WorldWideScience

Sample records for falciparum malate dehydrogenase

  1. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    Science.gov (United States)

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  2. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs

    Czech Academy of Sciences Publication Activity Database

    Lagana, G.; Bellocco, E.; Mannucci, C.; Leuzzi, U.; Tellone, E.; Kotyk, Arnošt; Galtieri, A.

    2006-01-01

    Roč. 55, č. 6 (2006), s. 675-688 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : elasmobranchs * lactate dehydrogenase * malate dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 2.093, year: 2006

  3. Immobilization of malate dehydrogenase on carbon nanotubes for development of malate biosensor.

    Science.gov (United States)

    Ruhal, A; Rana, J S; Kumar, S; Kumar, A

    2012-12-22

    An amperometric malic acid biosensor was developed by immobilizing malate dehydrogenase on multi-walled carbon nanotubes (MWCNT) coated on screen printed carbon electrode. The screen printed carbon electrode is made up of three electrodes viz., carbon as working, platinum as counter and silver as reference electrode. Detection of L-malic acid concentration provides important information about the ripening and shelf life of the fruits. The NADP specific malate dehydrogenase was immobilized on carboxylated multiwalled carbon nanotubes using cross linker EDC [1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide] on screen printed carbon electrode. An amperometric current was measured by differential pulse voltammetry (DPV) which increases with increasing concentrations of malic acid at fixed concentration of NADP. Enzyme electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The detection limit of malic acid by the sensor was 60 - 120 μM and sensitivity of the sensor was 60 μM with a response time of 60s. The usual detection methods of malic acid are nonspecific, time consuming and less sensitive. However, an amperometric malic acid nanosensor is quick, specific and more sensitive for detection of malic acid in test samples.

  4. Cellular distribution, purification and electrophoretic properties of malate dehydrogenase in Trichuris ovis and inhibition by benzimidazoles and pyrimidine derivatives.

    Science.gov (United States)

    Sanchez-Moreno, M; Ortega, J E; Valero, A

    1989-12-01

    High levels of malate dehydrogenase were found in Trichuris ovis. Two molecular forms of the enzyme, of different cellular location and electrophoretic pattern, were isolated and purified. The activity of soluble malate dehydrogenase was greater than that of mitochondrial malate dehydrogenase. Both forms also displayed different electrophoretic profiles in comparison with purified extracts from goat (Capra hircus) liver. Substrate concentration directly affected enzyme activity. Host and parasite malate dehydrogenase activity were both inhibited by a series of benzimidazoles and pyrimidine-derived compounds, some of which markedly reduced parasite enzyme activity, but not host enzyme activity. Percentage inhibition by some pyrimidine derivatives was greater than that produced by benzimidazoles.

  5. Evidence for catabolite degradation in the glucose-dependent inactivation of yeast cytoplasmic malate dehydrogenase

    International Nuclear Information System (INIS)

    Neeff, J.; Haegele, E.; Nauhaus, J.; Heer, U.; Mecke, D.

    1978-01-01

    The cytoplasmic malate dehydrogenase of Saccharomyces cerevisiae was radioactively labeled during its synthesis on a glucose-free derepression medium. After purification a sensitive radioimmunoassay for this enzyme could be developed. The assay showed that after the physiological, glucose-dependent 'catabolite inactivation' of cytoplasmic malate dehydrogenase an inactive enzyme protein is immunologically not detectable. Together with the irreversibility of this reaction in vivo this finding strongly suggests a proteolytic mechanism of enzyme inactivation. For this process the term 'catabolite degradation' is used. (orig.) [de

  6. FUNCTIONAL-ANALYSIS OF THE N-TERMINAL PREPEPTIDES OF WATERMELON MITOCHONDRIAL AND GLYOXYSOMAL MALATE-DEHYDROGENASES

    NARCIS (Netherlands)

    LEHNERER, M; KEIZERGUNNIK, [No Value; VEENHUIS, M; GIETL, C

    1994-01-01

    Mitochondrial and glyoxysomal malate dehydrogenase (mMDH; gMDH; L-malate : NAD(+) oxidoreductase; EC 1.1.1.37) of watermelon (Citrullus vulgaris) cotyledons are synthesized with N-terminal cleavable presequences which are shown to specify sorting of the two proteins. The two presequences differ in

  7. Action of sulphite on plant malate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, I.

    1974-01-01

    SO/sub 3//sup 2 -/ acts on NAD- and NADP-dependent malate dehydrogenase in several ways. Firstly, SO/sub 3//sup 2 -/ favours the appearance of low MW species (65000 and 39000 daltons) in Sephadex gel chromatography. Secondly, the enzyme from which is obtained by gel chromatography with dithioerythritol plus nucleotide cofactor is changed in the presence of SO/sub 3//sup 2 -/. This is indicated by the appearance of a linear reaction (instead of curvilinear), and by the abolition of the biphasic sigmoidal kinetics on varying substrate and cofactor concentrations. Thus the inhibition of initial velocity at high substrate or cofactor concentrations is even more marked than at lower ones. Thirdly, SO/sub 3//sup 2 -/ strongly reduces the activity in substrate saturating conditions.

  8. Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha

    NARCIS (Netherlands)

    Gietl, Christine; Faber, Klaas Nico; Klei, Ida J. van der; Veenhuis, Marten

    1994-01-01

    We have studied the significance of the N-terminal presequence of watermelon (Citrullus vulgaris) glyoxysomal malate dehydrogenase [gMDH; (S)-malate:NAD+ oxidoreductase; EC 1.1.1.37] in microbody targeting. The yeast Hansenula polymorpha was used as heterologous host for the in vivo expression of

  9. Watermelon glyoxysomal malate dehydrogenase is sorted to peroxisomes of the methylotrophic yeast, Hansenula polymorpha

    NARCIS (Netherlands)

    Klei, I.J. van der; Faber, K.N.; Keizer-Gunnink, I.; Gietl, C.; Harder, W.; Veenhuis, M.

    1993-01-01

    We have studied the fate of the watermelon (Citrullus vulgaris Schrad.) glyoxysomal enzyme, malate dehydrogenase (gMDH), after synthesis in the methylotrophic yeast, Hansenula polymorpha. The gene encoding the precursor form of gMDH (pre-gMDH) was cloned in an H. polymorpha expression vector

  10. Structure of halophilic malate dehydrogenase in multimolar KCl solutions from neutron scattering and ultracentrifugation

    International Nuclear Information System (INIS)

    Calmettes, P.

    1987-01-01

    The structure and solvent interactions of malate dehydrogenase from Halobacterium marismortui in multimolar KCl solvents are found to be similar to those in multimolar NaCl solvents reported previously (G. Zaccai, E. Wachtel and H. Eisenberg, J. Mol. Biol. 190 (1986) 97). KCl rather than NaCl is predominant in physiological medium. At salt concentrations up to about 3.0 M, the protein (a dimer of M 87000 g/mol) can be considered to occupy an invariant volume in which it is associated with about 4100 molecules of water and about 520 molecules of salt. At very low resolution, the enzyme particle appears to have a compact protein core and protruding protein parts in interaction with the water and salt components, structural features that are not observed in non-halophilic mitochondrial malate dehydrogenase. The above conclusions were drawn from the analysis of neutron scattering and ultracentrifugation data, and the complementarity of these approaches is discussed extensively. 24 refs.; 7 figs.; 4 tabs

  11. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Jeong [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Gu, Dong Ryun [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Jin, Su Hyun [Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Park, Keun Ha [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Lee, Seoung Hoon, E-mail: leesh2@wku.ac.kr [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Wonkwang Institute of Biomaterials and Implant, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of)

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  12. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    International Nuclear Information System (INIS)

    Oh, Se Jeong; Gu, Dong Ryun; Jin, Su Hyun; Park, Keun Ha; Lee, Seoung Hoon

    2016-01-01

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  13. Effect of Punica granatum fruit peel on glucose-6-phosphate dehydrogenase and malate dehydrogenase in amphistome Gastrothylax indicus.

    Science.gov (United States)

    Aggarwal, Rama; Bagai, Upma

    2017-03-01

    Increasing anthelmintic resistance and the impact of conventional anthelmintics on the environment, it is important to look for alternative strategies against helminth parasite in sheep. Important lipogenic enzymes like glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) show subcellular distribution pattern. Activity of G-6-PDH was largely restricted to cytosolic fraction while MDH was found in both cytosolic and mitochondrial fraction in Gastrothylax indicus. Following in vitro treatment with ethanolic and aqueous extracts of Punica granatum fruit peel and commercial anthelmintic, albendazole G-6-PDH activity was decreased by 19-32 %, whereas MDH was suppressed by 24-41 %, compared to the respective control. Albendazole was quite effective when compared with negative control and both the extracts. The results indicate that phytochemicals of plant may act as potential vermifuge or vermicide.

  14. Glutamine and ornithine alpha-ketoglutarate supplementation on malate dehydrogenases expression in hepatectomized rats

    OpenAIRE

    Guimarães Filho, Artur; Cunha, Rodrigo Maranguape Silva da; Vasconcelos, Paulo Roberto Leitão de; Guimarães, Sergio Botelho

    2014-01-01

    PURPOSE: To evaluate the relative gene expression (RGE) of cytosolic (MDH1) and mitochondrial (MDH2) malate dehydrogenases enzymes in partially hepatectomized rats after glutamine (GLN) or ornithine alpha-ketoglutarate (OKG) suplementation. METHODS: One-hundred and eight male Wistar rats were randomly distributed into six groups (n=18): CCaL, GLNL and OKGL and fed calcium caseinate (CCa), GLN and OKG, 0.5g/Kg by gavage, 30 minutes before laparotomy. CCaH, GLNH and OKGH groups were likewise fe...

  15. Inhibition of several enzymes by gold compounds. II. beta-Glucuronidase, acid phosphatase and L-malate dehydrogenase by sodium thiomalatoraurate (I), sodium thiosulfatoaurate (I) and thioglucosoaurate (I).

    Science.gov (United States)

    Lee, M T; Ahmed, T; Haddad, R; Friedman, M E

    1989-01-01

    Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.

  16. Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum.

    Science.gov (United States)

    Simpalipan, Phumin; Pattaradilokrat, Sittiporn; Harnyuttanakorn, Pongchai

    2018-01-09

    Antigen-detecting rapid diagnostic tests (RDTs) have been recommended by the World Health Organization for use in remote areas to improve malaria case management. Lactate dehydrogenase (LDH) of Plasmodium falciparum is one of the main parasite antigens employed by various commercial RDTs. It has been hypothesized that the poor detection of LDH-based RDTs is attributed in part to the sequence diversity of the gene. To test this, the present study aimed to investigate the genetic diversity of the P. falciparum ldh gene in Thailand and to construct the map of LDH sequence diversity in P. falciparum populations worldwide. The ldh gene was sequenced for 50 P. falciparum isolates in Thailand and compared with hundreds of sequences from P. falciparum populations worldwide. Several indices of molecular variation were calculated, including the proportion of polymorphic sites, the average nucleotide diversity index (π), and the haplotype diversity index (H). Tests of positive selection and neutrality tests were performed to determine signatures of natural selection on the gene. Mean genetic distance within and between species of Plasmodium ldh was analysed to infer evolutionary relationships. Nucleotide sequences of P. falciparum ldh could be classified into 9 alleles, encoding 5 isoforms of LDH. L1a was the most common allelic type and was distributed in P. falciparum populations worldwide. Plasmodium falciparum ldh sequences were highly conserved, with haplotype and nucleotide diversity values of 0.203 and 0.0004, respectively. The extremely low genetic diversity was maintained by purifying selection, likely due to functional constraints. Phylogenetic analysis inferred the close genetic relationship of P. falciparum to malaria parasites of great apes, rather than to other human malaria parasites. This study revealed the global genetic variation of the ldh gene in P. falciparum, providing knowledge for improving detection of LDH-based RDTs and supporting the candidacy of

  17. Malate and fumarate extend lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Clare B Edwards

    Full Text Available Malate, the tricarboxylic acid (TCA cycle metabolite, increased lifespan and thermotolerance in the nematode C. elegans. Malate can be synthesized from fumarate by the enzyme fumarase and further oxidized to oxaloacetate by malate dehydrogenase with the accompanying reduction of NAD. Addition of fumarate also extended lifespan, but succinate addition did not, although all three intermediates activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The glyoxylate shunt, an anabolic pathway linked to lifespan extension in C. elegans, reversibly converts isocitrate and acetyl-CoA to succinate, malate, and CoA. The increased longevity provided by malate addition did not occur in fumarase (fum-1, glyoxylate shunt (gei-7, succinate dehydrogenase flavoprotein (sdha-2, or soluble fumarate reductase F48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Reduction of fumarate to succinate is coupled with the oxidation of FADH2 to FAD. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation. Malate also increased NADPH, NAD, and the NAD/NADH ratio. Fumarate reduction, glyoxylate shunt activity, and mild mitochondrial uncoupling likely contribute to the lifespan extension induced by malate and fumarate by increasing the amount of oxidized NAD and FAD cofactors.

  18. Effects of Al(III and Nano-Al13 Species on Malate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Rong Fu Chen

    2011-05-01

    Full Text Available The effects of different aluminum species on malate dehydrogenase (MDH activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT modified glass carbon electrode (GCE. The results showed that Al(III and Al13 can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III and Al13 concentration increase. Our study also found that the effects of Al(III and Al13 on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  19. Effects of Al(III) and nano-Al13 species on malate dehydrogenase activity.

    Science.gov (United States)

    Yang, Xiaodi; Cai, Ling; Peng, Yu; Li, Huihui; Chen, Rong Fu; Shen, Ren Fang

    2011-01-01

    The effects of different aluminum species on malate dehydrogenase (MDH) activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT) modified glass carbon electrode (GCE). The results showed that Al(III) and Al(13) can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III) and Al(13) concentration increase. Our study also found that the effects of Al(III) and Al(13) on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  20. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    M. R. Aquino-Silva

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  1. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva M. R.

    2003-01-01

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  2. Primary structure of the light-dependent regulatory site of corn NADP-malate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Decottignies, P.; Schmitter, J.M.; Miginiac-Maslow, M.; Le Marechal, P.; Jacquot, J.P.; Gadal, P.

    1988-08-25

    The light-activated NADP-malate dehydrogenase (NADP-MDH) catalyzes the reduction of oxaloacetate to malate in higher plant chloroplasts. This enzyme is regulated in vivo by the ferredoxin-thioredoxin system through redox reactions. NADP-MDH has been photoactivated in vitro in a chloroplast system reconstituted from the pure protein components and thylakoid membranes. Photoactivation was accompanied by the appearance of new thiol groups (followed by (14C)iodoacetate incorporation). 14C-Carboxymethylated NADP-MDH has been purified from the incubation mixture and its amino-terminal sequence analyzed. Two (14C)carboxymethylcysteines were identified at positions 10 and 15 after light activation, while they were not detected in the dark-treated protein. In addition, the analysis of the tryptic digest of light-activated (14C)carboxymethylated NADP-MDH revealed that the radioactive label was mostly incorporated in Cys10 and Cys15, indicating that these 2 residues play a major role in the light activation mechanism. Moreover, an activation model, in which photoreduced thio-redoxin was replaced by the dithiol reductant dithio-threitol, has been developed. When NADP-MDH was activated in this way, the same sulfhydryls were found to be labeled, and alternatively, they did not incorporate any radioactivity when dithiothreitol reduction was performed after carboxymethylation in denaturating conditions. These results indicate that activation (by light or by dithiothreitol) proceeds on each subunit by reduction of a disulfide bridge located at the amino terminus of the enzyme between Cys10 and Cys15.

  3. Primary structure of the light-dependent regulatory site of corn NADP-malate dehydrogenase

    International Nuclear Information System (INIS)

    Decottignies, P.; Schmitter, J.M.; Miginiac-Maslow, M.; Le Marechal, P.; Jacquot, J.P.; Gadal, P.

    1988-01-01

    The light-activated NADP-malate dehydrogenase (NADP-MDH) catalyzes the reduction of oxaloacetate to malate in higher plant chloroplasts. This enzyme is regulated in vivo by the ferredoxin-thioredoxin system through redox reactions. NADP-MDH has been photoactivated in vitro in a chloroplast system reconstituted from the pure protein components and thylakoid membranes. Photoactivation was accompanied by the appearance of new thiol groups (followed by [14C]iodoacetate incorporation). 14C-Carboxymethylated NADP-MDH has been purified from the incubation mixture and its amino-terminal sequence analyzed. Two [14C]carboxymethylcysteines were identified at positions 10 and 15 after light activation, while they were not detected in the dark-treated protein. In addition, the analysis of the tryptic digest of light-activated [14C]carboxymethylated NADP-MDH revealed that the radioactive label was mostly incorporated in Cys10 and Cys15, indicating that these 2 residues play a major role in the light activation mechanism. Moreover, an activation model, in which photoreduced thio-redoxin was replaced by the dithiol reductant dithio-threitol, has been developed. When NADP-MDH was activated in this way, the same sulfhydryls were found to be labeled, and alternatively, they did not incorporate any radioactivity when dithiothreitol reduction was performed after carboxymethylation in denaturating conditions. These results indicate that activation (by light or by dithiothreitol) proceeds on each subunit by reduction of a disulfide bridge located at the amino terminus of the enzyme between Cys10 and Cys15

  4. Effects of L-malate on physical stamina and activities of enzymes related to the malate-aspartate shuttle in liver of mice.

    Science.gov (United States)

    Wu, J L; Wu, Q P; Huang, J M; Chen, R; Cai, M; Tan, J B

    2007-01-01

    L-malate, a tricarboxylic acid cycle (TCA) intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production and may be involved in the beneficial effects of improving physical stamina. In the present study, we investigated the effects of L-malate on the performance of forced swimming time and blood biochemical parameters related to fatigue - blood urea nitrogen (BUN), glucose (Glc), creatine kinase (CK),total protein (TP) and lactic acid (LA). To investigate the effects of L-malate on the malate-aspartate shuttle and energy metabolism in mice, the activities of enzymes related to the malate-aspartate shuttle were measured. L-malate was orally administered to mice continuously for 30 days using a feeding atraumatic needle. The swimming time was increased by 26.1 % and 28.5 %, respectively, in the 0.210 g/kg and 0.630 g/kg L-malate-treated group compared with the control group. There were no differences in the concentrations of Glc, BUN and TP between the L-malate-treated groups and the control groups. However, the levels of CK were significantly decreased in the L-malate-treated groups. The results predict a potential benefit of L-malate for improving physical stamina and minimizing muscle damage during swimming exercise. The activities of cytosolic and mitochondrial malate dehydrogenase were significantly elevated in the L-malate-treated group compared with the control group. These enzymatic activities may be useful indicators for evaluating changes affecting the malate-aspartate shuttle and energy metabolism in the liver of mice.

  5. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.

    Science.gov (United States)

    Liu, Jingjing; Xie, Zhipeng; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    2017-07-10

    Aspergillus oryzae finds wide application in the food, feed, and wine industries, and is an excellent cell factory platform for production of organic acids. In this work, we achieved the overproduction of L-malate by rewiring the reductive tricarboxylic acid (rTCA) pathway and L-malate transport pathway of A. oryzae NRRL 3488. First, overexpression of native pyruvate carboxylase and malate dehydrogenase in the rTCA pathway improved the L-malate titer from 26.1gL -1 to 42.3gL -1 in shake flask culture. Then, the oxaloacetate anaplerotic reaction was constructed by heterologous expression of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase from Escherichia coli, increasing the L-malate titer to 58.5gL -1 . Next, the export of L-malate from the cytoplasm to the external medium was strengthened by overexpression of a C4-dicarboxylate transporter gene from A. oryzae and an L-malate permease gene from Schizosaccharomyces pombe, improving the L-malate titer from 58.5gL -1 to 89.5gL -1 . Lastly, guided by transcription analysis of the expression profile of key genes related to L-malate synthesis, the 6-phosphofructokinase encoded by the pfk gene was identified as a potential limiting step for L-malate synthesis. Overexpression of pfk with the strong sodM promoter increased the L-malate titer to 93.2gL -1 . The final engineered A. oryzae strain produced 165gL -1 L-malate with a productivity of 1.38gL -1 h -1 in 3-L fed-batch culture. Overall, we constructed an efficient L-malate producer by rewiring the rTCA pathway and L-malate transport pathway of A. oryzae NRRL 3488, and the engineering strategy adopted here may be useful for the construction of A. oryzae cell factories to produce other organic acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Processes of malate catabolism during the anaerobic metabolism of grape berries

    International Nuclear Information System (INIS)

    Flanzy, C.; Andre, P.; Buret, M.; Chambroy, Y.; Garcia, P.

    1976-01-01

    In order to precise malate fate during the anaerobic metabolism of grape, malate- 3 - 14 C was injected into Carignan berries kept in darkness at 35 0 C under carbon dioxide atmosphere. The injection of labelled malate was effected in presence or not of non-labelled oxalate which inhibits malic enzyme (EC I.I.I.40). The analyses of the samples fixed after 3 and 7 days anaerobiosis concerned the titration of various substrates, organic acids, amino-acids and glycolysis products, and the measuring of the NADP + -malic enzyme (EC I.I.I.40) and malate dehydrogenase (EC I.I.I.40). Radioactivity is mainly observed in ethanol, amino-butyrate the non-separated group glycerate-shikimate and succinate. Malic enzyme acts in the first sequence of a process leading from malate to ethanol. Alanin synthesis seems to be stimulated in presence of oxalate. The results obtained and some hypotheses presented in the literature induce to suggest a utilization scheme for malate in the anaerobic metabolism of grape [fr

  7. Common catabolic enzyme patterns in a microplankton community of the Humboldt Current System off northern and central-south Chile: Malate dehydrogenase activity as an index of water-column metabolism in an oxygen minimum zone

    Science.gov (United States)

    González, R. R.; Quiñones, R. A.

    2009-07-01

    An extensive subsurface oxygen minimum zone off northern and central-south Chile, associated with the Peru-Chile undercurrent, has important effects on the metabolism of the organisms inhabiting therein. Planktonic species deal with the hypoxic and anoxic environments by relying on biochemical as well as physiological processes related to their anaerobic metabolisms. Here we characterize, for the first time, the potential enzymatic activities involved in the aerobic and anaerobic energy production pathways of microplanktonic organisms (oxygen concentration and microplanktonic biomass in the oxygen minimum zone and adjacent areas of the Humboldt Current System water column. Our results demonstrate significant potential enzymatic activity of catabolic pathways in the oxygen minimum zone. Malate dehydrogenase had the highest oxidizing activity of nicotinamide adenine dinucleotide (reduced form) in the batch of catabolic enzymatic activities assayed, including potential pyruvate oxidoreductases activity, the electron transport system, and dissimilatory nitrate reductase. Malate dehydrogenase correlated significantly with almost all the enzymes analyzed within and above the oxygen minimum zone, and also with the oxygen concentration and microplankton biomass in the water column of the Humboldt Current System, especially in the oxygen minimum zone off Iquique. These results suggest a possible specific pattern for the catabolic activity of the microplanktonic realm associated with the oxygen minimum zone spread along the Humboldt Current System off Chile. We hypothesize that malate dehydrogenase activity could be an appropriate indicator of microplankton catabolism in the oxygen minimum zone and adjacent areas.

  8. QSAR study on the antimalarial activity of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors.

    Science.gov (United States)

    Hou, X; Chen, X; Zhang, M; Yan, A

    2016-01-01

    Plasmodium falciparum, the most fatal parasite that causes malaria, is responsible for over one million deaths per year. P. falciparum dihydroorotate dehydrogenase (PfDHODH) has been validated as a promising drug development target for antimalarial therapy since it catalyzes the rate-limiting step for DNA and RNA biosynthesis. In this study, we investigated the quantitative structure-activity relationships (QSAR) of the antimalarial activity of PfDHODH inhibitors by generating four computational models using a multilinear regression (MLR) and a support vector machine (SVM) based on a dataset of 255 PfDHODH inhibitors. All the models display good prediction quality with a leave-one-out q(2) >0.66, a correlation coefficient (r) >0.85 on both training sets and test sets, and a mean square error (MSE) antimalarial activity. The models are capable of predicting inhibitors' antimalarial activity and the molecular descriptors for building the models could be helpful in the development of new antimalarial drugs.

  9. Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways.

    Science.gov (United States)

    Contreras, Laura; Satrústegui, Jorgina

    2009-03-13

    Ca2+ signaling in mitochondria has been mainly attributed to Ca2+ entry to the matrix through the Ca2+ uniporter and activation of mitochondrial matrix dehydrogenases. However, mitochondria can also sense increases in cytosolic Ca2+ through a mechanism that involves the aspartate-glutamate carriers, extramitochondrial Ca2+ activation of the NADH malate-aspartate shuttle (MAS). Both pathways are linked through the shared substrate alpha-ketoglutarate (alphaKG). Here we have studied the interplay between the two pathways under conditions of Ca2+ activation. We show that alphaKG becomes limiting when Ca2+ enters in brain or heart mitochondria, but not liver mitochondria, resulting in a drop in alphaKG efflux through the oxoglutarate carrier and in a drop in MAS activity. Inhibition of alphaKG efflux and MAS activity by matrix Ca2+ in brain mitochondria was fully reversible upon Ca2+ efflux. Because of their differences in cytosolic calcium concentration requirements, the MAS and Ca2+ uniporter-mitochondrial dehydrogenase pathways are probably sequentially activated during a Ca2+ transient, and the inhibition of MAS at the center of the transient may provide an explanation for part of the increase in lactate observed in the stimulated brain in vivo.

  10. Glutamine and ornithine alpha-ketoglutarate supplementation on malate dehydrogenases expression in hepatectomized rats.

    Science.gov (United States)

    Guimarães Filho, Artur; Cunha, Rodrigo Maranguape Silva da; Vasconcelos, Paulo Roberto Leitão de; Guimarães, Sergio Botelho

    2014-06-01

    To evaluate the relative gene expression (RGE) of cytosolic (MDH1) and mitochondrial (MDH2) malate dehydrogenases enzymes in partially hepatectomized rats after glutamine (GLN) or ornithine alpha-ketoglutarate (OKG) suplementation. One-hundred and eight male Wistar rats were randomly distributed into six groups (n=18): CCaL, GLNL and OKGL and fed calcium caseinate (CCa), GLN and OKG, 0.5 g/Kg by gavage, 30 minutes before laparotomy. CCaH, GLNH and OKGH groups were likewise fed 30 minutes before 70% partial hepatectomy. Blood and liver samples were collected three, seven and 14 days after laparotomy/hepatectomy for quantification of MDH1/MDH2 enzymes using the real-time polymerase chain reaction (PCR) methodology. Relative enzymes expression was calculated by the 2-(ΔΔC)T method using the threshold cycle (CT) value for normalization. MDH1/MDH2 RGE was not different in hepatectomized rats treated with OKG compared to rats treated with CCa. However, MDH1/MDH2 RGE was greater on days 3 (321:1/26.48:1) and 7 (2.12:1/2.48:1) while MDH2 RGE was greater on day 14 (7.79:1) in hepatectomized rats treated with GLN compared to control animals. Glutamine has beneficial effects in liver regeneration in rats by promoting an up-regulation of the MDH1 and MDH2 relative gene expression.

  11. Regulation of human cerebrospinal fluid malate dehydrogenase 1 in sporadic Creutzfeldt-Jakob disease patients.

    Science.gov (United States)

    Schmitz, Matthias; Llorens, Franc; Pracht, Alexander; Thom, Tobias; Correia, Ângela; Zafar, Saima; Ferrer, Isidre; Zerr, Inga

    2016-11-14

    The identification of reliable diagnostic biomarkers in differential diagnosis of neurodegenerative diseases is an ongoing topic. A previous two-dimensional proteomic study on cerebrospinal fluid (CSF) revealed an elevated level of an enzyme, mitochondrial malate dehydrogenase 1 (MDH1), in sporadic Creutzfeldt-Jakob disease (sCJD) patients. Here, we could demonstrate the expression of MDH1 in neurons as well as in the neuropil. Its levels are lower in sCJD brains than in control brains. An examination of CSF-MDH1 in sCJD patients by ELISA revealed a significant elevation of CSF-MDH1 levels in sCJD patients (independently from the PRNP codon 129 MV genotype or the prion protein scrapie (PrP Sc ) type) in comparison to controls. In combination with total tau (tau), CSF-MDH1 detection exhibited a high diagnostic accuracy for sCJD diagnosis with a sensitivity of 97.5% and a specificity of 95.6%. A correlation study of MDH1 level in CSF with other neurodegenerative marker proteins revealed a significant positive correlation between MDH1 concentration with tau, 14-3-3 and neuron specific enolase level. In conclusion, our study indicated the potential of MDH1 in combination with tau as an additional biomarker in sCJD improving diagnostic accuracy of tau markedly.

  12. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

    Directory of Open Access Journals (Sweden)

    Julia Penna-Coutinho

    Full Text Available The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2. The IC(50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use.

  13. Immunological response and protection of mice immunized with plasmid encoding Toxoplasma gondii glycolytic enzyme malate dehydrogenase.

    Science.gov (United States)

    Hassan, I A; Wang, S; Xu, L; Yan, R; Song, X; XiangRui, L

    2014-12-01

    Toxoplasma gondii Malate dehydrogenase (TgMDH) plays an important role as part of the energy production cycle. In this investigation, immunological changes and protection efficiency of this protein delivered as a DNA vaccine have been evaluated. Mice were intramuscularly immunized with pTgMDH, followed by challenge with virulent T. gondii RH strain, 2 weeks after the booster immunization. Compared to the control groups, the results showed that pTgMDH has stimulated specific humoral response as demonstrated by significant high titers of total IgG and subclasses IgG1 and IgG2a , beside IgA and IgM, but not IgE. Analysis of cytokine profiles revealed significant increases of IFN-γ, IL-4 and IL-17, while no significant changes were detected in TGF-β1. In cell-mediated response, both T lymphocytes subpopulations CD4(+) and CD8(+) were positively recruited as significant percentages were recorded in response to immunization with TgMDH. Significant long survival rate, 17 days, has been observed in the TgMDH vaccinated group, in contrast with control groups which died within 8-9 days after challenge. These results demonstrated that TgMDH could induce significant immunological responses leading to a considerable level of protection against acute toxoplasmosis infection. © 2014 John Wiley & Sons Ltd.

  14. Mutation in the peroxin-coding gene PEX22 contributing to high malate production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Negoro, Hiroaki; Sakamoto, Mitsuru; Kotaka, Atsushi; Matsumura, Kengo; Hata, Yoji

    2018-02-01

    Saccharomyces cerevisiae produces organic acids such as succinate, acetate, and malate during alcoholic fermentation. Since malate contributes to the pleasant taste of sake (a Japanese alcoholic beverage), various methods for breeding high-malate-producing yeast strains have been developed. Here, a high-malate-producing yeast strain F-701H was isolated. This mutant was sensitive to dimethyl succinate (DMS) and harbored a nonsense mutation in the peroxin gene PEX22, which was identified as the cause of high malate production by comparative genome analysis. This mutation, which appeared to cause Pex22p dysfunction, was sufficient to confer increased malate productivity and DMS sensitivity to yeast cells. Next, we investigated the mechanism by which this mutation led to high malate production in yeast cells. Peroxins, such as Pex22p, maintain peroxisomal biogenesis. Analysis of 29 PEX disruptants revealed an increased malate production by deletion of the genes encoding peroxins responsible for importing proteins (containing peroxisomal targeting signal 1, PTS1) into the peroxisomal matrix, and those responsible for the assembly of peroxins themselves in the peroxisomal membrane. A defect in peroxisomal malate dehydrogenase (Mdh3p), harboring endogenous PTS1, inhibited the high malate-producing phenotype in the PEX22 mutant. Moreover, Mdh3p, which was normally sorted to the peroxisomal matrix, was potentially mislocalized to the cytosol in the PEX22 mutant. This suggested that an increase in malate production resulted from the mislocalization of Mdh3p from the peroxisome to the cytoplasm due to the loss of peroxin-mediated transportation. Thus, the present study revealed a novel mechanism for organic acid productions in yeast during sake brewing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: seiya@kais.kyoto-u.ac.jp; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: kkano@kais.kyoto-u.ac.jp

    2008-12-30

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 {mu}L was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change ({delta}G{sup o}') is negative; (2) {alpha}-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive {delta}G{sup o}' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of {alpha}-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total {delta}G{sup o}' value negative.

  16. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    International Nuclear Information System (INIS)

    Fukuda, Jun; Tsujimura, Seiya; Kano, Kenji

    2008-01-01

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 μL was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change (ΔG o ') is negative; (2) α-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive ΔG o ' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of α-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total ΔG o ' value negative

  17. Small-angle X-ray scattering studies on the X-ray induced aggregation of ribonnuclease, lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase and serum albumin. A comparison with malate synthase

    International Nuclear Information System (INIS)

    Zipper, P.; Gatterer, H.G.; Schutz, J.; Durchschlag, H.

    1980-01-01

    The X-ray induced aggregation of ribonuclease, lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and serum albumin in aqueous solution was monitored in situ by means of small-angle X-ray scattering. Measurements carried out with ribonuclease, LDH and serum albumin in the absence of dithiothreitol (DTT) and with GAPDH in the presence of 0.2mM DTT established the following series for the rates of aggregation of the proteins under these conditions: ribonuclease >LDH> >GAPDH> serum albumin. Within six hours from the beginning of irradiation (i.e. about the time required for the exposure of one complete scattering curve under the conditions of our experiments) the following increases of R tilde resulted: ribonuclease 9%, LDH 7%, GAPDH 4%, serum albumin <1%. Changes of R tilde exceeding 1% are, of course, too high to be tolerated in conventional scattering experiments. Measurements carried out with LDH and GAPDH in the presence of 2mM DTT established a strong protective effect of DTT against the X-ray induced aggregation of these enzymes. The initial increase of R tilde upon irradiation of LDH and GAPDH in the presence of 2mM DTT was found to be even lower than the increase of R tilde observed when serum albumin was irradiated in the absence of DTT. However, the observed decrease of anti x of LDH and GAPDH at the early stages of irradiation suggested the occurrence of fragmentation of the enzymes as another consequence of radiation damage. This finding is discussed in context with the results from previous scattering experiments and electrophoretic studies on malate synthase. (author)

  18. Plasmodium falciparum Hep1 Is Required to Prevent the Self Aggregation of PfHsp70-3.

    Directory of Open Access Journals (Sweden)

    David O Nyakundi

    Full Text Available The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70; however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1, to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria.

  19. Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Negoro, Hiroaki; Kotaka, Atsushi; Matsumura, Kengo; Tsutsumi, Hiroko; Hata, Yoji

    2016-06-01

    Malate in sake (a Japanese alcoholic beverage) is an important component for taste that is produced by yeasts during alcoholic fermentation. To date, many researchers have developed methods for breeding high-malate-producing yeasts; however, genes responsible for the high-acidity phenotype are not known. We determined the mutated gene involved in high malate production in yeast, isolated as a sensitive mutant to dimethyl succinate. In the comparative whole genome analysis between high-malate-producing strain and its parent strain, one of the non-synonymous substitutions was identified in the VID24 gene. The mutation of VID24 resulted in enhancement of malate-productivity and sensitivity to dimethyl succinate. The mutation appeared to lead to a deficiency in Vid24p function. Furthermore, disruption of cytoplasmic malate dehydrogenase (Mdh2p) gene in the VID24 mutant inhibited the high-malate-producing phenotype. Vid24p is known as a component of the multisubunit ubiquitin ligase and participates in the degradation of gluconeogenic enzymes such as Mdh2p. We suggest that the enhancement of malate-productivity results from an accumulation of Mdh2p due to the loss of Vid24p function. These findings propose a novel mechanism for the regulation of organic acid production in yeast cells by the component of ubiquitin ligase, Vid24p. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Metabolism of excised embryos of Lupinus luteus L. VI. An electrophoretic analysis of some dehydrogenases in cultured embryos as compared with the normal seedling axes

    Directory of Open Access Journals (Sweden)

    J. Czosnowski

    2015-01-01

    Full Text Available The electrophoretic patterns (disc electrophoresis of the studied dehydrogenases: glucose-6-phosphate - (A, malate - (B, glutamate - (C, alcohol - (D and lactate dehydrogenase (E, in the axial organs of isolated Lupinus luteus embryos and seedlings cultivated over 12 days are characterized by great similarities. With time, after the third day of cultivation the patterns begin to become less deyeloped. Analyses performed during the first 10 hours of imbibition of seed parts indicate that the maximal development of isozyme patterns occurs during the third hour after which the patterns become poorer. The most uniform type of pattern. and the lowest number of isozymes was shown by glutamate dehydrogenase, the richest pattern was shown by malate dehydrogenase. No band common for a 11 the 27 experimental elements was found.

  1. Type 2 Diabetic Rats on Diet Supplemented With Chromium Malate Show Improved Glycometabolism, Glycometabolism-Related Enzyme Levels and Lipid Metabolism

    Science.gov (United States)

    Feng, Weiwei; Zhao, Ting; Mao, Guanghua; Wang, Wei; Feng, Yun; Li, Fang; Zheng, Daheng; Wu, Huiyu; Jin, Dun; Yang, Liuqing; Wu, Xiangyang

    2015-01-01

    Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism in type 2 diabetic rats. Our results showed that fasting blood glucose, serum insulin level, insulin resistance index and C-peptide level in the high dose group had a significant downward trend when compared with the model group, chromium picolinate group and chromium trichloride group. The hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, Glut4, phosphor-AMPKβ1 and Akt levels in the high dose group were significantly higher than those of the model, chromium picolinate and chromium trichloride groups. Chromium malate in a high dose group can significantly increase high density lipoprotein cholesterol level while decreasing the total cholesterol, low density lipoprotein cholesterol and triglyceride levels when compared with chromium picolinate and chromium trichloride. The serum chromium content in chromium malate and chromium picolinate group is significantly higher than that of the chromium trichloride group. The results indicated that the curative effects of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism changes are better than those of chromium picolinate and chromium trichloride. Chromium malate contributes to glucose uptake and transport in order to improved glycometabolism and glycometabolism-related enzymes. PMID:25942313

  2. Th2-related immune responses by the Brucella abortus cellular antigens, malate dehydrogenase, elongation factor, and arginase.

    Science.gov (United States)

    Im, Young Bin; Shim, Soojin; Park, Woo Bin; Kim, Suk; Yoo, Han Sang

    2017-09-01

    Brucellosis is an important zoonotic disease caused by Brucella species. The disease is difficult to control due to the intracellular survival of the bacterium and the lack of precise understanding of pathogenesis. Despite of continuous researches on the pathogenesis of Brucella spp. infection, there is still question on the pathogenesis, especially earlier immune response in the bacterial infection. Malate dehydrogenase (MDH), elongation factor (Tsf), and arginase (RocF), which showed serological reactivity, were purified after gene cloning, and their immune modulating activities were then analyzed in a murine model. Cytokine production profiles were investigated by stimulating RAW 264.7 cells and naïve splenocytes with the three recombinant proteins. Also, immune responses were analyzed by ELISA and an ELIspot assay after immunizing mice with the three proteins. Only TNF-α was produced in stimulated RAW 264.7 cells, whereas Th1-related cytokines, IFN-γ and IL-2, were induced in naïve splenocytes. In contrast, Th2-type immune response was more strongly induced in antigen-secreting cells in the splenocytes obtained 28 days after immunizing mice with the three proteins, as were IgM and IgG. The induction of Th2-related antibody, IgG1, was higher than the Th1-related antibody, IgG2a, in immunized mice. These results suggest that the three proteins strongly induce Th2-type immune response in vivo, even though Th1-related cytokines were produced in vitro. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of 90-day Repeated Dose Oral Toxicity, Glycometabolism, Learning and Memory Ability, and Related Enzyme of Chromium Malate Supplementation in Sprague-Dawley Rats.

    Science.gov (United States)

    Feng, Weiwei; Wu, Huiyu; Li, Qian; Zhou, Zhaoxiang; Chen, Yao; Zhao, Ting; Feng, Yun; Mao, Guanghua; Li, Fang; Yang, Liuqing; Wu, Xiangyang

    2015-11-01

    Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the 90-day oral toxicity of chromium malate in Sprague-Dawley rats. The present study inspected the effect of chromium malate on glycometabolism, glycometabolism-related enzymes, lipid metabolism, and learning and memory ability in metabolically healthy Sprague-Dawley rats. The results showed that all rats survived and pathological, toxic, feces, and urine changes were not observed. Chromium malate did not cause measurable damage on liver, brain, and kidney. The fasting blood glucose, serum insulin, insulin resistance index, C-peptide, hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglyceride levels of normal rats in chromium malate groups had no significant change when compared with control group and chromium picolinate group under physiologically relevant conditions. The serum and organ content of Cr in chromium malate groups had no significant change compared with control group. No significant changes were found in morris water maze test and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and true choline esterase (TChE) activity. The results indicated that supplementation with chromium malate did not cause measurable toxicity and has no obvious effect on glycometabolism and related enzymes, learning and memory ability, and related enzymes and lipid metabolism of female and male rats. The results of this study suggest that chromium malate is safe for human consumption.

  4. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Directory of Open Access Journals (Sweden)

    Li Yongchao

    2012-01-01

    Full Text Available Abstract Background The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. Results The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh and L-malate dehydrogenase (Ccel_0137; mdh genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. Conclusions The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox

  5. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Hamilton, Choo Yieng [ORNL; Rodriguez, Jr., Miguel [ORNL; Liao, James C [ORNL; Schadt, Christopher Warren [ORNL; Guss, Adam M [ORNL; Yang, Yunfeng [ORNL; Graham, David E [ORNL

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to

  6. The metabolism of malate by cultured rat brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. (Department of Pediatrics, University of Maryland School of Medicine, Baltimore (USA))

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  7. Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development

    LENUS (Irish Health Repository)

    Storm, Janet

    2011-07-14

    Abstract Background Plasmodium falciparum contains three genes encoding potential glutamate dehydrogenases. The protein encoded by gdha has previously been biochemically and structurally characterized. It was suggested that it is important for the supply of reducing equivalents during intra-erythrocytic development of Plasmodium and, therefore, a suitable drug target. Methods The gene encoding the NADP(H)-dependent GDHa has been disrupted by reverse genetics in P. falciparum and the effect on the antioxidant and metabolic capacities of the resulting mutant parasites was investigated. Results No growth defect under low and elevated oxygen tension, no up- or down-regulation of a number of antioxidant and NADP(H)-generating proteins or mRNAs and no increased levels of GSH were detected in the D10Δgdha parasite lines. Further, the fate of the carbon skeleton of [13C] labelled glutamine was assessed by metabolomic studies, revealing no differences in the labelling of α-ketoglutarate and other TCA pathway intermediates between wild type and mutant parasites. Conclusions First, the data support the conclusion that D10Δgdha parasites are not experiencing enhanced oxidative stress and that GDHa function may not be the provision of NADP(H) for reductive reactions. Second, the results imply that the cytosolic, NADP(H)-dependent GDHa protein is not involved in the oxidative deamination of glutamate but that the protein may play a role in ammonia assimilation as has been described for other NADP(H)-dependent GDH from plants and fungi. The lack of an obvious phenotype in the absence of GDHa may point to a regulatory role of the protein providing glutamate (as nitrogen storage molecule) in situations where the parasites experience a limiting supply of carbon sources and, therefore, under in vitro conditions the enzyme is unlikely to be of significant importance. The data imply that the protein is not a suitable target for future drug development against intra

  8. An InDel in the Promoter of Al-ACTIVATED MALATE TRANSPORTER9 Selected during Tomato Domestication Determines Fruit Malate Contents and Aluminum Tolerance[OPEN

    Science.gov (United States)

    Wang, Xin; Hu, Tixu; Zhang, Fengxia; Wang, Bing; Li, Changxin; Yang, Tianxia; Li, Hanxia; Lu, Yongen; Ye, Zhibiao

    2017-01-01

    Deciphering the mechanism of malate accumulation in plants would contribute to a greater understanding of plant chemistry, which has implications for improving flavor quality in crop species and enhancing human health benefits. However, the regulation of malate metabolism is poorly understood in crops such as tomato (Solanum lycopersicum). Here, we integrated a metabolite-based genome-wide association study with linkage mapping and gene functional studies to characterize the genetics of malate accumulation in a global collection of tomato accessions with broad genetic diversity. We report that TFM6 (tomato fruit malate 6), which corresponds to Al-ACTIVATED MALATE TRANSPORTER9 (Sl-ALMT9 in tomato), is the major quantitative trait locus responsible for variation in fruit malate accumulation among tomato genotypes. A 3-bp indel in the promoter region of Sl-ALMT9 was linked to high fruit malate content. Further analysis indicated that this indel disrupts a W-box binding site in the Sl-ALMT9 promoter, which prevents binding of the WRKY transcription repressor Sl-WRKY42, thereby alleviating the repression of Sl-ALMT9 expression and promoting high fruit malate accumulation. Evolutionary analysis revealed that this highly expressed Sl-ALMT9 allele was selected for during tomato domestication. Furthermore, vacuole membrane-localized Sl-ALMT9 increases in abundance following Al treatment, thereby elevating malate transport and enhancing Al resistance. PMID:28814642

  9. The Arabidopsis vacuolar malate channel is a member of the ALMT family.

    Science.gov (United States)

    Kovermann, Peter; Meyer, Stefan; Hörtensteiner, Stefan; Picco, Cristiana; Scholz-Starke, Joachim; Ravera, Silvia; Lee, Youngsook; Martinoia, Enrico

    2007-12-01

    In plants, malate is a central metabolite and fulfills a large number of functions. Vacuolar malate may reach very high concentrations and fluctuate rapidly, whereas cytosolic malate is kept at a constant level allowing optimal metabolism. Recently, a vacuolar malate transporter (Arabidopsis thaliana tonoplast dicarboxylate transporter, AttDT) was identified that did not correspond to the well-characterized vacuolar malate channel. We therefore hypothesized that a member of the aluminum-activated malate transporter (ALMT) gene family could code for a vacuolar malate channel. Using GFP fusion constructs, we could show that AtALMT9 (A. thaliana ALMT9) is targeted to the vacuole. Promoter-GUS fusion constructs demonstrated that this gene is expressed in all organs, but is cell-type specific as GUS activity in leaves was detected nearly exclusively in mesophyll cells. Patch-clamp analysis of an Atalmt9 T-DNA insertion mutant exhibited strongly reduced vacuolar malate channel activity. In order to functionally characterize AtALMT9 as a malate channel, we heterologously expressed this gene in tobacco and in oocytes. Overexpression of AtALMT9-GFP in Nicotiana benthamiana leaves strongly enhanced the malate current densities across the mesophyll tonoplasts. Functional expression of AtALMT9 in Xenopus oocytes induced anion currents, which were clearly distinguishable from endogenous oocyte currents. Our results demonstrate that AtALMT9 is a vacuolar malate channel. Deletion mutants for AtALMT9 exhibit only slightly reduced malate content in mesophyll protoplasts and no visible phenotype, indicating that AttDT and the residual malate channel activity are sufficient to sustain the transport activity necessary to regulate the cytosolic malate homeostasis.

