Romania)]. E-mail: eniko@ifin.nipne.ro; Axente, E. [Lasers Department, Institute of Atomic Physics, P.O. Box MG 36, 76900 Bucharest V (Romania); Mihailescu, I.N. [Lasers Department, Institute of Atomic Physics, P.O. Box MG 36, 76900 Bucharest V (Romania); Ducu, C. [University of Pitesti, Targul din Vale 1, 110040 Pitesti (Romania); Du, H. [Advanced Materials Research Institute, University of Newcastle (United Kingdom)

    2006-04-30

    TiO{sub 2} and Pt doped TiO{sub 2} thin films were grown by pulsed laser deposition on <0 0 1> SiO{sub 2} substrates. The doped films were compared with undoped ones deposited in similar experimental conditions. An UV KrF* ({lambda} = 248 nm, {tau} {sub FWHM} {approx_equal} 20 ns, {nu} = 2 Hz) excimer laser was used for the irradiation of the TiO{sub 2} or Pt doped TiO{sub 2} targets. The substrate temperatures were fixed during the growth of the thin films at values within the 300-500 deg. Crange. The films' surface morphology was investigated by atomic force microscopy and their crystalline quality by X-ray diffractometry. The corresponding transmission spectra were recorded with the aid of a double beam spectrophotometer in the spectral range of 400-1100 nm. No contaminants or Pt segregation were detected in the synthesized anatase phase TiO{sub 2} thin films composition. Titania crystallites growth inhibition was observed with the increase of the dopant concentration. The average optical transmittance in the visible-infrared spectral range of the films is higher than 85%, which makes them suitable for sensor applications.

  11. Modified electrode voltammetric sensors for trace metals in environmental samples

    Directory of Open Access Journals (Sweden)

    Brett Christopher M.A.

    2000-01-01

    Full Text Available Nafion-modified mercury thin film electrodes have been investigated for the analysis of trace metals in environmental samples of waters and effluent by batch injection analysis with square wave anodic stripping voltammetry. The method, involving injection over the detector electrode of untreated samples of volume of the order of 50 microlitres has fast response, blocking and fouling of the electrode is minimum as shown by studies with surface-active components. Comparison is made between glassy carbon substrate electrodes and carbon fibre microelectrode array substrates, the latter leading to a small sensitivity enhancement. Application to analysis of river water and industrial effluent for labile zinc, cadmium, lead and copper ions is demonstrated in collected samples and after acid digestion.

  12. Characteristics of strain transfer and the reflected spectrum of a metal-coated fiber Bragg grating sensor

    Science.gov (United States)

    Kim, Sang-Woo

    2017-09-01

    Previous researchers have simulated strain transfer and spectrum of normal fiber Bragg grating (FBG) sensors with a polymer coating bonded on the structure. They only considered the shear stress in a polymer coating for the simulation. However, for metal-coated FBG sensors, not only shear stress but also axial stress in the metal coating should be reflected into the calculation because its axial stiffness is no longer negligible. Thus, the author investigated the strain transfer and reflected spectra of metal-coated FBG sensors by considering both shear stress and axial stress. The strain transfer analysis involved evaluating the strain profiles along the sensor by plotting an analytical solution, and validating the evaluated profiles with the results obtained by a finite element analysis (FEA). The solution was also verified by the experiments that used aluminum-coated FBG sensors bonded on a carbon fiber reinforced polymer (CFRP) composite specimen. A transfer-matrix (T-matrix) formulation and coupled mode theory were used to simulate the reflected spectra of metal-coated FBG sensors for the evaluated strain profile. In addition, the effect of mechanical and geometric parameters of the sensor was examined. The findings revealed that the strain transfer characteristics and reflected spectra deteriorated with increases in the thickness and Young's modulus of the metal coating due to the consideration of axial stress. It is the opposite results for the normal FBG sensor with a polymer coating. Furthermore, the results also indicated that the decrease in bonding thickness resulted in improved strain transfer and signal characteristics. Moreover, a bonding length of 14 mm was suitable in suppressing an asymmetric shape of the reflected spectrum and in achieving an accurate measurement. The results of the parametric study are expected to contribute to improve the measurement accuracy of metal-coated FBG sensors in actual applications. The analytical methodology can be

  13. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 heavy metal pollution. PMID:28234944

  14. Metal-packaged fibre Bragg grating strain sensors for surface-mounting onto spalled concrete wind turbine foundations

    Science.gov (United States)

    Perry, M.; Fusiek, G.; McKeeman, I.; Niewczas, P.; Saafi, M.

    2015-09-01

    In this work, we demonstrate preliminary results for a hermetically sealed, metal-packaged fibre Bragg grating strain sensor for monitoring existing concrete wind turbine foundations. As the sensor is bolted to the sub-surface of the concrete, it is suitable for mounting onto uneven, wet and degraded surfaces, which may be found in buried foundations. The sensor was able to provide reliable measurements of concrete beam strain during cyclic three- and four- point bend tests. The strain sensitivity of the prototype sensor is currently 10 % of that of commercial, epoxied fibre strain sensors.

  15. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO sub 2 sensors in the presence of humidity

    CERN Document Server

    Barsan, N

    2003-01-01

    This paper investigates the effect of water vapour in CO sensing by using Pd doped SnO sub 2 sensors realized in thick film technology as an example of the basic understanding of sensing mechanisms applied to sensors. The results of phenomenological and spectroscopic measurement techniques, all of them obtained under working conditions for sensors, were combined with modelling in order to derive conclusions able to be generalized to the field of metal oxide based gas sensors. The techniques employed were: dc conductance, ac impedance spectroscopy, work function (by using the Kelvin probe method), catalytic conversion and diffuse reflectance infrared Fourier transform measurements. The most important conclusion is that the different parts of the sensor (sensing layer, electrodes, substrate) are all influencing the gas detection and their role has to be taken into consideration when one attempts to understand how a sensor works. (topical review)

  16. Simulation study of irradiated Si sensors equipped with metal- overhang for applications in LHC environment

    CERN Document Server

    Chatterji, Sudeep; Bhardwaj, Ashutosh; Srivastava-Ajay, K; Kumar, Ashish; Jha, Manoj Kumar; Shivpuri, R K; Khanna, S L

    2004-01-01

    The performance of metal-overhang (MO) equipped silicon micro-strip sensors, after irradiation for the preshower detector to be used in the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC), CERN, has been studied through simulations. Detailed calculations using Hamburg model have allowed the parameterization of these effects and helped to simulate the operation scenario of MO equipped sensors over ten years of LHC operation. The utility of overhanging metal extension as junction termination technique after space charge sign inversion (SCSI) has been explored in detail for the first time in this work. Several interesting results like a shift in the optimal oxide thickness in MO equipped structures after irradiation have been reported. The comparison of dielectric and semi-insulator passivated MO equipped structures after irradiation has been studied. Also, the impact of various crucial geometrical parameters like device depth (W//N), width of back N **+ layer used for ohmic contact (W/...

  17. Impact of harsh radiation on metal-overhang equipped sensors in the LHC environment

    CERN Document Server

    Chatterji, S; Bhardwaj, A; Namrata, S; Srivastava-Ajay, K; Kumar, A; Jha, Manoj Kumar; Shivpuri, R K

    2004-01-01

    The utility of silicon microstrip detectors in future high luminosity colliders, like LHC requires some serious issues concerning radiation hardness to be carefully considered. The performance of metal- overhang (MO) equipped Si micro-strip sensors has been studied after irradiation for the preshower detector to be used in CMS experiment at LHC, CERN. The parameterization of these effects has been performed using Hamburg model to simulate the operation scenario of MO equipped sensors over 10 years of LHC operation. The utility of overhanging metal extension as junction termination technique after type-inversion has been explored for the first time in this work Several interesting results like a shift in the optimal oxide thickness in MO equipped structures after irradiation have been reported. It has been found that the breakdown performance of the device actually improves after irradiation due to the beneficial effect of type-inversion. Dielectric and semi-insulator passivated MO equipped structures have bee...

  18. Charge transfer between sensing and targeted metal nanoparticles in indirect nanoplasmonic sensors

    Science.gov (United States)

    Zhdanov, Vladimir P.; Langhammer, Christoph

    2017-03-01

    In indirect nanoplasmonic sensors, the plasmonic metal nanoparticles are adjacent to the material of interest, and the material-related changes of their optical properties are used to probe that material. If the latter itself represents another metal in the form of nanoparticles, its deposition is accompanied by charge transfer to or from the plasmonic nanoparticles in order to equalize the Fermi levels. We estimate the value of the transferred charge and show on the two examples, nanoparticle sintering and hydride formation, that the charge transfer has negligible influence on the probed processes, because the effect of charge transfer is less important than that of nanoparticle surface energy. This further corroborates the non-invasive nature of nanoplasmonic sensors.

  19. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    Science.gov (United States)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  20. Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers.

    Science.gov (United States)

    Lu, Ying; Hao, Cong-Jing; Wu, Bao-Qun; Musideke, Mayilamu; Duan, Liang-Cheng; Wen, Wu-Qi; Yao, Jian-Quan

    2013-01-15

    A large-mode-area polymer photonic crystal fiber made of polymethyl methacrylate with the cladding having only one layer of air holes near the edge of the fiber is designed and proposed to be used in surface plasmon resonance sensors. In such sensor, a nanoscale metal film and analyte can be deposited on the outer side of the fiber instead of coating or filling in the holes of the conventional PCF, which make the real time detection with high sensitivity easily to realize. Moreover, it is relatively stable to changes of the amount and the diameter of air holes, which is very beneficial for sensor fabrication and sensing applications. Numerical simulation results show that under the conditions of the similar spectral and intensity sensitivity of 8.3 × 10(-5)-9.4 × 10(-5) RIU, the confinement loss can be increased dramatically.

  1. Surface Plasmon Resonance Sensor Based on Polymer Photonic Crystal Fibers with Metal Nanolayers

    Directory of Open Access Journals (Sweden)

    Jian-Quan Yao

    2013-01-01

    Full Text Available A large-mode-area polymer photonic crystal fiber made of polymethyl methacrylate with the cladding having only one layer of air holes near the edge of the fiber is designed and proposed to be used in surface plasmon resonance sensors. In such sensor, a nanoscale metal film and analyte can be deposited on the outer side of the fiber instead of coating or filling in the holes of the conventional PCF, which make the real time detection with high sensitivity easily to realize. Moreover, it is relatively stable to changes of the amount and the diameter of air holes, which is very beneficial for sensor fabrication and sensing applications. Numerical simulation results show that under the conditions of the similar spectral and intensity sensitivity of 8.3 × 10−5–9.4 × 10−5 RIU, the confinement loss can be increased dramatically.

  2. A family for miniature, easily reconfigurable particle sensors for space plasma measurements

    Science.gov (United States)

    Wieser, M.; Barabash, S.

    2016-12-01

    Over the last 15 years the Swedish Institute of Space Physics developed a line of miniaturized ion mass analyzers for space plasma studies with masses of 400-600 g and highly compact and dense design to minimize the volume. The sensors cover an energy range from few eV up to 15 keV and reach an angular coverage up to hemispherical and mass resolution up to 7, depending on application. The experience with this line of sensors demonstrates that a sensor mass of 400-600 g is a limit in the trade-off between scientifically valuable performance and the sensor mass. The Solar Wind Monitor (SWIM), part of the Sub-keV Atom Reflecting Analyzer (SARA) on board of the Indian Chandrayaan-1 mission to the Moon, was the first sensor in the line. A number of instruments derived from SWIM were built, each using the same basic architecture but adapted for the needs of the corresponding mission: the Miniature Ion Precipitation Analyzer (MIPA) on the European Space Agency's BepiColombo mission to Mercury, the Detector for Ions at Mars (DIM) for the Russian Phobos-Grunt mission and the Yinghuo Plasma Package Ion sensor (YPPi) for the Chinese Yinghuo-1 spacecraft (both to Mars), the Prisma Ion Mass Analyzer (PRIMA) for the Swedish PRISMA spacecraft to Earth orbit, the eXtra Small Analyzer of Neutrals (XASN) for the Russian Luna-Glob lander, and the Laboratory Ion Scattering Analyzer (LISA) used for laboratory studies. We review architecture, design, performance, and fields of application of the instruments in this family and give and outlook in future developments.

  3. Practical discrimination of good and bad cooked food using metal oxide semiconductor odour sensor

    OpenAIRE

    2013-01-01

    An increasing concentration of ammonia in cooked food is in direct proportion to the extent of decay. This fact is used to design an electronic nose (e-nose) based on metal oxide semiconductor odour sensor circuit capable of discriminating good and bad cooked food. On the basis of the data produced by the e-nose circuit, a feedforward multilayer neural network is designed and trained to recognize varying concentrations of ammonia in the food. Test results o...

  4. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guo-Rui; FENG Guo-Ying; ZHANG Yi; MA Zi; WANG Jian-Jun

    2012-01-01

    A compact temperature sensor based on a symmetrical metal-cladding optical waveguide using free-space coupling is proposed and demonstrated theoretically and experimentally. The symmetrical Au-cladding optical waveguide is based on a thin LiNbO3 slab sandwiched between two metal films, which serve as the coupling layer and reflecting panel, respectively. The sensitivity of this sensor of 9.08×10-2 deg/℃, 6.6 ×10-2 deg/℃ and 4.8 × 10-2 deg/℃ corresponding to 3238-order, 3237-order and 3236-order modes, respectively, are obtained. Higher resolution is predicted with a larger linear expansion coefficient material and a higher resolution θ/2θ goniometer.%A compact temperature sensor based on a symmetrical metal-cladding optical waveguide using free-space coupling is proposed and demonstrated theoretically and experimentally.The symmetrical Au-cladding optical waveguide is based on a thin LiNbO3 slab sandwiched between two metal films,which serve as the coupling layer and reflecting panel,respectively.The sensitivity of this sensor of 9.08 × 10-2 deg/℃,6.6 × 10-2 deg/℃ and 4.8 × 10-2 deg/℃ corresponding to 3238-order,3237-order and 3236-order modes,respectively,are obtained.Higher resolution is predicted with a larger linear expansion coefficient material and a higher resolution θ/2θ goniometer.

  5. Design and fabrication of a metal core PVDF fiber for an air flow sensor

    Science.gov (United States)

    Bian, Yixiang; Liu, Rongrong; Huang, Xiaomei; Hong, Jin; Huang, Huiyu; Hui, Shen

    2015-10-01

    To track prey or avoid predators, many arthropods can detect variations in airflow and pressure gradients using an array of very thin and sensitive filiform hairs. In this study, metal core piezoelectric poly(vinylidene fluoride) (PVDF) fibers were prepared to mimic such hair sensors. The flexibility of the fibers was very good, which was helpful for overcoming the typical brittleness of piezoelectric ceramic fibers. At the same time, the diameter of the fibers was very small (down to 50 μm in diameter). In order to mimic the insects’ hairs to the maximum extent, which was expected to greatly improve the sensitivity of such PVDF fiber-based sensors, a feasible process to prepare and extract electrodes on the surface of the fibers had to be developed. Compared with stainless steel filament-core fibers, the molybdenum filament-core PVDF fibers were easy to stretch. The molybdenum filament was then covered by a cylindrical PVDF layer with a diameter of 400 μm. One half of the longitudinal surface of the fibers was spray-coated with a conductive silver adhesive. The metal core was then used as one electrode, and the conductive silver adhesive was used as the other electrode. After polarization, a single metal-core PVDF fiber could be used as an airflow sensor. The surface structure and the sections of the PVDF fiber were analyzed by scanning electron microscopy. The results of the mechanical stretching tests showed that the metal core greatly enhanced the mechanical properties of the PVDF fibers. X-ray diffraction revealed that the greater the stretching ratio, the higher the α-to-β-phase conversion rate during the preparation of the PVDF fibers. A single metal-core PVDF fiber was used as a bionic airflow sensor, and a mechanical model of this sensor was derived. The airflow sensing capability of the PVDF fiber was experimentally confirmed in a miniature wind tunnel. The results showed that a cantilevered metal-core PVDF fiber is capable of detecting the range

  6. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide

    National Research Council Canada - National Science Library

    Xuan, Xing; Hossain, Md Faruk; Park, Jae Yeong

    2016-01-01

    .... The fully integrated electrochemical micro-sensor was then measured and evaluated for the detection of cadmium and lead-heavy metal ions in an acetic-acid buffered solution using the square wave...

  7. Pitted Corrosion Detection of Thermal Sprayed Metallic Coatings Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Fodan Deng

    2017-02-01

    Full Text Available Metallic coatings using thermal spraying techniques are widely applied to structural steels to protect infrastructure against corrosion and improve durability of the associated structures for longer service life. The thermal sprayed metallic coatings consisting of various metals, although have higher corrosion resistance, will still corrode in a long run and may also subject to corrosion induced damages such as cracks. Corrosion and the induced damages on the metallic coatings will reduce the effectiveness of the coatings for protection of the structures. Timely repair on these damaged metallic coatings will significantly improve the reliability of protected structures again deterioration. In this paper, an inline detection system for corrosion and crack detection was developed using fiber Bragg (FBG grating sensors. Experimental results from laboratory accelerated corrosion tests showed that the developed sensing system can quantitatively detect corrosion rate of the coating, corrosion propagations, and cracks initialized in the metallic coating in real time. The developed system can be used for real-time corrosion detection of coated metal structures in field.

  8. Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring.

    Science.gov (United States)

    Zhang, Binbin; Zhang, Lei; Deng, Weili; Jin, Long; Chun, Fengjun; Pan, Hong; Gu, Bingni; Zhang, Haitao; Lv, Zekai; Yang, Weiqing; Wang, Zhong Lin

    2017-07-25

    An acceleration sensor is an essential component of the vibration measurement, while the passivity and sensitivity are the pivotal features for its application. Here, we report a self-powered and highly sensitive acceleration sensor based on a triboelectric nanogenerator composed of a liquid metal mercury droplet (LMMD) and nanofiber-networked polyvinylidene fluoride (nn-PVDF) film. Due to the ultrahigh surface-to-volume ratio of nn-PVDF film and high surface tension, high mass density, high elastic as well as mechanical robustness of LMMD, the open-circuit voltage and short-circuit current reach up to 15.5 V and 300 nA at the acceleration of 60 m/s(2), respectively. The acceleration sensor has a wide detection range from 0 to 60 m/s(2) with a high sensitivity of 0.26 V·s/m(2). Also, the output voltage and current show a negligible decrease over 200,000 cycles, evidently presenting excellent stability. Moreover, a high-speed camera was employed to dynamically capture the motion state of the acceleration sensor for insight into the corresponding work mechanism. Finally, the acceleration sensor was demonstrated to measure the vibration of mechanical equipment and human motion in real time, which has potential applications in equipment vibration monitoring and troubleshooting.

  9. Characterization of embedded fiber optic strain sensors into metallic structures via ultrasonic additive manufacturing

    Science.gov (United States)

    Schomer, John J.; Hehr, Adam J.; Dapino, Marcelo J.

    2016-04-01

    Fiber Bragg Grating (FBG) sensors measure deviation in a reflected wavelength of light to detect in-situ strain. These sensors are immune to electromagnetic interference, and the inclusion of multiple FBGs on the same fiber allows for a seamlessly integrated sensing network. FBGs are attractive for embedded sensing in aerospace applications due to their small noninvasive size and prospect of constant, real-time nondestructive evaluation. In this study, FBG sensors are embedded in aluminum 6061 via ultrasonic additive manufacturing (UAM), a rapid prototyping process that uses high power ultrasonic vibrations to weld similar and dissimilar metal foils together. UAM was chosen due to the desire to embed FBG sensors at low temperatures, a requirement that excludes other additive processes such as selective laser sintering or fusion deposition modeling. In this paper, the embedded FBGs are characterized in terms of birefringence losses, post embedding strain shifts, consolidation quality, and strain sensing performance. Sensors embedded into an ASTM test piece are compared against an exterior surface mounted foil strain gage at both room and elevated temperatures using cyclic tensile tests.

  10. Fast voltammetry of metals at carbon-fiber microelectrodes: towards an online speciation sensor.

    Science.gov (United States)

    Pathirathna, Pavithra; Siriwardhane, Thushani; McElmurry, Shawn P; Morgan, Stephen L; Hashemi, Parastoo

    2016-11-14

    Speciation controls the chemical behavior of trace metals. Thus, there is great demand for rapid speciation analysis in a variety of fields. In this study, we describe the application of fast scan cyclic voltammetry (FSCV) and fast scan adsorption controlled voltammetry (FSCAV) to trace metal speciation analysis. We show that Cu(2+) can be detected using FSCAV in different matrices. We find that matrices with different Cu(2+) binding ability do not affect the equilibrium of Cu(2+) adsorption onto CFMs, and thus are an excellent predictor for free Cu(2+) ([Cu(2+)]free) in solution. We modelled a correlation between the FSCV response, [Cu(2+)]free and log Kf for 15 different Cu(2+) complexes. Using our model, we rapidly predicted, and verified [Cu(2+)]free and Kf of a real groundwater sample spiked with Cu(2+). We thus highlight the potential of fast voltammetry as a rapid trace metal speciation sensor.

  11. Determination of heavy metals contamination using a silicon sensor with extended responsive to the UV

    Science.gov (United States)

    Aceves-Mijares, M.; Ramírez, J. M.; Pedraza, J.; Román-López, S.; Chávez, C.

    2013-03-01

    Due to its potential risk to human health and ecology, the presence of heavy metals in water demands of techniques to determine them in a simple and economical way. Currently, new developments of light emitters and detectors open a window of opportunities to use optical properties to analyze contaminated water. In this paper, a silicon sensor developed to extend its sensitivity up to the UV range is used to determine heavy metals in water. Cadmium, Zinc, Lead, Copper and Manganese mixed in pure water at different concentrations were used as test samples. The photocurrent obtained by the light that passes through the samples was used to determine the optical transmittance of pure and contaminated water. Preliminary results show a good separability between samples, which can be used for qualitative and quantitative detection of such heavy metals in water.

  12. Metal oxide-based monolithic complementary metal oxide semiconductor gas sensor microsystem.

    Science.gov (United States)

    Graf, Markus; Barrettino, Diego; Taschini, Stefano; Hagleitner, Christoph; Hierlemann, Andreas; Baltes, Henry

    2004-08-01

    A fully integrated gas sensor microsystem is presented, which comprises for the first time a micro hot plate as well as advanced analog and digital circuitry on a single chip. The micro hot plate is coated with a nanocrystalline SnO2 thick film. The sensor chip is produced in an industrial 0.8-microm CMOS process with subsequent micromachining steps. A novel circular micro hot plate, which is 500 x 500 microm(2) in size, features an excellent temperature homogeneity of +/-2% over the heated area (300-microm diameter) and a high thermal efficiency of 6.0 degrees C/mW. A robust prototype package was developed, which relies on standard microelectronic packaging methods. Apart from a microcontroller board for managing chip communication and providing power supply and reference signals, no additional measurement equipment is needed. The on-chip digital temperature controller can accurately adjust the membrane temperature between 170 and 300 degrees C with an error of +/-2 degrees C. The on-chip logarithmic converter covers a wide measurement range between 1 kOmega and 10 MOmega. CO concentrations in the sub-parts-per-million range are detectable, and a resolution of +/-0.1 ppm CO was achieved, which renders the sensor capable of measuring CO concentrations at threshold levels.

  13. Inductive sensor to detect metal impurities in non-metallic medium

    Science.gov (United States)

    Bykovsky, N. A.; Puchkova, L. N.; Fanakova, N. N.

    2017-02-01

    The mathematical model for an induction detector intended for detection of metal impurities is examined. The detector consists of three coils. The centre coil serves to induct a magnetic moment in the metal sample, and side coils are used to record this moment during the sample propulsion through the detector. It is shown that at an identical value of the magnetic field induction, created by the induction coil in the unit volume of the sample, the induced magnetic moment is defined by magnetic susceptibility for ferromagnetics, and for nonmagnetic materials – by their electric conductivity.

  14. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    Science.gov (United States)

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  15. Nanostructured metal particle-modified electrodes for electrocatalytic and sensor applications

    Indian Academy of Sciences (India)

    Ramasamy Ramaraj

    2006-11-01

    Nanotechnology has become one of the most exciting frontier fields in analytical chemistry. The huge interest in nanomaterials, for example in chemical sensors and catalysis, is driven by their many desirable properties. Although metal is a poor catalyst in bulk form, nanometre-sized particles can exhibit excellent catalytic activity due to their relative high surface area-to-volume ratio and their interface-dominated properties, which significantly differ from those of the bulk material. The integration of metal nanoparticles into thin film of permselective membrane is particularly important for various applications, for example in biological sensing and in electrocatalysis. We have already established different techniques to design permselective membrane-coated chemically modified electrodes with incorporated redox molecules for electrocatalytic, electrochromic and sensor applications. Recently, we have prepared nanostructured platinum and copper (represented Mnano, M = Pt and Cu) modified GC/Nafion electrodes (GC/Nf/Mnano) and characterized by using AFM, XPS, XRD and electrochemical techniques. The nanostructured Mnano modified electrodes were utilized for efficient electrocatalytic selective oxidation of neurotransmitter molecules in the presence of interfering species such as ascorbic acid (AA) and uric acid (UA). It has been also shown that the modified electrodes could be used as sensors for the detection of submicromolar concentrations of biomolecules with practical applications to real samples such as blood plasma and dopamine hydrochloride injection solution. The GC/Cunano electrode has been used for catalytic reduction of oxygen.

  16. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    Science.gov (United States)

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Fuzzy logic based sensor performance evaluation of vehicle mounted metal detector systems

    Science.gov (United States)

    Abeynayake, Canicious; Tran, Minh D.

    2015-05-01

    Vehicle Mounted Metal Detector (VMMD) systems are widely used for detection of threat objects in humanitarian demining and military route clearance scenarios. Due to the diverse nature of such operational conditions, operational use of VMMD without a proper understanding of its capability boundaries may lead to heavy causalities. Multi-criteria fitness evaluations are crucial for determining capability boundaries of any sensor-based demining equipment. Evaluation of sensor based military equipment is a multi-disciplinary topic combining the efforts of researchers, operators, managers and commanders having different professional backgrounds and knowledge profiles. Information acquired through field tests usually involves uncertainty, vagueness and imprecision due to variations in test and evaluation conditions during a single test or series of tests. This report presents a fuzzy logic based methodology for experimental data analysis and performance evaluation of VMMD. This data evaluation methodology has been developed to evaluate sensor performance by consolidating expert knowledge with experimental data. A case study is presented by implementing the proposed data analysis framework in a VMMD evaluation scenario. The results of this analysis confirm accuracy, practicability and reliability of the fuzzy logic based sensor performance evaluation framework.

  18. Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel

    Directory of Open Access Journals (Sweden)

    Taekeon Jung

    2015-05-01

    Full Text Available Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98 using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30–1000 s−1. The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability.

  19. Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Antonio Tricoli

    2012-05-01

    Full Text Available The structural stability of pure SnO2 nanoparticles and highly sensitive SnO2-SiO2 nanocomposites (0–15 SiO2 wt% has been investigated for conditions relevant to their utilization as chemoresistive gas sensors. Thermal stabilization by SiO2 co-synthesis has been investigated at up to 600 °C determining regimes of crystal size stability as a function of SiO2-content. For operation up to 400 °C, thermally stable crystal sizes of ca. 24 and 11 nm were identified for SnO2 nanoparticles and 1.4 wt% SnO2-SiO2 nanocomposites, respectively. The effect of crystal growth during operation (TO = 320 °C on the sensor response to ethanol has been reported, revealing possible long-term destabilization mechanisms. In particular, crystal growth and sintering-neck formation were discussed with respect to their potential to change the sensor response and calibration. Furthermore, the effect of SiO2 cosynthesis on the cross-sensitivity to humidity of these noble metal-free SnO2-based gas sensors was assessed.

  20. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel.

    Science.gov (United States)

    Jung, Taekeon; Yang, Sung

    2015-05-21

    Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30-1000 s(-1). The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability.

  1. Ultralow power, high fill factor smart complementary metal oxide semiconductor image sensor with motion detection capability

    Science.gov (United States)

    Mahbod, Abbas; Karimiyan, Hossein

    2016-11-01

    Bandwidth saving, power consumption, and fill factor improvement are known as vitally important challenges image sensor designers face in order to accomplish high-performance imaging systems. This paper presents an ultralow power, high fill factor smart complementary metal oxide semiconductor (CMOS) image sensor with motion detection capability. In this efficient methodology, the amount of redundant data processed in unimportant frames has been reduced significantly, and therefore, the proposed imaging system consumes less power compared with counterpart imagers. Furthermore, a pixel structure is introduced that outputs two consecutive frame voltages in series, with the result that the pixel size is minimized and a higher fill factor is achieved. In order to simulate the image capturing procedure, a state-of-the-art approach based on MATLAB and HSPICE software is devised, which is another important achievement of this paper. The performance of this technique is demonstrated using a 64×64 pixel sensor designed in a 0.18-μm standard CMOS technology. The sensor chip consumes 0.2 mW of power while operating at 100 fps with a fill factor of 45%.

  2. Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor.

    Science.gov (United States)

    Zhang, Zhangyuan; Zou, Xuming; Xu, Lei; Liao, Lei; Liu, Wei; Ho, Johnny; Xiao, Xiangheng; Jiang, Changzhong; Li, Jinchai

    2015-06-14

    In this work, in order to enhance the performance of graphene gas sensors, graphene and metal oxide nanoparticles (NPs) are combined to be utilized for high selectivity and fast response gas detection. Whether at the relatively optimal temperature or even room temperature, our gas sensors based on graphene transistors, decorated with SnO2 NPs, exhibit fast response and short recovery times (∼1 seconds) at 50 °C when the hydrogen concentration is 100 ppm. Specifically, X-ray photoelectron spectroscopy and conductive atomic force microscopy are employed to explore the interface properties between graphene and SnO2 NPs. Through the complimentary characterization, a mechanism based on charge transfer and band alignment is elucidated to explain the physical originality of these graphene gas sensors: high carrier mobility of graphene and small energy barrier between graphene and SnO2 NPs have ensured a fast response and a high sensitivity and selectivity of the devices. Generally, these gas sensors will facilitate the rapid development of next-generation hydrogen gas detection.

  3. Flexible strain sensors with high performance based on metallic glass thin film

    Science.gov (United States)

    Xian, H. J.; Cao, C. R.; Shi, J. A.; Zhu, X. S.; Hu, Y. C.; Huang, Y. F.; Meng, S.; Gu, L.; Liu, Y. H.; Bai, H. Y.; Wang, W. H.

    2017-09-01

    Searching strain sensitive materials for electronic skin is of crucial significance because of the restrictions of current materials such as poor electrical conductivity, large energy consumption, complex manufacturing process, and high cost. Here, we report a flexible strain sensor based on the Zr55Cu30Ni5Al10 metallic glass thin film which we name metallic glass skin. The metallic glass skin, synthesized by ion beam deposition, exhibits piezoresistance effects with a gauge factor of around 2.86, a large detectable strain range (˜1% or 180° bending angle), and good conductivity. Compared to other e-skin materials, the temperature coefficient of resistance of the metallic glass skin is extremely low (9.04 × 10-6 K-1), which is essential for the reduction in thermal drift. In addition, the metallic glass skin exhibits distinct antibacterial behavior desired for medical applications, also excellent reproducibility and repeatability (over 1000 times), nearly perfect linearity, low manufacturing cost, and negligible energy consumption, all of which are required for electronic skin for practical applications.

  4. Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors

    KAUST Repository

    Chen, Ye

    2017-01-26

    Composition comprising at least one graphene material and at least one metal. The metal can be in the form of nanoparticles as well as microflakes, including single crystal microflakes. The metal can be intercalated in the graphene sheets. The composition has high conductivity and flexibility. The composition can be made by a one-pot synthesis in which a graphene material precursor is converted to the graphene material, and the metal precursor is converted to the metal. A reducing solvent or dispersant such as NMP can be used. Devices made from the composition include a pressure sensor which has high sensitivity. Two two- dimension materials can be combined to form a hybrid material.

  5. Performance and Stress Analysis of Metal Oxide Films for CMOS-Integrated Gas Sensors

    Directory of Open Access Journals (Sweden)

    Lado Filipovic

    2015-03-01

    Full Text Available The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas. These sensors have been extensively studied in the hopes that they will provide full gas sensing functionality with CMOS integrability. The performance of several metal oxide materials, such as tin oxide (SnO2, zinc oxide (ZnO, indium oxide (In2O3 and indium-tin-oxide (ITO, are studied for the detection of various harmful or toxic cases. Due to the need for these films to be heated to temperatures between 250°C and 550°C during operation in order to increase their sensing functionality, a considerable degradation of the film can result. The stress generation during thin film deposition and the thermo-mechanical stress that arises during post-deposition cooling is analyzed through simulations. A tin oxide thin film is deposited using the efficient and economical spray pyrolysis technique, which involves three steps: the atomization of the precursor solution, the transport of the aerosol droplets towards the wafer and the decomposition of the precursor at or near the substrate resulting in film growth. The details of this technique and a simulation methodology are presented. The dependence of the deposition technique on the sensor performance is also discussed.

  6. Performance and stress analysis of metal oxide films for CMOS-integrated gas sensors.

    Science.gov (United States)

    Filipovic, Lado; Selberherr, Siegfried

    2015-03-25

    The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas. These sensors have been extensively studied in the hopes that they will provide full gas sensing functionality with CMOS integrability. The performance of several metal oxide materials, such as tin oxide (SnO2), zinc oxide (ZnO), indium oxide (In2O3) and indium-tin-oxide (ITO), are studied for the detection of various harmful or toxic cases. Due to the need for these films to be heated to temperatures between 250°C and 550°C during operation in order to increase their sensing functionality, a considerable degradation of the film can result. The stress generation during thin film deposition and the thermo-mechanical stress that arises during post-deposition cooling is analyzed through simulations. A tin oxide thin film is deposited using the efficient and economical spray pyrolysis technique, which involves three steps: the atomization of the precursor solution, the transport of the aerosol droplets towards the wafer and the decomposition of the precursor at or near the substrate resulting in film growth. The details of this technique and a simulation methodology are presented. The dependence of the deposition technique on the sensor performance is also discussed.

  7. Remote Inspection Techniques for Reactor Internals of Liquid Metal Reactor by using Ultrasonic Waveguide Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Kim, Seok Hun; Lee, Jae Han

    2006-02-15

    The primary components such as a reactor core, heat exchangers, pumps and internal structures of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection and continuous monitoring as major in-service inspection (ISI) methods of reactor internal structures. Reactor core and internal structures of LMR can not be visually examined due to an opaque liquid sodium. The under-sodium viewing and remote inspection techniques by using an ultrasonic wave should be applied for the in-service inspection of reactor internals. The remote inspection techniques using ultrasonic wave have been developed and applied for the visualization and ISI of reactor internals. The under sodium viewing technique has a limitation for the application of LMR due to the high temperature and irradiation environment. In this study, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium viewing and remote inspection. The Lamb wave propagation of a waveguide sensor has been analyzed and the zero-order antisymmetric A{sub 0} plate wave was selected as the application mode of the sensor. The A{sub 0} plate wave can be propagated in the dispersive low frequency range by using a liquid wedge clamped to the waveguide. A new technique is presented which is capable of steering the radiation beam angle of a waveguide sensor without a mechanical movement of the sensor assembly. The steering function of the ultrasonic radiation beam can be achieved by a frequency tuning method of the excitation pulse in the dispersive range of the A{sub 0} mode. The technique provides an opportunity to overcome the scanning limitation of a waveguide sensor. The beam steering function has been evaluated by an experimental verification. The ultrasonic C-scanning experiments are performed in water and the feasibility of the ultrasonic waveguide sensor has been verified. The various remote

  8. Quinoline-2-thiol Derivatives as Fluorescent Sensors for Metals, pH and HNO

    Directory of Open Access Journals (Sweden)

    Naphtali A. O’Connor

    2014-06-01

    Full Text Available A tautomeric equilibrium exists for quinoline-2-thiol and quinoline-2(1H-thione. Quantum mechanical calculations predict the thione is the major tautomer and this is confirmed by the absorption spectra. The utility of quinolone-2-thiol/quinoline-2(1H-thione as a chromophore for developing fluorescent sensors is explored. No fluorescence is observed when excited at absorption maxima, however a fluorescence increase is observed when exposed to HNO, a molecule of import as a cardiovascular therapeutic. Alkylated quinoline-2-thiol derivatives are found to be fluorescent and show a reduction in fluorescence when exposed to metals and changes in pH.

  9. Metal Oxide Sensors for Electronic Noses and Their Application to Food Analysis

    Science.gov (United States)

    Berna, Amalia

    2010-01-01

    Electronic noses (E-noses) use various types of electronic gas sensors that have partial specificity. This review focuses on commercial and experimental E-noses that use metal oxide semi-conductors. The review covers quality control applications to food and beverages, including determination of freshness and identification of contaminants or adulteration. Applications of E-noses to a wide range of foods and beverages are considered, including: meat, fish, grains, alcoholic drinks, non-alcoholic drinks, fruits, milk and dairy products, olive oils, nuts, fresh vegetables and eggs. PMID:22319332

  10. Microwave and camera sensor fusion for the shape extraction of metallic 3D space objects

    Science.gov (United States)

    Shaw, Scott W.; Defigueiredo, Rui J. P.; Krishen, Kumar

    1989-01-01

    The vacuum of space presents special problems for optical image sensors. Metallic objects in this environment can produce intense specular reflections and deep shadows. By combining the polarized RCS with an incomplete camera image, it has become possible to better determine the shape of some simple three-dimensional objects. The radar data are used in an iterative procedure that generates successive approximations to the target shape by minimizing the error between computed scattering cross-sections and the observed radar returns. Favorable results have been obtained for simulations and experiments reconstructing plates, ellipsoids, and arbitrary surfaces.

  11. Metal Oxide Sensors for Electronic Noses and Their Application to Food Analysis

    Directory of Open Access Journals (Sweden)

    Amalia Berna

    2010-04-01

    Full Text Available Electronic noses (E-noses use various types of electronic gas sensors that have partial specificity. This review focuses on commercial and experimental E-noses that use metal oxide semi-conductors. The review covers quality control applications to food and beverages, including determination of freshness and identification of contaminants or adulteration. Applications of E-noses to a wide range of foods and beverages are considered, including: meat, fish, grains, alcoholic drinks, non-alcoholic drinks, fruits, milk and dairy products, olive oils, nuts, fresh vegetables and eggs.

  12. Organically Doped Metals: A New Family of Materials

    Science.gov (United States)

    2010-02-25

    pressed to coins. Fig. 2: The hierarchical structure of the hybrid materials. Shown is the hybrid between poly(styrene sulphonic acid ...this is of course an unorthodox property of this metal). Nafion@Ag was then tested as a heterogeneous acidic catalyst for the pinacol-pinacolone...24 million known organic and bioorganic molecules, which represent a very rich library of chemical, biological, and physical properties that the ~100

  13. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  14. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  15. Optical nanosphere sensor based on shell-by-shell fabrication for removal of toxic metals from human blood.

    Science.gov (United States)

    El-Safty, S A; Abdellatef, S; Ismael, M; Shahat, A

    2013-06-01

    Because toxic heavy metals tend to bioaccumulate, they represent a substantial human health hazard. Various methods are used to identify and quantify toxic metals in biological tissues and environment fluids, but a simple, rapid, and inexpensive system has yet to be developed. To reduce the necessity for instrument-dependent analysis, we developed a single, pH-dependent, nanosphere (NS) sensor for naked-eye detection and removal of toxic metal ions from drinking water and physiological systems (i.e., blood). The design platform for the optical NS sensor is composed of double mesoporous core-shell silica NSs fabricated by one-pot, template-guided synthesis with anionic surfactant. The dense shell-by-shell NS construction generated a unique hierarchical NS sensor with a hollow cage interior to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, longevity, selectivity, and signal stability. Here, we examined the application of the NS sensor for the removal of toxic metals (e.g., lead ions from a physiological system, such as human blood). The findings show that this sensor design has potential for the rapid screening of blood lead levels so that the effects of lead toxicity can be avoided.