  10. Vitality Improvement of the Mediterranean Fruit Fly, Ceratitis capitata Wied 1- Measured by using dehydrogenase Enzyme Activities

    International Nuclear Information System (INIS)

    Salama, M.S.; Shoman, A.A.; Elbermawy, S.M.; Abul Yazid, I.

    2000-01-01

    The present study searches for the improvement vitality of the Mediterranean fruit fly, Ceratitis capitata Wied. Through the induction of a specific variance (mutation) in the genetic material. Several types of treatments that were thought to cause this mutation were used, as IGR's, temperature, formaldehyde, colchicine, alcohols, several types of larval rearing media and gamma-rays. Generally, the activities of the energy enzymes alpha-glycerophosphate dehydrogenase (alpha-GPDH) enzyme lactate dehydrogenase (LDH) enzyme and malate dehydrogenase (MDH) enzyme, when used as a direct measure for the fly vitality, increased due to treatments of the egg stage by the previously mentioned treatments specially by the usage of rice hulls in the larval rearing medium alone or followed by irradiation of the pupal stage with 90 Gy

  11. The treatment of Plasmodium falciparum-infected erythrocytes with chloroquine leads to accumulation of ferriprotoporphyrin IX bound to particular parasite proteins and to the inhibition of the parasite's 6-phosphogluconate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Famin O.

    2003-03-01

    Full Text Available Ferriprotoporphyrin IX (FPIX is a potentially toxic product of hemoglobin digestion by intra-erythrocytic malaria parasites. It is detoxified by biomineralization or through degradation by glutathione. Both processes are inhibited by the antimalarial drug chloroquine, leading to the accumulation of FPIX in the membranes of the infected cell and their consequent permeabilization. It is shown here that treatment of Plasmodium falciparum-infected erythrocytes with chloroquine also leads to the binding of FPIX to a subset of parasite proteins. Parasite enzymes such as aldolase, pyrimidine nucleoside monophosphate kinase and pyrimidine 5'- nucleotidase were inhibited by FPIX in vitro, but only the activity of 6-phosphogluconate dehydrogenase was reduced significantly in cells after drug treatment. Additional proteins were extracted from parasite cytosol by their ability to bind FPIX. Sequencing of these proteins identified heat shock proteins 90 and 70, enolase, elongation factor 1-α, phoshoglycerate kinase, glyceraldehyde 3- phosphate dehydrogenase, L-lactate dehydrogenase and gametocytogenesis onset-specific protein. The possible involvement of these proteins in the antimalarial mode of action of chloroquine is discussed. It is concluded that drug-induced binding of FPIX to parasite glycolytic enzymes could underlie the demonstrable inhibition of glycolysis by chloroquine. The inhibition of 6- phosphogluconate dehydrogenase could explain the reduction of the activity of the hexose monophosphate shunt by the drug. Inhibition of both processes is deleterious to parasite survival. Binding of FPIX to other proteins is probably inconsequential to the rapid killing of the parasite by chloroquine.

  12. An InDel in the promoter of Al-activated malate transporter 9 selected during tomato domestication determines fruit malate content and aluminum tolerance

    Science.gov (United States)

    Deciphering the mechanism of malate accumulation in plants would contribute to a greater understanding of plant chemistry, which has implications for improving flavor quality in crop species and enhancing human health benefits. However, the regulation of malate metabolism is poorly understood in cro...

  13. Lactate dehydrogenase is not a mitochondrial enzyme in human and mouse vastus lateralis muscle

    DEFF Research Database (Denmark)

    Rasmussen, Hans N; van Hall, Gerrit; Rasmussen, Ulla F

    2002-01-01

    The presence of lactate dehydrogenase in skeletal muscle mitochondria was investigated to clarify whether lactate is a possible substrate for mitochondrial respiration. Mitochondria were prepared from 100 mg samples of human and mouse vastus lateralis muscle. All fractions from the preparation...... procedure were assayed for marker enzymes and lactate dehydrogenase (LDH). The mitochondrial fraction contained no LDH activity (detection limit approximately 0.05 % of the tissue activity) and the distribution of LDH activity among the fractions paralleled that of pyruvate kinase, i.e. LDH was fractionated...... as a cytoplasmic enzyme. Respiratory experiments with the mitochondrial fraction also indicated the absence of LDH. Lactate did not cause respiration, nor did it affect the respiration of pyruvate + malate. The major part of the native cytochrome c was retained in the isolated mitochondria, which, furthermore...

  14. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier.

    Science.gov (United States)

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A; Traub, Michaela; Martinoia, Enrico; Neuhaus, H Ekkehard

    2003-09-16

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter.

  15. Reduced prevalence of Plasmodium falciparum infection and of concomitant anaemia in pregnant women with heterozygous G6PD deficiency

    NARCIS (Netherlands)

    Mockenhaupt, Frank P.; Mandelkow, Jantina; Till, Holger; Ehrhardt, Stephan; Eggelte, Teunis A.; Bienzle, Ulrich

    2003-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency confers protection against malaria in children, yet its role in malaria in pregnancy is unknown. In a cross-sectional study among 529 pregnant Ghanaian women, Plasmodium falciparum infection, anaemia and G6PD genotypes were assessed. Of these,

  16. Action of diclofenac on kidney mitochondria and cells

    International Nuclear Information System (INIS)

    Ng, Lin Eng; Vincent, Annette S.; Halliwell, Barry; Wong, Kim Ping

    2006-01-01

    The mitochondrial membrane potential measured in isolated rat kidney mitochondria and in digitonin-permeabilized MDCK type II cells pre-energized with succinate, glutamate, and/or malate was reduced by micromolar diclofenac dose-dependently. However, ATP biosynthesis from glutamate/malate was significantly more compromised compared to that from succinate. Inhibition of the malate-aspartate shuttle by diclofenac with a resultant decrease in the ability of mitochondria to generate NAD(P)H was demonstrated. Diclofenac however had no effect on the activities of NADH dehydrogenase, glutamate dehydrogenase, and malate dehydrogenase. In conclusion, decreased NAD(P)H production due to an inhibition of the entry of malate and glutamate via the malate-aspartate shuttle explained the more pronounced decreased rate of ATP biosynthesis from glutamate and malate by diclofenac. This drug, therefore affects the bioavailability of two major respiratory complex I substrates which would normally contribute substantially to supplying the reducing equivalents for mitochondrial electron transport for generation of ATP in the renal cell

  17. Prognostic value of long non-coding RNA MALAT1 in cancer patients.

    Science.gov (United States)

    Wu, Yihua; Lu, Wei; Xu, Jinming; Shi, Yu; Zhang, Honghe; Xia, Dajing

    2016-01-01

    Metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) was identified to be the first long non-coding RNA as a biomarker of independent prognostic value for early stage non-small cell lung cancer patient survival. In recent years, the association between upregulated tissue MALAT1 level and incidence of various cancers including bladder cancer, colorectal cancer, and renal cancer has been widely discussed. The aim of our present study was to assess the potential prognostic value of MALAT1 in various human cancers. PubMed, Embase, Ovid, and Cochrane Library databases were systematically searched, and eligible studies evaluating the prognostic value of MALAT1 in various cancers were included. Finally, 11 studies encompassing 1216 participants reporting with sufficient data were enrolled in the current meta-analysis. The pooled hazard ratio (HR) was 2.05 (95 % confidence interval (CI) 1.64-2.55, p < 0.01) for overall survival (OS) and 2.66 (95 % CI 1.86-3.80, p < 0.01) for disease-free survival (DFS). In conclusion, high tissue MALAT1 level was associated with an inferior clinical outcome in various cancers, suggesting that MALAT1 might serve as a potential prognostic biomarker for various cancers.

  18. Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides.

    Science.gov (United States)

    Zhao, Lina; Cánovas-Márquez, José T; Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2016-02-01

    Fatty acid biosynthesis in oleaginous fungi requires the supply of reducing power, NADPH, and the precursor of fatty acids, acetyl-CoA, which is generated in the cytosol being produced by ATP: citrate lyase which requires citrate to be, transported from the mitochondrion by the citrate/malate/pyruvate transporter. This transporter, which is within the mitochondrial membrane, transports cytosolic malate into the mitochondrion in exchange for mitochondrial citrate moving into the cytosol (Fig. 1). The role of malate transporter in lipid accumulation in oleaginous fungi is not fully understood, however. Therefore, the expression level of the mt gene, coding for a malate transporter, was manipulated in the oleaginous fungus Mucor circinelloides to analyze its effect on lipid accumulation. The results showed that mt overexpression increased the lipid content for about 70 % (from 13 to 22 % dry cell weight, CDW), whereas the lipid content in mt knockout mutant decreased about 27 % (from 13 to 9.5 % CDW) compared with the control strain. Furthermore, the extracellular malate concentration was decreased in the mt overexpressing strain and increased in the mt knockout strain compared with the wild-type strain. This work suggests that the malate transporter plays an important role in regulating lipid accumulation in oleaginous fungus M. circinelloides.

  19. STUDIES ON THE DYNAMICS OF DEHYDROGENASES KREBS CYCLE ACTIVITY AT MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS GROWN ON MEDIA WITH DIFFERENT CARBOHYDRATES

    Directory of Open Access Journals (Sweden)

    Elena Ciornea

    2010-09-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  20. STUDIES ON THE DYNAMICS OF DEHYDROGENASES KREBS CYCLE ACTIVITY AT MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS GROWN ON MEDIA WITH DIFFERENT CARBOHYDRATES

    Directory of Open Access Journals (Sweden)

    Elena Ciornea

    2011-11-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  1. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.

    Science.gov (United States)

    Abbrescia, Daniela Isabel; La Piana, Gianluigi; Lofrumento, Nicola Elio

    2012-02-15

    In mammalian cells aerobic oxidation of glucose requires reducing equivalents produced in glycolytic phase to be channelled into the phosphorylating respiratory chain for the reduction of molecular oxygen. Data never presented before show that the oxidation rate of exogenous NADH supported by the malate-aspartate shuttle system (reconstituted in vitro with isolated liver mitochondria) is comparable to the rate obtained on activation of the cytosolic NADH/cytochrome c electron transport pathway. The activities of these two reducing equivalent transport systems are independent of each other and additive. NADH oxidation induced by the malate-aspartate shuttle is inhibited by aminooxyacetate and by rotenone and/or antimycin A, two inhibitors of the respiratory chain, while the NADH/cytochrome c system remains insensitive to all of them. The two systems may simultaneously or mutually operate in the transfer of reducing equivalents from the cytosol to inside the mitochondria. In previous reports we suggested that the NADH/cytochrome c system is expected to be functioning in apoptotic cells characterized by the presence of cytochrome c in the cytosol. As additional new finding the activity of reconstituted shuttle system is linked to the amount of α-ketoglutarate generated inside the mitochondria by glutamate dehydrogenase rather than by aspartate aminotransferase. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Modeling the vacuolar storage of malate shed lights on pre- and post-harvest fruit acidity.

    Science.gov (United States)

    Etienne, Audrey; Génard, Michel; Lobit, Philippe; Bugaud, Christophe

    2014-11-18

    Malate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. Several studies suggest that malate accumulation in fruit cells is controlled at the level of vacuolar storage. However, the regulation of vacuolar malate storage throughout fruit development, and the origins of the phenotypic variability of the malate concentration within fruit species remain to be clarified. In the present study, we adapted the mechanistic model of vacuolar storage proposed by Lobit et al. in order to study the accumulation of malate in pre and postharvest fruits. The main adaptation concerned the variation of the free energy of ATP hydrolysis during fruit development. Banana fruit was taken as a reference because it has the particularity of having separate growth and post-harvest ripening stages, during which malate concentration undergoes substantial changes. Moreover, the concentration of malate in banana pulp varies greatly among cultivars which make possible to use the model as a tool to analyze the genotypic variability. The model was calibrated and validated using data sets from three cultivars with contrasting malate accumulation, grown under different fruit loads and potassium supplies, and harvested at different stages. The model predicted the pre and post-harvest dynamics of malate concentration with fairly good accuracy for the three cultivars (mean RRMSE = 0.25-0.42). The sensitivity of the model to parameters and input variables was analyzed. According to the model, vacuolar composition, in particular potassium and organic acid concentrations, had an important effect on malate accumulation. The model suggested that rising temperatures depressed malate accumulation. The model also helped distinguish differences in malate concentration among the three cultivars and between the pre and post-harvest stages by highlighting the probable importance of proton pump activity and particularly of the free

  3. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    Science.gov (United States)

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  4. Genetic Investigation of Tricarboxylic Acid Metabolism during the Plasmodium falciparum Life Cycle

    Directory of Open Access Journals (Sweden)

    Hangjun Ke

    2015-04-01

    Full Text Available New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO lines that delete six of the eight mitochondrial tricarboxylic acid (TCA cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of 13C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development.

  5. Investigations regarding the anthropic impact on the Krebs cycle dehydrogenases system on certain wood-species in mining areas, Suceava county

    Directory of Open Access Journals (Sweden)

    Marius Viorel Oniciuc

    2013-03-01

    Full Text Available The Krebs cycle, a second stage of cellular respiration that occurs in the mitochondrion of the leafcell and consist in a multistep processes plays a central role in catabolism of organic fuel molecules. The miningextraction technologies for both underground and surface, the preparation of copper ore and barite applied in Tarnia,respectively to the sulphur in Calimani Mountain and the excess of these elements in natural environment may causemalfunction of ecosystem. The dehydrogenases of Krebs cycle can give information on the type and the duration of theeffects of pollutants on the metabolic activity in leaves, to subsequent area pollution, therefore, the aim of the presentstudy has been to determine these effects on this enzymatic system activity. For this reason, the isocitrate dehydrogenase,the -ketoglutate dehydrogenase, the succinate ehydrogenase and the malate dehydrogenase activity was determined using the spectrophotometric method with triphenyl-tetrazolium and the analysis of experimental results shows the differences from one sample to another sample of closely related species specificity, but also the effect of environmentalfactors.

  6. The microculture tetrazolium assay (MTA): another colorimetric method of testing Plasmodium falciparum chemosensitivity.

    Science.gov (United States)

    Delhaes, L; Lazaro, J E; Gay, F; Thellier, M; Danis, M

    1999-01-01

    Malarial lactate dehydrogenase (LDH), which uses 3-acetyl pyridine adenine dinucleotide as coenzyme in a reaction leading to the formation of pyruvate from L-lactate, may be used to study the susceptibility of Plasmodium falciparum to a drug in vitro. Several methods to determine the activity of this enzyme are available. One, the colorimetric method of Makler and colleagues, was modified slightly, by using sodium-2,3-bis-[2-methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5 - carboxanilide (XTT) and following the reaction by measuring the optical density at 450 nm. Using two, culture-adapted strains of P. falciparum, this LDH assay was compared with the unmodified Makler's assay and with the isotopic microtest based on the incorporation of tritium-labelled hypoxanthine. Fresh, clinical P. falciparum isolates were also tested in the presence of several drugs, including chloroquine, mefloquine, quinine, halofantrine, atovaquone and qinghaosu derivatives. The results of the three assays were correlated for all the drugs tested except atovaquone. The two enzymatic assays are non-radioactive, rapid, reliable, inexpensive to perform and semi-automatic. However, they do require an initial parasitaemia of 2% with a haematocrit of 1.8%.

  7. Genetic investigation of tricarboxylic acid metabolism during the Plasmodium falciparum life cycle.

    Science.gov (United States)

    Ke, Hangjun; Lewis, Ian A; Morrisey, Joanne M; McLean, Kyle J; Ganesan, Suresh M; Painter, Heather J; Mather, Michael W; Jacobs-Lorena, Marcelo; Llinás, Manuel; Vaidya, Akhil B

    2015-04-07

    New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO) lines that delete six of the eight mitochondrial tricarboxylic acid (TCA) cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of (13)C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats.

    Science.gov (United States)

    Zeng, X; Wu, J; Wu, Q; Zhang, J

    2015-01-01

    Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes.

  9. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications.

    Science.gov (United States)

    Holtgrefe, Simone; Gohlke, Jochen; Starmann, Julia; Druce, Samantha; Klocke, Susanne; Altmann, Bianca; Wojtera, Joanna; Lindermayr, Christian; Scheibe, Renate

    2008-06-01

    Cytosolic NAD-dependent glyceraldehyde 3-P dehydrogenase (GAPDH; GapC; EC 1.2.1.12) catalyzes the oxidation of triose phosphates during glycolysis in all organisms, but additional functions of the protein has been put forward. Because of its reactive cysteine residue in the active site, it is susceptible to protein modification and oxidation. The addition of GSSG, and much more efficiently of S-nitrosoglutathione, was shown to inactivate the enzymes from Arabidopsis thaliana (isoforms GapC1 and 2), spinach, yeast and rabbit muscle. Inactivation was fully or at least partially reversible upon addition of DTT. The incorporation of glutathione upon formation of a mixed disulfide could be shown using biotinylated glutathione ethyl ester. Furthermore, using the biotin-switch assay, nitrosylated thiol groups could be shown to occur after treatment with nitric oxide donors. Using mass spectrometry and mutant proteins with one cysteine lacking, both cysteines (Cys-155 and Cys-159) were found to occur as glutathionylated and as nitrosylated forms. In preliminary experiments, it was shown that both GapC1 and GapC2 can bind to a partial gene sequence of the NADP-dependent malate dehydrogenase (EC 1.2.1.37; At5g58330). Transiently expressed GapC-green fluorescent protein fusion proteins were localized to the nucleus in A. thaliana protoplasts. As nuclear localization and DNA binding of GAPDH had been shown in numerous systems to occur upon stress, we assume that such mechanism might be part of the signaling pathway to induce increased malate-valve capacity and possibly other protective systems upon overreduction and initial formation of reactive oxygen and nitrogen species as well as to decrease and protect metabolism at the same time by modification of essential cysteine residues.

  10. Malaria rapid diagnostic tests: Plasmodium falciparum infections with high parasite densities may generate false positive Plasmodium vivax pLDH lines

    Directory of Open Access Journals (Sweden)

    van Esbroeck Marjan

    2010-07-01

    Full Text Available Abstract Background Most malaria rapid diagnostic tests (RDTs detect Plasmodium falciparum and an antigen common to the four species. Plasmodium vivax-specific RDTs target P. vivax-specific parasite lactate dehydrogenase (Pv-pLDH. Previous observations of false positive Pv-pLDH test lines in P. falciparum samples incited to the present study, which assessed P. vivax-specific RDTs for the occurrence of false positive Pv-pLDH lines in P. falciparum samples. Methods Nine P. vivax-specific RDTs were tested with 85 P. falciparum samples of high (≥2% parasite density. Mixed P. falciparum/P. vivax infections were ruled out by real-time PCR. The RDTs included two-band (detecting Pv-pLDH, three-band (detecting P. falciparum-antigen and Pv-pLDH and four-band RDTs (detecting P. falciparum, Pv-pLDH and pan-pLDH. Results False positive Pv-pLDH lines were observed in 6/9 RDTs (including two- three- and four-band RDTs. They occurred in the individual RDT brands at frequencies ranging from 8.2% to 29.1%. For 19/85 samples, at least two RDT brands generated a false positive Pv-pLDH line. Sixteen of 85 (18.8% false positive lines were of medium or strong line intensity. There was no significant relation between false positive results and parasite density or geographic origin of the samples. Conclusion False positive Pv-pLDH lines in P. falciparum samples with high parasite density occurred in 6/9 P. vivax-specific RDTs. This is of concern as P. falciparum and P. vivax are co-circulating in many regions. The diagnosis of life-threatening P. falciparum malaria may be missed (two-band Pv-pLDH RDT, or the patient may be treated incorrectly with primaquine (three- or four-band RDTs.

  11. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants.

    Science.gov (United States)

    Wang, Qing-Jie; Sun, Hong; Dong, Qing-Long; Sun, Tian-Yu; Jin, Zhong-Xin; Hao, Yu-Jin; Yao, Yu-Xin

    2016-10-01

    In this study, we characterized the role of an apple cytosolic malate dehydrogenase gene (MdcyMDH) in the tolerance to salt and cold stresses and investigated its regulation mechanism in stress tolerance. The MdcyMDH transcript was induced by mild cold and salt treatments, and MdcyMDH-overexpressing apple plants possessed improved cold and salt tolerance compared to wild-type (WT) plants. A digital gene expression tag profiling analysis revealed that MdcyMDH overexpression largely altered some biological processes, including hormone signal transduction, photosynthesis, citrate cycle and oxidation-reduction. Further experiments verified that MdcyMDH overexpression modified the mitochondrial and chloroplast metabolisms and elevated the level of reducing power, primarily caused by increased ascorbate and glutathione, as well as the increased ratios of ascorbate/dehydroascorbate and glutathione/glutathione disulphide, under normal and especially stress conditions. Concurrently, the transgenic plants produced a high H2 O2 content, but a low O2·- production rate was observed compared to the WT plants. On the other hand, the transgenic plants accumulated more free and total salicylic acid (SA) than the WT plants under normal and stress conditions. Taken together, MdcyMDH conferred the transgenic apple plants a higher stress tolerance by producing more reductive redox states and increasing the SA level; MdcyMDH could serve as a target gene to genetically engineer salt- and cold-tolerant trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Photosynthetic metabolism of malate and aspartate in Flaveria trinervia a C4 dicot

    International Nuclear Information System (INIS)

    Moore, B.A.

    1986-01-01

    C 4 species are known to vary in their apparent relative use of malate and aspartate to mediate carbon flux through the C 4 cycle. These studies investigate some of the adjustments in photosynthetic carbon metabolism that occur during a dark to light transition and during expansion of leaves of Flaveria trinervia, a C 4 dicot. Enzyme localization studies with isolated leaf mesophyll and bundle sheath protoplasts, indicated that both C 4 acids are formed in the mesophyll chloroplast, and that aspartate is metabolized to malate in the bundle sheath chloroplast prior to decaroxylation there. During photosynthetic induction, the partitioning of 14 CO 2 between malate and aspartate showed a single oscillation of increased aspartate labelling after 5 min of illumination. Turnover of [4-14C] (malate plus aspartate) was slow initially during illumination, prior to establishment of active pools of C 4 cycle metabolites

  13. Long noncoding RNA MALAT1 as a potential novel biomarker in digestive system cancers: a meta-analysis.

    Science.gov (United States)

    Song, Wei; Zhang, Run J; Zou, Shu B

    2016-08-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a newly discovered long non-coding RNA (lncRNA), has been reported to be overexpressed in various cancers. However, the clinical value of MALAT1 in digestive system cancers is unclear. This study was designed to investigate the potential value of MALAT1 as a prognostic biomarker in digestive system cancers. We searched the Medline, Embase and Cochrane Library databases. All studies that explored the correlation between lncRNA MALAT1 expression and survival in digestive system tumors were selected. A quantitative meta-analysis was performed for the correlation between lncRNA MALAT1 expression and survival in digestive system tumors. Five studies were eligible for analysis, which included 547 patients. Meta-analysis showed that high expression of MALAT1 could predict poor overall survival (OS) in digestive system cancers (pooled HR: 1.85, 95% CI: 1.41-2.43, Pdigestive system cancers.

  14. The Association between Abnormal Long Noncoding RNA MALAT-1 Expression and Cancer Lymph Node Metastasis: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2016-01-01

    Full Text Available Previous studies have investigated that the expression levels of MALAT-1 were higher in cancerous tissues than matched histologically normal tissues. And, to some extent, overexpression of MALAT-1 was inclined to lymph node metastasis. This meta-analysis collected all relevant articles and explored the association between MALAT-1 expression levels and lymph node metastasis. We searched PubMed, EmBase, Web of Science, Cochrane Library, and OVID to address the level of MALAT-1 expression in cancer cases and noncancerous controls (accessed February 2015. And 8 studies comprising 696 multiple cancer patients were included to assess this association. The odds ratio (OR and its corresponding 95% confidence interval (CI were calculated to assess the strength of the association using Stata 12.0 version software. The results revealed there was a significant difference in the incidence of lymph node metastasis between high MALAT-1 expression group and low MALAT-1 expression group (OR = 1.94, 95% CI 1.15–3.28, P=0.013 random-effects model. Subgroup analysis indicated that MALAT-1 high expression had an unfavorable impact on lymph node metastasis in Chinese patients (OR = 1.87, 95% CI 1.01–2.46. This study demonstrated that the incidence of lymph node metastasis in patients detected with high MALAT-1 expression was higher than that in patients with low MALAT-1 expression in China.

  15. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.

    Science.gov (United States)

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2017-11-20

    l-Malate, an important chemical building block, has been widely applied in the food, pharmaceutical, and bio-based materials industries. In previous work, we engineered Aspergillus oryzae by rewiring the reductive tricarboxylic acid pathway to produce l-malate from glucose. To decrease the production cost, here, we further engineered A. oryzae to efficiently produce l-malate directly from corn starch with simultaneous liquefaction-saccharification and fermentation. First, a promoter PN5 was constructed by quintuple tandem of the 97-bp fragment containing the cis-element of the glucoamylase gene promoter (PglaA), and with the promoter PN5, the transcriptional level of glaA gene increased by 25-45%. Then, by co-overexpression of glaA, a-amylase (amyB) and a-glucosidase (agdA) genes with the promoter PN5, the l-malate titer increased from 55.5g/L to 72.0g/L with 100g/L corn starch in shake flask. In addition, to reduce the concentration of byproducts succinate and fumarate, a fumarase from Saccharomyces cerevisiae, which facilitated the transformation of fumarate to l-malate, was overexpressed. As a result, the concentration of succinate and fumarate decreased from 12.6 and 1.29g/L to 7.8 and 0.59g/L, and the l-malate titer increased from 72.0g/L to 78.5g/L. Finally, we found that the addition of glucose at the initial fermentation stage facilitated the cell growth and l-malate synthesis, and the l-malate titer further increased to 82.3g/L by co-fermentation of 30g/L glucose and 70g/L corn starch, with a productivity of 1.18g/L/h and a yield of 0.82g/g total carbon sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Occurrence of the malate-aspartate shuttle in various tumor types.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm.

  17. A randomized, double-blind, placebo-controlled, dose-ranging trial of tafenoquine for weekly prophylaxis against Plasmodium falciparum.

    Science.gov (United States)

    Hale, Braden R; Owusu-Agyei, Seth; Fryauff, David J; Koram, Kwadwo A; Adjuik, Martin; Oduro, Abraham R; Prescott, W Roy; Baird, J Kevin; Nkrumah, Francis; Ritchie, Thomas L; Franke, Eileen D; Binka, Fred N; Horton, John; Hoffman, Stephen L

    2003-03-01

    Tafenoquine is a promising new 8-aminoquinoline drug that may be useful for malaria prophylaxis in nonpregnant persons with normal glucose-6-phosphate dehydrogenase (G6PD) function. A randomized, double-blind, placebo-controlled chemoprophylaxis trial was conducted with adult residents of northern Ghana to determine the minimum effective weekly dose of tafenoquine for the prevention of infection by Plasmodium falciparum. The primary end point was a positive malaria blood smear result during the 13 weeks of study drug coverage. Relative to the placebo, all 4 tafenoquine dosages demonstrated significant protection against P. falciparum infection: for 25 mg/week, protective efficacy was 32% (95% confidence interval [CI], 20%-43%); for 50 mg/week, 84% (95% CI, 75%-91%); for 100 mg/week, 87% (95% CI, 78%-93%); and for 200 mg/week, 86% (95% CI, 76%-92%). The mefloquine dosage of 250 mg/week also demonstrated significant protection against P. falciparum infection (protective efficacy, 86%; 95% CI, 72%-93%). There was little difference between study groups in the adverse events reported, and there was no evidence of a relationship between tafenoquine dosage and reports of physical complaints or the occurrence of abnormal laboratory parameters. Tafenoquine dosages of 50, 100, and 200 mg/week were safe, well tolerated, and effective against P. falciparum infection in this study population.

  18. la phosphoglucoisomerase et la malate deshydrogenase

    African Journals Online (AJOL)

    AISA

    dimérique du cycle de Krebs qui catalyse la réaction suivante: Malate + NAD MDH Oxaloacétate +. NADH. Dans les cellules du maïs, les formes cytosoliques sont codées par deux loci, les formes mitochondriales par 3 loci (Newton et. Schwartz, 1980). L'acide ascorbique inhibe préférentiellement les formes du cytosol.

  19. Altered Expression of a Malate-Permeable Anion Channel, OsALMT4, Disrupts Mineral Nutrition1[OPEN

    Science.gov (United States)

    Delhaize, Emmanuel

    2017-01-01

    Aluminum-activated malate transporters (ALMTs) form a family of anion channels in plants, but little is known about most of its members. This study examined the function of OsALMT4 from rice (Oryza sativa). We show that OsALMT4 is expressed in roots and shoots and that the OsALMT4 protein localizes to the plasma membrane. Transgenic rice lines overexpressing (OX) OsALMT4 released malate from the roots constitutively and had 2-fold higher malate concentrations in the xylem sap than nulls, indicating greater concentrations of malate in the apoplast. OX lines developed brown necrotic spots on the leaves that did not appear on nulls. These symptoms were not associated with altered concentrations of any mineral element in the leaves, although the OX lines had higher concentrations of Mn and B in their grain compared with nulls. While total leaf Mn concentrations were not different between the OX and null lines, Mn concentrations in the apoplast were greater in the OX plants. The OX lines also displayed increased expression of Mn transporters and were more sensitive to Mn toxicity than null plants. We showed that the growth of wild-type rice was unaffected by 100 µm Mn in hydroponics but, when combined with 1 mm malate, this concentration inhibited growth. We conclude that increasing OsALMT4 expression affected malate efflux and compartmentation within the tissues, which increased Mn concentrations in the apoplast of leaves and induced the toxicity symptoms. This study reveals new links between malate transport and mineral nutrition. PMID:29101278

  20. Induction of long noncoding RNA MALAT1 in hypoxic mice

    Directory of Open Access Journals (Sweden)

    Lelli A

    2015-10-01

    Full Text Available Aurelia Lelli,1,2,* Karen A Nolan,1,2,* Sara Santambrogio,1,2 Ana Filipa Gonçalves,1,2 Miriam J Schönenberger,1,2 Anna Guinot,1,2 Ian J Frew,1,2 Hugo H Marti,3 David Hoogewijs,1,2,4 Roland H Wenger1,2 1Institute of Physiology and Zurich Center for Human Physiology (ZIHP, University of Zurich, Zurich, Switzerland; 2National Center of Competence in Research "Kidney.CH", Zurich, Switzerland; 3Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany; 4Institute of Physiology, University of Duisburg-Essen, Essen, Germany *These authors contributed equally to this work Abstract: Long thought to be “junk DNA”, in recent years it has become clear that a substantial fraction of intergenic genomic DNA is actually transcribed, forming long noncoding RNA (lncRNA. Like mRNA, lncRNA can also be spliced, capped, and polyadenylated, affecting a multitude of biological processes. While the molecular mechanisms underlying the function of lncRNAs have just begun to be elucidated, the conditional regulation of lncRNAs remains largely unexplored. In genome-wide studies our group and others recently found hypoxic transcriptional induction of a subset of lncRNAs, whereof nuclear-enriched abundant/autosomal transcript 1 (NEAT1 and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1 appear to be the lncRNAs most ubiquitously and most strongly induced by hypoxia in cultured cells. Hypoxia-inducible factor (HIF-2 rather than HIF-1 seems to be the preferred transcriptional activator of these lncRNAs. For the first time, we also found strong induction primarily of MALAT1 in organs of mice exposed to inspiratory hypoxia. Most abundant hypoxic levels of MALAT1 lncRNA were found in kidney and testis. In situ hybridization revealed that the hypoxic induction in the kidney was confined to proximal rather than distal tubular epithelial cells. Direct oxygen-dependent regulation of MALAT1 lncRNA was confirmed using isolated primary

  1. Apicoplast lipoic acid protein ligase B is not essential for Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Svenja Günther

    2007-12-01

    Full Text Available Lipoic acid (LA is an essential cofactor of alpha-keto acid dehydrogenase complexes (KADHs and the glycine cleavage system. In Plasmodium, LA is attached to the KADHs by organelle-specific lipoylation pathways. Biosynthesis of LA exclusively occurs in the apicoplast, comprising octanoyl-[acyl carrier protein]: protein N-octanoyltransferase (LipB and LA synthase. Salvage of LA is mitochondrial and scavenged LA is ligated to the KADHs by LA protein ligase 1 (LplA1. Both pathways are entirely independent, suggesting that both are likely to be essential for parasite survival. However, disruption of the LipB gene did not negatively affect parasite growth despite a drastic loss of LA (>90%. Surprisingly, the sole, apicoplast-located pyruvate dehydrogenase still showed lipoylation, suggesting that an alternative lipoylation pathway exists in this organelle. We provide evidence that this residual lipoylation is attributable to the dual targeted, functional lipoate protein ligase 2 (LplA2. Localisation studies show that LplA2 is present in both mitochondrion and apicoplast suggesting redundancy between the lipoic acid protein ligases in the erythrocytic stages of P. falciparum.

  2. Quininium Malates: Partial Chiral Discrimination via Diastereomeric ...

    African Journals Online (AJOL)

    Quinine was employed as a resolving agent for racemic malic acid. The resultant product was a quininium salt containing 75 % of the D-malate anion. Quinine was also crystallized with pure L- and D-malic acids and the structures of the resulting diastereomeric salts were elucidated. The crystal packings were analyzed in ...

  3. Prognostic value of long noncoding RNA MALAT1 in digestive system malignancies.

    Science.gov (United States)

    Zhai, Hui; Li, Xiao-Mei; Maimaiti, Ailifeire; Chen, Qing-Jie; Liao, Wu; Lai, Hong-Mei; Liu, Fen; Yang, Yi-Ning

    2015-01-01

    MALAT1, a newly discovered long noncoding RNA (lncRNA), has been reported to be highly expressed in many types of cancers. This meta-analysis summarizes its potential prognostic value in digestive system malignancies. A quantitative meta-analysis was performed through a systematic search in PubMed, Cochrane Library, Web of Science and Chinese National Knowledge Infrastructure (CNKI) for eligible papers on the prognostic impact of MALAT1 in digestive system malignancies from inception to Apr. 25, 2015. Pooled hazard ratios (HRs) with 95% confidence interval (95% CI) were calculated to summarize the effect. Five studies were included in the study, with a total of 527 patients. A significant association was observed between MALAT1 abundance and poor overall survival (OS) of patients with digestive system malignancies, with pooled hazard ratio (HR) of 7.68 (95% confidence interval [CI]: 4.32-13.66, Pdigestive system malignancies.

  4. NAD(P-DEPENDENT DEHYDROGENASE ACTIVITY IN PERIPHERAL BLOOD LYMPHOCYTES OF INFANTS WITH ENLARGEMENT OF PHARYNGEAL TONSILS

    Directory of Open Access Journals (Sweden)

    L. M. Kurtasova

    2014-01-01

    Full Text Available We have observed and examined 57 children 1 to 3 years old diagnosed with enlargement of pharyngeal tonsils. A control group was presented by 35 healthy children. Bioluminescence technique was applied for studying NAD(P-dependent dehydrogenase activity in peripheral blood lymphocytes. Activation of aerobic respiration and increasing activity of pentose phosphate cycle-dependent plastic processes were registered in blood lymphocytes of children with hypertrophic pharyngeal tonsils; along with decreased function of malate-aspartate shunt in energy metabolism of the cells, diminished anaerobic reaction of NADHdependent LDH, lower interaction between Krebs cycle and reactions of amino acid metabolism, and reduced activity of glutathione reductase.

  5. Bringing the excitement and motivation of research to students; Using inquiry and research-based learning in a year-long biochemistry laboratory : Part II-research-based laboratory-a semester-long research approach using malate dehydrogenase as a research model.

    Science.gov (United States)

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A; Provost, Joseph J

    2010-09-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments for the entire semester. This style of laboratory replaces a variety of shorter labs in favor of an in depth research-based learning experience. The concept is to allow students to function in independent research groups. The research projects are focused on a series of wild-type and mutant clones of malate dehydrogenase. A common research theme for the laboratory helps instructors administer the course and is key to delivering a research opportunity to a large number of students. The outcome of this research-based learning laboratory results in students who are much more confident and skilled in critical areas in biochemistry and molecular biology. Students with research experience have significantly higher confidence and motivation than those students without a previous research experience. We have also found that all students performed better in advanced courses and in the workplace. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  6. Long Non-Coding RNA MALAT1 Mediates Transforming Growth Factor Beta1-Induced Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Shuai Yang

    Full Text Available To study the role of long non-coding RNA (lncRNA MALAT1 in transforming growth factor beta 1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of retinal pigment epithelial (RPE cells.ARPE-19 cells were cultured and exposed to TGF-β1. The EMT of APRE-19 cells is confirmed by morphological change, as well as the increased expression of alpha-smooth muscle actin (αSMA and fibronectin, and the down-regulation of E-cadherin and Zona occludin-1(ZO-1 at both mRNA and protein levels. The expression of lncRNA MALAT1 in RPE cells were detected by quantitative real-time PCR. Knockdown of MALAT1 was achieved by transfecting a small interfering RNA (SiRNA. The effect of inhibition of MALAT1 on EMT, migration, proliferation, and TGFβ signalings were observed. MALAT1 expression was also detected in primary RPE cells incubated with proliferative vitreoretinopathy (PVR vitreous samples.The expression of MALAT1 is significantly increased in RPE cells incubated with TGFβ1. MALAT1 silencing attenuates TGFβ1-induced EMT, migration, and proliferation of RPE cells, at least partially through activating Smad2/3 signaling. MALAT1 is also significantly increased in primary RPE cells incubated with PVR vitreous samples.LncRNA MALAT1 is involved in TGFβ1-induced EMT of human RPE cells and provides new understandings for the pathogenesis of PVR.

  7. The lncRNA Malat1 Is Dispensable for Mouse Development but Its Transcription Plays a cis-Regulatory Role in the Adult

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2012-07-01

    Full Text Available Genome-wide studies have identified thousands of long noncoding RNAs (lncRNAs lacking protein-coding capacity. However, most lncRNAs are expressed at a very low level, and in most cases there is no genetic evidence to support their in vivo function. Malat1 (metastasis associated lung adenocarcinoma transcript 1 is among the most abundant and highly conserved lncRNAs, and it exhibits an uncommon 3′-end processing mechanism. In addition, its specific nuclear localization, developmental regulation, and dysregulation in cancer are suggestive of it having a critical biological function. We have characterized a Malat1 loss-of-function genetic model that indicates that Malat1 is not essential for mouse pre- and postnatal development. Furthermore, depletion of Malat1 does not affect global gene expression, splicing factor level and phosphorylation status, or alternative pre-mRNA splicing. However, among a small number of genes that were dysregulated in adult Malat1 knockout mice, many were Malat1 neighboring genes, thus indicating a potential cis-regulatory role of Malat1 gene transcription.

  8. Fumarate to Malate Conversion in Infarcted Porcine Heart – a Pilot Study

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Tougaard, Rasmus Stilling; Nielsen, Per Mose

    2017-01-01

    Hyperpolarized MR may be a key tool for investigation cardiac metabolism and cardiac treatment response. [1,4- 13C2]Fumarate is an emerging and interesting candidate for measuring and visualizing cardiac injury after ischemia. In this study we showed an initial step for imaging cardiac cell death...... in a large animal model with [1,4- 13C2]malate. The [1,4- 13C2]malate signal correlated well with increased 13C-lactate signal and 13C-alanine absence. Overall, this shows increased metabolism in the infarcted area and ongoing necrosis....

  9. BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-01-01

    Full Text Available Aluminum (Al is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104 was cloned from cabbage (Brassica oleracea. BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent cations lanthanum (La, cadmium (Cd, zinc (Zn, or copper (Cu. Subcellular localization studies were performed in onion epidermal cells and revealed that BoALMT1 was localized at the plasma membrane. Scanning Ion-selective Electrode Technique was used to analyze H+ flux. Xenopus oocytes and Arabidopsis thaliana expressing BoALMT1 excreted more H+ under Al treatment. Overexpressing BoALMT1 in transgenic Arabidopsis resulted in enhanced Al tolerance and increased malate secretion. The results suggested that BoALMT1 functions as an Al-resistant gene and encodes a malate transporter. Expressing BoALMT1 in Xenopus oocytes or A. thaliana indicated that BoALMT1 could increase malate secretion and H+ efflux to resist Al tolerance.

  10. Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?

    Science.gov (United States)

    Vitor, Simone C; do Amarante, Luciano; Sodek, Ladaslav

    2018-05-16

    A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N 2 fixation also contained elevated concentrations of malate in the xylem sap. When either nitrate or ammonium was supplied, malate concentrations in the xylem sap were low, both for nodulated and non-nodulated plants. Evidence was obtained that the elevated malate concentration of the xylem was derived from amino acids supplied by the phloem. Aspartate was a prominent component of the phloem sap amino acids and, therefore, a potential source of malate. Supplying the roots of intact plants with 13 C-aspartate revealed that malate of the xylem sap was readily labelled under N starvation. A hypothetical scheme is proposed whereby aspartate supplied by the phloem is metabolised in the roots and the products of this metabolism cycled back to the shoot. Under N starvation, aspartate metabolism is diverted from asparagine synthesis to supply N for the synthesis of other amino acids via transaminase activity. The by-product of aspartate transaminase activity, oxaloacetate, is transformed to malate and its export accounts for much of the elevated concentration of malate found in the xylem sap. This mechanism represents a new additional role for malate during mineral N starvation of soybean, beyond that of charge balance.

  11. Effect of parenterally administered cystamine and gammaphos (WR-2721) on some biochemical parameters in dog blood serum

    International Nuclear Information System (INIS)

    Simsa, J.; Tichy, M.; Podzimek, F.; Spelda, S.; Resl, M.; Kuna, P.

    1987-01-01

    The effects were studied of intravenous and intramuscular administration of radioprotectives cystamine and gammaphos in dogs on the biochemical parameters of the blood serum. The activities were studied of enzymes aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine kinase, gamma-glutamyl transpeptidase, lactate dehydrogenase, malate dehydrogenase, sorbitol dehydrogenase and alpha-amylase. The contents were determined of total protein, albumin, bilirubin, urea nitrogen, creatinine, glucose, triglycerides, cholesterol, lipids, calcium, sodium and potassium. Cystamine was shown to be hepatotoxic. The intramuscular administration of gammaphos was found to be more advantageous than of cystamine. Only slight increase was observed in the activities of lactate dehydrogenase, malate dehydrogenase, and alpha-amylase. With cystamine, the changes in all biochemical parameters were most marked. (M.D.). 17 figs., 18 refs

  12. In vitro evaluation of the effect of botanical formulations used in the control of Aedes aegypti L. (Diptera: Culicidae) on liver enzymes.

    Science.gov (United States)

    Porto, Karla Rejane de Andrade; Motti, Priscilla Rezende; Machado, Alexandre Alves; Roel, Antonia Railda

    2016-01-01

    Dengue fever is a viral disease transmitted by the Aedes aegypti Linn. (1792) (Diptera: Culicidae) mosquito, which is endemic in several regions of Brazil. Alternative methods for the control of the vector include botanical insecticides, which offer advantages such as lower environmental contamination levels and less likelihood of resistant populations. Thus, in this study, the ability of botanical insecticide formulations to inhibit the activity of the liver enzymes serum cholinesterase and malate dehydrogenase was evaluated. Inhibition profiles were assessed using in vitro assays for cholinesterase and malate dehydrogenase activity and quantitated by ultraviolet-visible spectroscopy at 410nm to 340nm. Insecticide products formulated from cashew nutshell liquid [A] and ricinoleic acid [B] showed cholinesterase activity levels of 6.26IU/mL and 6.61IU/mL, respectively, while the control level for cholinesterase was 5-12IU/mL. The products did not affect the level of 0.44IU/mL established for malate dehydrogenase, as the levels produced by [A] and [B] were 0.43IU/mL and 0.45IU/mL, respectively. Our findings show that in vitro testing of the formulated products at concentrations lethal to A. aegypti did not affect the activity of cholinesterase and malate dehydrogenase, indicating the safety of these products.

  13. A molecular analysis of the Gelechiidae (Lepidoptera, Gelechioidea) with an interpretative grouping of its taxa

    DEFF Research Database (Denmark)

    Karsholt, Ole; Mutanen, Marko; Lee, Sangmi

    2013-01-01

    , Isocitrate dehydrogenase, Cytosolic malate dehydrogenase, Glyceraldehyde-3-phosphate dehydrogenase and Carbamoylphosphate synthase domain protein). Fifty-two taxa representing nearly all established subfamilies and tribes of Gelechiidae, and about 10% of described gelechiid genera, in addition to five...

  14. Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Shi, Shuobo; Ji, Haichuan; Siewers, Verena

    2016-01-01

    , malate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, FA hydroxylase, farnesyltransferase, anoctamin, dihydrolipoamide dehydrogenase and phosphatidylethanolamine-binding protein. The best enzyme resulted in a 2.5-fold improvement in production of free FAs. Our findings not only provide a novel...

  15. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus

    DEFF Research Database (Denmark)

    Leucci, Eleonora; Patella, Francesca; Waage, Johannes

    2013-01-01

    -coding RNAs. Here we report that microRNA-9 (miR-9) regulates the expression of the Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT-1), one of the most abundant and conserved long non-coding RNAs. Intriguingly, we find that miR-9 targets AGO2-mediated regulation of MALAT1 in the nucleus. Our...

  16. Systemic Sunitinib Malate Treatment for Advanced Juxtapapillary Retinal Hemangioblastomas Associated with von Hippel-Lindau Disease.

    Science.gov (United States)

    Knickelbein, Jared E; Jacobs-El, Naima; Wong, Wai T; Wiley, Henry E; Cukras, Catherine A; Meyerle, Catherine B; Chew, Emily Y

    2017-01-01

    To describe the clinical course of advanced juxtapapillary retinal capillary hemangioblastomas (RCH) associated with von Hippel-Lindau (VHL) disease treated with systemic sunitinib malate, an agent that inhibits both anti-vascular endothelial growth factor and anti-platelet-derived growth factor signaling. Observational case review. Three patients with advanced VHL-related juxtapapillary RCH treated with systemic sunitinib malate. Patient 1 was followed routinely every 4 months while on systemic sunitinib prescribed by her oncologist for metastatic pancreatic neuroendocrine and kidney tumors. Patients 2 and 3 were part of a prospective clinical trial evaluating the use of systemic sunitinib for ocular VHL lesions during a period of 9 months. Visual acuity, size of RCH, and degree of exudation were recorded at each visit. Optical coherence tomography (OCT) and fluorescein angiography were also obtained at some visits. Visual acuity, size of RCH, and degree of exudation. Three patients with advanced VHL-associated juxtapapillary RCH were treated with systemic sunitinib malate. While none of the patients lost vision during therapy, treatment with sunitinib malate did not improve visual acuity or reduce the size of RCH. Improvements in RCH-associated retinal edema were observed in two patients. All patients experienced multiple adverse effects, including thyroid toxicity, thrombocytopenia, nausea, fatigue, jaundice, and muscle aches. Two of the three patients had to discontinue treatment prematurely and the third required dose reduction. Systemic sunitinib malate may be useful in slowing progression of ocular disease from VHL-associated RCH. However, significant systemic adverse effects limited its use in this small series, and systemic sunitinib malate may not be safe for treatment of RCH when used at the doses described in this report. Further studies are required to determine if this medication used at lower doses with different treatment strategies, other

  17. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier

    OpenAIRE

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A.; Traub, Michaela; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2003-01-01

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in ...

  18. Permeabilization and lysis of Pseudomonas pseudoalcaligenes cells by triton X-100 for efficient production of D-malate

    NARCIS (Netherlands)

    Werf, M.J. van der; Hartmans, S.; Tweel, W.J.J. van den

    1995-01-01

    Pseudomonas pseudoalcaligenes can only form d-malate from maleate after incubation of the cells with a solvent or a detergent. The effect of the detergent Triton X-100 on d-malate production was studied in more detail. The longer the cells were incubated with Triton X-100, the higher was the

  19. In vitro evaluation of the effect of botanical formulations used in the control of Aedes aegypti L. (Diptera: Culicidae on liver enzymes.

    Directory of Open Access Journals (Sweden)

    Karla Rejane de Andrade Porto

    Full Text Available Abstract: INTRODUCTION: Dengue fever is a viral disease transmitted by the Aedes aegypti Linn. (1792 (Diptera: Culicidae mosquito, which is endemic in several regions of Brazil. Alternative methods for the control of the vector include botanical insecticides, which offer advantages such as lower environmental contamination levels and less likelihood of resistant populations. Thus, in this study, the ability of botanical insecticide formulations to inhibit the activity of the liver enzymes serum cholinesterase and malate dehydrogenase was evaluated. METHODS: Inhibition profiles were assessed using in vitro assays for cholinesterase and malate dehydrogenase activity and quantitated by ultraviolet-visible spectroscopy at 410nm to 340nm. RESULTS Insecticide products formulated from cashew nutshell liquid [A] and ricinoleic acid [B] showed cholinesterase activity levels of 6.26IU/mL and 6.61IU/mL, respectively, while the control level for cholinesterase was 5-12IU/mL. The products did not affect the level of 0.44IU/mL established for malate dehydrogenase, as the levels produced by [A] and [B] were 0.43IU/mL and 0.45IU/mL, respectively. CONCLUSIONS Our findings show that in vitro testing of the formulated products at concentrations lethal to A. aegypti did not affect the activity of cholinesterase and malate dehydrogenase, indicating the safety of these products.

  20. Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase

    International Nuclear Information System (INIS)

    Durchschlag, H.; Zipper, P.

    1985-01-01

    Malate synthase from baker's yeast, a trimeric sulfhydryl enzyme with one essential sulfhydryl group per subunit, was inactivated by 2 kGy X-irradiation in air-saturated aqueous solution (enzyme concentration: 0.5 mg/ml). The radiation induced changes of enzymic activity were registered at about 0,30,60 h after irradiation. To elucidate the role of OH - , O 2 , and H 2 O 2 in the X-ray inactivation of the enzyme, experiments were performed in the absence of presence of different concentrations of specific additives (formate, superoxide dismutase, catalase). These additives were added to malate synthase solutions before or after X-irradiation. Moreover, repairs of inactivated malate synthase were initiated at about 0 or 30 h after irradiation by means of the sulfhydryl agent dithiothreitol. Experiments yielded the following results: 1. Irradiation of malate synthase in the absence of additives inactivated the enzyme immediately to a residual activity Asub(r)=3% (corresponding to a D 37 =0.6 kGy), and led to further slow inactivation in the post-irradiation phase. Repairs, initiated at different times after irradiation, restored enzymic activity considerably. The repair initiated at t=0 led to Asub(r)=21%; repairs started later on resulted in somewhat lower activities. The decay of reparability, however, was found to progress more slowly than post-irradiation inactivation itself. After completion of repair the activities of repaired samples did not decrease significantly. 2. The presence of specific additives during irradiation caused significant protective effects against primary inactivation. The protection by formate was very pronounced (e.g., Asub(r)=72% and D 37 =6 kGy for 100 mM formate). The presence of catalytic amounts of superoxide dismutase and/or catalase exhibited only minor effects, depending on the presence and concentration of formate. (orig.)

  1. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.

    Science.gov (United States)

    De Angeli, Alexis; Baetz, Ulrike; Francisco, Rita; Zhang, Jingbo; Chaves, Maria Manuela; Regalado, Ana

    2013-08-01

    Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.

  2. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  3. [A case of respiratory dyskinesia due to clebopride malate].

    Science.gov (United States)

    Kawasaki, H; Yamamoto, M; Okayasu, H; Wakayama, Y

    1991-08-01

    Clebopride malate is therapeutically used for the treatment of peptic ulcer. This drug has potent antidopaminergic activity that causes acute dystonic reaction, parkinsonism and tardive dyskinesia as adverse effects. Here, we have reported an 86-year-old man who developed abnormal involuntary movement of respiratory muscles and lower limb muscles after this drug had been given for four months. This involuntary movement appeared spontaneously at resting state and disappeared during sleep. Surface EMG demonstrated a synchronous grouping discharge in m. orbicularis oris, m. sternocleidomastoideus and m. interstales which synchronized with diaphragmatic movement on cinefluorography. Involuntary movement of the lower limbs was synchronous bilaterally and had little relationship with diaphragmatic movement. This involuntary movement was irregular not only in rhythm but also in duration. According to this irregular nature, we diagnosed this involuntary movement as respiratory dyskinesia with limb dyskinesia that belongs to tardive dyskinesia. After cessation of clebopride malate limb dyskinesia disappeared rapidly and respiratory dyskinesia markedly decreased. We emphasize that respiratory dyskinesia should be differentiated from psychogenic hyperventilation as easily misdiagnosed on initial examination.

  4. Use of chloroquine in uncomplicated falciparum malaria ...

    African Journals Online (AJOL)

    Use of chloroquine in uncomplicated falciparum malaria chemotherapy: The past, the present and the future. ... regions. It was initially highly effective against the four Plasmodium species (P. falciparum, P. malaria, P. ovale and P. vivax) infecting human. It is also effective against gametocytes except those of P. falciparum.

  5. Redox specificity of 2-hydroxyacid-coupled NAD(+/NADH dehydrogenases: a study exploiting "reactive" arginine as a reporter of protein electrostatics.

    Directory of Open Access Journals (Sweden)

    Pooja Gupta

    Full Text Available With "reactive" arginine as a kinetic reporter, 2-hydroxyacid dehydrogenases are assessed in basis of their specialization as NAD(+-reducing or NADH-oxidizing enzymes. Specifically, M4 and H4 lactate dehydrogenases (LDHs and cytoplasmic and mitochondrial malate dehydrogenases (MDHs are compared to assess if their coenzyme specificity may involve electrostatics of cationic or neutral nicotinamide structure as the basis. The enzymes from diverse eukaryote and prokaryote sources thus are assessed in "reactivity" of functionally-critical arginine as a function of salt concentration and pH. Electrostatic calculations were performed on "reactive" arginines and found good correspondence with experiment. The reductive and oxidative LDHs and MDHs are assessed in their count over ionizable residues and in placement details of the residues in their structures as proteins. The variants found to be high or low in ΔpKa of "reactive" arginine are found to be also strong or weak cations that preferentially oxidize NADH (neutral nicotinamide structure or reduce NAD(+ (cationic nicotinamide structure. The ionized groups of protein structure may thus be important to redox specificity of the enzyme on basis of electrostatic preference for the oxidized (cationic nicotinamide or reduced (neutral nicotinamide coenzyme. Detailed comparisons of isozymes establish that the residues contributing in their redox specificity are scrambled in structure of the reductive enzyme.

  6. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22.

    Science.gov (United States)

    Luan, Wenkang; Li, Lubo; Shi, Yan; Bu, Xuefeng; Xia, Yun; Wang, Jinlong; Djangmah, Henry Siaw; Liu, Xiaohui; You, Yongping; Xu, Bin

    2016-09-27

    Long non-coding RNAs (lncRNAs) are involved in tumorigenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an lncRNAs, is associated with the growth and metastasis of many human tumors, but its biological roles in malignant melanoma remain unclear. In this study, the aberrant up-regulation of MALAT1 was detected in melanoma. We determined that MALAT1 promotes melanoma cells proliferation, invasion and migration by sponging miR-22. MiR-22 was decreased and acted as a tumor suppressor in melanoma, and MMP14 and Snail were the functional targets of miR-22. Furthermore, MALAT1 could modulate MMP14 and Snail by operating as a competing endogenous RNA (ceRNA) for miR-22. The effects of MALAT1 in malignant melanoma is verified using a xenograft model. This finding elucidates a new mechanism for MALAT1 in melanoma development and provides a potential target for melanoma therapeutic intervention.

  7. Mutations in MDH2, Encoding a Krebs Cycle Enzyme, Cause Early-Onset Severe Encephalopathy

    NARCIS (Netherlands)

    Ait-El-Mkadem, Samira; Dayem-Quere, Manal; Gusic, Mirjana; Chaussenot, Annabelle; Bannwarth, Sylvie; François, Bérengère; Genin, Emmanuelle C; Fragaki, Konstantina; Volker-Touw, Catharina L M; Vasnier, Christelle; Serre, Valérie; van Gassen, Koen L I; Lespinasse, Françoise; Richter, Susan; Eisenhofer, Graeme; Rouzier, Cécile; Mochel, Fanny; De Saint-Martin, Anne; Abi Warde, Marie-Thérèse; de Sain-van der Velden, Monique G M; Jans, Judith J M; Amiel, Jeanne; Avsec, Ziga; Mertes, Christian; Haack, Tobias B; Strom, Tim; Meitinger, Thomas; Bonnen, Penelope E; Taylor, Robert W; Gagneur, Julien; van Hasselt, Peter M; Rötig, Agnès; Delahodde, Agnès; Prokisch, Holger; Fuchs, Sabine A; Paquis-Flucklinger, Véronique

    2016-01-01

    MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized

  8. Akkumulation von L-Malat und D-Lactat in Arabidopsis thaliana und Laccase/HBT-vermittelte Delignifizierung von Spartina alterniflora und Phragmites australis

    OpenAIRE

    Heil, Alexander

    2016-01-01

    The current work contains two projects "Accumulation of L-malate and D-lactate in Arabidopsis thaliana" (A) "Laccase/HBT mediated delignification of Spartina alterniflora and Phragmites australis" (B). In project A, L-malate and D-lactate accumulated in A. thaliana plants. The accumulation of L-malate is carried out by modification of the plant metabolism with the enzymes PEPC, MDH and the tonoplast dicarboxylate transporter (TDT). Gene pepci2 (Hydrilla verticillata), mdh5 (Zea mays) and tdt ...

  9. Redox Specificity of 2-Hydroxyacid-Coupled NAD+/NADH Dehydrogenases: A Study Exploiting “Reactive” Arginine as a Reporter of Protein Electrostatics

    Science.gov (United States)

    Durani, Susheel

    2013-01-01

    With “reactive” arginine as a kinetic reporter, 2-hydroxyacid dehydrogenases are assessed in basis of their specialization as NAD+-reducing or NADH-oxidizing enzymes. Specifically, M4 and H4 lactate dehydrogenases (LDHs) and cytoplasmic and mitochondrial malate dehydrogenases (MDHs) are compared to assess if their coenzyme specificity may involve electrostatics of cationic or neutral nicotinamide structure as the basis. The enzymes from diverse eukaryote and prokaryote sources thus are assessed in “reactivity” of functionally-critical arginine as a function of salt concentration and pH. Electrostatic calculations were performed on “reactive” arginines and found good correspondence with experiment. The reductive and oxidative LDHs and MDHs are assessed in their count over ionizable residues and in placement details of the residues in their structures as proteins. The variants found to be high or low in ΔpKa of “reactive” arginine are found to be also strong or weak cations that preferentially oxidize NADH (neutral nicotinamide structure) or reduce NAD+ (cationic nicotinamide structure). The ionized groups of protein structure may thus be important to redox specificity of the enzyme on basis of electrostatic preference for the oxidized (cationic nicotinamide) or reduced (neutral nicotinamide) coenzyme. Detailed comparisons of isozymes establish that the residues contributing in their redox specificity are scrambled in structure of the reductive enzyme. PMID:24391777

  10. Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice.

    Directory of Open Access Journals (Sweden)

    Tim Peters

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1 is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC in mice.Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001 but to a similar extend also in Malat-1 knockout (KO mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01 with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01 but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05. Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio

  11. A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations.

    Science.gov (United States)

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Yamamoto, Yoko

    2016-07-01

    TaALMT1 from wheat (Triticum aestivum) and AtALMT1 from Arabidopsis thaliana encode aluminum (Al)-activated malate transporters, which confer acid-soil tolerance by releasing malate from roots. Chimeric proteins from TaALMT1 and AtALMT1 (Ta::At, At::Ta) were previously analyzed in Xenopus laevis oocytes. Those studies showed that Al could activate malate efflux from the Ta::At chimera but not from At::Ta. Here, functions of TaALMT1, AtALMT1 and the chimeric protein Ta::At were compared in cultured tobacco BY-2 cells. We focused on the sensitivity and specificity of their activation by trivalent cations. The activation of malate efflux by Al was at least two-fold greater in the chimera than the native proteins. All proteins were also activated by lanthanides (erbium, ytterbium, gadolinium, and lanthanum), but the chimera again released more malate than TaALMT1 or AtALMT1. In Xenopus oocytes, Al, ytterbium, and erbium activated inward currents from the native TaALMT1 and the chimeric protein, but gadolinium only activated currents from the chimera. Lanthanum inhibited currents from both proteins. These results demonstrated that function of the chimera protein was altered compared to the native proteins and was more responsive to a range of trivalent cations when expressed in plant cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Rui; Xia, Yuhong; Wang, Zhixin; Zheng, Jie; Chen, Yafei; Li, Xiaoli; Wang, Yu; Ming, Huaikun

    2017-08-19

    Circulating lncRNAs have been defined as a novel biomarker for non-small cell lung cancer (NSCLC), MALAT-1 was first identified lncRNA that was related to lung cancer metastasis. However, the relationship between exosomal lncRNAs and the diagnosis and prognosis of NSCLC was poorly understood. The aim of this study is to evaluate the clinical significance of serum exosomal MALAT-1 as a biomarker in the metastasis of NSCLC. In this study, we firstly isolated the exosomes from healthy subjects and NSCLC patients. Then we measured the expression levels of MALAT-1 contained in exosomes, and found that exosomal MALAT-1 was highly expressed in NSCLC patients, more importantly, the levels of exosomal MALAT-1 were positively associated with tumor stage and lymphatic metastasis. In addition, we decreased MALAT-1 expression by short hairpin RNA and conducted a series of assays including MTT, cell cycle, colony formation, wound-healing scratch and Annexin/V PI by flow cytometry in human lung cancer cell lines. These in vitro studies demonstrated that serum exosome-derived long noncoding RNA MALAT-1 promoted the tumor growth and migration, and prevented tumor cells from apoptosis in lung cancer cell lines. Taken together, this study shed a light on utilizing MALAT-1 in exosomes as a non-invasive serum-based tumor biomarker for diagnosis and prognosis of NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Efficacy of Artemether in Unresolving Plasmodium Falciparum Malaria

    African Journals Online (AJOL)

    The emergence of possible resistant Plasmodium falciparum malaria to artemisinin known for its immense benefit in malaria chemotherapy is worrisome. We report a case of unresolving Plasmodium falciparum malaria to Artesunate treatment in a 29- year old man in Enugu Nigeria. Plasmodium falciparum count of Giemsa ...

  14. Sharing of antigens between Plasmodium falciparum and Anopheles albimanus Antígenos compartidos entre Plasmodium falciparum y Anopheles albimanus

    Directory of Open Access Journals (Sweden)

    Albina Wide

    2006-12-01

    Full Text Available The presence of common antigens between Plasmodium falciparum and Anopheles albimanus was demonstrated. Different groups of rabbits were immunized with: crude extract from female An. albimanus (EAaF, red blood cells infected with Plasmodium falciparum (EPfs, and the SPf66 synthetic malaria vaccine. The rabbit's polyclonal antibodies were evaluated by ELISA, Multiple Antigen Blot Assay (MABA, and immunoblotting. All extracts were immunogenic in rabbits according to these three techniques, when they were evaluated against the homologous antigens. Ten molecules were identified in female mosquitoes and also in P. falciparum antigens by the autologous sera. The electrophoretic pattern by SDS-PAGE was different for the three antigens evaluated. Cross-reactions between An. albimanus and P. falciparum were found by ELISA, MABA, and immunoblotting. Anti-P. falciparum and anti-SPf66 antibodies recognized ten and five components in the EAaF crude extract, respectively. Likewise, immune sera against female An. albimanus identified four molecules in the P. falciparum extract antigen. As far as we know, this is the first work that demonstrates shared antigens between anophelines and malaria parasites. This finding could be useful for diagnosis, vaccines, and the study of physiology of the immune response to malaria.Epítopes de antígenos compartidos entre Plasmodium falciparum y Anopheles albimanus fueron identificados. Diferentes grupos de conejos fueron inmunizados con: extracto crudo de mosquito hembra de An. albimanus (EAaH, glóbulos rojos infectados con P. falciparum (EPfs y la vacuna antimalárica sintética SPf66. Los anticuerpos policlonales producidos en conejos fueron evaluados por ELISA, inmunoensayo simultáneo de múltiples antígenos (MABA e Immunoblotting. Todos los extractos resultaron inmunogénicos cuando se evaluaron por ELISA, MABA e Immunoblotting. Diez moléculas fueron identificadas en los mosquitos hembras y diez en los antígenos de

  15. Characterization of phosphorylated isocitrate dehydrogenase and purification of the isocitrate dehydrogenase kinase/phosphatase of Escherichia coli

    International Nuclear Information System (INIS)

    Malloy, P.J.

    1985-01-01

    NADP + -specific isocitrate dehydrogenase (IDH; EC 1.1.1.42) was shown to be phosphorylated with ( 32 P)-orthophosphate in vivo in several strains of Escherichia coli. In strain KC 13, an adenylate cyclase deficient mutant, the specific activity of IDH decreased 70% when acetate was added to stationary phase cultures grown on glucose. The enzyme was immunoprecipitated from sonic extracts and shown to contain 32 P by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. The results demonstrate that unlike many eukaryotic protein kinases, the protein kinase involved in the phosphorylation of IDH in E. coli does not require cyclic adenosine monophosphate for catalysis. Similarly, the phosphorylation of IDH was demonstrated in E. coli mutants deficient in either isocitrate lyase or malate synthase. The incorporation of 32 P in IDH was demonstrated following SDS-PAGE and autoradiography of the immunoprecipitated enzyme. These results suggest that the conditions required for the phosphorylation of IDH do not depend on the functioning of the glyoxylate shunt. Following in vivo 32 P-labeling of E. coli strain F143/KL259 in the presence of acetate, 32 P-labeled IDH was isolated from sonicated extracts of the cells. The 32 P-enzyme was carboxylmethylated and digested with trypsin. A single 32 P-labeled peptide was isolated from the tryptic digest. Amino acid analysis of the purified 32 P-labeled peptide showed that the peptide contains seven amino acids, including a single phosphorylated serine residue

  16. CHANGES IN SERUM ENZYMES LEVELS ASSOCIATED WITH LIVER FUNCTIONS IN STRESSED MARWARI GOAT

    Directory of Open Access Journals (Sweden)

    Kataria N.

    2011-03-01

    Full Text Available Serum enzyme levels were determined in goats of Marwari breed belonging to farmers’ stock of arid tract of Rajasthan state, India. The animals were grouped into healthy and stressed comprising of gastrointestinal parasiticised, pneumonia affected, and drought affected. The serum enzymes determined were sorbitol dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, ornithine carbamoyl transferase, gamma-glutamayl transferase, 5’nucleotidase, glucose-6-phosphatase, arginase, and aldolase. In stressed group the mean values of all the enzymes increased significantly (p≤0.05 as compared to respective healthy mean value. All the enzymes showed highest values in the gastrointestinal parasiticised animals and least values in the animals having pneumonia. In gastrointestinal parasiticised animals maximum change was observed in G-6-Pase activity and minimum change was observed in malate dehydrogenase mean value. It was concluded that Increased activity of all the serum enzymes was due to modulation of liver functions directly or indirectly.

  17. BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana

    OpenAIRE

    Zhang, Lei; Wu, Xin-Xin; Wang, Jinfang; Qi, Chuandong; Wang, Xiaoyun; Wang, Gongle; Li, Mingyue; Li, Xingsheng; Guo, Yang-Dong

    2018-01-01

    Aluminum (Al) is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104) was cloned from cabbage (Brassica oleracea). BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent catio...

  18. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  19. Utilization of L-aspartate, L-malate and fumarate by Pasteurella multocida

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, M.; Flossmann, K.D. (Akademie der Landwirtschaftswissenschaften der DDR, Jena. Inst. fuer Bakterielle Tierseuchenforschung)

    1981-01-01

    Strains of Pasteurella multocida use L-aspartate, L-malate and furmarate, respectively, as substrates for production of succinic acid which accumulates in the medium. As was established by studies with /sup 14/C- and /sup 3/H-labelled substrates, the degradation of these substances proceeds analogously via the citric acid cycle.

  20. Utilization of L-aspartate, L-malate and fumarate by Pasteurella multocida

    International Nuclear Information System (INIS)

    Hoefer, M.; Flossmann, K.D.

    1981-01-01

    Strains of Pasteurella multocida use L-aspartate, L-malate and furmarate, respectively, as substrates for production of succinic acid which accumulates in the medium. As was established by studies with 14 C- and 3 H-labelled substrates, the degradation of these substances proceeds analogously via the citric acid cycle. (author)

  1. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  2. Malaria falciparum y síndrome nefrótico: nuestras experiencias Falciparum malaria and nephrotic Síndrome: Our experience

    Directory of Open Access Journals (Sweden)

    Jesús Juan Rodríguez

    2007-03-01

    Full Text Available Las especies de Plasmodium que infectan al hombre son: P. vivax, P. Malariae, P. Ovale y P. Falciparum. En Mozambique, como en la mayor parte de la llamada África Subsahariana, la especie predominante es P. falciparum cloroquina resistente. La infección por P. falciparum es potencialmente mortal, tiende a manifestarse como una enfermedad febril sin signos localizados o específicos. En los casos más graves, sin embargo puede presentarse asociada a variados síndromes clínicos que plantean serios retos terapéuticos.Es reconocido que la malaria o paludismo puede asociarse a síndrome nefrótico y se han dado explicaciones de esta relación patogénica. En Mozambique, en un período de seis meses, tuvimos la oportunidad de tratar tres casos de Malaria falciparum grave, asociado a síndrome nefrótico.Divulgar y trasmitir las experiencias prácticas y consideraciones teóricas a propósito de uno de estos casos es la motivación de los autores de este trabajo.Plasmodiumspecies infecting man are the following: P.vivax, P. Malariae, P. Ovale and P. Falciparum. In Mozambique, like the biggest area from the so called Subsaharian Africa,the resistent-chloroquine P. Falciparum is the predominating specie in this area. The P. Falciparum infection is potentially fatal, with a trend to show as a febrile condition with no localized or specific signs. In more severe cases, however, it may be presented in association with different clinical syndromes which represent serious therapeutic challenges. It is not unknown that Malaria or Paludism may be associated with the Nephrotic Syndrome, and many explanations have been given on this pathogenic relatioship. In a sixth month's period in Mozambique we had the chance to test three severe cases of Falciparum Malaria associated with a Nephrotic Syndrome. Spreading the practical experience and theoretic considerations on one of these cases is the aim of this work.

  3. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-05-01

    Full Text Available We examined the function of OsALMT4 in rice (Oryza sativa L. which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ABA, IAA, and salicylic acid. Malate efflux from the transgenic plants over-expressing OsALMT4 was inhibited by niflumate and salicylic acid. Growth of transgenic lines with either increased OsALMT4 expression or reduced expression was measured in different environments. Light intensity caused significant differences in growth between the transgenic lines and controls. When day-time light was reduced from 700 to 300 μmol m-2s-1 independent transgenic lines with either increased or decreased OsALMT4 expression accumulated less biomass compared to their null controls. This response was not associated with differences in photosynthetic capacity, stomatal conductance or sugar concentrations in tissues. We propose that by disrupting malate fluxes across the plasma membrane carbon partitioning and perhaps signaling are affected which compromises growth under low light. We conclude that OsALMT4 is expressed widely in rice and facilitates malate efflux from different cell types. Altering OsALMT4 expression compromises growth in low-light environments.

  4. Genetic variability in Oligosarcus paranensis (Teleostei: Characiformes from the São Francisco river, Ivaí river basin – Paraná State, Brazil - doi: 10.4025/actascibiolsci.v35i3.14179

    Directory of Open Access Journals (Sweden)

    Michele Rocha dos Santos

    2013-08-01

    Full Text Available The genetic variability of Oligosarcus paranensis was estimated from a population collected in São Francisco river, Prudentópolis county in Paraná State (Brazil using the electrophoresis in starch gel technique. Eleven enzymatic systems were analyzed: Aspartate aminotransaminase (AAT; E. C. 2.6.1, Alcohol dehydrogenase (ADH; E. C. 1.1.1.1, Esterase (EST; E. C. 3.1.1.1, Glucose-6-phosphate isomerase (GPI; E. C. 5.3.1.9, Glycerol-3-Phosphate dehydrogenase (G3PDH; E. C. 1.1.1, Isocitrate dehydrogenase (IDH; E. C. 1.1.1.42, L-lactate dehydrogenase (LDH; E. C. 1.1.1.27, Malate dehydrogenase (MDH; E. C. 1.1.1.37 , Malate dehydrogenase NADP (ME; E. C. 1.1.1.40, Phosphoglucomutase (PGM; E. C. 5.4.2.2 and Sorbitol dehydrogenase (SORB; E.C. 1.1.1.14. Twenty loci were identified through 15% corn starch gel electrophoresis of which nine (45% were polymorphic. The average expected heterozygosity was estimated as 0.1229 ± 0.1728, and the observed was 0.0586 ± 0.1069, indicating high genetic variability. The average value of FIS = 0.5145 indicates homozygote excess.  

  5. The long non-coding RNA MALAT1 promotes the migration and invasion of hepatocellular carcinoma by sponging miR-204 and releasing SIRT1.

    Science.gov (United States)

    Hou, Zhouhua; Xu, Xuwen; Zhou, Ledu; Fu, Xiaoyu; Tao, Shuhui; Zhou, Jiebin; Tan, Deming; Liu, Shuiping

    2017-07-01

    Increasing evidence supports the significance of long non-coding RNA in cancer development. Several recent studies suggest the oncogenic activity of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in hepatocellular carcinoma. In this study, we explored the molecular mechanisms by which MALAT1 modulates hepatocellular carcinoma biological behaviors. We found that microRNA-204 was significantly downregulated in sh-MALAT1 HepG2 cell and 15 hepatocellular carcinoma tissues by quantitative real-time polymerase chain reaction analysis. Through bioinformatic screening, luciferase reporter assay, RNA-binding protein immunoprecipitation, and RNA pull-down assay, we identified microRNA-204 as a potential interacting partner for MALAT1. Functionally, wound-healing and transwell assays revealed that microRNA-204 significantly inhibited the migration and invasion of hepatocellular carcinoma cells. Notably, sirtuin 1 was recognized as a direct downstream target of microRNA-204 in HepG2 cells. Moreover, si-SIRT1 significantly inhibited cell invasion and migration process. These data elucidated, by sponging and competitive binding to microRNA-204, MALAT1 releases the suppression on sirtuin 1, which in turn promotes hepatocellular carcinoma migration and invasion. This study reveals a novel mechanism by which MALAT1 stimulates hepatocellular carcinoma progression and justifies targeting metastasis-associated lung adenocarcinoma transcript 1 as a potential therapy for hepatocellular carcinoma.

  6. Spatial and temporal distribution of falciparum malaria in China

    Directory of Open Access Journals (Sweden)

    Lin Hualiang

    2009-06-01

    Full Text Available Abstract Background Falciparum malaria is the most deadly among the four main types of human malaria. Although great success has been achieved since the launch of the National Malaria Control Programme in 1955, malaria remains a serious public health problem in China. This paper aimed to analyse the geographic distribution, demographic patterns and time trends of falciparum malaria in China. Methods The annual numbers of falciparum malaria cases during 1992–2003 and the individual case reports of each clinical falciparum malaria during 2004–2005 were extracted from communicable disease information systems in China Center for Diseases Control and Prevention. The annual number of cases and the annual incidence were mapped by matching them to corresponding province- and county-level administrative units in a geographic information system. The distribution of falciparum malaria by age, gender and origin of infection was analysed. Time-series analysis was conducted to investigate the relationship between the falciparum malaria in the endemic provinces and the imported falciparum malaria in non-endemic provinces. Results Falciparum malaria was endemic in two provinces of China during 2004–05. Imported malaria was reported in 26 non-endemic provinces. Annual incidence of falciparum malaria was mapped at county level in the two endemic provinces of China: Yunnan and Hainan. The sex ratio (male vs. female for the number of cases in Yunnan was 1.6 in the children of 0–15 years and it reached 5.7 in the adults over 15 years of age. The number of malaria cases in Yunnan was positively correlated with the imported malaria of concurrent months in the non-endemic provinces. Conclusion The endemic area of falciparum malaria in China has remained restricted to two provinces, Yunnan and Hainan. Stable transmission occurs in the bordering region of Yunnan and the hilly-forested south of Hainan. The age and gender distribution in the endemic area is

  7. A cross strain Plasmodium falciparum microarray optimized for the transcriptome analysis of Plasmodium falciparum patient derived isolates

    KAUST Repository

    Subudhi, Amit

    2016-07-20

    Malarial parasite P. falciparum, an apicomplexan protozoan has a 23.3 MB nuclear genome and encodes ~ 5600 transcripts. The genetic diversity of the parasite within and across geographical zones is a challenge to gene expression studies which are essential for understanding of disease process, outcome and developing markers for diagnostics and prognostics. Here, we describe the strategy involved in designing a custom P. falciparum 15K array using the Agilent platform and Genotypic\\'s Right Design methodology to study the transcriptome of Indian field isolates for which genome sequence information is limited. The array contains probes representing genome sequences of two distinct geographical isolates (i.e. 3D7 and HB3) and sub-telomeric var gene sequences of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts through a 244K array experimentation. Array performance for the 15K array, was evaluated and validated using RNA materials from P. falciparum clinical isolates. A large percentage (91%) of the represented transcripts was detected from Indian P. falciparum patient isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains. The 15K cross strain P. falciparum array has shown good efficiency in detecting transcripts from P. falciparum parasite samples isolated from patients. The low parasite loads and presence of host RNA makes arrays a preferred platform for gene expression studies over RNA-Seq.

  8. A cross strain Plasmodium falciparum microarray optimized for the transcriptome analysis of Plasmodium falciparum patient derived isolates

    KAUST Repository

    Subudhi, Amit; Boopathi, P.A.; Middha, Sheetal; Acharya, Jyoti; Rao, Sudha Narayana; Mugasimangalam, Raja C.; Sirohi, Paramendra; Kochar, Sanjay K.; Kochar, Dhanpat K.; Das, Ashis

    2016-01-01

    Malarial parasite P. falciparum, an apicomplexan protozoan has a 23.3 MB nuclear genome and encodes ~ 5600 transcripts. The genetic diversity of the parasite within and across geographical zones is a challenge to gene expression studies which are essential for understanding of disease process, outcome and developing markers for diagnostics and prognostics. Here, we describe the strategy involved in designing a custom P. falciparum 15K array using the Agilent platform and Genotypic's Right Design methodology to study the transcriptome of Indian field isolates for which genome sequence information is limited. The array contains probes representing genome sequences of two distinct geographical isolates (i.e. 3D7 and HB3) and sub-telomeric var gene sequences of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts through a 244K array experimentation. Array performance for the 15K array, was evaluated and validated using RNA materials from P. falciparum clinical isolates. A large percentage (91%) of the represented transcripts was detected from Indian P. falciparum patient isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains. The 15K cross strain P. falciparum array has shown good efficiency in detecting transcripts from P. falciparum parasite samples isolated from patients. The low parasite loads and presence of host RNA makes arrays a preferred platform for gene expression studies over RNA-Seq.

  9. The varied functions of aluminium-activated malate transporters–much more than aluminium resistance

    Science.gov (United States)

    Palmer, Antony J.; Baker, Alison; Muench, Stephen P.

    2016-01-01

    The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants. PMID:27284052

  10. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.

    Science.gov (United States)

    Liu, Jiping; Magalhaes, Jurandir V; Shaff, Jon; Kochian, Leon V

    2009-02-01

    Aluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that was previously shown to be necessary for AtALMT1 expression. Here we show that STOP1 is also required for AtMATE expression and Al-activated citrate exudation.

  11. Tingkat Kerentanan Aedes aegypti (Linn. terhadap Malation di Provinsi Sumatera Selatan

    Directory of Open Access Journals (Sweden)

    Lasbudi P. Ambarita

    2015-07-01

    Full Text Available AbstractDengue vector control program in Indonesia and also South Sumatera Province has been using malathion quite long enough. The extensive use of chemical in dengue vector control can lead to development of resistance. This study aims to determine the susceptibility of Aedes aegypti against malathion in 11 district of South Sumatera Province. Larva or pupae were collected with entomology survey kit and colonized until first generation (F1 that were used for bioassay. This test was conducted according to WHO adult susceptibility bioassay procedure.Twenty five blood-fed mosquitoes were exposed to insecticide impregnated paper in each of 4 WHO test kits and 1 control tube. Aedes aegypti from all study sites were still susceptible to operational dose of malathion (5%after 1 hour exposure. The estimated resistance ratio (ERR of knockdown time (KT to operasional dose of malathion is about 1,02 – 1,27 for KT50 and 0,96 – 1,24 for KT95. The susceptibility test of adult mosquitoes to diagnostic dose (0,8% of malathion showed a variety of susceptibility after 24 hours. Strain of 7 districts showed resistance, 3 districts toleran and 1 district still susceptible. The detection of resistance can actually help public health personnel to formulate appropriate steps in encountering the reduction in effectiveness of vector control efforts.Keywords : Aedes aegypti, Malathion, Susceptibility, South SumateraAbstrakProgram pengendalian vektor DBD di Indonesia termasuk di Provinsi Sumatera Selatan telah cukup lama menggunakan malation dengan konsentrasi 5%. Penggunaan satu jenis insektisida kimiawi secara ekstensif dapat memicu perkembangan resistensi. Penelitian ini bertujuan untuk menentukan status kerentanan Aedes aegypti terhadap malation dari 11 kabupaten/kota di Provinsi Sumatera Selatan. Larva atau pupa dikumpulkan menggunakan alat survei entomologi dan selanjutnyadipelihara hingga mendapatkan generasi pertama (F1 yang akan digunakan pada uji

  12. Citrate, malate and alkali content in commonly consumed diet sodas: implications for nephrolithiasis treatment.

    Science.gov (United States)

    Eisner, Brian H; Asplin, John R; Goldfarb, David S; Ahmad, Ardalanejaz; Stoller, Marshall L

    2010-06-01

    Citrate is a known inhibitor of calcium stone formation. Dietary citrate and alkali intake may have an effect on citraturia. Increasing alkali intake also increases urine pH, which can help prevent uric acid stones. We determined citrate, malate and total alkali concentrations in commonly consumed diet sodas to help direct dietary recommendations in patients with hypocitraturic calcium or uric acid nephrolithiasis. Citrate and malate were measured in a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis and in 15 diet sodas. Anions were measured by ion chromatography. The pH of each beverage was measured to allow calculation of the unprotonated anion concentration using the known pK of citric and malic acid. Total alkali equivalents were calculated for each beverage. Statistical analysis was done using Pearson's correlation coefficient. Several sodas contained an amount of citrate equal to or greater than that of alkali and total alkali as a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis (6.30 mEq/l citrate as alkali and 6.30 as total alkali). These sodas were Diet Sunkist Orange, Diet 7Up, Sprite Zero, Diet Canada Dry Ginger Ale, Sierra Mist Free, Diet Orange Crush, Fresca and Diet Mountain Dew. Colas, including Caffeine Free Diet Coke, Coke Zero, Caffeine Free Diet Pepsi and Diet Coke with Lime, had the lowest total alkali (less than 1.0 mEq/l). There was no significant correlation between beverage pH and total alkali content. Several commonly consumed diet sodas contain moderate amounts of citrate as alkali and total alkali. This information is helpful for dietary recommendations in patients with calcium nephrolithiasis, specifically those with hypocitraturia. It may also be useful in patients with low urine pH and uric acid stones. Beverage malate content is also important since malate ingestion increases the total alkali delivered, which in turn augments citraturia and increases urine pH. Copyright

  13. Conjugated fatty acids and methane production by rumen microbes when incubated with linseed oil alone or mixed with fish oil and/or malate.

    Science.gov (United States)

    Li, Xiang Z; Gao, Qing S; Yan, Chang G; Choi, Seong H; Shin, Jong S; Song, Man K

    2015-08-01

    We hypothesized that manipulating metabolism with fish oil and malate as a hydrogen acceptor would affect the biohydrogenation process of α-linolenic acid by rumen microbes. This study was to examine the effect of fish oil and/or malate on the production of conjugated fatty acids and methane (CH4 ) by rumen microbes when incubated with linseed oil. Linseed oil (LO), LO with fish oil (LO-FO), LO with malate (LO-MA), or LO with fish oil and malate (LO-FO-MA) was added to diluted rumen fluid, respectively. The LO-MA and LO-FO-MA increased pH and propionate concentration compared to the other treatments. LO-MA and LO-FO-MA reduced CH4 production compared to LO. LO-MA and LO-FO-MA increased the contents of c9,t11-conjugated linoleic acid (CLA) and c9,t11,c15-conjugated linolenic acid (CLnA) compared to LO. The content of malate was rapidly reduced while that of lactate was reduced in LO-MA and LO-FO-MA from 3 h incubation time. The fold change of the quantity of methanogen related to total bacteria was decreased at both 3 h and 6 h incubation times in all treatments compared to the control. Overall data indicate that supplementation of combined malate and/or fish oil when incubated with linseed oil, could depress methane generation and increase production of propionate, CLA and CLnA under the conditions of the current in vitro study. © 2015 Japanese Society of Animal Science.

  14. The varied functions of aluminium-activated malate transporters-much more than aluminium resistance.

    Science.gov (United States)

    Palmer, Antony J; Baker, Alison; Muench, Stephen P

    2016-06-15

    The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. The BnALMT1 Protein That is an Aluminum-Activated Malate Transporter is Localized in the Plasma Membrane

    OpenAIRE

    Ligaba, Ayalew; Katsuhara, Maki; Sakamoto, Wataru; Matsumoto, Hideaki

    2007-01-01

    We have previously reported that Al-induces citrate and malate efflux from P-sufficient and P-deficient plants of rape (Brassica napus L.) and that P-deficiency alone could not induce this response. Further investigation showed that the transcript of two genes designated BnALMT1 and BnALMT2 is accumulated in roots by Al-treatment. Transgenic tobacco cells (Nicotiana tabacum) and Xenopus laevis oocytes expressing the BnALMT1 and BnALMT2 proteins released more malate than control cells in the p...

  16. Correlation between myocardial malate/aspartate shuttle activity and EAAT1 protein expression in hyper- and hypothyroidism.

    Science.gov (United States)

    Ralphe, J Carter; Bedell, Kurt; Segar, Jeffrey L; Scholz, Thomas D

    2005-05-01

    In the heart, elevated thyroid hormone leads to upregulation of metabolic pathways associated with energy production and development of hypertrophy. The malate/aspartate shuttle, which transfers cytosolic-reducing equivalents into the cardiac mitochondria, is increased 33% in hyperthyroid rats. Within the shuttle, the aspartate-glutamate carrier is rate limiting. The excitatory amino acid transporter type 1 (EAAT1) functions as a glutamate carrier in the malate/aspartate shuttle. In this study, we hypothesize that EAAT1 is regulated by thyroid hormone. Adult rats were injected with triiodothyronine (T3) or saline over a period of 8-9 days or provided with propylthiouracil (PTU) in their drinking water for 2 mo. Steady-state mRNA levels of EAAT1 and aralar1 and citrin (both cardiac mitochondrial aspartate-glutamate transporters) were determined by Northern blot analysis and normalized to 18S rRNA. A spectrophotometric assay of maximal malate/aspartate shuttle activity was performed on isolated cardiac mitochondria from PTU-treated and control animals. Protein lysates from mitochondria were separated by SDS-PAGE and probed with a human anti-EAAT1 IgG. Compared with control, EAAT1 mRNA levels (arbitrary units) were increased nearly threefold in T3-treated (3.1 +/- 0.5 vs. 1.1 +/- 0.2; P Hyperthyroidism in rats is related to an increase in cardiac expression of EAAT1 mRNA and protein. The 49% increase in EAAT1 mitochondrial protein level shows that malate/aspartate shuttle activity increased in hyperthyroid rat cardiac mitochondria. Although hypothyroidism resulted in a decrease in EAAT1 mRNA, neither the EAAT1 protein level nor shuttle activity was affected. EAAT1 regulation by thyroid hormone may facilitate increased metabolic demands of the cardiomyocyte during hyperthyroidism and impact cardiac function in hyperthyroidism.