  16. Nanostructured Metal Oxide Gas Sensors, a Survey of Applications Carried out at SENSOR Lab, Brescia (Italy in the Security and Food Quality Fields

    Directory of Open Access Journals (Sweden)

    Emanuela Gobbi

    2012-12-01

    Full Text Available In this work we report on metal oxide (MOX based gas sensors, presenting the work done at the SENSOR laboratory of the CNR-IDASC and University of Brescia, Italy since the 80s up to the latest results achieved in recent times. In particular we report the strategies followed at SENSOR during these 30 years to increase the performance of MOX sensors through the development of different preparation techniques, from Rheotaxial Growth Thermal Oxidation (RGTO to nanowire technology to address sensitivity and stability, and the development of electronic nose systems and pattern recognition techniques to address selectivity. We will show the obtained achievement in the context of selected applications such as safety and security and food quality control.

  17. Using an electromagnetic induction sensor to estimate mass and depth of metal objects in a former battlefield

    Science.gov (United States)

    Smetryns, Marthe; Saey, Timothy; Note, Nicolas; Van Meirvenne, Marc

    2016-04-01

    Electromagnetic induction (EMI) sensors are used to perform a non-invasive geophysical survey of land, revealing electrical and magnetic properties of the soil. The technique is used for a variety of agricultural and archaeological purposes to map the soil and locate buried archaeological objects. Besides this, EMI sensors have proven effective to detect metal objects, like the metal remains of the First World War (WW1) in the Western part of Belgium. Most EMI sensors employed for metal detection rely on a single or multiple signal(s) coming from one receiver coil. In this research a multiple coil EMI sensor was used to survey several fields in the former war zone of WW1. This sensor, the DUALEM-21S sensor, consists of one transmitter and four receiver coils leading to four simultaneous measurements of the electric and magnetic properties of the soil. After mapping the fields, the possible metal objects were delineated based on a combination of all electrical measurements and safely excavated. By combining the signals from the different coil configurations, depth intervals for the buried metal objects were assigned to all selected anomalies. This way the metal objects could be located either within the plough layer (0 - 0.45 m), just underneath the plough layer (0.45 - 0.70 m) or deeper than 0.70 m under the surface. Finally, mass models were established within every depth interval to be able to predict the metal mass of every selected anomaly . This methodology was successfully validated in another field where several metal objects were buried. Finally, it was applied on several arable fields at a different location within the former WW1 front zone. Fields located in the centre of the former war zone contained more than 400 metal pieces per hectare, most of them just underneath the plough layer. Fields on the edge of the former war zone contained substantially less metal items per hectare. To conclude, the developed methodology can be employed to differentiate

  18. Influence of semiconductor/metal interface geometry in an EMR sensor

    KAUST Repository

    Sun, Jian

    2013-02-01

    The extraordinary magnetoresistance (EMR) is well known to be strongly dependent on geometric parameters. While the influence of the aspect ratios of the metal and semiconductor areas has been thoroughly investigated, the geometry of the semiconductor/metal interface has been neglected so far. However, from a fabrication point of view, this part plays a crucial role. In this paper, the performance of a bar-type hybrid EMR sensor is investigated by means of finite element method and experiments with respect to the hybrid interface geometry. A 3-D model has been developed, which simulates the EMR effect in case of fields in different directions. The semiconductor/metal interface has been investigated in terms of different layer thicknesses and overlaps. The results show that those parameters can cause a change in the output sensitivity of 2%-10%. In order to maintain a high sensitivity and keep the fabrication relatively simple and at low cost, a device with a thin metal shunt having a large overlap on the top of the semiconductor bar would provide the best solution. © 2001-2012 IEEE.

  19. Inspection and Reconstruction of Metal-Roof Deformation under Wind Pressure Based on Bend Sensors.

    Science.gov (United States)

    Yang, Liman; Cui, Langfu; Li, Yunhua; An, Chao

    2017-05-06

    Metal roof sheathings are widely employed in large-span buildings because of their light weight, high strength and corrosion resistance. However, their severe working environment may lead to deformation, leakage and wind-lift, etc. Thus, predicting these damages in advance and taking maintenance measures accordingly has become important to avoid economic losses and personal injuries. Conventionally, the health monitoring of metal roofs mainly relies on manual inspection, which unavoidably compromises the working efficiency and cannot diagnose and predict possible failures in time. Thus, we proposed a novel damage monitoring scheme implemented by laying bend sensors on vital points of metal roofs to precisely monitor the deformation in real time. A fast reconstruction model based on improved Levy-type solution is established to estimate the overall deflection distribution from the measured data. A standing seam metal roof under wind pressure is modeled as an elastic thin plate with a uniform load and symmetrical boundaries. The superposition method and Levy solution are adopted to obtain the analytical model that can converge quickly through simplifying an infinite series. The truncation error of this model is further analyzed. Simulation and experiments are carried out. They show that the proposed model is in reasonable agreement with the experimental results.

  20. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-02-01

    Full Text Available A new surface acoustic wave (SAW-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s−1 and good linearity were observed.

  1. Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing.

    Science.gov (United States)

    Gu, Quan; Hayes-Gill, Barrie R; Morgan, Stephen P

    2008-04-20

    A 4 x 4 pixel array with analog on-chip processing has been fabricated within a 0.35 mum complementary metal oxide semiconductor process as a prototype sensor for laser Doppler blood flow imaging. At each pixel the bandpass and frequency weighted filters necessary for processing laser Doppler blood flow signals have been designed and fabricated. Because of the space constraints of implementing an accurate omega(0.5) filter at the pixel level, this has been approximated using the "roll off" of a high-pass filter with a cutoff frequency set at 10 kHz. The sensor has been characterized using a modulated laser source. Fixed pattern noise is present that is demonstrated to be repeatable across the array and can be calibrated. Preliminary blood flow results on a finger before and after occlusion demonstrate that the sensor array provides the potential for a system that can be scaled to a larger number of pixels for blood flow imaging.

  2. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    Science.gov (United States)

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-02-26

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

  3. Development and analysis of a capacitive touch sensor using a liquid metal droplet

    Science.gov (United States)

    Baek, Seungbum; Won, Dong-Joon; Gil Kim, Joong; Kim, Joonwon

    2015-09-01

    In this paper, we introduce a small-sized capacitive touch sensor with large variations in its capacitance. This sensor uses the changes in capacitance caused by the variation of the overlap area between a liquid metal (LM) droplet and a flat electrode while keeping the gap between the droplet and the bottom electrode at a small constant value (i.e. thickness of dielectric layer). Initially, the droplet is placed inside a polydimethylsiloxane (PDMS) chamber, and a thin silicon dioxide film separates the droplet and the electrode. Owing to the high surface tension of the LM, the droplet retains its spherical shape and the overlap area remains small, which means that the capacitance between the droplet and the electrode also remains small. When normal force is applied, the pressure on the membrane pushes the droplet downward, thus spreading the droplet to the bottom of the chamber and increasing the capacitance. To verify our concept, we performed theoretical analyses and experiments using a 2 mm  ×  2 mm  ×  2 mm 1-cell touch sensor. Finally, we obtained a capacitance variation of ~30 pF by applying forces between 0 N and 1 N.

  4. Intrinsic and metal-doped gallium oxide based high-temperature oxygen sensors for combustion processes

    Science.gov (United States)

    Rubio, Ernesto Javier

    Currently, there is enormous interest in research, development and optimization of the combustion processes for energy harvesting. Recent statistical and economic analyses estimated that by improving the coal-based firing/combustion processes in the power plants, savings up to $450-500 million yearly can be achieved. Advanced sensors and controls capable of withstanding extreme environments such as high temperatures, highly corrosive atmospheres, and high pressures are critical to such efficiency enhancement and cost savings. For instance, optimization of the combustion processes in power generation systems can be achieved by sensing, monitoring and control of oxygen, which is a measure of the completeness of the process and can lead to enhanced efficiency and reduced greenhouse gas emissions. However, despite the fact that there exists a very high demand for advanced sensors, the existing technologies suffer from poor 'response and recovery times' and 'long-term stability.' Motivated by the aforementioned technological challenges, the present work was focused on high-temperature (≥700 °C) oxygen sensors for application in power generation systems. The objective of the present work is to investigate nanostructured gallium oxide (2O3) based sensors for oxygen sensing, where we propose to conduct in-depth exploration of the role of refractory metal (tungsten, W, in this case) doping into 2O 3 to enhance the sensitivity, selectivity, stability ("3S" criteria) and reliability of such sensors while keeping cost economical. Tungsten (W) doped gallium oxide (2O3) thin films were deposited via rf-magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying the sputtering power applied to the W-target in order to achieve variable W content into 2O3 films while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-grown and post-annealed W-doped 2O3

  5. A novel benzene quantitative analysis method using miniaturized metal ionization gas sensor and non-linear bistable dynamic system.

    Science.gov (United States)

    Tang, Xuxiang; Liu, Fuqi

    2015-01-01

    In this paper, a novel benzene quantitative analysis method utilizing miniaturized metal ionization gas sensor and non-linear bistable dynamic system was investigated. Al plate anodic gas-ionization sensor was installed for electrical current-voltage data measurement. Measurement data was analyzed by non-linear bistable dynamics system. Results demonstrated that this method realized benzene concentration quantitative determination. This method is promising in laboratory safety management in benzene leak detection.

  6. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide

    OpenAIRE

    2016-01-01

    For this paper, a fully integrated and highly miniaturized electrochemical sensor was designed and fabricated on a silicon substrate. A solvothermal-assisted reduced graphene oxide named “TRGO” was then successfully micro-patterned using a lithography technique, followed by the electrodeposition of bismuth (Bi) on the surface of the micro-patterned TRGO for the electrochemical detection of heavy metal ions. The fully integrated electrochemical micro-sensor was then measured and evaluated for ...

  7. A chemically stable europium metal-organic framework for bifunctional chemical sensor and recyclable on-off-on vapor response

    Science.gov (United States)

    Wang, Dongbo; Liu, Jingjuan; Liu, Zhiliang

    2017-07-01

    A ratiometric luminescence sensing method is developed and makes the chemically stable Eu metal-organic framework to be the first bifunctional chemical sensor for Cd2+ and F- ions with naked-eye observation in the field of sensing applications utilizing luminescent Ln-MOFs. This is the first example of luminescent colorimetric sensor caused by the direct dual emissions of a single Ln-MOF. A recyclable vapoluminescent sensor for HCl and NH3 by the naked eye has also been realized.

  8. Electrochemical sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors.

    Science.gov (United States)

    Yantasee, Wassana; Lin, Yuehe; Hongsirikarn, Kitiya; Fryxell, Glen E; Addleman, Raymond; Timchalk, Charles

    2007-12-01

    To support the development and implementation of biological monitoring programs, we need quantitative technologies for measuring xenobiotic exposure. Microanalytical based sensors that work with complex biomatrices such as blood, urine, or saliva are being developed and validated and will improve our ability to make definitive associations between chemical exposures and disease. Among toxic metals, lead continues to be one of the most problematic. Despite considerable efforts to identify and eliminate Pb exposure sources, this metal remains a significant health concern, particularly for young children. Ongoing research focuses on the development of portable metal analyzers that have many advantages over current available technologies, thus potentially representing the next generation of toxic metal analyzers. In this article, we highlight the development and validation of two classes of metal analyzers for the voltammetric detection of Pb, including: a) an analyzer based on flow injection analysis and anodic stripping voltammetry at a mercury-film electrode, and b) Hg-free metal analyzers employing adsorptive stripping voltammetry and novel nanostructure materials that include the self-assembled monolayers on mesoporous supports and carbon nanotubes. These sensors have been optimized to detect Pb in urine, blood, and saliva as accurately as the state-of-the-art inductively coupled plasma-mass spectrometry with high reproducibility, and sensitivity allows. These improved and portable analytical sensor platforms will facilitate our ability to conduct biological monitoring programs to understand the relationship between chemical exposure assessment and disease outcomes.

  9. Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of mollusc metallothioneins

    Directory of Open Access Journals (Sweden)

    Atrian Sílvia

    2011-01-01

    achieved exclusively by evolutionary modulation of non-cysteine amino acid positions. Conclusion The Roman snail HpCdMT and HpCuMT isoforms can thus be regarded as prototypes of isoform families that evolved genuine metal-specificity within pulmonate molluscs. Diversification into these isoforms may have been initiated by gene duplication, followed by speciation and selection towards opposite needs for protecting copper-dominated metabolic pathways from nonessential cadmium. The mechanisms enabling these proteins to be metal-specific could also be relevant for other metalloproteins.

  10. A novel Schiff base: Synthesis, structural characterisation and comparative sensor studies for metal ion detections.

    Science.gov (United States)

    Köse, Muhammet; Purtas, Savas; Güngör, Seyit Ali; Ceyhan, Gökhan; Akgün, Eyup; McKee, Vickie

    2015-02-05

    A novel Schiff base ligand was synthesized by the condensation reaction of 2,6-diformylpyridine and 4-aminoantipyrine in MeOH and characterised by its melting point, elemental analysis, FT-IR, (1)H, (13)C NMR and mass spectroscopic studies. Molecular structure of the ligand was determined by single crystal X-ray diffraction technique. The electrochemical properties of the Schiff base ligand were studied in different solvents at various scan rates. Sensor ability of the Schiff base ligand was investigated by colorimetric and fluorometric methods. Visual colour change of the ligand was investigated in MeOH solvent in presence of various metal ions Na(+), Mg(2+), Al(3+), K(+), Cr(3+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+). Upon addition of Al(3+) ion into a MeOH solution of the ligand, an orange colour developed which is detectable by naked eye. Fluorescence emission studies showed that the ligand showed single emission band at 630-665nm upon excitation at 560nm. Addition of metal ions Na(+), Mg(2+), K(+), Cr(3+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+) (1:1M ratio) cause fluorescence quenching, however addition of Al(+3) resulted in an increase in fluorescence intensity. No significant variation was observed in the fluorescence intensity caused by Al(3+) in presence of other metal ions. Therefore, the Schiff base ligand can be used for selective detection of Al(3+) ions in the presence of the other metal ions studied.

  11. Sensitive resonant gas sensor operating in air with metal organic frameworks coating

    KAUST Repository

    Jaber, Nizar

    2017-08-09

    We report a practical resonant gas sensor that is uniformly coated with metal organic frameworks (MOFs) and excited near the higher order modes for a higher attained sensitivity. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of the squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic force electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOFs functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  12. Study of metal magnetic memory (MMM) technique using permanently installed magnetic sensor arrays

    Science.gov (United States)

    Li, Zhichao; Dixon, Steve; Cawley, Peter; Jarvis, Rollo; Nagy, Peter B.

    2017-02-01

    The metal magnetic memory (MMM) effect has been reported to be a non-destructive testing technique capable of evaluating stress concentration and detecting defects in steel. This method has been shown to work well in some instances, but has failed in other trials. Its mechanism has been explained widely but the sensitivity to stress concentration has not been satisfactorily investigated. In this paper, both the normal and tangential components of the stress induced MMM signal were measured by two permanently installed magnetic sensor arrays on two types of notched L80 steel specimens. As expected, the results show that an externally applied magnetic field changes the magnetic field perturbation due to the notches linearly. Plastic deformation and residual stress around notches will increase the remnant flux leakage but the effects are small, which suggests that the MMM effect is very small in the material tested and that it will not be useful in practice.

  13. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor.

    Science.gov (United States)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current-voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung's method and Norde's technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I-V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor.

  14. A Passive Pressure Sensor Fabricated by Post-Fire Metallization on Zirconia Ceramic for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2014-09-01

    Full Text Available A high-temperature pressure sensor realized by the post-fire metallization on zirconia ceramic is presented. The pressure signal can be read out wirelessly through the magnetic coupling between the reader antenna and the sensor due to that the sensor is equivalent to an inductive-capacitive (LC resonance circuit which has a pressure-sensitive resonance frequency. Considering the excellent mechanical properties in high-temperature environment, multilayered zirconia ceramic tapes were used to fabricate the pressure-sensitive structure. Owing to its low resistivity, sliver paste was chosen to form the electrical circuit via post-fire metallization, thereby enhancing the quality factor compared to sensors fabricated by cofiring with a high-melting-point metal such as platinum, tungsten or manganese. The design, fabrication, and experiments are demonstrated and discussed in detail. Experimental results showed that the sensor can operate at 600 °C with quite good coupling. Furthermore, the average sensitivity is as high as 790 kHz/bar within the measurement range between 0 and 1 Bar.

  15. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide

    Science.gov (United States)

    Xuan, Xing; Hossain, Md. Faruk; Park, Jae Yeong

    2016-09-01

    For this paper, a fully integrated and highly miniaturized electrochemical sensor was designed and fabricated on a silicon substrate. A solvothermal-assisted reduced graphene oxide named “TRGO” was then successfully micro-patterned using a lithography technique, followed by the electrodeposition of bismuth (Bi) on the surface of the micro-patterned TRGO for the electrochemical detection of heavy metal ions. The fully integrated electrochemical micro-sensor was then measured and evaluated for the detection of cadmium and lead-heavy metal ions in an acetic-acid buffered solution using the square wave anodic stripping voltammetry (SWASV) technique. The fabricated micro-sensor exhibited a linear detection range of 1.0 μg L-1 to 120.0 μg L-1 for both of the metal ions, and detection limits of 0.4 μg L-1 and 1.0 μg L-1 were recorded for the lead and cadmium (S/N = 3), respectively. Drinking-water samples were used for the practical assessment of the fabricated micro-sensor, and it showed an acceptable detection performance regarding the metal ions.

  16. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan.

    Science.gov (United States)

    Verma, Roli; Gupta, Banshi D

    2015-01-01

    Optical fibre surface plasmon resonance (SPR) based sensor for the detection of heavy metal ions in the drinking water is designed. Silver (Ag) metal and indium tin oxide (ITO) are used for the fabrication of the SPR probe which is further modified with the coating of pyrrole and chitosan composite. The sensor works on the wavelength interrogation technique and is capable of detecting trace amounts of Cd(2+), Pb(2+), and Hg(2+) heavy metal ions in contaminated water. Four types of sensing probes are fabricated and characterised for heavy metal ions out of these pyrrole/chitosan/ITO/Ag coated probe is found to be highly sensitive among all other probes. Further, the cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions. The sensor's performance is best for the low concentrations of heavy metal ions and its sensitivity decreases with the increasing concentration of heavy metal ions.

  17. Fabrication and characterization of metal-packaged fiber Bragg grating sensor by one-step ultrasonic welding

    Science.gov (United States)

    Zhang, Yumin; Zhu, Lianqing; Luo, Fei; Dong, Mingli; Ding, Xiangdong; He, Wei

    2016-06-01

    A metallic packaging technique of fiber Bragg grating (FBG) sensors is developed for measurement of strain and temperature, and it can be simply achieved via one-step ultrasonic welding. The average strain transfer rate of the metal-packaged sensor is theoretically evaluated by a proposed model aiming at surface-bonded metallic packaging FBG. According to analytical results, the metallic packaging shows higher average strain transfer rate compared with traditional adhesive packaging under the same packaging conditions. Strain tests are performed on an elaborate uniform strength beam for both tensile and compressive strains; strain sensitivities of approximately 1.16 and 1.30 pm/μɛ are obtained for the tensile and compressive situations, respectively. Temperature rising and cooling tests are also executed from 50°C to 200°C, and the sensitivity of temperature is 36.59 pm/°C. All the measurements of strain and temperature exhibit good linearity and stability. These results demonstrate that the metal-packaged sensors can be successfully fabricated by one-step welding technique and provide great promise for long-term and high-precision structural health monitoring.

  18. Modeling the dark current histogram induced by gold contamination in complementary-metal-oxide-semiconductor image sensors

    Science.gov (United States)

    Domengie, F.; Morin, P.; Bauza, D.

    2015-07-01

    We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metal atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.

  19. Preparation and characterization of polymer-stabilized metal nanoparticles for sensor applications

    Science.gov (United States)

    Macanás, J.; Farre, M.; Muñoz, M.; Alegret, S.; Muraviev, D. N.

    2006-05-01

    Nanomaterial-based sensing devices attract great attention of scientist and technologists due to the special properties of nano-objects, such as for example, Metal Nanoclusters (MNC), which differ from those of the bulk materials. The further development of these devices requires novel approaches to stabilize MNC and therefore, to save their unique properties. The Solid-Phase-Incorporated-Reagents (SPHINER) technique was used for in situ synthesis of Polymer-Stabilized Metal Nanoclusters (PSMNC), which were used in the construction of new composite electrodes. The size of Pt-PSMNC synthesized in polyvinyl chloride (PVC) and polysulfone stabilizing matrices was determined by Transmission Electron Microscopy (TEM) technique and appeared to be in majority of cases of 6-20 nm. The electrochemical characterization of PSMNC-based amperometric sensors has demonstrated that inclusion of Pt-MNC increases the electrical conductivity of the membrane and that the electrode performance strongly depends on both the type of polymeric matrix and the membrane preparation technique.

  20. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Directory of Open Access Journals (Sweden)

    Tharun Konduru

    2015-01-01

    Full Text Available A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone, acetonitrile (nitrile, ethyl acetate (ester, and ethanol (alcohol. The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm of methlypropyl sulfide and two concentrations (145 and 1452 ppm of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  1. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Science.gov (United States)

    Konduru, Tharun; Rains, Glen C.; Li, Changying

    2015-01-01

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage. PMID:25587975

  2. A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization.

    Science.gov (United States)

    Konduru, Tharun; Rains, Glen C; Li, Changying

    2015-01-12

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  3. Determination of hydrogen permeation using metallic sensors of construction similar to bimetallic thermocouples; Determinacao de permeacao de hidrogenio utilizando sensores metalicos de construcao similar a termopares bimetalicos

    Energy Technology Data Exchange (ETDEWEB)

    Maul, Alexandre M. [Ministerio de Ciencia e Tecnologia (MCT), Brasilia, DF (Brazil). Programa de Pos-graduacao em Engenharia e Processos (PIPE- PRH-24/ANP); Ponte, Haroldo A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Correa, Luiz A. [Metaldata Tecnologia de Materiais, Curitiba, PR (Brazil)] (in Memoriam)

    2004-07-01

    Crude oils range in consistency from water to tar-like solids, and in color from clear to black. An average crude oil contains about 84 percent carbon, 14 percent hydrogen, 1 to 3 percent sulfur, and less than 1 percent each of nitrogen, oxygen, metals, and salts. Crude oils are generally classified as paraffinic, naphthenic, or aromatic based on the predominant proportion of similar hydrocarbon molecules. Refinery crude base stocks usually consist of mixtures of two or more different crude oils. Many corrosive processes found in machines, equipment and pipes used in the petroleum industry are directly influenced by hydrogen. The structural damages are caused by hydrogen inclusion in metallic structures, generated by acid media that contain free protons (H{sup +}), by chemical processes that lead to the protons formation, by formation of atomic hydrogen (H0) or even by adsorbed gas hydrogen (H2). The structural damages are varied: hydrogen induced cracking (HIC), blistering, stress corrosion cracking (SSC), stress oriented hydrogen induced cracking (SOHIC). The main problem found in practice is how to detect, in a safe, fast and economically viable way, the formation of hydrogen close to a surface subjected to hydrogen permeation. Within this work, we built a cell for hydrogen generation/permeation to study and evaluate a new hydrogen sensor. This new sensor is composed of two parts, each one build with a couple of dissimilar materials, being a sensor couple, for hydrogen flux measurement, and a reference couple, for temperature corrections. In this sensor, the changes in some physical properties are related with the flow of permeated hydrogen. The results using a prototype model showed good agreement with a traditional Devanathan-Stachurski sensor. (author)

  4. Determination of hydrogen permeation using metallic sensors of construction similar to bimetallic thermocouples; Determinacao de permeacao de hidrogenio utilizando sensores metalicos de construcao similar a termopares bimetalicos

    Energy Technology Data Exchange (ETDEWEB)

    Maul, Alexandre M. [Ministerio de Ciencia e Tecnologia (MCT), Brasilia, DF (Brazil). Programa de Pos-graduacao em Engenharia e Processos (PIPE- PRH-24/ANP); Ponte, Haroldo A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Correa, Luiz A. [Metaldata Tecnologia de Materiais, Curitiba, PR (Brazil)] (in Memoriam)

    2004-07-01

    Crude oils range in consistency from water to tar-like solids, and in color from clear to black. An average crude oil contains about 84 percent carbon, 14 percent hydrogen, 1 to 3 percent sulfur, and less than 1 percent each of nitrogen, oxygen, metals, and salts. Crude oils are generally classified as paraffinic, naphthenic, or aromatic based on the predominant proportion of similar hydrocarbon molecules. Refinery crude base stocks usually consist of mixtures of two or more different crude oils. Many corrosive processes found in machines, equipment and pipes used in the petroleum industry are directly influenced by hydrogen. The structural damages are caused by hydrogen inclusion in metallic structures, generated by acid media that contain free protons (H{sup +}), by chemical processes that lead to the protons formation, by formation of atomic hydrogen (H0) or even by adsorbed gas hydrogen (H2). The structural damages are varied: hydrogen induced cracking (HIC), blistering, stress corrosion cracking (SSC), stress oriented hydrogen induced cracking (SOHIC). The main problem found in practice is how to detect, in a safe, fast and economically viable way, the formation of hydrogen close to a surface subjected to hydrogen permeation. Within this work, we built a cell for hydrogen generation/permeation to study and evaluate a new hydrogen sensor. This new sensor is composed of two parts, each one build with a couple of dissimilar materials, being a sensor couple, for hydrogen flux measurement, and a reference couple, for temperature corrections. In this sensor, the changes in some physical properties are related with the flow of permeated hydrogen. The results using a prototype model showed good agreement with a traditional Devanathan-Stachurski sensor. (author)

  5. Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter.

    Science.gov (United States)

    Bozzi, Aaron T; Bane, Lukas B; Weihofen, Wilhelm A; Singharoy, Abhishek; Guillen, Eduardo R; Ploegh, Hidde L; Schulten, Klaus; Gaudet, Rachelle

    2016-12-06

    The widely conserved natural resistance-associated macrophage protein (Nramp) family of divalent metal transporters enables manganese import in bacteria and dietary iron uptake in mammals. We determined the crystal structure of the Deinococcus radiodurans Nramp homolog (DraNramp) in an inward-facing apo state, including the complete transmembrane (TM) segment 1a (absent from a previous Nramp structure). Mapping our cysteine accessibility scanning results onto this structure, we identified the metal-permeation pathway in the alternate outward-open conformation. We investigated the functional impact of two natural anemia-causing glycine-to-arginine mutations that impaired transition metal transport in both human Nramp2 and DraNramp. The TM4 G153R mutation perturbs the closing of the outward metal-permeation pathway and alters the selectivity of the conserved metal-binding site. In contrast, the TM1a G45R mutation prevents conformational change by sterically blocking the essential movement of that helix, thus locking the transporter in an inward-facing state.

  6. Refractometers for different refractive index range by surface plasmon resonance sensors in multimode optical fibers with different metals

    Science.gov (United States)

    Zuppella, P.; Corso, Alain J.; Pelizzo, Maria G.; Cennamo, N.; Zeni, L.

    2016-09-01

    We have realized a plasmonic sensor based on Au/Pd metal bilayer in a multimode plastic optical fiber. This metal bilayer, based on a metal with high imaginary part of the refractive index and gold, shows interesting properties in terms of sensitivity and performances, in different refractive index ranges. The development of highly sensitive platforms for high refractive index detection (higher than 1.38) is interesting for chemical applications based on molecularly imprinted polymer as receptors, while the aqueous medium is the refractive index range of biosensors based on bio-receptors. In this work we have presented an Au/Pd metal bilayer optimized for 1.38-1.42 refractive index range.

  7. METALLOTHIONEINS AS SENSORS AND CONTROLS EXCHANGE OF METALS IN THE CELLS

    Directory of Open Access Journals (Sweden)

    V. A. Kutyakov

    2014-01-01

    Full Text Available The basic information on the classification, structure, induction and degradation, functions of the protein family – metallothionein (MT, including CNS in health and disease are presented in this review. It was found that four major isoforms of metallothionein perform different biological roles, are localized in dif- ferent tissues. Induction of MT is a universal reaction to the impact of a variety of stress factors. In recent years, understanding of the role of metallothioneins in metal homeostasis in the tissues in normal and pathological conditions have changed significantly. Notes polyfunctionality metallothioneins (transport of metal ions, maintaining redox reactions, tread, signal, modulated and regulatory functions and their im- pact on basic cellular functions such as proliferation, differentiation, programmed cell death. Further- more, a special role is shown MT in the pathogenesis of cardiovascular, neurodegenerative and neoplastic disorders.Currently, these molecules are increasingly considered as potential targets for therapy of a wide range of diseases and the development of targeted approaches to the regulation of expression of MT – one of the promising areas of pharmacology and toxicology. Stressed the safety of metallothioneins as therapeutic agents.

  8. Multi-physical model of cation and water transport in ionic polymer-metal composite sensors

    Science.gov (United States)

    Zhu, Zicai; Chang, Longfei; Horiuchi, Tetsuya; Takagi, Kentaro; Aabloo, Alvo; Asaka, Kinji

    2016-03-01

    Ion-migration based electrical potential widely exists not only in natural systems but also in ionic polymer materials. We presented a multi-physical model and investigated the transport process of cation and water of ionic polymer-metal composites based on our thorough understanding on the ionic sensing mechanisms in this paper. The whole transport process was depicted by transport equations concerning convection flux under the total pressure gradient, electrical migration by the built-in electrical field, and the inter-coupling effect between cation and water. With numerical analysis, the influence of critical material parameters, the elastic modulus Ewet, the hydraulic permeability coefficient K, the diffusion coefficient of cation dII and water dWW, and the drag coefficient of water ndW, on the distribution of cation and water was investigated. It was obtained how these parameters correlate to the voltage characteristics (both magnitude and response speed) under a step bending. Additionally, it was found that the effective relative dielectric constant ɛr has little influence on the voltage but is positively correlated to the current. With a series of optimized parameters, the predicted voltage agreed with the experimental results well, which validated our model. Based on our physical model, it was suggested that an ionic polymer sensor can benefit from a higher modulus Ewet, a higher coefficient K and a lower coefficient dII, and a higher constant ɛr.

  9. Emerging 0D Transition-Metal Dichalcogenides for Sensors, Biomedicine, and Clean Energy.

    Science.gov (United States)

    Li, Bang Lin; Setyawati, Magdiel Inggrid; Zou, Hao Lin; Dong, Jiang Xue; Luo, Hong Qun; Li, Nian Bing; Leong, David Tai

    2017-08-01

    Following research on two-dimensional (2D) transition metal dichalcogenides (TMDs), zero-dimensional (0D) TMDs nanostructures have also garnered some attention due to their unique properties; exploitable for new applications. The 0D TMDs nanostructures stand distinct from their larger 2D TMDs cousins in terms of their general structure and properties. 0D TMDs possess higher bandgaps, ultra-small sizes, high surface-to-volume ratios with more active edge sites per unit mass. So far, reported 0D TMDs can be mainly classified as quantum dots, nanodots, nanoparticles, and small nanoflakes. All exhibited diverse applications in various fields due to their unique and excellent properties. Of significance, through exploiting inherent characteristics of 0D TMDs materials, enhanced catalytic, biomedical, and photoluminescence applications can be realized through this exciting sub-class of TMDs. Herein, we comprehensively review the properties and synthesis methods of 0D TMDs nanostructures and focus on their potential applications in sensor, biomedicine, and energy fields. This article aims to educate potential adopters of these excitingly new nanomaterials as well as to inspire and promote the development of more impactful applications. Especially in this rapidly evolving field, this review may be a good resource of critical insights and in-depth comparisons between the 0D and 2D TMDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Single sensor for two metal ions: Colorimetric recognition of Cu 2+ and fluorescent recognition of Hg 2+

    Science.gov (United States)

    Tang, Lijun; Li, Fangfang; Liu, Minghui; Nandhakumar, Raju

    2011-03-01

    The first novel rhodamine B based sensor, rhodamine B hydrazide methyl 5-formyl-1 H-pyrrole-2-carboxylate Schiff base ( 2) capable of detecting both Cu 2+ and Hg 2+ using two different detection modes has been designed and synthesized. The metal ion induced optical changes of 2 were investigated in MeOH:H 2O (3:1) HEPES buffered solution at pH 7.4. Sensor 2 exhibits selective colorimetric recognition of Cu 2+ and fluorogenic recognition of Hg 2+ with UV-vis and fluorescence spectroscopy, respectively. Moreover, both of the Cu 2+ and Hg 2+ recognition processes are proven to be hardly influenced by other coexisting metal ions.

  11. Cross-sensitivity of metal oxide gas sensor to ambient temperature and humidity: Effects on gas distribution mapping

    Science.gov (United States)

    Kamarudin, K.; Bennetts, V. H.; Mamduh, S. M.; Visvanathan, R.; Yeon, A. S. A.; Shakaff, A. Y. M.; Zakaria, A.; Abdullah, A. H.; Kamarudin, L. M.

    2017-03-01

    Metal oxide gas sensors have been widely used in robotics application to perform remote and mobile gas sensing. However, previous researches have indicated that this type of sensor technology is cross-sensitive to environmental temperature and humidity. This paper therefore investigates the effects of these two factors towards gas distribution mapping and gas source localization domains. A mobile robot equipped with TGS2600 gas sensor was deployed to build gas distribution maps of indoor environment, where the temperature and humidity varies. The results from the trials in environment with and without gas source indicated that there is a strong relation between the fluctuation of the mean and variance map with respect to the variations in the temperature and humidity maps.

  12. Laser-produced plasma sensor-probe system for in situ molten metal analysis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.W.

    1997-01-28

    The radically new methodology of in-situ laser-produced plasma (LPP) analysis of molten metals, as developed at Lehigh University, has been implemented into an LPP sensor-probe system, ready for deployment at steelmaking facilities. The system consists of an LPP sensor-probe head, which is immersed into the molten metal bath for the short duration of measurement, a control console, an umbilical cord connecting the above two units, and a support console providing coolants and pneumatic supports to the control console. The Department of Energy funding has supported Phase III-A and -B of the project in a joint sponsorship with AISI, CTU 5-2 Consortium, and Lehigh University. The objectives have been to: (1) implement the molten metal calibration protocol for the LPP analysis methodology; (2) implement the methodology in the form of a second-generation LPP sensor-probe system, which facilitates real-time process control by in-situ determination of elemental composition of molten steel alloys; (3) deploy such developmental systems in steelmaking facilities; (4) upgrade the systems to a third-generation design; and (5) effect technology transfer by selecting a manufacturer of commercial LPP sensor-probe systems. Four of the five objectives have been fully met. The deployment objective has been partially realized at present. The full LPP sensor-probe system has been put through trial immersion runs at a foundry, but its deployment at steelmaking facilities has progressed to a stage where various issues of financial and legal nature are being codified into a formal agreement between a host site and Lehigh University.

  13. Oscillating wave displacement sensor using the enhanced Goos-Hänchen effect in a symmetrical metal-cladding optical waveguide.

    Science.gov (United States)

    Yu, Tianyi; Li, Honggen; Cao, Zhuangqi; Wang, Yi; Shen, Qishun; He, Ying

    2008-05-01

    An oscillating wave displacement sensor based on the enhanced Goos-Hänchen (G-H) effect in a symmetrical metal-cladding optical waveguide is proposed. Since the detected signal is irrelevant to the power fluctuation of the incident light and the magnitude of the G-H shift is enhanced to hundreds of micrometers, a 40 pm resolution is demonstrated in our experiment without employing any complicated optical equipment and servo techniques.

  14. Gallium-Based Room Temperature Liquid Metals and its Application to Single Channel Two-Liquid Hyperelastic Capacitive Strain Sensors

    Science.gov (United States)

    Liu, Shanliangzi

    Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because of their strong adhesion to a majority of substrates. This unusual high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In the first part of the thesis, we described a multiscale study aiming at understanding the fundamental mechanisms governing wetting and adhesion of gallium-based liquid metals. In particular, macroscale dynamic contact angle measurements were coupled with Scanning Electron Microscope (SEM) imaging to relate macroscopic drop adhesion to morphology of the liquid metal-surface interface. In addition, room temperature liquid-metal microfluidic devices are also attractive systems for hyperelastic strain sensing. Currently two types of liquid metal-based strain sensors exist for inplane measurements: single-microchannel resistive and two-microchannel capacitive devices. However, with a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter, limiting the number of sensors that can be embedded into. In the second part of the thesis, firstly, simulations and an experimental setup consisting of two GaInSn filled tubes submerged within a dielectric liquid bath are used to quantify the effects of the cylindrical electrode geometry including diameter, spacing, and meniscus shape as well as dielectric constant of the insulating liquid and the presence of tubing on the overall system's capacitance. Furthermore, a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel is developed. Lastly, capacitance and response of this compact device to strain and operational issues arising from complex hydrodynamics near liquid-liquid and liquid

  15. Modeling the dark current histogram induced by gold contamination in complementary-metal-oxide-semiconductor image sensors

    Energy Technology Data Exchange (ETDEWEB)

    Domengie, F., E-mail: florian.domengie@st.com; Morin, P. [STMicroelectronics Crolles 2 (SAS), 850 Rue Jean Monnet, 38926 Crolles Cedex (France); Bauza, D. [CNRS, IMEP-LAHC - Grenoble INP, Minatec: 3, rue Parvis Louis Néel, CS 50257, 38016 Grenoble Cedex 1 (France)

    2015-07-14

    We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metal atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.

  16. Metal oxide nanostructures synthesized on flexible and solid substrates and used for catalysts, UV detectors, and chemical sensors

    Science.gov (United States)

    Willander, Magnus; Sadollahkhani, Azar; Echresh, Ahmad; Nur, Omer

    2014-03-01

    In this paper we demonstrate the visibility of the low temperature chemical synthesis for developing device quality material grown on flexible and solid substrates. Both colorimetric sensors and UV photodetectors will be presented. The colorimetric sensors developed on paper were demonstrated for heavy metal detection, in particular for detecting copper ions in aqueous solutions. The demonstrated colorimetric copper ion sensors developed here are based on ZnO@ZnS core-shell nanoparticles (CSNPs). These sensors demonstrated an excellent low detection limit of less than 1 ppm of copper ions. Further the colorimetric sensors operate efficiently in a wide pH range between 4 and 11, and even in turbulent water. The CSNPs were additionally used as efficient photocatalytic degradation element and were found to be more efficient than pure ZnO nanoparticles (NPs). Also p-NiO/n-ZnO thin film/nanorods pn junctions were synthesized by a two-step synthesis process and were found to act as efficient UV photodetectors. Additionally we show the effect of the morphology of different CuO nanostructures on the efficiency of photo catalytic degradation of Congo red organic dye.

  17. Tailoring the plasmonic whispering gallery modes of a metal-coated resonator for potential application as a refractometric sensor.

    Science.gov (United States)

    Guo, Chang-Lei; Che, Kai-Jun; Gu, Guo-Qiang; Cai, Guo-Xiong; Cai, Zhi-Ping; Xu, Hui-Ying

    2015-02-20

    Plasmonic whispering gallery (WG) modes confined in metal-coated resonators are theoretically investigated by electromagnetic analyses. The resonance can be tuned from internal surface plasmonic WG modes to the hybrid state of the plasmonic mode by an introduced isolation layer. As the coated metal is reduced in size, the optical resonance is shifted out by the mode coupling of the internal and external surface plasmonic WG modes. Based on the optical leak of the plasmonic WG mode, the optical influences led by the surroundings with a variable refractive index are considered. Device performance criteria such as optical power leak, resonant wavelength shift, and threshold gain are studied. Full wave simulations are also employed and the results present good consistency with analytic solutions. The metal-coated resonator assisted by an active material is expected to provide promising performance as a refractometric sensor.