  17. Development of antimigraine transdermal delivery systems of pizotifen malate.

    Science.gov (United States)

    Serna-Jiménez, C E; del Rio-Sancho, S; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; López-Castellano, A; Merino, V

    2015-08-15

    The aim of this study was to develop and evaluate a transdermal delivery system of pizotifen malate. Pizotifen is frequently used in the preventive treatment of migraine, but is also indicated in eating disorders. In the course of the project, the effects of chemical enhancers such as ethanol, 1,8-cineole, limonene, azone and different fatty acids (decanoic, decenoic, dodecanoic, linoleic and oleic acids) were determined, first using a pizotifen solution. Steady state flux, diffusion and partition parameters were estimated by fitting the Scheuplein equation to the data obtained. Among the chemical enhancers studied, decenoic acid showed the highest enhancement activity, which seemed to be due to the length of its alkyl chain and unsaturation at the 9th carbon. The influence of iontophoresis and the involvement of electrotransport in said process was determined. The absorption profile obtained with iontophoresis was similar to that obtained with fatty acids and terpenes, though skin deposition of the drug was lower with the former. Transdermal delivery systems (TDS) of pizotifen were manufactured by including chemical enhancers, decenoic acid or oleic acid, and were subsequently characterized. When the results obtained with solutions were compared with those obtained with the TDS, a positive enhancement effect was observed with the latter with respect to the partitioning and diffusion of the drug across the skin. Our findings endorse the suitability of our TDS for delivering therapeutic amounts of pizotifen malate. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Genetic polymorphism of Plasmodium falciparum isolates from Loreto, Peru.

    Science.gov (United States)

    Hijar, Gisely; Padilla, Carlos; Marquiño, Wilmer; Falconi, Eduardo; Montoya, Ysabel

    2002-04-01

    Eight genotypes of Plasmodium falciparum were detected after analysing blood samples obtained from 30 Peruvian jungle-dwelling patients in Loreto, a high transmission area for P. falciparum, using amplification of the polymorphic marker gene GLURP (glutamate-rich protein). Genotypes I (GLURP450) and VIII (GLURP800) were the most common (15/30 and 13/30, respectively). This single copy gene showed 15 patients to be infected with a single genotype of P. falciparum; the other 15 were infected with mixed genotypes, one of them with 4 genotypes. These findings are compatible with a high genetic complexity of P. falciparum. Further investigations are needed, using this and other markers, in order to design malaria control measures in Peru.

  19. Analysis of copper and uranyl malates by potentiometry, polarimetry and spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, I; Petit-Ramel, M M; Chapelet-Barbier, C [Lyon-1 Univ., 69 (France)

    1978-07-15

    The stability and optical constants of the copper malates (CuH/sub 2/Mal)/sup +/, (CuHMal), (CuH/sub 2/Mal/sub 2/)/sup 2 -/, (CuMal)/sup -/, (Cu/sub 2/Mal/sub 2/)/sup 2 -/, and (CuHsub(-1)Mal)/sup 2 -/ have been fitted by a pit-mapping method, which also gives their confidence limits, from potentiometric, visible spectroscopic and polarimetric measurements.

  20. Phosphorylation of glyoxysomal malate synthase from castor oil seed endosperm and cucumber cotyledon

    International Nuclear Information System (INIS)

    Yang, Y.P; Randall, D.D.

    1989-01-01

    Glyoxysomal malate synthase (MS) was purified to apparent homogeneity from 3-d germinating castor oil seed endosperm by a relatively simple procedure including two sucrose density gradient centrifugations. Antibodies raised to the caster oil seed MS crossreacted with MS from cucumber cotyledon. MS was phosphorylated in both tissues in an MgATP dependent reaction. The phosphorylation pattern was similar for both enzymes and both enzymes were inhibited by NaF, NaMo, (NH 4 )SO 4 , glyoxylate and high concentration of MgCl 2 (60 mM), but was not inhibited by NaCl and malate. Further characterization of the phosphorylation of MS from castor oil seed endosperms showed that the 5S form of MS is the form which is labelled by 32 P. The addition of exogenous alkaline phosphatase to MS not only decreased enzyme activity, but could also dephosphorylate phospho-MS. The relationship between dephosphorylation of MS and the decrease of MS activity is currently under investigation

  1. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  2. Diagnosing severe falciparum malaria in parasitaemic African children: a prospective evaluation of plasma PfHRP2 measurement.

    Directory of Open Access Journals (Sweden)

    Ilse C E Hendriksen

    Full Text Available In African children, distinguishing severe falciparum malaria from other severe febrile illnesses with coincidental Plasmodium falciparum parasitaemia is a major challenge. P. falciparum histidine-rich protein 2 (PfHRP2 is released by mature sequestered parasites and can be used to estimate the total parasite burden. We investigated the prognostic significance of plasma PfHRP2 and used it to estimate the malaria-attributable fraction in African children diagnosed with severe malaria.Admission plasma PfHRP2 was measured prospectively in African children (from Mozambique, The Gambia, Kenya, Tanzania, Uganda, Rwanda, and the Democratic Republic of the Congo aged 1 month to 15 years with severe febrile illness and a positive P. falciparum lactate dehydrogenase (pLDH-based rapid test in a clinical trial comparing parenteral artesunate versus quinine (the AQUAMAT trial, ISRCTN 50258054. In 3,826 severely ill children, Plasmadium falciparum PfHRP2 was higher in patients with coma (p = 0.0209, acidosis (p<0.0001, and severe anaemia (p<0.0001. Admission geometric mean (95%CI plasma PfHRP2 was 1,611 (1,350-1,922 ng/mL in fatal cases (n = 381 versus 1,046 (991-1,104 ng/mL in survivors (n = 3,445, p<0.0001, without differences in parasitaemia as assessed by microscopy. There was a U-shaped association between log(10 plasma PfHRP2 and risk of death. Mortality increased 20% per log(10 increase in PfHRP2 above 174 ng/mL (adjusted odds ratio [AOR] 1.21, 95%CI 1.05-1.39, p = 0.009. A mechanistic model assuming a PfHRP2-independent risk of death in non-malaria illness closely fitted the observed data and showed malaria-attributable mortality less than 50% with plasma PfHRP2≤174 ng/mL. The odds ratio (OR for death in artesunate versus quinine-treated patients was 0.61 (95%CI 0.44-0.83, p = 0.0018 in the highest PfHRP2 tertile, whereas there was no difference in the lowest tertile (OR 1.05; 95%CI 0.69-1.61; p = 0.82. A limitation of the study is that some

  3. Increased prevalence of Plasmodium falciparum malaria in Honduras, Central America Aumento de la prevalencia de malaria por Plasmodium falciparum en Honduras, Centroamerica

    Directory of Open Access Journals (Sweden)

    Carol J. Palmer

    1998-07-01

    Full Text Available We report on our investigation of a malaria outbreak in Honduras, Central America, in January 1997. We tested 202 patients with fever and chills using thin and thick blood film microscopy. Sixteen patients lived in the city and the rest lived in rural areas. A total of 95 samples (47% were positive for malaria parasites. Seventy-nine percent (63/80 of the rural patients were infected with Plasmodium vivax and 21% (17/80 were infected with P. falciparum. In the urban area, all 15 infected patients had P. vivax malaria and none showed evidence of P. falciparum. Since previous reports indicate that falciparum malaria accounts for only 2% of the overall malaria infections in Honduras, the results reported here suggest that there is a dramatic increase in falciparum malaria in the area of Honduras investigated in this study.Notificamos los resultados de un estudio de un brote de malaria que se produjo en Honduras, Centroamérica, en enero de 1997. Sometimos a examen microscópico frotis delgados y frotis gruesos de la sangre de 202 pacientes con fiebre y escalofríos. Dieciséis pacientes eran habitantes de la zona urbana y el resto de la zona rural. Un total de 95 especímenes (47% fueron positivos a parásitos de la malaria. Setenta y ocho por ciento (62/80 de los pacientes del área rural estaban infestados con Plasmodium vivax y 22% (17/80 con P. falciparum. En la zona urbana, todos los 15 pacientes que estaban infestados tenían P. vivax y en ninguno se detectó P. falciparum. Ya que según informes previos la malaria de tipo falciparum representa solamente 2% de todos los casos de malaria en Honduras, nuestros resultados sugieren que hay un gran incremento del número de casos de malaria falciparum en la zona de Honduras en que se llevó a cabo esta investigación.

  4. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei; Lamikanra, Abigail A.; Alkaitis, Matthew S.; Thé zé nas, Marie L.; Ramaprasad, Abhinay; Moussa, Ehab; Roberts, David J.; Casals-Pascual, Climent

    2014-01-01

    . falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production

  5. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    OpenAIRE

    Jie Liu; Jie Liu; Muyun Xu; Gonzalo M. Estavillo; Emmanuel Delhaize; Rosemary G. White; Meixue Zhou; Peter R. Ryan

    2018-01-01

    We examined the function of OsALMT4 in rice (Oryza sativa L.) which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ...

  6. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Demizu, Yosuke; Kurihara, Masaaki; Sekino, Yuko; Kanda, Yasunari

    2014-08-01

    Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action.

  7. Artemisinin resistance marker of Plasmodium falciparum in Osogbo ...

    African Journals Online (AJOL)

    Artemisinin derivatives constitute a key component of the present-day treatment for Plasmodium falciparum malaria. Resistance with artemisinins is generally associated with S769N point mutation in the sarco-endoplasmic reticulumdependant ATPase6 (SERCA ATPase6) gene of Plasmodium falciparum, few studies have ...

  8. Population genomics diversity of Plasmodium falciparum in malaria ...

    African Journals Online (AJOL)

    Background: Plasmodium falciparum, the most dangerous malaria parasite species to humans remains an important public health concern in Okelele, a rural community in Ilorin, Kwara State, Nigeria. There is however little information about the genetic diversity of Plasmodium falciparum in Nigeria. Objective: To determine ...

  9. Gametocytogenesis : the puberty of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Ariey Frédéric

    2004-07-01

    Full Text Available Abstract The protozoan Plasmodium falciparum has a complex life cycle in which asexual multiplication in the vertebrate host alternates with an obligate sexual reproduction in the anopheline mosquito. Apart from the apparent recombination advantages conferred by sex, P. falciparum has evolved a remarkable biology and adaptive phenotypes to insure its transmission despite the dangers of sex. This review mainly focuses on the current knowledge on commitment to sexual development, gametocytogenesis and the evolutionary significance of various aspects of gametocyte biology. It goes further than pure biology to look at the strategies used to improve successful transmission. Although gametocytes are inevitable stages for transmission and provide a potential target to fight malaria, they have received less attention than the pathogenic asexual stages. There is a need for research on gametocytes, which are a fascinating stage, responsible to a large extent for the success of P. falciparum.

  10. Combination of long noncoding RNA MALAT1 and carcinoembryonic antigen for the diagnosis of malignant pleural effusion caused by lung cancer.

    Science.gov (United States)

    Wang, Wan-Wei; Zhou, Xi-Lei; Song, Ying-Jian; Yu, Chang-Hua; Zhu, Wei-Guo; Tong, Yu-Suo

    2018-01-01

    Long noncoding RNAs (lncRNAs) are present in body fluids, but their potential as tumor biomarkers has never been investigated in malignant pleural effusion (MPE) caused by lung cancer. The aim of this study was to assess the clinical significance of lncRNAs in pleural effusion, which could potentially serve as diagnostic and predictive markers for lung cancer-associated MPE (LC-MPE). RNAs from pleural effusion were extracted in 217 cases of LC-MPE and 132 cases of benign pleural effusion (BPE). Thirty-one lung cancer-associated lncRNAs were measured using quantitative real-time polymerase chain reaction (qRT-PCR). The level of carcinoembryonic antigen (CEA) was also determined. The receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were established to evaluate the sensitivity and specificity of the identified lncRNAs and other biomarkers. The correlations between baseline pleural effusion lncRNAs expression and response to chemotherapy were also analyzed. Three lncRNAs ( MALAT1 , H19 , and CUDR ) were found to have potential as diagnostic markers in LC-MPE. The AUCs for MALAT1 , H19 , CUDR , and CEA were 0.891, 0.783, 0.824, and 0.826, respectively. Using a logistic model, the combination of MALAT1 and CEA (AUC, 0.924) provided higher sensitivity and accuracy in predicting LC-MPE than CEA (AUC, 0.826) alone. Moreover, baseline MALAT1 expression in pleural fluid was inversely correlated with chemotherapy response in patients with LC-MPE. Pleural effusion lncRNAs were effective in differentiating LC-MPE from BPE. The combination of MALAT1 and CEA was more effective for LC-MPE diagnosis.

  11. Impaired Malate and Fumarate Accumulation Due to the Mutation of the Tonoplast Dicarboxylate Transporter Has Little Effects on Stomatal Behavior.

    Science.gov (United States)

    Medeiros, David B; Barros, Kallyne A; Barros, Jessica Aline S; Omena-Garcia, Rebeca P; Arrivault, Stéphanie; Sanglard, Lílian M V P; Detmann, Kelly C; Silva, Willian Batista; Daloso, Danilo M; DaMatta, Fábio M; Nunes-Nesi, Adriano; Fernie, Alisdair R; Araújo, Wagner L

    2017-11-01

    Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis ( Arabidopsis thaliana ) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO 2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial–mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract

    International Nuclear Information System (INIS)

    Lu, Lu; Luo, Fei; Liu, Yi; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Liu, Qizhan

    2015-01-01

    Lung cancer is regarded as the leading cause of cancer-related deaths, and cigarette smoking is one of the strongest risk factors for the development of lung cancer. However, the mechanisms for cigarette smoke-induced lung carcinogenesis remain unclear. The present study investigated the effects of an miRNA (miR-217) on levels of an lncRNA (MALAT1) and examined the role of these factors in the epithelial–mesenchymal transition (EMT) induced by cigarette smoke extract (CSE) in human bronchial epithelial (HBE) cells. In these cells, CSE caused decreases of miR-217 levels and increases in lncRNA MALAT1 levels. Over-expression of miR-217 with a mimic attenuated the CSE-induced increase of MALAT1 levels, and reduction of miR-217 levels by an inhibitor enhanced expression of MALAT1. Moreover, the CSE-induced increase of MALAT1 expression was blocked by an miR-217 mimic, indicating that miR-217 negatively regulates MALAT1 expression. Knockdown of MALAT1 reversed CSE-induced increases of EZH2 (enhancer of zeste homolog 2) and H3K27me3 levels. In addition to the alteration from epithelial to spindle-like mesenchymal morphology, chronic exposure of HBE cells to CSE increased the levels of EZH2, H3K27me3, vimentin, and N-cadherin and decreased E-cadherin levels, effects that were reversed by MALAT1 siRNA or EZH2 siRNA. The results indicate that miR-217 regulation of EZH2/H3K27me3 via MALAT1 is involved in CSE-induced EMT and malignant transformation of HBE cells. The posttranscriptional silencing of MALAT1 by miR-217 provides a link, through EZH2, between ncRNAs and the EMT and establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • CSE exposure decreases miR-217 levels and increases MALAT1 levels. • miR-217 negatively regulates MALAT1 expression. • MALAT1, via EZH2, is involved in the EMT of CSE-transformed HBE cells.

  13. Genes Encoding Aluminum-Activated Malate Transporter II and their Association with Fruit Acidity in Apple

    Directory of Open Access Journals (Sweden)

    Baiquan Ma

    2015-11-01

    Full Text Available A gene encoding aluminum-activated malate transporter (ALMT was previously reported as a candidate for the locus controlling acidity in apple ( × Borkh.. In this study, we found that apple genes can be divided into three families and the gene belongs to the family. Duplication of genes in apple is related to the polyploid origin of the apple genome. Divergence in expression has occurred between the gene and its homologs in the family and only the gene is significantly associated with malic acid content. The locus consists of two alleles, and . resides in the tonoplast and its ectopic expression in yeast was found to increase the influx of malic acid into yeast cells significantly, suggesting it may function as a vacuolar malate channel. In contrast, encodes a truncated protein because of a single nucleotide substitution of G with A in the last exon. As this truncated protein resides within the cell membrane, it is deemed to be nonfunctional as a vacuolar malate channel. The frequency of the genotype is very low in apple cultivars but is high in wild relatives, which suggests that apple domestication may be accompanied by selection for the gene. In addition, variations in the malic acid content of mature fruits were also observed between accessions with the same genotype in the locus. This suggests that the gene is not the only genetic determinant of fruit acidity in apple.

  14. InterProScan Result: BJ984559 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available 557 L-lactate/malate dehydrogenase Biological Process: glycolysis (GO:0006096)|Biological Process: cellular ...carbohydrate metabolic process (GO:0044262)|Biological Process: oxidation reduction (GO:0055114) ...

  15. Plasmodium falciparum malaria

    African Journals Online (AJOL)

    Durrheim, Karen Barnes. Objectives. To assess the therapeutic efficacy of sulfadoxine- pyrimethamine (SP) after 5 years of use as first-line treatment of uncomplicated Plasmodium falciparum malaria, and thus guide the selection of artemisinin-based combination therapy in Mpumalanga, South Africa. Design. An open-label ...

  16. Enzyme Activities in Oleaginous Yeasts Accumulating and Utilizing Exogenous or Endogenous Lipids

    NARCIS (Netherlands)

    Holdsworth, Jane E.; Veenhuis, Marten; Ratledge, Colin

    1988-01-01

    The activities of ATP:citrate lyase (ACL; EC 4.1.3.8), carnitine acetyltransferase (CAT; EC 2.3.1.7), NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42), isocitrate lyase (ICL; EC 4.1.3.1) and malic enzyme (malate dehydrogenase; EC 1.1.1.40) were measured in four oleaginous yeasts, Candida

  17. Browse Title Index

    African Journals Online (AJOL)

    Items 201 - 250 of 444 ... EL Omenyo, E Moses, H Asumadu, AA Ankoma. Vol 49, No 1 (2015), Farmer perspectives on the use of indigenous fruit tree species in cocoa growing ... EW Acquah, MD Quain, P Twumasi, EY Parkes. Vol 36, No 1 (2003), Genetic structure at the isocitrate dehydrogenase and malate dehydrogenase ...

  18. Pengaruh Pengasapan (Thermal Fogging Insektisida Piretroid (Malation 95% Terhadap Nyamuk Aedes aegypti dan Culex quinquefasciatus di Pemukiman

    Directory of Open Access Journals (Sweden)

    Hasan Boesri

    2013-02-01

    Full Text Available Abstracts. The evaluation of piretroid insecticide (active ingredient Malation 95% was con­ducted in Sub district Tengarang, Semarang Segency, Central Java Province. The insecti­cide was applied using thermal fogging method for dosages of 125, 250, 375, 500 and 625 ml/ha (diluted in diesel to 10 litters. The evaluation of the efficacy was conducted against two mosquito species, Aedes aegypti (the main dengue haemorrhagic fever and Culex quinquefasciatus (the urban lymphatic fil­ariasis vector. Result of the evaluation was revealed that dosages of 500 and 625 ml/ha were effective against both tested mosquito species indoor and outdoor.Key Word: Aedes aegypti, Culex quinquefasciatus, insecticide Piretroid (Malation 95%, thermal fogging.

  19. Phytochemical isolation of compounds from Sceletium tortuosum and activity testing against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Itumeleng I. Setshedi

    2012-06-01

    Full Text Available Malaria is a major health care problem in tropical regions due to the increasing resistance of Plasmodium falciparum against widely available antimalarial drugs. Traditional societies relied on medicinal plants to treat parasitic infections. As a result, drugs like quinine and artemisinin were isolated from herbs and barks (Varughese et al. 2010. Sceletium tortuosum has been used as medicine for social and spiritual purposes by San hunter gatherers and Khoi pastoralists. Sceletium tortuosum is rich in alkaloids, one of the important classes of natural product producing treatment for parasitic infections (Kayser et al. 2002. Laboratory preparation of extracts of fresh S. tortuosum plant material was conducted mimicking traditional methods of preparation using organic solvents. Mesembrine was isolated from a methanol extract using conventional column chromatography. Sixteen extracts and mesembrine were evaluated for antiplasmodium activity using a plasmodium lactate dehydrogenase culture sensitivity assay with chloroquine as reference drug. Of the sixteen extracts, four showed activity against P. falciparum with IC50 ranging between 1.47 µg/mL and 7.32 µg/mL. Extracts prepared from stored material at -20 °C showed no antiplasmodium activity. The four originally active extracts were re-screened six months later, but the antimalarial activity could not be reproduced. To determine discrepancy in biological results, chemical profiling of the extracts was done using high performance liquid chromatography technique. Differences were observed in the profiles of the active extracts when compared to those of stored plant material. The instability of plant constituents observed could be a result of plant storage suggesting that the plant is best used when fresh.

  20. On Programmed Cell Death in Plasmodium falciparum: Status Quo

    Science.gov (United States)

    Engelbrecht, Dewaldt; Durand, Pierre Marcel; Coetzer, Thérèsa Louise

    2012-01-01

    Conflicting arguments and results exist regarding the occurrence and phenotype of programmed cell death (PCD) in the malaria parasite Plasmodium falciparum. Inconsistencies relate mainly to the number and type of PCD markers assessed and the different methodologies used in the studies. In this paper, we provide a comprehensive overview of the current state of knowledge and empirical evidence for PCD in the intraerythrocytic stages of P. falciparum. We consider possible reasons for discrepancies in the data and offer suggestions towards more standardised investigation methods in this field. Furthermore, we present genomic evidence for PCD machinery in P. falciparum. We discuss the potential adaptive or nonadaptive role of PCD in the parasite life cycle and its possible exploitation in the development of novel drug targets. Lastly, we pose pertinent unanswered questions concerning the PCD phenomenon in P. falciparum to provide future direction. PMID:22287973

  1. InterProScan Result: FS919040 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available 01557 L-lactate/malate dehydrogenase Biological Process: glycolysis (GO:0006096)|Biological Process: cellula...r carbohydrate metabolic process (GO:0044262)|Biological Process: oxidation reduction (GO:0055114) ...

  2. Reproductive strategies and genetic variability in tropical freshwater fish

    Directory of Open Access Journals (Sweden)

    Maria Dolores Peres Lassala

    2007-01-01

    Full Text Available We estimated the genetic variability of nine fish species from the Brazilian upper Paraná River floodplain (Astyanax altiparanae, Hoplias malabaricus, Leporinus lacustris, Loricariichthys platymetopon, Parauchenipterus galeatus, Pimelodus maculatus, Rhaphiodon vulpinus, Roeboides paranensis and Serrasalmus marginatus based on data for 36 putative allozyme loci obtained using corn starch gel electrophoresis of 13 enzymatic systems: aspartate aminotransferase (EC 2.6.1.1, acid phosphatase (EC 3.1.3.2, esterase (EC 3.1.1.1, glycerol-3-phosphate dehydrogenase (EC 1.1.1.8, glucose-6-phosphate dehydrogenase (EC 1.1.1.49, glucose-6-phosphate isomerase (EC 5.3.1.9, Iditol dehydrogenase (EC 1.1.1.14, isocitrate dehydrogenase - NADP+ (EC 1.1.1.42, L-lactate dehydrogenase (EC 1.1.1.27, malate dehydrogenase (EC 1.1.1.37, malate dehydrogenase-NADP+ (EC 1.1.1.40, phosphoglucomutase (EC 5.4.2.2 and superoxide dismutase, (EC 1.15.1.1. The mean expected heterozygosity varied from zero to 0.147. When data from the literature for 75 species of tropical fish were added to the nine species of this study, the heterozygosity values differed significantly among the groups of different reproductive strategies. The highest mean heterozygosity was for the non-migratory without parental care, followed by the long-distance migratory, and the lowest mean was for the non-migratory with parental care or internal fecundation.

  3. High-Dose Chloroquine for Treatment of Chloroquine-Resistant Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Ursing, Johan; Rombo, Lars; Bergqvist, Yngve

    2016-01-01

    BACKGROUND:  Due to development of multidrug-resistant Plasmodium falciparum new antimalarial therapies are needed. In Guinea-Bissau, routinely used triple standard-dose chloroquine remained effective for decades despite the existence of "chloroquine-resistant" P. falciparum. This study aimed...... to determine the in vivo efficacy of higher chloroquine concentrations against P. falciparum with resistance-conferring genotypes. METHODS:  Standard or double-dose chloroquine was given to 892 children aged ...-up. The P. falciparum resistance-conferring genotype (pfcrt 76T) and day 7 chloroquine concentrations were determined. Data were divided into age groups (chloroquine is prescribed according to body weight. RESULTS:  Adequate clinical...

  4. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*

    Science.gov (United States)

    Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.

    2008-01-01

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466

  5. Competitive endothelial adhesion between Plasmodium falciparum isolates under physiological flow conditions

    Directory of Open Access Journals (Sweden)

    Molyneux Malcolm

    2009-09-01

    Full Text Available Abstract Background Sequestration of parasitized red blood cells in the microvasculature of major organs involves a sequence of events that is believed to contribute to the pathogenesis of severe falciparum malaria. Plasmodium falciparum infections are commonly composed of multiple subpopulations of parasites with varied adhesive properties. A key question is: do these subpopulations compete for adhesion to endothelium? This study investigated whether, in a laboratory model of cytoadherence, there is competition in binding to endothelium between pRBC infected with P. falciparum of variant adhesive phenotypes, particularly under flow conditions. Methods Four different P. falciparum isolates, of known adherence phenotypes, were matched in pairs, mixed in different proportions and allowed to bind to cultured human endothelium. Using in vitro competitive static and flow-based adhesion assays, that allow simultaneous testing of the adhesive properties of two different parasite lines, adherence levels of paired P. falciparum isolates were quantified and analysed using either non-parametric Wilcoxon's paired signed rank test or Student paired test. Results Study findings show that P. falciparum parasite lines show marked differences in the efficiency of adhesion to endothelium. Conclusion Plasmodium falciparum variants will compete for adhesion to endothelia and variants can be ranked by their efficiency of binding. These findings suggest that variants from a mixed infection will not show uniform cytoadherence and so may vary in their ability to cause disease.

  6. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis

    OpenAIRE

    Hoekenga, Owen A.; Maron, Lyza G.; Piñeros, Miguel A.; Cançado, Geraldo M. A.; Shaff, Jon; Kobayashi, Yuriko; Ryan, Peter R.; Dong, Bei; Delhaize, Emmanuel; Sasaki, Takayuki; Matsumoto, Hideaki; Yamamoto, Yoko; Koyama, Hiroyuki; Kochian, Leon V.

    2006-01-01

    Aluminum (Al) tolerance in Arabidopsis is a genetically complex trait, yet it is mediated by a single physiological mechanism based on Al-activated root malate efflux. We investigated a possible molecular determinant for Al tolerance involving a homolog of the wheat Al-activated malate transporter, ALMT1. This gene, named AtALMT1 (At1g08430), was the best candidate from the 14-memberAtALMT family to be involved with Al tolerance based on expression patterns and genomic location. Physiological...

  7. On Programmed Cell Death in Plasmodium falciparum: Status Quo

    Directory of Open Access Journals (Sweden)

    Dewaldt Engelbrecht

    2012-01-01

    Full Text Available Conflicting arguments and results exist regarding the occurrence and phenotype of programmed cell death (PCD in the malaria parasite Plasmodium falciparum. Inconsistencies relate mainly to the number and type of PCD markers assessed and the different methodologies used in the studies. In this paper, we provide a comprehensive overview of the current state of knowledge and empirical evidence for PCD in the intraerythrocytic stages of P. falciparum. We consider possible reasons for discrepancies in the data and offer suggestions towards more standardised investigation methods in this field. Furthermore, we present genomic evidence for PCD machinery in P. falciparum. We discuss the potential adaptive or nonadaptive role of PCD in the parasite life cycle and its possible exploitation in the development of novel drug targets. Lastly, we pose pertinent unanswered questions concerning the PCD phenomenon in P. falciparum to provide future direction.

  8. The contribution of stored malate and citrate to the substrate requirements of metabolism of ripening peach (Prunus persica L. Batsch) flesh is negligible. Implications for the occurrence of phosphoenolpyruvate carboxykinase and gluconeogenesis.

    Science.gov (United States)

    Famiani, Franco; Farinelli, Daniela; Moscatello, Stefano; Battistelli, Alberto; Leegood, Richard C; Walker, Robert P

    2016-04-01

    The first aim of this study was to determine the contribution of stored malate and citrate to the substrate requirements of metabolism in the ripening flesh of the peach (Prunus persica L. Batsch) cultivar Adriatica. In the flesh, stored malate accumulated before ripening could contribute little or nothing to the net substrate requirements of metabolism. This was because there was synthesis and not dissimilation of malate throughout ripening. Stored citrate could potentially contribute a very small amount (about 5.8%) of the substrate required by metabolism when the whole ripening period was considered, and a maximum of about 7.5% over the latter part of ripening. The second aim of this study was to investigate why phosphoenolpyruvate carboxykinase (PEPCK) an enzyme utilised in gluconeogenesis from malate and citrate is present in peach flesh. The occurrence and localisation of enzymes utilised in the metabolism of malate, citrate and amino acids were determined in peach flesh throughout its development. Phosphoenolpyruvate carboxylase (essential for the synthesis of malate and citrate) was present in the same cells and at the same time as PEPCK and NADP-malic enzyme (both utilised in the dissimilation of malate and citrate). A hypothesis is presented to explain the presence of these enzymes and to account for the likely occurrence of gluconeogenesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Pre-ischemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischemia-reperfusion

    DEFF Research Database (Denmark)

    Jespersen, Nichlas Riise; Yokota, Takashi; Støttrup, Nicolaj Brejnholt

    2017-01-01

    KEY POINTS: Pre-ischaemic administration of aminooxiacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against ischaemia-reperfusion injury. The underlying mechanism remains unknown. We examined whether transient inhibition of the MAS during ischaemia......, but not IPC, reduced the myocardial interstitial concentration of tricarboxylic acid cycle intermediates at the onset of reperfusion. The results obtained in the present study demonstrate that metabolic regulation by inhibition of the MAS at the onset of reperfusion may be beneficial for the preservation...... of mitochondrial function during late reperfusion in an IR-injured heart. ABSTRACT: Mitochondrial dysfunction plays a central role in ischaemia-reperfusion (IR) injury. Pre-ischaemic administration of aminooxyacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against IR...

  10. Prevalence of falciparum malaria amongst pregnant women in Aba ...

    African Journals Online (AJOL)

    Malaria during pregnancy poses a substantial risk to mother and foetus especially an infection with Plasmodium falciparum. This study was undertaken to assess the prevalence of falciparum malaria among pregnant women in Aba South Local Government Area, Abia State, south-east Nigeria. Blood samples from 432 ...

  11. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems

    Directory of Open Access Journals (Sweden)

    DINAKAR eCHALLABATHULA

    2016-02-01

    Full Text Available The present study reveals the importance of alternative oxidase (AOX pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 µmoles m-2 s-1 at 25 oC under a range of sorbitol concentrations from 0.4 M to 1.0M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 oC to 10 oC to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25 OC, the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation, under both hyper-osmotic (1.0 M sorbitol and sub-optimal temperature stress conditions (10 OC, while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG related to antioxidative system during hyper-osmotic stress. Nevertheless, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD and sub-optimal temperature (NADPH/NADP stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM, the observed changes in NaHCO3 dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(PH/NAD(P and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the

  12. Selection of Plasmodium falciparum Multidrug Resistance Gene 1 Alleles in Asexual Stages and Gametocytes by Artemether-Lumefantrine in Nigerian Children with Uncomplicated Falciparum Malaria ▿

    OpenAIRE

    Happi, C. T.; Gbotosho, G. O.; Folarin, O. A.; Sowunmi, A.; Hudson, T.; O'Neil, M.; Milhous, W.; Wirth, D. F.; Oduola, A. M. J.

    2008-01-01

    We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca2+ ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and the quantitative real-time PCR methodologies were used to determine the alleles of the Pfmdr1 and PfATPase6 genes and the Pfmdr1 copy numbe...

  13. Elimination of Plasmodium falciparum malaria in Tajikistan.

    Science.gov (United States)

    Kondrashin, Anatoly V; Sharipov, Azizullo S; Kadamov, Dilshod S; Karimov, Saifuddin S; Gasimov, Elkhan; Baranova, Alla M; Morozova, Lola F; Stepanova, Ekaterina V; Turbabina, Natalia A; Maksimova, Maria S; Morozov, Evgeny N

    2017-05-30

    Malaria was eliminated in Tajikistan by the beginning of the 1960s. However, sporadic introduced cases of malaria occurred subsequently probably as a result of transmission from infected mosquito Anopheles flying over river the Punj from the border areas of Afghanistan. During the 1970s and 1980s local outbreaks of malaria were reported in the southern districts bordering Afghanistan. The malaria situation dramatically changed during the 1990s following armed conflict and civil unrest in the newly independent Tajikistan, which paralyzed health services including the malaria control activities and a large-scale malaria epidemic occurred with more than 400,000 malaria cases. The malaria epidemic was contained by 1999 as a result of considerable financial input from the Government and the international community. Although Plasmodium falciparum constituted only about 5% of total malaria cases, reduction of its incidence was slower than that of Plasmodium vivax. To prevent increase in P. falciparum malaria both in terms of incidence and territory, a P. falciparum elimination programme in the Republic was launched in 200, jointly supported by the Government and the Global Fund for control of AIDS, tuberculosis and malaria. The main activities included the use of pyrethroids for the IRS with determined periodicity, deployment of mosquito nets, impregnated with insecticides, use of larvivorous fishes as a biological larvicide, implementation of small-scale environmental management, and use of personal protection methods by population under malaria risk. The malaria surveillance system was strengthened by the use of ACD, PCD, RCD and selective use of mass blood surveys. All detected cases were timely epidemiologically investigated and treated based on the results of laboratory diagnosis. As a result, by 2009, P. falciparum malaria was eliminated from all of Tajikistan, one year ahead of the originally targeted date. Elimination of P. falciparum also contributed towards

  14. Non-falciparum malaria infections in pregnant women in West Africa

    DEFF Research Database (Denmark)

    Williams, John; Njie, Fanta; Cairns, Matthew

    2016-01-01

    BACKGROUND: Non-Plasmodium falciparum malaria infections are found in many parts of sub-Saharan Africa but little is known about their importance in pregnancy. METHODS: Blood samples were collected at first antenatal clinic attendance from 2526 women enrolled in a trial of intermittent screening...... and treatment of malaria in pregnancy (ISTp) versus intermittent preventive treatment (IPTp) conducted in Burkina Faso, The Gambia, Ghana and Mali. DNA was extracted from blood spots and tested for P. falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale using a nested PCR test. Risk factors...... for a non-falciparum malaria infection were investigated and the influence of these infections on the outcome of pregnancy was determined. RESULTS: P. falciparum infection was detected frequently (overall prevalence by PCR: 38.8 %, [95 % CI 37.0, 40.8]), with a prevalence ranging from 10.8 % in The Gambia...

  15. IgG isotypic antibodies to crude Plasmodium falciparum blood-stage ...

    African Journals Online (AJOL)

    Methods: Levels of IgG (IgG1-IgG4) and IgM to crude P. falciparum blood stage antigen ... dosage influenced P. falciparum-specific isotypic antibody responses to blood stage .... exposed Swedish donors. ..... with adverse pregnancy outcomes.

  16. Capture ELISA for IgM antibodies against Plasmodium falciparum glutamate rich protein

    DEFF Research Database (Denmark)

    Dziegiel, M; Borre, Mette; Petersen, E

    1992-01-01

    This report describes a novel mu chain capture ELISA for the detection of IgM antibodies against a Plasmodium falciparum antigen. A fragment of the 220 kDa P. falciparum glutamate rich protein containing amino acid residues 489-1271 was expressed in E. coli as a recombinant chimeric beta-galactos......This report describes a novel mu chain capture ELISA for the detection of IgM antibodies against a Plasmodium falciparum antigen. A fragment of the 220 kDa P. falciparum glutamate rich protein containing amino acid residues 489-1271 was expressed in E. coli as a recombinant chimeric beta...

  17. Monkey-derived monoclonal antibodies against Plasmodium falciparum

    International Nuclear Information System (INIS)

    Stanley, H.A.; Reese, R.T.

    1985-01-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a M/sub r/ 95,000 antigen. Radioimmunoprecipitation assays using 125 T-antibodies were done

  18. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors

    DEFF Research Database (Denmark)

    Saito, Fumiji; Hirayasu, Kouyuki; Satoh, Takeshi

    2017-01-01

    , but the immune regulatory mechanisms used by P. falciparum remain largely unknown. Here we show that P. falciparum uses immune inhibitory receptors to achieve immune evasion. RIFIN proteins are products of a polymorphic multigene family comprising approximately 150-200 genes per parasite genome...

  19. InterProScan Result: FS896666 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available enase 4e-09 T IPR001557 L-lactate/malate dehydrogenase Biological Process: glycolysis (GO:0006096)|Biological... Process: cellular carbohydrate metabolic process (GO:0044262)|Biological Process: oxidation reduction (GO:0055114) ...

  20. Falciparum malaria infection with invasive pulmonary aspergillosis in immunocompetent host – case report

    Science.gov (United States)

    Andriyani, Y.

    2018-03-01

    Invasive pulmonary aspergillosis is an extraordinary rare in the immunocompetent host. Falciparum malaria contributes to high morbidity and mortality of malaria infection cases in the world. The impairments of both humoral and cellular immunity could be the reason of invasive pulmonary aspergillosis in falciparum malaria infection. Forty-nine years old patient came with fever, jaundice, pain in the right abdomen, after visiting a remote area in Africa about one month before admission. Blood films and rapid test were positive for Plasmodium falciparum. After malaria therapy in five days, consciousness was altered into somnolence and intubated with respiratory deterioration. Invasive pulmonary aspergillosis after falciparum malaria infection is life-threatening. There should be awareness of physicians of invasive pulmonary aspergillosis in falciparum malaria infection.

  1. Seasonal variations of vivax and falciparum malaria: an observation at a tertiary care hospital

    International Nuclear Information System (INIS)

    Jamil, S.; Khan, M.N.

    2012-01-01

    Background: Malaria is a major public health problem in the malaria endemic zones of the world. Various factors influence the prevalence of malaria. This study was conducted to determine the variation in frequency of Plasmodium vivax and Plasmodium falciparum malaria in different seasons of the year in Khyber Teaching Hospital, Peshawar. Methods: A total of 411 patients were included in the study. All these febrile patients were reported to have trophozoites of either Plasmodium vivax or Plasmodium falciparum malaria on Giemsa stained thick and thin smears. The frequency of vivax and falciparum malaria was worked out and statistically analysed for different season of the year. The study was carried out from 2nd Jan 2004 till 31st December 2008. Results: Out of total 411 diagnosed malaria cases, total 134 (32.60%) presented in the autumn season (vivax=33.58%, and falciparum=66.42%), 37 (9%) in winter season (vivax=32.4%, and falciparum=67.6%), 76 (18.49%) in spring season (vivax=93.4% and falciparum 6.6%) and 164 (39.90%) in summer season (vivax=89.6, and falciparum=10.4%). The malaria showed a highly significant pattern in different seasons of the year (p=0.00) in a way that Plasmodium falciparum malaria reached its highest frequency in autumn and winter seasons while Plasmodium vivax malaria reached its peak frequency in spring and summer seasons. Conclusion: There was highly significant seasonal variation of vivax and falciparum malaria. There is arrival of Plasmodium falciparum in autumn which peaks in winter followed by arrival of Plasmodium vivax in spring till the end of summer. (author)

  2. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme).

    Science.gov (United States)

    Cook, R. M.; Lindsay, J. G.; Wilkins, M. B.; Nimmo, H. G.

    1995-01-01

    The role of NAD-malic enzyme (NAD-ME) in the Crassulacean acid metabolism plant Bryophyllum (Kalanchoe) fedtschenkoi was investigated using preparations of intact and solubilized mitochondria from fully expanded leaves. Intact, coupled mitochondria isolated during the day or night did not differ in their ability to take up [14C]malic acid from the surrounding medium or to respire using malate or succinate as substrate. However, intact mitochondria isolated from plants during the day decarboxylated added malate to pyruvate significantly faster than mitochondria isolated from plants at night. NAD-ME activity in solubilized mitochondrial extracts showed hysteretic kinetics and was stimulated by a number of activators, including acetyl-coenzyme A, fructose-1,6-bisphosphate, and sulfate ions. In the absence of these effectors, reaction progress curves were nonlinear, with a pronounced acceleration phase. The lag period before a steady-state rate was reached in assays of mitochondrial extracts decreased during the photoperiod and increased slowly during the period of darkness. However, these changes in the kinetic properties of the enzyme could not account for the changes in the rate of decarboxylation of malate by intact mitochondria. Gel-filtration experiments showed that mitochondrial extracts contained three forms of NAD-ME with different molecular weights. The relative proportions of the three forms varied somewhat throughout the light/dark cycle, but this did not account for the changes in the kinetics behavior of the enzyme during the diurnal cycle. PMID:12228671

  3. A Plasmodium falciparum Strain Expressing GFP throughout the Parasite's Life-Cycle

    OpenAIRE

    Talman, Arthur M.; Blagborough, Andrew M.; Sinden, Robert E.

    2010-01-01

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete spo...

  4. InterProScan Result: FS910707 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available enase 3.1e-42 T IPR001557 L-lactate/malate dehydrogenase Biological Process: glycolysis (GO:0006096)|Biological... Process: cellular carbohydrate metabolic process (GO:0044262)|Biological Process: oxidation reduction (GO:0055114) ...

  5. InterProScan Result: FS919040 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available enase 6.4e-90 T IPR001557 L-lactate/malate dehydrogenase Biological Process: glycolysis (GO:0006096)|Biological... Process: cellular carbohydrate metabolic process (GO:0044262)|Biological Process: oxidation reduction (GO:0055114) ...

  6. InterProScan Result: BY927202 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available rogenase-like 5e-70 T IPR003767 Malate/L-lactate dehydrogenase Biological Process: metabolic process (GO:000...8152)|Molecular Function: oxidoreductase activity (GO:0016491)|Biological Process: oxidation reduction (GO:0055114) ...

  7. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Science.gov (United States)

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  8. Plasmodium falciparum in the southeastern Atlantic forest: a challenge to the bromeliad-malaria paradigm?

    Science.gov (United States)

    Laporta, Gabriel Zorello; Burattini, Marcelo Nascimento; Levy, Debora; Fukuya, Linah Akemi; de Oliveira, Tatiane Marques Porangaba; Maselli, Luciana Morganti Ferreira; Conn, Jan Evelyn; Massad, Eduardo; Bydlowski, Sergio Paulo; Sallum, Maria Anice Mureb

    2015-04-25

    Recently an unexpectedly high prevalence of Plasmodium falciparum was found in asymptomatic blood donors living in the southeastern Brazilian Atlantic forest. The bromeliad-malaria paradigm assumes that transmission of Plasmodium vivax and Plasmodium malariae involves species of the subgenus Kerteszia of Anopheles and only a few cases of P. vivax malaria are reported annually in this region. The expectations of this paradigm are a low prevalence of P. vivax and a null prevalence of P. falciparum. Therefore, the aim of this study was to verify if P. falciparum is actively circulating in the southeastern Brazilian Atlantic forest remains. In this study, anophelines were collected with Shannon and CDC-light traps in seven distinct Atlantic forest landscapes over a 4-month period. Field-collected Anopheles mosquitoes were tested by real-time PCR assay in pools of ten, and then each mosquito from every positive pool, separately for P. falciparum and P. vivax. Genomic DNA of P. falciparum or P. vivax from positive anophelines was then amplified by traditional PCR for sequencing of the 18S ribosomal DNA to confirm Plasmodium species. Binomial probabilities were calculated to identify non-random results of the P. falciparum-infected anopheline findings. The overall proportion of anophelines naturally infected with P. falciparum was 4.4% (21/480) and only 0.8% (4/480) with P. vivax. All of the infected mosquitoes were found in intermixed natural and human-modified environments and most were Anopheles cruzii (22/25 = 88%, 18 P. falciparum plus 4 P. vivax). Plasmodium falciparum was confirmed by sequencing in 76% (16/21) of positive mosquitoes, whereas P. vivax was confirmed in only 25% (1/4). Binomial probabilities suggest that P. falciparum actively circulates throughout the region and that there may be a threshold of the forested over human-modified environment ratio upon which the proportion of P. falciparum-infected anophelines increases significantly. These results

  9. Highly sensitive solid-phase radioimmunoassay for the assay of Plasmodium falciparum antigens and antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Avraham, H.; Golenser, J.; Gazitt, Y.; Spira, D.T.; Sulitzeanu, D. (Hebrew Univ., Jerusalem (Israel). Hadassah Medical School)

    1982-08-27

    A highly sensitive radioimmunoassay for detection of P. falciparum antibodies and antigens is described. A partially purified P. falciparum antigen preparation is obtained from in vitro cultured parasites enriched after gelatin sedimentation by sonicating the infected red blood cells and precipitating the proteins with 50% saturated ammonium sulfate. The precipitate is dissolved in buffer, ultracentrifuged and used to coat wells of microtiter plates. Anti-P. falciparum antibodies are detected by incubating antiserum dilutions in the coated wells and detecting the bound IgG with radioiodinated staphylococcal protein A. P. falciparum antigens are detected by their ability to inhibit binding of antibodies to the coated wells. Sera of individuals with a history of P. falciparum infection contain antibodies detectable at a dilution of 1:75,000. P. falciparum RBC infected in vitro can be detected at levels of parasitemia of the order of 1 parasite or less per 10/sup 6/ RBC.

  10. High prevalence of drug-resistance mutations in Plasmodium falciparum and Plasmodium vivax in southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Löscher Thomas

    2006-07-01

    Full Text Available Abstract Background In Ethiopia, malaria is caused by both Plasmodium falciparum and Plasmodium vivax. Drug resistance of P. falciparum to sulfadoxine-pyrimethamine (SP and chloroquine (CQ is frequent and intense in some areas. Methods In 100 patients with uncomplicated malaria from Dilla, southern Ethiopia, P. falciparum dhfr and dhps mutations as well as P. vivax dhfr polymorphisms associated with resistance to SP and P. falciparum pfcrt and pfmdr1 mutations conferring CQ resistance were assessed. Results P. falciparum and P. vivax were observed in 69% and 31% of the patients, respectively. Pfdhfr triple mutations and pfdhfr/pfdhps quintuple mutations occurred in 87% and 86% of P. falciparum isolates, respectively. Pfcrt T76 was seen in all and pfmdr1 Y86 in 81% of P. falciparum. The P. vivax dhfr core mutations N117 and R58 were present in 94% and 74%, respectively. Conclusion These data point to an extraordinarily high frequency of drug-resistance mutations in both P. falciparum and P. vivax in southern Ethiopia, and strongly support that both SP and CQ are inadequate drugs for this region.

  11. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    Science.gov (United States)

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  12. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether-lumefantrine in Nigerian children with uncomplicated falciparum malaria.

    Science.gov (United States)

    Happi, C T; Gbotosho, G O; Folarin, O A; Sowunmi, A; Hudson, T; O'Neil, M; Milhous, W; Wirth, D F; Oduola, A M J

    2009-03-01

    We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca(2+) ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and the quantitative real-time PCR methodologies were used to determine the alleles of the Pfmdr1 and PfATPase6 genes and the Pfmdr1 copy number variation, respectively, in patients samples collected prior to treatment and at the reoccurrence of parasites during a 42-day follow-up. The Pfmdr1 haplotype 86N-184F-1246D was significantly associated (P copy of the Pfmdr1 gene and the wild-type allele (L89) at codon 89 of the PfATPase6 gene. These findings suggest that polymorphisms in the Pfmdr1 gene are under AL selection pressure. Pfmdr1 polymorphisms may result in reduction in the therapeutic efficacy of this newly adopted combination treatment for uncomplicated falciparum malaria in Saharan countries of Africa.

  13. Premunition in Plasmodium falciparum malaria

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... antigenic polymorphism, shedding of parts of parasite proteins, cross-reactive epitopes of antigens of ... Due to the lack of HLA molecules on the surface of the .... Susceptibility and death rates in P. falciparum malaria are.

  14. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei

    2014-02-10

    Background: Acute malarial anemia remains a major public health problem. Hepcidin, the major hormone controlling the availability of iron, is raised during acute and asymptomatic parasitemia. Understanding the role and mechanism of raised hepcidin and so reduced iron availability during infection is critical to establish evidence-based guidelines for management of malaria anemia. Our recent clinical evidence suggests a potential role of IL-10 in the regulation of hepcidin in patients with acute P. falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production increased in primary macrophages when these cells were co-cultured with Plasmodium falciparum-infected erythrocytes. We found that IL-10 induced hepcidin secretion in primary macrophages in a dose-dependent manner but not in HepG2 cells. These effects were mediated through signal transducer and activator of transcription (STAT) 3-phosphorylation and completely abrogated by a specific STAT3 inhibitor. Conclusion: IL-10 can directly regulate hepcidin in primary macrophages but not in HepG2 cells. This effect can be modulated by Plasmodium falciparum. The results are consistent with a role for IL-10 in modulating iron metabolism during acute phase of infection. 2014 Huang et al.

  15. Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448

    International Nuclear Information System (INIS)

    Bamodu, Oluwaseun Adebayo; Huang, Wen-Chien; Lee, Wei-Hwa; Wu, Alexander; Wang, Liang Shun; Hsiao, Michael; Yeh, Chi-Tai; Chao, Tsu-Yi

    2016-01-01

    Triple negative breast cancers (TNBC) possess cell dedifferentiation characteristics, carry out activities connate to those of cancer stem cells (CSCs) and are associated with increased metastasis, as well as, poor clinical prognosis. The regulatory mechanism of this highly malignant phenotype is still poorly characterized. Accruing evidence support the role of non-coding RNAs (ncRNAs) as potent regulators of CSC and metastatic gene expression, with their dysregulation implicated in tumorigenesis and disease progression. In this study, we investigated TNBC metastasis, metastasis-associated genes and potential inhibitory mechanisms using bioinformatics, tissue microarray analyses, immunoblotting, polymerase chain reaction, loss and gain of gene function assays and comparative analyses of data obtained. Compared with other breast cancer types, the highly metastatic MDA-MB-231 cells concurrently exhibited increased expression levels of Lysine-specific demethylase 5B protein (KDM5B) and long non-coding RNA (lncRNA), MALAT1, suggesting their functional association. KDM5B-silencing in the TNBC cells correlated with the upregulation of hsa-miR-448 and led to suppression of MALAT1 expression with decreased migration, invasion and clonogenic capacity in vitro, as well as, poor survival in vivo. This projects MALAT1 as a mediator of KDM5B oncogenic potential and highlights the critical role of this microRNA, lncRNA and histone demethylase in cancer cell motility and metastatic colonization. Increased expression of KDM5B correlating with disease progression and poor clinical outcome in breast cancer was reversed by hsa-miR-448. Our findings demonstrate the critical role of KDM5B and its negative regulator hsa-miR-448 in TNBC metastasis and progression. Hsa-miR-448 disrupting KDM5B-MALAT1 signalling axis and associated activities in TNBC cells, projects it as a putative therapeutic factor for selective eradication of TNBC cells

  16. In vitro growth of Plasmodium falciparum in neonatal blood.

    Science.gov (United States)

    Sauerzopf, Ulrich; Honkpehedji, Yabo J; Adgenika, Ayôla A; Feugap, Elianne N; Ngoma, Ghyslain Mombo; Mackanga, Jean-Rodolphe; Lötsch, Felix; Loembe, Marguerite M; Kremsner, Peter G; Mordmüller, Benjamin; Ramharter, Michael

    2014-11-18

    Children below the age of six months suffer less often from malaria than older children in sub-Saharan Africa. This observation is commonly attributed to the persistence of foetal haemoglobin (HbF), which is considered not to permit growth of Plasmodium falciparum and therefore providing protection against malaria. Since this concept has recently been challenged, this study evaluated the effect of HbF erythrocytes and maternal plasma on in vitro parasite growth of P. falciparum in Central African Gabon. Umbilical cord blood and peripheral maternal blood were collected at delivery at the Albert Schweitzer Hospital in Gabon. Respective erythrocyte suspension and plasma were used in parallel for in vitro culture. In vitro growth rates were compared between cultures supplemented with either maternal or cord erythrocytes. Plasma of maternal blood and cord blood was evaluated. Parasite growth rates were assessed by the standard HRP2-assay evaluating the increase of HRP2 concentration in Plasmodium culture. Culture of P. falciparum using foetal erythrocytes led to comparable growth rates (mean growth rate = 4.2, 95% CI: 3.5 - 5.0) as cultures with maternal red blood cells (mean growth rate =4.2, 95% CI: 3.4 - 5.0) and those from non-malaria exposed individuals (mean growth rate = 4.6, 95% CI: 3.8 - 5.5). Standard in vitro culture of P. falciparum supplemented with either maternal or foetal plasma showed both significantly lower growth rates than a positive control using non-malaria exposed donor plasma. These data challenge the concept of HbF serving as intrinsic inhibitor of P. falciparum growth in the first months of life. Erythrocytes containing HbF are equally permissive to P. falciparum growth in vitro. However, addition of maternal and cord plasma led to reduced in vitro growth which may translate to protection against clinical disease or show synergistic effects with HbF in vivo. Further studies are needed to elucidate the pathophysiology of innate and acquired

  17. Identification of O-GlcNAcylated proteins in Plasmodium falciparum.

    Science.gov (United States)

    Kupferschmid, Mattis; Aquino-Gil, Moyira Osny; Shams-Eldin, Hosam; Schmidt, Jörg; Yamakawa, Nao; Krzewinski, Frédéric; Schwarz, Ralph T; Lefebvre, Tony

    2017-11-29

    Post-translational modifications (PTMs) constitute a huge group of chemical modifications increasing the complexity of the proteomes of living beings. PTMs have been discussed as potential anti-malarial drug targets due to their involvement in many cell processes. O-GlcNAcylation is a widespread PTM found in different organisms including Plasmodium falciparum. The aim of this study was to identify O-GlcNAcylated proteins of P. falciparum, to learn more about the modification process and to understand its eventual functions in the Apicomplexans. The P. falciparum strain 3D7 was amplified in erythrocytes and purified. The proteome was checked for O-GlcNAcylation using different methods. The level of UDP-GlcNAc, the donor of the sugar moiety for O-GlcNAcylation processes, was measured using high-pH anion exchange chromatography. O-GlcNAcylated proteins were enriched and purified utilizing either click chemistry labelling or adsorption on succinyl-wheat germ agglutinin beads. Proteins were then identified by mass-spectrometry (nano-LC MS/MS). While low when compared to MRC5 control cells, P. falciparum disposes of its own pool of UDP-GlcNAc. By using proteomics methods, 13 O-GlcNAcylated proteins were unambiguously identified (11 by click-chemistry and 6 by sWGA-beads enrichment; 4 being identified by the 2 approaches) in late trophozoites. These proteins are all part of pathways, functions and structures important for the parasite survival. By probing clicked-proteins with specific antibodies, Hsp70 and α-tubulin were identified as P. falciparum O-GlcNAc-bearing proteins. This study is the first report on the identity of P. falciparum O-GlcNAcylated proteins. While the parasite O-GlcNAcome seems close to those of other species, the structural differences exhibited by the proteomes provides a glimpse of innovative therapeutic paths to fight malaria. Blocking biosynthesis of UDP-GlcNAc in the parasites is another promising option to reduce Plasmodium life cycle.

  18. Short-lived long non-coding RNAs as surrogate indicators for chemical exposure and LINC00152 and MALAT1 modulate their neighboring genes.

    Directory of Open Access Journals (Sweden)

    Hidenori Tani

    Full Text Available Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs. Although accumulating evidence demonstrates that lncRNAs play important roles in regulating gene expression, the detailed mechanisms of action of most lncRNAs remain unclear. We previously reported that a novel class of lncRNAs with a short half-life (t1/2 < 4 h in HeLa cells, termed short-lived non-coding transcripts (SLiTs, are closely associated with physiological and pathological functions. In this study, we focused on 26 SLiTs and nuclear-enriched abundant lncRNA, MALAT1(t1/2 of 7.6 h in HeLa cells in neural stem cells (NSCs derived from human induced pluripotent stem cells, and identified four SLiTs (TUG1, GAS5, FAM222-AS1, and SNHG15 that were affected by the following typical chemical stresses (oxidative stress, heavy metal stress and protein synthesis stress. We also found the expression levels of LINC00152 (t1/2 of 2.1 h in NSCs, MALAT1 (t1/2 of 1.8 h in NSCs, and their neighboring genes were elevated proportionally to the chemical doses. Moreover, we confirmed that the overexpression of LINC00152 or MALAT1 upregulated the expressions of their neighboring genes even in the absence of chemical stress. These results reveal that LINC00152 and MALAT1 modulate their neighboring genes, and thus provide a deeper understanding of the functions of lncRNAs.

  19. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number.

    Science.gov (United States)

    Price, Ric N; Uhlemann, Anne-Catrin; Brockman, Alan; McGready, Rose; Ashley, Elizabeth; Phaipun, Lucy; Patel, Rina; Laing, Kenneth; Looareesuwan, Sornchai; White, Nicholas J; Nosten, François; Krishna, Sanjeev

    The borders of Thailand harbour the world's most multidrug resistant Plasmodium falciparum parasites. In 1984 mefloquine was introduced as treatment for uncomplicated falciparum malaria, but substantial resistance developed within 6 years. A combination of artesunate with mefloquine now cures more than 95% of acute infections. For both treatment regimens, the underlying mechanisms of resistance are not known. The relation between polymorphisms in the P falciparum multidrug resistant gene 1 (pfmdr1) and the in-vitro and in-vivo responses to mefloquine were assessed in 618 samples from patients with falciparum malaria studied prospectively over 12 years. pfmdr1 copy number was assessed by a robust real-time PCR assay. Single nucleotide polymorphisms of pfmdr1, P falciparum chloroquine resistance transporter gene (pfcrt) and P falciparum Ca2+ ATPase gene (pfATP6) were assessed by PCR-restriction fragment length polymorphism. Increased copy number of pfmdr1 was the most important determinant of in-vitro and in-vivo resistance to mefloquine, and also to reduced artesunate sensitivity in vitro. In a Cox regression model with control for known confounders, increased pfmdr1 copy number was associated with an attributable hazard ratio (AHR) for treatment failure of 6.3 (95% CI 2.9-13.8, p<0.001) after mefloquine monotherapy and 5.4 (2.0-14.6, p=0.001) after artesunate-mefloquine therapy. Single nucleotide polymorphisms in pfmdr1 were associated with increased mefloquine susceptibility in vitro, but not in vivo. Amplification in pfmdr1 is the main cause of resistance to mefloquine in falciparum malaria. Multidrug resistant P falciparum malaria is common in southeast Asia, but difficult to identify and treat. Genes that encode parasite transport proteins maybe involved in export of drugs and so cause resistance. In this study we show that increase in copy number of pfmdr1, a gene encoding a parasite transport protein, is the best overall predictor of treatment failure with

  20. Molecular epidemiology of drug-resistant Plasmodium falciparum in Benguela province, Angola.

    Science.gov (United States)

    Foumane Ngane, Vincent; Allico Djaman, Joseph; Culeux, Cécile; Piette, Nathalie; Carnevale, Pierre; Besnard, Patrick; Fortes, Filomeno; Basco, Leonardo K; Tahar, Rachida

    2015-03-14

    The malaria situation has been worsening in Angola, partly due to armed conflict until the recent past and drug-resistant Plasmodium falciparum. Malaria transmission is heterogeneous within the country, and data on drug-resistant malaria in different parts of the country are incomplete. The aim of the present study was to evaluate resistance to 4-aminoquinolines and antifolate drugs in P. falciparum isolates collected in Benguela province, central Angola, using molecular markers. Fingerprick capillary blood was collected from asymptomatic children aged less than 15 years old during a household survey in and around Balombo town in 2010-2011. Samples were screened for P. falciparum by nested PCR. Molecular markers (P. falciparum dihydrofolate reductase [pfdhfr], P. falciparum dihydropteroate synthase [pfdhps], P. falciparum chloroquine resistance transporter [pfcrt], and P. falciparum multidrug-resistance gene 1 [pfmdr1]) were sequenced to determine the key codons associated with drug resistance. A total of 60 blood samples were positive for P. falciparum. Most isolates with successful PCR amplification had mutant pfdhfr alleles, with either double mutant AICNI (69%) or triple mutant AIRNI (21%) haplotypes. A16V, S108T, and I164L substitutions were not found. Many of the isolates were carriers of either SGKAA (60%) or AGKAA (27%) pfdhps haplotype. K540E substitution was absent. There were only two pfcrt haplotypes: wild-type CVMNK (11%) and mutant CVIET (89%). Wild-type pfmdr1 NYSND haplotype was found in 19% of the isolates, whereas single mutant pfmdr1 YYSND and NFSND haplotypes occurred in 48% and 11%, respectively. Double mutant pfmdr1 haplotypes (YFSND and YYSNY) occurred rarely. The results suggest that the high prevalence of mutant pfcrt CVIET haplotype is in agreement with low clinical efficacy of chloroquine observed in earlier studies and that the double pfdhfr mutant AICNI and single pfdhps mutant SGKAA are currently the predominant haplotypes associated

  1. Drug resistance and genetic diversity of Plasmodium falciparum parasites from Suriname

    NARCIS (Netherlands)

    Peek, Ron; van Gool, Tom; Panchoe, Daynand; Greve, Sophie; Bus, Ellen; Resida, Lesley

    2005-01-01

    Plasmodium falciparum in Suriname was studied for the presence of drug resistance and genetic variation in blood samples of 86 patients with symptomatic malaria. Drug resistance was predicted by determining point mutations in the chloroquine resistance marker of the P. falciparum chloroquine

  2. Genetics of refractoriness to Plasmodium falciparum in the mosquito Anopheles stephensi

    NARCIS (Netherlands)

    Feldmann, A.M.; Gemert, Geert-Jan van; Vegte-Bolmer, Marga G. van de; Jansen, Ritsert C.

    1998-01-01

    We previously selected a line of the malaria vector mosquito Anopheles stephensi refractory (resistant) to the human malaria parasite Plasmodium falciparum, using in vitro infections with P. falciparum gametocytes. This report presents data on the genetic background of refractoriness. The results of

  3. A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes.

    Science.gov (United States)

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Furuichi, Takuya; Yamamoto, Yoko

    2014-12-01

    Wheat and Arabidopsis plants respond to aluminum (Al) ions by releasing malate from their root apices via Al-activated malate transporter. Malate anions bind with the toxic Al ions and contribute to the Al tolerance of these species. The genes encoding the transporters in wheat and Arabidopsis, TaALMT1 and AtALMT1, respectively, were expressed in Xenopus laevis oocytes and characterized electrophysiologically using the two-electrode voltage clamp system. The Al-activated currents generated by malate efflux were detected for TaALMT1 but not for AtALMT1. Chimeric proteins were generated by swapping the N- and C-terminal halves of TaALMT1 and AtALMT1 (Ta::At and At::Ta). When these chimeras were characterized in oocytes, Al-activated malate efflux was detected for the Ta::At chimera but not for At::Ta, suggesting that the N-terminal half of TaALMT1 is necessary for function in oocytes. An additional chimera, Ta(48)::At, generated by swapping 17 residues from the N-terminus of AtALMT1 with the equivalent 48 residues from TaALMT1, was sufficient to support transport activity. This 48 residue region includes a helical region with a putative transmembrane domain which is absent in AtALMT1. The deletion of this domain from Ta(48)::At led to the complete loss of transport activity. Furthermore, truncations and a deletion at the C-terminal end of TaALMT1 indicated that a putative helical structure in this region was also required for transport function. This study provides insights into the structure-function relationships of Al-activated ALMT proteins by identifying specific domains on the N- and C-termini of TaALMT1 that are critical for basal transport function and Al responsiveness in oocytes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey.

    Directory of Open Access Journals (Sweden)

    Thomas Gronemeyer

    Full Text Available The peroxisome is a key organelle of low abundance that fulfils various functions essential for human cell metabolism. Severe genetic diseases in humans are caused by defects in peroxisome biogenesis or deficiencies in the function of single peroxisomal proteins. To improve our knowledge of this important cellular structure, we studied for the first time human liver peroxisomes by quantitative proteomics. Peroxisomes were isolated by differential and Nycodenz density gradient centrifugation. A label-free quantitative study of 314 proteins across the density gradient was accomplished using high resolution mass spectrometry. By pairing statistical data evaluation, cDNA cloning and in vivo colocalization studies, we report the association of five new proteins with human liver peroxisomes. Among these, isochorismatase domain containing 1 protein points to the existence of a new metabolic pathway and hydroxysteroid dehydrogenase like 2 protein is likely involved in the transport or β-oxidation of fatty acids in human peroxisomes. The detection of alcohol dehydrogenase 1A suggests the presence of an alternative alcohol-oxidizing system in hepatic peroxisomes. In addition, lactate dehydrogenase A and malate dehydrogenase 1 partially associate with human liver peroxisomes and enzyme activity profiles support the idea that NAD(+ becomes regenerated during fatty acid β-oxidation by alternative shuttling processes in human peroxisomes involving lactate dehydrogenase and/or malate dehydrogenase. Taken together, our data represent a valuable resource for future studies of peroxisome biochemistry that will advance research of human peroxisomes in health and disease.

  5. Plant Formate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  6. In silico discovery of transcription regulatory elements in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Le Roch Karine G

    2008-02-01

    Full Text Available Abstract Background With the sequence of the Plasmodium falciparum genome and several global mRNA and protein life cycle expression profiling projects now completed, elucidating the underlying networks of transcriptional control important for the progression of the parasite life cycle is highly pertinent to the development of new anti-malarials. To date, relatively little is known regarding the specific mechanisms the parasite employs to regulate gene expression at the mRNA level, with studies of the P. falciparum genome sequence having revealed few cis-regulatory elements and associated transcription factors. Although it is possible the parasite may evoke mechanisms of transcriptional control drastically different from those used by other eukaryotic organisms, the extreme AT-rich nature of P. falciparum intergenic regions (~90% AT presents significant challenges to in silico cis-regulatory element discovery. Results We have developed an algorithm called Gene Enrichment Motif Searching (GEMS that uses a hypergeometric-based scoring function and a position-weight matrix optimization routine to identify with high-confidence regulatory elements in the nucleotide-biased and repeat sequence-rich P. falciparum genome. When applied to promoter regions of genes contained within 21 co-expression gene clusters generated from P. falciparum life cycle microarray data using the semi-supervised clustering algorithm Ontology-based Pattern Identification, GEMS identified 34 putative cis-regulatory elements associated with a variety of parasite processes including sexual development, cell invasion, antigenic variation and protein biosynthesis. Among these candidates were novel motifs, as well as many of the elements for which biological experimental evidence already exists in the Plasmodium literature. To provide evidence for the biological relevance of a cell invasion-related element predicted by GEMS, reporter gene and electrophoretic mobility shift assays

  7. Selection of Plasmodium falciparum Multidrug Resistance Gene 1 Alleles in Asexual Stages and Gametocytes by Artemether-Lumefantrine in Nigerian Children with Uncomplicated Falciparum Malaria ▿

    Science.gov (United States)

    Happi, C. T.; Gbotosho, G. O.; Folarin, O. A.; Sowunmi, A.; Hudson, T.; O'Neil, M.; Milhous, W.; Wirth, D. F.; Oduola, A. M. J.

    2009-01-01

    We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca2+ ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and the quantitative real-time PCR methodologies were used to determine the alleles of the Pfmdr1 and PfATPase6 genes and the Pfmdr1 copy number variation, respectively, in patients samples collected prior to treatment and at the reoccurrence of parasites during a 42-day follow-up. The Pfmdr1 haplotype 86N-184F-1246D was significantly associated (P copy of the Pfmdr1 gene and the wild-type allele (L89) at codon 89 of the PfATPase6 gene. These findings suggest that polymorphisms in the Pfmdr1 gene are under AL selection pressure. Pfmdr1 polymorphisms may result in reduction in the therapeutic efficacy of this newly adopted combination treatment for uncomplicated falciparum malaria in Saharan countries of Africa. PMID:19075074

  8. Plasmodium falciparum uses vitamin E to avoid oxidative stress.

    Science.gov (United States)

    Sussmann, Rodrigo A C; Fotoran, Wesley L; Kimura, Emilia A; Katzin, Alejandro M

    2017-10-10

    Plasmodium falciparum is sensitive to oxidative stress in vitro and in vivo, and many drugs such as artemisinin, chloroquine and cercosporin interfere in the parasite's redox system. To minimize the damage caused by reactive radicals, antioxidant enzymes and their substrates found in parasites and in erythrocytes must be functionally active. It was shown that P. falciparum synthesizes vitamin E and that usnic acid acts as an inhibitor of its biosynthesis. Vitamin E is a potent antioxidant that protects polyunsaturated fatty acids from lipid peroxidation, and this activity can be measured by detecting its oxidized product and by evaluating reactive oxygen species (ROS) levels. Here, we demonstrated that ROS levels increased in P. falciparum when vitamin E biosynthesis was inhibited by usnic acid treatment and decreased to basal levels if exogenous vitamin E was added. Furthermore, we used metabolic labelling to demonstrate that vitamin E biosynthesized by the parasite acts as an antioxidant since we could detect its radiolabeled oxidized product. The treatment with chloroquine or cercosporin of the parasites increased the ratio between α-tocopherolquinone and α-tocopherol. Our findings demonstrate that vitamin E produced endogenously by P. falciparum is active as an antioxidant, probably protecting the parasite from the radicals generated by drugs.

  9. A highly sensitive solid-phase radioimmunoassay for the assay of Plasmodium falciparum antigens and antibodies

    International Nuclear Information System (INIS)

    Avraham, H.; Golenser, J.; Gazitt, Y.; Spira, D.T.; Sulitzeanu, D.

    1982-01-01

    A highly sensitive radioimmunoassay for detection of P. falciparum antibodies and antigens is described. A partially purified P. falciparum antigen preparation is obtained from in vitro cultured parasites enriched after gelatin sedimentation by sonicating the infected red blood cells and precipitating the proteins with 50% saturated ammonium sulfate. The precipitate is dissolved in buffer, ultracentrifuged and used to coat wells of microtiter plates. Anti-P. falciparum antibodies are detected by incubating antiserum dilutions in the coated wells and detecting the bound IgG with radioiodinated staphylococcal protein A. P. falciparum antigens are detected by their ability to inhibit binding of antibodies to the coated wells. Sera of individuals with a history of P. falciparum infection contain antibodies detectable at a dilution of 1:75,000. P. falciparum RBC infected in vitro can be detected at levels of parasitemia of the order of 1 parasite or less per 10 6 RBC. (Auth.)

  10. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras.

    Science.gov (United States)

    Mejia Torres, Rosa Elena; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-05-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization-World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras.

  11. Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins

    International Nuclear Information System (INIS)

    Ting, L; Shi, W; Lewandowicz, A; Singh, V; Mwakingwe, A; Birck, M R; Taylor Ringia, E A; Bench, G; Madrid, D C; Tyler, P C; Evans, G B; Furneaux, R H; Schramm, V L; Kim, K.

    2004-01-01

    Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of the polyamine pathway are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not previously been described. 5'-methylthio-Immucillin-H, a transition state analogue inhibitor that is selective for malarial over human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may have application as antimalarials

  12. Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules.

    Directory of Open Access Journals (Sweden)

    Rimi Chakrabarti

    Full Text Available Curcumin has been widely investigated for its myriad cellular effects resulting in reduced proliferation of various eukaryotic cells including cancer cells and the human malaria parasite Plasmodium falciparum. Studies with human cancer cell lines HT-29, Caco-2, and MCF-7 suggest that curcumin can bind to tubulin and induce alterations in microtubule structure. Based on this finding, we investigated whether curcumin has any effect on P. falciparum microtubules, considering that mammalian and parasite tubulin are 83% identical. IC50 of curcumin was found to be 5 µM as compared to 20 µM reported before. Immunofluorescence images of parasites treated with 5 or 20 µM curcumin showed a concentration-dependent effect on parasite microtubules resulting in diffuse staining contrasting with the discrete hemispindles and subpellicular microtubules observed in untreated parasites. The effect on P. falciparum microtubules was evident only in the second cycle for both concentrations tested. This diffuse pattern of tubulin fluorescence in curcumin treated parasites was similar to the effect of a microtubule destabilizing drug vinblastine on P. falciparum. Molecular docking predicted the binding site of curcumin at the interface of alpha and beta tubulin, similar to another destabilizing drug colchicine. Data from predicted drug binding is supported by results from drug combination assays showing antagonistic interactions between curcumin and colchicine, sharing a similar binding site, and additive/synergistic interactions of curcumin with paclitaxel and vinblastine, having different binding sites. This evidence suggests that cellular effects of curcumin are at least, in part, due to its perturbing effect on P. falciparum microtubules. The action of curcumin, both direct and indirect, on P. falciparum microtubules is discussed.

  13. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...

  14. Plasmodium falciparum: attenuation by irradiation

    International Nuclear Information System (INIS)

    Waki, S.; Yonome, I.; Suzuki, M.

    1983-01-01

    The effect of irradiation on the in vitro growth of Plasmodium falciparum was investigated. The cultured malarial parasites at selected stages of development were exposed to gamma rays and the sensitivity of each stage was determined. The stages most sensitive to irradiation were the ring forms and the early trophozoites; late trophozoites were relatively insensitive. The greatest resistance was shown when parasites were irradiated at a time of transition from the late trophozoite and schizont stages to young ring forms. The characteristics of radiosensitive variation in the parasite cycle resembled that of mammalian cells. Growth curves of parasites exposed to doses of irradiation upto 150 gray had the same slope as nonirradiated controls but parasites which were exposed to 200 gray exhibited a growth curve which was less steep than that for parasites in other groups. Less than 10 organisms survived from the 10(6) parasites exposed to this high dose of irradiation; the possibility exists of obtaining radiation-attenuated P. falciparum

  15. Origin of the human malaria parasite Plasmodium falciparum in gorillas.

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Learn, Gerald H; Rudicell, Rebecca S; Robertson, Joel D; Keele, Brandon F; Ndjango, Jean-Bosco N; Sanz, Crickette M; Morgan, David B; Locatelli, Sabrina; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V; Muller, Martin N; Shaw, George M; Peeters, Martine; Sharp, Paul M; Rayner, Julian C; Hahn, Beatrice H

    2010-09-23

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.

  16. Plasmodium falciparum uses vitamin E to avoid oxidative stress

    OpenAIRE

    Sussmann, Rodrigo A. C.; Fotoran, Wesley L.; Kimura, Emilia A.; Katzin, Alejandro M.

    2017-01-01

    Background Plasmodium falciparum is sensitive to oxidative stress in vitro and in vivo, and many drugs such as artemisinin, chloroquine and cercosporin interfere in the parasite’s redox system. To minimize the damage caused by reactive radicals, antioxidant enzymes and their substrates found in parasites and in erythrocytes must be functionally active. It was shown that P. falciparum synthesizes vitamin E and that usnic acid acts as an inhibitor of its biosynthesis. Vitamin E is a potent anti...

  17. Sero-epidemiological evaluation of Plasmodium falciparum malaria in Senegal.

    Science.gov (United States)

    Sylla, Khadime; Tine, Roger Clément Kouly; Ndiaye, Magatte; Sow, Doudou; Sarr, Aïssatou; Mbuyi, Marie Louise Tshibola; Diouf, Ibrahima; Lô, Amy Colé; Abiola, Annie; Seck, Mame Cheikh; Ndiaye, Mouhamadou; Badiane, Aïda Sadikh; N'Diaye, Jean Louis A; Ndiaye, Daouda; Faye, Oumar; Dieng, Thérèse; Dieng, Yémou; Ndir, Oumar; Gaye, Oumar; Faye, Babacar

    2015-07-16

    In Senegal, a significant decrease of malaria transmission intensity has been noted the last years. Parasitaemia has become lower and, therefore, more difficult to detect by microscopy. In the context of submicroscopic parasitaemia, it has become relevant to rely on relevant malaria surveillance tools to better document malaria epidemiology in such settings. Serological markers have been proposed as an essential tool for malaria surveillance. This study aimed to evaluate the sero-epidemiological situation of Plasmodium falciparum malaria in two sentinel sites in Senegal. Cross-sectional surveys were carried out in Velingara (south Senegal) and Keur Soce (central Senegal) between September and October 2010. Children under 10 years old, living in these areas, were enrolled using two-level, random sampling methods. P. falciparum infection was diagnosed using microscopy. P. falciparum antibodies against circumsporozoite protein (CSP), apical membrane protein (AMA1) and merozoite surface protein 1_42 (MSP1_42) were measured by ELISA method. A stepwise logistic regression analysis was done to assess factors associated with P. falciparum antibodies carriage. A total of 1,865 children under 10 years old were enrolled. The overall falciparum malaria prevalence was 4.99% with high prevalence in Velingara of 10.03% compared to Keur Soce of 0.3%. Symptomatic malaria cases (fever associated with parasitaemia) represented 17.37%. Seroprevalence of anti-AMA1, anti-MSP1_42 and anti-CSP antibody was 38.12, 41.55 and 40.38%, respectively. The seroprevalence was more important in Velingara and increased with age, active malaria infection and area of residence. The use of serological markers can contribute to improved malaria surveillance in areas with declining malaria transmission. This study provided useful baseline information about the sero-epidemiological situation of malaria in Senegal and can contribute to the identification of malaria hot spots in order to concentrate

  18. From malaria parasite point of view – Plasmodium falciparum evolution

    Directory of Open Access Journals (Sweden)

    Agata Zerka

    2015-12-01

    Full Text Available Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

  19. Antimalarial Activity of KAF156 in Falciparum and Vivax Malaria.

    Science.gov (United States)

    White, Nicholas J; Duong, Tran T; Uthaisin, Chirapong; Nosten, François; Phyo, Aung P; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon; Jittamala, Podjanee; Chuthasmit, Kittiphum; Cheung, Ming S; Feng, Yiyan; Li, Ruobing; Magnusson, Baldur; Sultan, Marc; Wieser, Daniela; Xun, Xiaolei; Zhao, Rong; Diagana, Thierry T; Pertel, Peter; Leong, F Joel

    2016-09-22

    KAF156 belongs to a new class of antimalarial agents (imidazolopiperazines), with activity against asexual and sexual blood stages and the preerythrocytic liver stages of malarial parasites. We conducted a phase 2, open-label, two-part study at five centers in Thailand and Vietnam to assess the antimalarial efficacy, safety, and pharmacokinetic profile of KAF156 in adults with acute Plasmodium vivax or P. falciparum malaria. Assessment of parasite clearance rates in cohorts of patients with vivax or falciparum malaria who were treated with multiple doses (400 mg once daily for 3 days) was followed by assessment of the cure rate at 28 days in a separate cohort of patients with falciparum malaria who received a single dose (800 mg). Median parasite clearance times were 45 hours (interquartile range, 42 to 48) in 10 patients with falciparum malaria and 24 hours (interquartile range, 20 to 30) in 10 patients with vivax malaria after treatment with the multiple-dose regimen and 49 hours (interquartile range, 42 to 54) in 21 patients with falciparum malaria after treatment with the single dose. Among the 21 patients who received the single dose and were followed for 28 days, 1 had reinfection and 7 had recrudescent infections (cure rate, 67%; 95% credible interval, 46 to 84). The mean (±SD) KAF156 terminal elimination half-life was 44.1±8.9 hours. There were no serious adverse events in this small study. The most common adverse events included sinus bradycardia, thrombocytopenia, hypokalemia, anemia, and hyperbilirubinemia. Vomiting of grade 2 or higher occurred in 2 patients, 1 of whom discontinued treatment because of repeated vomiting after receiving the single 800-mg dose. More adverse events were reported in the single-dose cohort, which had longer follow-up, than in the multiple-dose cohorts. KAF156 showed antimalarial activity without evident safety concerns in a small number of adults with uncomplicated P. vivax or P. falciparum malaria. (Funded by Novartis and

  20. Hepatitis C virus infection may lead to slower emergence of P. falciparum in blood.

    Directory of Open Access Journals (Sweden)

    Odile Ouwe-Missi-Oukem-Boyer

    Full Text Available BACKGROUND: Areas endemic for Plasmodium falciparum, hepatitis B virus (HBV and hepatitis C virus (HCV overlap in many parts of sub-Saharan Africa. HBV and HCV infections develop in the liver, where takes place the first development stage of P. falciparum before its further spread in blood. The complex mechanisms involved in the development of hepatitis may potentially influence the development of the liver stage of malaria parasites. Understanding the molecular mechanisms of these interactions could provide new pathophysiological insights for treatment strategies in Malaria. METHODOLOGY: We studied a cohort of 319 individuals living in a village where the three infections are prevalent. The patients were initially given a curative antimalarial treatment and were then monitored for the emergence of asexual P. falciparum forms in blood, fortnightly for one year, by microscopy and polymerase chain reaction. PRINCIPAL FINDINGS: At inclusion, 65 (20.4% subjects had detectable malaria parasites in blood, 36 (11.3% were HBV chronic carriers, and 61 (18.9% were HCV chronic carriers. During follow-up, asexual P. falciparum forms were detected in the blood of 203 patients. The median time to P. falciparum emergence in blood was respectively 140 and 120 days in HBV- and HBV+ individuals, and 135 and 224 days in HCV- and HCV+ individuals. HCV carriage was associated with delayed emergence of asexual P. falciparum forms in blood relative to patients without HCV infection. CONCLUSIONS: This pilot study represents first tentative evidence of a potential epidemiological interaction between HBV, HCV and P. falciparum infections. Age is an important confounding factor in this setting however multivariate analysis points to an interaction between P. falciparum and HCV at the hepatic level with a slower emergence of P. falciparum in HCV chronic carriers. More in depth analysis are necessary to unravel the basis of hepatic interactions between these two pathogens

  1. The effect of sulphadoxine/pyrimethamine on gametocytes in falciparum malaria.

    Science.gov (United States)

    Ittiravivongs, A; Vasuvat, C; Kongrod, S

    1984-09-01

    A study of the effect of sulphadoxine/pyrimethamine (Fansidar) on P. falciparum's gametocytes in peripheral blood was carried out in Western Thailand. One group of 77 patients with asexual form P. falciparum sensitive to Fansidar were followed weekly to detect the appearance and the duration of gametocytes in peripheral blood after Fansidar treatment on the basis of thick blood film examination. Another group of 14 patients with sexual form P. falciparum was not given any antimalarial treatment and also followed up weekly. No significant difference of average duration of detectable gametocytes was observed between the groups. The average number of days that gametocytes appeared after asexual form in patients receiving treatment was the same as in the untreated group. It is unlikely that Fansidar has the stimulating effect on gametocytogenesis as previously reported.

  2. Spatial variation and socio-economic determinants of Plasmodium falciparum infection in northeastern Tanzania

    DEFF Research Database (Denmark)

    Mmbando, Bruno P; Kamugisha, Mathias L; Lusingu, John P

    2011-01-01

    system (GPS) unit. The effects of risk factors were determined using generalized estimating equation and spatial risk of P. falciparum infection was modelled using a kernel (non-parametric) method. RESULTS: There was a significant spatial variation of P. falciparum infection, and urban areas were......ABSTRACT: BACKGROUND: Malaria due to Plasmodium falciparum is the leading cause of morbidity and mortality in Tanzania. According to health statistics, malaria accounts for about 30% and 15% of hospital admissions and deaths, respectively. The risk of P. falciparum infection varies across...... the country. This study describes the spatial variation and socio-economic determinants of P. falciparum infection in northeastern Tanzania. METHODS: The study was conducted in 14 villages located in highland, lowland and urban areas of Korogwe district. Four cross-sectional malaria surveys involving...

  3. No seasonal accumulation of resistant P. falciparum when high-dose chloroquine is used

    DEFF Research Database (Denmark)

    Ursing, Johan; Kofoed, Poul-Erik; Rodrigues, Amabelia

    2009-01-01

    increase of pfcrt 76T if the high doses of CQ commonly used are effective. METHODS AND FINDINGS: P. falciparum parasite density, age, sex, the proportion of chloroquine resistance associated haplotypes pfcrt 76T and P. falciparum multidrug resistance gene 1 86Y were assessed in 988 samples collected from...... to become the dominant P.falciparum type in Guinea-Bissau. This is most likely due to the efficacy of high-dose chloroquine as used in Guinea-Bissau, combined with a loss of fitness associated with pfcrt 76T.......BACKGROUND: Potentially chloroquine resistant P. falciparum, identified by the 76T haplotype in the chloroquine resistance transporter (pfcrt 76T), are highly prevalent throughout Africa. In Guinea-Bissau, normal and double dose chloroquine have respective efficacies of 34% and 78% against P...

  4. Plasmodium Falciparum: Adhesion Phenotype of Infected Erythrocytes Using Classical and Mini-Column Cytoadherence Techniques

    Directory of Open Access Journals (Sweden)

    N Kalantari

    2013-03-01

    Full Text Available Background: Cytoadherence of Plasmodium falciparum- infected erythrocytes to host cells is an impor­tant trait for parasite survival and has a major role in pathology of malaria disease. Infections with P. falciparum usually consist of several subpopulations of parasites with different adhesive proper­ties. This study aimed to compare relative sizes of various binding subpopulations of different P. falciparum isolates. It also investigated the adhesive phenotype of a laboratory P. falciparum line, A4, using different binding techniques.Methods: Seven different P. falciparum isolates (ITG, A4, 3D7 and four field isolates were cultivated to late trophozoite and schizont and then cytoadherence to cell differentiation 36 (CD36, intercellu­lar cell adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule (V-CAM and E-selectin were examined. The relative binding sizes of parasite subpopulations to human receptors were meas­ured by mini-column cytoadherence method. The adhesion phenotype of P. falciparum-A4 line was evaluated by in vitro static, flow-based and mini-column binding assays.Results: The relative binding size of ITG, A4 and 3D7 clones to a column made with CHO/ICAM-1 was 68%, 54% and 0%, respectively. The relative binding sizes of these lines to CHO/CD36 were 59.7%, 28.7% and 0%, respectively. Different field isolates had variable sizes of respective CD36 and ICAM1-binding subpopulations. A4 line had five different subpopulations each with different binding sizes.Conclusion: This study provided further evidence that P. falciparum isolates have different binding subpopulations sizes in an infection. Furthermore, measurement of ICAM-1 or CD36 binding subpopula­tions may practical to study the cytoadherence phenotypes of P. falciparum field isolates at the molecular level.

  5. The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products

    DEFF Research Database (Denmark)

    Bykova, Natalia V; Møller, Ian Max; Gardeström, Per

    2014-01-01

    oxidase. We discuss here possible mechanisms of high photorespiratory flux maintenance in mitochondria and suggest that it is fulfilled under conditions where the concentrations of glycine decarboxylase reaction products NADH and CO2 achieve an equilibrium provided by malate dehydrogenase and carbonic...

  6. 'Dangshansuli' pear leaf

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... metabolism of these two organic acids, including citrate synthase (CS), cytoplast aconitase ... malate dehydrogenase (MDH) (Miller et al., 1998), and ... a pH of 6.28, a soil organic matter content of 0.54% (w·w-1), a total.

  7. Enhanced citrate production through gene insertion in Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de; Nielsen, Jens

    2007-01-01

    The effect of inserting genes involved in the reductive branch of the tricarboxylic acid (TCA) cycle on citrate production by Aspergillus niger was evaluated. Several different genes were inserted individually and in combination, i.e. malate dehydrogenase (mdh2) from Saccharomyces cerevisiae, two...

  8. A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum

    NARCIS (Netherlands)

    Farrance, C.E.; Rhee, A.; Jones, R.M.; Musiychuk, K.; Shamloul, M.; Sharma, S.; Mett, V.; Chichester, J.A.; Streatfield, S.J.; Roeffen, W.F.G.; Vegte-Bolmer, M.G. van de; Sauerwein, R.W.; Tsuboi, T.; Muratova, O.V.; Wu, Y.; Yusibov, V.

    2011-01-01

    Plasmodium falciparum is transmitted to a new host after completing its sexual cycle within a mosquito. Developing vaccines against the parasite sexual stages is a critical component in the fight against malaria. We are targeting multiple proteins of P. falciparum which are found only on the

  9. Genome-wide discovery and verification of novel structured RNAs in Plasmodium falciparum

    DEFF Research Database (Denmark)

    Mourier, Tobias; Carret, Celine; Kyes, Sue

    2008-01-01

    ncRNAs in P. falciparum and are not represented in any RNA databases. We provide supporting evidence for purifying selection acting on the experimentally verified ncRNAs by comparing the nucleotide substitutions in the predicted ncRNA candidate structures in P. falciparum with the closely related...