  18. Effects of calcination temperature and acid-base properties on mixed potential ammonia sensors modified by metal oxides.

    Science.gov (United States)

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO(3), Bi(2)O(3) and V(2)O(5), while the use of WO(3,) Nb(2)O(5) and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO(3) > Bi(2)O(3) > V(2)O(5), which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.

  19. Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    Directory of Open Access Journals (Sweden)

    Kenichi Shimizu

    2011-02-01

    Full Text Available Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.

  20. Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    Science.gov (United States)

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified. PMID:22319402

  1. Role of CrRLK1L Cell Wall Sensors HERCULES1 and 2, THESEUS1, and FERONIA in Growth Adaptation Triggered by Heavy Metals and Trace Elements

    Directory of Open Access Journals (Sweden)

    Julia Richter

    2017-09-01

    . No other CrRLK1L mutant exhibited this phenotype except of the THE1:GFP overexpressor on Ni suggesting that THE1 might be involved in Ni induced and hypocotyl specific RALF signaling and growth regulating pathway. Overall, our findings establish a molecular link between metal ion stress, growth and the cell wall integrity sensors of the CrRLK1L family.

  2. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    Science.gov (United States)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  3. Micromachined vertical Hall magnetic field sensor in standard complementary metal oxide semiconductor technology

    Science.gov (United States)

    Paranjape, M.; Ristic, Lj.

    1992-06-01

    A novel 2D micromachined vertical Hall magnetic field sensor structure has been designed and fabricated using a commercially available 3 micron CMOS process. The device can detect two magnetic field components in the plane of the chip surface. The sensor exhibits a linear response and shows no cross-sensitivity between channels.

  4. Polymer−metal organic framework composite films as affinity layer for capacitive sensor devices

    NARCIS (Netherlands)

    Sachdeva, S.; Gravesteijn, Dirk J; Soccol, D.; Kapteijn, F.; Sudhölter, E.J.R.; Gascon, J.; Smet, de L.C.P.M.

    2016-01-01

    We report a simple method for sensor development using polymer-MOF composite films. Nanoparticles of NH2-MIL-53(Al) dispersed in a Matrimid polyimide were applied as a thin film on top of capacitive sensor devices with planar electrodes. These drop-cast films act as an affinity layer. Sensing

  5. Evolutionary descent of prion genes from the ZIP family of metal ion transporters.

    Directory of Open Access Journals (Sweden)

    Gerold Schmitt-Ulms

    Full Text Available In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo. A subsequent bioinformatic analysis revealed the unexpected presence of a PrP-like amino acid sequence within the N-terminal, extracellular domain of a distinct sub-branch of the ZIP protein family that includes ZIP5, ZIP6 and ZIP10. Additional structural threading and orthologous sequence alignment analyses argued that the prion gene family is phylogenetically derived from a ZIP-like ancestral molecule. The level of sequence homology and the presence of prion protein genes in most chordate species place the split from the ZIP-like ancestor gene at the base of the chordate lineage. This relationship explains structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The phylogenetic and spatial connection to ZIP proteins is expected to open new avenues of research to elucidate the biology of the prion protein in health and disease.

  6. Thin film metal sensors in fusion bonded glass chips for high-pressure microfluidics

    Science.gov (United States)

    Andersson, Martin; Ek, Johan; Hedman, Ludvig; Johansson, Fredrik; Sehlstedt, Viktor; Stocklassa, Jesper; Snögren, Pär; Pettersson, Victor; Larsson, Jonas; Vizuete, Olivier; Hjort, Klas; Klintberg, Lena

    2017-01-01

    High-pressure microfluidics offers fast analyses of thermodynamic parameters for compressed process solvents. However, microfluidic platforms handling highly compressible supercritical CO2 are difficult to control, and on-chip sensing would offer added control of the devices. Therefore, there is a need to integrate sensors into highly pressure tolerant glass chips. In this paper, thin film Pt sensors were embedded in shallow etched trenches in a glass wafer that was bonded with another glass wafer having microfluidic channels. The devices having sensors integrated into the flow channels sustained pressures up to 220 bar, typical for the operation of supercritical CO2. No leakage from the devices could be found. Integrated temperature sensors were capable of measuring local decompression cooling effects and integrated calorimetric sensors measured flow velocities over the range 0.5-13.8 mm s-1. By this, a better control of high-pressure microfluidic platforms has been achieved.

  7. Detection of heavy metals in water by fluorescence spectroscopy: On the way to a suitable sensor system

    Energy Technology Data Exchange (ETDEWEB)

    Prestel, H.; Gahr, A.; Niessner, R. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Hydrogeologie, Hydrochemie und Umweltanalytik

    2000-10-01

    In order to develop a fiber optical heavy metal ion detection system, the applicability of selected complexing agents with fluorescent properties has been studied. Beginning with the application of known chelators, like BTC-5N, Newport Green and trade;, neocuproine, and chromotropic acid, a sensor configuration has been found, which allows the detection of Cd{sup 2+}, Ni{sup 2+}, and Cu{sup 2+} well below the chemical parameter threshold values of the new Water Quality Directive 98/83/EU. The sensor itself uses a membrane separation of the chelator flow from the sample volume. The diffusion across the membrane limits the response time to about 15 to 20 min. Applications are seen in monitoring networks. (orig.)

  8. Dimensionality aspects of nano micro integrated metal oxide based early stage leak detection room temperature hydrogen sensor

    Science.gov (United States)

    Deshpande, Sameer Arun

    Detection of explosive gas leaks such as hydrogen (H2) becomes key element in the wake of counter-terrorism threats, introduction of hydrogen powered vehicles and use of hydrogen as a fuel for space explorations. In recent years, a significant interest has developed on metal oxide nanostructured sensors for the detection of hydrogen gas. Gas sensors properties such as sensitivity, selectivity and response time can be enhanced by tailoring the size, the shape, the structure and the surface of the nanostructures. Sensor properties (sensitivity, selectivity and response time) are largely modulated by operating temperature of the device. Issues like instability of nanostructures at high temperature, risk of hydrogen explosion and high energy consumption are driving the research towards detection of hydrogen at low temperatures. At low temperatures adsorption of O2- species on the sensor surface instead of O- (since O- species reacts easily with hydrogen) result in need of higher activation energy for hydrogen and adsorbed species interaction. This makes hydrogen detection at room temperature a challenging task. Higher surface area to volume ratio (resulting higher reaction sites), enhanced electronic properties by varying size, shape and doping foreign impurities (by modulating space charge region) makes nanocrystalline materials ideal candidate for room temperature gas sensing applications. In the present work various morphologies of nanostructured tin oxide (SnO 2) and indium (In) doped SnO2 and titanium oxide (titania, TiO2) were synthesized using sol-gel, hydrothermal, thermal evaporation techniques and successfully integrated with the micro-electromechanical devices H2 at ppm-level (as low as 100ppm) has been successfully detected at room temperature using the SnO2 nanoparticles, SnO2 (nanowires) and TiO2 (nanotubes) based MEMS sensors. While sensor based on indium doped tin oxide showed the highest sensitivity (S =Ra/Rg= 80000) and minimal response time (10sec

  9. Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family

    Science.gov (United States)

    Ehrnstorfer, Ines A.; Manatschal, Cristina; Arnold, Fabian M.; Laederach, Juerg; Dutzler, Raimund

    2017-01-01

    Secondary active transporters of the SLC11/NRAMP family catalyse the uptake of iron and manganese into cells. These proteins are highly conserved across all kingdoms of life and thus likely share a common transport mechanism. Here we describe the structural and functional properties of the prokaryotic SLC11 transporter EcoDMT. Its crystal structure reveals a previously unknown outward-facing state of the protein family. In proteoliposomes EcoDMT mediates proton-coupled uptake of manganese at low micromolar concentrations. Mutants of residues in the transition-metal ion-binding site severely affect transport, whereas a mutation of a conserved histidine located near this site results in metal ion transport that appears uncoupled to proton transport. Combined with previous results, our study defines the conformational changes underlying transition-metal ion transport in the SLC11 family and it provides molecular insight to its coupling to protons. PMID:28059071

  10. Odour Mapping Under Strong Backgrounds With a Metal Oxide Sensor Array

    Science.gov (United States)

    Ziyatdinov, Andrey; Calvo, José María Blanco; Lechón, Miguel; Bermúdez i Badia, Sergi; Verschure, Paul F. M. J.; Marco, Santiago; Perera, Alexandre

    2011-09-01

    This work describes the data from navigation experiments with the mobile robot, equipped with the sensor array of three MOX gas sensors. Performed four series of measurements aim to explore the capabilities of sensor array to build the odour map with one or two odour sources in the wind tunnel space. It was demonstrated that the method based on Independent Component Analysis (ICA) is able to discriminate two odour sources, that in future can be used in the surge-and-cast robot navigation algorithm.

  11. Familial Amyotrophic Lateral Sclerosis-associated Mutations Decrease the Thermal Stability of Distinctly Metallated Species of Human Copper/Zinc Superoxide Dismutase

    National Research Council Canada - National Science Library

    Jorge A. Rodriguez; Joan S. Valentine; Daryl K. Eggers; James A. Roe; Ashutosh Tiwari; Robert H. Brown, Jr; Lawrence J. Hayward

    2002-01-01

    ...) associated with familial amyotrophic lateral sclerosis (FALS). Multiple endothermic unfolding transitions were observed by differential scanning calorimetry for partially metallated SOD1 enzymes isolated from a baculovirus system...

  12. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au-Ag-Au nanostructure for lead(II) ion detection

    Science.gov (United States)

    Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.; Yaacob, Mohd Hanif; Mahdi, Mohd Adzir; Zan, Mohd Saiful Dzulkefly; Shaari, Sahbudin

    2016-01-01

    We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au-Ag-Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1-1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10-5 change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  13. Novel Ultralow-Weight Metal Rubber Sensor System for Ultra Long-Duration Scientific Balloons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, ultralow mass density, and non-intrusive sensor system for ultra long duration balloons that will operate in the most...

  14. Lightweight, Wearable Metal Rubber-Textile Sensor for In-Situ Lunar Autonomous Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase II SBIR program would develop comfortable garments with multiple integrated sensor functions for the monitoring of astronauts during long duration...

  15. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au–Ag–Au nanostructure for lead(II) ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin, Nur Hasiba [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Bakar, Ahmad Ashrif A., E-mail: ashrif@ukm.edu.my [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yaacob, Mohd Hanif; Mahdi, Mohd Adzir [Wireless and Photonic Network Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zan, Mohd Saiful Dzulkefly [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Shaari, Sahbudin [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2016-01-15

    Highlights: • Tri-metallic Au–Ag–Au CS-GO SPR sensor was fabricated for the first time. • The tri-metallic nanostructure provided an enhanced evanescent field. • Successful functionalization of the CS-GO sensing layer. • Superior performance for lead(II) ion detection. - Abstract: We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au–Ag–Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1–1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10{sup −5} change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  16. Adsorption smoke detector made of thin-film metal-oxide semiconductor sensor

    CERN Document Server

    Adamian, A Z; Aroutiounian, V M

    2001-01-01

    Based on results of investigations of the thin-film smoke sensors made of Bi sub 2 O sub 3 , irresponsive to a change in relative humidity of the environment, an absorption smoke detector processing circuit, where investigated sensor is used as a sensitive element, is proposed. It is shown that such smoke detector is able to function reliably under conditions of high relative humidity of the environment (up to 100%) and it considerably exceeds the known smoke detectors by the sensitivity threshold.

  17. Aqueous batteries based on mixed monovalence metal ions: a new battery family.

    Science.gov (United States)

    Chen, Liang; Zhang, Leyuan; Zhou, Xufeng; Liu, Zhaoping

    2014-08-01

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, new concepts are urgently needed to build batteries with high energy density, low cost, and good safety. Here, we demonstrate two new aqueous batteries based on two monovalence metal ions (Li(+) /K(+) and Na(+) /K(+) ) as charge-transfer ions, Ni1 Zn1 HCF/TiP2 O7 and Ni1 Zn1 HCF/NaTi2 (PO4 )3 . These new batteries are unlike the conventional "rocking-chair" aqueous metal-ion batteries based on the migration of one type of shuttle ion between cathode and anode. They can deliver specific energy of 46 Wh kg(-1) and 53 Wh kg(-1) based on the total mass of active materials; this is superior to current aqueous battery systems based on sodium-ion and/or potassium-ion technologies. These two new batteries together with the previously developed Li(+) /Na(+) mixed-ion battery not only constitute a new battery family for energy storage, but also greatly broaden our horizons for battery research.

  18. P(1B)-ATPases--an ancient family of transition metal pumps with diverse functions in plants.

    Science.gov (United States)

    Williams, Lorraine E; Mills, Rebecca F

    2005-10-01

    P(1B)-ATPases form a distinct evolutionary sub-family of P-type ATPases, transporting transition metals such as Cu, Zn, Cd, Pb and Co across membranes in a wide range of organisms, including plants. Structurally they are distinct from other P-types, possessing eight transmembrane helices, a CPx/SPC motif in transmembrane domain six, and putative transition metal-binding domains at the N- and/or C-termini. Arabidopsis has eight P(1B)-ATPases (AtHMA1-AtHMA8), which differ in their structure, function and regulation. They perform a variety of important physiological tasks relating to transition metal transport and homeostasis. The crucial roles of plant P(1B)-ATPases in micronutrient nutrition, delivery of essential metals to target proteins, and toxic metal detoxification are discussed.

  19. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  20. Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons

    Science.gov (United States)

    Pan, Meiyan; Liang, Zhaoxing; Wang, Yu; Chen, Yihang

    2016-07-01

    We propose a novel mechanism to construct a tunable and ultracompact refractive index sensor by using the Fano resonance in metal-graphene hybrid nanostructure. Plasmon modes in graphene nanoribbons and waveguide resonance modes in the slits of metal strip array coexist in this system. Strong interference between the two different modes occurs when they are spectrally overlapped, resulting in a Fano-type asymmetrically spectral lineshape which can be used for detecting the variations of ambient refractive index. The proposed sensor has a relatively high figure of merit (FOM) over 20 and its sensing performance shows a good tolerance to roughness. In addition to the wide range measurement enabled by the electrical tuning of graphene plasmon modes, such ultracompact system also provides an angle-independent operation and therefore, it can efficiently work for the detection of gas, liquid, or solids. Such optical nanostructure may also be applied to diverse fields such as temperature/pressure metering, medical detection, and mechanical precision measurement.

  1. A novel humidity sensor based on NH2-MIL-125(Ti) metal organic framework with high responsiveness

    Science.gov (United States)

    Zhang, Ying; Chen, Yu; Zhang, Yupeng; Cong, Huahua; Fu, Bo; Wen, Shanpeng; Ruan, Shengping

    2013-10-01

    A novel porous nanosized humidity-sensing material of amine-functionalized titanium metal organic framework (MOF), NH2-MIL-125(Ti), was investigated. NH2-MIL-125(Ti) nanoparticles with high phase purity and good physicochemical property were synthesized by a simple hydrothermal method. The nanosized MOF was characterized by X-ray diffraction and scanning electron microscope. The average size of the MOF nanoparticles is around 300 nm. Then NH2-MIL-125(Ti) humidity sensor was fabricated by coating the nanosized materials on interdigitated electrodes. The humidity sensor based on NH2-MIL-125(Ti) shows good linearity of RH (11-95 % RH), as well as fast response and recovery time. The RH detecting range is from 11 to 95 % RH at 100 Hz. The response and recovery time are about 45 and 50 s, respectively. Moreover, the sensing mechanism was discussed by complex impedance analysis in detail. These results indicate the potential application of NH2-MIL-125(Ti) in humidity sensors.

  2. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Konrad Maier

    2015-09-01

    Full Text Available In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

  3. Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating

    Science.gov (United States)

    Li, Ruifang; Wu, Dong; Liu, Yumin; Yu, Li; Yu, Zhongyuan; Ye, Han

    2017-01-01

    A perfect ultra-narrow band infrared metamaterial absorber based on the all-metal-grating structure is proposed. The absorber presents a perfect absorption efficiency of over 98% with an ultra-narrow bandwidth of 0.66 nm at normal incidence. This high efficient absorption is contributed to the surface plasmon resonance. Moreover, the surface plasmon resonance-induced strong surface electric field enhancement is favorable for application in biosensing system. When operated as a plasmonic refractive index sensor, the ultra-narrow band absorber has a wavelength sensitivity 2400 nm/RIU and an ultra-high figure of merit 3640, which are much better than those of most reported similar plasmonic sensors. Besides, we also comprehensively investigate the influences of structural parameters on the sensing properties. Due to the simplicity of its geometry structure and its easiness to be fabricated, the proposed high figure of merit and sensitivity sensor indicates a competitive candidate for applications in sensing or detecting fields.

  4. Proximity gettering of C3H5 carbon cluster ion-implanted silicon wafers for CMOS image sensors: Gettering effects of transition metal, oxygen, and hydrogen impurities

    Science.gov (United States)

    Kurita, Kazunari; Kadono, Takeshi; Okuyama, Ryousuke; Hirose, Ryo; Onaka-Masada, Ayumi; Koga, Yoshihiro; Okuda, Hidehiko

    2016-12-01

    A new technique is described for manufacturing silicon wafers with the highest capability yet reported for gettering transition metallic, oxygen, and hydrogen impurities in CMOS image sensor fabrication. It is demonstrated that this technique can implant wafers simultaneously with carbon and hydrogen elements that form the projection range by using hydrocarbon compounds. Furthermore, these wafers can getter oxygen impurities out-diffused from the silicon substrate to the carbon cluster ion projection range during heat treatment. Therefore, they can reduce the formation of transition metals and oxygen-related defects in the device active regions and improve electrical performance characteristics, such as dark current and image lag characteristics. The new technique enables the formation of high-gettering-capability sinks for transition metals, oxygen, and hydrogen impurities under device active regions of CMOS image sensors. The wafers formed by this technique have the potential to significantly reduce dark current in advanced CMOS image sensors.

  5. MOF Thin Film-Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance.

    Science.gov (United States)

    Yao, Ming-Shui; Tang, Wen-Xiang; Wang, Guan-E; Nath, Bhaskar; Xu, Gang

    2016-07-01

    A strategy for combining metal oxides and metal-organic frameworks is proposed to design new materials for sensing volatile organic compounds, for the first time. The prepared ZnO@ZIF-CoZn core-sheath nanowire arrays show greatly enhanced performance not only on its selectivity but also on its response, recovery behavior, and working temperature.

  6. Semiconductor Metal Oxide Sensors in Water and Water Based Biological Systems

    Directory of Open Access Journals (Sweden)

    Marina V. Strobkova

    2003-10-01

    Full Text Available The results of implementation of In2O3-based semiconductor sensors for oxygen concentration evaluation in water and the LB-nutrient media (15.5 g/l Luria Broth Base, Miller (Sigma, Lot-1900 and NaCl without bacteria and with E.coli bacteria before and after UV-irradiation are presented.

  7. Connectivity of wireless sensor nodes in metal rich environment: Expectations and reality

    NARCIS (Netherlands)

    Djapic, R.; Sande, J.J.M. van de; Toh, Y.; Djurica, M.

    2014-01-01

    Connectivity among the nodes of a wireless sensor network (WSN) is essential for reliable transfer of sensed data. Existence of theoretical or empirical radio pathloss models are indispensable for optimal design of WSN. This paper covers the following topics: a)Radio channel measurements and charact

  8. Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution

    National Research Council Canada - National Science Library

    Pujol, Luca; Evrard, David; Groenen-Serrano, Karine; Freyssinier, Mathilde; Ruffien-Cizsak, Audrey; Gros, Pierre

    2014-01-01

    A great challenge in the area of heavy metal trace detection is the development of electrochemical techniques and devices which are user-friendly, robust, selective, with low detection limits and allowing fast analyses...

  9. Emissivity measurements in thin metallized membrane reflectors used for microwave radiometer sensors

    Science.gov (United States)

    Schroeder, Lyle C.; Cravey, Robin L.; Scherner, Michael J.; Hearn, Chase P.; Blume, Hans-Juergen C.

    1995-01-01

    This paper is concerned with electromagnetic losses in metallized films used for inflatable reflectors. An inflatable membrane is made of tough elastic material such as Kapton, and it is not electromagnetically reflective by design. A film of conducting metal is added to the membrane to enhance its reflective properties. Since the impetus for use of inflatables for spacecraft is the light weight and compact packaging, it is important that the metal film be as thin as possible. However, if the material is not conductive or thick enough, the radiation due to the emissivity of the reflector could be a significant part of the radiation gathered by the radiometer. The emissivity would be of little consequence to a radar or solar collector; but for a radiometer whose signal is composed of thermal radiation, this contribution could be severe. Bulk properties of the metal film cannot be used to predict its loss. For this reason, a program of analysis and measurement was undertaken to determine the emissivities of a number of candidate metallized film reflectors. This paper describes the three types of measurements which were performed on the metallized thin films: (1) a network analyzer system with an L-band waveguide; (2) an S-band radiometer; and (3) a network analyzer system with a C-band antenna free-space transmission system.

  10. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants.

    Science.gov (United States)

    de Abreu-Neto, João Braga; Turchetto-Zolet, Andreia C; de Oliveira, Luiz Felipe Valter; Zanettini, Maria Helena Bodanese; Margis-Pinheiro, Marcia

    2013-04-01

    Metallochaperones are key proteins for the safe transport of metallic ions inside the cell. HIPPs (heavy metal-associated isoprenylated plant proteins) are metallochaperones that contain a metal binding domain (HMA) and a C-terminal isoprenylation motif. In this study, we provide evidence that proteins of this family are found only in vascular plants and may be separated into five distinct clusters. HIPPs may be involved in (a) heavy metal homeostasis and detoxification mechanisms, especially those involved in cadmium tolerance, (b) transcriptional responses to cold and drought, and (c) plant-pathogen interactions. In particular, our results show that the rice (Oryza sativa) HIPP OsHIPP41 gene is highly expressed in response to cold and drought stresses, and its product is localized in the cytosol and the nucleus. The results suggest that HIPPs play an important role in the development of vascular plants and in plant responses to environmental changes.

  11. A family of metal-dependent phosphatases implicated in metabolite damage-control

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lili; Khusnutdinova, Anna; Nocek, Boguslaw; Brown, Greg; Xu, Xiaohui; Cui, Hong; Petit, Pierre; Flick, Robert; Zallot, Rémi; Balmant, Kelly; Ziemak, Michael J.; Shanklin, John; de Crécy-Lagard, Valérie; Fiehn, Oliver; Gregory, Jesse F.; Joachimiak, Andrzej; Savchenko, Alexei; Yakunin, Alexander F.; Hanson, Andrew D.

    2016-06-20

    DUF89 family proteins occur widely in both prokaryotes and eukaryotes, but their functions are unknown. Here we define three DUF89 subfamilies (I, II, and III), with subfamily II being split into stand-alone proteins and proteins fused to pantothenate kinase (PanK). We demonstrated that DUF89 proteins have metal-dependent phosphatase activity against reactive phosphoesters or their damaged forms, notably sugar phosphates (subfamilies II and III), phosphopantetheine and its S-sulfonate or sulfonate (subfamily II-PanK fusions), and nucleotides (subfamily I). Genetic and comparative genomic data strongly associated DUF89 genes with phosphoester metabolism. The crystal structure of the yeast (Saccharomyces cerevisiae) subfamily III protein YMR027W revealed a novel phosphatase active site with fructose 6-phosphate and Mg2+ bound near conserved signature residues Asp254 and Asn255 that are critical for activity. These findings indicate that DUF89 proteins are previously unrecognized hydrolases whose characteristic in vivo function is to limit potentially harmful buildups of normal or damaged phosphometabolites.

  12. MetalMapper: A Multi-Sensor TEM System for UXO Detection and Classification

    Science.gov (United States)

    2011-04-01

    7 The instrumentation package includes two external modules that provide real-time kinematic ( RTK ) global positioning system ( GPS ) and...MM system. MM Component Name Cost Antenna platform and DAQ system $65K RTK GPS system $30K Platform attitude sensor $5K Vehicle deployment $5K...deployed as-is as a human-powered cart. The instrument containing the DAQ can be mounted on a pack-frame and carried by an operator. RTK GPS SystemCThe

  13. A probabilistic framework for single-sensor acoustic emission source localization in thin metallic plates

    Science.gov (United States)

    Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-09-01

    Tracking edge-reflected acoustic emission (AE) waves can allow the localization of their sources. Specifically, in bounded isotropic plate structures, only one sensor may be used to perform these source localizations. The primary goal of this paper is to develop a three-step probabilistic framework to quantify the uncertainties associated with such single-sensor localizations. According to this framework, a probabilistic approach is first used to estimate the direct distances between AE sources and the sensor. Then, an analytical model is used to reconstruct the envelope of edge-reflected AE signals based on the source-to-sensor distance estimations and their first arrivals. Finally, the correlation between the probabilistically reconstructed envelopes and recorded AE signals are used to estimate confidence contours for the location of AE sources. To validate the proposed framework, Hsu-Nielsen pencil lead break (PLB) tests were performed on the surface as well as the edges of an aluminum plate. The localization results show that the estimated confidence contours surround the actual source locations. In addition, the performance of the framework was tested in a noisy environment simulated by two dummy transducers and an arbitrary wave generator. The results show that in low-noise environments, the shape and size of the confidence contours depend on the sources and their locations. However, at highly noisy environments, the size of the confidence contours monotonically increases with the noise floor. Such probabilistic results suggest that the proposed probabilistic framework could thus provide more comprehensive information regarding the location of AE sources.

  14. Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode.

    Science.gov (United States)

    Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V

    2015-07-16

    We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift.

  15. Numerical simulation of a metal diffraction grating-based SPR sensor with a water-immersion lens

    Science.gov (United States)

    Ichihashi, Kouki; Iwata, Tetsuo

    2017-09-01

    We describe a metal diffraction grating-based surface plasmon resonance sensor (G-SPRS) that operates in a differential mode, the angular sensitivity of which would be 4.8 times that of a conventional G-SPRS and over twice that of a prism-based SPRS. Because the objective is to analyze sample solutions using our G-SPRS, we plan to employ a water-immersion cylindrical lens to obtain simultaneously an angular spectrum of wide range. This G-SPRS enables us to observe two SPR dips corresponding to ±1st-order diffracted light in differential mode and further to generate them symmetrically at relatively large incident angles. We present simulation results and a practical optical design emphasizing its sensitivity in measurement, and thereby the significant advantage of its rigorous design.

  16. Novel voltammetric and impedimetric sensor for femtomolar determination of lysozyme based on metal-chelate affinity immobilized onto gold nanoparticles.

    Science.gov (United States)

    Arabzadeh, Abbas; Salimi, Abdollah

    2015-12-15

    In this study, we reported iminodiacetic acid-copper ion complex (IDA-Cu) immobilized onto gold nanoparticles (GNPs)-modified glassy carbon electrode as a novel electrochemical platform for selective and sensitive determination of lysozyme (Lys). IDA-Cu complex acted as an efficient recognition element capable of capturing Lys molecules. GNPs acts as a substrate to immobilize IDA-Cu coordinative complex and its interaction with Lys leds to a great signal amplification through measuring changes in differential pulse voltammetric (DPV) peak current of [Fe(CN)6](3-/4-) redox probe. Upon the recognition of the Lys to the IDA-Cu, the peak current decreased due to the hindered electron transfer reaction on the electrode surface. Under optimum condition, it was found that the proposed method could detect Lys at wide linear concentration range (0.1 pM to 0.10 mM) with detection limit of 60 fM. Furthermore, electrochemical impedance spectroscopy (EIS) detection of Lys was demonstrated as a simple and rapid alternative analytical technique with detection limit of 80 fM at concentration range up to 0.1mM. In addition, the proposed sensor was satisfactorily applied to the determination of Lys in real samples such as hen egg white. The proposed modified electrode showing the high selectivity, good sensitivity and stability toward Lys detection may hold a great promise in developing other electrochemical sensors based on metal-chelate affinity complexes.

  17. Cultivation, preparation and characterization of Sporosarcina ureae biomass for metal sensor and actor materials

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Manja; Raff, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biogeochemistry; Matys, S. [Helmholtz Institute Freiberg for Resource Technology, Freiberg (Germany).

    2016-07-01

    Sporosarcina ureae cells were successfully cultivated in technical scale with a biomass yield of 300 g wet weight per cultivation. This biomass amount was appropriate for preparation of 1.5 g dry weight cell surface-layer proteins. The specific and unspecific binding behavior of these proteins towards rare earth elements and heavy metals was proven, respectively.

  18. Luminescent metal-organic framework films as highly sensitive and fast-response oxygen sensors.

    Science.gov (United States)

    Dou, Zhongshang; Yu, Jiancan; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Yang, Deren; Qian, Guodong

    2014-04-16

    Luminescent metal-organic framework films, CPM-5⊃Tb(3+) and MIL-100(In)⊃Tb(3+), have been constructed by postfunctionalization of two porous indium-organic frameworks with different structures, respectively. The MIL-100(In)⊃Tb(3+) film shows high oxygen sensitivity (KSV = 7.59) and short response/recovery time (6 s/53 s).

  19. Modeling nanoscale gas sensors under realistic conditions: Computational screening of metal-doped carbon nanotubes

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Mowbray, Duncan; Thygesen, Kristian Sommer

    2010-01-01

    We use computational screening to systematically investigate the use of transition-metal-doped carbon nanotubes for chemical-gas sensing. For a set of relevant target molecules (CO, NH3, and H2S) and the main components of air (N2, O2, and H2O), we calculate the binding energy and change...

  20. Carbon nanotubes and metal nanoparticles as electrode platform for sensors and biosensors

    OpenAIRE

    Cipri, Andrea

    2015-01-01

    Este trabajo se centra principalmente en la mejora de las propiedades de los sensores y/o biosensores utilizando nanotubos de carbono y nanopartículas metálicas como plataformas de electrodo. Después de haber considerado varios ejemplos de la literatura, para alcanzar este objetivo se ha decidido integrar las nanopartículas metálicas en la superficie de los nanotubos de carbono para conseguir las ventajas de las propiedades de los dos materiales; por esta razón se han ensayado diversos proced...

  1. Unusual intracranial stab wounds inflicted with metal tent stakes for a case involving a family murder suicide.

    Science.gov (United States)

    Oki, Takahito; Asamura, Hideki; Hayashi, Tokutaro; Ota, Masao

    2010-10-10

    This article presents a highly unusual homicide involving intracranial stab wounds. Of three members of a family killed by intracranial stab wounds apparently inflicted with metal tent stakes, two also showed signs of wounds inflicted during an apparent struggle with the assailant. A wooden mallet appears to be the implement use to drive the metal stakes into the cranial cavity. In all victims, toxicological analysis indicated the presence of brotizolam at concentrations ranging from 30 to 50ngml(-1). The one victim who showed no signs of wounds incurred during a defensive struggle was found to have blood alcohol levels of 2.87mgml(-1). The assailant, another family member with a history of major psychiatric disorders, apparently committed suicide by drowning following the attacks.

  2. Metal Oxide Gas Sensor Drift Compensation Using a Two-Dimensional Classifier Ensemble

    Directory of Open Access Journals (Sweden)

    Hang Liu

    2015-04-01

    Full Text Available Sensor drift is the most challenging problem in gas sensing at present. We propose a novel two-dimensional classifier ensemble strategy to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. This strategy is appropriate for multi-class classifiers that consist of combinations of pairwise classifiers, such as support vector machines. We compare the performance of the strategy with those of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the two-dimensional ensemble outperforms the other methods considered. Furthermore, we propose a pre-aging process inspired by that applied to the sensors to improve the stability of the classifier ensemble. The experimental results demonstrate that the weight of each multi-class classifier model in the ensemble remains fairly static before and after the addition of new classifier models to the ensemble, when a pre-aging procedure is applied.

  3. Miniaturization of an optical 3D sensor by additive manufacture of metallic mirrors

    Science.gov (United States)

    Sigel, Andre; Merkel, Markus; Heinrich, Andreas

    2017-06-01

    Based on progress in the field of additive manufacturing optical components can now be printed with rapid prototyping technologies. In this contribution the possibilities of rapid prototyping for optical metrology are exemplified by the fabrication of miniaturized reflectors and the construction of a miniaturized metrology system designed for an industrial metrology application. Focusing on the manufacturing and post processing steps the process chain to fabricate the miniaturized mirror is described. This includes an evaluation of the mirror based on roughness measurements. The reflectors are later utilized in a miniaturized sensor system to scan the interior of small pipes. The additively manufactured mirror is used in the metrology system to create a defined sampling signal within the cavity. Thereby the sensor system generates a point cloud of the internal surfaces using a 3D acquisition algorithm based on the laser triangulation principle. Part of this contribution will be the setup, the 3D acquisition and calibration principle as well as an evaluation of the metrology system. To optimize the point cloud acquisition three different hardware setups were designed using different cameras and calibration algorithms. These three approaches are evaluated and compared.

  4. Metal complex with terpyrindine derivative ligand as highly selective colorimetric sensor for iron(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    Peng Wang; Taka-aki Okamura; Hong-Ping Zhou; Wei-Yin Sun; Yu-Peng Tian

    2013-01-01

    A new metal complex [MnL2](NO3)2.CH3CN (1) was synthesized by reaction of 4'-4-(1,2,4-triazol-1-yl)-phenyl-2,2':6',2"-terpyridine (L) with manganese nitrate.The structure of the complex was determined by X-ray crystallography.The results of UV-vis studies showed that the complex exhibits colorimetric sensing ability for Fe3+,which can be observed by naked eye.

  5. Heavy Metals Need Assistance: The Contribution of Nicotianamine to Metal Circulation Throughout the Plant and the Arabidopsis NAS Gene Family.

    Science.gov (United States)

    Schuler, Mara; Bauer, Petra

    2011-01-01

    Understanding the regulated inter- and intra-cellular metal circulation is one of the challenges in the field of metal homeostasis. Inside organisms metal ions are bound to organic ligands to prevent their uncontrolled reactivity and to increase their solubility. Nicotianamine (NA) is one of the important ligands. This non-proteinogenic amino acid is synthesized by nicotianamine synthase (NAS). NA is involved in mobilization, uptake, transport, storage, and detoxification of metals. Much of the progress in understanding NA function has been achieved by studying mutants with altered nicotianamine levels. Mild and strong Arabidopsis mutants impaired in nicotianamine synthesis have been identified and characterized, namely nas4x-1 and nas4x-2. Arabidopsis thaliana has four NAS genes. In this review, we summarize the structure and evolution of the NAS genes in the Arabidopsis genome. We summarize previous results and present novel evidence that the four NAS genes have partially overlapping functions when plants are exposed to Fe deficiency and nickel supply. We compare the phenotypes of nas4x-1 and nas4x-2 and summarize the functions of NAS genes and NA as deduced from the studies of mutant phenotypes.

  6. Heavy metals need assistance: The contribution of nicotianamine to metal circulation throughout the plant and the Arabidopsis NAS gene family

    Directory of Open Access Journals (Sweden)

    Petra eBauer

    2011-11-01

    Full Text Available Understanding the regulated inter- and intracellular metal circulation is one of the challenges in the field of metal homeostasis. Inside organisms metal ions are bound to organic ligands to prevent their uncontrolled reactivity and to increase their solubility. Nicotianamine (NA is one of the important ligands. This non-proteinogenic amino acid is synthesized by nicotianamine synthase (NAS. NA is involved in mobilization, uptake, transport, storage and detoxification of metals. Much of the progress in understanding NA function has been achieved by studying mutants with altered nicotianamine levels. Mild and strong Arabidopsis mutants impaired in nicotianamine synthesis have been identified and characterized, namely nas4x-1 and nas4x-2. Arabidopsis thaliana has four NAS genes. In this review, we summarize the structure and evolution of the NAS genes in the Arabidopsis genome. We summarize previous results and present novel evidence that the four NAS genes have partially overlapping functions when plants are exposed to Fe deficiency and nickel supply. We compare the phenotypes of nas4x-1 and nas4x-2 and summarize the functions of NAS genes and NA as deduced from the studies of mutant phenotypes.

  7. Carbon nanotubes paste sensor modified with bismuth film for determination of metallic ions in ethanol fuel

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Gorla

    2015-05-01

    Full Text Available In the present study an anodic stripping voltammetric method using a bismuth film modified carbon nanotubes paste electrode for simultaneous determination of metals Zn2+, Cd2+and Pb2+in ethanol fuel is described. The metallic ions were preconcentrated on the bismuth film in the time and deposition potential of 500 s and -1.2 V and the stripping step was carried out by square wave voltammetry (frequency of 15 Hz, pulse amplitude of 25 mV and potential step of 5 mV. Acetate buffer at 0.1 mol L-1concentration and pH 4.5 was used as support electrolyte. The method showed linearity including the analytical blank up to 48.39 ?g L-1 for the metals and the obtained limits of detection were 3.36, 0.32 and 0.47 ?g L-1for Zn2+, Cd2+and Pb2+, respectively. The proposed method was applied in ethanol fuel samples.

  8. Ligand flexibility and framework rearrangement in a new family of porous metal-organic frameworks

    DEFF Research Database (Denmark)

    Hawxwell, Samuel M; Espallargas, Guillermo Mínguez; Bradshaw, Darren

    2007-01-01

    Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs.......Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs....

  9. Antimony film sensor for sensitive rare earth metal analysis in environmental samples.

    Science.gov (United States)

    Makombe, Martin; van der Horst, Charlton; Silwana, Bongiwe; Iwuoha, Emmanuel; Somerset, Vernon

    2016-07-02

    A sensor for the adsorptive stripping voltammetric determination of rare earth elements has been developed. The electrochemical procedure is based on the oxidation of the rare earth elements complexed with alizarin complexone at a glassy carbon electrode that was in situ modified with an antimony film, during an anodic scan from -0.2 V to 1.1 V (vs. Ag/AgCl) and deposition potential of -0.1 V (vs. Ag/AgCl). The factors influencing the adsorptive stripping capability were optimised, including the complexing agent concentration, plating concentration of antimony and deposition time. The detection of rare earth elements (La, Ce and Pr) were realised in 0.08 M sodium acetate (pH = 5.8) solution as supporting electrolyte, with 2 × 10(-6) M alizarin complexone and 1.0 mg L(-1) antimony solution. Under the optimised conditions, a deposition time of 360 s was obtained and a linear response was observed between 1 and 25 µg L(-1). The reproducibility of the voltammetric measurements was found to be within 5.0% RSD for 12 replicate measurements of cerium(III) concentration of 5 µg L(-1) using the same electrode surface. The detection limits obtained using stripping analysis was 0.06, 0.42 and 0.71 μg L(-1) for Ce(III), La(III) and Pr(III), respectively. The developed sensor has been successfully applied for the determination of cerium, lanthanum and praseodymium in municipal tap water samples.