  10. Molecular modelling of calcium dependent protein kinase 4 (CDPK4) from Plasmodium falciparum

    CSIR Research Space (South Africa)

    Tsekoa, Tsepo L

    2009-10-01

    Full Text Available eukaryotic protein kinases (ePKs) as defined in model organisms. A novel family of phylogenetically distinct ePK-related genes in P. falciparum has been identified. These kinases (up to 20 in number [2], designated the FIKK family due to a conserved amino...]. The protein kinase complement of Plasmodium falciparum, the main infectious agent of lethal malaria in humans, has been analysed in detail [2, 3]. These analyses revealed that the P. falciparum kinome comprises as many as 65 sequences related to typical...

  11. More than just immune evasion: Hijacking complement by Plasmodium falciparum.

    Science.gov (United States)

    Schmidt, Christoph Q; Kennedy, Alexander T; Tham, Wai-Hong

    2015-09-01

    Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Combinatorial gene regulation in Plasmodium falciparum.

    NARCIS (Netherlands)

    Noort, V. van; Huynen, M.A.

    2006-01-01

    The malaria parasite Plasmodium falciparum has a complicated life cycle with large variations in its gene expression pattern, but it contains relatively few specific transcriptional regulators. To elucidate this paradox, we identified regulatory sequences, using an approach that integrates the

  13. Improving productivity promoting traits in wild and cultivated urd and mung beans

    International Nuclear Information System (INIS)

    Ignacimuthu, S.; Babu, C.R.

    1989-01-01

    Photosynthetic rate, RuBP Carboxylase activity, glycolate oxidase activity, malate dehydrogenase activity, specific leaf weight, harvest index and yield were estimated in the normal and 10 Krad dose treated M 2 plants of Vigna sublobata (wild), V. radiata and V. mungo (cultivars) with the objective of locating and utilizing productivity promoting gene assemblies as well as to understand the role of natural and artificial selections in moulding yield promoting gene combinations. The results suggest that there is higher photosynthetic rate and RuPB Case activity in the 10 Krad treated M 2 plants. There is lesser glycolate oxidase activity and malate dehydrogenase activity. There is also positive correlation among net leaf assimilation rate, RuBP Case activity, SLW, HI and yield. These observations imply that domestication accompanied by directional selection did a lter substantially the productivity traits and productivity promoting gene assemblies. (author). 26 refs., 3 tabs

  14. A world malaria map: Plasmodium falciparum endemicity in 2007.

    Directory of Open Access Journals (Sweden)

    Simon I Hay

    2009-03-01

    Full Text Available Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007.A total of 8,938 P. falciparum parasite rate (PfPR surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia, 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+, and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 5 to or = 40% areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion, with a smaller number (0.11 billion at low stable risk.High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are

  15. A world malaria map: Plasmodium falciparum endemicity in 2007.

    Science.gov (United States)

    Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W

    2009-03-24

    Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 5 to or = 40%) areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk. High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are found in the

  16. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Science.gov (United States)

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  17. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... 5-fluorouracil and capecitabine. These drugs are not broken down efficiently by people with dihydropyrimidine dehydrogenase deficiency ... of this enzyme. Because fluoropyrimidine drugs are also broken down by the dihydropyrimidine dehydrogenase enzyme, deficiency of ...

  18. Alanine metabolism in acute falciparum malaria

    NARCIS (Netherlands)

    Pukrittayakamee, S.; Krishna, S.; ter Kuile, F.; Wilaiwan, O.; Williamson, D. H.; White, N. J.

    2002-01-01

    We investigated the integrity of the gluconeogenic pathway in severe malaria using alanine metabolism as a measure. Alanine disposition and liver blood flow, assessed by indocyanine green (ICG) clearance, were measured simultaneously in 10 patients with falciparum malaria (six severe and four

  19. ABO Blood Groups Influence Macrophage-mediated Phagocytosis of Plasmodium falciparum-infected Erythrocytes

    Science.gov (United States)

    Branch, Donald R.; Hult, Annika K.; Olsson, Martin L.; Liles, W. Conrad; Cserti-Gazdewich, Christine M.; Kain, Kevin C.

    2012-01-01

    Erythrocyte polymorphisms associated with a survival advantage to Plasmodium falciparum infection have undergone positive selection. There is a predominance of blood group O in malaria-endemic regions, and several lines of evidence suggest that ABO blood groups may influence the outcome of P. falciparum infection. Based on the hypothesis that enhanced innate clearance of infected polymorphic erythrocytes is associated with protection from severe malaria, we investigated whether P. falciparum-infected O erythrocytes are more efficiently cleared by macrophages than infected A and B erythrocytes. We show that human macrophages in vitro and mouse monocytes in vivo phagocytose P. falciparum-infected O erythrocytes more avidly than infected A and B erythrocytes and that uptake is associated with increased hemichrome deposition and high molecular weight band 3 aggregates in infected O erythrocytes. Using infected A1, A2, and O erythrocytes, we demonstrate an inverse association of phagocytic capacity with the amount of A antigen on the surface of infected erythrocytes. Finally, we report that enzymatic conversion of B erythrocytes to type as O before infection significantly enhances their uptake by macrophages to observed level comparable to that with infected O wild-type erythrocytes. These data provide the first evidence that ABO blood group antigens influence macrophage clearance of P. falciparum-infected erythrocytes and suggest an additional mechanism by which blood group O may confer resistance to severe malaria. PMID:23071435

  20. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America.

    Science.gov (United States)

    Jovel, Irina T; Mejía, Rosa E; Banegas, Engels; Piedade, Rita; Alger, Jackeline; Fontecha, Gustavo; Ferreira, Pedro E; Veiga, Maria I; Enamorado, Irma G; Bjorkman, Anders; Ursing, Johan

    2011-12-19

    In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P

  1. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli.

    Science.gov (United States)

    Guerra, Ángela Patricia; Calvo, Eliana Patricia; Wasserman, Moisés; Chaparro-Olaya, Jacqueline

    2016-02-23

    The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.

  2. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  3. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications.

    Directory of Open Access Journals (Sweden)

    Jennifer L Guler

    Full Text Available Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes.

  4. P. falciparum infection and maternofetal antibody transfer in malaria-endemic settings of varying transmission.

    Directory of Open Access Journals (Sweden)

    Alistair R D McLean

    Full Text Available During pregnancy, immunoglobulin G (IgG is transferred from the mother to the fetus, providing protection from disease in early infancy. Plasmodium falciparum infections may reduce maternofetal antibody transfer efficiency, but mechanisms remain unclear.Mother-cord paired serum samples collected at delivery from Papua New Guinea (PNG and the Thailand-Myanmar Border Area (TMBA were tested for IgG1 and IgG3 to four P. falciparum antigens and measles antigen, as well as total serum IgG. Multivariable linear regression was conducted to assess the association of peripheral P. falciparum infection during pregnancy or placental P. falciparum infection assessed at delivery with maternofetal antibody transfer efficiency. Path analysis assessed the extent to which associations between P. falciparum infection and antibody transfer were mediated by gestational age at delivery or levels of maternal total serum IgG.Maternofetal antibody transfer efficiency of IgG1 and IgG3 was lower in PNG compared to TMBA (mean difference in cord antibody levels (controlling for maternal antibody levels ranged from -0.88 to 0.09, median of -0.20 log2 units. Placental P. falciparum infections were associated with substantially lower maternofetal antibody transfer efficiency in PNG primigravid women (mean difference in cord antibody levels (controlling for maternal antibody levels ranged from -0.62 to -0.10, median of -0.36 log2 units, but not multigravid women. The lower antibody transfer efficiency amongst primigravid women with placental infection was only partially mediated by gestational age at delivery (proportion indirect effect ranged from 0% to 18%, whereas no mediation effects of maternal total serum IgG were observed.Primigravid women may be at risk of impaired maternofetal antibody transport with placental P. falciparum infection. Direct effects of P. falciparum on the placenta, rather than earlier gestational age and elevated serum IgG, are likely responsible for

  5. The Severity of Plasmodium falciparum infection is associated with transcript levels of var genes encoding endothelial protein C receptor-binding P. falciparum erythrocyte membrane protein 1

    DEFF Research Database (Denmark)

    Mkumbaye, Sixbert I; Wang, Christian W; Lyimo, Eric

    2017-01-01

    By attaching infected erythrocytes to the vascular lining, Plasmodium falciparum parasites leave blood circulation and avoid splenic clearance. This sequestration is central to pathogenesis. Severe malaria is associated with parasites expressing an antigenically distinct P. falciparum erythrocyte...

  6. Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum.

    Science.gov (United States)

    Bracchi-Ricard, V; Nguyen, K T; Zhou, Y; Rajagopalan, P T; Chakrabarti, D; Pei, D

    2001-12-15

    Ribosomal protein synthesis in eubacteria and eukaryotic organelles initiates with an N-formylmethionyl-tRNA(i), resulting in N-terminal formylation of all nascent polypeptides. Peptide deformylase (PDF) catalyzes the subsequent removal of the N-terminal formyl group from the majority of bacterial proteins. Until recently, PDF has been thought as an enzyme unique to the bacterial kingdom. Searches of the genomic DNA databases identified several genes that encode proteins of high sequence homology to bacterial PDF from eukaryotic organisms. The cDNA encoding Plasmodium falciparum PDF (PfPDF) has been cloned and overexpressed in Escherichia coli. The recombinant protein is catalytically active in deformylating N-formylated peptides, shares many of the properties of bacterial PDF, and is inhibited by specific PDF inhibitors. Western blot analysis indicated expression of mature PfPDF in trophozoite, schizont, and segmenter stages of intraerythrocytic development. These results provide strong evidence that a functional PDF is present in P. falciparum. In addition, PDF inhibitors inhibited the growth of P. falciparum in the intraerythrocytic culture. (c)2001 Elsevier Science.

  7. Fine-scale genetic characterization of Plasmodium falciparum ...

    Indian Academy of Sciences (India)

    RESEARCH ARTICLE. Fine-scale genetic characterization of Plasmodium falciparum .... Materials and methods. The DNA ... the order and location of genes (as per the PlasmoDB data resources, available at ... There is currently an. Figure 5.

  8. Comparison of multi-locus enzyme and protein gel electrophoresis ...

    African Journals Online (AJOL)

    The obtained data revealed that SDS-PAGE and esterase isozymes are more efficient in grouping isolates in their respective species while peroxidase and malate dehydrogenase isozyme has much limited resolution in organizing all isolates in their respective species-specific clusters. A low correlations was detected ...

  9. Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Al-Saryi, Nadal A.; Al-Hejjaj, Murtakab Y.; van Roermund, Carlo W. T.; Hulmes, Georgia E.; Ekal, Lakhan; Payton, Chantell; Wanders, Ronald J. A.; Hettema, Ewald H.

    2017-01-01

    In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid beta-oxidation. During this process, NAD(+) is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD(+) by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the

  10. Blockage of spontaneous Ca2+ oscillation causes cell death in intraerythrocitic Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Masahiro Enomoto

    Full Text Available Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Resistance to antimalarial drugs is a challenging problem in malaria control. Clinical malaria is associated with the proliferation and development of Plasmodium parasites in human erythrocytes. Especially, the development into the mature forms (trophozoite and schizont of Plasmodium falciparum (P. falciparum causes severe malaria symptoms due to a distinctive property, sequestration which is not shared by any other human malaria. Ca(2+ is well known to be a highly versatile intracellular messenger that regulates many different cellular processes. Cytosolic Ca(2+ increases evoked by extracellular stimuli are often observed in the form of oscillating Ca(2+ spikes (Ca(2+ oscillation in eukaryotic cells. However, in lower eukaryotic and plant cells the physiological roles and the molecular mechanisms of Ca(2+ oscillation are poorly understood. Here, we showed the observation of the inositol 1,4,5-trisphospate (IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum without any exogenous extracellular stimulation by using live cell fluorescence Ca(2+ imaging. Intraerythrocytic P. falciparum exhibited stage-specific Ca(2+ oscillations in ring form and trophozoite stages which were blocked by IP(3 receptor inhibitor, 2-aminoethyl diphenylborinate (2-APB. Analyses of parasitaemia and parasite size and electron micrograph of 2-APB-treated P. falciparum revealed that 2-APB severely obstructed the intraerythrocytic maturation, resulting in cell death of the parasites. Furthermore, we confirmed the similar lethal effect of 2-APB on the chloroquine-resistant strain of P. falciparum. To our best knowledge, we for the first time showed the existence of the spontaneous Ca(2+ oscillation in Plasmodium species and clearly demonstrated that IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum is critical for the development

  11. The Membrane Topology of ALMT1, an Aluminum-Activated Malate Transport Protein in Wheat (Triticum aestivum)

    OpenAIRE

    Motoda, Hirotoshi; Sasaki, Takayuki; Kano, Yoshio; Ryan, Peter R; Delhaize, Emmanuel; Matsumoto, Hideaki; Yamamoto, Yoko

    2007-01-01

    The wheat ALMT1 gene encodes an aluminum (Al)-activated malate transport protein which confers Al-resistance. We investigated the membrane topology of this plasma-membrane localized protein with immunocytochemical techniques. Several green fluorescent protein (GFP)-fused and histidine (His)-tagged chimeras of ALMT1 were prepared based on a computer-predicted secondary structure and transiently expressed in cultured mammalian cells. Antibodies raised to polypeptide epitopes of ALMT1 were used ...

  12. Carbon and hydrogen metabolism of green algae in light and dark

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    After adaptation to a hydrogen metabolism, Chlamydomonas reinhardtii can photoanaerobically metabolize acetate with the evolution of H{sub 2} and CO{sub 2}. An enzyme profile of the chloroplastic, cytoplasmic, and mitochondrial fractions were obtained with a cellular fractionation procedure that incorporated cell wall removal by autolysine, digestion of the plasmalemma with digitonin and fractionation by differential centrifugation on a Percoll step gradient. The sequence of events leading to the photo-evolution of H{sub 2} from acetate includes the conversion of acetate into succinate via the extraplastidic glyoxylate cycle, the oxidation of succinate to fumarate by chloroplastic succinic dehydrogenase and the oxidation of malate to oxaloacetate in the chloroplast by NAD dependent malate dehydrogenase. The level of potential activity of the enzymes was sufficient to accommodate the observed rate of gas evolution. The isolated darkened chloroplast evolves aerobically CO{sub 2} from glucose indicating a chloroplastic respiratory pathway. Evolution of CO{sub 2} is blocked by mitochondrial inhibitors.

  13. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation

    Energy Technology Data Exchange (ETDEWEB)

    Droux, M.; Miginiac-Maslow, M.; Jacquot, J.P.; Gadal, P.; Crawford, N.A.; Kosower, N.S.; Buchanan, B.B.

    1987-07-01

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with (/sup 14/C)iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn, reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.

  14. Effect of [L-Carnitine] on acetyl-L-carnitine production by heart mitochondria

    International Nuclear Information System (INIS)

    Bieber, L.L.; Lilly, K.; Lysiak, W.

    1986-01-01

    The authors recently reported a large efflux of acetyl-L-carnitine from rat heart mitochondria during state 3 respiration with pyruvate as substrate both in the presence and absence of malate. In this series of experiments, the effect of the concentration of L-carnitine on the efflux of acetyl-L-carnitine and on the production of 14 CO 2 from 2- 14 C-pyruvate was determined. Maximum acetylcarnitine production (approximately 25 n moles/min/mg protein) was obtained at 3-5 mM L-carnitine in the absence of added malate. 14 CO 2 production decreased as the concentration of L-carnitine increased; it plateaued at 3-5 mM L-carnitine. These data indicate carnitine can stimulate flux of pyruvate through pyruvate dehydrogenase and can reduce flux of acetyl CoA through the Krebs cycle by acting as an acceptor of the acetyl moieties of acetyl CoA generated by pyruvate dehydrogenase

  15. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation

    International Nuclear Information System (INIS)

    Droux, M.; Miginiac-Maslow, M.; Jacquot, J.P.; Gadal, P.; Crawford, N.A.; Kosower, N.S.; Buchanan, B.B.

    1987-01-01

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with [ 14 C]iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn, reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined

  16. Primaquine for reducing Plasmodium falciparum transmission.

    Science.gov (United States)

    Graves, Patricia M; Gelband, Hellen; Garner, Paul

    2012-09-12

    Mosquitoes become infected with malaria when they ingest gametocyte stages of the parasite from the blood of a human host. Plasmodium falciparum gametocytes are sensitive to the drug primaquine (PQ). The World Health Organization (WHO) recommends giving a single dose or short course of PQ alongside primary treatment for people ill with P. falciparum infection to reduce malaria transmission. Gametocytes themselves cause no symptoms, so this intervention does not directly benefit individuals. PQ causes haemolysis in some people with glucose-6-phosphate dehydrogenase (G6PD) deficiency so may not be safe.   To assess whether a single dose or short course of PQ added to treatments for malaria caused by P. falciparum infection reduces malaria transmission and is safe. We searched the following databases up to 10 April 2012 for studies: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; metaRegister of Controlled Trials (mRCT) and the WHO trials search portal using 'malaria*', 'falciparum', and 'primaquine' as search terms. In addition, we searched conference proceedings and reference lists of included studies, and we contacted likely researchers and organizations for relevant trials. Trials of mass treatment of whole populations (or actively detected fever or malaria cases within such populations) with antimalarial drugs, compared to treatment with the same drug plus PQ; or patients with clinical malaria being treated for malaria at health facilities randomized to short course/single dose PQ versus no PQ. Two authors (PMG and HG) independently screened all abstracts, applied inclusion criteria, and abstracted data. We sought data on the effect of PQ on malaria transmission intensity, participant infectiousness, the number of participants with gametocytes, and gametocyte density over time. We stratified results by primary treatment drug as

  17. Genetic characterization of an epidemic of Plasmodium falciparum malaria among Yanomami Amerindians.

    Science.gov (United States)

    Laserson, K F; Petralanda, I; Almera, R; Barker, R H; Spielman, A; Maguire, J H; Wirth, D F

    1999-12-01

    Malaria parasites are genetically diverse at all levels of endemicity. In contrast, the merozoite surface protein (MSP) alleles in samples from 2 isolated populations of Yanomami Amerindians during an epidemic of Plasmodium falciparum were identical. The nonvariable restriction fragment length polymorphism patterns further suggested that the sequential outbreak comprised only a single P. falciparum genotype. By examination of serial samples from single human infections, the MSP characteristics were found to remain constant throughout the course of infection. An apparent clonal population structure of parasites seemed to cause outbreaks in small isolated villages. The use of standard molecular epidemiologic methods to measure genetic diversity in malaria revealed the occurrence of a genetically monomorphic population of P. falciparum within a human community.

  18. Confirmation of emergence of mutations associated with atovaquone-proguanil resistance in unexposed Plasmodium falciparum isolates from Africa

    Directory of Open Access Journals (Sweden)

    Kyle Dennis E

    2006-10-01

    Full Text Available Abstract Background In vitro and in vivo resistance of Plasmodium falciparum to atovaquone or atovaquone-proguanil hydrochloride combination has been associated to two point mutations in the parasite cytochrome b (cytb gene (Tyr268Ser and Tyr268Asn. However, little is known about the prevalence of codon-268 mutations in natural populations of P. falciparum without previous exposure to the drug in Africa. Methods The prevalence of codon-268 mutations in the cytb gene of African P. falciparum isolates from Nigeria, Malawi and Senegal, where atovaquone-proguanil has not been introduced for treatment of malaria was assessed. Genotyping of the cytb gene in isolates of P. falciparum was performed by PCR-restriction fragment length polymorphism and confirmed by sequencing. Results 295 samples from Nigeria (111, Malawi (91 and Senegal (93 were successfully analyzed for detection of either mutant Tyr268Ser or Tyr268Asn. No case of Ser268 or Asn268 was detected in cytb gene of parasites from Malawi or Senegal. However, Asn268 was detected in five out of 111 (4.5% unexposed P. falciparum isolates from Nigeria. In addition, one out of these five mutant Asn268 isolates showed an additional cytb mutation leading to a Pro266Thr substitution inside the ubiquinone reduction site. Conclusion No Tyr268Ser mutation is found in cytb of P. falciparum isolates from Nigeria, Malawi or Senegal. This study reports for the first time cytb Tyr268Asn mutation in unexposed P. falciparum isolates from Nigeria. The emergence in Africa of P. falciparum isolates with cytb Tyr268Asn mutation is a matter of serious concern. Continuous monitoring of atovaquone-proguanil resistant P. falciparum in Africa is warranted for the rational use of this new antimalarial drug, especially in non-immune travelers.

  19. Confirmation of emergence of mutations associated with atovaquone-proguanil resistance in unexposed Plasmodium falciparum isolates from Africa.

    Science.gov (United States)

    Happi, Christian T; Gbotosho, Grace O; Folarin, Onikepe A; Milner, Danny; Sarr, Ousmane; Sowunmi, Akintunde; Kyle, Dennis E; Milhous, Wilbur K; Wirth, Dyann F; Oduola, Ayoade M J

    2006-10-04

    In vitro and in vivo resistance of Plasmodium falciparum to atovaquone or atovaquone-proguanil hydrochloride combination has been associated to two point mutations in the parasite cytochrome b (cytb) gene (Tyr268Ser and Tyr268Asn). However, little is known about the prevalence of codon-268 mutations in natural populations of P. falciparum without previous exposure to the drug in Africa. The prevalence of codon-268 mutations in the cytb gene of African P. falciparum isolates from Nigeria, Malawi and Senegal, where atovaquone-proguanil has not been introduced for treatment of malaria was assessed. Genotyping of the cytb gene in isolates of P. falciparum was performed by PCR-restriction fragment length polymorphism and confirmed by sequencing. 295 samples from Nigeria (111), Malawi (91) and Senegal (93) were successfully analyzed for detection of either mutant Tyr268Ser or Tyr268Asn. No case of Ser268 or Asn268 was detected in cytb gene of parasites from Malawi or Senegal. However, Asn268 was detected in five out of 111 (4.5%) unexposed P. falciparum isolates from Nigeria. In addition, one out of these five mutant Asn268 isolates showed an additional cytb mutation leading to a Pro266Thr substitution inside the ubiquinone reduction site. No Tyr268Ser mutation is found in cytb of P. falciparum isolates from Nigeria, Malawi or Senegal. This study reports for the first time cytb Tyr268Asn mutation in unexposed P. falciparum isolates from Nigeria. The emergence in Africa of P. falciparum isolates with cytb Tyr268Asn mutation is a matter of serious concern. Continuous monitoring of atovaquone-proguanil resistant P. falciparum in Africa is warranted for the rational use of this new antimalarial drug, especially in non-immune travelers.

  20. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X.

    Science.gov (United States)

    Li, Fengwu; Bounkeua, Viengngeun; Pettersen, Kenneth; Vinetz, Joseph M

    2016-02-24

    Plasmodium invasion of the mosquito midgut is a population bottleneck in the parasite lifecycle. Interference with molecular mechanisms by which the ookinete invades the mosquito midgut is one potential approach to developing malaria transmission-blocking strategies. Plasmodium aspartic proteases are one such class of potential targets: plasmepsin IV (known to be present in the asexual stage food vacuole) was previously shown to be involved in Plasmodium gallinaceum infection of the mosquito midgut, and plasmepsins VII and plasmepsin X (not known to be present in the asexual stage food vacuole) are upregulated in Plasmodium falciparum mosquito stages. These (and other) parasite-derived enzymes that play essential roles during ookinete midgut invasion are prime candidates for transmission-blocking vaccines. Reverse transcriptase PCR (RT-PCR) was used to determine timing of P. falciparum plasmepsin VII (PfPM VII) and plasmepsin X (PfPM X) mRNA transcripts in parasite mosquito midgut stages. Protein expression was confirmed by western immunoblot and immunofluorescence assays (IFA) using anti-peptide monoclonal antibodies (mAbs) against immunogenic regions of PfPM VII and PfPM X. These antibodies were also used in standard membrane feeding assays (SMFA) to determine whether inhibition of these proteases would affect parasite transmission to mosquitoes. The Mann-Whitney U test was used to analyse mosquito transmission assay results. RT-PCR, western immunoblot and immunofluorescence assay confirmed expression of PfPM VII and PfPM X in mosquito stages. Whereas PfPM VII was expressed in zygotes and ookinetes, PfPM X was expressed in gametes, zygotes, and ookinetes. Antibodies against PfPM VII and PfPM X decreased P. falciparum invasion of the mosquito midgut when used at high concentrations, indicating that these proteases play a role in Plasmodium mosquito midgut invasion. Failure to generate genetic knockouts of these genes limited determination of the precise role of

  1. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice

    Science.gov (United States)

    Vaughan, Ashley M.; Mikolajczak, Sebastian A.; Wilson, Elizabeth M.; Grompe, Markus; Kaushansky, Alexis; Camargo, Nelly; Bial, John; Ploss, Alexander; Kappe, Stefan H.I.

    2012-01-01

    Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P. falciparum LS in vivo: the immunocompromised and fumarylacetoacetate hydrolase–deficient mouse (Fah–/–, Rag2–/–, Il2rg–/–, termed the FRG mouse) engrafted with human hepatocytes (FRG huHep). FRG huHep mice supported vigorous, quantifiable P. falciparum LS development that culminated in complete maturation of LS at approximately 7 days after infection, providing a relevant model for LS development in humans. The infections allowed observations of previously unknown expression of proteins in LS, including P. falciparum translocon of exported proteins 150 (PTEX150) and exported protein-2 (EXP-2), components of a known parasite protein export machinery. LS schizonts exhibited exoerythrocytic merozoite formation and merosome release. Furthermore, FRG mice backcrossed to the NOD background and repopulated with huHeps and human red blood cells supported reproducible transition from LS infection to blood-stage infection. Thus, these mice constitute reliable models to study human LS directly in vivo and demonstrate utility for studies of LS–to–blood-stage transition of a human malaria parasite. PMID:22996664

  2. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites.

    Directory of Open Access Journals (Sweden)

    Remko Schats

    Full Text Available Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization, requiring only 30-45 mosquitoes bites infected with P. falciparum-sporozoites. Given the large diversity of P. falciparum parasites, it is essential to assess protection against heterologous parasite strains.In an open-label follow-up study, 16 volunteers previously CPS-immunized and challenged with P. falciparum NF54 (West-Africa in a dose de-escalation and challenge trial were re-challenged with clone NF135.C10 (Cambodia at 14 months after the last immunization (NCT01660854.Two out of thirteen NF54 protected volunteers previously fully protected against NF54 were also fully protected against NF135.C10, while 11/13 showed a delayed patency (median prepatent period of 10.5 days (range 9.0-15.5 versus 8.5 days in 5 malaria-naïve controls (p = 0.0005. Analysis of patency by qPCR indicated a 91 to >99% estimated reduction of liver parasite load in 7/11 partially protected subjects. Three volunteers previously not protected against NF54, were also not protected against NF135.C10.This study shows that CPS-immunization can induce heterologous protection for a period of more than one year, which is a further impetus for clinical development of whole parasite vaccines.Clinicaltrials.gov NCT01660854.

  3. Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand.

    Science.gov (United States)

    Sawaswong, Vorthon; Simpalipan, Phumin; Siripoon, Napaporn; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2015-04-01

    Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles coexisted, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.

  4. Glucose homeostasis in children with falciparum malaria: precursor supply limits gluconeogenesis and glucose production

    NARCIS (Netherlands)

    Dekker, E.; Hellerstein, M. K.; Romijn, J. A.; Neese, R. A.; Peshu, N.; Endert, E.; Marsh, K.; Sauerwein, H. P.

    1997-01-01

    To evaluate glucose kinetics in children with falciparum malaria, basal glucose production and gluconeogenesis and an estimate of the flux of the gluconeogenic precursors were measured in Kenyan children with uncomplicated falciparum malaria before (n = 11) and during infusion of alanine (1.5

  5. Relative Susceptibilities of ABO Blood Groups to Plasmodium falciparum Malaria in Ghana.

    Science.gov (United States)

    Afoakwah, Richmond; Aubyn, Edmond; Prah, James; Nwaefuna, Ekene Kwabena; Boampong, Johnson N

    2016-01-01

    The clinical outcome of falciparum malaria in endemic areas is influenced by erythrocyte polymorphisms including the ABO blood groups. Studies have reported association of ABO blood group to resistance, susceptibility, and severity of P. falciparum malaria infection. Individuals with blood group "A" have been found to be highly susceptible to falciparum malaria whereas blood group "O" is said to confer protection against complicated cases. We analyzed samples from 293 young children less than six years old with malaria in the Korle-Bu Teaching Hospital in Accra, Ghana. It was observed that group O was present in about 16.1% of complicated cases weighed against 40.9% of uncomplicated controls. Individuals with complicated malaria were about twice likely to be of blood groups A and B compared to group O (A versus O, OR = 1.90, 95% CI = 1.59-2.26, P Blood group O participants with complicated diseases had low parasitaemia compared to the other blood groups (P blood group O individuals a survival advantage over the other groups in complicated malaria as suggested. Participants with complicated falciparum malaria were generally anaemic and younger than those with uncomplicated disease.

  6. New species in the genus Francisella (Gammaproteobacteria; Francisellaceae); Francisella piscicida sp. nov. isolated from cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Ottem, Karl F; Nylund, Are; Karlsbakk, Egil

    2007-01-01

    A, lipoprotein TUL4 (LpnA), malate dehydrogenase and hypothetical lipoprotein (LpnB) sequences. A comparison between GM2212 and the type strain of Francisella philomiragia were performed by DNA-DNA hybridization and fatty acid analysis. The DNA-DNA hybridization showed a 70% similarity. The fatty acid analysis...

  7. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Zbynek Bozdech

    2003-10-01

    Full Text Available Plasmodium falciparum is the causative agent of the most burdensome form of human malaria, affecting 200-300 million individuals per year worldwide. The recently sequenced genome of P. falciparum revealed over 5,400 genes, of which 60% encode proteins of unknown function. Insights into the biochemical function and regulation of these genes will provide the foundation for future drug and vaccine development efforts toward eradication of this disease. By analyzing the complete asexual intraerythrocytic developmental cycle (IDC transcriptome of the HB3 strain of P. falciparum, we demonstrate that at least 60% of the genome is transcriptionally active during this stage. Our data demonstrate that this parasite has evolved an extremely specialized mode of transcriptional regulation that produces a continuous cascade of gene expression, beginning with genes corresponding to general cellular processes, such as protein synthesis, and ending with Plasmodium-specific functionalities, such as genes involved in erythrocyte invasion. The data reveal that genes contiguous along the chromosomes are rarely coregulated, while transcription from the plastid genome is highly coregulated and likely polycistronic. Comparative genomic hybridization between HB3 and the reference genome strain (3D7 was used to distinguish between genes not expressed during the IDC and genes not detected because of possible sequence variations. Genomic differences between these strains were found almost exclusively in the highly antigenic subtelomeric regions of chromosomes. The simple cascade of gene regulation that directs the asexual development of P. falciparum is unprecedented in eukaryotic biology. The transcriptome of the IDC resembles a "just-in-time" manufacturing process whereby induction of any given gene occurs once per cycle and only at a time when it is required. These data provide to our knowledge the first comprehensive view of the timing of transcription throughout the

  8. Interaction of an atypical Plasmodium falciparum ETRAMP with human apolipoproteins

    Directory of Open Access Journals (Sweden)

    Sahasrabudhe Sudhir

    2008-10-01

    Full Text Available Abstract Background In order to establish a successful infection in the human host, the malaria parasite Plasmodium falciparum must establish interactions with a variety of human proteins on the surface of different cell types, as well as with proteins inside the host cells. To better understand this aspect of malaria pathogenesis, a study was conducted with the goal of identifying interactions between proteins of the parasite and those of its human host. Methods A modified yeast two-hybrid methodology that preferentially selects protein fragments that can be expressed in yeast was used to conduct high-throughput screens with P. falciparum protein fragments against human liver and cerebellum libraries. The resulting dataset was analyzed to exclude interactions that are not likely to occur in the human host during infection. Results An initial set of 2,200 interactions was curated to remove proteins that are unlikely to play a role in pathogenesis based on their annotation or localization, and proteins that behave promiscuously in the two-hybrid assay, resulting in a final dataset of 456 interactions. A cluster that implicates binding between P. falciparum PFE1590w/ETRAMP5, a putative parasitophorous vacuole membrane protein, and human apolipoproteins ApoA, ApoB and ApoE was selected for further analysis. Different isoforms of ApoE, which are associated with different outcomes of malaria infection, were shown to display differential interactions with PFE1590w. Conclusion A dataset of interactions between proteins of P. falciparum and those of its human host was generated. The preferential interaction of the P. falciparum PFE1590w protein with the human ApoE ε3 and ApoE ε4 isoforms, but not the ApoE ε2 isoform, supports the hypothesis that ApoE genotype affects risk of malaria infection. The dataset contains other interactions of potential relevance to disease that may identify possible vaccine candidates and drug targets.

  9. Shikimate dehydrogenase from Pinu sylvestris L. needles

    International Nuclear Information System (INIS)

    Osipov, V.I.; Shein, I.V.

    1986-01-01

    Shikimate dehydrogenase was isolated by extraction from pine needles and partially purified by fractionation with ammonium sulfate. In conifers, in contrast to other plants, all three isoenzymes of shikimate dehydrogenase exhibit activity not only with NADP + , but also with NAD + . The values of K/sub m/ for shikimate, when NADP + and NAD + are used as cofactors, are 0.22 and 1.13 mM, respectively. The enzyme is maximally active at pH 10 with both cofactors. It is suggested that NAD-dependent shikimate dehydrogenase catalyzes the initial reaction of the alternative pathway of the conversion of shikimic acid to hydroxybenzoic acid. The peculiarities of the organization and regulation of the initial reactions of the shikimate pathway in conifers and in plants with shikimate dehydrogenase absolutely specific for NADP are discussed

  10. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country.

    Science.gov (United States)

    Pumpaibool, Tepanata; Arnathau, Céline; Durand, Patrick; Kanchanakhan, Naowarat; Siripoon, Napaporn; Suegorn, Aree; Sitthi-Amorn, Chitr; Renaud, François; Harnyuttanakorn, Pongchai

    2009-07-14

    The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites). Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 +/- 0.17), where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai populations during this study. Comparison of the genetic

  11. Genetic structure of Plasmodium falciparum populations across the Honduras-Nicaragua border.

    Science.gov (United States)

    Larrañaga, Nerea; Mejía, Rosa E; Hormaza, José I; Montoya, Alberto; Soto, Aida; Fontecha, Gustavo A

    2013-10-04

    The Caribbean coast of Central America remains an area of malaria transmission caused by Plasmodium falciparum despite the fact that morbidity has been reduced in recent years. Parasite populations in that region show interesting characteristics such as chloroquine susceptibility and low mortality rates. Genetic structure and diversity of P. falciparum populations in the Honduras-Nicaragua border were analysed in this study. Seven neutral microsatellite loci were analysed in 110 P. falciparum isolates from endemic areas of Honduras (n = 77) and Nicaragua (n = 33), mostly from the border region called the Moskitia. Several analyses concerning the genetic diversity, linkage disequilibrium, population structure, molecular variance, and haplotype clustering were conducted. There was a low level of genetic diversity in P. falciparum populations from Honduras and Nicaragua. Expected heterozigosity (H(e)) results were similarly low for both populations. A moderate differentiation was revealed by the F(ST) index between both populations, and two putative clusters were defined through a structure analysis. The main cluster grouped most of samples from Honduras and Nicaragua, while the second cluster was smaller and included all the samples from the Siuna community in Nicaragua. This result could partially explain the stronger linkage disequilibrium (LD) in the parasite population from that country. These findings are congruent with the decreasing rates of malaria endemicity in Central America.

  12. Proteomic analysis revealed alterations of the Plasmodium falciparum metabolism following salicylhydroxamic acid exposure

    Directory of Open Access Journals (Sweden)

    Torrentino-Madamet M

    2011-09-01

    Full Text Available Marylin Torrentino-Madamet1, Lionel Almeras2, Christelle Travaillé1, Véronique Sinou1, Matthieu Pophillat3, Maya Belghazi4, Patrick Fourquet3, Yves Jammes5, Daniel Parzy11UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo, 2Unité de Recherche en Biologie et Epidémiologie Parasitaires, Antenne IRBA de Marseille (IMTSSA, Le Pharo, 3Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée, 4Centre d'Analyse Protéomique de Marseille, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, 5UMR-MD2, Physiologie et Physiopathologie en Conditions d'Oxygénations Extrêmes, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, Marseille, FranceObjectives: Although human respiratory metabolism is characterized by the mitochondrial electron transport chain, some organisms present a “branched respiratory chain.” This branched pathway includes both a classical and an alternative respiratory chain. The latter involves an alternative oxidase. Though the Plasmodium falciparum alternative oxidase is not yet identified, a specific inhibitor of this enzyme, salicylhydroxamic acid (SHAM, showed a drug effect on P. falciparum respiratory function using oxygen consumption measurements. The present study aimed to highlight the metabolic pathways that are affected in P. falciparum following SHAM exposure.Design: A proteomic approach was used to analyze the P. falciparum proteome and determine the metabolic pathways altered following SHAM treatment. To evaluate the SHAM effect on parasite growth, the phenotypic alterations of P. falciparum after SHAM or/and hyperoxia exposure were observed.Results: After SHAM exposure, 26 proteins were significantly deregulated using a fluorescent two dimensional-differential gel electrophoresis. Among these deregulated proteins

  13. D-malate production by permeabilized Pseudomonas pseudoalcaligenes; optimization of conversion and biocatalyst productivity.

    Science.gov (United States)

    Michielsen, M J; Frielink, C; Wijffels, R H; Tramper, J; Beeftink, H H

    2000-04-14

    For the development of a continuous process for the production of solid D-malate from a Ca-maleate suspension by permeabilized Pseudomonas pseudoalcaligenes, it is important to understand the effect of appropriate process parameters on the stability and activity of the biocatalyst. Previously, we quantified the effect of product (D-malate2 -) concentration on both the first-order biocatalyst inactivation rate and on the biocatalytic conversion rate. The effects of the remaining process parameters (ionic strength, and substrate and Ca2 + concentration) on biocatalyst activity are reported here. At (common) ionic strengths below 2 M, biocatalyst activity was unaffected. At high substrate concentrations, inhibition occurred. Ca2+ concentration did not affect biocatalyst activity. The kinetic parameters (both for conversion and inactivation) were determined as a function of temperature by fitting the complete kinetic model, featuring substrate inhibition, competitive product inhibition and first-order irreversible biocatalyst inactivation, at different temperatures simultaneously through three extended data sets of substrate concentration versus time. Temperature affected both the conversion and inactivation parameters. The final model was used to calculate the substrate and biocatalyst costs per mmol of product in a continuous system with biocatalyst replenishment and biocatalyst recycling. Despite the effect of temperature on each kinetic parameter separately, the overall effect of temperature on the costs was found to be negligible (between 293 and 308 K). Within pertinent ranges, the sum of the substrate and biocatalyst costs per mmol of product was calculated to decrease with the influent substrate concentration and the residence time. The sum of the costs showed a minimum as a function of the influent biocatalyst concentration.

  14. Biomarkers of Plasmodium falciparum infection during pregnancy in women living in northeastern Tanzania.

    Directory of Open Access Journals (Sweden)

    Stéphanie Boström

    Full Text Available In pregnant women, Plasmodium falciparum infections are an important cause of maternal morbidity as well as fetal and neonatal mortality. Erythrocytes infected by these malaria-causing parasites accumulate through adhesive interactions in placental intervillous spaces, thus evading detection in peripheral blood smears. Sequestered infected erythrocytes induce inflammation, offering the possibility of detecting inflammatory mediators in peripheral blood that could act as biomarkers of placental infection. In a longitudinal, prospective study in Tanzania, we quantified a range of different cytokines, chemokines and angiogenic factors in peripheral plasma samples, taken on multiple sequential occasions during pregnancy up to and including delivery, from P. falciparum-infected women and matched uninfected controls. The results show that during healthy, uninfected pregnancies the levels of most of the panel of molecules we measured were largely unchanged except at delivery. In women with P. falciparum, however, both comparative and longitudinal assessments consistently showed that the levels of IL-10 and IP-10 increased significantly whilst that of RANTES decreased significantly, regardless of gestational age at the time the infection was detected. ROC curve analysis indicated that a combination of increased IL-10 and IP-10 levels and decreased RANTES levels might be predictive of P. falciparum infections. In conclusion, our data suggest that host biomarkers in peripheral blood may represent useful diagnostic markers of P. falciparum infection during pregnancy, but placental histology results would need to be included to verify these findings.

  15. Plasmodium falciparum malaria associated with ABO blood ...

    African Journals Online (AJOL)

    The present study was carried out to investigate the relationship between blood group types and P. falciparum malaria, as well as malaria preventive measures. The venous blood specimens were collected, processed, Giemsa-stained and examined microscopically. ABO groups were determined by agglutination test using ...

  16. The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases.

    Science.gov (United States)

    Zarzycki, Jan; Kerfeld, Cheryl A

    2013-11-09

    Malyl-CoA lyase (MCL) is a promiscuous carbon-carbon bond lyase that catalyzes the reversible cleavage of structurally related Coenzyme A (CoA) thioesters. This enzyme plays a crucial, multifunctional role in the 3-hydroxypropionate bi-cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus. A second, phylogenetically distinct MCL from Rhodobacter sphaeroides is involved in the ethylmalonyl-CoA pathway for acetate assimilation. Both MCLs belong to the large superfamily of CitE-like enzymes, which includes the name-giving β-subunit of citrate lyase (CitE), malyl-CoA thioesterases and other enzymes of unknown physiological function. The CitE-like enzyme superfamily also bears sequence and structural resemblance to the malate synthases. All of these different enzymes share highly conserved catalytic residues, although they catalyze distinctly different reactions: C-C bond formation and cleavage, thioester hydrolysis, or both (the malate synthases). Here we report the first crystal structures of MCLs from two different phylogenetic subgroups in apo- and substrate-bound forms. Both the C. aurantiacus and the R. sphaeroides MCL contain elaborations on the canonical β8/α8 TIM barrel fold and form hexameric assemblies. Upon ligand binding, changes in the C-terminal domains of the MCLs result in closing of the active site, with the C-terminal domain of one monomer forming a lid over and contributing side chains to the active site of the adjacent monomer. The distinctive features of the two MCL subgroups were compared to known structures of other CitE-like superfamily enzymes and to malate synthases, providing insight into the structural subtleties that underlie the functional versatility of these enzymes. Although the C. aurantiacus and the R. sphaeroides MCLs have divergent primary structures (~37% identical), their tertiary and quaternary structures are very similar. It can be assumed that the C-C bond formation catalyzed by the MCLs occurs as proposed for

  17. Efficacy and safety of artemisinin combination therapy (ACT) for non-falciparum malaria: a systematic review

    NARCIS (Netherlands)

    Visser, Benjamin J.; Wieten, Rosanne W.; Kroon, Daniëlle; Nagel, Ingeborg M.; Bélard, Sabine; van Vugt, Michèle; Grobusch, Martin P.

    2014-01-01

    Artemisinin combination therapy (ACT) is recommended as first-line treatment for uncomplicated Plasmodium falciparum malaria, whereas chloroquine is still commonly used for the treatment of non-falciparum species (Plasmodium vivax, Plasmodium ovale and Plasmodium malariae). A more simplified, more

  18. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    Directory of Open Access Journals (Sweden)

    Arthur M Talman

    2010-02-01

    Full Text Available The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.

  19. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    Science.gov (United States)

    Talman, Arthur M; Blagborough, Andrew M; Sinden, Robert E

    2010-02-10

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.

  20. Parasite density and the spectrum of clinical illness in falciparum malaria

    International Nuclear Information System (INIS)

    Ali, H.; Mahmood, T.; Ahmed, N.