  10. Screen-printed back-to-back electroanalytical sensors: heavy metal ion sensing.

    Science.gov (United States)

    Ruas de Souza, Ana P; Foster, Christopher W; Kolliopoulos, Athanasios V; Bertotti, Mauro; Banks, Craig E

    2015-06-21

    Screen-printed back-to-back microband electroanalytical sensors are applied to the quantification of lead(II) ions for the first time. In this configuration the electrodes are positioned back-to-back with a common electrical connection to the two working electrodes with the counter and reference electrodes for each connected in the same manner as a normal "traditional" screen-printed sensor. Proof-of-concept is demonstrated for the electroanalytical sensing of lead(II) ions utilising square-wave anodic stripping voltammetry where an increase in the electroanalytical sensitivity is observed by a factor of 5 with the back-to-back microband configuration at a fixed lead(II) ion concentration of 5 μg L(-1) utilising a deposition potential and time of -1.2 V and 30 seconds respectively, compared to a conventional (single) microband electrode. The back-to-back microband configuration allows for the sensing of lead(II) ions with a linear range from 5 to 110 μg L(-1) with a limit of detection (based on 3σ) corresponding to 3.7 μg L(-1). The back-to-back microband configuration is demonstrated to quantify the levels of lead(II) ions within drinking water corresponding to a level of 2.8 (±0.3) μg L(-1). Independent validation was performed using ICP-OES with the levels of lead(II) ions found to correspond to 2.5 (±0.1) μg L(-1); the excellent agreement between the two methods validates the electroanalytical procedure for the quantification of lead(II) ions in drinking water. This back-to-back configuration exhibits an excellent validated analytical performance for the determination of lead(II) ions within drinking water at World Health Organisation levels (limited to 10 μg L(-1) within drinking water).

  11. Absorption Properties of Simply Fabricated All-Metal Mushroom Plasmonic Metamaterials Incorporating Tube-Shaped Posts for Multi-Color Uncooled Infrared Image Sensor Applications

    Directory of Open Access Journals (Sweden)

    Shinpei Ogawa

    2016-03-01

    Full Text Available Wavelength-selective infrared (IR absorbers have attracted considerable interest due to their potential for a wide range of applications. In particular, they can be employed as advanced uncooled IR sensors that identify objects through their radiation spectra. Herein, we propose a mushroom plasmonic metamaterial absorber incorporating tube-shaped metal posts (MPMAT for use in the long-wavelength IR (LWIR region. The MPMAT design consists of a periodic array of thin metal micropatches connected to a thin metal plate via tube-shaped metal posts. Both the micropatches and posts can be constructed simultaneously as a result of the tube-shaped structure of the metal post structure; thus, the fabrication procedure is both simple and low cost. The absorption properties of these MPMATs were assessed both theoretically and experimentally, and the results of both investigations demonstrated that these devices exhibit suitable levels of LWIR absorption regardless of the specific tube-shaped structures employed. It was also found to be possible to tune the absorption wavelength by varying the micropatch width and the inner diameter of the tube-shaped metal posts, and to obtain absorbance values of over 90%. Focal plane array structures based on such MPMATs could potentially serve as high-performance, low-cost, multi-spectral uncooled IR image sensors.

  12. The Structure of the Periplasmic Sensor Domain of the Histidine Kinase CusS Shows Unusual Metal Ion Coordination at the Dimeric Interface

    Science.gov (United States)

    Affandi, Trisiani; Issaian, Aaron V.; McEvoy, Megan M.

    2016-01-01

    In bacteria, two-component systems act as signaling systems to respond to environmental stimuli. Two-component systems generally consist of a sensor histidine kinase and a response regulator, which work together through histidyl-aspartyl phospho-relay to result in gene regulation. One of the two-component systems in Escherichia coli, CusS-CusR, is known to induce expression of cusCFBA genes under increased periplasmic Cu(I) and Ag(I) concentrations to help maintain metal ion homeostasis. CusS is a membrane-associated histidine kinase with a periplasmic sensor domain connected to the cytoplasmic ATP-binding and catalytic domains through two transmembrane helices. The mechanism of how CusS senses increasing metal ion concentrations and activates CusR is not yet known. Here, we present the crystal structure of the Ag(I)-bound periplasmic sensor domain of CusS at a resolution of 2.15 Å. The structure reveals that CusS forms a homodimer with four Ag(I) binding sites per dimeric complex. Two symmetric metal binding sites are found at the dimeric interface, which are each formed by two histidines and one phenylalanine with an unusual cation-π interaction. The other metal ion binding sites are in a non-conserved region within each monomer. Functional analyses of CusS variants with mutations in the metal sites suggest that the metal ion binding site at the dimer interface is more important for function. The structural and functional data provide support for a model in which metal-induced dimerization results in increases in kinase activity in the cytoplasmic domains of CusS. PMID:27583660

  13. The Structure of the Periplasmic Sensor Domain of the Histidine Kinase CusS Shows Unusual Metal Ion Coordination at the Dimeric Interface.

    Science.gov (United States)

    Affandi, Trisiani; Issaian, Aaron V; McEvoy, Megan M

    2016-09-20

    In bacteria, two-component systems act as signaling systems to respond to environmental stimuli. Two-component systems generally consist of a sensor histidine kinase and a response regulator, which work together through histidyl-aspartyl phosphorelay to result in gene regulation. One of the two-component systems in Escherichia coli, CusS-CusR, is known to induce expression of cusCFBA genes at increased periplasmic Cu(I) and Ag(I) concentrations to help maintain metal ion homeostasis. CusS is a membrane-associated histidine kinase with a periplasmic sensor domain connected to the cytoplasmic ATP binding and catalytic domains through two transmembrane helices. The mechanism of how CusS senses increasing metal ion concentrations and activates CusR is not yet known. Here, we present the crystal structure of the Ag(I)-bound periplasmic sensor domain of CusS at a resolution of 2.15 Å. The structure reveals that CusS forms a homodimer with four Ag(I) binding sites per dimeric complex. Two symmetric metal binding sites are found at the dimeric interface, which are each formed by two histidines and one phenylalanine with an unusual cation-π interaction. The other metal ion binding sites are in a nonconserved region within each monomer. Functional analyses of CusS variants with mutations in the metal sites suggest that the metal ion binding site at the dimer interface is more important for function. The structural and functional data provide support for a model in which metal-induced dimerization results in increases in kinase activity in the cytoplasmic domains of CusS.

  14. Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs

    Directory of Open Access Journals (Sweden)

    Mercedes Crego-Calama

    2007-09-01

    Full Text Available Fluorescent self assembled monolayers (SAMs on glass were previouslydeveloped in our group as new sensing materials for metal ions. These fluorescent SAMs arecomprised by fluorophores and small molecules sequentially deposited on a monolayer onglass. The preorganization provided by the surface avoids the need for complex receptordesign, allowing for a combinatorial approach to sensing systems based on small molecules.Now we show the fabrication of an effective microarray for the screening of metal ions andthe properties of the sensing SAMs. A collection of fluorescent sensing SAMs wasgenerated by combinatorial methods and immobilized on the glass surfaces of a custom-made 140 well microtiter-plate. The resulting libraries are easily measured and show variedresponses to a series cations such as Cu2+ , Co2+ , Pb2+ , Ca2+ and Zn2+ . These surfaces are notdesigned to complex selectively a unique analyte but rather they are intended to producefingerprint type responses to a range of analytes by less specific interactions. The unselectiveresponses of the library to the presence of different cations generate a characteristic patternfor each analyte, a “finger print” response.

  15. Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs

    Science.gov (United States)

    Basabe-Desmonts, Lourdes; van der Baan, Frederieke; Zimmerman, Rebecca S.; Reinhoudt, David N.; Crego-Calama, Mercedes

    2007-01-01

    Fluorescent self assembled monolayers (SAMs) on glass were previously developed in our group as new sensing materials for metal ions. These fluorescent SAMs are comprised by fluorophores and small molecules sequentially deposited on a monolayer on glass. The preorganization provided by the surface avoids the need for complex receptor design, allowing for a combinatorial approach to sensing systems based on small molecules. Now we show the fabrication of an effective microarray for the screening of metal ions and the properties of the sensing SAMs. A collection of fluorescent sensing SAMs was generated by combinatorial methods and immobilized on the glass surfaces of a custom-made 140 well microtiter-plate. The resulting libraries are easily measured and show varied responses to a series cations such as Cu2+, Co2+, Pb2+, Ca2+ and Zn2+. These surfaces are not designed to complex selectively a unique analyte but rather they are intended to produce fingerprint type responses to a range of analytes by less specific interactions. The unselective responses of the library to the presence of different cations generate a characteristic pattern for each analyte, a “finger print” response.

  16. Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium.

    Science.gov (United States)

    Gammoudi, I; Tarbague, H; Othmane, A; Moynet, D; Rebière, D; Kalfat, R; Dejous, C

    2010-12-15

    The present work deals with the development of a Love-wave bacteria-based sensor platform for the detection of heavy metals in liquid medium. The acoustic delay-line is inserted in an oscillation loop in order to record the resonance frequency in real-time. A Polydimethylsiloxane (PDMS) chip with a liquid chamber is maintained by pressure above the acoustic wave propagation path. Bacteria (Escherichia coli) were fixed as bioreceptors onto the sensitive surface of the sensor coated with a polyelectrolyte (PE) multilayer using a simple and efficient layer-by-layer (LbL) electrostatic self-assembly procedure. Poly(allylamine hydrochloride) (PAH cation) and poly(styrene sulfonate) (PSS anion) were alternatively deposited so that the strong attraction between oppositely charged polyelectrolytes resulted in the formation of a (PAH-PSS)(n)-PAH molecular multilayer. The real-time characterization of PE multilayer and bacteria deposition is based on the measurement of the resonance frequency perturbation due to mass loading during material deposition. Real-time response to various concentrations of cadmium (Cd(2+)) and mercury (Hg(2+)) has been investigated. A detection limit as low as 10(-12) mol/l has been achieved, above which the frequency increases gradually up to 10(-3) mol/l, after a delay of 60 s subsequent to their introduction onto bacterial cell-based biosensors. Beyond a 10(-3) mol/l a steep drop in frequency was observed. This response has been attributed to changes in viscoelastic properties, related to modifications in bacteria metabolism.

  17. Irreversible phase transitions in doped metal oxides as temperature sensors in explosions

    Science.gov (United States)

    Eilers, Hergen; Gunawidjaja, Ray; Myint, Thandar; Lightstone, James

    2011-06-01

    The temperature of post-detonation fireballs produced by advanced energetic formulations is commonly determined using optical methods such as pyrometry and spectral line fitting. These methods provide an average temperature mostly from the surface of the fireball. However, for many applications the ability to probe the internal temperature and temperature gradients within the fireball is highly desirable. One method that has shown promise is seeding micron to nano-sized temperature sensors into the fireball which can be collected and analyzed post-detonation. In this work, disordered Eu3+-doped nanoparticles were subjected to various heat treatments, incl. furnace, T-Jump, pulsed laser, and explosive heating. This treatment leads to irreversible phase transitions which are monitored by the Eu dopants. Optical signatures such as the ratio of electric and magnetic dipole transition intensities, energy level splitting, FWHM, etc. are evaluated to monitor the phase transitions. Also, the kinetics of particle growth is evaluated as an indicator for the time-dependence of the heating process. The information is used to establish a correlation with the temperature profile. Temperature profiles collected from a series of lab-based tests and small-scale detonations of an aluminized explosive will be presented. This work was supported by the Defense Threat Reduction Agency.

  18. A new family of Ln₇ clusters with an ideal D(3h) metal-centered trigonal prismatic geometry, and SMM and photoluminescence behaviors.

    Science.gov (United States)

    Mazarakioti, Eleni C; Poole, Katye M; Cunha-Silva, Luis; Christou, George; Stamatatos, Theocharis C

    2014-08-14

    The first use of the flexible Schiff base ligand N-salicylidene-2-aminocyclohexanol in metal cluster chemistry has afforded a new family of Ln7 clusters with ideal D(3h) point group symmetry and metal-centered trigonal prismatic topology; solid-state and solution studies revealed SMM and photoluminescence behaviors.

  19. Pressure sensor

    Science.gov (United States)

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  20. Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Dandan eLi

    2015-12-01

    Full Text Available The heavy metal ATPase (HMA family plays an important role in transition metal transport in plants. However, this gene family has not been extensively studied in Populus trichocarpa. We identified 17 HMA genes in P. trichocarpa (PtHMAs, of which PtHMA1–PtHMA4 belonged to the zinc (Zn/cobalt (Co/cadmium (Cd/lead (Pb subgroup, and PtHMA5–PtHMA8 were members of the copper (Cu/silver (Ag subgroup. Most of the genes were localized to chromosomes I and III. Gene structure, gene chromosomal location, and synteny analyses of PtHMAs indicated that tandem and segmental duplications likely contributed to the expansion and evolution of the PtHMAs. Most of the HMA genes contained abiotic stress-related cis-elements. Tissue-specific expression of PtHMA genes showed that PtHMA1 and PtHMA4 had relatively high expression levels in the leaves, whereas Cu/Ag subgroup (PtHMA5.1- PtHMA8 genes were upregulated in the roots. High concentrations of Cu, Ag, Zn, Cd, Co, Pb and Mn differentially regulated the expression of PtHMAs in various tissues. The preliminary results of the present study generated basic information on the HMA family of Populus that may serve as foundation for future functional studies.

  1. A pillar-layered metal-organic framework as luminescent sensor for selective and reversible response of chloroform

    Science.gov (United States)

    Wang, Kun; Li, Shuni; Jiang, Yucheng; Hu, Mancheng; Zhai, Quan-Guo

    2017-03-01

    A new 3D metal-organic framework, namely, {Zn4(H2BPTC)2(HCOO)4}n (SNNU-1, H4BPTC=biphenyl-3,3',5,5'-tetracarboxylic acid, SNNU=Shaanxi Normal University) has been solvothermal synthesized. Four independent tetrahedral Zn atoms are connected by organic ligands to form a 2D Zn-H2BPTC layer, which is further bridged by in-situ generated HCOO- to give the 3D pillar-layered framework of SNNU-1. Unique Zn and H2BPTC all act as 4-connected nodes leading to a new 4,4,4-connected topological net with point symbol of {4·5·62·82}{4·52·62·8}{52·63·7}. Notably, intense blue emission band is observed for SNNU-1, which exhibits solvent-dependent effect. Compared to other common organic solvents, chloroform can specially improve the photoluminescent intensity of SNNU-1. Further repeated response and release experiments clearly showed that SNNU-1 can act as luminescent sensor for selective and reversible detection of chloroform.

  2. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A. [Berkeley Sensor and Actuator Center, University of California, Davis, 1 Shields Avenue, Davis, California 95616 (United States); Tang, H.; Boser, B. E. [Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States); Tsai, J. M.; Daneman, M. [InvenSense, Inc., 1745 Technology Drive, San Jose, California 95110 (United States)

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  3. Response Behaviour of a Hydrogen Sensor Based on IonicConducting Polymer-metal Interfaces Prepared by the ChemicalReduction Method

    Directory of Open Access Journals (Sweden)

    Werner Weppner

    2006-04-01

    Full Text Available A solid-state amperometric hydrogen sensor based on a protonated Nafionmembrane and catalytic active electrode operating at room temperature was fabricated andtested. Ionic conducting polymer-metal electrode interfaces were prepared chemically byusing the impregnation-reduction method. The polymer membrane was impregnated withtetra-ammine platinum chloride hydrate and the metal ions were subsequently reduced byusing either sodium tetrahydroborate or potassium tetrahydroborate. The hydrogen sensingcharacteristics with air as reference gas is reported. The sensors were capable of detectinghydrogen concentrations from 10 ppm to 10% in nitrogen. The response time was in therange of 10-30 s and a stable linear current output was observed. The thin Pt films werecharacterized by XRD, Infrared Spectroscopy, Optical Microscopy, Atomic ForceMicroscopy, Scanning Electron Microscopy and EDAX.

  4. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Directory of Open Access Journals (Sweden)

    Abdil Kus

    2015-01-01

    Full Text Available In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  5. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.

    Science.gov (United States)

    Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-12

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  6. Metal-organic complex-functionalized protein nanopore sensor for aromatic amino acids chiral recognition.

    Science.gov (United States)

    Guo, Yanli; Niu, Aihua; Jian, Feifei; Wang, Ying; Yao, Fujun; Wei, Yongfeng; Tian, Lei; Kang, Xiaofeng

    2017-03-27

    Chiral recognition at single-molecule level for small active molecules is important, as exhibited by many nanostructures and molecular assemblies in biological systems, but it presents a significant challenge. We report a simple and rapid sensing strategy to discriminate all enantiomers of natural aromatic amino acids (AAA) using a metal-organic complex-functionalized protein nanopore, in which a chiral recognition element and a chiral recognition valve were equipped. A trifunctional molecule, heptakis-(6-deoxy-6-amino)-β-cyclodextrin (am7βCD), was non-covalently lodged within the nanopore of an α-hemolysin (αHL) mutant, (M113R)7-αHL. Copper(ii) ion reversibly bonds to the amino group of am7βCD to form an am7βCD-Cu(II) complex, which allowed chiral recognition for each enantiomer in the mixture of AAA by distinct current signals. The Cu(II) plugging valve plays a crucial rule that holds chiral molecules in the nanocavity for a sufficient registering time. Importantly, six enantiomers of all nature AAA could be simultaneously recognized at one time. Enantiomeric excess (ee) could also be accurately detected by this approach. It should be possible to generalize this approach for sensing of other chiral molecules.

  7. Review of Electromagnetic-Based Crack Sensors for Metallic Materials (Recent Research and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Memon

    2016-07-01

    Full Text Available Evaluation and non-destructive identification of stress-induced cracks or failures in metals is a vital problem in many sensitive environments, including transportation (steel railway tracks, bridges, car wheels, etc., power plants (steam generator tubing, etc. and aerospace transportation (landing gear, aircraft fuselages, etc.. There are many traditional non-destructive detection and evaluation techniques; recently, near-field millimeter waves and microwave methods have shown incredible promise for augmenting currently available non-destructive techniques. This article serves as a review of developments made until now on this topic; it provides an overview of microwave scanning techniques for crack detection. This article summarizes the abilities of these methods to identify and evaluate cracks (including describing their different physical properties. These methods include applying filters based on dual-behavior resonators (DBRs, using complementary split-ring resonators (CSRRs for the perturbation of electric fields, using waveguide probe-loaded CSRRs and using a substrate-integrated-waveguide (SIW cavity for the detection of sub-millimeter surface and subsurface cracks.

  8. On the Emerging Role of the Taste Receptor Type 1 (T1R Family of Nutrient-Sensors in the Musculoskeletal System

    Directory of Open Access Journals (Sweden)

    Shoichiro Kokabu

    2017-03-01

    Full Text Available The special sense of taste guides and guards food intake and is essential for body maintenance. Salty and sour tastes are sensed via ion channels or gated ion channels while G protein-coupled receptors (GPCRs of the taste receptor type 1 (T1R family sense sweet and umami tastes and GPCRs of the taste receptor type 2 (T2R family sense bitter tastes. T1R and T2R receptors share similar downstream signaling pathways that result in the stimulation of phospholipase-C-β2. The T1R family includes three members that form heterodimeric complexes to recognize either amino acids or sweet molecules such as glucose. Although these functions were originally described in gustatory tissue, T1R family members are expressed in numerous non-gustatory tissues and are now viewed as nutrient sensors that play important roles in monitoring global glucose and amino acid status. Here, we highlight emerging evidence detailing the function of T1R family members in the musculoskeletal system and review these findings in the context of the musculoskeletal diseases sarcopenia and osteoporosis, which are major public health problems among the elderly that affect locomotion, activities of daily living, and quality of life. These studies raise the possibility that T1R family member function may be modulated for therapeutic benefit.

  9. On the Emerging Role of the Taste Receptor Type 1 (T1R) Family of Nutrient-Sensors in the Musculoskeletal System.

    Science.gov (United States)

    Kokabu, Shoichiro; Lowery, Jonathan W; Toyono, Takashi; Sato, Tsuyoshi; Yoda, Tetsuya

    2017-03-15

    The special sense of taste guides and guards food intake and is essential for body maintenance. Salty and sour tastes are sensed via ion channels or gated ion channels while G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family sense sweet and umami tastes and GPCRs of the taste receptor type 2 (T2R) family sense bitter tastes. T1R and T2R receptors share similar downstream signaling pathways that result in the stimulation of phospholipase-C-β2. The T1R family includes three members that form heterodimeric complexes to recognize either amino acids or sweet molecules such as glucose. Although these functions were originally described in gustatory tissue, T1R family members are expressed in numerous non-gustatory tissues and are now viewed as nutrient sensors that play important roles in monitoring global glucose and amino acid status. Here, we highlight emerging evidence detailing the function of T1R family members in the musculoskeletal system and review these findings in the context of the musculoskeletal diseases sarcopenia and osteoporosis, which are major public health problems among the elderly that affect locomotion, activities of daily living, and quality of life. These studies raise the possibility that T1R family member function may be modulated for therapeutic benefit.

  10. CFA-7: an interpenetrated metal-organic framework of the MFU-4 family.

    Science.gov (United States)

    Schmieder, Phillip; Grzywa, Maciej; Denysenko, Dmytro; Hambach, Manuel; Volkmer, Dirk

    2015-08-07

    The novel interpenetrated metal-organic framework CFA-7 (Coordination Framework Augsburg University-7), [Zn5Cl4(tqpt)3], has been synthesized containing the organic linker {H2-tqpt = 6,6,14,14-tetramethyl-6,14-dihydroquinoxalino[2,3-b]phenazinebistriazole}. Reaction of H2-tqpt and anhydrous ZnCl2 in N,N-dimethylformamide (DMF) yields CFA-7 as pseudo-cubic crystals. CFA-7 serves as precursor for the synthesis of isostructural frameworks with redox-active metal centers, which is demonstrated by postsynthetic metal exchange of Zn(2+) by different M(2+) (M = Co, Ni, Cu) ions. The novel framework is robust upon solvent removal and has been structurally characterized by single-crystal X-ray diffraction, TGA and IR spectroscopy, as well as gas sorption (Ar, CO2 and H2).

  11. Wireless radiation sensor

    Science.gov (United States)

    Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.; Kress, Reid L.

    2016-08-09

    Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  12. Transition metal substituted SrTiO3 perovskite oxides as promising functional materials for oxygen sensor

    Science.gov (United States)

    Misra, Sunasira

    2012-07-01

    Modern industries employ several gases as process fluids. Leakage of these gases in the operating area could lead to undesirable consequences. Even in chemical industries, which use large quantities of inert gases in confined areas, accidental leakage of these process gases would result in the reduction of oxygen partial pressure in atmospheric air. For instance, large amounts of gaseous nitrogen and argon are used in pharmaceutical industries, gas filling/bottling plants, operating area of Fast Breeder reactors, etc. Fall of concentration of oxygen in air below 17% could lead to life risk (Asphyxiation) of the working personnel that has to be checked well in advance. Further, when the leaking gas is of explosive nature, its damage potential would be very high if its concentration level in air increases beyond its lower explosive limit. Surveillance of the ambient within these industries at the critical areas and also in the environment around them for oxygen therefore becomes highly essential. Sensitive and selective gas sensors made of advanced materials are required to meet this demand of monitoring environmental pollution. The perovskite class of oxides (ABO3) is chemically stable even at high temperatures and can tolerate large levels of dopants without phase transformations. The electronic properties of this parent functional material can be tailored by adding appropriate dopants that exhibit different valence states. Aliovalent transition metal substituted SrTiO3 perovskites are good mixed ionic and electronic conductors and potential candidates for sensing oxygen at percentage level exploiting their oxygen pressure dependent electrical conductivity. This paper presents the preparation, study of electrical conductivity and oxygen-sensing characteristics of iron and cobalt substituted SrTiO3.

  13. Tuning interfacial spin filters from metallic to resistive within a single organic semiconductor family

    Science.gov (United States)

    Wang, Jingying; Deloach, Andrew; Jiang, Wei; Papa, Christopher M.; Myahkostupov, Mykhaylo; Castellano, Felix N.; Liu, Feng; Dougherty, Daniel B.

    2017-06-01

    A metallic spin filter is observed at the interface between Al q3 adsorbates and a Cr(001) surface. It can be changed to a resistive (i.e., gapped) filter by substituting Cr ions to make Cr q3 adsorbates. Spin-polarized scanning tunneling microscopy and spectroscopy show these spin-dependent electronic structure changes with single molecule resolution. Density functional theory calculations highlight the structural and electronic differences at the interfaces. For Al q3 , a charge-transfer interaction with the substrate leads to a metallic spin filter. For Cr q3 , direct covalent interactions mix molecular orbitals with the substrate surface state to make two well-separated interfacial hybrid orbitals.

  14. Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules

    Institute of Scientific and Technical Information of China (English)

    Jia Zhang[1; Yue Yuan[1; Yu Wang[2; Fanfei Sun[2; Gaolin Liang[1; Zheng Jiang[2; Shu-Hong Yu[1,3

    2015-01-01

    Even though great advances have been achieved in the synthesis of luminescent metal nanoclusters, it is still challenging to develop metal nanoclusters with high quantum efficiency as well as multiple sensing functionalities. Here, we demonstrate the rapid preparation of glutathione-capped Au/Ag nanoclusters (GS-Au/Ag NCs) using microwave irradiation and their unique sensing capacities. Compared to bare GS-Au NCs, the doped Au/Ag NCs possess an enhanced quantum yield (7.8% compared to 2.2% for GS-Au NCs). Several characterization techniques were used to elucidate the atomic composition, particulate character, and electronic structure of the fabricated NCs. According to the X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectra, a significant amount of Au exists in the oxidized state as Au(I), and the Ag atoms are positively charged. In contrast to those nanoclusters that detect only one analyte, the GS-Au/Ag NCs can be used as a versatile sensor for metal ions, anions, and small molecules. In this manner, the NCs can be regarded as a unique sensor-on-a-nanoparticle.

  15. Effective Contact Potential of Thin Film Metal-Insulator Nanostructures and Its Role in Self-Powered Nanofilm X-ray Sensors.

    Science.gov (United States)

    Brivio, Davide; Ada, Earl; Sajo, Erno; Zygmanski, Piotr

    2017-03-29

    We studied the effective contact potential difference (ECPD) of thin film nanostructures and its role in self-powered X-ray sensors, which use the high-energy current detection scheme. We compared the response to kilovoltage X-rays of several nanostructures made of disparate combinations of conductors (Al, Cu, Ta, ITO) and oxides (SiO2, Ta2O5, Al2O3). We measured current-voltage curves in parallel-plate configuration separated by an air gap and determined three characteristic parameters: current at zero voltage bias I0, the voltage offset for zero current ECPD, and saturation current Isat. We found that the metals' ECPD values measured with our technique were higher than the CPD values measured with photoelectron spectroscopy in situ, i.e., no air contact. These differences are related to natural oxidization and to the presence of photo-/Auger-electron current leaking from the high-Z toward the low-Z electrode, as suggested by additional experiments carried out in vacuum. Further, the deposition of the 40-500 nm oxide layer on the surface of metallic substrates strongly affects their contact potential. This technique exploits ionization and charge carrier transport in both solid insulators and in air, and it opens the possibility of measuring the ECPD between metals separated by a solid insulator in a metal-insulator-metal (MIM) configuration. Additionally, we demonstrated that certain configurations of MIM structures are suitable for X-ray detection in self-powered mode.

  16. Lanthanide metal-organic frameworks as multifunctional luminescent sensor for detecting cations, anions and organic solvent molecules in aqueous solution

    Science.gov (United States)

    Liu, Feng; Gao, Wei; Li, Peng; Zhang, Xiu-Mei; Liu, Jie-Ping

    2017-09-01

    A series of water-stable isostructural mono/bimetallic lanthanide metal-organic frameworks (Ln-MOFs) {[Eu5xTb5(1-x)(OH)6(TZI)3(DMA)1.5(H2O)10.5]·DMA·0.5H2O}n (x = 1.0 (1), 0.5 (3), 0.4 (4), 0.3 (5), 0.2 (6), 0.1 (7), 0.05 (8), 0 (2), H3TZI = 5-(1H-tetrazol-5-yl)isophthalic acid) were synthesized. These Ln-MOFs exhibit 3D frameworks in which 1D chains based on pentanuclear [Ln5(μ3-OH)6(COO)5]4+ clusters are linked by TZI backbones. The luminescent investigations revealed that compounds 1 and 2 not only exhibit characteristic Eu3+ and Tb3+ emissions in the red and green regions, respectively, but also can sensitively and selectively detect Fe3+ cations, CO32-, PO43-, AsO43- anions and acetone molecules in aqueous solution. In addition, the luminescent colors of the bimetallic (Tb5(1-x):Eu5x) compounds can easily be tuned by doping isostructural Ln- MOFs with Eu3+ and Tb3+ ions. This work presents some good candidate materials for the potential multifunctional sensors. Eight water-stable isostructural 3D Ln-MOFs {[Eu5xTb5(1-x)(OH)6(TZI)3(DMA)1.5(H2O)10.5]·DMA·0.5H2O}n based on pentanuclear clusters were prepared. The Ln-MOFs represented the rapid and drastic emission quenching induced by Fe3+ cations, CO32-, PO43-, AsO43- anions and acetone molecules in aqueous solution. the luminescence colors of the bimetallic (Tb5(1-x):Eu5x) compounds can easily be tuned by doping isostructural Ln-MOFs with Eu3+ and Tb3+ ions.

  17. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kevin P. [Univ. of Pittsburgh, PA (United States)

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest

  18. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kevin

    2014-08-31

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest

  19. Gas adsorption and structural diversity in a family of Cu(II) pyridyl-isophthalate metal-organic framework materials

    Science.gov (United States)

    Gould, Jamie A.; Athwal, Harprit Singh; Blake, Alexander J.; Lewis, William; Hubberstey, Peter; Champness, Neil R.; Schröder, Martin

    2017-01-01

    A family of Cu(II)-based metal-organic frameworks (MOFs) has been synthesized using three pyridyl-isophthalate ligands, H2L1 (4'-(pyridin-4-yl)biphenyl-3,5-dicarboxylic acid), H2L2 (4''-(pyridin-4-yl)-1,1':4',1''-terphenyl-3,5-dicarboxylic acid) and H2L3 (5-[4-(pyridin-4-yl)naphthalen-1-yl]benzene-1,3-dicarboxylic acid). Although in each case the pyridyl-isophthalate ligands adopt the same pseudo-octahedral [Cu2(O2CR)4N2] paddlewheel coordination modes, the resulting frameworks are structurally diverse, particularly in the case of the complex of Cu(II) with H2L3, which leads to three distinct supramolecular isomers, each derived from Kagomé and square nets. In contrast to [Cu(L2)] and the isomers of [Cu(L3)], [Cu(L1)] exhibits permanent porosity. Thus, the gas adsorption properties of [Cu(L1)] were investigated with N2, CO2 and H2, and the material exhibits an isosteric heat of adsorption competitive with leading MOF sorbents for CO2. [Cu(L1)] displays high H2 adsorption, with the density in the pores approaching that of liquid H2. This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  20. Low-Weight, Durable, and Low-Cost Metal Rubber Sensor System for Ultra Long Duration Scientific Balloons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, low-cost, ultra low mass density, and non-intrusive sensor system for ultra long duration balloons (ULDB) that will...

  1. In situ synthesized 3D metal-organic frameworks (MOFs) constructed from transition metal cations and tetrazole derivatives: a family of insensitive energetic materials.

    Science.gov (United States)

    Xu, Yuangang; Liu, Wei; Li, Dongxue; Chen, Houhe; Lu, Ming

    2017-08-22

    The combination of the hydrothermal method with in situ synthesis has been successfully employed to prepare a family of tetrazole-based energetic metal-organic frameworks (EMOFs) ([Ag(Mtta)]n, 1; [Cd5(Mtta)9]n, 2; [Pb3(bta)2(O)2(H2O)]n, 3; and [Pb(tztr)2(H2O)]n, 4) through [2 + 3] cycloaddition of azide anions and nitrile groups. All the synthesized EMOFs were characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis (EA), different scanning calorimetry (DSC), and thermogravimetry (TG). Both complexes 1 and 4 consist of reticular two-dimensional (2D) layers that are linked by π-π overlap interactions between the ligands in neighbouring layers to form 3D supramolecular structures. In contrast, complexes 2 and 3 are 3D frameworks. The in situ formation of ligands bta and tztr has been described for the first time. Remarkably, thermogravimetric measurements demonstrated that the EMOFs 1-4 possess excellent thermostabilities with high decomposition temperatures up to 354, 389, and 372 °C for 1, 2, and 4, respectively. Sensitivity tests revealed that all the EMOFs are extremely insensitive.

  2. Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications

    Science.gov (United States)

    Maruthupandy, Muthuchamy; Zuo, Yong; Chen, Jing-Shuai; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2017-03-01

    The present study is focused on employing Camellia japonica leaf extract as inductive and stabilizing agent to synthesis CuO and ZnO nanoparticles (NPs). The chemicals, such as (Cu(NO3)2·3H2O) and (Zn(NO3)2·6H2O) were converted into copper and zinc ions, respectively because of the different natural products present in the C. japonica leaf extract. The UV-vis spectra of CuO and ZnO NPs showed absorption peak at 290 nm and 301 nm, respectively. The XRD result revealed crystalline nature of the metal oxide NPs and the TEM images indicated that average sizes of the synthesized CuO and ZnO NPs were ∼17 nm and ∼20 nm, respectively. The FTIR spectra of C. japonica leaf extract showed the presence of organic groups, such as, sbnd OH, sbnd Csbnd N, and N-H, which would be responsible for forming CuO and ZnO NPs. The synthesized CuO and ZnO NPs were tested for the optical sensing of metal ions, viz. Li+ and Ag+ that illustrated excellent outcome and hence this method offers a novel lane for the synthesis of metal oxide NPs, which can be used as optical sensor for the detection of metal ions.

  3. A disposable chronocoulometric sensor for heavy metal ions using a diaminoterthiophene-modified electrode doped with graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung-Min; Kim, Dong-Min; Jung, Ok-Sang; Shim, Yoon-Bo, E-mail: ybshim@pusan.ac.kr

    2015-09-10

    The rapid simultaneous determination of cadmium, lead, copper, and mercury ions is performed by employing a disposable sensor modified with graphene oxide (GO) doped diaminoterthiophene (GO/DTT) for chronocoulometry (CC). The performances of CC with and without pre-deposition in two opposite potential step directions were compared with square wave anodic stripping voltammetry (SWASV) under various conditions. The surface of the GO/DTT modified screen print carbon electrode (SPCE) was characterized by SEM, EDXS, and electrochemical impedance spectroscopy (EIS). Experimental variables that affect the response signal such as the pH, deposition time, type of supporting electrolyte, concentration of DTT, content ratio of GO to DTT, and Nafion content were optimized. Interference effects due to other heavy metal ions were also investigated. The dynamic ranges of SWASV and CC were between 1 ng mL{sup −1} and 2.5 μg mL{sup −1} and between 1 ng mL{sup −1} and 10 μg mL{sup −1}, respectively. The detection limits for Cd{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Hg{sup 2+} ions were 1.9 ± 0.4 ng mL{sup −1}, 2.8 ± 0.6 ng mL{sup −1}, 0.8 ± 0.2 ng mL{sup −1}, and 2.6 ± 0.9 ng mL{sup −1} for the CC stripping method; 2.6 ± 0.2 ng mL{sup −1}, 0.5 ± 0.1 ng mL{sup −1}, 1.8 ± 0.3 ng mL{sup −1}, and 3.2 ± 0.3 ng mL{sup −1} for the CC deposition method; and 7.1 ± 0.9, 1.9 ± 0.3, 0.4 ± 0.1, and 0.7 ± 0.1 ng mL{sup −1} for SWASV. The reliability of the method for point-of-analysis was evaluated by analyzing a urine standard reference material and some water samples. - Highlights: • The electrode modified with graphene oxide doped organic ligand. • Rapid detection of Cd{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, and Hg{sup 2+} ions by using chronocoulometry. • The result of proposed method was compared with the conventional method.

  4. XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutants

    Science.gov (United States)

    Jasmin, Jean-Philippe; Miserque, Frédéric; Dumas, Eddy; Vickridge, Ian; Ganem, Jean-Jacques; Cannizzo, Caroline; Chaussé, Annie

    2017-03-01

    An all covalent nanostructured lead sensor was built by the successive grafting of gold nanoparticles and carboxylic ligands at the surface of self-adhesive carbon screen-printed electrodes (SPEs). Surface analysis techniques were used in each step in order to investigate the structuration of this sensor. The self-adhesive surfaces were made from the electrochemical grafting of p-phenylenediamine at the surface of the SPEs via diazonium salts chemistry. The quantity of grafted aniline functions, estimated by Nuclear Reaction Analysis (NRA) performed with p-phenylenediamine labelled with 15N isotope, is in agreement with an almost complete coverage of the electrode surface. The subsequent diazotization of the aniline functions at the surface of the SPEs was performed; X-ray Photoelectron Spectroscopy (XPS) allowed us to consider a quantitative conversion of the aniline functions into diazonium moieties. The spontaneous grafting of gold nanoparticles on the as-obtained reactive surfaces ensures the nanostructuration of the material, and XPS studies showed that the covalent bonding of the gold nanoparticles at the surface of the SPEs induces a change both in the Au-4f (gold nanoparticles) and Cl-2p (carbon ink) core level signals. These unusual observations are explained by an interaction between the carbon ink constituting the substrate and the gold nanoparticles. Heavy and toxic metals are considered of major environmental concern because of their non-biodegradability. In a final step, the grafting of the carboxylic ligands at the surface of the SPEs and an accumulation step in the presence of lead(II) cations allowed us to evidence the interest of nanostructured materials as metallic pollutants sensors.

  5. Vibration sensors

    Science.gov (United States)

    Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh

    2003-10-01

    Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.

  6. A Sensor System Based on Semi-Conductor Metal Oxide Technology for In Situ Detection of Coal Fired Combustion Gases

    Energy Technology Data Exchange (ETDEWEB)

    Brent Marquis

    2007-05-31

    Sensor Research and Development Corporation (SRD) proposed a two-phase program to develop a robust, autonomous prototype analyzer for in situ, real-time detection, identification, and measurement of coal-fired combustion gases and perform field-testing at an approved power generation facility. SRD developed and selected sensor materials showing selective responses to carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, ammonia, sulfur dioxide and hydrogen chloride. Sensor support electronics were also developed to enable prototype to function in elevated temperatures without any issues. Field-testing at DOE approved facility showed the ability of the prototype to detect and estimate the concentration of combustion by-products accurately with relatively low false-alarm rates at very fast sampling intervals.

  7. A new family of field-stable and highly sensitive SQUID current sensors based on sub-micrometer cross-type Josephson junctions

    Science.gov (United States)

    Schmelz, M.; Zakosarenko, V.; Schönau, T.; Anders, S.; Kunert, J.; Meyer, M.; Meyer, H.-G.; Stolz, R.

    2017-07-01

    We report on the development of a new family of superconducting quantum interference device (SQUID) current sensors based on sub-micron cross-type Josephson tunnel junctions. Their low total junction capacitance permits high usable voltage swings of more than 100 μV and exceptional low noise of the SQUIDs at 4.2 K. Integrated rf-filters as well as high tolerable background fields during cool-down of up to 9.6 mT enable their highly reliable and easy use. With input coil inductances ranging from 10 nH to 2.8 μH and current sensitivities and coupled energy resolution down to 65 fA Hz-1/2 and below 10 h, respectively, they are a versatile tool for numerous applications.

  8. An Improved Metal-Packaged Strain Sensor Based on A Regenerated Fiber Bragg Grating in Hydrogen-Loaded Boron–Germanium Co-Doped Photosensitive Fiber for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Yun Tu

    2017-02-01

    Full Text Available Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG fabricated in hydrogen (H2-loaded boron–germanium (B–Ge co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H2-loaded B–Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H2-loaded B–Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging.

  9. An Improved Metal-Packaged Strain Sensor Based on A Regenerated Fiber Bragg Grating in Hydrogen-Loaded Boron–Germanium Co-Doped Photosensitive Fiber for High-Temperature Applications

    Science.gov (United States)

    Tu, Yun; Ye, Lin; Zhou, Shao-Ping; Tu, Shan-Tung

    2017-01-01

    Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG) fabricated in hydrogen (H2)-loaded boron–germanium (B–Ge) co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H2-loaded B–Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H2-loaded B–Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging. PMID:28241465

  10. Thin metal bilayer for surface plasmon resonance sensors in a multimode plastic optical fiber: the case of palladium and gold metal films

    Science.gov (United States)

    Cennamo, Nunzio; Zuppella, Paola; Bacco, Davide; Corso, Alain J.; Pelizzo, Maria G.; Pesavento, Maria; Zeni, Luigi

    2016-05-01

    A novel sensing platform based on thin metal bilayer for surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) has been designed, implemented and tested. The experimental results are congruent with the numerical studies. This platform has been properly optimized to work in the 1.38 -1.42 refractive index range and it exhibits excellent sensitivity. This refractive index range is very interesting for bio-chemical applications, where the polymer layer are used as receptors (e.g. molecularly imprinted polymer) or to immobilize the bio-receptor on the metal surface. The proposed metallic bilayer is based on palladium and gold films and replaces the traditional gold by exhibiting higher performances. Furthermore, the deposition of the thin bilayer is a single process and no further manufacturing step is required. In fact, in this case the photoresist buffer layer between the POF core and the metal layer, usually required to increase the refractive index range, is no longer necessary.

  11. Detection of laser-induced nanosecond ultrasonic pulses in metals using a pancake coil and a piezoelectric sensor.

    Science.gov (United States)

    Kozhushko, Victor V; Krenn, Heinz

    2012-06-01

    A piezoelectric sensor and a pancake coil sensor were used for broadband detection of laser-induced ultrasound in single-crystal aluminum and polycrystalline nickel. Pressure pulses with pronounced compression phases were induced by laser pulses of 5 ns duration from one side of the specimens and detected from the opposite side. A coupling layer of water was required for the piezoelectric method, whereas the pancake coil placed in the biasing permanent field of a cylindrical magnet ~0.25 T allowed noncontact detection. The signals detected by a piezoelectric transducer showed bipolar form and their spectra covered the range from 5 to 90 MHz. The signal measured in aluminum by a pancake coil was assigned to the eddy current sources and had single polarity. The peak-to-peak value of the signal in nickel was higher and had bipolar form because of the inverse magnetostrictive effect. The high-frequency limit detected by the pancake coil approached 200 MHz.

  12. Quantitative recognition of flammable and toxic gases with artificial neural network using metal oxide gas sensors in embedded platform

    Directory of Open Access Journals (Sweden)

    B. Mondal

    2015-06-01

    Full Text Available Artificial Neural Network (ANN based pattern recognition technique is used for ensuring the reliable evaluation of responses from an array of Zinc Oxide (ZnO based sensors comprising of pure ZnO nano-rods and composites of ZnO–SnO2. All the sensors were fabricated in the lab. The paper first reports the development of an artificial neural network based model for successfully recognizing different concentration of hydrogen, methane and carbon mono-oxide. Feed forward back propagation neural network was used for the classification of the gases at critical concentrations. The optimized ANN algorithm is then embedded in the microcontroller based circuit and finally verified under lab conditions.

  13. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    Energy Technology Data Exchange (ETDEWEB)

    Hoidn, Oliver R.; Seidler, Gerald T., E-mail: seidler@uw.edu [Physics Department, University of Washington, Seattle, Washington 98195 (United States)

    2015-08-15

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  14. Sensors for Process Control

    Science.gov (United States)

    Tschulena, G.

    1988-01-01

    Sensors are one of the key elements for the automation in the manufacturing and process technology. The sensor field is presently within a restructuring process, directed to a stronger utilization of solid state technologies. This restructuring is governed by the utilization of solid state physical effects, by the use of reproducible fabrication techniques, and by the market driving forces. The state of the art of sensors in modern fabrication techniques will be demonstrated in examples, namely for sensors in silicon technology, in thin film technology and in thick film/screen printing technology. Some important physical and technological problems to be solved for the development of new and advanced sensor families will be outlined. Sensor development is strongly directed to the minaturization of devices and to the integration of different sensors to multisensors, as well as the integration between sensors and microelectronics.

  15. Nafion-Induced Metal-Metal Interactions in a Platinum(Ⅱ) Terpyridyl Acetylide Complex:a Luminescent Sensor for Detection of Volatile Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    TONG,Qing-Xiao(佟庆笑); LI,Xiao-Hong(李晓红); WU,Li-Zhu(吴骊珠); YANG,Qing-Zheng(杨清正); ZHANG,Li-Ping(张丽萍); TUNG,Chen-Ho(佟振合)

    2004-01-01

    The platinum(Ⅱ) terpyridyl acetylide complex [Pt(terpy)(C≡CR)]C1O4 (terpy=2,2′: 6′2″-terpyridine, R=CH2CH2CH3) (1) was incorporated into Nafion membranes. At high loading the dry membranes exhibit intense photoluminescence with λmax at 707 nm from the 3MMLCT state, which was not observed in fluid solution. Upon exposure to the vapor of polar volatile organic compounds (VOC), this photoluminescence was significantly red-shifed. This process was fully reversible when the VOC-incorporated membrane was dried in air. The dramatic and reversible changes in the emission spectra made the Nafion-supported complex as an interesting sensor candidate for polar VOC.

  16. Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors.

    Science.gov (United States)

    Zakharova, Marianna I; Coudret, Christophe; Pimienta, Véronique; Micheau, Jean Claude; Delbaere, Stéphanie; Vermeersch, Gaston; Metelitsa, Anatoly V; Voloshin, Nikolai; Minkin, Vladimir I

    2010-02-01

    The photochromic, thermochromic and metallochromic behaviour of a series of three spiro[indoline-8-(benzothiazol-2-yl)-benzopyrans] has been investigated. The thermodynamic and kinetic parameters of their thermal equilibrium between the ring-closed (spiro) and ring-opened (merocyanine) isomeric forms have been determined using UV-Vis absorption and (1)H NMR spectroscopies. By adding Co(ii) and Ni(ii) ions in acetonitrile solution, 1 : 1 and 1 : 2 metal : merocyanine complexes are formed simultaneously. Using appropriate numerical methods, the kinetic analysis of the complexation allowed us to determine accurately key thermodynamic and spectroscopic parameters of the metal complexes. Results showed that the complexation strength is very sensitive to the size of the indoline nitrogen substituent. Complexation can be reversed by shining white light on the coloured complexes which regenerates the inactive spiropyran form, and releases the metallic ion; hence, these systems display fully reversible negative photochromism. The Zn(ii) complexes exhibit intense fluorescence in the 600-800 nm wavelength range. All these behaviours make these spiropyrans bearing benzothiazole heterocycles promising building blocks for the future construction of photodynamic chemosensors for transition metal ions.

  17. Magnetic-field-assisted assembly of layered double hydroxide/metal porphyrin ultrathin films and their application for glucose sensors.

    Science.gov (United States)

    Shao, Mingfei; Xu, Xiangyu; Han, Jingbin; Zhao, Jingwen; Shi, Wenying; Kong, Xianggui; Wei, Min; Evans, David G; Duan, Xue

    2011-07-01

    The ordered ultrathin films (UTFs) based on CoFe-LDH (layered double hydroxide) nanoplatelets and manganese porphyrin (Mn-TPPS) have been fabricated on ITO substrates via a magnetic-field-assisted (MFA) layer-by-layer (LBL) method and were demonstrated as an electrochemical sensor for glucose. The XRD pattern for the film indicates a long-range stacking order in the normal direction of the substrate. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of the MFA LDH/Mn-TPPS UTFs reveal a continuous and uniform surface morphology. Cyclic voltammetry, impedance spectroscopy, and chronoamperometry were used to evaluate the electrochemical performance of the film, and the results show that the MFA-0.5 (0.5 T magnetic field) CoFe-LDH/Mn-TPPS-modified electrode displays the strongest redox current peaks and fastest electron transfer process compared with those of MFA-0 (without magnetic-field) and MFA-0.15 (0.15 T magnetic field). Furthermore, the MFA-0.5 CoFe-LDH/Mn-TPPS exhibits remarkable electrocatalytic activity toward the oxidation of glucose with a linear response range (0.1-15 mM; R(2) = 0.999), low detection limit (0.79 μM) and high sensitivity (66.3 μA mM(-1) cm(-2)). In addition, the glucose sensor prepared by the MFA LBL method also shows good selectivity and reproducibility as well as resistance to poisoning in a chloride ion solution. Therefore, the novel strategy in this work creates new opportunities for the fabrication of nonenzyme sensors with prospective applications in practical detection.

  18. Metal binding properties of Escherichia coli YjiA, a member of the metal homeostasis-associated COG0523 family of GTPases.

    Science.gov (United States)

    Sydor, Andrew M; Jost, Marco; Ryan, Katherine S; Turo, Kaitlyn E; Douglas, Colin D; Drennan, Catherine L; Zamble, Deborah B

    2013-03-12

    GTPases are critical molecular switches involved in a wide range of biological functions. Recent phylogenetic and genomic analyses of the large, mostly uncharacterized COG0523 subfamily of GTPases revealed a link between some COG0523 proteins and metal homeostasis pathways. In this report, we detail the bioinorganic characterization of YjiA, a representative member of COG0523 subgroup 9 and the only COG0523 protein to date with high-resolution structural information. We find that YjiA is capable of binding several types of transition metals with dissociation constants in the low micromolar range and that metal binding affects both the oligomeric structure and GTPase activity of the enzyme. Using a combination of X-ray crystallography and site-directed mutagenesis, we identify, among others, a metal-binding site adjacent to the nucleotide-binding site in the GTPase domain that involves a conserved cysteine and several glutamate residues. Mutations of the coordinating residues decrease the impact of metal, suggesting that metal binding to this site is responsible for modulating the GTPase activity of the protein. These findings point toward a regulatory function for these COG0523 GTPases that is responsive to their metal-bound state.

  19. Passive optical sensors for the groove-detection at metal-arc-welding; Passive optische Sensoren zur Fugenvermessung beim Metall-Schutzgas-Schweissen

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, J.; Wild, W. [Rostock Univ. (Germany). Inst. fuer Antriebstechnik und Mechatronik

    2002-04-01

    The paper presents the application of CMOS detectors to measure and to follow butt-joints in metal-arc-welding. Unlike standard operating schemes, the electric arc in this application also serves as the lighting source, projecting the characteristics of the welding groove as a grey scale pattern onto a CMOS detector, vertically mounted in front of the welding torch. Both monocular and binocular set-ups are presented and the evaluation of groove geometry, based on data from profile scans, is demonstrated. The information characterizing joint geometry is used to control the height of the filler in the welding groove. Particular emphasis is given to a robust design, allowing the mobile automatic welding machine to operate in rough environments. (orig.) [German] Der Beitrag beschreibt die Anwendung von optischen CMOS-Detektoren zur Vermessung und Verfolgung von V-Fugen beim Metall-Schutzgas-Schweissen. Die Besonderheit ist der Einsatz beim offenen Lichtbogen. Der in der Fuge brennende Lichtbogen bildet die V-Fuge als charakteristischen Grauwertverlauf auf dem senkrecht vor dem Schweissbrenner montierten CMOS-Detektor ab. Es werden sowohl monokulare als auch binokulare Anordnungen vorgestellt und die Berechnung der Fugengeometrie aus den Profilscans gezeigt. Abschliessend wird der. Einsatz der gewonnenen Geometrieinformationen zur Steuerung einer konstanten Fugenverfuellung dargestellt. (orig.)

  20. Construction of an electrochemical sensor based on amino-functionalized metal-organic frameworks for differential pulse anodic stripping voltammetric determination of lead.

    Science.gov (United States)

    Wang, Yang; Ge, Huali; Wu, Yichun; Ye, Guiqin; Chen, Huanhuan; Hu, Xiaoya

    2014-11-01

    Metal-organic frameworks composite materials have received tremendous attention because of their versatile structures and tunable porosity for various applications. Herein, amino-functionalized metal-organic frameworks (NH2-Cu3(BTC)2; BTC=benzene-1,3,5-tricarboxylate) was prepared and used as a novel electrode modifier for the determination of trace levels of lead. NH2-Cu3(BTC)2 shows quite a good capability for the efficient adsorption of lead from aqueous solutions. The parameters affecting the electrochemical process, such as electrolyte solution pH, the amount of NH2-Cu3(BTC)2 suspension, accumulation potential and accumulation time, were investigated in detail. Under the optimal conditions, the electrochemical sensor exhibited a linear response to the concentration of lead in the range of 1.0×10(-8)-5.0×10(-7) mol L(-1) (R(2)=0.9951) with a detection limit of 5.0×10(-9) mol L(-1). The relative standard deviation of 11 successive scans was 3.10% for 1.0×10(-8) mol L(-1) lead. The method was validated with certified reference material (stream sediment and milk powder) and the analytical results coincided well with the certified values. Furthermore, the method was successfully applied to the determination of target analytes in tap and lake water samples and good recoveries were obtained from different spiked values.

  1. Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by ph and metals.

    Science.gov (United States)

    Borza, D B; Morgan, W T

    1998-03-06

    The middle domain of plasma histidine-proline-rich glycoprotein (HPRG) contains unusual tandem pentapeptide repeats (consensus G(H/P)(H/P)PH) and binds heparin and transition metals. Unlike other proteins that interact with heparin via lysine or arginine residues, HPRG relies exclusively on histidine residues for this interaction. To assess the consequences of this unusual requirement, we have studied the interaction between human plasma HPRG and immobilized glycosaminoglycans (GAGs) using resonant mirror biosensor techniques. HPRG binding to immobilized heparin was strikingly pH-sensitive, producing a titration curve with a midpoint at pH 6.8. There was little binding of HPRG to heparin at physiological pH in the absence of metals, but the interaction was promoted by nanomolar concentrations of free zinc and copper, and its pH dependence was shifted toward alkaline pH by zinc. The affinity of HPRG for various GAGs measured in a competition assay decreased in the following order: heparin > dermatan sulfate > heparan sulfate > chondroitin sulfate A. Binding of HPRG to immobilized dermatan sulfate had a midpoint at pH 6.5, was less influenced by zinc, and exhibited cooperativity. Importantly, plasminogen interacted specifically with GAG-bound HPRG. We propose that HPRG is a physiological pH sensor, interacting with negatively charged GAGs on cell surfaces only when it acquires a net positive charge by protonation and/or metal binding. This provides a mechanism to regulate the function of HPRG (the local pH) and rationalizes the role of its unique, conserved histidine-proline-rich domain. Thus, under conditions of local acidosis (e.g. ischemia or hypoxia), HPRG can co-immobilize plasminogen at the cell surface as well as compete for heparin with other proteins such as antithrombin.

  2. Ultra-sensitive near-infrared fiber-optic gas sensors enhanced by metal-organic frameworks

    Science.gov (United States)

    Chong, Xinyuan; Kim, Ki-Joong; Li, Erwen; Zhang, Yujing; Ohodnicki, Paul R.; Chang, Chih-Hung; Wang, Alan X.

    2016-03-01

    We demonstrate ultra-sensitive near-infrared (NIR) fiber-optic gas sensors enhanced by metalorganic framework (MOF) Cu-BTC (BTC=benzene-1,3,5- tricarboxylate), which is coated on a single-mode optical fiber. For the first time, we obtained high-resolution NIR spectroscopy of CO2 adsorbed in MOF without seeing any rotational side band. Real-time measurement showed different response time depending on the concentration of CO2, which is attributed to the complex adsorption and desorption mechanism of CO2 in Cu-BTC. The lowest detection limit of CO2 we achieved is 20 ppm with only 5-cm long Cu-BTC film.

  3. A Programmable Difference-of-Gaussian Analog Complementary Metal Oxide Semiconductor Image Sensor Operating in the Subthreshold Regime

    Science.gov (United States)

    Wang, Zheye; Shibata, Tadashi

    2013-04-01

    A difference-of-Gaussian (DoG) analog CMOS image sensor architecture in which the kernel size and shape are made arbitrarily programmable has been developed based on the MOS subthreshold characteristics. The variability of MOS transistor threshold voltage causes a serious problem in the circuits operating in the subthreshold regime because the current varies exponentially depending on the threshold voltage. The problem has been alleviated by introducing a cancellation scheme employing a switched floating-gate MOS (neuMOS) circuitry. A proof-of-concept chip was designed in a 0.18-µm CMOS technology. The operation of the designed circuits was investigated by SPICE (simulation program with integrated circuit emphasis) simulation and their basic functions were demonstrated. A part of the core function, i.e., the generation of the Gaussian function profile, was confirmed by the measurement of a fabricated test circuit.

  4. Ionic Polymer-Metal Composites (IPMCs) as dexterous manipulators and tactile sensors for minimally invasive robotic surgery

    Science.gov (United States)

    Bahramzadeh, Y.; Shahinpoor, M.

    2012-04-01

    Robot-assisted surgery provides the surgeons with new tools to perform sophisticated surgical operations in a minimally invasive manner. Small robotic end-effectors at the tip of the surgical forceps are the key advantage of robotic surgery over laparoscopic surgery and any improvement on the design of these small robots can significantly improve the overall functionality of the surgical robots. In this sense, novel bio-compatible electro-active polymeric actuators can improve the design and functionality of these robotic end-effectors particularly by introducing smaller and more flexible robotic tools. Here, we introduce the applications of IPMCs as flexible actuators with embedded tactile and force feedback sensors in minimally-invasive robotic surgery. A new design for the robotic manipulation of the organs is presented in which a two dimensional IPMC actuator is replaced with the rigid robotic distal tip. It is shown that with a customized design, IPMC actuators maintain the required dexterity for two-dimensional bending of robotic distal tip. The overall design of the robot could be considered as a hybrid robot with the combination of rigid robotic links and flexible IPMC actuator with two degrees of freedom. On the other hand with the current robotic distal tips, no tactile force feedback is available during surgery and the surgeons rely solely on vision feedback. With the proposed design of actuator, the IPMC based distal tip could be used to deliver force feedback data by using an embedded IPMC tactile sensor. Design considerations, kinematics and chemo-electro-mechanical model of the proposed actuator is presented.

  5. Metalloproteins and metal sensing.

    Science.gov (United States)

    Waldron, Kevin J; Rutherford, Julian C; Ford, Dianne; Robinson, Nigel J

    2009-08-13

    Almost half of all enzymes must associate with a particular metal to function. An ambition is to understand why each metal-protein partnership arose and how it is maintained. Metal availability provides part of the explanation, and has changed over geological time and varies between habitats but is held within vital limits in cells. Such homeostasis needs metal sensors, and there is an ongoing search to discover the metal-sensing mechanisms. For metalloproteins to acquire the right metals, metal sensors must correctly distinguish between the inorganic elements.

  6. Multi-signaling thiocarbohydrazide based colorimetric sensors for the selective recognition of heavy metal ions in an aqueous medium

    Science.gov (United States)

    Momidi, Bharath Kumar; Tekuri, Venkatadri; Trivedi, Darshak R.

    2017-06-01

    A series of colorimetric chemosensors R1-R6 have been developed from thiocarbohydrazide derivatives, for the selective detection of heavy metal ions. The structures of the receptors R1-R6 were well characterized by standard spectroscopic techniques like FT-IR, 1H NMR, and ESI-MS. The solid structure of receptor R1 and R2 were derived by single crystal X-ray diffraction (SC-XRD). The cation reorganization abilities of receptors R1-R6 were studied by UV-Vis spectroscopy. The receptors R1, R3 and R4 acts as a tremendous sensitive probe for heavy metal ions (Hg2 +, Cd2 + and Pb2 +) with the μM detection (R1 for Hg2 +, 2.72, R3 for Cd2 +, 3.22, R4 for Hg2 +, Cd2 + & Pb2 +, 0.70, 0.20 & 0.30 μM) and the receptors R2, R5 &R6 are sensitive towards Cu2 + ions with the μM detection (3.34, 0.90 & 1.20 μM) in an aqueous medium among all other tested cations. The receptor R4 shows a multi-color response towards Hg2 +, Cu2 +, Cd2 + and Pb2 + ions. The recognition mechanism, stoichiometric binding ratio and detection limit (DL) have been examined by UV-Visible spectroscopic titration experiments and Benesi-Hildebrand (B-H) plot, receptor R1-R6 sowed 1:1 binding ratio with good binding constant range of 103 to 105 M- 1 with Hg2 +, Cu2 +, Cd2 + and Pb2 + ions metal ions.

  7. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  8. A CAD investigation of metal-overhang on multiple guard ring design for high voltage operation of Si sensors

    Science.gov (United States)

    Bhardwaj, Ashutosh; Ranjan, Kirti; Namrata; Chatterji, Sudeep; Srivastava, Ajay K.; Shivpuri, R. K.

    2002-12-01

    The extension of Si detectors to the next generation high-energy physics experiments such as large hadron collider implies a reliable operation in high radiation environment which is by far the main technological challenge for these detectors. Multiple field limiting ring systems are well established as a means of protecting diffused junction from high voltage premature breakdown. Also, a spread of the Al metallization over the inter-cathodic field oxide sensibly lowers the electric field at the junction edges, thus, allowing for higher breakdown voltages. The purpose of this work is to combine the positive aspects of these two termination techniques with the aim of defining layouts and technological solutions suitable for the use of Si detectors in adverse radiation environment. An important feature is the potential distribution in the multi-guard ring structure, which depends on the bulk doping concentration, the oxide charge, the size of the gap between guard rings and the metal-overhang design. A systematic investigation on the breakdown performance is done by varying the physical and geometrical parameters such as width of overhang, guard ring spacing, junction depth and oxide charge. CAD tools are used for evaluating potential and electric field distributions within the device.

  9. Fabrication of Fiber Bragg Grating Coating with TiO2 Nanostructured Metal Oxide for Refractive Index Sensor

    Directory of Open Access Journals (Sweden)

    Shaymaa Riyadh Tahhan

    2017-01-01

    Full Text Available To increase the sensitivity of biosensor a new approach using an optical fiber Bragg grating (FBG coated with a suitable nanostructured metal oxide (NMO is proposed which is costly effective compared to other biosensors. Bragg grating was written on a D-shaped optical fiber by phase mask method using a 248 nm KrF excimer laser for a 5 min exposure time producing a grating with a period of 528 nm. Titanium dioxide (TiO2 nanostructured metal oxide was coated over the fiber for the purpose of increasing its sensing area. The etched D-shaped FBG was then coated with 312 nm thick TiO2 nanostructured layer to ensure propagating the radiation modes within the core. The final structure was used to sense deionized water and saline. The etched D-shaped FBG original sensitivity before coating to air-deionized water and to air-saline was 0.314 nm/riu and 0.142 nm/riu, respectively. After coating the sensitivity became 1.257 nm/riu for air-deionized water and 0.857 nm/riu for air-saline.

  10. A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life

    Directory of Open Access Journals (Sweden)

    Merchant Sabeeha S

    2009-10-01

    Full Text Available Abstract Background COG0523 proteins are, like the nickel chaperones of the UreG family, part of the G3E family of GTPases linking them to metallocenter biosynthesis. Even though the first COG0523-encoding gene, cobW, was identified almost 20 years ago, little is known concerning the function of other members belonging to this ubiquitous family. Results Based on a combination of comparative genomics, literature and phylogenetic analyses and experimental validations, the COG0523 family can be separated into at least fifteen subgroups. The CobW subgroup involved in cobalamin synthesis represents only one small sub-fraction of the family. Another, larger subgroup, is suggested to play a predominant role in the response to zinc limitation based on the presence of the corresponding COG0523-encoding genes downstream from putative Zur binding sites in many bacterial genomes. Zur binding sites in these genomes are also associated with candidate zinc-independent paralogs of zinc-dependent enzymes. Finally, the potential role of COG0523 in zinc homeostasis is not limited to Bacteria. We have predicted a link between COG0523 and regulation by zinc in Archaea and show that two COG0523 genes are induced upon zinc depletion in a eukaryotic reference organism, Chlamydomonas reinhardtii. Conclusion This work lays the foundation for the pursuit by experimental methods of the specific role of COG0523 members in metal trafficking. Based on phylogeny and comparative genomics, both the metal specificity and the protein target(s might vary from one COG0523 subgroup to another. Additionally, Zur-dependent expression of COG0523 and putative paralogs of zinc-dependent proteins may represent a mechanism for hierarchal zinc distribution and zinc sparing in the face of inadequate zinc nutrition.

  11. Microfabricated Formaldehyde Gas Sensors

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2009-11-01

    Full Text Available Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation.

  12. M-DNA/Transition Metal Dichalcogenide Hybrid Structure-based Bio-FET sensor with Ultra-high Sensitivity

    Science.gov (United States)

    Park, Hyung-Youl; Dugasani, Sreekantha Reddy; Kang, Dong-Ho; Yoo, Gwangwe; Kim, Jinok; Gnapareddy, Bramaramba; Jeon, Jaeho; Kim, Minwoo; Song, Young Jae; Lee, Sungjoo; Heo, Jonggon; Jeon, Young Jin; Park, Sung Ha; Park, Jin-Hong

    2016-01-01

    Here, we report a high performance biosensor based on (i) a Cu2+-DNA/MoS2 hybrid structure and (ii) a field effect transistor, which we refer to as a bio-FET, presenting a high sensitivity of 1.7 × 103 A/A. This high sensitivity was achieved by using a DNA nanostructure with copper ions (Cu2+) that induced a positive polarity in the DNA (receptor). This strategy improved the detecting ability for doxorubicin-like molecules (target) that have a negative polarity. Very short distance between the biomolecules and the sensor surface was obtained without using a dielectric layer, contributing to the high sensitivity. We first investigated the effect of doxorubicin on DNA/MoS2 and Cu2+-DNA/MoS2 nanostructures using Raman spectroscopy and Kelvin force probe microscopy. Then, we analyzed the sensing mechanism and performance in DNA/MoS2- and Cu2+-DNA/MoS2-based bio-FETs by electrical measurements (ID-VG at various VD) for various concentrations of doxorubicin. Finally, successful operation of the Cu2+-DNA/MoS2 bio-FET was demonstrated for six cycles (each cycle consisted of four steps: 2 preparation steps, a sensing step, and an erasing step) with different doxorubicin concentrations. The bio-FET showed excellent reusability, which has not been achieved previously in 2D biosensors. PMID:27775004

  13. All-fiber sensor based on a metallic coated hybrid LPG-FBG structure for thermal characterization of materials

    Science.gov (United States)

    Silva, G. E.; Caldas, P.; Santos, J. C.; Santos, J. L.

    2014-05-01

    In this paper it is presented an all-fiber implementation of the hot-wire needle probe concept, widely used to measure the thermal properties of materials, particularly the thermal conductivity. It is based on the heating of a metal thin film deposited on the surface of the fiber induced by the coupling of laser light into the cladding via a long period grating, and determination, using a fiber Bragg grating, of the time dependence of the temperature of the surrounding medium at a fixed distance of the fiber. The medium considered in this research was the air and the results obtained indicate the feasibility of this approach and point out future developments.

  14. BlmB and TlmB provide resistance to the bleomycin family of antitumor antibiotics by N-acetylating metal-free bleomycin, tallysomycin, phleomycin, and zorbamycin.

    Science.gov (United States)

    Coughlin, Jane M; Rudolf, Jeffrey D; Wendt-Pienkowski, Evelyn; Wang, Liyan; Unsin, Claudia; Galm, Ute; Yang, Dong; Tao, Meifeng; Shen, Ben

    2014-11-11

    The bleomycin (BLM) family of glycopeptide-derived antitumor antibiotics consists of BLMs, tallysomycins (TLMs), phleomycins (PLMs), and zorbamycin (ZBM). The self-resistant elements BlmB and TlmB, discovered from the BLM- and TLM-producing organisms Streptomyces verticillus ATCC15003 and Streptoalloteichus hindustanus E465-94 ATCC31158, respectively, are N-acetyltransferases that provide resistance to the producers by disrupting the metal-binding domain of the antibiotics required for activity. Although each member of the BLM family of antibiotics possesses a conserved metal-binding domain, the structural differences between each member, namely, the bithiazole moiety and C-terminal amine of BLMs, have been suggested to instill substrate specificity within BlmB. Here we report that BlmB and TlmB readily accept and acetylate BLMs, TLMs, PLMs, and ZBM in vitro but only in the metal-free forms. Kinetic analysis of BlmB and TlmB reveals there is no strong preference or rate enhancement for specific substrates, indicating that the structural differences between each member of the BLM family play a negligible role in substrate recognition, binding, or catalysis. Intriguingly, the zbm gene cluster from Streptomyces flavoviridis ATCC21892 does not contain an N-acetyltransferase, yet ZBM is readily acetylated by BlmB and TlmB. We subsequently established that S. flavoviridis lacks the homologue of BlmB and TlmB, and ZbmA, the ZBM-binding protein, alone is sufficient to provide ZBM resistance. We further confirmed that BlmB can indeed confer resistance to ZBM in vivo in S. flavoviridis, introduction of which into wild-type S. flavoviridis further increases the level of resistance.

  15. Highly Selective Bifunctional Luminescent Sensor toward Nitrobenzene and Cu(2+) Ion Based on Microporous Metal-Organic Frameworks: Synthesis, Structures, and Properties.

    Science.gov (United States)

    Yang, Lirong; Lian, Chen; Li, Xuefei; Han, Yuyang; Yang, Lele; Cai, Ting; Shao, Caiyun

    2017-05-24

    Two metal-organic frameworks (MOFs), namely, [Ni(DTP)(H2O)]n (I) and [Cd2(DTP)2(bibp)1.5]n (II) (H2DPT = 4'-(4-(3,5-dicarboxylphenoxy) phenyl)-4,2':6',4″-terpyridine; bibp = 1,3-di(1H-imidazol-1-yl)propane), that present structural diversity were solvothermally prepared. Single-crystal X-ray diffraction analysis indicates that they consist of {NiN2O4} building units (for I) and {CdO4N2} and {CdO3N3} building units (for II), which are further linked by multicarboxylate H2DPT to construct microporous three-dimensional frameworks. The remarkable character of these frameworks is that coordination polymer II demonstrates highly selective and sensitive bifunctional luminescent sensor toward nitrobenzene and Cu(2+) ion. The fluorescence quenching mechanism of II caused by nitrobenzene is ascribed to electron transfer from electron-rich (II) to electron-deficient nitrobenzene. The result was also evidenced by the density functional theory. Furthermore, anti-ferromagnetic as well as electrochemical characters of Ni-MOF (I) were also investigated in this paper.

  16. Si-doped graphene: an ideal sensor for NO- or NO2-detection and metal-free catalyst for N2O-reduction.

    Science.gov (United States)

    Chen, Ying; Gao, Bo; Zhao, Jing-Xiang; Cai, Qing-Hai; Fu, Hong-Gang

    2012-05-01

    Exploring and evaluating the potential applications of two-dimensional graphene is an increasingly hot topic in graphene research. In this paper, by studying the adsorption of NO, N(2)O, and NO(2) on pristine and silicon (Si)-doped graphene with density functional theory methods, we evaluated the possibility of using Si-doped graphene as a candidate to detect or reduce harmful nitrogen oxides. The results indicate that, while adsorption of the three molecules on pristine graphene is very weak, Si-doping enhances the interaction of these molecules with graphene sheet in various ways: (1) two NO molecules can be adsorbed on Si-doped graphene in a paired arrangement, while up to four NO(2) molecules attach to the doped graphene with an average adsorption energy of -0.329 eV; (2) the N(2)O molecule can be reduced easily to the N(2) molecule, leaving an O-atom on the Si-doped graphene. Moreover, we find that adsorption of NO and NO(2) leads to large changes in the electronic properties of Si-doped graphene. On the basis of these results, Si-doped graphene can be expected to be a good sensor for NO and NO(2) detection, as well as a metal-free catalyst for N(2)O reduction.

  17. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications.

    Science.gov (United States)

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2015-10-06

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs.

  18. Impact of metal overhang and guard ring techniques on breakdown voltage of Si strip sensors - 2003 IEEE nuclear science symposium, medical imaging conference, and workshop of room-temperature semiconductor detectors

    CERN Document Server

    Ranjan, K; Namrata, S; Chatterji, S; Srivastava-Ajay, K; Kumar, A; Jha, Manoj Kumar; Shivpuri, R K

    2004-01-01

    The importance of Si sensors in high-energy physics (HEP) experiments can hardly be overemphasized. However, the high luminosity and the high radiation level in the future HEP experiments, like Large Hadron Collider (LHC), has posed a serious challenge to the fabrication of Si detectors. For the safe operation over the full LHC lifetime, detectors are required to sustain very high voltage operation, well exceeding the bias voltage needed to full deplete the heavily irradiated Si sensors. Thus, the main effort in the development of Si sensors is concentrated on a design that avoids p-n junction breakdown at operational biases. Among various proposed techniques, Field-limiting Ring (FLR) (or guard ring) and Metal-Overhang (MO) are technologically simple and are suitable for vertical devices. Since high-voltage planar Si junctions are of great importance in the HEP experiments, it is very interesting to compare these two aforementioned techniques for achieving the maximum breakdown voltage under optimal conditio...

  19. Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field

    Science.gov (United States)

    Shao, Xuefei; Fu, Yiming; Chen, Yang

    2015-05-01

    Based on the higher order shear deformation theory and the geometric nonlinear theory, the nonlinear motion equations, to which the effects of the positive and negative piezoelectric and the thermal are introduced by piezoelectric fiber metal laminated (FML) plates in an unsteady temperature, are established by Hamilton’s variational principle. Then, the control algorithm of negative-velocity feedback is applied to realize the vibration control of the piezoelectric FML plates. During the solving process, firstly, the formal functions of the displacements that fulfilled the boundary conditions are proposed. Then, heat conduction equations and nonlinear differential equations are dealt with using the differential quadrature (DQ) and Galerkin methods, respectively. On the basis of the previous processing, the time domain is dispersed by the Newmark-β method. Finally, the whole problem can be investigated by the iterative method. In the numerical examples, the influence of the applied voltage, the temperature loading and geometric parameters on the nonlinear dynamic response of the piezoelectric FML plates is analyzed. Meanwhile, the effect of feedback control gain and the position of the piezoelectric layer, the initial deflection and the external temperature on the active control effect of the piezoelectric layers has been studied. The model development and the research results can serve as a basis for nonlinear vibration analysis of the FML structures.

  20. Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors.

    Science.gov (United States)

    Renard, Laetitia; Babot, Odile; Saadaoui, Hassan; Fuess, Hartmut; Brötz, Joachim; Gurlo, Aleksander; Arveux, Emmanuel; Klein, Andreas; Toupance, Thierry

    2012-11-07

    Nanocrystalline tin dioxide (SnO(2)) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol-gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30-35 nm thick cassiterite SnO(2) films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H(2) and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol-gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases.

  1. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Zeynep A Oztug Durer

    Full Text Available Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1 are one of the causes of familial amyotrophic lateral sclerosis (FALS. Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1 formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.

  2. Structural insights into complete metal ion coordination from ternary complexes of B family RB69 DNA polymerase.

    Science.gov (United States)

    Xia, Shuangluo; Wang, Mina; Blaha, Gregor; Konigsberg, William H; Wang, Jimin

    2011-10-25

    We have captured a preinsertion ternary complex of RB69 DNA polymerase (RB69pol) containing the 3' hydroxyl group at the terminus of an extendable primer (ptO3') and a nonhydrolyzable 2'-deoxyuridine 5'-α,β-substituted triphosphate, dUpXpp, where X is either NH or CH(2), opposite a complementary templating dA nucleotide residue. Here we report four structures of these complexes formed by three different RB69pol variants with catalytically inert Ca(2+) and four other structures with catalytically competent Mn(2+) or Mg(2+). These structures provide new insights into why the complete divalent metal-ion coordination complexes at the A and B sites are required for nucleotidyl transfer. They show that the metal ion in the A site brings ptO3' close to the α-phosphorus atom (Pα) of the incoming dNTP to enable phosphodiester bond formation through simultaneous coordination of both ptO3' and the nonbridging Sp oxygen of the dNTP's α-phosphate. The coordination bond length of metal ion A as well as its ionic radius determines how close ptO3' can approach Pα. These variables are expected to affect the rate of bond formation. The metal ion in the B site brings the pyrophosphate product close enough to Pα to enable pyrophosphorolysis and assist in the departure of the pyrophosphate. In these dUpXpp-containing complexes, ptO3' occupies the vertex of a distorted metal ion A coordination octahedron. When ptO3' is placed at the vertex of an undistorted, idealized metal ion A octahedron, it is within bond formation distance to Pα. This geometric relationship appears to be conserved among DNA polymerases of known structure.

  3. Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor

    Science.gov (United States)

    Hou, Chen; Wang, Yang; Ding, Qinghua; Jiang, Long; Li, Ming; Zhu, Weiwei; Pan, Duo; Zhu, Hao; Liu, Mingzhu

    2015-11-01

    This work reports a facile and easily-achieved approach for enzyme immobilization by embedding glucose oxidase (GOx) in magnetic zeolitic imidazolate framework 8 (mZIF-8) via a de novo approach. As a demonstration of the power of such materials, the resulting GOx embedded mZIF-8 (mZIF-8@GOx) was utilized as a colorimetric sensor for rapid detection of glucose. This method was constructed on the basis of metal-organic frameworks (MOFs), which possessed very fascinating peroxidase-like properties, and the cascade reaction for the visual detection of glucose was combined into one step through the mZIF-8@GOx based mimic multi-enzyme system. After characterization by electron microscopy, X-ray diffraction, nitrogen sorption, fourier transform infrared spectroscopy and vibrating sample magnetometry, the as-prepared mZIF-8@GOx was confirmed with the robust core-shell structure, the monodisperse nanoparticle had an average diameter of about 200 nm and displayed superparamagnetism with a saturation magnetization value of 40.5 emu g-1, it also exhibited a large surface area of 396.10 m2 g-1. As a peroxidase mimic, mZIF-8 was verified to be highly stable and of low cost, and showed a strong affinity towards H2O2. Meanwhile, the mZIF-8 embedded GOx also exhibited improved activity, stability and greatly enhanced selectivity in glucose detection. Moreover, the mZIF-8@GOx had excellent recyclability with high activity (88.7% residual activity after 12 times reuse).This work reports a facile and easily-achieved approach for enzyme immobilization by embedding glucose oxidase (GOx) in magnetic zeolitic imidazolate framework 8 (mZIF-8) via a de novo approach. As a demonstration of the power of such materials, the resulting GOx embedded mZIF-8 (mZIF-8@GOx) was utilized as a colorimetric sensor for rapid detection of glucose. This method was constructed on the basis of metal-organic frameworks (MOFs), which possessed very fascinating peroxidase-like properties, and the cascade

  4. Mixed Odor Classification for QCM Sensor Data by Neural Network

    Directory of Open Access Journals (Sweden)

    Sigeru OMATU

    2012-09-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Compared with metal oxide semiconductor gas sensors, quarts crystal microbalance (QCM sensors are sensitive for odors. Using an array of QCM sensors, we measure mixed odors and classify them into an original odor class beforemixing based on neural networks. For simplicity we consider the case that two kinds of odor are mixed since more than two becomes too complex to analyze the classification results. We have used eight sensors and four kinds of odor are used as the original odors. The neural network used here is a conventional layered neural network. The classification is acceptable although the perfect classification could not been achieved.

  5. Mixed Odor Classification for QCM Sensor Data by Neural Network

    Directory of Open Access Journals (Sweden)

    Hiroyuki NAKAZUMI

    2013-07-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Compared with metal oxide semiconductor gas sensors, quarts crystal microbalance (QCM sensors are sensitive for odors. Using an array of QCM sensors, we measure mixed odors and classify them into an original odor class before mixing based on neural networks. For simplicity we consider the case that two kinds of odor are mixed since more than two becomes too complex to analyze the classification results. We have used eight sensors and four kinds of odor are used as the original odors. The neural network used here is a conventional layered neural network. The classification is acceptable although the perfect classification could not been achieved.