    2008-01-01

    To determine the impact of percentage parasitemia and clinical features on morbidity and mortality in patients with P. falciparum malaria. Seventy-six adult patients of smear positive P. falciparum malaria were selected for the study. Parasite density was estimated on thin blood film and expressed as percentage of red blood cells parasitized. Patients were divided into three groups on the basis of parasite density. The data was analyzed on SPSS version 12. Results were expressed as percentages, mean and standard deviations. P-value 10%. Comparative analysis of the groups showed that pallor, impaired consciousness, jaundice or malarial hepatitis, thrombocytopenia, acute renal failure, DIC, and mortality were all strongly associated with the density of Plasmodium falciparum malaria (p=0.001). Parasite density was not related to age, gender and hepatosplenomegaly. High parasite density was associated with severe clinical illness, complications and mortality. Parasite counts of > 5% may be considered as hyperparasitaemia in this population of the world. (author)

  1. Molecular markers of antifolate resistance in Plasmodium falciparum isolates from Luanda, Angola

    Science.gov (United States)

    2011-01-01

    Background Plasmodium falciparum malaria remains a leading health problem in Africa and its control is seriously challenged by drug resistance. Although resistance to the sulphadoxine-pyrimethamine (SP) is widespread, this combination remains an important component of malaria control programmes as intermittent preventive therapy (IPT) for pregnant women and children. In Angola, resistance patterns have been poorly characterized, and IPT has been employed for pregnant women since 2006. The aim of this study was to assess the prevalence of key antifolate resistance mediating polymorphisms in the pfdhfr and pfdhps genes in P. falciparum samples from Angola. Methods Plasmodium falciparum samples collected in Luanda, in 2007, were genotyped by amplification and DNA forward and reverse sequencing of the pfdhfr and pfdhps genes. Results The most prevalent polymorphisms identified were pfdhfr 108N (100%), 51I (93%), 59R (57%) and pfdhps 437G (93%). Resistance-mediating polymorphisms in pfdhps less commonly observed in West Africa were also identified (540E in 10%, 581G in 7% of samples). Conclusion This study documents an important prevalence of 4 P. falciparum polymorphisms that predicts an antifolate resistance in Luanda. Further, some samples presented additional mutations associated to high-level resistance. These results suggest that the use of SP for IPT may no longer be warranted in Angola. PMID:21864379

  2. Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Directory of Open Access Journals (Sweden)

    Gabriela K. Ferreira

    2014-09-01

    Full Text Available Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.

  3. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  4. HUBUNGAN SENSISTIVITAS PLASMODIUM FALCIPARUM TERHADAP KOMBINASI PIRIMETAMIN/SULFADOKSIN DAN KLOROKUIN SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    Sahat Ompusunggu

    2012-09-01

    Full Text Available An in vitro sensitivity test was conducted to study the sensitivity of Plasmodium falciparum against chloroquine and pyrimethamine/sulphadoxine combination. The relationship between sensitivity of the parasite to the two drugs was also studied. A total of 72 patients from five localities were examined during 1984-1985. Test against chloroquine was conduc­ted according to WHO method, while against pyrimethamine/sulphadoxine combination, a modified method of Nguyen Dinh and Payne and Eastham and Rieckmann was used. The results showed that there is no relationship between the sensitivity of P. falciparum against pyrimethamine/ sulphadoxine combination and chloroquine. It can be concluded that in case of chloroquine resistant P. falciparum, pyrimethamine/sulphadoxine combination could be applied as an alternative chemotherapy.

  5. Plasmodium falciparum malaria and antimalarial interventions in ...

    African Journals Online (AJOL)

    Plasmodium falciparum malaria is one of the most important parasitic diseases affecting sub-Saharan Africa, despite the availability of interventions. It exerts tremendous socio-economic and medical burden on the continent, particularly in under five children and pregnant women. In this review, we have attempted to ...

  6. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  7. Functional, structural and phylogenetic analysis of domains underlying the Al-sensitivity of the aluminium-activated malate/anion transporter, TaALMT1

    Science.gov (United States)

    TaALMT1 (Triticum aestivum Aluminum Activated Malate Transporter) is the founding member of a novel gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small subgroup of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (...

  8. Defectos eritrocíticos y densidad de la parasitemia en pacientes con malaria por Plasmodium falciparum en Buenaventura, Colombia Erythrocyte defects and parasitemia density in patients with Plasmodium falciparum malaria in Buenaventura, Colombia

    Directory of Open Access Journals (Sweden)

    Martha Moyano

    2005-07-01

    . falciparum malaria who had gone for consultation at the Program of Tropical Diseases diagnostic center in the city of Buenaventura, Colombia. The parasitemia levels were measured, and also determined was the presence of congenital erythrocyte defects (glucose-6-phosphate dehydrogenase (G6PD deficiency, abnormal hemoglobins, and thalassemias and of other factors possibly related to parasitemia levels. RESULTS: The prevalence of erythrocyte defects was 26.4% (95% confidence interval, 21.0%-32.5%, which was similar to what had been found in previous studies in the same area of Colombia. In the multiple regression models, individuals with sickle cell anemia or a complete deficiency of G6PD had a lower density of parasitemia than did persons without any erythrocyte defect. After adjusting for other variables of interest, the risk of high parasitemias was lower in persons with sickle cell anemia (odds ratio = 0.30 and individuals with a complete deficiency of G6PD (odds ratio = 0.72. CONCLUSIONS: Our results confirm the high prevalence of erythrocyte defects in Colombia's Pacific coastal region, in a population with ethnic characteristics that are similar to those of some populations in West Africa. Our results also lend support for the existence of innate resistance to malaria among carriers of hemoglobin AS and in persons with G6PD deficiency.

  9. STANDARDIZATION OF PROCEDURES OF Plasmodium falciparum ANTIGEN PREPARATION FOR SEROLOGIC TESTS

    Directory of Open Access Journals (Sweden)

    Sandra L.M. AVILA

    1998-09-01

    Full Text Available The objective of the present study is to standardize the technical variables for preparation and storage of Plasmodium falciparum and of antigen components extracted with the amphoteric detergent Zwittergent. P. falciparum obtained from in vitro culture was stored at different temperatures and for different periods of time. For each variable, antigen components of the parasite were extracted in the presence or absence of protease inhibitors and submitted or not to later dialysis. Products were stored for 15, 30 and 60 days at different temperatures and immunological activity of each extract was determined by SDS-PAGE and ELISA using positive or negative standard sera for the presence of IgG directed to blood stage antigens of P. falciparum. Antigen extracts obtained from parasites stored at -20oC up to 10 days or at -70oC for 2 months presented the best results, showing well-defined bands on SDS-PAGE and Western blots and presenting absorbance values in ELISA that permitted safe differentiation between positive and negative sera.O objetivo deste estudo foi padronizar variáveis técnicas para o armazenamento de Plasmodium falciparum e de seus componentes antigênicos. Sedimentos de parasitas foram obtidos do cultivo in vitro de P.falciparum e estocados em diferentes temperaturas por diferentes períodos de tempo. De cada variável, foram extraídos os componentes antigênicos com detergente anfótero Zwittergent na presença e na ausência de inibidores de proteases e submetidos ou não a posterior diálise. Os produtos foram estocados por 15, 30 e 60 dias em diferentes temperaturas e caracterizados por SDS-PAGE. A atividade antigênica de cada extrato foi determinada por ELISA e Western blotting usando soros positivos e negativos para anticorpos IgG anti-formas eritrocitárias de P.falciparum. Os extratos antigênicos obtidos de parasitas estocados até 10 dias a _20ºC ou por 2 meses a _70ºC e tratados com inibidores de proteases, sob as

  10. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007.

    Directory of Open Access Journals (Sweden)

    Simon I Hay

    2010-06-01

    Full Text Available The epidemiology of malaria makes surveillance-based methods of estimating its disease burden problematic. Cartographic approaches have provided alternative malaria burden estimates, but there remains widespread misunderstanding about their derivation and fidelity. The aims of this study are to present a new cartographic technique and its application for deriving global clinical burden estimates of Plasmodium falciparum malaria for 2007, and to compare these estimates and their likely precision with those derived under existing surveillance-based approaches.In seven of the 87 countries endemic for P. falciparum malaria, the health reporting infrastructure was deemed sufficiently rigorous for case reports to be used verbatim. In the remaining countries, the mapped extent of unstable and stable P. falciparum malaria transmission was first determined. Estimates of the plausible incidence range of clinical cases were then calculated within the spatial limits of unstable transmission. A modelled relationship between clinical incidence and prevalence was used, together with new maps of P. falciparum malaria endemicity, to estimate incidence in areas of stable transmission, and geostatistical joint simulation was used to quantify uncertainty in these estimates at national, regional, and global scales. Combining these estimates for all areas of transmission risk resulted in 451 million (95% credible interval 349-552 million clinical cases of P. falciparum malaria in 2007. Almost all of this burden of morbidity occurred in areas of stable transmission. More than half of all estimated P. falciparum clinical cases and associated uncertainty occurred in India, Nigeria, the Democratic Republic of the Congo (DRC, and Myanmar (Burma, where 1.405 billion people are at risk. Recent surveillance-based methods of burden estimation were then reviewed and discrepancies in national estimates explored. When these cartographically derived national estimates were ranked

  11. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries

    Science.gov (United States)

    Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi

    2014-01-01

    Background In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species). More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. Objectives To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. Search methods We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. Selection criteria Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. Data collection and analysis For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and

  12. Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum

    Science.gov (United States)

    2010-06-17

    Sciences, Bethesda, MD, ...... 14. ABSTRACT Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is...parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of...Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum Carmenza Spadafora1,2,3, Gordon A. Awandare4

  13. Regulation of antigenic variation in Plasmodium falciparum: censoring freedom of expression?

    Science.gov (United States)

    Duffy, Michael F; Reeder, John C; Brown, Graham V

    2003-03-01

    Plasmodium falciparum employs a strategy of clonal antigenic variation to evade the host immune response during the intraerythrocytic stage of its life cycle. The major variant parasite molecule is the P. falciparum erythrocyte membrane protein (PfEMP)1, which is encoded by the var multigene family. The parasite switches between different PfEMP1 molecules through regulation of var transcription. Recent studies have shed considerable light on this process, but much remains unknown. However, striking parallels between transcriptional control of var and genes in other organisms provide direction for future studies.

  14. A new world malaria map: Plasmodium falciparum endemicity in 2010.

    Science.gov (United States)

    Gething, Peter W; Patil, Anand P; Smith, David L; Guerra, Carlos A; Elyazar, Iqbal R F; Johnston, Geoffrey L; Tatem, Andrew J; Hay, Simon I

    2011-12-20

    Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR) and the basic reproductive number (PfR). Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR) surveys were used in a model-based geostatistical (MBG) prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The maps presented here contribute to a rational basis for control and

  15. A new world malaria map: Plasmodium falciparum endemicity in 2010

    Directory of Open Access Journals (Sweden)

    Gething Peter W

    2011-12-01

    Full Text Available Abstract Background Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR and the basic reproductive number (PfR. Methods Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR surveys were used in a model-based geostatistical (MBG prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. Results An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. Conclusions The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The

  16. Plasmodium falciparum-induced severe malaria with acute kidney injury and jaundice: a case report

    Science.gov (United States)

    Baswin, A.; Siregar, M. L.; Jamil, K. F.

    2018-03-01

    P. falciparum-induced severe malaria with life-threatening complications like acute kidney injury (AKI), jaundice, cerebral malaria, severe anemia, acidosis, and acute respiratory distress syndrome (ARDS). A 31-year-old soldier man who works in Aceh Singkil, Indonesia which is an endemic malaria area presented with a paroxysm of fever, shaking chills and sweats over four days, headache, arthralgia, abdominal pain, pale, jaundice, and oliguria. Urinalysis showed hemoglobinuria. Blood examination showed hemolytic anemia, thrombocytopenia, and hyperbilirubinemia. Falciparum malaria was then confirmed by peripheral blood smear, antimalarial medications were initiated, and hemodialysis was performed for eight times. The patient’s condition and laboratory results were quickly normalized. We report a case of P. falciparum-induced severe malaria with AKI and jaundice. The present case suggests that P. falciparum may induce severe malaria with life-threatening complications, early diagnosis and treatment is important to improve the quality of life of patients. Physicians must be alert for correct diagnosis and proper management of imported tropical malaria when patients have travel history in endemic areas.

  17. The peculiarity of aerobic energy supply of rat tissues of different age upon prolonged ionizing and thermal exposure

    International Nuclear Information System (INIS)

    Tsyhun, G.F.

    1998-01-01

    Energy-producing functions of brain, myocardium, and hepatic mitochondria in mature and immature rats in remote period after prolonged ionizing X-ray at total dose 12,9 m C/kg and thermal exposure (4 hours, 37 degrees centigrade, 25 times) were studied. Dehydrogenase activities (pyruvate-, isocitrate-, 2-oxy glutarate-, succinate- and malate dehydrogenases) were reduced in mitochondria of different tissues of adult rats and it was especially considerable after combined influence. A higher resistance of young rats, as compared to adult ones, to combined radiation-thermal treatments was established

  18. Limonene Arrests Parasite Development and Inhibits Isoprenylation of Proteins in Plasmodium falciparum

    Science.gov (United States)

    Moura, Ivan Cruz; Wunderlich, Gerhard; Uhrig, Maria L.; Couto, Alicia S.; Peres, Valnice J.; Katzin, Alejandro M.; Kimura, Emília A.

    2001-01-01

    Isoprenylation is an essential protein modification in eukaryotic cells. Herein, we report that in Plasmodium falciparum, a number of proteins were labeled upon incubation of intraerythrocytic forms with either [3H]farnesyl pyrophosphate or [3H]geranylgeranyl pyrophosphate. By thin-layer chromatography, we showed that attached isoprenoids are partially modified to dolichol and other, uncharacterized, residues, confirming active isoprenoid metabolism in this parasite. Incubation of blood-stage P. falciparum treated with the isoprenylation inhibitor limonene significantly decreased the parasites' progression from the ring stage to the trophozoite stage and at 1.22 mM, 50% of the parasites died after the first cycle. Using Ras- and Rap-specific monoclonal antibodies, putative Rap and Ras proteins of P. falciparum were immunoprecipitated. Upon treatment with 0.5 mM limonene, isoprenylation of these proteins was significantly decreased, possibly explaining the observed arrest of parasite development. PMID:11502528

  19. The Exported Chaperone PfHsp70x Is Dispensable for the Plasmodium falciparum Intraerythrocytic Life Cycle.

    Science.gov (United States)

    Cobb, David W; Florentin, Anat; Fierro, Manuel A; Krakowiak, Michelle; Moore, Julie M; Muralidharan, Vasant

    2017-01-01

    Export of parasite proteins into the host erythrocyte is essential for survival of Plasmodium falciparum during its asexual life cycle. While several studies described key factors within the parasite that are involved in protein export, the mechanisms employed to traffic exported proteins within the host cell are currently unknown. Members of the Hsp70 family of chaperones, together with their Hsp40 cochaperones, facilitate protein trafficking in other organisms, and are thus likely used by P. falciparum in the trafficking of its exported proteins. A large group of Hsp40 proteins is encoded by the parasite and exported to the host cell, but only one Hsp70, P. falciparum Hsp70x (PfHsp70x), is exported with them. PfHsp70x is absent in most Plasmodium species and is found only in P. falciparum and closely related species that infect apes. Herein, we have utilized clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing in P. falciparum to investigate the essentiality of PfHsp70x. We show that parasitic growth was unaffected by knockdown of PfHsp70x using both the dihydrofolate reductase (DHFR)-based destabilization domain and the glmS ribozyme system. Similarly, a complete gene knockout of PfHsp70x did not affect the ability of P. falciparum to proceed through its intraerythrocytic life cycle. The effect of PfHsp70x knockdown/knockout on the export of proteins to the host red blood cell (RBC), including the critical virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), was tested, and we found that this process was unaffected. These data show that although PfHsp70x is the sole exported Hsp70, it is not essential for the asexual development of P. falciparum . IMPORTANCE Half of the world's population lives at risk for malaria. The intraerythrocytic life cycle of Plasmodium spp. is responsible for clinical manifestations of malaria; therefore, knowledge of the parasite's ability to survive within the erythrocyte is

  20. Naturally acquired immunity to Plasmodium falciparum malaria in Africa

    DEFF Research Database (Denmark)

    Hviid, Lars

    2005-01-01

    Infection by Plasmodium falciparum parasites can lead to substantial protective immunity to malaria, and available evidence suggest that acquisition of protection against some severe malaria syndromes can be fairly rapid. Although these facts have raised hopes that the development of effective...... protective immunity to P. falciparum malaria is acquired following natural exposure to the parasites is beginning to emerge, not least thanks to studies that have combined clinical and epidemiological data with basic immunological research. This framework involves IgG with specificity for clonally variant...... antigens on the surface of the infected erythrocytes, can explain some of the difficulties in relating particular immune responses with specificity for well-defined antigenic targets to clinical protection, and suggests a radically new approach to controlling malaria-related morbidity and mortality...

  1. Fine-scale genetic characterization of Plasmodium falciparum

    Indian Academy of Sciences (India)

    We have initiated such a study and presented herewith the results from the in silico understanding of a seventh chromosomal region of the malarial parasite Plasmodium falciparum encompassing the antigenic var genes (coding pfemp1) and the drug-resistant gene pfcrt located at a specified region of the chromosome 7.

  2. Confirmation of emergence of mutations associated with atovaquone-proguanil resistance in unexposed Plasmodium falciparum isolates from Africa

    OpenAIRE

    Happi, Christian T; Gbotosho, Grace O; Folarin, Onikepe A; Milner, Danny; Sarr, Ousmane; Sowunmi, Akintunde; Kyle, Dennis E; Milhous, Wilbur K; Wirth, Dyann F; Oduola, Ayoade MJ

    2006-01-01

    Abstract Background In vitro and in vivo resistance of Plasmodium falciparum to atovaquone or atovaquone-proguanil hydrochloride combination has been associated to two point mutations in the parasite cytochrome b (cytb) gene (Tyr268Ser and Tyr268Asn). However, little is known about the prevalence of codon-268 mutations in natural populations of P. falciparum without previous exposure to the drug in Africa. Methods The prevalence of codon-268 mutations in the cytb gene of African P. falciparum...

  3. Submicroscopic Plasmodium falciparum infections in pregnancy in Ghana

    NARCIS (Netherlands)

    Mockenhaupt, F. P.; Rong, B.; Till, H.; Eggelte, T. A.; Beck, S.; Gyasi-Sarpong, C.; Thompson, W. N.; Bienzle, U.

    2000-01-01

    Malarial parasitaemia below the threshold of microscopy but detectable by polymerase chain reaction (PCR) assays is common in endemic regions. This study was conducted to examine prevalence, predictors, and effects of submicroscopic Plasmodium falciparum infections in pregnancy. In a cross-sectional

  4. Relative Susceptibilities of ABO Blood Groups to Plasmodium falciparum Malaria in Ghana

    Directory of Open Access Journals (Sweden)

    Richmond Afoakwah

    2016-01-01

    Full Text Available The clinical outcome of falciparum malaria in endemic areas is influenced by erythrocyte polymorphisms including the ABO blood groups. Studies have reported association of ABO blood group to resistance, susceptibility, and severity of P. falciparum malaria infection. Individuals with blood group “A” have been found to be highly susceptible to falciparum malaria whereas blood group “O” is said to confer protection against complicated cases. We analyzed samples from 293 young children less than six years old with malaria in the Korle-Bu Teaching Hospital in Accra, Ghana. It was observed that group O was present in about 16.1% of complicated cases weighed against 40.9% of uncomplicated controls. Individuals with complicated malaria were about twice likely to be of blood groups A and B compared to group O (A versus O, OR = 1.90, 95% CI = 1.59–2.26, P<0.0001; B versus O, OR = 1.82. 95% CI = 1.57–2.23, P<0.0001. Blood group O participants with complicated diseases had low parasitaemia compared to the other blood groups (P<0.0001. This may give blood group O individuals a survival advantage over the other groups in complicated malaria as suggested. Participants with complicated falciparum malaria were generally anaemic and younger than those with uncomplicated disease.

  5. Reversible inactivation of CO dehydrogenase with thiol compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  6. Two Members of the Aluminum-Activated Malate Transporter Family, SlALMT4 and SlALMT5, are Expressed during Fruit Development, and the Overexpression of SlALMT5 Alters Organic Acid Contents in Seeds in Tomato (Solanum lycopersicum).

    Science.gov (United States)

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Nakano, Ryohei; Ushijima, Koichiro; Kubo, Yasutaka; Mori, Izumi C; Higashiizumi, Emi; Galis, Ivan; Yamamoto, Yoko

    2016-11-01

    The aluminum-activated malate transporter (ALMT) family of proteins transports malate and/or inorganic anions across plant membranes. To demonstrate the possible role of ALMT genes in tomato fruit development, we focused on SlALMT4 and SlALMT5, the two major genes expressed during fruit development. Predicted proteins were classified into clade 2 of the family, many members of which localize to endomembranes. Tissue-specific gene expression was determined using transgenic tomato expressing the β-glucuronidase reporter gene controlled by their own promoters. Both the genes were expressed in vascular bundles connecting to developing seeds in fruit and in the embryo of mature seeds. Further, SlALMT5 was expressed in embryo in developing seeds in fruit. Subcellular localization of both proteins to the endoplasmic reticulum (ER) was established by transiently expressing the green fluorescent protein fusions in plant protoplasts. SlALMT5 probably localized to other endomembranes as well. Localization of SlALMT5 to the ER was also confirmed by immunoblot analysis. The transport function of both SlALMT proteins was investigated electrophysiologically in Xenopus oocytes. SlALMT5 transported malate and inorganic anions such as nitrate and chloride, but not citrate. SlALMT4 also transported malate, but the results were less consistent perhaps because it did not localize strongly to the plasma membrane. To elucidate the physiological role of SlALMT5 further, we overexpressed SlALMT5 in tomato. Compared with the wild type, overexpressors exhibited higher malate and citrate contents in mature seeds, but not in fruit. We conclude that the malate transport function of SlALMT5 expressed in developing fruit influences the organic acid contents in mature seeds. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of Plasmodium falciparum.

    Science.gov (United States)

    Sanz, Sílvia; Bandini, Giulia; Ospina, Diego; Bernabeu, Maria; Mariño, Karina; Fernández-Becerra, Carmen; Izquierdo, Luis

    2013-06-07

    Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions.

  8. Biosynthesis of GDP-fucose and Other Sugar Nucleotides in the Blood Stages of Plasmodium falciparum*

    Science.gov (United States)

    Sanz, Sílvia; Bandini, Giulia; Ospina, Diego; Bernabeu, Maria; Mariño, Karina; Fernández-Becerra, Carmen; Izquierdo, Luis

    2013-01-01

    Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions. PMID:23615908

  9. Regulation by magnesium of potato tuber mitochondrial respiratory activities.

    Science.gov (United States)

    Vicente, Joaquim A F; Madeira, Vítor M C; Vercesi, Anibal E

    2004-12-01

    Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and alpha-ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or alpha-ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of alpha-ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike alpha-ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.

  10. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  11. Impact of Plasmodium falciparum and hookworm infections on the ...

    African Journals Online (AJOL)

    abp

    2013-01-18

    Saharan Africa and they increase the prevalence of anaemia in pregnancy with resultant poor pregnancy outcomes. This study was carried out to assess the impact of Plasmodium falciparum and hookworm infections on.

  12. Localisation of gluconeogenesis and tricarboxylic acid (TCA)-cycle enzymes and first functional analysis of the TCA cycle in Toxoplasma gondii.

    Science.gov (United States)

    Fleige, Tobias; Pfaff, Nils; Gross, Uwe; Bohne, Wolfgang

    2008-08-01

    The apicomplexan parasite Toxoplasma gondii displays some unusual localisations of carbohydrate converting enzymes, which is due to the presence of a vestigial, non-photosynthetic plastid, referred to as the apicoplast. It was recently demonstrated that the single pyruvate dehydrogenase complex (PDH) in T. gondii is exclusively localised inside the apicoplast but absent in the mitochondrion. This raises the question about expression, localisation and function of enzymes for the tricarboxylic acid (TCA)-cycle, which normally depends on PDH generated acetyl-CoA. Based on the expression and localisation of epitope-tagged fusion proteins, we show that all analysed TCA cycle enzymes are localised in the mitochondrion, including both isoforms of malate dehydrogenase. The absence of a cytosolic malate dehydrogenase suggests that a typical malate-aspartate shuttle for transfer of reduction equivalents is missing in T. gondii. We also localised various enzymes which catalyse the irreversible steps in gluconeogenesis to a cellular compartment and examined mRNA expression levels for gluconeogenesis and TCA cycle genes between tachyzoites and in vitro bradyzoites. In order to get functional information on the TCA cycle for the parasite energy metabolism, we created a conditional knock-out mutant for the succinyl-CoA synthetase. Disruption of the sixth step in the TCA cycle should leave the biosynthetic parts of the cycle intact, but prevent FADH2 production. The succinyl-CoA synthetase depletion mutant displayed a 30% reduction in growth rate, which could be restored by supplementation with 2 microM succinate in the tissue culture medium. The mitochondrial membrane potential in these parasites was found to be unaltered. The lack of a more severe phenotype suggests that a functional TCA cycle is not essential for T. gondii replication and for maintenance of the mitochondrial membrane potential.

  13. Comparative population structure of Plasmodium malariae and Plasmodium falciparum under different transmission settings in Malawi

    Directory of Open Access Journals (Sweden)

    Molyneux Malcolm E

    2011-02-01

    Full Text Available Abstract Background Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures. Methods Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI, population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters. Results Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008 and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11 and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission

  14. Computational identification of signalling pathways in Plasmodium falciparum.

    Science.gov (United States)

    Oyelade, Jelili; Ewejobi, Itunu; Brors, Benedikt; Eils, Roland; Adebiyi, Ezekiel

    2011-06-01

    Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design

  15. Gene copy number variation throughout the Plasmodium falciparum genome

    Directory of Open Access Journals (Sweden)

    Stewart Lindsay B

    2009-08-01

    Full Text Available Abstract Background Gene copy number variation (CNV is responsible for several important phenotypes of the malaria parasite Plasmodium falciparum, including drug resistance, loss of infected erythrocyte cytoadherence and alteration of receptor usage for erythrocyte invasion. Despite the known effects of CNV, little is known about its extent throughout the genome. Results We performed a whole-genome survey of CNV genes in P. falciparum using comparative genome hybridisation of a diverse set of 16 laboratory culture-adapted isolates to a custom designed high density Affymetrix GeneChip array. Overall, 186 genes showed hybridisation signals consistent with deletion or amplification in one or more isolate. There is a strong association of CNV with gene length, genomic location, and low orthology to genes in other Plasmodium species. Sub-telomeric regions of all chromosomes are strongly associated with CNV genes independent from members of previously described multigene families. However, ~40% of CNV genes were located in more central regions of the chromosomes. Among the previously undescribed CNV genes, several that are of potential phenotypic relevance are identified. Conclusion CNV represents a major form of genetic variation within the P. falciparum genome; the distribution of gene features indicates the involvement of highly non-random mutational and selective processes. Additional studies should be directed at examining CNV in natural parasite populations to extend conclusions to clinical settings.

  16. Unusual Transmission of Plasmodium falciparum, Bordeaux, France, 2009

    Science.gov (United States)

    Vareil, Marc-Olivier; Tandonnet, Olivier; Chemoul, Audrey; Bogreau, Hervé; Saint-Léger, Mélanie; Micheau, Maguy; Millet, Pascal; Koeck, Jean-Louis; Boyer, Alexandre; Rogier, Christophe

    2011-01-01

    Plasmodium falciparum malaria is usually transmitted by mosquitoes. We report 2 cases in France transmitted by other modes: occupational blood exposure and blood transfusion. Even where malaria is not endemic, it should be considered as a cause of unexplained acute fever. PMID:21291597

  17. Manual exchange transfusion for severe imported falciparum malaria: a retrospective study.

    Science.gov (United States)

    Lin, Jinfeng; Huang, Xiaoying; Qin, Gang; Zhang, Suyan; Sun, Weiwei; Wang, Yadong; Ren, Ke; Xu, Junxian; Han, Xudong

    2018-01-16

    This study was designed to evaluate the efficacy of exchange transfusion in patients with severe imported falciparum malaria. Twelve patients who met the diagnostic criteria for severe malaria were treated with exchange transfusion 14 times according to a conventional anti-malarial treatment. This study evaluated the efficacy of exchange transfusion for severe imported falciparum malaria. Clinical data of severe imported falciparum malaria patients admitted to the intensive care unit (ICU) of Nantong Third People's Hospital from January 2007 to December 2016 were investigated in this retrospective study. Patients were divided into the intervention group, which received exchange transfusion, and the control group. This study assessed parasite clearance and outcomes of the two groups, and levels of erythrocytes, haemoglobin, platelets, coagulation, liver function, lactate, C-reactive protein, and procalcitonin, before and after exchange transfusion in the intervention group. There was no significant difference in the severity of admitted patients. Exchange transfusion was successfully applied 14 times in the intervention group. Differences in the levels of erythrocytes, haemoglobin and platelets did not reach statistical significance. Exchange transfusion improved coagulation, liver function, lactic acid, C-reactive protein, and procalcitonin. No differences were observed in parasite clearance, ICU and hospital length of stay, in-hospital mortality, and costs of hospitalization between the two groups. Exchange transfusion as adjunctive therapy for severe malaria was observed to be safe in this setting. Exchange transfusion can improve liver function and coagulation and reduce inflammation, but it failed to improve parasite clearance and the outcomes of severe imported falciparum malaria in this case series.

  18. Bioinformatics analysis for structure and function of CPR of Plasmodium falciparum.

    Science.gov (United States)

    Fan, Zhigang; Zhang, Lingmin; Yan, Guogang; Wu, Qiang; Gan, Xiufeng; Zhong, Saifeng; Lin, Guifen

    2011-02-01

    To analyse the structure and function of NADPH-cytochrome p450 reductase (CYPOR or CPR) from Plasmodium falciparum (Pf), and to predict its' drug target and vaccine target. The structure, function, drug target and vaccine target of CPR from Plasmodium falciparum were analyzed and predicted by bioinformatics methods. PfCPR, which was older CPR, had close relationship with the CPR from other Plasmodium species, but it was distant from its hosts, such as Homo sapiens and Anopheles. PfCPR was located in the cellular nucleus of Plasmodium falciparum. 335aa-352aa and 591aa - 608aa were inserted the interior side of the nuclear membrane, while 151aa-265aa was located in the nucleolus organizer regions. PfCPR had 40 function sites and 44 protein-protein binding sites in amino acid sequence. The teriary structure of 1aa-700aa was forcep-shaped with wings. 15 segments of PfCPR had no homology with Homo sapien CPR and most were exposed on the surface of the protein. These segments had 25 protein-protein binding sites. While 13 other segments all possessed function sites. The evolution or genesis of Plasmodium falciparum is earlier than those of Homo sapiens. PfCPR is a possible resistance site of antimalarial drug and may involve immune evasion, which is associated with parasite of sporozoite in hepatocytes. PfCPR is unsuitable as vaccine target, but it has at least 13 ideal drug targets. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  19. Caloric restriction counteracts age-related changes in the activities of sorbitol metabolizing enzymes from mouse liver

    Science.gov (United States)

    Hagopian, Kevork; Ramsey, Jon J.; Weindruch, Richard

    2009-01-01

    The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactae/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing. PMID:18953666

  20. Proteomic analysis of a high aluminum tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminum stress.

    Science.gov (United States)

    Wang, Chao; Wang, Chang Yi; Zhao, Xue Qiang; Chen, Rong Fu; Lan, Ping; Shen, Ren Fang

    2013-10-01

    Rhodotorula taiwanensis RS1 is a high-aluminum (Al)-tolerant yeast that can survive in Al concentrations up to 200mM. The mechanisms for the high Al tolerance of R. taiwanensis RS1 are not well understood. To investigate the molecular mechanisms underlying Al tolerance and toxicity in R. taiwanensis RS1, Al toxicity-induced changes in the total soluble protein profile were analyzed using two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry. A total of 33 differentially expressed proteins responding to Al stress were identified from approximately 850 reproducibly detected proteins. Among them, the abundance of 29 proteins decreased and 4 increased. In the presence of 100mM Al, the abundance of proteins involved in DNA transcription, protein translation, DNA defense, Golgi functions and glucose metabolism was decreased. By contrast, Al treatment led to increased abundance of malate dehydrogenase, which correlated with increased malate dehydrogenase activity and the accumulation of intracellular citrate, suggesting that Al-induced intracellular citrate could play an important role in detoxification of Al in R. taiwanensis RS1. © 2013.

  1. Profil Fenotipik Plasmodium falciparum Galur Papua 2300 Akibat Paparan Antimalaria Artemisinin in Vitro

    Directory of Open Access Journals (Sweden)

    Lilik Maslachah

    2015-03-01

    Full Text Available The presence of the P. falciparum resistance and decreased of efficacy against artemisinin and its derivatives result in increasingly complex malaria issues. Malaria has become one of the currently unresolved world’s health problems due to the lack of new artemisinin replacement drugs. This study aimed to provide evidence that the repeated exposure of in vitro artemisinin may cause a change in P. falciparum Papua 2300 strain phenotypic. This study was conducted during the period of February to November 2013 in Biomedics Brawijaya University and the Faculty of Veterinary Medicine, Airlangga University. A post-test control only experimental design was used. In vitro cultures of P. falciparum Papua 2300 strain were treated by repeated artemisin in IC50 concentration and were observed for their viability and IC50 using probit analysis. The control group did not show any changes after IC50value and PO1 treatment. An increase in IC50 value was occurred after PO2. Repeated exposures of artemisinin in PO2, PO3 and PO4 had shorter viability periods than PO1. The viability of was stable after PO3 in this group. In conclusion, repeated exposures of artemisinin influence changes in IC50 value and viability period of P. falciparum Papua 2300 strain.

  2. Structural Plasticity of Malaria Dihydroorotate Dehydrogenase Allows Selective Binding of Diverse Chemical Scaffolds

    International Nuclear Information System (INIS)

    Deng, Xiaoyi; Gujjar, Ramesh; El Mazouni, Farah; Kaminsky, Werner; Malmquist, Nicholas A.; Goldsmith, Elizabeth J.; Rathod, Pradipsinh K.; Phillips, Margaret A.

    2009-01-01

    Malaria remains a major global health burden and current drug therapies are compromised by resistance. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) was validated as a new drug target through the identification of potent and selective triazolopyrimidine-based DHODH inhibitors with anti-malarial activity in vivo. Here we report x-ray structure determination of PfDHODH bound to three inhibitors from this series, representing the first of the enzyme bound to malaria specific inhibitors. We demonstrate that conformational flexibility results in an unexpected binding mode identifying a new hydrophobic pocket on the enzyme. Importantly this plasticity allows PfDHODH to bind inhibitors from different chemical classes and to accommodate inhibitor modifications during lead optimization, increasing the value of PfDHODH as a drug target. A second discovery, based on small molecule crystallography, is that the triazolopyrimidines populate a resonance form that promotes charge separation. These intrinsic dipoles allow formation of energetically favorable H-bond interactions with the enzyme. The importance of delocalization to binding affinity was supported by site-directed mutagenesis and the demonstration that triazolopyrimidine analogs that lack this intrinsic dipole are inactive. Finally, the PfDHODH-triazolopyrimidine bound structures provide considerable new insight into species-selective inhibitor binding in this enzyme family. Together, these studies will directly impact efforts to exploit PfDHODH for the development of anti-malarial chemotherapy.

  3. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Ofori Michael F

    2007-12-01

    Full Text Available Abstract Background Severe anaemia (SA, intravascular haemolysis (IVH and respiratory distress (RD are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. Methods The direct Coombs test (DCT and flow cytometry were used to investigate the mean levels of RBC-bound complement fragments (C3d and C3bαβ and the regulatory proteins [complement receptor 1 (CD35 and decay accelerating factor (CD55] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb levels and RD were investigated. Results Of the 484 samples tested, 131(27% were positive in DCT, out of which 115/131 (87.8% were positive for C3d alone while 16/131 (12.2% were positive for either IgG alone or both. 67.4% of the study population were below 5 years of age and DCT positivity was more common in this age group relative to children who were 5 years or older (Odds ratio, OR = 3.8; 95%CI, 2.2–6.7, p Conclusion These results suggest that complement activation contributed to anaemia in acute childhood P. falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In contrast to other studies, this study did not find association between levels of the complement regulatory proteins, CD35 and CD55 and malarial anaemia. These findings suggest that complement activation could also be involved in the pathogenesis of RD but larger studies are needed to confirm this finding.

  4. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras.

    Science.gov (United States)

    Lopez, Ana Cecilia; Ortiz, Andres; Coello, Jorge; Sosa-Ochoa, Wilfredo; Torres, Rosa E Mejia; Banegas, Engels I; Jovel, Irina; Fontecha, Gustavo A

    2012-11-26

    Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite's circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.

  5. Heat inactivation of leaf phosphoenolpyruvate carboxylase: Protection by aspartate and malate in C4 plants.

    Science.gov (United States)

    Rathnam, C K

    1978-01-01

    The activity of phosphoenolpyruvate (PEP) carboxylase EC 4.1.1.31 in leaf extracts of Eleusine indica L. Gaertn., a C4 plant, exhibited a temperature optimum of 35-37° C with a complete loss of activity at 50° C. However, the enzyme was protected effectively from heat inactivation up to 55° C by L-aspartate. Activation energies (Ea) for the enzyme in the presence of aspartate were 2.5 times lower than that of the control enzyme. Arrhenius plots of PEP carboxylase activity (±aspartate) showed a break in the slope around 17-20° C with a 3-fold increase in the Ea below the break. The discontinuity in the slopes was abolished by treating the enzyme extracts with Triton X-100, suggesting that PEP carboxylase in C4 plants is associated with lipid and may be a membrane bound enzyme. Depending upon the species, the major C4 acid formed during photosynthesis (malate or aspartate) was found to be more protective than the minor C4 acid against the heat inactivation of their PEP carboxylase. Oxaloacetate, the reaction product, was less effective compared to malate or aspartate. Several allosteric inhibitors of PEP carboxylase were found to be moderately to highly effective in protecting the C4 enzyme while its activators showed no significant effect. PEP carboxylase from C3 species was not protected from thermal inactivation by the C4 acids. The physiological significance of these results is discussed in relation to the high temperature tolerance of C4 plants.

  6. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux.

    Science.gov (United States)

    Ligaba, Ayalew; Maron, Lyza; Shaff, Jon; Kochian, Leon; Piñeros, Miguel

    2012-07-01

    Root efflux of organic acid anions underlies a major mechanism of plant aluminium (Al) tolerance on acid soils. This efflux is mediated by transporters of the Al-activated malate transporter (ALMT) or the multi-drug and toxin extrusion (MATE) families. ZmALMT2 was previously suggested to be involved in Al tolerance based on joint association-linkage mapping for maize Al tolerance. In the current study, we functionally characterized ZmALMT2 by heterologously expressing it in Xenopus laevis oocytes and transgenic Arabidopsis. In oocytes, ZmALMT2 mediated an Al-independent electrogenic transport product of organic and inorganic anion efflux. Ectopic overexpression of ZmALMT2 in an Al-hypersensitive Arabidopsis KO/KD line lacking the Al tolerance genes, AtALMT1 and AtMATE, resulted in Al-independent constitutive root malate efflux which partially restored the Al tolerance phenotype. The lack of correlation between ZmALMT2 expression and Al tolerance (e.g., expression not localized to the root tip, not up-regulated by Al, and higher in sensitive versus tolerance maize lines) also led us to question ZmALMT2's role in Al tolerance. The functional properties of the ZmALMT2 transporter presented here, along with the gene expression data, suggest that ZmALMT2 is not involved in maize Al tolerance but, rather, may play a role in mineral nutrient acquisition and transport. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  7. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... deficiency Encyclopedia: Glucose-6-phosphate dehydrogenase test Encyclopedia: Hemolytic anemia Encyclopedia: Newborn jaundice Health Topic: Anemia Health Topic: G6PD Deficiency Health Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 link) Glucose-6-phosphate dehydrogenase ...

  8. A versatile, high through-put, bead-based phagocytosis assay for Plasmodium falciparum

    DEFF Research Database (Denmark)

    Lloyd, Yukie M.; Ngati, Elise P.; Salanti, Ali

    2017-01-01

    Antibody-mediated phagocytosis is an important immune effector mechanism against Plasmodium falciparum-infected erythrocytes (IE); however, current phagocytosis assays use IE collected from infected individuals or from in vitro cultures of P. falciparum, making them prone to high variation....... A simple, high-throughput flow cytometric assay was developed that uses THP-1 cells and fluorescent beads covalently-coupled with the malarial antigen VAR2CSA. The assay is highly repeatable, provides both the overall percent phagocytosis and semi-quantitates the number of antigen-coupled beads...

  9. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Goel, Suchi; Palmkvist, Mia; Moll, Kirsten

    2015-01-01

    Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum–encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs—preferentiall......Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum–encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs......—preferentially of blood group A—to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population....

  10. Immunogenicity and in vitro Protective Efficacy of a Recombinant Multistage Plasmodium falciparum Candidate Vaccine

    Science.gov (United States)

    Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.

    1999-02-01

    Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.

  11. A brief review on features of falciparum malaria during pregnancy

    Directory of Open Access Journals (Sweden)

    Alexandre Manirakiza

    2017-12-01

    Full Text Available Malaria in pregnancy is a serious public health problem in tropical areas. Frequently, the placenta is infected by accumulation of Plasmodium falciparum-infected erythrocytes in the intervillous space. Falciparum malaria acts during pregnancy by a range of mechanisms, and chronic or repeated infection and co-infections have insidious effects. The susceptibility of pregnant women to malaria is due to both immunological and humoral changes. Until a malaria vaccine becomes available, the deleterious effects of malaria in pregnancy can be avoided by protection against infection and prompt treatment with safe, effective antimalarial agents; however, concurrent infections such as with HIV and helminths during pregnancy are jeopardizing malaria control in sub-Saharan Africa.

  12. High prevalence of Plasmodium falciparum malaria among Human ...

    African Journals Online (AJOL)

    Malaria and Human Immunodeficiency Virus (HIV) infections are major public health problems in Sub-Saharan Africa. Their overlapping geographical distribution and co-existence often result into high morbidity and mortality. This study was designed to establish the prevalence of Plasmodium falciparum malaria among HIV ...

  13. Genetic diversity of the merozoite surface protein-3 gene in Plasmodium falciparum populations in Thailand.

    Science.gov (United States)

    Pattaradilokrat, Sittiporn; Sawaswong, Vorthon; Simpalipan, Phumin; Kaewthamasorn, Morakot; Siripoon, Napaporn; Harnyuttanakorn, Pongchai

    2016-10-21

    An effective malaria vaccine is an urgently needed tool to fight against human malaria, the most deadly parasitic disease of humans. One promising candidate is the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum. This antigenic protein, encoded by the merozoite surface protein (msp-3) gene, is polymorphic and classified according to size into the two allelic types of K1 and 3D7. A recent study revealed that both the K1 and 3D7 alleles co-circulated within P. falciparum populations in Thailand, but the extent of the sequence diversity and variation within each allelic type remains largely unknown. The msp-3 gene was sequenced from 59 P. falciparum samples collected from five endemic areas (Mae Hong Son, Kanchanaburi, Ranong, Trat and Ubon Ratchathani) in Thailand and analysed for nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity. The gene was also subject to population genetic analysis (F st ) and neutrality tests (Tajima's D, Fu and Li D* and Fu and Li' F* tests) to determine any signature of selection. The sequence analyses revealed eight unique DNA haplotypes and seven amino acid sequence variants, with a haplotype and nucleotide diversity of 0.828 and 0.049, respectively. Neutrality tests indicated that the polymorphism detected in the alanine heptad repeat region of MSP-3 was maintained by positive diversifying selection, suggesting its role as a potential target of protective immune responses and supporting its role as a vaccine candidate. Comparison of MSP-3 variants among parasite populations in Thailand, India and Nigeria also inferred a close genetic relationship between P. falciparum populations in Asia. This study revealed the extent of the msp-3 gene diversity in P. falciparum in Thailand, providing the fundamental basis for the better design of future blood stage malaria vaccines against P. falciparum.

  14. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  15. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus*

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Background Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. Objective This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Method Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. Results The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. Limitations of the study This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. Conclusions The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further

  16. Using a genome-scale metabolic network model to elucidate the mechanism of chloroquine action in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Shivendra G. Tewari

    2017-08-01

    Full Text Available Chloroquine, long the default first-line treatment against malaria, is now abandoned in large parts of the world because of widespread drug-resistance in Plasmodium falciparum. In spite of its importance as a cost-effective and efficient drug, a coherent understanding of the cellular mechanisms affected by chloroquine and how they influence the fitness and survival of the parasite remains elusive. Here, we used a systems biology approach to integrate genome-scale transcriptomics to map out the effects of chloroquine, identify targeted metabolic pathways, and translate these findings into mechanistic insights. Specifically, we first developed a method that integrates transcriptomic and metabolomic data, which we independently validated against a recently published set of such data for Krebs-cycle mutants of P. falciparum. We then used the method to calculate the effect of chloroquine treatment on the metabolic flux profiles of P. falciparum during the intraerythrocytic developmental cycle. The model predicted dose-dependent inhibition of DNA replication, in agreement with earlier experimental results for both drug-sensitive and drug-resistant P. falciparum strains. Our simulations also corroborated experimental findings that suggest differences in chloroquine sensitivity between ring- and schizont-stage P. falciparum. Our analysis also suggests that metabolic fluxes that govern reduced thioredoxin and phosphoenolpyruvate synthesis are significantly decreased and are pivotal to chloroquine-based inhibition of P. falciparum DNA replication. The consequences of impaired phosphoenolpyruvate synthesis and redox metabolism are reduced carbon fixation and increased oxidative stress, respectively, both of which eventually facilitate killing of the parasite. Our analysis suggests that a combination of chloroquine (or an analogue and another drug, which inhibits carbon fixation and/or increases oxidative stress, should increase the clearance of P. falciparum

  17. Containment Of Outbreak Of P. Falciparum Malaria In Community Development Block Lakhanmajra

    Directory of Open Access Journals (Sweden)

    Lal Sunder

    1996-01-01

    Full Text Available Research question: What strategies need to be adopted to contain an outbreak of plasmodium falciparum in rural community. Objective: To improve active case detection and prompt fever mass treatment as also to ensure follow up activities. Study Design: Population based longitudinal study. Setting: Villages showing high Incidence of plasmodium falciparum malaria. Participant: All persons having fever or giving history of fever in the past 15 days. Outcome Variables: Recovered or cured, persistence of fever, death. Statistical analysis: Malariometric indices. Results: A rising trend of fever in block Lakhanmajra was obvious as ABER of 1995 was more than double (28.3 as compared to the year1991 (12.7. Similar API, SPR, AFI & SFR also increased significantly. Average slide positivity rate of the past three years was 8.1% and the slide positivity rate in the last three years increased by two and half time and plasmodium falciparum proportion was well above 33.5% and many deaths due to falciparum malaria were registered in some sections. Thus the area being high risk area, prone to epidemics. No evidence of drug resistance was observable. Pf Malaria deaths were averted, the explosive incidence was contained, improved and sustained surveillance operations helped early detection and prompt treatment of cases in their homes. People’s confidence and participation was ensured through DDCs & FTDs (Drug Distribution Centers and Fever Treatment Depots workers’ morale was raised through adequate support and guidance.