  6. 浅谈传感器在金属探测方面的发展与应用%Brief Study on the Development and Application of Sensor on Metal Detection

    Institute of Scientific and Technical Information of China (English)

    魏翔宇

    2014-01-01

    Initially originated in the 1920s, metal detector is an electronic instrument to detect the existing metal by virtue of sensor, used to search the metallic inclusions contained in the hidden objects or metal buried under earth. The simplest form of metal detector is an alternating magnetic ifeld made by alternating current through coil produced by oscillator. When a conductive metal approaches to a coil, eddy current will induce the metal and produce its magnetic ifeld. If another coil is used as magnetometer to measure magnetic ifeld, the metal will be detected due to the alternation of the magnetic ifeld. With the development of transistor, sensor technology, integrated circuit and computer, the equipment accuracy and light-weight trend of metal detector have been improved signiifcantly;meanwhile the application scope has been enlarged, including metal detection, security check and industrial detection.%金属探测器最早的发展始于20世纪20年代,是一种借助于传感器检测附近金属是否存在的电子仪器,常用于寻找隐藏的物体或埋在地下的金属物内的金属夹杂物。金属检测器的最简单的形式由一个的振荡器产生一个交变电流穿过线圈产生的交变磁场。如果一块导电金属接近线圈,涡流会感应出的金属,并将产生其自己的磁场。如果另一个线圈用于测量磁场(作为磁力计),由于磁场中的变化,该金属物体可以被检测到。随着晶体管、传感技术、集成电路以及电脑等技术的不断发展,金属探测器在设备精度、轻型化等实用性方面也有了显著的改进,同时其应用范围也有了进一步的拓展,目前广泛应用于金属探矿(测)、安检、工业探测等领域。

  7. The Evolution of High Temperature Gas Sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, F. H. (Fernando H.); Brosha, E. L. (Eric L.); Mukundan, R. (Rangachary)

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  8. Silicon Micromachined Sensor for Broadband Vibration Analysis

    Science.gov (United States)

    Gutierrez, Adolfo; Edmans, Daniel; Cormeau, Chris; Seidler, Gernot; Deangelis, Dave; Maby, Edward

    1995-01-01

    The development of a family of silicon based integrated vibration sensors capable of sensing mechanical resonances over a broad range of frequencies with minimal signal processing requirements is presented. Two basic general embodiments of the concept were designed and fabricated. The first design was structured around an array of cantilever beams and fabricated using the ARPA sponsored multi-user MEMS processing system (MUMPS) process at the Microelectronics Center of North Carolina (MCNC). As part of the design process for this first sensor, a comprehensive finite elements analysis of the resonant modes and stress distribution was performed using PATRAN. The dependence of strain distribution and resonant frequency response as a function of Young's modulus in the Poly-Si structural material was studied. Analytical models were also studied. In-house experimental characterization using optical interferometry techniques were performed under controlled low pressure conditions. A second design, intended to operate in a non-resonant mode and capable of broadband frequency response, was proposed and developed around the concept of a cantilever beam integrated with a feedback control loop to produce a null mode vibration sensor. A proprietary process was used to integrat a metal-oxide semiconductor (MOS) sensing device, with actuators and a cantilever beam, as part of a compatible process. Both devices, once incorporated as part of multifunction data acquisition and telemetry systems will constitute a useful system for NASA launch vibration monitoring operations. Satellite and other space structures can benefit from the sensor for mechanical condition monitoring functions.

  9. Thin metal island plasmon sensor

    Science.gov (United States)

    Meriaudeau, Fabrice; Downey, Todd R.; Passian, A.; Oden, Patrick I.; Wig, A. G.; Crilly, P. B.; Mangeant, S.; Ferrell, Trinidad L.

    1998-12-01

    The effects of the local dielectric environment on the surface-plasmon resonances of annealed gold-island films are studied experimentally and modeled theoretically. Gold- island films were annealed at 600 degree(s)C to produce spheroidal shape particles which exhibit well-resolved resonances in polarized, angle-resolved, absorption spectra. These resonances are shifted in different amounts by the depolarization effect of the surrounding medium (liquids with various refraction indices). Cross-section calculations based upon non-retarded, single-particle, dielectric interaction for these various configurations are presented and found to be in good agreement with the experimental observations.

  10. 金属涂层SPR的单端面LPFG折射率传感器%Single-ended LPFG Refractive Index Sensor Based on Metal-coated Surface Plasma Resonance

    Institute of Scientific and Technical Information of China (English)

    赵敏福; 张桂菊; 马狄峰

    2009-01-01

    提出了一种新型的单端面反射的镀有金属膜的长周期光纤光栅传感器.这种基于表面等离子体谐振的具有三层结构的传感器分为两个部分,光栅部分用连续CO2激光脉冲制作,金属膜是由真空镀膜制成.在光栅上镀上各种不同厚度的薄金属膜来激发表面等离子体波,用这种光纤光栅传感器来测量液体的折射率,并研究它的反射谐振谱的特性.在标准气压下,镀有80 nm银膜的光栅从水(ns=1.33)到酒精(ns=1.36)中光栅谐振波长改变了1.14nm,其敏感度达到折射率变化~5×10-4谐振波长改变20 pm.研究发现不同厚度的不同金属膜显示了不同的敏感度.通过比较光栅在空气,水,酒精,甘油,以及在它们的混合物溶液中的谐振波长,得到这种反射式的长周期光纤光栅传感器的敏感特性.为制作一种高性能的用来测量折射率的光纤光栅传感器提供了一个有益的参考.%A novel single-ended reflecting Long Period Fiber Grating (LPFG) sensor with thin metal film overlay and the sensing system is described. An all-fiber reflection LPFG sensor with three-layer structure (core, cladding and metal) based on Surface Plasma Resonance (SPR) is established experimentally and fabricated with a pulsed CO2 laser writing system and vacuum evaporation coating system. Different urn-thick thin metal films are deposited on the reflected LPFG sensor for the excitation of Surface Plasma Waves (SPWs) and the characteristics of the reflection resonance spectra of the LPFG sensor for measuring refractive index of fluids are studied. In atmosphere condition, the peak wavelength shifts about 1.14 nm as the sensor with only 80nm Ag film coated is put from water (ns=1.33) into alcohol (n,=l.36).With the accuracy of wavelength measurement (20pm), the SPR-LPFG sensors are expected to have a sensitivity to detect ns (surroundings refractive index) with a change of-5×10-4. It is found that different thicknesses of

  11. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Hasan, E-mail: h.bagheri@bmsu.ac.ir [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hajian, Ali [Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg (Germany); Rezaei, Mosayeb; Shirzadmehr, Ali [Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan (Iran, Islamic Republic of)

    2017-02-15

    Highlights: • An electrochemical sensor based on Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide modified glassy carbon electrode was developed. • Simultaneous electrochemical determination of nitrate and nitrite by fabricated sensor was performed. • Modification improved the sensitivity and detection limit of the method. • It is a useful method for determining of nitrate and nitrite in various real samples. - Abstract: In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH = 3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75 μM with detection limits (3S{sub b}/m) of 30 nM and 20 nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  12. Selective UV-filter detection with sensors based on stainless steel electrodes modified with polyaniline doped with metal tetrasulfonated phthalocyanine films.

    Science.gov (United States)

    Moreira, Luiz Fernando; Lanza, Marcos Roberto de Vasconcelos; Tanaka, Auro Atsushi; Sotomayor, Maria Del Pilar Taboada

    2009-07-01

    This work describes the construction and application of two amperometric sensors for sensitive UV-filter determination. The sensors were prepared using stainless steel electrodes in which polyaniline (PANI) was electrochemically polymerized in the presence of nickel (NiPcTS) or iron (FePcTS) tetrasulfonated phthalocyanines. The sensor surface characterizations were carried out using atomic force microscopy (AFM). The PANI/NiPcTS sensor was selective for the chemical UV-filter p-aminobenzoic acid (PABA) and the PANI/FePcTS sensor was selective for octyldimethyl-PABA (ODP), both in a mixture of tetrahydrofuran (THF) and 0.1 mol L(-1) H2SO4 at a volume ratio of 30 : 70, and with an applied potential of 0.0 mV vs. Ag|AgCl. A detailed investigation of the selectivity was carried out for both sensors, in order to determine their responses for ten different UV filters. Finally, each sensor was successfully applied to PABA or ODP quantification in sunscreen formulations and water from swimming pools.

  13. Route to a family of robust, non-interpenetrated metal-organic frameworks with pto-like topology.

    Science.gov (United States)

    Klein, Nicole; Senkovska, Irena; Baburin, Igor A; Grünker, Ronny; Stoeck, Ulrich; Schlichtenmayer, Maurice; Streppel, Barbara; Mueller, Uwe; Leoni, Stefano; Hirscher, Michael; Kaskel, Stefan

    2011-11-11

    A combination of topological rules and quantum chemical calculations has facilitated the development of a rational metal-organic framework (MOF) synthetic strategy using the tritopic benzene-1,3,5-tribenzoate (btb) linker and a neutral cross-linker 4,4'-bipyridine (bipy). A series of new compounds, namely [M(2)(bipy)](3)(btb)(4) (DUT-23(M), M = Zn, Co, Cu, Ni), [Cu(2)(bisqui)(0.5)](3)(btb)(4) (DUT-24, bisqui = diethyl (R,S)-4,4'-biquinoline-3,3'-dicarboxylate), [Cu(2)(py)(1.5)(H(2)O)(0.5)](3)(btb)(4) (DUT-33, py = pyridine), and [Cu(2)(H(2)O)(2)](3)(btb)(4) (DUT-34), with high specific surface areas and pore volumes (up to 2.03 m(3)  g(-1) for DUT-23(Co)) were synthesized. For DUT-23(Co), excess storage capacities were determined for methane (268 mg g(-1) at 100 bar and 298 K), hydrogen (74 mg g(-1) at 40 bar and 77 K), and n-butane (99 mg g(-1) at 293 K). DUT-34 is a non-cross-linked version of DUT-23 (non-interpenetrated pendant to MOF-14) that possesses open metal sites and can therefore be used as a catalyst. The accessibility of the pores in DUT-34 to potential substrate molecules was proven by liquid phase adsorption. By exchanging the N,N donor 4,4'-bipyridine with a substituted racemic biquinoline, DUT-24 was obtained. This opens a route to the synthesis of a chiral compound, which could be interesting for enantioselective separation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas

    Science.gov (United States)

    Manchon, Delphine; Lermé, Jean; Zhang, Taiping; Mosset, Alexis; Jamois, Cécile; Bonnet, Christophe; Rye, Jan-Michael; Belarouci, Ali; Broyer, Michel; Pellarin, Michel; Cottancin, Emmanuel

    2014-12-01

    In this article, we show for the first time, both theoretically and empirically, that plasmonic coupling can be used to generate Localized Surface Plasmon Resonances (LSPRs) in transition metal dimeric nano-antennas (NAs) over a broad spectral range (from the visible to the near infrared) and that the spectral position of the resonance can be controlled through morphological variation of the NAs (size, shape, interparticle distance). First, accurate calculations using the generalized Mie theory on spherical dimers demonstrate that we can take advantage of the plasmonic coupling to enhance LSPRs over a broad spectral range for many transition metals (Pt, Pd, Cr, Ni etc.). The LSPR remains broad for low interparticle distances and masks the various hybridized modes within the overall resonance. However, an analysis of the charge distribution on the surface of the nanoparticles reveals these modes and their respective contributions to the observed LSPR. In the case of spherical dimers, the transfer of the oscillator strengths from the ``dipolar'' mode to higher orders involves a maximum extinction cross-section for intermediate interparticle distances of a few nanometers. The emergence of the LSPR has been then experimentally illustrated with parallelepipedal NAs (monomers and dimers) made of various transition metals (Pt, Pd and Cr) and elaborated by nanolithography. Absolute extinction cross-sections have been measured with the spatial modulation spectroscopy technique over a broad spectral range (300-900 nm) for individual NAs, the morphology of which has been independently characterized by electron microscopy imaging. A clear enhancement of the LSPR has been revealed for a longitudinal excitation and plasmonic coupling has been clearly evidenced in dimers by an induced redshift and broadening of the LSPR compared to monomers. Furthermore, the LSPR has been shown to be highly sensitive to slight modifications of the interparticle distance. All the experimental

  15. NLO in correlation of phase transition and the alkaline metal environment effect on it in KDP family

    Energy Technology Data Exchange (ETDEWEB)

    Ennaceur, Nasreddine, E-mail: nasr.ennaceur@yahoo.fr [Laboratoire Physico-chimie de l' État Solide, Faculté des Sciences, Université de Sfax, BP 1171, 3000 (Tunisia); Laboratoire de Photonique Quantique et Moléculaire Institut d’Alembert—École Normale Supérieure, 61 avenue du Président Wilson, 94230 Cachan (France); Ledoux-Rak, Isabelle; Singh, Anu [Laboratoire de Photonique Quantique et Moléculaire Institut d’Alembert—École Normale Supérieure, 61 avenue du Président Wilson, 94230 Cachan (France); Mhiri, Tahar; Jarraya, Khaled [Laboratoire Physico-chimie de l' État Solide, Faculté des Sciences, Université de Sfax, BP 1171, 3000 (Tunisia)

    2013-11-01

    The NaH{sub 2}(P{sub 0.48}As{sub 0.52})O{sub 4}·H{sub 2}O (NDAP) compounds allow favorable conditions to the study of evolution of the NLO response during the non-centrosymmetry phases transitions. In fact, NDAP shows the existence of three reversible non-centrosymmetry phase transitions between 272 and 313 K. These experiments are good tools for probing phase transitions and their nature. In this process, several experiments are useful to reveal not only an agreement between the thermal and the quadratic nonlinear (NLO) studies, but also an attempt amongst other things to correlate the probable effect of the alkaline environment of the KDP family on the effectiveness of the NLO intensity.

  16. Electronic transport properties of (fluorinated) metal phthalocyanine

    KAUST Repository

    Fadlallah, M M

    2015-12-21

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  17. Dumpy-30 family members as determinants of male fertility and interaction partners of metal-responsive transcription factor 1 (MTF-1 in Drosophila

    Directory of Open Access Journals (Sweden)

    Renkawitz-Pohl Renate

    2008-06-01

    Full Text Available Abstract Background Metal-responsive transcription factor 1 (MTF-1, which binds to metal response elements (MREs, plays a central role in transition metal detoxification and homeostasis. A Drosophila interactome analysis revealed two candidate dMTF-1 interactors, both of which are related to the small regulatory protein Dumpy-30 (Dpy-30 of the worm C. elegans. Dpy-30 is the founding member of a protein family involved in chromatin modifications, notably histone methylation. Mutants affect mating type in yeast and male mating in C. elegans. Results Constitutive expression of the stronger interactor, Dpy-30L1 (CG6444, in transgenic flies inhibits MTF-1 activity and results in elevated sensitivity to Cd(II and Zn(II, an effect that could be rescued by co-overexpression of dMTF-1. Electrophoretic mobility shift assays (EMSA suggest that Dpy-30L1 interferes with the binding of MTF-1 to its cognate MRE binding site. Dpy-30L1 is expressed in the larval brain, gonads, imaginal discs, salivary glands and in the brain, testes, ovaries and salivary glands of adult flies. Expression of the second interactor, Dpy-30L2 (CG11591, is restricted to larval male gonads, and to the testes of adult males. Consistent with these findings, dpy-30-like transcripts are also prominently expressed in mouse testes. Targeted gene disruption by homologous recombination revealed that dpy-30L1 knockout flies are viable and show no overt disruption of metal homeostasis. In contrast, the knockout of the male-specific dpy-30L2 gene results in male sterility, as does the double knockout of dpy-30L1 and dpy-30L2. A closer inspection showed that Dpy-30L2 is expressed in elongated spermatids but not in early or mature sperm. Mutant sperm had impaired motility and failed to accumulate in sperm storage organs of females. Conclusion Our studies help to elucidate the physiological roles of the Dumpy-30 proteins, which are conserved from yeast to humans and typically act in concert with

  18. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under th

  19. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  20. New package for CMOS sensors

    Science.gov (United States)

    Diot, Jean-Luc; Loo, Kum Weng; Moscicki, Jean-Pierre; Ng, Hun Shen; Tee, Tong Yan; Teysseyre, Jerome; Yap, Daniel

    2004-02-01

    Cost is the main drawback of existing packages for C-MOS sensors (mainly CLCC family). Alternative packages are thus developed world-wide. And in particular, S.T.Microelectronics has studied a low cost alternative packages based on QFN structure, still with a cavity. Intensive work was done to optimize the over-molding operation forming the cavity onto a metallic lead-frame (metallic lead-frame is a low cost substrate allowing very good mechanical definition of the final package). Material selection (thermo-set resin and glue for glass sealing) was done through standard reliability tests for cavity packages (Moisture Sensitivity Level 3 followed by temperature cycling, humidity storage and high temperature storage). As this package concept is new (without leads protruding the molded cavity), the effect of variation of package dimensions, as well as board lay-out design, are simulated on package life time (during temperature cycling, thermal mismatch between board and package leads to thermal fatigue of solder joints). These simulations are correlated with an experimental temperature cycling test with daisy-chain packages.

  1. Characteristic analysis of metal detector sensor based on open coil system%基于开放线圈系统金属探测仪传感器的特性分析

    Institute of Scientific and Technical Information of China (English)

    王茹茹; 宋开宏; 明军; 潘煜天; 吴振飞

    2015-01-01

    针对金属探测仪传感器设计时缺少理论分析的现状,文章基于开放式矩形平衡线圈模型,推导了金属杂质通过平衡线圈时产生的附加感应电动势,并进行仿真,得到了金属探测仪传感器平衡线圈的最佳尺寸比例以及金属杂质通过平衡线圈的最佳空间探测位置。通过实验验证了该计算方法的正确性,为进一步提高金属探测仪的检测灵敏度和稳定性提供了理论依据。%Based on the open rectangular balanced coil model to deal with the lack of theory analysis for the design of metal detector sensor ,the additional induced electromotive force w hen metal impurities go through the balanced coil is inferred .The best size ratio of the sensor coil and the best spatial de‐tection position w hen metallic materials go through the balanced coil are obtained by the simulation a‐nalysis .T he correctness of the proposed method is confirmed by experiments ,thus providing a theo‐retical basis for improving the detection precision and stability of metal detector .

  2. Wireless Magnetoelastic Resonance Sensors: A Critical Review

    Directory of Open Access Journals (Sweden)

    Keat G. Ong

    2002-07-01

    Full Text Available This paper presents a comprehensive review of magnetoelastic environmental sensor technology; topics include operating physics, sensor design, and illustrative applications. Magnetoelastic sensors are made of amorphous metallic glass ribbons or wires, with a characteristic resonant frequency inversely proportional to length. The remotely detected resonant frequency of a magnetoelastic sensor shifts in response to different physical parameters including stress, pressure, temperature, flow velocity, liquid viscosity, magnetic field, and mass loading. Coating the magnetoelastic sensor with a mass changing, chemically responsive layer enables realization of chemical sensors. Magnetoelastic sensors can be remotely interrogated by magnetic, acoustic, or optical means. The sensors can be characterized in the time domain, where the resonant frequency is determined through analysis of the sensor transient response, or in the frequency domain where the resonant frequency is determined from the frequency-amplitude spectrum of the sensor.

  3. Pneumoconiosis and malignant mesothelioma in a family operated metal casting business that used industrial talc from New York state.

    Science.gov (United States)

    Finkelstein, Murray M

    2013-05-01

    The United States is second only to the People's Republic of China in annual talc production. U.S. talc is used in the production of ceramics, paint, paper, plastics, roofing, rubber, cosmetics, flooring, caulking, and agricultural applications. A number of U.S. talc deposits consistently contain talc intergrown with amphiboles such as tremolite and/or anthophyllite. It has long been recognized that miners and millers of talc deposits are at risk for pneumoconiosis and it has recently been reported that it is prudent, on the balance of probabilities, to conclude that dusts from New York State talc ores are capable of causing mesothelioma in exposed workers. This is a report of the diagnosis of pneumoconiosis and mesothelioma in a husband and wife who operated a small metal casting business that used industrial talc from New York as a parting agent. Case reports, including medical records and exposure histories, were provided by an attorney who had also commissioned laboratory investigation of the industrial talc product used in the factory. Mrs X was diagnosed with pneumoconiosis characterized by interstitial fibrosis and heavily calcified pleural plaques. Mr X had calcified pleural plaques and developed a fatal pleural mesothelioma. Samples of the industrial talc contained fibrous tremolite and anthophyllite. The author concludes that end users of industrial talc from New York State may be at risk of pneumoconiosis and malignant disease. End users of talcs from other regions of the United States, where talc formation arose from processes driven by regional metamorphism, might also be at risk. Copyright © 2013 Wiley Periodicals, Inc.

  4. Image Sensors Enhance Camera Technologies

    Science.gov (United States)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  5. Rain Drop Charge Sensor

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  6. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures.

    Science.gov (United States)

    Tammanoon, Nantikan; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-11-04

    In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1-5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2 phase. The 10-20 μm thick sensing films fabricated by spin coating on Au/Al2O3 substrates were tested toward NO2 at operating temperatures ranging from 25 to 350 °C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt % provided an ultrahigh response of 26,342 toward 5 ppm of NO2 with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the optimal sensor also displayed high sensor response and relatively short response time of 171 and 7 min toward 5 ppm of NO2 at room temperature (25 °C). Furthermore, the sensors displayed very high NO2 selectivity against H2S, NH3, C2H5OH, H2, and H2O. Detailed mechanisms for the drastic NO2 response enhancement by graphene were proposed on the basis of the formation of graphene-undoped SnO2 ohmic metal-semiconductor junctions and accessible interfaces of graphene-SnO2 nanoparticles. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2 sensor is a highly promising candidate for fast, sensitive, and selective detection of NO2 at low operating temperatures.

  7. Solid state oxygen sensor

    Science.gov (United States)

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  8. Advanced Wireless Sensor Nodes - MSFC

    Science.gov (United States)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  9. Tailor-made micro-object optical sensor based on mesoporous pellets for visual monitoring and removal of toxic metal ions from aqueous media.

    Science.gov (United States)

    El-Safty, Sherif A; Shenashen, M A; Shahat, A

    2013-07-08

    Methods for the continuous monitoring and removal of ultra-trace levels of toxic inorganic species (e.g., mercury, copper, and cadmium ions) from aqueous media such as drinking water and biological fluids are essential. In this paper, the design and engineering of a simple, pH-dependent, micro-object optical sensor is described based on mesoporous aluminosilica pellets with an adsorbed dressing receptor (a porphyrinic chelating ligand). This tailor-made optical sensor permits ultra-fast (≤ 60 s), specific, pH-dependent visualization and removal of Cu(2+) , Cd(2+) , and Hg(2+) at sub-picomolar concentrations (∼10(-11) mol dm(-3) ) from aqueous media, including drinking water and a suspension of red blood cells. The acidic active acid sites of the pellets consist of heteroatoms arranged around uniformly shaped pores in 3D nanoscale gyroidal mesostructures densely coated with the chelating ligand. The sensor can be used in batch mode, as well as in a flow-through system in which sampling, target ion recognition and removal, and analysis are integrated in a highly automated and efficient manner. Because the pellets exhibit long-term stability, reproducibility, and versatility over a number of analysis/regeneration cycles, they can be expected to be useful for the fabrication of inexpensive sensor devices for naked-eye detection of toxic pollutants.

  10. Aflatoxin B1 Detection Using a Highly-Sensitive Molecularly-Imprinted Electrochemical Sensor Based on an Electropolymerized Metal Organic Framework

    Directory of Open Access Journals (Sweden)

    Mengjuan Jiang

    2015-09-01

    Full Text Available A sensitive electrochemical molecularly-imprinted sensor was developed for the detection of aflatoxin B1 (AFB1, by electropolymerization of p-aminothiophenol-functionalized gold nanoparticles in the presence of AFB1 as a template molecule. The extraction of the template leads to the formation of cavities that are able to specifically recognize and bind AFB1 through π-π interactions between AFB1 molecules and aniline moities. The performance of the developed sensor for the detection of AFB1 was investigated by linear sweep voltammetry using a hexacyanoferrate/hexacyanoferrite solution as a redox probe, the electron transfer rate increasing when the concentration of AFB1 increases, due to a p-doping effect. The molecularly-imprinted sensor exhibits a broad linear range, between 3.2 fM and 3.2 µM, and a quantification limit of 3 fM. Compared to the non-imprinted sensor, the imprinting factor was found to be 10. Selectivity studies were also performed towards the binding of other aflatoxins and ochratoxin A, proving good selectivity.

  11. High sensitivity knitted fabric strain sensors

    Science.gov (United States)

    Xie, Juan; Long, Hairu; Miao, Menghe

    2016-10-01

    Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.

  12. Metamaterial Sensors

    Directory of Open Access Journals (Sweden)

    Jing Jing Yang

    2013-01-01

    Full Text Available Metamaterials have attracted a great deal of attention due to their intriguing properties, as well as the large potential applications for designing functional devices. In this paper, we review the current status of metamaterial sensors, with an emphasis on the evanescent wave amplification and the accompanying local field enhancement characteristics. Examples of the sensors are given to illustrate the principle and the performance of the metamaterial sensor. The paper concludes with an optimistic outlook regarding the future of metamaterial sensor.

  13. High-Performance LSPR Fiber Sensor Based on Nanometal Rings

    National Research Council Canada - National Science Library

    Yue Jing He

    2014-01-01

    .... It was examined that the current metallic patterns in the fiber sensor can trigger the LSPR by the electric field Er of the core mode HE11, and this is the main reason why this novel fiber sensor can...

  14. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built us

  15. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built us

  16. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    to connect to a signal conditioner 200 (See FIG. 6). The deformable ring 102 may be constructed from conventional materials (metal, composite...plastic etc.) or with piezoelectric ceramics. If the ring 102 is constructed with piezoelectric ceramics, the ring itself is the sensor; therefore...elements used (i.e., resistance strain gages, fiber optic Bragg grating or piezoelectric material ), an output is generated (i.e., resistance

  17. NOx Sensor Development

    Energy Technology Data Exchange (ETDEWEB)

    Woo, L Y; Glass, R S

    2010-11-01

    NO{sub x} compounds, specifically NO and NO{sub 2}, are pollutants and potent greenhouse gases. Compact and inexpensive NO{sub x} sensors are necessary in the next generation of diesel (CIDI) automobiles to meet government emission requirements and enable the more rapid introduction of more efficient, higher fuel economy CIDI vehicles. Because the need for a NO{sub x} sensor is recent and the performance requirements are extremely challenging, most are still in the development phase. Currently, there is only one type of NO{sub x} sensor that is sold commercially, and it seems unlikely to meet more stringent future emission requirements. Automotive exhaust sensor development has focused on solid-state electrochemical technology, which has proven to be robust for in-situ operation in harsh, high-temperature environments (e.g., the oxygen stoichiometric sensor). Solid-state sensors typically rely on yttria-stabilized zirconia (YSZ) as the oxygen-ion conducting electrolyte and then target different types of metal or metal-oxide electrodes to optimize the response. Electrochemical sensors can be operated in different modes, including amperometric (a current is measured) and potentiometric (a voltage is measured), both of which employ direct current (dc) measurements. Amperometric operation is costly due to the electronics necessary to measure the small sensor signal (nanoampere current at ppm NO{sub x} levels), and cannot be easily improved to meet the future technical performance requirements. Potentiometric operation has not demonstrated enough promise in meeting long-term stability requirements, where the voltage signal drift is thought to be due to aging effects associated with electrically driven changes, both morphological and compositional, in the sensor. Our approach involves impedancemetric operation, which uses alternating current (ac) measurements at a specified frequency. The approach is described in detail in previous reports and several publications

  18. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  19. Elevated Temperature Sensors for On-Line Critical Equipment Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    James Sebastian

    2006-03-31

    The objective of the program was to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. Improvements were aimed primarily at extending the useful temperature range of the sensor from approximately 700 C to above 1000 C, and investigating ultrasonic coupling to objects at these temperatures and tailoring high temperature coupling for use with the sensor. During the project, the chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates. Film adhesion under thermal cycling was found to be poor, and additional substrate materials and surface preparations were evaluated. A new, porous SiC substrate improved the performance but not to the point of making the films useful for sensors. Near the end of the program, a new family of high temperature piezoelectric materials came to the attention of the program. Samples of langasite, the most promising member of this family, were obtained and experimental data showed promise for use up to the 1000 C target temperature. In parallel, research successfully determined that metal foil under moderate pressure provided a practical method of coupling ultrasound at high temperature. A conceptual sensor was designed based upon these methods and was tested in the laboratory.

  20. Sensor Compendium

    CERN Document Server

    Artuso, M; Bolla, G; Bortoletto, D; Caberera, B; Carlstrom, J E; Chang, C L; Cooper, W; Da Via, C; Demarteau, M; Fast, J; Frisch, H; Garcia-Sciveres, M; Golwala, S; Haber, C; Hall, J; Hoppe, E; Irwin, K D; Kagan, H; Kenney, C; Lee, A T; Lynn, D; Orrell, J; Pyle, M; Rusack, R; Sadrozinski, H; Sanchez, M C; Seiden, A; Trischuk, W; Vavra, J; Wetstein, M; Zhu, R-Y

    2013-01-01

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future ...

  1. Wind Sensor

    OpenAIRE

    Li, Jiaoyang; Ni, Jiqin

    2014-01-01

    Wind measurement is needed in many practical and scientific research situations. Some specific applications require to precisely measuring both wind direction and wind speed at the same time. Current commercial sensors for wind direction and wind speed measurement usually use ultrasonic technology and the sensors are very expensive (> $1500). In addition, the sensors are large in dimension and cannot measure airflow patterns in high spatial resolution. Therefore new and low cost wind speed an...

  2. Evaluation on The Structural as Selective Elective For Removing Trace Metal Ions by Some Compounds as Selective Sensors With Using Semi-empirical Calculations

    Institute of Scientific and Technical Information of China (English)

    Iran; Sheikhshoaie

    2007-01-01

    1 Results We have recently reported the successful use of some new ionophores in construction of PVC-based membrane selective sensors for Fe3+,Ni2+,Co2+,Hg2+ and Cd2+ ions by some Schiff base ligands. Schiff bases are one of the most important classes of ligand in coordination chemistry. In this work we reported the optimized structures of four tetra dentate mono azo Schiff base compounds.Using AM1,PM3 and MNDO semi-empirical methods for the optimization of the compounds,then we compared all of theoreti...

  3. Evaluating Zeolite-Modified Sensors: towards a faster set of chemical sensors

    Science.gov (United States)

    Berna, A. Z.; Vergara, A.; Trincavelli, M.; Huerta, R.; Afonja, A.; Parkin, I. P.; Binions, R.; Trowell, S.

    2011-09-01

    The responses of zeolite-modified sensors, prepared by screen printing layers of chromium titanium oxide (CTO), were compared to unmodified tin oxide sensors using amplitude and transient responses. For transient responses we used a family of features, derived from the exponential moving average (EMA), to characterize chemo-resistive responses. All sensors were tested simultaneously against 20 individual volatile compounds from four chemical groups. The responses of the two types of sensors showed some independence. The zeolite-modified CTO sensors discriminated compounds better using either amplitude response or EMA features and CTO-modified sensors also responded three times faster.

  4. Sensor web

    Science.gov (United States)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  5. Numerical and experimental characterizations of low frequency MEMS AE sensors

    Science.gov (United States)

    Saboonchi, Hossain; Ozevin, Didem

    2013-04-01

    In this paper, new MEMS Acoustic Emission (AE) sensors are introduced. The transduction principle of the sensors is capacitance due to gap change. The sensors are numerically modeled using COMSOL Multiphysics software in order to estimate the resonant frequencies and capacitance values, and manufactured using MetalMUMPS process. The process includes thick metal layer (20 μm) made of nickel for freely vibration layer and polysilicon layer as the stationary layer. The metal layer provides a relatively heavy mass so that the spring constant can be designed high for low frequency sensor designs in order to increase the collapse voltage level (proportional to the stiffness), which increases the sensor sensitivity. An insulator layer is deposited between stationary layer and freely vibration layer, which significantly reduces the potential of stiction as a failure mode. As conventional AE sensors made of piezoelectric materials cannot be designed for low frequencies (vacuum packaging. The MEMS sensor responses are compared with similar frequency piezoelectric AE sensors.

  6. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores

    OpenAIRE

    2015-01-01

    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wa...

  7. Sensor technology for smart homes.

    Science.gov (United States)

    Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia

    2011-06-01

    A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services.

  8. Astrobiological Molecularly Imprinted Polymer Sensors

    Science.gov (United States)

    Izenberg, N. R.; Murray, G. M.; van Houten, K. A.; Hofstra, A. A.

    2005-12-01

    Development of Molecularly Imprinted Polymer (MIP) sensors for astrobiology is intended to provide a new class of microlaboratory sensors compatible with other life or biomarker detection. Molecular imprinting is a process for making selective binding sites in synthetic polymers. The process may be approached by designing the recognition site or by simply choosing monomers that may have favorable interactions with the imprinting molecule. We are working to apply this methodology to astrobiology for development of a reliable, low cost, low mass, low power consumption sensor technology for quantitative in-situ analysis of biochemistry, biomarkers, and other indicators of astrobiological importance. Specific goals of the project are: 1) To develop a general methodology and specific methods for MIP-based sensor construction. The overall methodology will guide procedures for design and testing of any desired sensor. Specific methods will be applied to key families and specific species of astrobiological interest, i.e., alkanes (and Polycyclic aromatic hydrocarbons - PAHs), amino acids, steroids, and hopanes; 2) To construct and characterize the general family and specific species sensors. We will test for accuracy, precision, interferences, and limitations of the sensor against blanks, standards, and known terrestrial biological environment samples. Additional testing will determine sturdiness and longevity of sensors after exposure to transit conditions (launch and space environment), and at potential target environments (pressure, temperature, pH, etc.); and 3) To construct and demonstrate the combination of multiple sensors into a viable prototype instrument, and roadmap the expansion of potential instrument capabilities and exploration of the ultimate environmental limitations of the technology, and the necessary changes and additions to create a mission-ready instrument. Initial work has resulted successful detection of aqueous alanine (D and L) with simple MIP

  9. Chemical sensors

    Science.gov (United States)

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  10. Empowering smartphone users with sensor node for air quality measurement

    Science.gov (United States)

    Oletic, Dinko; Bilas, Vedran

    2013-06-01

    We present an architecture of a sensor node developed for use with smartphones for participatory sensing of air quality in urban environments. Our solution features inexpensive metal-oxide semiconductor gas sensors (MOX) for measurement of CO, O3, NO2 and VOC, along with sensors for ambient temperature and humidity. We focus on our design of sensor interface consisting of power-regulated heater temperature control, and the design of resistance sensing circuit. Accuracy of the sensor interface is characterized. Power consumption of the sensor node is analysed. Preliminary data obtained from the CO gas sensors in laboratory conditions and during the outdoor field-test is shown.

  11. Pathogen Sensors

    Directory of Open Access Journals (Sweden)

    Joseph Irudayaraj

    2009-10-01

    Full Text Available The development of sensors for detecting foodborne pathogens has been motivated by the need to produce safe foods and to provide better healthcare. However, in the more recent times, these needs have been expanded to encompass issues relating to biosecurity, detection of plant and soil pathogens, microbial communities, and the environment. The range of technologies that currently flood the sensor market encompass PCR and microarray-based methods, an assortment of optical sensors (including bioluminescence and fluorescence, in addition to biosensor-based approaches that include piezoelectric, potentiometric, amperometric, and conductometric sensors to name a few. More recently, nanosensors have come into limelight, as a more sensitive and portable alternative, with some commercial success. However, key issues affecting the sensor community is the lack of standardization of the testing protocols and portability, among other desirable elements, which include timeliness, cost-effectiveness, user-friendliness, sensitivity and specificity. [...

  12. Smart Sensors

    Science.gov (United States)

    Corsi, C.

    2007-01-01

    The term "Smart Sensors" refers to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduced inside the sensor some of the basic functions of living eyes, such as dynamic stare, non-uniformity compensation, spatial and temporal filtering. New objectives and requirements are presented for this type of new infrared smart sensor systems. This paper is concerned with the front end of FPA microbolometers processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation thresholding.

  13. A dual-emitting 4d-4f nanocrystalline metal-organic framework as a self-calibrating luminescent sensor for indoor formaldehyde pollution.

    Science.gov (United States)

    Hao, Ji-Na; Yan, Bing

    2016-06-09

    A dual-emissive 4d-4f Ag(i)-Eu(iii) functionalized MOF nanocomposite was fabricated and utilized as a self-calibrating luminescent nanoprobe for detecting indoor formaldehyde (FA). The implantation of Ag(+) ions can tune the dual-emissive characters of the material. FA can interact with the Ag(+) ions and induce opposite luminescence behaviors of the two emitters in the singular molecular material, thus realizing its recognition. This nanoprobe for FA exhibits many merits, such as excellent selectivity, high sensitivity with a detection limit of 51 ppb, fast response, room-temperature testing ability, easy preparation and low cost. This is the first example of a MOF-implicated self-calibrated sensor for indoor FA detection.

  14. A dual-emitting 4d-4f nanocrystalline metal-organic framework as a self-calibrating luminescent sensor for indoor formaldehyde pollution

    Science.gov (United States)

    Hao, Ji-Na; Yan, Bing

    2016-06-01

    A dual-emissive 4d-4f Ag(i)-Eu(iii) functionalized MOF nanocomposite was fabricated and utilized as a self-calibrating luminescent nanoprobe for detecting indoor formaldehyde (FA). The implantation of Ag+ ions can tune the dual-emissive characters of the material. FA can interact with the Ag+ ions and induce opposite luminescence behaviors of the two emitters in the singular molecular material, thus realizing its recognition. This nanoprobe for FA exhibits many merits, such as excellent selectivity, high sensitivity with a detection limit of 51 ppb, fast response, room-temperature testing ability, easy preparation and low cost. This is the first example of a MOF-implicated self-calibrated sensor for indoor FA detection.A dual-emissive 4d-4f Ag(i)-Eu(iii) functionalized MOF nanocomposite was fabricated and utilized as a self-calibrating luminescent nanoprobe for detecting indoor formaldehyde (FA). The implantation of Ag+ ions can tune the dual-emissive characters of the material. FA can interact with the Ag+ ions and induce opposite luminescence behaviors of the two emitters in the singular molecular material, thus realizing its recognition. This nanoprobe for FA exhibits many merits, such as excellent selectivity, high sensitivity with a detection limit of 51 ppb, fast response, room-temperature testing ability, easy preparation and low cost. This is the first example of a MOF-implicated self-calibrated sensor for indoor FA detection. Electronic supplementary information (ESI) available: Experimental procedure, N2 adsorption-desorption isotherms, IR spectra, EDX mappings, ICP data, luminescence data, PXRD patterns, UV-Vis spectra, and XPS spectra. See DOI: 10.1039/c6nr02446g

  15. Geometric magnetic and discriminator sensor for smart pigs

    Energy Technology Data Exchange (ETDEWEB)

    Vinicius, C. [Pipeway, Lima (Peru); Silva, J.A.P. [Pipeway, Rio de Janeiro (Brazil); Von der Weid, J.P. [Pontifica Univ. Catolica, Rio de Janeiro (Brazil); Oliveira, C.H.F.; Camerini, C.S. [Petrobras, Rio de Janeiro (Brazil)

    2004-07-01

    A novel sensor head developed for high resolution magnetic flux leakage (MFL) pigs was evaluated. Designed by a Brazilian research team, the geometric magnetic discriminator (GMD) sensor makes high resolution magnetic pipeline readings using 3 different technologies: (1) MFL; (2) geometric readings and (3) a DMC discriminator. The evaluation tests were conducted to verify that the addition of the discriminator was not compromised by the MFL sensors, as well as to determine if the MFL sensors were capable of sizing and discriminating a dent with metal loss. The GMD sensor was tested in a linear test rig at a laboratory. Defects were fabricated on steel plates. Results showed that the MFL sensors showed the same signature both with and without the DMC sensor attachment. However, the DMC sensor signaled external defects when placed inside the MFL module. It observed that the signal originated from the perpendicular components of the field lines. The MFL sensors also emitted signals that were approximately 15 Gauss in amplitude. Flux leakage was observed in dent corners. However, the dent was identified and characterized with the addition of a geometry sensor. For combined dents with external and internal metals, the GMD was capable of characterizing the dent using the geometry sensor, while the metal loss defect was characterized using the MFL sensor. Inside and outside discrimination was characterized by the discriminator. It was concluded that the introduction of a DMC discriminator sensor had little impact on the MFL sensors. 10 refs., 1 tab., 11 figs.

  16. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores.

    Science.gov (United States)

    El-Safty, Sherif A; Shenashen, Mohamed A; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei

    2015-12-06

    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobalt metals.

  17. Multiaxis sensing using metal organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Talin, Albert Alec; Allendorf, Mark D.; Leonard, Francois; Stavila, Vitalie

    2017-01-17

    A sensor device including a sensor substrate; and a thin film comprising a porous metal organic framework (MOF) on the substrate that presents more than one transduction mechanism when exposed to an analyte. A method including exposing a porous metal organic framework (MOF) on a substrate to an analyte; and identifying more than one transduction mechanism in response to the exposure to the analyte.

  18. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  19. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  20. Biquinolino-modified beta-cyclodextrin dimers and their metal complexes as efficient fluorescent sensors for the molecular recognition of steroids.

    Science.gov (United States)

    Liu, Yu; Song, Yun; Chen, Yong; Li, Xue-Qing; Ding, Fei; Zhong, Rui-Qin

    2004-08-01

    A series of bridged beta-cyclodextrin (beta-CyD) dimers possessing functional tethers of various lengths was synthesized in moderate yield by the treatment of 2,2'-biquinoline- 4,4'-dicarboxylic dichloride with beta-CyD or mono[6-oligo(ethylenediamino)-6-deoxy]-beta-CyDs. The products were 2,2'-biquinoline-4,4'-dicarboxy-bridged bis(6-O-beta-CyD) (8), N,N'-bis(2-aminoethyl)-2,2'-biquinoline-4,4'-dicarboxamide-bridged bis(6-amino-6-deoxy-beta-CyD) (9), and N,N'-bis(5-amino-3-azapentyl)-2,2'-biquinoline-4,4'-dicarboxamide-bridged bis(6-amino-6-deoxy-beta-CyD) (10). The reaction of 8-10 with copper perchlorate give their copper(II) complexes 11-13 in satisfactory yields of over 77 %. All the bis(beta-CyD)s 8-13 act as efficient fluorescent sensors and display remarkable fluorescence enhancement upon addition of optically inert steroids. The inclusion complexation behaviors of 8-13 when treated with the representative steroids cholate (14), deoxycholate (15), and glycocholate (16) in aqueous solution at 25 degrees C were investigated by means of UV/Vis spectroscopy, conductivity and fluorescence measurements, circular dichroism spectroscopy, and 2D NMR spectroscopy. The tether length of bis(beta-CyD) 9 allows it to adopt a cooperative host-tether-guest binding mode in which the spacer and guest are co-included in the two CyD cavities. As a result of this cooperation, 9 has a stability constant (K(s)) about 2x10(2) times higher than that of monomodified beta-CyD 4 for inclusion complexation with cholate. Metallooligo(beta-CyD)s with four beta-CyD units have enhanced binding abilities compared with monomodified beta-CyDs. These metallo compounds have binding affinities for guest steroids that are up to 50-4.1x10(3) times higher than those of CyDs 2-4. The guest-induced fluorescence enhancement of bis(CyD)s opens a new channel for the design of sensor materials. The complex stability constants of these compounds are discussed from the viewpoint of induced-fit interaction

  1. Development of a polymer based fiberoptic magnetostrictive metal detector system.

    Science.gov (United States)

    Hua, Wei Shu; Hooks, Joshua Rosenberg; Wu, Wen Jong; Wang, Wei Chih

    2010-10-01

    This paper presents a new metal detector using a fiberoptic magnetostriction sensor. The metal sensor uses a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing material. This polymeric magnetostrictive fiberoptic metal sensor is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is based on disruption of the magnetic flux density across the magnetostriction sensor. In this paper, characteristics of the material being sensed and magnetic properties of the ferromagnetic polymers will be discussed.

  2. Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection.

    Science.gov (United States)

    Tseng, Shao-Chin; Yu, Chen-Chieh; Wan, Dehui; Chen, Hsuen-Li; Wang, Lon Alex; Wu, Ming-Chung; Su, Wei-Fang; Han, Hsieh-Cheng; Chen, Li-Chyong

    2012-06-05

    Convenient, rapid, and accurate detection of chemical and biomolecules would be a great benefit to medical, pharmaceutical, and environmental sciences. Many chemical and biosensors based on metal nanoparticles (NPs) have been developed. However, as a result of the inconvenience and complexity of most of the current preparation techniques, surface plasmon-based test papers are not as common as, for example, litmus paper, which finds daily use. In this paper, we propose a convenient and practical technique, based on the photothermal effect, to fabricate the plasmonic test paper. This technique is superior to other reported methods for its rapid fabrication time (a few seconds), large-area throughput, selectivity in the positioning of the NPs, and the capability of preparing NP arrays in high density on various paper substrates. In addition to their low cost, portability, flexibility, and biodegradability, plasmonic test paper can be burned after detecting contagious biomolecules, making them safe and eco-friendly.

  3. Vibrissa Sensor

    Science.gov (United States)

    2016-09-30

    Docket No. 300119 1 of 11 VIBRISSA SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention provides a... measured as strain. [0009] Thus, there is a need for a sensor utilizing a vibrissa that can detect dynamic and high frequency movement of the

  4. Detection of Zygosaccharomyces rouxii and Candida tropicalis in a High-Sugar Medium by a Metal Oxide Sensor-Based Electronic Nose and Comparison with Test Panel Evaluation.

    Science.gov (United States)

    Wang, Huxuan; Hu, Zhongqiu; Long, Fangyu; Guo, Chunfeng; Yuan, Yahong; Yue, Tianli

    2015-11-01

    Osmotolerant yeasts are primarily responsible for spoilage of sugar-rich foods. In this work, an electronic nose (e-nose) was used to diagnose contamination caused by two osmotolerant yeast strains (Zygosaccharomyces rouxii and Candida tropicalis) in a high-sugar medium using test panel evaluation as the reference method. Solid-phase microextraction gas chromatography with mass spectrometry (GC-MS) was used to determine the evolution of the volatile organic compound fingerprint in the contaminated samples during yeast growth. Principal component analysis and linear discriminant analysis revealed that the e-nose could identify contamination after 48 h, corresponding to the total yeast levels of 3.68 (Z. rouxii) and 3.09 (C. tropicalis) log CFU/ml. At these levels, the test panel could not yet diagnose the spoilage, indicating that the e-nose approach was more sensitive than the test panel evaluation. Loading analysis indicated that sensors 8 and 6 were the most important for detection of these two yeasts. Based on the result obtained with the e-nose, the incubation time and total yeast levels could be accurately predicted by established multiple regression models with a correlation of greater than 0.97. In the sensory evaluation, spoilage was diagnosed after 72 h in samples contaminated with C. tropicalis and after 48 to 72 h for samples contaminated with Z. rouxii. GC-MS revealed that compounds such as acetaldehyde, acetone, ethyl acetate, alcohol, and 3-methyl-1-butanol contributed to spoilage detection by the e-nose after 48 h. In the high-sugar medium, the e-nose was more sensitive than the test panel evaluation for detecting contamination with these test yeast strains. This information could be useful for developing instruments and techniques for rapid scanning of sugar-rich foods for contamination with osmotolerant yeasts before such spoilage could be detected by the consumer.

  5. Electronic Tongue Containing Redox and Conductivity Sensors

    Science.gov (United States)

    Buehler, Martin

    2007-01-01

    The Electronic Tongue (E-tongue 2) is an assembly of sensors for measuring concentrations of metal ions and possibly other contaminants in water. Potential uses for electronic tongues include monitoring the chemical quality of water in a variety of natural, industrial, and laboratory settings, and detecting micro-organisms indirectly by measuring microbially influenced corrosion. The device includes a heater, a temperature sensor, an oxidation/reduction (redox) sensor pair, an electrical sensor, an array of eight galvanic cells, and eight ion-specific electrodes.

  6. Nanotube-Based Chemical and Biomolecular Sensors

    Institute of Scientific and Technical Information of China (English)

    J.Koh; B.Kim; S.Hong; H.Lim; H.C.Choi

    2008-01-01

    We present a brief review about recent results regarding carbon nanotube (CNT)-based chemical and biomolecular sensors. For the fabrication of CNT-based sensors, devices containing CNT channels between two metal electrodes are first fabricated usually via chemical vapor deposition (CVD) process or "surface programmed assembly" method. Then, the CNT surfaces are often functionalized to enhance the selectivity of the sensors. Using this process, highly-sensitive CNT-based sensors can be fabricated for the selective detection of various chemical and biological molecules such as hydrogen, ammonia, carbon monoxide, chlorine gas, DNA, glucose, alcohol, and proteins.

  7. Sensor management for multiple target tracking with heterogeneous sensor models

    Science.gov (United States)

    Williams, Jason L.; Fisher, John W., III; Willsky, Alan S.

    2006-05-01

    Modern sensors are able to rapidly change mode of operation and steer between physically separated objects. While control of such sensors over a rolling planning horizon can be formulated as a dynamic program, the optimal solution is inevitably intractable. In this paper, we consider the control problem under a restricted family of policies and show that the essential sensor control trade-offs are still captured. The advantage of this approach is that one can obtain the optimal policy within the restricted class in a tractable fashion, in this case by using the auction algorithm. The approach is well-suited for problems in which a single sensor (or group of sensors) is being used to track many targets using a heterogeneous sensor model, i.e., where the quality of observations varies with object state, such as due to obscuration. Our algorithm efficiently weighs the rewards achievable by observing each target at each time to find the best sensor plan within the restricted set. We extend this approach using a roll-out algorithm, to handle additional cases such as when observations take different amounts of time to complete.

  8. 一种用于土壤非金属养分测试的光纤探头式分光光度计%An Optical-Fiber-Sensor-Based Spectrophotometer for Soil Non-Metallic Nutrient Determination

    Institute of Scientific and Technical Information of China (English)

    贺冬仙; 胡娟秀; 鲁绍坤; 何厚勇

    2012-01-01

    针对测土配方施肥技术中要求快速、便捷、高效地进行土壤养分测试的需求,文章基于浸入式光纤探头、平场凹面全息光栅、二极管线阵检测器开发了一种光纤探头式分光光度计用于土壤养分中非金属元素的快速、准确测试.基于国家计量检定规程JJG 178-2007对紫外、可见、近红外分光光度计的性能检测方法测试的该仪器的波长最大允许误差与波长重复性、基线平直度、透射比最大允许误差与透射比重复性均达到了国标第Ⅲ级别标准,其最小光谱带宽、噪声与漂移、杂散光基本达到了国标第Ⅳ级别标准.基于该仪器测试的土壤硝态氮、铵态氮、有效磷、有效硫、有效硼、和有机质含量与基于商用的国产单光束和进口双光束分光光度计测试的结果呈极显著的线性相关关系,其回归方程的斜率接近于1,且对比数据之间无显著性差异.因此,该光纤探头式分光光度计可用于土壤非金属养分的快速、准确测试.%In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus

  9. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics.

    Science.gov (United States)

    Levine, Peter M; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L

    2009-03-15

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4 x 4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5 mm x 3 mm CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays.

  10. MEMS sensor technology

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhuangde

    2012-01-01

    Since 1992 the author has led research group in Xi'an Jiaotong University to investigate and develop microelectro mechanical systems (MEMS) sensors, including pressure sensor, acceleration sensor, gas sensor, viscosity & density sensor, polymerase chain reaction (PCR) chip and integrated sensor etc. This paper introduces the technologies and research results related to MEMS sensors we achieved in the last 20 years.

  11. A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal-organic frameworks-hydrogen peroxide system.

    Science.gov (United States)

    Sun, Zheng Juan; Jiang, Jun Ze; Li, Yuan Fang

    2015-12-21

    Herein, we present a novel strategy based on a "turn-on" fluorescence system made up of metal-organic frameworks Fe-MIL-88 and H2O2 for detecting biothiols in human serum. The nonfluorescent Fe-MIL-88 gives weak fluorescence in the presence of H2O2. Interestingly, it was found that biothiols such as glutathione (GSH), cysteine (Cys) or homocysteine (Hcy) could induce fluorescence turn-on of the Fe-MIL-88/H2O2 system. Under optimal conditions, the relative fluorescence intensity exhibited a good linear relationship in the range from 50 nM-10 μM for GSH (r = 0.994), 50 nM-10 μM for Cys (r = 0.990), and 50 nM-10 μM (r = 0.992) for Hcy; the detection limits of GSH, Cys and Hcy were 30 nM, 40 nM, and 40 nM respectively. Mechanism investigation reveals that biothiols could associate with Fe-MIL-88 via hydrogen bonding and electrostatic interaction followed by redox reaction between biothiols and Fe(3+) present in the Fe-MIL-88, Fe(3+) was thus reduced to Fe(2+), and then Fe(2+) could efficiently catalyze the decomposition of H2O2 to yield ˙OH radicals through the Fenton reaction. Besides, biothiols were able to reduce H2O2 to produce ˙OH radicals directly. Thus the Fe-MIL-88 as well as biothiols could cooperatively contribute to the activation of H2O2 to generate higher amounts of ˙OH radicals, which in turn oxidize the free ligand terephthalic acid (BDC) outside or within the Fe-MIL-88 structure to strongly fluorescent hydroxylated terephthalic acid (OHBDC), thereby turning on the fluorescence.

  12. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  13. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  14. Wireless Sensor Networks: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Matthew N. O. Sadiku

    2014-01-01

    Full Text Available The popularity of cell phones, laptops, PDAs and intelligent electronics has made computing devices to become cheaper and more pervasive in daily life. The desire for connectivity among these devices has caused an exponential growth in wireless communication. Wireless sensor networks (WSNs provide an example of this phenomenon. WSNs belong to the general family of sensor networks that employ distributed sensors to collect information on entities of interest. This paper provides a brief introduction to wireless sensor networks. It addresses the opportunities and challenges of WSNs

  15. Micromachined pressure sensors: Review and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.P.; Smith, J.H. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachines Dept.

    1997-03-01

    Since the discovery of piezoresistivity in silicon in the mid 1950s, silicon-based pressure sensors have been widely produced. Micromachining technology has greatly benefited from the success of the integrated circuits industry, burrowing materials, processes, and toolsets. Because of this, microelectromechanical systems (MEMS) are now poised to capture large segments of existing sensor markets and to catalyze the development of new markets. Given the emerging importance of MEMS, it is instructive to review the history of micromachined pressure sensors, and to examine new developments in the field. Pressure sensors will be the focus of this paper, starting from metal diaphragm sensors with bonded silicon strain gauges, and moving to present developments of surface-micromachined, optical, resonant, and smart pressure sensors. Considerations for diaphragm design will be discussed in detail, as well as additional considerations for capacitive and piezoresistive devices.

  16. Dissolved families

    DEFF Research Database (Denmark)

    Christoffersen, Mogens

    The situation in the family preceding a family separation is studied here, to identify risk factors for family dissolution. Information registers covering prospective statistics about health aspects, demographic variables, family violence, self-destructive behaviour, unemployment, and the spousal...

  17. Dissolved families

    DEFF Research Database (Denmark)

    Christoffersen, Mogens

    The situation in the family preceding a family separation is studied here, to identify risk factors for family dissolution. Information registers covering prospective statistics about health aspects, demographic variables, family violence, self-destructive behaviour, unemployment, and the spousal...

  18. Family Life

    Science.gov (United States)

    ... With Family and Friends > Family Life Request Permissions Family Life Approved by the Cancer.Net Editorial Board , ... your outlook on the future. Friends and adult family members The effects of cancer on your relationships ...

  19. Optics-less Sensors for Localization of Radiation Sources

    OpenAIRE

    Caulfield, H. J.; Yaroslavsky, L. P.; Goerzen, Ch.; Umansky, S.

    2008-01-01

    A new family of radiation sensors is introduced which do not require any optics. The sensors consist of arrays of elementary sub-sensors with natural cosine-law or similar angular sensitivity supplemented with a signal processing unit that computes optimal statistical estimations of source parameters. We show, both theoretically and by computer simulation, that such sensors are capable of accurate localization and intensity estimation of a given number of radiation sources and of imaging of a...

  20. Optimization of Surface Acoustic Wave-Based Rate Sensors

    Directory of Open Access Journals (Sweden)

    Fangqian Xu

    2015-10-01

    Full Text Available The optimization of an surface acoustic wave (SAW-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor.

  1. Hail Monitor Sensor

    Science.gov (United States)

    Younquist, Robert; Haskell, William; Immer, Christopher; Cox, Bobby; Lane, John

    2009-01-01

    An inexpensive and simple hail monitor design has been developed that has a single piezoelectric ceramic disc and uses a metal plate as a sounding board. The structure is durable and able to withstand the launch environment. This design has several advantages over a multi-ceramic sensor, including reduced cost and complexity, increased durability, and improvement in impact response uniformity over the active surface. However, the most important characteristic of this design is the potential to use frequency discrimination between the spectrum created from raindrop impact and a hailstone impact. The sound of hail hitting a metal plate is distinctly different from the sound of rain hitting the same plate. This fortuitous behavior of the pyramid sensor may lead to a signal processing strategy, which is inherently more reliable than one depending on amplitude processing only. The initial concept has been im proved by forming a shallow pyramid structure so that hail is encouraged to bounce away from the sensor so as not to be counted more than once. The sloped surface also discourages water from collecting. Additionally, the final prototype version includes a mounting box for the piezo-ceramic, which is offset from the pyramid apex, thus helping to reduce non-uniform response (see Figure 2). The frequency spectra from a single raindrop impact and a single ice ball impact have been compared. The most notable feature of the frequency resonant peaks is the ratio of the 5.2 kHz to 3.1 kHz components. In the case of a raindrop, this ratio is very small. But in the case of an ice ball, the ratio is roughly one third. This frequency signature of ice balls should provide a robust method for discriminating raindrops from hailstones. Considering that hail size distributions (HSDs) and fall rates are roughly 1 percent that of rainfall, hailstone sizes range from a few tenths of a centimeter to several centimeters. There may be considerable size overlap between large rain and small

  2. Electroless Nickel Plating and Electroplating on FBG Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    SHEN Ren-sheng; TENG Rui; LI Xiang-ping; ZHANG Jin; XIA Dao-cheng; FAN Zhao-qi; YU Yong-sen; ZHANG Yu-shu; DU Guo-tong

    2008-01-01

    Metal-coated fiber Bragg grating(FBG) temperature sensors were prepared via electroless nickel(EN) plating and tin electroplating methods on the surface of normal bare FBG.The surface morphologies of the metal-coated layers were observed under a metallographic microscope.The effects of pretreatment sequence,pH value of EN plating solution and current density of electroplating on the performance of the metal-coated layers were analyzed.Meanwhile,the Bragg wavelength shift induced by temperature was monitored by an optical spectrum analyzer.Sensitivity of the metal-coated FBG(MFBG) sensor was almost two times that of normal bare FBG sensor.The measuring temperature of the MFBG sensor could be up to 280 ℃,which was much better than that of conventional FBG sensor.

  3. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder for

  4. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  5. Potent clones. Efficiency of phytoremediation by means of willow family on the status of heavy metals; Potente Klone. Wirkung der Phytoremediation mittels Weidengewaechsen auf den Schwermetallstatus

    Energy Technology Data Exchange (ETDEWEB)

    Fibian, Kurt D. [Rostock Univ. (Germany). Fachgebiet Pflanzenernaehrung; Gombler, Willy; Gruessing, Edgar; Janssen-Weets, Sybille; Schlaak, Michael [Fachhochschule Emden-Leer, Emden (Germany). Inst. fuer Umwelttechnik-EUTEC

    2010-11-15

    The contents of cadmium, copper and zinc in a polluted substrate (harbour silt) were determined by means of fractionated extraction. In a pot attempt, four willow clones were cultivated on this substrate. After a test period of three years the changes in the individual fractions of heavy metal were determined. At the same time, the remove capacity of the test pastures being relevant for the process of phytoextraction were determined by means of the content of heavy metals of the aboveground plant organs and its dry weight. The results show that two of the examined pasture clones clearly are better suitable than poplars and corn, in order to remove in particular cadmium and zinc from the soil by means of phytoremediation.

  6. A novel capacitance sensor for fireside corrosion measurement

    Science.gov (United States)

    Ban, Heng; Li, Zuoping

    2009-11-01

    Fireside corrosion in coal-fired power plants is a leading mechanism for boiler tube failures. Online monitoring of fireside corrosion can provide timely data to plant operators for mitigation implementation. This paper presents a novel sensor concept for measuring metal loss based on electrical capacitance. Laboratory-scale experiments demonstrated the feasibility of design, fabrication, and operation of the sensor. The fabrication of the prototype sensor involved sputtering deposition of a thin metal coating with varying thickness on a ceramic substrate. Corrosion metal loss resulted in a proportional decrease in electrical capacitance of the sensor. Laboratory experiments using a muffle furnace with an oxidation environment demonstrated that low carbon steel coatings on ceramic substrate survived cyclic temperatures over 500 °C. Measured corrosion rates of sputtered coating in air had an Arrhenius exponential dependence on temperature, with metal thickness loss ranging from 2.0 nm/h at 200 °C to 2.0 μm/h at 400 °C. Uncertainty analysis indicated that the overall measurement uncertainty was within 4%. The experimental system showed high signal-to-noise ratio, and the sensor could measure submicrometer metal thickness changes. The laboratory experiments demonstrated that the sensor concept and measurement system are capable of short term, online monitoring of metal loss, indicating the potential for the sensor to be used for fireside corrosion monitoring and other metal loss measurement.

  7. 压电晶片传感器监测金属薄板的腐蚀%Corrosion damage detection of a metal sheet with piezoelectric wafer active sensors

    Institute of Scientific and Technical Information of China (English)

    魏勤; 颜信全; 周武波; 袁嫒

    2011-01-01

    激励压电晶片传感器产生Lamb波并用于监测金属板材的腐蚀,由信号的相关系数表征腐蚀对在板中Lamb波传播特性的影响.实验结果表明在Lamb波模态中A0模式受腐蚀影响大,适合用于监测金属的腐蚀.Lamb波通过腐蚀区域后由于频散以及信号幅度和相位的变化对采集的损伤信号与健康状态信号的相关系数有影响.在腐蚀区域直径一定的情况下,对应的相关系数并不随腐蚀深度的增加而单调递减;在腐蚀深度一定时,相关系数随腐蚀区域直径增加而单调递减.%Lamb waves excited by piezoelectric wafer active sensors are applied to detect corrosion damage of a metal sheet. The influences of the Lamb waves are analyzed by signal correlation coefficient between the signals of health state and corrosion state. The results indicate that, Ao mode of the Lamb wave is affected by the corrosion degradation. The Ao Lamb wave is good for corrosion detection. Furthermore, the correlation coefficients are monotonic decreasing with the increasing corrosion area when corrosion depth is fixed. However, when the corrosion depth is gradually deep from surface to bottom, the coefficients decrease firstly and then increase.

  8. Nanoparticle-based Sensors

    Directory of Open Access Journals (Sweden)

    V.K. Khanna

    2008-09-01

    Full Text Available Nanoparticles exhibit several unique properties that can be applied to develop chemical and biosensorspossessing desirable features like enhanced sensitivity and lower detection limits. Gold nanoparticles arecoated with sugars tailored to recognise different biological substances. When mixed with a weak solution ofthe sugar-coated nanoparticles, the target substance, e.g., ricin or E.coli, attaches to the sugar, thereby alteringits properties and changing the colour. Spores of bacterium labeled with carbon dots have been found to glowupon illumination when viewed with a confocal microscope. Enzyme/nanoparticle-based optical sensors forthe detection of organophosphate (OP compounds employ nanoparticle-modified fluorescence of an inhibitorof the enzyme to generate the signal for the OP compound detection. Nanoparticles shaped as nanoprisms,built of silver atoms, appear red on exposure to light. These nanoparticles are used as diagnostic labels thatglow when target DNA, e.g., those of anthrax or HIV, are present. Of great importance are tools like goldnanoparticle-enhanced surface-plasmon resonance sensor and silver nanoparticle surface-enhanced portableRaman integrated tunable sensor. Nanoparticle metal oxide chemiresistors using micro electro mechanical systemhotplate are very promising devices for toxic gas sensing. Chemiresistors comprising thin films of nanogoldparticles, encapsulated in monomolecular layers of functionalised alkanethiols, deposited on interdigitatedmicroelectrodes, show resistance changes through reversible absorption of vapours of harmful gases. Thispaper reviews the state-of-the-art sensors for chemical and biological terror agents, indicates their capabilitiesand applications, and presents the future scope of these devices.Defence Science Journal, 2008, 58(5, pp.608-616, DOI:http://dx.doi.org/10.14429/dsj.58.1683

  9. Thin Film Humidity Sensors (Sensores de Humedad de Película Delgada)

    OpenAIRE

    Broitman, Esteban; Latorre, Daniel; Sendra, Claudia; Zimmerman, Rosa

    1991-01-01

    In this paper the construction and characterization of a humidity sensor with an alumina thin film responsive element is described. The capacitive sensor, made by thin film technology, consists of a dielectric layer of Al2O3 film deposited between metal electrodes. En este trabajo se describe la construcción y caracterización de un sensor de humedad que emplea como elemento sensible alúmina. Se trata de un sensor capacitivo constituido por una capa dieléctrica de Al2O3 entre electrodos me...

  10. From Simple to Smart: The Development of Sensor Network

    Institute of Scientific and Technical Information of China (English)

    Ping Liu; Xunxiang Huang; Feng Liu; Lianghua Zhang

    2006-01-01

    Sensor networks have come a long way since the first point-to-point analog system. Rapid development of industrial applications imposes more challenges on traditional sensors and sensor networks. And World Wide Web browsers and object-oriented programming techniques are also helping shaping the next generation of sensor networks. As a trend, smart sensor networks are getting more attention in industrial areas for the values they can bring into us. The IEEE 1451 family of smart sensor interface standards tends to resolve the issues and problems associated with the proliferation and the heterogeneity of sensor networks. The evolution and current state of the art of sensor networks is captured in this article, where the characteristics of their generations are discussed under the networking technologies. It is also pointed out that the challenges sensor networks will face and intends of this field.

  11. Semiconductor sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Frank, E-mail: frank.hartmann@cern.c [Institut fuer Experimentelle Kernphysik, KIT, Wolfgang-Gaede-Str. 1, Karlsruhe 76131 (Germany)

    2011-02-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  12. Corrosion sensor

    Science.gov (United States)

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  13. Thermal flow micro sensors

    OpenAIRE

    Elwenspoek, M.

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow sensors and time of flight flow sensors. Anemometers may comprise several heaters and temperature sensors and from a geometric point of view are similar sometimes for calorimetric flow sensors. We fi...

  14. Characterization of a single b-type heme, FAD, and metal binding sites in the transmembrane domain of six-transmembrane epithelial antigen of the prostate (STEAP) family proteins.

    Science.gov (United States)

    Kleven, Mark D; Dlakić, Mensur; Lawrence, C Martin

    2015-09-11

    Six-transmembrane epithelial antigen of the prostate 3 (Steap3) is the major ferric reductase in developing erythrocytes. Steap family proteins are defined by a shared transmembrane domain that in Steap3 has been shown to function as a transmembrane electron shuttle, moving cytoplasmic electrons derived from NADPH across the lipid bilayer to the extracellular face where they are used to reduce Fe(3+) to Fe(2+) and potentially Cu(2+) to Cu(1+). Although the cytoplasmic N-terminal oxidoreductase domain of Steap3 and Steap4 are relatively well characterized, little work has been done to characterize the transmembrane domain of any member of the Steap family. Here we identify high affinity FAD and iron biding sites and characterize a single b-type heme binding site in the Steap3 transmembrane domain. Furthermore, we show that Steap3 is functional as a homodimer and that it utilizes an intrasubunit electron transfer pathway through the single heme moiety rather than an intersubunit electron pathway through a potential domain-swapped dimer. Importantly, the sequence motifs in the transmembrane domain that are associated with the FAD and metal binding sites are not only present in Steap2 and Steap4 but also in Steap1, which lacks the N-terminal oxidoreductase domain. This strongly suggests that Steap1 harbors latent oxidoreductase activity.

  15. Family Therapy

    Science.gov (United States)

    ... may be credentialed by the American Association for Marriage and Family Therapy (AAMFT). Family therapy is often short term. ... challenging situations in a more effective way. References Marriage and family therapists: The friendly mental health professionals. American Association ...

  16. Familial hypertriglyceridemia

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000397.htm Familial hypertriglyceridemia To use the sharing features on this page, please enable JavaScript. Familial hypertriglyceridemia is a common disorder passed down through families. ...

  17. Family Meals

    Science.gov (United States)

    ... Teaching Kids to Be Smart About Social Media Family Meals KidsHealth > For Parents > Family Meals Print A ... even more important as kids get older. Making Family Meals Happen It can be a big challenge ...

  18. Family Arguments

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Life Listen Español Text Size Email Print Share Family Arguments Page Content Article Body We seem to ...

  19. Family History

    Science.gov (United States)

    Your family history includes health information about you and your close relatives. Families have many factors in common, including their genes, ... as heart disease, stroke, and cancer. Having a family member with a disease raises your risk, but ...

  20. Cooperative implementation of a high temperature acoustic sensor

    Science.gov (United States)

    Baldini, S. E.; Nowakowski, Edward; Smith, Herbert G.; Friebele, E. J.; Putnam, Martin A.; Rogowski, Robert; Melvin, Leland D.; Claus, Richard O.; Tran, Tuan; Holben, Milford S., Jr.

    1991-01-01

    The current status and results of a cooperative program aimed at the implementation of a high-temperature acoustic/strain sensor onto metallic structures are reported. The sensor systems that are to be implemented under this program will measure thermal expansion, maneuver loads, aircraft buffet, sonic fatigue, and acoustic emissions in environments that approach 1800 F. The discussion covers fiber development, fabrication of an extrinsic Fabry-Perot interferometer acoustic sensor, sensor mounting/integration, and results of an evaluation of the sensor capabilities.

  1. Odor identification sensor system; Nioi shikibetsu sensa shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Tadashi.; Suzuki, Kendo

    1999-09-01

    The development of the device human five senses substitution is being asked. In this, though the nose of the living body is imitated and it proceeds with the development, as for a sense, it is still far beyond the performance of the human nose to smell bad by the various chemical sensors and the information processing technology. It smells by using the metal oxide semiconductor ceremony sensor it has the sex that various smells is chosen, and we develop a sensor, and proceed with the realization of the questionable distinction sensor system, which used these sensors. (NEDO)

  2. Ultrasonic Sensors for High Temperature Applications

    Science.gov (United States)

    Tittmann, Bernhard; Aslan, Mustafa

    1999-05-01

    Many processes take place under conditions other than ambient, and chief among these is high temperature. Examples of high temperature industrial processes are resin transfer molding, molten metal infiltration and rheocasting of composite metals alloys. The interaction of waves with viscous fluids is an additional complication adding to an already complicated problem of operating a sensor at high temperature for extended periods of time. This report attempts to provide an insight into the current state of the art of sensor techniques for in-situ high temperature monitoring.

  3. Design and implementation of smart web sensors

    Directory of Open Access Journals (Sweden)

    Jevtić Nenad J.

    2015-01-01

    Full Text Available This paper presents the design and implementation of the smart web sensors. The paper briefly describes the concept of automatic configuration based on electronic specifications in industrial measurement and control systems as well as in distributed systems based on the OGC SWE family of standards. The model for the implementation of Plug and Play sensor in accordance with the IEEE 1451 family of standards is analyzed in detail. Special attention is paid to the network connectivity of analog sensors in accordance with IEEE 1451.4. The practical implementation of the 1451.4 compatible network processor for RTD temperature sensors and adequate software support for 1451.4 TEDS generation, are included in the paper.

  4. Windmill Co4 {Co4 (μ4 -O)} with 16 Divergent Branches Forming a Family of Metal-Organic Frameworks: Organic Metrics Control Topology, Gas Sorption, and Magnetism.

    Science.gov (United States)

    Chen, Qing; Xue, Wei; Lin, Jian-Bin; Wei, Yong-Sheng; Yin, Zheng; Zeng, Ming-Hua; Kurmoo, Mohamedally; Chen, Xiao-Ming

    2016-08-16

    A series of highly connected metal-organic frameworks (MOFs), [Co8 (O)(OH)4 (H2 O)4 (ina)8 ](NO3 )2 ⋅2 C2 H5 OH⋅4 H2 O (1), [Co8 (O)(OH)4 (H2 O)4 (pba)8 ](NO3 )2 ⋅8 C2 H5 OH⋅28 H2 O (2), and [Co8 (O)(OH)4 (H2 O)4 (pbba)8 ](NO3 )2 ⋅guest (3), in which ina=isonicotinate, pba=4-pyridylbenzoate, and pbba=4-(pyridine-4-yl)phenylbenzoate, is reported. These MOFs contain a new secondary building unit (SBU), with a square Co4 (μ4 -O) central unit having the rare μ4 -O(2-) motif, which is decorated by the other four peripheral cobalt atoms through μ3 -OH in a windmill-like shape. This SBU holds 16 divergent connecting organic ligands, pyridyl-carboxylates, to form three different frameworks. The high porosity of desolvated 2 is shown by the efficient gas absorption of N2 , CO2 , CH4 , and H2 . In addition, 1 and 2 exhibit unusual canted antiferromagnetic behavior with spin-glass-like relaxation, with blocking temperatures that are fairly high, 20 K (1) and 10 K (2), for cobalt materials. The relationship between the metal clusters and linkers has been studied, in which the size and rotational degrees of freedom of the ligands are found to control the topology, gas sorption, and magnetic properties.

  5. Reducing the capacitance of piezoelectric film sensors

    Energy Technology Data Exchange (ETDEWEB)

    González, Martín G., E-mail: mggonza@fi.uba.ar [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires (Argentina); Sorichetti, Patricio A.; Santiago, Guillermo D. [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2016-04-15

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N{sup 2}, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  6. Capacitive tool standoff sensor for dismantlement tasks

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, D.J.; Weber, T.M. [Sandia National Labs., Albuquerque, NM (United States); Liu, J.C. [Univ. of Illinois, Urbana, IL (United States)

    1996-12-31

    A capacitive sensing technology has been applied to develop a Standoff Sensor System for control of robotically deployed tools utilized in Decontamination and Dismantlement (D and D) activities. The system combines four individual sensor elements to provide non-contact, multiple degree-of-freedom control of tools at distances up to five inches from a surface. The Standoff Sensor has been successfully integrated to a metal cutting router and a pyrometer, and utilized for real-time control of each of these tools. Experiments demonstrate that the system can locate stationary surfaces with a repeatability of 0.034 millimeters.

  7. Graphene as a sensor material

    OpenAIRE

    Kochmann, Sven

    2014-01-01

    This thesis is concerned with the synthesis, characterization and utilization of (reduced) graphene oxide (chemically derived graphene) for sensor applications. The first chapter describes the history of graphene, classifies all members of the graphene family by convenient definitions, and outlines the motivation and aim of this work. Chapter 2 discusses several proof of principle and analytical concepts based on different graphene materials. These concepts point out the chemically deriv...

  8. Determination of Nd3+ Ions in Solution Samples by a Coated Wire Ion-Selective Sensor

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2012-01-01

    Full Text Available A new coated wire electrode (CWE using 5-(methylsulfanyl-3-phenyl-1H-1,2,4-triazole (MPT as an ionophore has been developed as a neodymium ion-selective sensor. The sensor exhibits Nernstian response for the Nd3+ ions in the concentration range of 1.0×10−6-1.0×10−2 M with detection limit of 3.7×10−7 M. It displays a Nernstian slope of 20.2±0.2 mV/decade in the pH range of 2.7–8.1. The proposed sensor also exhibits a fast response time of ∼5 s. The sensor revealed high selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions, including members of the lanthanide family other than Nd3+. The electrode was used as an indicator electrode in the potentiometric titration of Nd(III ions with EDTA. The electrode was also employed for the determination of the Nd3+ ions concentration in water solution samples.

  9. Neodymium(III PVC Membrane Electrodchemical Sensor Based on N-benzoylethylidene-2-aminobenzylamine

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2012-01-01

    Full Text Available The N-benzoylethylidene-2-aminobenzylamine (BEA was used as a suitable ionophore in construction of neodymium ion selective electrode. The electrode with composition of 30% PVC, 58% solvent mediator (NB, 2% ionophore (BEA and 10% anionic additive (OA shows the best potentiometric response characteristics. The Nd3+ sensor exhibits a Nernstian slope of 21.2 ± 0.2 mV decade-1 over the concentration range of 1.0 × 10-6 to 1.0 × 10-2 mol L-1, and a detection limit of 6.3 × 10-7 mol L-1 of Nd3+ ions. The potentiometric response of the sensor is independent of the solution pH in the range of 2.4–8.5. It has a very short response time, in the whole concentration range (~7 s, and can be used for at least eight weeks. The proposed sensor revealed high selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions, including members of the lanthanide family other than Nd3+. The Nd3+ sensor was successfully applied as an indicator electrode in the potentiometric titration of Nd3+ ions with EDTA. The electrode was also employed for the determination of the fluoride ion in two mouth wash preparations.

  10. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  11. 基于双面金属包覆光波导的传感器温度特性研究及实验验证∗%Analysis and exp erimental investigation of the temp erature prop erty of sensors based on symmetrical metal-cladding optical waveguide

    Institute of Scientific and Technical Information of China (English)

    罗雪雪; 陈家璧; 胡金兵; 梁斌明; 蒋强

    2015-01-01

    Symmetrical metal-cladding waveguide (SMCW) is a kind of new waveguide construction, and it consists of a planar glass slab sandwiched in two metal films with different thicknesses. The metal in this structure is usually a noble metal, such as Au, Ag and Cu etc. One of the characteristics of the glass is the sub-millimeter thickness, which is useful for exciting the ultrahigh order mode. Since the SMCW structure was proposed, it has received much attention from the researchers for its excellent characteristics of free-space coupling technique and ultrahigh order mode excitation. This free-space coupling technology has a higher sensitivity compared with the end-face coupling, prism coupling and grating coupling techniques. The ultrahigh order mode is very sensitive to the incident light wavelength, the thickness of guiding layer and the refractive index, but not sensitive to polarization. Based on the thermal-optical effect and thermal expansion effect of metal film and guiding layer materials, we research the temperature property of the SMCW structure. Researching methods include simulation analysis and experimental demonstration. First, we calculate the relation of the thickness and dielectric property of metal films, and the thickness and refractive index of the guiding layer with the temperature. Results show that these four factors are nearly proportional to the temperature difference. Then, we simulate the relationship of the reflectivity of the SMCW structure with those four factors by means of single-factor investigation under spectral and angular interrogation mode of operation, and find that the temperature-dependence of thickness of the guiding layer makes the chief contribution to the waveguide function of SMCW. Meanwhile, we analyze the sensitivity of the sensors based on SMCW structure, and the result shows that the sensitivity of this kind of sensor can be up to 21.89 pm/K (spectral mode) and 1.449 × 10−3 rad/K (angular mode). Finally, we

  12. Metallic magnetic bolometers for particle detection

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Enss, C.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M. (Brown Univ., Providence, RI (United States))

    1993-11-01

    The magnetization of localized spins in metals is discussed as a sensor for the low temperature calorimetric detection of particles. The magnetization of localized paramagnetic ions in metals can be used as a very sensitive sensor for the calorimetric detection of particles at low temperatures. The strong coupling of the localized spins to the conduction electrons results in very fast thermal equilibration between the two systems. Even though the concentration of spins must be kept small in metals to avoid spin-spin coupling by indirect exchange, the metallic magnetic bolometer can achieve very high sensitivities. In general, the sensitivity increases very rapidly with decreasing temperature.

  13. Simultaneous Measurement of the Strain and Temperature Using the Metallized Optical Fiber Grating Sensor%基于金属化光纤光栅的温度应变同时测量

    Institute of Scientific and Technical Information of China (English)

    冯艳; 李玉龙; 徐敏; 王伟涛

    2012-01-01

    光纤布拉格光栅(FBG)传感器具有温度和应变交叉敏感特性,可用于温度和应变的同时测量.金属镀层可对FBG产生温度增敏的作用.针对室温化学固化型义齿基托树脂在凝固过程中同时产生收缩应变和放热现象,本文将化学镀镍FBG与裸FBG相结合,设计出一种新颖的测量结构,实现了温度和应变双参数同时测量.通过深入分析,得到室温固化型义齿基托树脂在凝固后21 min左右放热最大,其最大温度变化△T达到12.8℃,收缩的应变△ε为2.61με.该研究成果可为口腔修复治疗提供理论基础.%The optical fiber Bragg grating sensor is sensitive to both strain and temperature. The metallized FBGs have much higher temperature sensitivity than the bare FBGs. The contraction and exothermic reaction take place during the consolidation process of the denture resin base materials. A measurement system manufactured using a bare FBG and a nickel coated FBG was designed to simultaneously measure the temperature and strain change of the room temperature-curing process of the denture base resin in this paper. The experimental data show the maximum temperature change occurred at the twenty-first minute during the room temperature-curing process of the denture base resin. The maximum temperature change( ΔT)and the strain( Δε)are 12.8 ℃ and 2. 61 με,respectively. The results of this study may be useful to the clinical treatments.

  14. Microcantilever sensor

    Science.gov (United States)

    Thundat, T.G.; Wachter, E.A.

    1998-02-17

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere. 16 figs.

  15. 用于水污染重金属检测的微电极阵列传感器芯片%Microelectrode array sensor chip for detection of heavy metals in water pollution

    Institute of Scientific and Technical Information of China (English)

    赵会欣; 万浩; 蔡巍; 哈达; 王平

    2013-01-01

    基于溶出伏安法,采用一种新型的汞膜金微电极阵列传感器芯片,实现了水污染痕量重金属离子Zn2+、Cd2+、pb2+和Cu2+的同时检测.在K3[Fe(CN)6]溶液中对微电极阵列传感器进行循环伏安扫描,分析其电化学特性及实际表面积,采用电化学阻抗谱法检验微电极阵列传感器表面汞膜沉积的程度.镀汞后的微电极阵列传感器采用差分脉冲阳极溶出伏安法,同时检测样本溶液中的重金属元素:Zn2+、Cd2+、pb2+和Cu2+,得到的Cd2+、pb2+和Cu2+的标准工作曲线线性度良好,检测下限分别为0.1、0.5和0.3 μg/L,但Zn2+的标准工作曲线线性度较差,这主要是由测试基线的漂移及不准确的加标造成的.%Based on stripping voltammetry,a novel gold microelectrode array (MEA) sensor chip with mercury film plated was used for simultaneously detection of trace heavy metal ions Zn2+,Cd2+,Pb2+ and Cu2+ in water pollution.The electrochemical behavior and the actual surface area of the MEA were investigated by cyclic voltammetry in K3[Fe(CN)6] solution.Electrochemical impedance spectrum (EIS) was utilized to examine the mercury deposition extent on the surface of the MEA.Mercury film plated MEA was then applied to simultaneously detect four heavy metal elements Zn2+,Cd2+,Pb2+ and Cu2+ in sample solutions using differential pulse anodic stripping voltammetry,where good linearities of the standard working curves were obtained for Cd2+,Pb2+ and Cu2+ with the detection limits of 0.1,0.5 and 0.3 μ,g/L,separately.But the linearity of the standard working curve was poor for Zn2+,which was mainly caused by the excursion of the testing baseline and the inaccurate addition.

  16. Crystalline mesoporous metal oxide

    Institute of Scientific and Technical Information of China (English)

    Wenbo Yue; Wuzong Zhou

    2008-01-01

    Since the discovery of many types of mesoporous silicas, such as SBA-15, KIT-6, FDU-12 and SBA-16, porous crystalline transition metal oxides, such as Cr2O3, Co3O4, In2O3, NiO, CeO2, WO3, Fe2O3 and MnO2, have been synthesized using the mesoporous silicas as hard templates. Several synthetic methods have been developed. These new porous materials have high potential applications in catalysis, Li-ion rechargeable batteries and gas sensors. This article gives a brief review of the research of porous crystals of metal oxides in the last four years.

  17. Family Privilege

    Science.gov (United States)

    Seita, John R.

    2014-01-01

    Family privilege is defined as "strengths and supports gained through primary caring relationships." A generation ago, the typical family included two parents and a bevy of kids living under one roof. Now, every variation of blended caregiving qualifies as family. But over the long arc of human history, a real family was a…

  18. Family Privilege

    Science.gov (United States)

    Seita, John R.

    2014-01-01

    Family privilege is defined as "strengths and supports gained through primary caring relationships." A generation ago, the typical family included two parents and a bevy of kids living under one roof. Now, every variation of blended caregiving qualifies as family. But over the long arc of human history, a real family was a…

  19. Sensors for Entertainment.

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-07-15

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  20. DNA and RNA sensor

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; LIN; Lin; ZHAO; Hong; JIANG; Long

    2005-01-01

    This review summarizes recent advances in DNA sensor. Major areas of DNA sensor covered in this review include immobilization methods of DNA, general techniques of DNA detection and application of nanoparticles in DNA sensor.

  1. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  2. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  3. Measuring air pressure with a polymeric gas sensor

    Directory of Open Access Journals (Sweden)

    Juliana R. Cordeiro

    2010-01-01

    Full Text Available In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene (PHBPE film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.

  4. Organic Superconductor, Made without Metals.

    Science.gov (United States)

    Science News, 1980

    1980-01-01

    The discovery of a superconducting organic compound is reported. The compound, (TMTSF)-2, has no metal in its composition, and the author believes that it is the precursor of a family of superconducting organics. (Author/SA)

  5. Micro coriolis mass flow sensor with integrated capacitive readout

    NARCIS (Netherlands)

    Haneveld, J.; Lammerink, T.S.J.; Boer, de M.J.; Wiegerink, R.J.

    2009-01-01

    We have realized a micromachined micro Coriolis mass flow sensor with integrated capacitive readout to detect the extremely small Coriolis vibration of the sensor tube. A special comb-like detection electrode design eliminates the need for multiple metal layers and sacrificial layer etching methods.

  6. Advances in wireless sensors and sensor networks

    CERN Document Server

    Mukhopadhyay, Subhas Chandra; Leung, Henry

    2010-01-01

    Written by experts, this book illustrates and collects recent advances in wireless sensors and sensor networks. It provides clever support for scientists, students and researchers in order to stimulate exchange and discussions for further developments.

  7. Wireless sensor platform

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  8. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  9. Flexible heartbeat sensor for wearable device.

    Science.gov (United States)

    Kwak, Yeon Hwa; Kim, Wonhyo; Park, Kwang Bum; Kim, Kunnyun; Seo, Sungkyu

    2017-03-08

    We demonstrate a flexible strain-gauge sensor and its use in a wearable application for heart rate detection. This polymer-based strain-gauge sensor was fabricated using a double-sided fabrication method with polymer and metal, i.e., polyimide and nickel-chrome. The fabrication process for this strain-gauge sensor is compatible with the conventional flexible printed circuit board (FPCB) processes facilitating its commercialization. The fabricated sensor showed a linear relation for an applied normal force of more than 930 kPa, with a minimum detectable force of 6.25Pa. This sensor can also linearly detect a bending radius from 5mm to 100mm. It is a thin, flexible, compact, and inexpensive (for mass production) heart rate detection sensor that is highly sensitive compared to the established optical photoplethysmography (PPG) sensors. It can detect not only the timing of heart pulsation, but also the amplitude or shape of the pulse signal. The proposed strain-gauge sensor can be applicable to various applications for smart devices requiring heartbeat detection.

  10. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review

    OpenAIRE

    Jin-Huai Liu; Ling-Tao Kong; Shao-Bo Liu; Fan-Li Meng; Jin-Yun Liu; Zhen Jin; Yu-Feng Sun

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have b...

  11. Metal Detector By Using PIC Microcontroller Interfacing With PC

    Directory of Open Access Journals (Sweden)

    Yin Min Theint

    2015-06-01

    Full Text Available Abstract This system proposes metal detector by using PIC microcontroller interfacing with PC. The system uses PIC microcontroller as the main controller whether the detected metal is ferrous metal or non-ferrous metal. Among various types of metal sensors and various types of metal detecting technologies concentric type induction coil sensor and VLF very low frequency metal detecting technology are used in this system. This system consists of two configurations Hardware configuration and Software configuration. The hardware components include induction coil sensors which senses the frequency changes of metal a PIC microcontroller personal computer PC buzzer light emitting diode LED and webcam. The software configuration includes a program controller interface. PIC MikroCprogramming language is used to implement the control system. This control system is based on the PIC 16F887 microcontroller.This system is mainly used in mining and high security places such as airport plaza shopping mall and governmental buildings.

  12. MIS-based sensors with hydrogen selectivity

    Science.gov (United States)

    Li; ,Dongmei; Medlin, J. William; McDaniel, Anthony H.; Bastasz, Robert J.

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  13. Lifetime of the internal reference oxygen sensor

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2013-01-01

    The internal reference oxygen sensor (IROS) based on a binary mixture of metal and its stoichiometric oxide is subject to leaks that result in consumption of the binary mixture. An IROS loses the functionality when the binary mixture is exhausted. Among the possible leak sources the electronic leak...

  14. Passive absolute age and temperature history sensor

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex; Vianco, Paul T.

    2015-11-10

    A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.

  15. Eddy sensors for small diameter stainless steel tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  16. Development of an acoustic sensor for a geothermal borehole televiewer

    Energy Technology Data Exchange (ETDEWEB)

    Wonn, J.W.

    1979-03-01

    The objective of this project is to upgrade acoustic sensor technology such that appropriate well logging instruments can be made to operate under the hostile environment conditions anticipated in geothermal resource exploration and evaluation. The Borehole Televiewer (BHTV) was selected as the vehicle for this sensor improvement work, primarily because of its demonstrated ability to detect and characterize fractures under sub-geothermal conditions. The work done toward providing an improved sensor for the televiewer is described. An experimental sensor concept was devised, incorporating a thin metal acoustic window, an improved, high-temperature internal coupling fluid, and thermally resistant sensor internals. During an autoclave test, it was successfully demonstrated that the resulting experimental sensor design concept provides the basic target detection and characterization functions required of a fracture mapping, Borehole Televiewer under simulated geothermal conditions. In particular, the experimental sensor remained operational at 275/sup 0/C and 7000 psi.

  17. Development of an acoustic sensor for a geothermal Borehole Televiewer

    Energy Technology Data Exchange (ETDEWEB)

    Wonn, J.W.

    1979-03-01

    The objective of this project is to upgrade acoustic sensor technology such that appropriate well logging instruments can be made to operate under the hostile environment conditions anticipated in geothermal resource exploration and evaluation. The Borehole Televiewer (BHTV) was selected as the vehicle for this sensor improvement work, primarily because of its demonstrated ability to detect and characterize fractures under sub-geothermal conditions. The work done toward providing an improved sensor for the televiewer is described. An experimental sensor concept was devised, incorporating a thin metal acoustic window, an improved, high-temperature internal coupling fluid, and thermally resistant sensor internals. During an autoclave test, it was successfully demonstrated that the resulting experimental sensor design concept provides the basic target detection and characterization functions required of a fracture mapping, Borehole Televiewer under simulated geothermal conditions. In particular, the experimental sensor remained operational at 275/sup 0/C and 7000 psi.

  18. Metal oxide nanostructures as gas sensing devices

    CERN Document Server

    Eranna, G

    2011-01-01

    Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience. The book first covers current gas sensing tools and discusses the necessity for miniaturized sensors. It then focuses on the materials, devices, and techniques used for gas sensing applications, such as resistance and capacitance variations. The author addresses th

  19. Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review

    Science.gov (United States)

    Mirzaei, A.; Janghorban, K.; Hashemi, B.; Neri, G.

    2015-09-01

    With an ever-increasing number of applications in many advanced fields, gas sensors are becoming indispensable devices in our daily life. Among different types of gas sensors, conductometric metal oxide semiconductor (MOS) gas sensors are found to be the most appealing for advanced applications in the automotive, biomedical, environmental, and safety sectors because of the their high sensitivity, reduced size, and low cost. To improve their sensing characteristics, new metal oxide-based nanostructures have thus been proposed in recent years as sensing materials. In this review, we extensively review gas-sensing properties of core@ shell nanocomposites in which metals as the core and metal oxides as the shell structure, both of nanometer sizes, are assembled into a single metal@metal oxide core-shell. These nanostructures not only combine the properties of both noble metals and metal oxides, but also bring unique synergetic functions in comparison with single-component materials. Up-dated achievements in the synthesis and characterization of metal@metal oxide core-shell nanostructures as well as their use in MOS sensors are here reported with the main objective of providing an overview about their gas-sensing properties.

  20. Wireless ferroelectric resonating sensor.

    Science.gov (United States)

    Viikari, Ville; Seppa, Heikki; Mattila, Tomi; Alastalo, Ari

    2010-04-01

    This paper presents a passive wireless resonating sensor that is based on a ferroelectric varactor. The sensor replies with its data at an intermodulation frequency when a reader device illuminates it at 2 closely located frequencies. The paper derives a theoretical equation for the response of such a sensor, verifies the theory by simulations, and demonstrates a temperature sensor based on a ferroelectric varactor.

  1. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  2. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul V.; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  3. Familial gigantism

    NARCIS (Netherlands)

    W.W. de Herder (Wouter)

    2012-01-01

    textabstractFamilial GH-secreting tumors are seen in association with three separate hereditary clinical syndromes: multiple endocrine neoplasia type 1, Carney complex, and familial isolated pituitary adenomas.

  4. Familial gigantism

    Directory of Open Access Journals (Sweden)

    Wouter W. de Herder

    2012-01-01

    Full Text Available Familial GH-secreting tumors are seen in association with three separate hereditary clinical syndromes: multiple endocrine neoplasia type 1, Carney complex, and familial isolated pituitary adenomas.

  5. Familial dermographism.

    Science.gov (United States)

    Jedele, K B; Michels, V V

    1991-05-01

    Urticaria in response to various physical stimuli has been reported in sporadic and familial patterns. The most common of these physical urticarias, dermographism, is a localized urticarial response to stroking or scratching of the skin and has not been reported previously to be familial. A four-generation family with dermographism, probably inherited as an autosomal dominant trait, is presented along with a discussion of sporadic dermographism and other types of familial physical urticarias.

  6. Zeolites for Sensors for Reducing Gases

    Institute of Scientific and Technical Information of China (English)

    Ralf Moos; Kathy Sahner; Gunter Hagen; Andreas Dubbe

    2006-01-01

    Due to their unique properties, zeolites can be used either as passive filters to greatly enhance selectivity or as very selective sensor materials. Some well known principles are briefly reviewed and the following three novel application modes are discussed. Zeolites can be applied as cover layers for specificity improvement of p-type semiconducting hydrocarbon sensors. Furthermore, a novel combination of metal oxides with zeolites leading to a very selective hydrocarbon sensor is described. In this application, it is shown that the interface chromium oxide / zeolite plays an essential role. And, in a very recent approach, Na+ ion conducting zeolites are applied as an auxiliary phase in a potentiometric gas sensor. The cell voltage shows a Nernstian response, which is selective towards propane. Here, the proposed mechanism assumes Na+ activity changes in the zeolite pores due to hydrocarbon sorption.

  7. PERANCANGAN DAN IMPLEMENTASI SENSOR PARKIR PADA MOBIL MENGGUNAKAN SENSOR ULTRASONIK

    Directory of Open Access Journals (Sweden)

    Rudy Susanto

    2007-05-01

    Full Text Available A car driver often had trouble to park his car a narrow location, caused by a narrow parking area on the wane.Also, cars had often crashed the electric pillar or scratched the car on the wall while retreat. The problem was the driverdidn’t know condition behind vehicle because of limited of view. The research aimed to make a system that can easily helpdriver in parking his car, by using of ultrasonic parking sensor. The method used in sensor scheme parks is ultrasonicisensor to detect and measure car and balk distance by utilising of 851 family microcontroller as the main system. Theresult indicates that ultrasonic censor effective deep measurement was on distance of 2 cm – 30 m. It is that enoughultrasonic censor is effective to be implemented on censor parks.

  8. Liquid Bismuth Propellant Flow Sensor

    Science.gov (United States)

    Polzin, Kurt A.; Stanojev, B. J.; Korman, V.

    2007-01-01

    Quantifying the propellant mass flow rate in liquid bismuth-fed electric propulsion systems has two challenging facets. First, the flow sensors must be capable of providing a resolvable measurement at propellant mass flow rates on the order of 10 mg/see with and uncertainty of less that 5%. The second challenge has to do with the fact that the materials from which the flow sensors are fabricated must be capable of resisting any of the corrosive effects associated with the high-temperature propellant. The measurement itself is necessary in order to properly assess the performance (thrust efficiency, Isp) of thruster systems in the laboratory environment. The hotspot sensor[I] has been designed to provide the bismuth propellant mass flow rate measurement. In the hotspot sensor, a pulse of thermal energy (derived from a current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is "tagged" with a thermal feature that is convected downstream by the flowing liquid metal. Downstream, a temperature measurement is performed to detect a "ripple" in the local temperature associated with the passing "hotspot" in the propellant. By measuring the time between the upstream generation and downstream detection of the thermal feature, the flow speed can be calculated using a "time of flight" analysis. In addition, the system can be calibrated by measuring the accumulated mass exiting the system as a-function of time and correlating this with the time it takes the hotspot to convect through the sensor. The primary advantage of this technique is that it doesn't depend on an absolute measurement of temperature but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally generated thermal fluctuations. In this paper, we describe experiments performed using the hotspot flow sensor aimed at quantifying the resolution of the sensor technology. Propellant is expelled onto an electronic scale to

  9. Sensor sentinel computing device

    Science.gov (United States)

    Damico, Joseph P.

    2016-08-02

    Technologies pertaining to authenticating data output by sensors in an industrial environment are described herein. A sensor sentinel computing device receives time-series data from a sensor by way of a wireline connection. The sensor sentinel computing device generates a validation signal that is a function of the time-series signal. The sensor sentinel computing device then transmits the validation signal to a programmable logic controller in the industrial environment.

  10. Quantitative Ethylene Measurements with MOx Chemiresistive Sensors at Different Relative Air Humidities.

    Science.gov (United States)

    Krivec, Matic; Mc Gunnigle, Gerald; Abram, Anže; Maier, Dieter; Waldner, Roland; Gostner, Johanna M; Überall, Florian; Leitner, Raimund

    2015-11-06

    The sensitivity of two commercial metal oxide (MOx) sensors to ethylene is tested at different relative humidities. One sensor (MiCS-5914) is based on tungsten oxide, the other (MQ-3) on tin oxide. Both sensors were found to be sensitive to ethylene concentrations down to 10 ppm. Both sensors have significant response times; however, the tungsten sensor is the faster one. Sensor models are developed that predict the concentration of ethylene given the sensor output and the relative humidity. The MQ-3 sensor model achieves an accuracy of ±9.2 ppm and the MiCS-5914 sensor model predicts concentration to ±7.0 ppm. Both sensors are more accurate for concentrations below 50 ppm, achieving ±6.7 ppm (MQ-3) and 5.7 ppm (MiCS-5914).

  11. Quantitative Ethylene Measurements with MOx Chemiresistive Sensors at Different Relative Air Humidities

    Directory of Open Access Journals (Sweden)

    Matic Krivec

    2015-11-01

    Full Text Available The sensitivity of two commercial metal oxide (MOx sensors to ethylene is tested at different relative humidities. One sensor (MiCS-5914 is based on tungsten oxide, the other (MQ-3 on tin oxide. Both sensors were found to be sensitive to ethylene concentrations down to 10 ppm. Both sensors have significant response times; however, the tungsten sensor is the faster one. Sensor models are developed that predict the concentration of ethylene given the sensor output and the relative humidity. The MQ-3 sensor model achieves an accuracy of ±9.2 ppm and the MiCS-5914 sensor model predicts concentration to ±7.0 ppm. Both sensors are more accurate for concentrations below 50 ppm, achieving ±6.7 ppm (MQ-3 and 5.7 ppm (MiCS-5914.

  12. Influence of Conditions of Pd/SnO2 Nanomaterial Formation on Properties of Hydrogen Sensors

    Science.gov (United States)

    Sokovykh, E. V.; Oleksenko, L. P.; Maksymovych, N. P.; Matushko, I. P.

    2017-06-01

    Metal oxide sensors were created using nanosized tin dioxide obtained by a sol-gel method. Gas-sensitive layers of the sensors were impregnated with PdCl2 solutions of different concentrations to increase sensitivities of the proposed sensors. Influence of different temperature conditions of the sensor formation on the sensor properties was studied. It was found that decreasing duration of high-temperature sensor treatment prevents enlargement of particles of the gas-sensitive materials. It was shown that the sensors based on materials with smaller particle sizes showed higher sensor responses to 40 ppm H2. Obtained results were explained in terms of substantial influence of length of the common boundaries between the material particles of tin dioxide and palladium on the gas-sensitive properties of the sensors. The obtained sensors had possessed a fast response and recovery time and demonstrated stable characteristics during their long-term operation.

  13. Liquid metal enabled microfluidics.

    Science.gov (United States)

    Khoshmanesh, Khashayar; Tang, Shi-Yang; Zhu, Jiu Yang; Schaefer, Samira; Mitchell, Arnan; Kalantar-Zadeh, Kourosh; Dickey, Michael D

    2017-03-14

    Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.

  14. Towards a chemiresistive sensor-integrated electronic nose: a review.

    Science.gov (United States)

    Chiu, Shih-Wen; Tang, Kea-Tiong

    2013-10-22

    Electronic noses have potential applications in daily life, but are restricted by their bulky size and high price. This review focuses on the use of chemiresistive gas sensors, metal-oxide semiconductor gas sensors and conductive polymer gas sensors in an electronic nose for system integration to reduce size and cost. The review covers the system design considerations and the complementary metal-oxide-semiconductor integrated technology for a chemiresistive gas sensor electronic nose, including the integrated sensor array, its readout interface, and pattern recognition hardware. In addition, the state-of-the-art technology integrated in the electronic nose is also presented, such as the sensing front-end chip, electronic nose signal processing chip, and the electronic nose system-on-chip.

  15. Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2013-10-01

    Full Text Available Electronic noses have potential applications in daily life, but are restricted by their bulky size and high price. This review focuses on the use of chemiresistive gas sensors, metal-oxide semiconductor gas sensors and conductive polymer gas sensors in an electronic nose for system integration to reduce size and cost. The review covers the system design considerations and the complementary metal-oxide-semiconductor integrated technology for a chemiresistive gas sensor electronic nose, including the integrated sensor array, its readout interface, and pattern recognition hardware. In addition, the state-of-the-art technology integrated in the electronic nose is also presented, such as the sensing front-end chip, electronic nose signal processing chip, and the electronic nose system-on-chip.

  16. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  17. Sensors and devices containing ultra-small nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhili

    2017-04-11

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  18. Sensors for environmental monitoring and long-term environmental stewardship.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David Russell; Robinson, Alex Lockwood; Ho, Clifford Kuofei; Davis, Mary Jo (Science Applications International Corporation, Albuquerque, NM)

    2004-09-01

    This report surveys the needs associated with environmental monitoring and long-term environmental stewardship. Emerging sensor technologies are reviewed to identify compatible technologies for various environmental monitoring applications. The contaminants that are considered in this report are grouped into the following categories: (1) metals, (2) radioisotopes, (3) volatile organic compounds, and (4) biological contaminants. Regulatory drivers are evaluated for different applications (e.g., drinking water, storm water, pretreatment, and air emissions), and sensor requirements are derived from these regulatory metrics. Sensor capabilities are then summarized according to contaminant type, and the applicability of the different sensors to various environmental monitoring applications is discussed.

  19. Processing-structure-property relationships of carbon nanotube and nanoplatelet enabled piezoresistive sensors

    Science.gov (United States)

    Luo, Sida

    range hopping (3D-VRH) model. More importantly, a strong correlation between the length of SWCNTs and the VRH parameter T0, indicating the degree of disorder of the electronic system, has been identified. With the structure dependent transport mechanism study, a very interesting topic - how T0 changes when SWCNT thin film is under a mechanical deformation, would be helpful for better understanding the piezoresistive mechanism of SWCNT thin film sensors. As demonstrated in transport mechanism study, SWCNT thin film exhibits a negative temperature coefficient (NTC) of resistance. In contrast, another family of carbon nanomaterials, graphite nanoplatelets (GNPs), shows positive temperature coefficient (PTC) of resistance, attributed to their metallic nature. Therefore, upon a wise selection of mass ratio of SWCNTs to GNPs for fabrication of hybrid SWCNT/GNP thin film piezoresistive sensors, a near zero temperature coefficients of resistance in a broad temperature range has been achieved. This unique self-temperature compensation feature along with the high sensitivity of SWCNT/GNP hybrid sensors provides them a vantage for readily and accurately measuring the strain/stress levels in different conditions. With the unique features of SWCNT/GNP hybrid thin film sensors, my future work will focus on application exploration on SWCNT/GNP thin film sensor based devices. For example, we have demonstrated that it is potential for man-machine interaction and body monitoring when coating the hybrid sensor on highly stretchable nitrile glove. The structure health monitoring (SHM) of composite materials could also be realized by coating the thin film sensor on a glass fiber surface and then embedding the fiber sensor in composite structure.

  20. Fiberoptic metal detector capable of profile detection

    Science.gov (United States)

    Hua, Wei-Shu; Hooks, Joshua R.; Erwin, Nicholas A.; Wu, Wen-Jong; Wang, Wei-Chih

    2011-04-01

    The purpose of this paper is to develop a novel ferromagnetic polymeric metal detector system by using a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing device. This ferromagnetic polymeric metal detector system is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is made possible by disrupting the magnetic flux density present on the magnetostrictive sensor. This paper discusses the magnetic properties of the ferromagnetic polymers. In addition, the preliminary results of successful sensing of different geometrical metal shapes will be discussed.

  1. Fiberoptic metal detector capable of profile detection.

    Science.gov (United States)

    Hua, Wei-Shu; Hooks, Joshua R; Erwin, Nicholas A; Wu, Wen-Jong; Wang, Wei-Chih

    2011-03-31

    The purpose of this paper is to develop a novel ferromagnetic polymeric metal detector system by using a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing device. This ferromagnetic polymeric metal detector system is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is made possible by disrupting the magnetic flux density present on the magnetostrictive sensor. This paper discusses the magnetic properties of the ferromagnetic polymers. In addition, the preliminary results of successful sensing of different geometrical metal shapes will be discussed.

  2. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  3. Improving baseline drift in fluxgate magnetometers caused by foundation movements, using band suspended fluxgate sensors

    Science.gov (United States)

    Rasmussen, O.; Lauridsen, E. Kring

    A fluxgate magnetometer sensor suspended by a metal band as a pendulum was tested at the Danish Meteorological Institute's observatory, Brorfelde from January to July 1987. The outcome was promising and an elaborate sensor assembly consisting of a triaxial system with sensors fixed on a marble cube suspended by two orthogonal bands working as a Cardan's suspension has been recording during some months. The sensors used are nearly temperature independent owing to compensation coils wound on quartz tubes.

  4. NEMS/CMOS sensor for monitoring deposition rates in stencil lithography

    OpenAIRE

    Sansa, Marc; Arcamone, Julien; Verd, Jaume; Uranga, Arantxa; Abadal, Gabriel; Núria, Barniol; Savu, Veronica; van den Boogaart, Marc; Brugger, Jürgen; Perez-Murano, Francesc

    2009-01-01

    A nanoelectromechanical mass sensor is used to characterize material deposition rates in stencil lithography. The material flux through micron size apertures is mapped with high spatial (below 1 μm) and deposition rate (below 10 pm/s) resolutions by displacing the stencil apertures over the sensor. The sensor is based on a resonating metallic beam (with submicron size width and thickness) monolithically integrated with a CMOS circuit, resulting in a CMOS/NEMS self-oscillator. The sensor is us...

  5. Best Frequency for Temperature Modulation of Tin Oxide Gas Sensor for Chemical Vapor Identification

    OpenAIRE

    R Chutia; Bhuyan, M.

    2014-01-01

    In this paper, we describe a method of optimum temperature modulation of metal oxide semiconductor (MOS) based gas sensor, operated in dynamic temperature measurement for identification of gas. The volatile organic compound (VOC) sample space consists of fourteen laboratory chemicals sampled at various concentration. We have used eleven number of gas sensors, manufactured by Figaro sensors, Japan. The heater of the sensors were modulated with sawtooth heating waveform of different frequency. ...

  6. Sensors an introductory course

    CERN Document Server

    Kalantar-zadeh, Kourosh

    2013-01-01

    Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed. This book: Provides a comprehensive representation of the most common sensors and can be used as a reference in relevant fields Presents learning materials in a concise and easy to understand manner Includes examples of how sensors are incorporated in real life measurements Contains detailed figures and schematics to assist in understanding the sensor performance Sensors: An Introductory Course is ideal for university stu...

  7. Smart Sensor Systems

    Science.gov (United States)

    Hunter, G. W.; Stetter, J. R.; Hesketh, P. J.; Liu, C. C.

    Sensors and sensor systems are vital to our awareness of our surroundings and provide safety, security, and surveillance, as well as enable monitoring of our health and environment. A transformative advance in the field of sensor technology has been the development of "Smart Sensor Systems". The definition of a Smart Sensor may vary, but typically at a minimum a Smart Sensor is the combination of a sensing element with processing capabilities provided by a microprocessor. That is, Smart Sensors are basic sensing elements with embedded intelligence. The sensor signal is fed to the microprocessor, which processes the data and provides an informative output to an external user. A more expansive view of a Smart Sensor System, which is used in this article, is illustrated in Fig. 19.1: a complete self-contained sensor system that includes the capabilities for logging, processing with a model of sensor response and other data, self-contained power, and an ability to transmit or display informative data to an outside user. The fundamental idea of a smart sensor is that the integration of silicon microprocessors with sensor technology cannot only provide interpretive power and customized outputs, but also significantly improve sensor system performance and capabilities.

  8. Ubiquitous Sensor Network for Chemical Sensors

    Institute of Scientific and Technical Information of China (English)

    Wan-Young Chung; Risto Myllylae

    2006-01-01

    Wireless sensor networks have been identified as one of the most important technologies for the 21st century. Recent advances in micro sensor fabrication technology and wireless communication technology enable the practical deployment of large-scale, low-power, inexpensive sensor networks. Such an approach offers an advantage over traditional sensing methods in many ways: large-scale, dense deployment not only extends spatial coverage and achieves higher resolution, but also increases the system's fault-tolerance and robustness. Moreover, the ad-hoc nature of wireless sensor networks makes them even more attractive for military and other risk-associated applications, such as environmental observation and habitat monitoring.

  9. Monitoring metal-fill in a lost foam casting process.

    Science.gov (United States)

    Abdelrahman, Mohamed; Arulanantham, Jeanison Pradeep; Dinwiddie, Ralph; Walford, Graham; Vondra, Fred

    2006-10-01

    The lost foam casting (LFC) process is emerging as a reliable casting method. The metal-fill profile in LFC plays an important role among several factors that affect casting quality. The metal-fill profile is in turn affected by several factors. Several casting defects may result due to an improper metal-fill process. Hence, it becomes essential to characterize and control, if possible, the metal-fill process in LFC. This research presents instrumentation and a technique to monitor and characterize the metal-fill process. The characterization included the determination of the position of the metal front and the profile in which the metal fills up the foam pattern. The instrumentation included capacitive sensors. Each sensor is comprised of two electrodes whose capacitive coupling changes as the metal fills the foam pattern. Foundry tests were conducted to obtain the sensors' responses to the metal fill. Two such sensors were used in the foundry tests. Data representing the responses of these sensors during the metal-fill process were collected using a data acquisition system. A number of finite element electrostatic simulations were carried out to study the metal-fill process under conditions similar to those experienced in foundry tests. An artificial neural network was trained using the simulation data as inputs and the corresponding metal-fill profiles as outputs. The neural network was then used to infer the profile of the metal-fill during foundry tests. The results were verified by comparing the metal-fill profile inferred from the neural network to the actual metal-fill profile captured by an infrared camera used during the foundry tests. The match up between the inferred profiles and the infrared camera measurements was satisfactory, indicating that the developed technique provides a reliable and cost effective method to monitor the metal-fill profile in LFC.

  10. Advances in intracellular DNA sensors of PYHIN family and mechanisms of viral evasion of innate immune responses%DNA 识别受体 PYHIN 家族及相关病毒免疫逃逸机制的研究

    Institute of Scientific and Technical Information of China (English)

    魏巍; 汪速飞; 倪明; 余冰

    2016-01-01

    宿主细胞内的DNA识别受体可识别病毒核酸分子并激活细胞天然免疫反应,从而产生抗病毒效应;同时,病毒也进化出相应机制来逃避或抑制这种免疫反应。本文总结了宿主细胞内 DNA识别受体PYHIN家族识别病毒核酸并激活细胞天然免疫反应的特点和分子机制,并讨论了病毒逃避宿主天然免疫应答的方式。%The intracellular DNA sensors in host cells recognize viral nucleic acid and activate the innate immunity , then resulting in antiviral effects . However , the viral pathogens have also evolved with appropriate strategies to evade or suppress the innate immune responses .In this review ,the characteristics and molecular mechanisms of the immune effects of PYHIN family ,one of the DNA sensors in host cells that could recognize viral DNA and activate innate immunity are discussed .The strategies of how viruses escape from the immune surveillance are also summarized .

  11. Family Polymorphism

    DEFF Research Database (Denmark)

    Ernst, Erik

    2001-01-01

    safety and flexibility at the level of multi-object systems. We are granted the flexibility of using different families of kinds of objects, and we are guaranteed the safety of the combination. This paper highlights the inability of traditional polymorphism to handle multiple objects, and presents family...... polymorphism as a way to overcome this problem. Family polymorphism has been implemented in the programming language gbeta, a generalized version of Beta, and the source code of this implementation is available under GPL....

  12. My Family

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Everyone has a family.We live in it and feel very warm.There are three persons in my family,my mother,father and I.We live together very happily and there are many interesting stories about my family. My father is a hard-working man.He works as a doctor.He always tries his best to help every,patient and make patients comfortable.But sonetimes he works so hard

  13. Family Polymorphism

    DEFF Research Database (Denmark)

    Ernst, Erik

    2001-01-01

    safety and flexibility at the level of multi-object systems. We are granted the flexibility of using different families of kinds of objects, and we are guaranteed the safety of the combination. This paper highlights the inability of traditional polymorphism to handle multiple objects, and presents family...... polymorphism as a way to overcome this problem. Family polymorphism has been implemented in the programming language gbeta, a generalized version of Beta, and the source code of this implementation is available under GPL....

  14. Family literacy

    DEFF Research Database (Denmark)

    Sehested, Caroline

    2012-01-01

    I Projekt familielæsning, der er et samarbejde mellem Nationalt Videncenter for Læsning og Hillerød Bibliotek, arbejder vi med at få kontakt til de familier, som biblioteket ellers aldrig ser som brugere og dermed også de børn, der vokser op i familier, for hvem bøger og oplæsningssituationer ikke...... er en selvfølgelig del af barndommen. Det, vi vil undersøge og ønsker at være med til at udvikle hos disse familier, er det, man kan kalde family literacy....

  15. Fluorescence Resonance Energy Transfer (FRET) sensor

    CERN Document Server

    Hussain, Syed Arshad; Chakraborty, Sekhar; Saha, Jaba; Roy, Arpan Datta; Chakraborty, Santanu; Debnath, Pintu; Bhattacharjee, D

    2014-01-01

    The applications of Fluorescence resonance energy transfer (FRET) have expanded tremendously in the last 25 years, and the technique has become a staple technique in many biological and biophysical fields. FRET can be used as spectroscopic ruler in various areas such as structural elucidation of biological molecules and their interactions, in vitro assays, in vivo monitoring in cellular research, nucleic acid analysis, signal transduction, light harvesting, and metallic nanomaterials etc. Based on the mechanism of FRET a variety of novel chemical sensors and Biosensors have been developed. This review highlights the recent applications of sensitive and selective ratiometric FRET based sensors.

  16. Large Format Transition Edge Sensor Microcalorimeter Arrays

    Science.gov (United States)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  17. Flat Type Thick Film Inductive Sensors

    Directory of Open Access Journals (Sweden)

    D. Marioli

    2003-01-01

    area. Moreover, two sensors have been tested in the laboratory using the single layer as a distance sensor and the multi-layer as a transducer for the measurement of a metallic object profile. The results of the tests show a maximum sensitivity of 14mV/µm and a resolution of 0.6 µm for the single layer, while the multi layer one reconstructs the profile with an axial resolution of a few microns and a lateral resolution better than 200 mm.

  18. Wavelength selective uncooled infrared sensor by plasmonics

    Science.gov (United States)

    Ogawa, Shinpei; Okada, Kazuya; Fukushima, Naoki; Kimata, Masafumi

    2012-01-01

    A wavelength selective uncooled infrared (IR) sensor using two-dimensional plasmonic crystals (2D PLCs) has been developed. The numerical investigation of 2D PLCs demonstrates that the wavelength of absorption can be mainly controlled by the period of the surface structure. A microelectromechanical systems-based uncooled IR sensor with 2D PLCs as the IR absorber was fabricated through a complementary metal oxide semiconductor and a micromachining technique. The selective enhancement of responsivity was observed at the wavelength that coincided with the period of the 2D-PLC absorber.

  19. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    Science.gov (United States)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  20. A carbon nanotube based ammonia sensor on cotton textile

    Science.gov (United States)

    Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.

    2013-05-01

    A single-wall carbon nanotube (CNT) based ammonia (NH3) sensor was implemented on a cotton yarn. Two types of sensors were fabricated: Au/sensing CNT/Au and conducting/sensing/conducting all CNT structures. Two perpendicular Au wires were designed to contact CNT-cotton yarn for metal-CNT sensor, whereas nanotubes were used for the electrode as well as sensing material for the all CNT sensor. The resistance shift of the CNT network upon NH3 was monitored in a chemiresistor approach. The CNT-cotton yarn sensors exhibited uniformity and repeatability. Furthermore, the sensors displayed good mechanical robustness against bending. The present approach can be utilized for low-cost smart textile applications.