  18. Characterization of Francisella sp., GM2212, the first Francisella isolate from marine fish, Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Ottem, Karl F; Nylund, Are; Karlsbakk, Egil

    2007-01-01

    A Francisella sp., isolate GM2212(T), previously isolated from diseased farmed Atlantic cod Gadus morhua in Norway is characterized. The complete 16S rDNA, 16S-23S intergenic spacer, 23S rDNA, 23S-5S intergenic spacer, 5S rDNA, FopA, lipoprotein TUL4 (LpnA), malate dehydrogenase and a hypothetica...

  19. Development of a competitive PCR assay for the quantification of ...

    African Journals Online (AJOL)

    The E. coli malate dehydrogenase Mdh house-keeping gene was modified and used as an internal control and competitor DNA for the c-PCR. E. coli cell concentration equivalents ranging from 20 to 2 x 104 cells ml-1 could be quantified with the c-PCR. Fifty-three water samples from various sources were tested with the ...

  20. Hazard Assessment of High-Nitrogen Explosive Compounds: A Novel In Vitro Multi-Cellular Approach

    Science.gov (United States)

    2016-03-21

    MDH1 ................................................................................ Malate dehydrogenase 1 MENA ...metabolites (2- methoxy-5-nitroaniline ( MENA ) and 2,4-diaminoanisole (DAAN)) toward various microbial targets. The resulting LC50s ranged from 8-11 mg/L...A. fischeri) to 77 mg/L (aerobic heterotrophs). Reduction of DNAN to MENA and DAAN resulted in partial detoxification. It also has been shown

  1. Piperaquine Resistance in Plasmodium falciparum, West Africa.

    Science.gov (United States)

    Inoue, Juliana; Silva, Miguel; Fofana, Bakary; Sanogo, Kassim; Mårtensson, Andreas; Sagara, Issaka; Björkman, Anders; Veiga, Maria Isabel; Ferreira, Pedro Eduardo; Djimde, Abdoulaye; Gil, José Pedro

    2018-08-17

    Dihydroartemisinin/piperaquine (DHA/PPQ) is increasingly deployed as antimalaria drug in Africa. We report the detection in Mali of Plasmodium falciparum infections carrying plasmepsin 2 duplications (associated with piperaquine resistance) in 7/65 recurrent infections within 2 months after DHA/PPQ treatment. These findings raise concerns about the long-term efficacy of DHA/PPQ treatment in Africa.

  2. Prevalence of mutation and phenotypic expression associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum and Plasmodium vivax.

    Science.gov (United States)

    Zakai, Haytham A; Khan, Wajihullah; Asma, Umme

    2013-09-01

    Therapeutic efficacy of sulfadoxine-pyrimethamine (SP), which is commonly used to treat falciparum malaria, was assessed in isolates of Plasmodium falciparum (Welch, 1897) and Plasmodium vivax (Grassi et Feletti, 1890) ofAligarh, Uttar Pradesh, North India and Taif, Saudi Arabia during 2011-2012. Both the species showed mutations in dihydrofolate reductase (DHFR) enzyme as they have common biochemical drug targets. Mutation rate for pfdhfr was higher compared to pvdhfr because the drug was mainly given to treat falciparum malaria. Since both the species coexist, P. vivax was also exposed to SP due to faulty species diagnosis or medication without specific diagnosis. Low level of mutations against SP in P. falciparum of Saudi isolates indicates that the SP combination is still effective for the treatment of falciparum malaria. Since SP is used as first-line of treatment because of high level of resistance against chloroquine (CQ), it may result in spread of higher level of mutations resulting in drug resistance and treatment failure in near future. Therefore, to avoid further higher mutations in the parasite, use of better treatment regimens such as artesunate combination therapy must be introduced against SP combination.

  3. Clinical and parasitological profiles of patients with non-complicated Plasmodium falciparum and Plasmodium vivax malaria in northwestern Colombia

    OpenAIRE

    Knudson-Ospina, Angélica; Sánchez-Pedraza, Ricardo; Pérez-Mazorra, Manuel Alberto; Cortés-Cortés, Liliana Jazmín; Guerra-Vega, Ángela Patricia; Nicholls-Orejuela, Rubén Santiago

    2015-01-01

    Antecedentes. En Colombia existen pocos estudios que buscan encontrar diferencias clínicas y parasitológicas en la malaria causada por Plasmodium falciparum y Plasmodium vivax. Objetivo. Describir el perfil clínico y parasitológico de las malarias por Plasmodium falciparum y Plasmodium vivax no complicadas en Tierralta, Córdoba, Colombia. Materiales y métodos. Se evaluaron pacientes con paludismo no complicado por Plasmodium falciparum y Plasmodium vivax según los protocolos estandarizados po...

  4. Positive blood culture with Plasmodium falciparum : Case report

    NARCIS (Netherlands)

    De Vries, Jutte J. C.; Van Assen, Sander; Mulder, André B.; Kampinga, Greetje A.

    2007-01-01

    An adult traveler presented with fever and malaise after returning from Sierra Leone. Young trophozoites of Plasmodium falciparum were seen in a blood smear, with parasitemia being 10%. Moreover, blood cultures drawn on admission signaled as "positive" after 1 day of incubation, but no bacteria were

  5. Population genomics diversity of Plasmodium falciparum in malaria ...

    African Journals Online (AJOL)

    Background: Plasmodium falciparum, the most dangerous malaria parasite species to ... tigen for subunit malaria vaccine.10 It comprises highly ... were also prepared for Giemsa staining as described by ... parasites with different alleles at a given locus and ranges ..... surface protein 1, immune evasion and vaccines against.

  6. Molecular cloning of a K+ channel from the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Ricke, Christina Høier; Litman, Thomas

    2004-01-01

    In most living cells, K(+) channels are important for the generation of the membrane potential and for volume regulation. The parasite Plasmodium falciparum, which causes malignant malaria, must be able to deal with large variations in the ambient K(+) concentration: it is exposed to high...... concentrations of K(+) when inside the erythrocyte and low concentrations when in plasma. In the recently published genome of P. falciparum, we have identified a gene, pfkch1, encoding a potential K(+) channel, which to some extent resembles the big-conductance (BK) K(+) channel. We have cloned the approximately...

  7. Putative DNA G-quadruplex formation within the promoters of Plasmodium falciparum var genes

    Directory of Open Access Journals (Sweden)

    Rowe J

    2009-08-01

    Full Text Available Abstract Background Guanine-rich nucleic acid sequences are capable of folding into an intramolecular four-stranded structure called a G-quadruplex. When found in gene promoter regions, G-quadruplexes can downregulate gene expression, possibly by blocking the transcriptional machinery. Here we have used a genome-wide bioinformatic approach to identify Putative G-Quadruplex Sequences (PQS in the Plasmodium falciparum genome, along with biophysical techniques to examine the physiological stability of P. falciparum PQS in vitro. Results We identified 63 PQS in the non-telomeric regions of the P. falciparum clone 3D7. Interestingly, 16 of these PQS occurred in the upstream region of a subset of the P. falciparum var genes (group B var genes. The var gene family encodes PfEMP1, the parasite's major variant antigen and adhesin expressed at the surface of infected erythrocytes, that plays a key role in malaria pathogenesis and immune evasion. The ability of the PQS found in the upstream regions of group B var genes (UpsB-Q to form stable G-quadruplex structures in vitro was confirmed using 1H NMR, circular dichroism, UV spectroscopy, and thermal denaturation experiments. Moreover, the synthetic compound BOQ1 that shows a higher affinity for DNA forming quadruplex rather than duplex structures was found to bind with high affinity to the UpsB-Q. Conclusion This is the first demonstration of non-telomeric PQS in the genome of P. falciparum that form stable G-quadruplexes under physiological conditions in vitro. These results allow the generation of a novel hypothesis that the G-quadruplex sequences in the upstream regions of var genes have the potential to play a role in the transcriptional control of this major virulence-associated multi-gene family.

  8. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  9. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    Science.gov (United States)

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  10. Cloning of Plasmodium falciparum by single-cell sorting.

    Science.gov (United States)

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Cloning of Plasmodium falciparum by single-cell sorting

    Science.gov (United States)

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  12. Optimization of a protocol for extraction of Plasmodium falciparum ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... compared to saponin lysed samples when such whole blood ... infected blood intended for extraction of P. falciparum RNA for DNA microarrays and other sensitive ... TaqMan® and LightCycler® technology, and other.

  13. P. falciparum malaria prevalence among blood donors in Bamako, Mali.

    Science.gov (United States)

    Kouriba, B; Diarra, A B; Douyon, I; Diabaté, D T; Kamissoko, F; Guitteye, H; Baby, M; Guindo, M A; Doumbo, O K

    2017-06-01

    Malaria parasite is usually transmitted to humans by Anopheles mosquitoes but it can also be transmitted through blood transfusion. Usually malaria transmission is low in African urban settings. In West Africa where the P. falciparum is the most predominant malaria species, there are limited measures to reduce the risk of blood transfusion malaria. The aim of this study was to evaluate the prevalence of P. falciparum malaria carriage among blood donors in the National Blood Center of Bamako, capital city of Mali. The study was conducted using a random sample of 946 blood donors in Bamako, Mali, from January to December 2011. Screening for malaria was performed by thick smear and rapid diagnostic test (RDT). Blood group was typed by Beth-Vincent and Simonin techniques. The frequency of malaria infection was 1.4% by thick smear and 0.8% by the RDT. The pick prevalence of P. falciparum malaria was in rainy season, indicating a probable high seasonal risk of malaria by blood transfusion, in Mali. The prevalence of P. falciparum infection was 2% among donors of group O the majority being in this group. There is a seasonal prevalence of malaria among blood donors in Bamako. A prevention strategy of transfusion malaria based on the combination of selection of blood donors through the medical interview, promoting a voluntary low-risk blood donation and screening all blood bags intended to be transfused to children under 5, pregnant women and immune-compromised patients during transmission season using thick smear will reduce the risk of transfusion malaria in Mali. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Nonradioactive heteroduplex tracking assay for the detection of minority-variant chloroquine-resistant Plasmodium falciparum in Madagascar

    Science.gov (United States)

    Juliano, Jonathan J; Randrianarivelojosia, Milijaona; Ramarosandratana, Benjamin; Ariey, Frédéric; Mwapasa, Victor; Meshnick, Steven R

    2009-01-01

    Background Strains of Plasmodium falciparum genetically resistant to chloroquine (CQ) due to the presence of pfcrt 76T appear to have been recently introduced to the island of Madagascar. The prevalence of such resistant genotypes is reported to be low (chloroquine resistant parasites were described in Malawian patients using an isotopic heteroduplex tracking assay (HTA), which can detect pfcrt 76T-bearing P. falciparum minority variants in individual patients that were undetectable by conventional PCR. However, as this assay required a radiolabeled probe, it could not be used in many resource-limited settings. Methods This study describes a digoxigenin (DIG)-labeled chemiluminescent heteroduplex tracking assay (DIG-HTA) to detect pfcrt 76T-bearing minority variant P. falciparum. This assay was compared to restriction fragment length polymorphism (RFLP) analysis and to the isotopic HTA for detection of genetically CQ-resistant parasites in clinical samples. Results Thirty one clinical P. falciparum isolates (15 primary isolates and 16 recurrent isolates) from 17 Malagasy children treated with CQ for uncomplicated malaria were genotyped for the pfcrt K76T mutation. Two (11.7%) of 17 patients harboured genetically CQ-resistant P. falciparum strains after therapy as detected by HTA. RFLP analysis failed to detect any pfcrt K76T-bearing isolates. Conclusion These findings indicate that genetically CQ-resistant P. falciparum are more common than previously thought in Madagascar even though the fitness of the minority variant pfcrt 76T parasites remains unclear. In addition, HTAs for malaria drug resistance alleles are promising tools for the surveillance of anti-malarial resistance. The use of a non-radioactive label allows for the use of HTAs in malaria endemic countries. PMID:19291288

  15. Cloning and expression analysis of alcohol dehydrogenase ( Adh ...

    African Journals Online (AJOL)

    Hybrid promoters are created by shuffling of DNA fragments while keeping intact regulatory regions crucial of promoter activity. Two fragments of alcohol dehydrogenase (Adh) promoter from Zea mays were selected to generate hybrid promoter. Sequence analysis of both alcohol dehydrogenase promoter fragments through ...

  16. Heat stress induced changes in metabolic regulators of donkeys from arid tracts in India

    Directory of Open Access Journals (Sweden)

    Kataria N.

    2012-05-01

    Full Text Available To find out heat stress induced changes in metabolic regulators of donkeys from arid tracts in India, blood samples were collected to harvest the serum during moderate and extreme hot ambiences. The metabolic enzymes determined were sorbitol dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, ornithine carbamoyl transferase, gammaglutamayl transferase, 5’nucleotidase, glucose-6-phosphatase, arginase, and aldolase. The mean values of all the serum enzymes increased significantly (p≤0.05 during hot ambience as compared to respective values during moderate ambience. It was concluded that increased activity of all the enzymes in the serum was due to modulation of metabolic reactions to combat the effect of hot ambience on the animals. Activation of gluconeogenesis along with hexose monophosphate shunt and urea cycle probably helped the animals to combat the heat stress.

  17. Plasmodium vivax and Plasmodium falciparum infections in the Republic of Djibouti: evaluation of their prevalence and potential determinants.

    Science.gov (United States)

    Khaireh, Bouh Abdi; Briolant, Sébastien; Pascual, Aurélie; Mokrane, Madjid; Machault, Vanessa; Travaillé, Christelle; Khaireh, Mohamed Abdi; Farah, Ismail Hassan; Ali, Habib Moussa; Abdi, Abdul-Ilah Ahmed; Ayeh, Souleiman Nour; Darar, Houssein Youssouf; Ollivier, Lénaïck; Waiss, Mohamed Killeh; Bogreau, Hervé; Rogier, Christophe; Pradines, Bruno

    2012-11-28

    Formerly known as a hypoendemic malaria country, the Republic of Djibouti declared the goal of pre-eliminating malaria in 2006. The aim of the present study was to evaluate the prevalence of Plasmodium falciparum, Plasmodium vivax and mixed infections in the Djiboutian population by using serological tools and to identify potential determinants of the disease and hotspots of malaria transmission within the country. The prevalence of P. falciparum and P. vivax within the districts of the capital city and the rest of the Republic of Djibouti were assessed using 13 and 2 serological markers, respectively. The relationship between the immune humeral response to P. falciparum and P. vivax and variables such as age, gender, wealth status, urbanism, educational level, distance to rivers/lakes, living area, having fever in the last month, and staying in a malaria-endemic country more than one year was estimated and analysed by questionnaires administered to 1910 Djiboutians. Multivariate ordinal logistic regression models of the immune humeral response were obtained for P. falciparum and P. vivax. The P. falciparum and P. vivax seroprevalence rates were 31.5%, CI95% [29.4-33.7] and 17.5%, CI95% [15.8-19.3], respectively. Protective effects against P. falciparum and P. vivax were female gender, educational level, and never having visited a malaria-endemic area for more than one year. For P. falciparum only, a protective effect was observed for not having a fever in the last month, living more than 1.5 km away from lakes and rivers, and younger ages. This is the first study that assessed the seroprevalence of P. vivax in the Republic of Djibouti. It is necessary to improve knowledge of this pathogen in order to create an effective elimination programme. As supported by recent observations on the subject, the Republic of Djibouti has probably demonstrated a real decrease in the transmission of P. falciparum in the past seven years, which should encourage authorities to

  18. Plasmodium vivax and Plasmodium falciparum infections in the Republic of Djibouti: evaluation of their prevalence and potential determinants

    Directory of Open Access Journals (Sweden)

    Khaireh Bouh Abdi

    2012-11-01

    Full Text Available Abstract Background Formerly known as a hypoendemic malaria country, the Republic of Djibouti declared the goal of pre-eliminating malaria in 2006. The aim of the present study was to evaluate the prevalence of Plasmodium falciparum, Plasmodium vivax and mixed infections in the Djiboutian population by using serological tools and to identify potential determinants of the disease and hotspots of malaria transmission within the country. Methods The prevalence of P. falciparum and P. vivax within the districts of the capital city and the rest of the Republic of Djibouti were assessed using 13 and 2 serological markers, respectively. The relationship between the immune humeral response to P. falciparum and P. vivax and variables such as age, gender, wealth status, urbanism, educational level, distance to rivers/lakes, living area, having fever in the last month, and staying in a malaria-endemic country more than one year was estimated and analysed by questionnaires administered to 1910 Djiboutians. Multivariate ordinal logistic regression models of the immune humeral response were obtained for P. falciparum and P. vivax. Results The P. falciparum and P. vivax seroprevalence rates were 31.5%, CI95% [29.4-33.7] and 17.5%, CI95% [15.8-19.3], respectively. Protective effects against P. falciparum and P. vivax were female gender, educational level, and never having visited a malaria-endemic area for more than one year. For P. falciparum only, a protective effect was observed for not having a fever in the last month, living more than 1.5 km away from lakes and rivers, and younger ages. Conclusions This is the first study that assessed the seroprevalence of P. vivax in the Republic of Djibouti. It is necessary to improve knowledge of this pathogen in order to create an effective elimination programme. As supported by recent observations on the subject, the Republic of Djibouti has probably demonstrated a real decrease in the transmission of P. falciparum

  19. A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes.

    Directory of Open Access Journals (Sweden)

    Iñigo Angulo-Barturen

    Full Text Available To counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively. Here we describe a reliable falciparum murine model of malaria by generating strains of P. falciparum in vivo that can infect immunodeficient mice engrafted with human erythrocytes. We infected NOD(scid/beta2m-/- mice engrafted with human erythrocytes with P. falciparum obtained from in vitro cultures. After apparent clearance, we obtained isolates of P. falciparum able to grow in peripheral blood of engrafted NOD(scid/beta2m-/- mice. Of the isolates obtained, we expanded in vivo and established the isolate Pf3D7(0087/N9 as a reference strain for model development. Pf3D7(0087/N9 caused productive persistent infections in 100% of engrafted mice infected intravenously. The infection caused a relative anemia due to selective elimination of human erythrocytes by a mechanism dependent on parasite density in peripheral blood. Using this model, we implemented and validated a reproducible assay of antimalarial activity useful for drug discovery. Thus, our results demonstrate that P. falciparum contains clones able to grow reproducibly in mice engrafted with human erythrocytes without the use of myeloablative methods.

  20. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G

    Science.gov (United States)

    2011-01-01

    Background Malate synthase, one of the two enzymes unique to the glyoxylate cycle, is found in all three domains of life, and is crucial to the utilization of two-carbon compounds for net biosynthetic pathways such as gluconeogenesis. In addition to the main isoforms A and G, so named because of their differential expression in E. coli grown on either acetate or glycolate respectively, a third distinct isoform has been identified. These three isoforms differ considerably in size and sequence conservation. The A isoform (MSA) comprises ~530 residues, the G isoform (MSG) is ~730 residues, and this third isoform (MSH-halophilic) is ~430 residues in length. Both isoforms A and G have been structurally characterized in detail, but no structures have been reported for the H isoform which has been found thus far only in members of the halophilic Archaea. Results We have solved the structure of a malate synthase H (MSH) isoform member from Haloferax volcanii in complex with glyoxylate at 2.51 Å resolution, and also as a ternary complex with acetyl-coenzyme A and pyruvate at 1.95 Å. Like the A and G isoforms, MSH is based on a β8/α8 (TIM) barrel. Unlike previously solved malate synthase structures which are all monomeric, this enzyme is found in the native state as a trimer/hexamer equilibrium. Compared to isoforms A and G, MSH displays deletion of an N-terminal domain and a smaller deletion at the C-terminus. The MSH active site is closely superimposable with those of MSA and MSG, with the ternary complex indicating a nucleophilic attack on pyruvate by the enolate intermediate of acetyl-coenzyme A. Conclusions The reported structures of MSH from Haloferax volcanii allow a detailed analysis and comparison with previously solved structures of isoforms A and G. These structural comparisons provide insight into evolutionary relationships among these isoforms, and also indicate that despite the size and sequence variation, and the truncated C-terminal domain of the H

  1. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...... areas of repeated amino acid sequences. Antibodies against recombinant GLURP489-1271, as well as against a synthetic peptide corresponding to GLURP899-916, and against a synthetic peptide representing the major glutamate rich repeat sequence from the P. falciparum ring erythrocyte surface antigen (Pf155...... between the anti-GLURP489-1271 and anti-(EENV)6 antibody responses. The data provide indirect evidence for a protective role of antibodies reacting with recombinant GLURP489-1271 as well as with the synthetic peptide (EENV)6 from the Pf155/RESA....

  2. Immunoglobulin G antibody reactivity to a group A Plasmodium falciparum erythrocyte membrane protein 1 and protection from P. falciparum malaria

    DEFF Research Database (Denmark)

    Magistrado, Pamela A; Lusingu, John; Vestergaard, Lasse S

    2007-01-01

    where P. falciparum is endemic, parasites causing severe malaria and malaria in young children with limited immunity tend to express semiconserved PfEMP1 molecules encoded by group A var genes. Here we investigated antibody responses of Tanzanians who were 0 to 19 years old to PF11_0008, a group A Pf...

  3. Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGO-NH_2 nanocomposites

    International Nuclear Information System (INIS)

    Guler, Muhammet; Turkoglu, Vedat; Basi, Zehra

    2017-01-01

    Herein, a facile electrochemical acetylcholinesterase (EC 3.1.1.7; AChE) biosensor based on nafion (NA) and Ag nanoparticles supported on amine functionalized reduced graphene oxide (rGO-NH_2) was developed. The Ag@rGO-NH_2 nanocomposite was characterized using Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). After being optimized, the biosensor exhibited excellent electrochemical response to the oxidation of thiocholine, the hydrolysis product of acetylthiocholine chloride (ATCl) catalyzed by AChE. An apparent Michealis-Menten value of 20.5 μM was obtained. Under optimized conductions, the biosensor detected malation, methidathion, and chlorpyrifos ethyl in the linear range from 0.0063 to 0.077 μg/mL, from 0.012 to 0.105 μg/mL, and from 0.021 to 0.122 μg/mL, respectively. The detection limit (LoD) was 4.5 ng/mL for malation, 9.5 ng/mL for methidathion, and 14 ng/mL for chlorpyrifos ethyl. Also, the NA/Ag@rGO-NH_2/AChE/GCE biosensor showed god sensitivity, stability and repeatability, which provides a promising tool for the detection of organophosphate pesticides.

  4. Study on the triphenyl tetrazolium chloride– dehydrogenase activity ...

    African Journals Online (AJOL)

    A quick analysis of the sludge activity method based on triphenyltetrazolium chloride-dehydrogenase activity (TTC-DHA) was developed to change the rule and status of the biological activity of the activated sludge in tomato paste wastewater treatment. The results indicate that dehydrogenase activity (DHA) can effectively ...

  5. A simple field kit for the determination of drug susceptibility in Plasmodium falciparum.

    Science.gov (United States)

    Nguyen-Dinh, P; Magloire, R; Chin, W

    1983-05-01

    A field kit has been developed which greatly simplifies the performance of the 48-hour in vitro test for drug resistance in Plasmodium falciparum. The kit uses an easily reconstituted lyophilized culture medium, and requires only a fingerprick blood sample. In parallel tests with 13 isolates of P. falciparum in Haiti, the new technique had a success rate equal to that of the previously described method, with comparable results in terms of parasite susceptibility in vitro to chloroquine and pyrimethamine.

  6. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Hempel, Casper

    2017-01-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions...

  7. Structure of Plasmodium falciparum orotate phosphoribosyltransferase with autologous inhibitory protein–protein interactions

    International Nuclear Information System (INIS)

    Kumar, Shiva; Krishnamoorthy, Kalyanaraman; Mudeppa, Devaraja G.; Rathod, Pradipsinh K.

    2015-01-01

    P. falciparum orotate phosphoribosyltransferase, a potential target for antimalarial drugs and a conduit for prodrugs, crystallized as a structure with eight molecules per asymmetric unit that included some unique parasite-specific auto-inhibitory interactions between catalytic dimers. The most severe form of malaria is caused by the obligate parasite Plasmodium falciparum. Orotate phosphoribosyltransferase (OPRTase) is the fifth enzyme in the de novo pyrimidine-synthesis pathway in the parasite, which lacks salvage pathways. Among all of the malaria de novo pyrimidine-biosynthesis enzymes, the structure of P. falciparum OPRTase (PfOPRTase) was the only one unavailable until now. PfOPRTase that could be crystallized was obtained after some low-complexity sequences were removed. Four catalytic dimers were seen in the asymmetic unit (a total of eight polypeptides). In addition to revealing unique amino acids in the PfOPRTase active sites, asymmetric dimers in the larger structure pointed to novel parasite-specific protein–protein interactions that occlude the catalytic active sites. The latter could potentially modulate PfOPRTase activity in parasites and possibly provide new insights for blocking PfOPRTase functions

  8. Structure of Plasmodium falciparum orotate phosphoribosyltransferase with autologous inhibitory protein–protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shiva; Krishnamoorthy, Kalyanaraman; Mudeppa, Devaraja G.; Rathod, Pradipsinh K., E-mail: rathod@chem.washington.edu [University of Washington, Seattle, WA 98195 (United States)

    2015-04-21

    P. falciparum orotate phosphoribosyltransferase, a potential target for antimalarial drugs and a conduit for prodrugs, crystallized as a structure with eight molecules per asymmetric unit that included some unique parasite-specific auto-inhibitory interactions between catalytic dimers. The most severe form of malaria is caused by the obligate parasite Plasmodium falciparum. Orotate phosphoribosyltransferase (OPRTase) is the fifth enzyme in the de novo pyrimidine-synthesis pathway in the parasite, which lacks salvage pathways. Among all of the malaria de novo pyrimidine-biosynthesis enzymes, the structure of P. falciparum OPRTase (PfOPRTase) was the only one unavailable until now. PfOPRTase that could be crystallized was obtained after some low-complexity sequences were removed. Four catalytic dimers were seen in the asymmetic unit (a total of eight polypeptides). In addition to revealing unique amino acids in the PfOPRTase active sites, asymmetric dimers in the larger structure pointed to novel parasite-specific protein–protein interactions that occlude the catalytic active sites. The latter could potentially modulate PfOPRTase activity in parasites and possibly provide new insights for blocking PfOPRTase functions.

  9. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    International Nuclear Information System (INIS)

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  10. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Begüm [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Uygun, Murat [Koçarlı Vocational and Training School, Adnan Menderes University, Aydın (Turkey); Uygun, Deniz Aktaş, E-mail: daktas@adu.edu.tr [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Akgöl, Sinan [Biochemistry Department, Ege University, İzmir (Turkey); Denizli, Adil [Chemistry Department, Hacettepe University, Ankara (Turkey)

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  11. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum.

    Science.gov (United States)

    Mallick, Prashant K; Sutton, Patrick L; Singh, Ruchi; Singh, Om P; Dash, Aditya P; Singh, Ashok K; Carlton, Jane M; Bhasin, Virendra K

    2013-10-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, Pstructure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both neutral and adaptive loci across India. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Inducible xylitol dehydrogenases in enteric bacteria.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  13. Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human α-ketoacid dehydrogenase complexes

    International Nuclear Information System (INIS)

    Pons, G.; Raefsky-Estrin, C.; Carothers, D.J.; Pepin, R.A.; Javed, A.A.; Jesse, B.W.; Ganapathi, M.K.; Samols, D.; Patel, M.S.

    1988-01-01

    cDNA clones comprising the entire coding region for human dihydrolipoamide dehydrogenase have been isolated from a human liver cDNA library. The cDNA sequence of the largest clone consisted of 2082 base pairs and contained a 1527-base open reading frame that encodes a precursor dihydrolipoamide dehydrogenase of 509 amino acid residues. The first 35-amino acid residues of the open reading frame probably correspond to a typical mitochondrial import leader sequence. The predicted amino acid sequence of the mature protein, starting at the residue number 36 of the open reading frame, is almost identical (>98% homology) with the known partial amino acid sequence of the pig heart dihydrolipoamide dehydrogenase. The cDNA clone also contains a 3' untranslated region of 505 bases with an unusual polyadenylylation signal (TATAAA) and a short poly(A) track. By blot-hybridization analysis with the cDNA as probe, two mRNAs, 2.2 and 2.4 kilobases in size, have been detected in human tissues and fibroblasts, whereas only one mRNA (2.4 kilobases) was detected in rat tissues

  14. Encapsulation of metalloporphyrins improves their capacity to block the viability of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Alves, Eduardo; Iglesias, Bernardo A; Deda, Daiana K; Budu, Alexandre; Matias, Tiago A; Bueno, Vânia B; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius; Catalani, Luiz H; Araki, Koiti; Garcia, Celia R S

    2015-02-01

    Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified. RBCs infected with synchronized P. falciparum incubated for 48 h showed a toxic effect over a micromolar range. Strikingly, the IC50 of encapsulated metalloporphyrins reached nanomolar concentrations, where Zn-PPIX showed the best antimalarial effect, with an IC50=330 nM. This value is an 80-fold increase in the antimalarial activity compared to the antimalarial effect of non-encapsulated Zn-PPIX. These findings reveal that the incubation of P. falciparum infected-RBCs with 20 μM Zn-PPIX reduced the size of hemozoin crystal by 34%, whereas a 28% reduction was noticed with chloroquine, confirming the importance of heme detoxification pathway in drug therapy. In this study, synthetic metalloporphyrins were tested as therapeutics that target Plasmodium falciparum. The IC50 of encapsulated metalloporphyrins was found to be in the nanomolar concentration range, with encapsulated Zn-PPIX showing an 80-fold increase in its antimalarial activity compared to the non-encapsulated form. Copyright © 2015. Published by Elsevier Inc.

  15. DNA methyltransferase homologue TRDMT1 in Plasmodium falciparum specifically methylates endogenous aspartic acid tRNA.

    Science.gov (United States)

    Govindaraju, Gayathri; Jabeena, C A; Sethumadhavan, Devadathan Valiyamangalath; Rajaram, Nivethika; Rajavelu, Arumugam

    2017-10-01

    In eukaryotes, cytosine methylation regulates diverse biological processes such as gene expression, development and maintenance of genomic integrity. However, cytosine methylation and its functions in pathogenic apicomplexan protozoans remain enigmatic. To address this, here we investigated the presence of cytosine methylation in the nucleic acids of the protozoan Plasmodium falciparum. Interestingly, P. falciparum has TRDMT1, a conserved homologue of DNA methyltransferase DNMT2. However, we found that TRDMT1 did not methylate DNA, in vitro. We demonstrate that TRDMT1 methylates cytosine in the endogenous aspartic acid tRNA of P. falciparum. Through RNA bisulfite sequencing, we mapped the position of 5-methyl cytosine in aspartic acid tRNA and found methylation only at C38 position. P. falciparum proteome has significantly higher aspartic acid content and a higher proportion of proteins with poly aspartic acid repeats than other apicomplexan pathogenic protozoans. Proteins with such repeats are functionally important, with significant roles in host-pathogen interactions. Therefore, TRDMT1 mediated C38 methylation of aspartic acid tRNA might play a critical role by translational regulation of important proteins and modulate the pathogenicity of the malarial parasite. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Diversity of Plasmodium falciparum chloroquine resistance transporter (pfcrt exon 2 haplotypes in the Pacific from 1959 to 1979.

    Directory of Open Access Journals (Sweden)

    Chim W Chan

    Full Text Available Nearly one million deaths are attributed to malaria every year. Recent reports of multi-drug treatment failure of falciparum malaria underscore the need to understand the molecular basis of drug resistance. Multiple mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt are involved in chloroquine resistance, but the evolution of complex haplotypes is not yet well understood. Using over 4,500 archival human serum specimens collected from 19 Pacific populations between 1959 and 1979, the period including and just prior to the appearance of chloroquine treatment failure in the Pacific, we PCR-amplified and sequenced a portion of the pfcrt exon 2 from 771 P. falciparum-infected individuals to explore the spatial and temporal variation in falciparum malaria prevalence and the evolution of chloroquine resistance. In the Pacific, the prevalence of P. falciparum varied considerably across ecological zones. On the island of New Guinea, the decreases in prevalence of P. falciparum in coastal, high-transmission areas over time were contrasted by the increase in prevalence during the same period in the highlands, where transmission was intermittent. We found 78 unique pfcrt haplotypes consisting of 34 amino acid substitutions and 28 synonymous mutations. More importantly, two pfcrt mutations (N75D and K76T implicated in chloroquine resistance were present in parasites from New Hebrides (now Vanuatu eight years before the first report of treatment failure. Our results also revealed unexpectedly high levels of genetic diversity in pfcrt exon 2 prior to the historical chloroquine resistance selective sweep, particularly in areas where disease burden was relatively low. In the Pacific, parasite genetic isolation, as well as host acquired immune status and genetic resistance to malaria, were important contributors to the evolution of chloroquine resistance in P. falciparum.

  17. Paradoxical associations between soil-transmitted helminths and Plasmodium falciparum infection.

    Science.gov (United States)

    Fernández-Niño, Julián A; Idrovo, Alvaro J; Cucunubá, Zulma M; Reyes-Harker, Patricia; Guerra, Ángela P; Moncada, Ligia I; López, Myriam C; Barrera, Sandra M; Cortés, Liliana J; Olivera, Mario; Nicholls, Rubén S

    2012-11-01

    Evidence on the comorbidity between soil-transmitted helminth infections and malaria is scarce and divergent. This study explored the interactions between soil-transmitted helminth infections and uncomplicated falciparum malaria in an endemic area of Colombia. A paired case-control study matched by sex, age and location in Tierralta, Cordoba, was done between January and September 2010. The incident cases were 68 patients with falciparum malaria and 178 asymptomatic controls. A questionnaire was used to gather information on sociodemographic variables. Additionally physical examinations were carried out, stool samples were analysed for intestinal parasites and blood samples for Ig E concentrations. We found associations between infection with hookworm (OR: 4.21; 95% CI: 1.68-11.31) and Ascaris lumbricoides (OR 0.43; 95% CI: 0.18-1.04) and the occurrence of falciparum malaria. The effects of soil-transmitted helminths on the occurrence of malaria were found to be paradoxical. While hookworm is a risk factor, A. lumbricoides has a protective effect. The findings suggest that, in addition to the comorbidity, the presence of common determinants of soil-transmitted helminth infections and malaria could also exist. While the biological mechanisms involved are not clear, public health policies aimed at the control of their common social and environmental determinants are suggested. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  18. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  19. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  20. The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites

    Directory of Open Access Journals (Sweden)

    Vivek A. Hariharan

    2017-03-01

    Full Text Available Many enzymes make “mistakes”. Consequently, repair enzymes have evolved to correct these mistakes. For example, lactate dehydrogenase (LDH and mitochondrial malate dehydrogenase (mMDH slowly catalyze the reduction of 2-oxoglutarate (2-OG to the oncometabolite l-2-hydroxyglutarate (l-2-HG. l-2-HG dehydrogenase corrects this error by converting l-2-HG to 2-OG. LDH also catalyzes the reduction of the oxo group of 2-oxoglutaramate (2-OGM; transamination product of l-glutamine. We show here that human glutamine synthetase (GS catalyzes the amidation of the terminal carboxyl of both the l- and d- isomers of 2-HG. The reaction of 2-OGM with LDH and the reaction of l-2-HG with GS generate l-2-hydroxyglutaramate (l-2-HGM. We also show that l-2-HGM is a substrate of human ω-amidase. The product (l-2-HG can then be converted to 2-OG by l-2-HG dehydrogenase. Previous work showed that 2-oxosuccinamate (2-OSM; transamination product of l-asparagine is an excellent substrate of LDH. Finally, we also show that human ω-amidase converts the product of this reaction (i.e., l-2-hydroxysuccinamate; l-2-HSM to l-malate. Thus, ω-amidase may act together with hydroxyglutarate dehydrogenases to repair certain “mistakes” of GS and LDH. The present findings suggest that non-productive pathways for nitrogen metabolism occur in mammalian tissues in vivo. Perturbations of these pathways may contribute to symptoms associated with hydroxyglutaric acidurias and to tumor progression. Finally, methods for the synthesis of l-2-HGM and l-2-HSM are described that should be useful in determining the roles of ω-amidase/4- and 5-C compounds in photorespiration in plants.

  1. The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites.

    Science.gov (United States)

    Hariharan, Vivek A; Denton, Travis T; Paraszcszak, Sarah; McEvoy, Kyle; Jeitner, Thomas M; Krasnikov, Boris F; Cooper, Arthur J L

    2017-03-30

    Many enzymes make "mistakes". Consequently, repair enzymes have evolved to correct these mistakes. For example, lactate dehydrogenase (LDH) and mitochondrial malate dehydrogenase (mMDH) slowly catalyze the reduction of 2-oxoglutarate (2-OG) to the oncometabolite l-2-hydroxyglutarate (l-2-HG). l-2-HG dehydrogenase corrects this error by converting l-2-HG to 2-OG. LDH also catalyzes the reduction of the oxo group of 2-oxoglutaramate (2-OGM; transamination product of l-glutamine). We show here that human glutamine synthetase (GS) catalyzes the amidation of the terminal carboxyl of both the l- and d- isomers of 2-HG. The reaction of 2-OGM with LDH and the reaction of l-2-HG with GS generate l-2-hydroxyglutaramate (l-2-HGM). We also show that l-2-HGM is a substrate of human ω-amidase. The product (l-2-HG) can then be converted to 2-OG by l-2-HG dehydrogenase. Previous work showed that 2-oxosuccinamate (2-OSM; transamination product of l-asparagine) is an excellent substrate of LDH. Finally, we also show that human ω-amidase converts the product of this reaction (i.e., l-2-hydroxysuccinamate; l-2-HSM) to l-malate. Thus, ω-amidase may act together with hydroxyglutarate dehydrogenases to repair certain "mistakes" of GS and LDH. The present findings suggest that non-productive pathways for nitrogen metabolism occur in mammalian tissues in vivo. Perturbations of these pathways may contribute to symptoms associated with hydroxyglutaric acidurias and to tumor progression. Finally, methods for the synthesis of l-2-HGM and l-2-HSM are described that should be useful in determining the roles of ω-amidase/4- and 5-C compounds in photorespiration in plants.

  2. Geographical and temporal conservation of antibody recognition of Plasmodium falciparum variant surface antigens

    DEFF Research Database (Denmark)

    Nielsen, Morten A; Vestergaard, Lasse S; Lusingu, John

    2004-01-01

    The slow acquisition of protection against Plasmodium falciparum malaria probably reflects the extensive diversity of important antigens. The variant surface antigens (VSA) that mediate parasite adhesion to a range of host molecules are regarded as important targets of acquired protective immunity......, but their diversity makes them questionable vaccine candidates. We determined levels of VSA-specific immunoglobulin G (IgG) in human plasma collected at four geographically distant and epidemiologically distinct localities with specificity for VSA expressed by P. falciparum isolates from three African countries...

  3. Proteomics methods applied to malaria: Plasmodium falciparum

    International Nuclear Information System (INIS)

    Cuesta Astroz, Yesid; Segura Latorre, Cesar

    2012-01-01

    Malaria is a parasitic disease that has a high impact on public health in developing countries. The sequencing of the plasmodium falciparum genome and the development of proteomics have enabled a breakthrough in understanding the biology of the parasite. Proteomics have allowed to characterize qualitatively and quantitatively the parasite s expression of proteins and has provided information on protein expression under conditions of stress induced by antimalarial. Given the complexity of their life cycle, this takes place in the vertebrate host and mosquito vector. It has proven difficult to characterize the protein expression during each stage throughout the infection process in order to determine the proteome that mediates several metabolic, physiological and energetic processes. Two dimensional electrophoresis, liquid chromatography and mass spectrometry have been useful to assess the effects of antimalarial on parasite protein expression and to characterize the proteomic profile of different p. falciparum stages and organelles. The purpose of this review is to present state of the art tools and advances in proteomics applied to the study of malaria, and to present different experimental strategies used to study the parasite's proteome in order to show the advantages and disadvantages of each one.

  4. Systematic replacement of lysine with glutamine and alanine in Escherichia coli malate synthase G: effect on crystallization

    International Nuclear Information System (INIS)

    Anstrom, David M.; Colip, Leslie; Moshofsky, Brian; Hatcher, Eric; Remington, S. James

    2005-01-01

    Alanine and glutamine mutations were made to the same 15 lysine positions on the surface of E. coli malate synthase G and the impact on crystallization observed. The results support lysine replacement for improvement of crystallization and provide insight into site selection and type of amino-acid replacement. Two proposals recommend substitution of surface lysine residues as a means to improve the quality of protein crystals. In proposal I, substitution of lysine by alanine has been suggested to improve crystallization by reducing the entropic cost of ordering flexible side chains at crystal contacts. In proposal II, substitution of lysine by residues more commonly found in crystal contacts, such as glutamine, has been proposed to improve crystallization. 15 lysine residues on the surface of Escherichia coli malate synthase G, distributed over a variety of secondary structures, were individually mutated to both alanine and glutamine. For 28 variants, detailed studies of the effect on enzymatic activity and crystallization were conducted. This has permitted direct comparison of the relative effects of the two types of mutations. While none of the variants produced crystals suitable for X-ray structural determination, small crystals were obtained in a wide variety of conditions, in support of the general approach. Glutamine substitutions were found to be more effective than alanine in producing crystals, in support of proposal II. Secondary structure at the site of mutation does not appear to play a major role in determining the rate of success

  5. Epidemiologia de la malaria falciparum complicada: estudio de casos y controles en Tumaco y Turbo, Colombia, 2003 The epidemiology of complicated falciparum malaria: case and controls study in Tumaco and Turbo, Colombia, 2003

    Directory of Open Access Journals (Sweden)

    Alberto Tobón C.

    2006-09-01

    Full Text Available OBJETIVOS: Identificar aspectos del hospedero, del parásito y del ambiente asociados con ocurrencia de malaria por Plasmodium falciparum complicada. MÉTODOS: Estudio de casos y controles en pacientes de Tumaco y Turbo (Colombia aplicando los criterios de complicación de la Organización Mundial de la Salud. RESULTADOS: Entre noviembre 2002 y julio 2003 se captaron 64 casos (malaria complicada y 135 controles (malaria no complicada. Las complicaciones fueron: hiperparasitemia (40%, falla hepática (36%, síndrome dificultad respiratoria aguda (7%, falla renal (4%, trombocitopenia grave (3%, anemia grave (2%, malaria cerebral (2% e hipoglicemia grave (1%. Se encontraron como factores de riesgo para malaria falciparum complicada: a Los antecedentes de malaria falciparum durante el último año fueron menores en los casos (OR= 7.0 (1.2-43.6 P=0.019; b Mayor uso previo de antimaláricos en los casos (OR=2.2 (1.1-4.4 P=0.031 y c mayor uso de cloroquina en los casos (OR=7.4 (1.1-7.8 P=0.017. Se hallaron los alelos MAD-20 y K1 del gen msp1 y FC-27 e IC-1 del gen msp2, cuya distribución de frecuencias fue similar entre casos y controles, aunque el alelo K1 mostró una variación importante entre grupos (casos: 9.4%, controles: 3.5%. La frecuencia de "signos de peligro" fue significativamente mayor en los casos (OR= 3.3, (1.5-7.4 P=0.001. Los criterios de complicación malárica de la Organización Mundial de la Salud se comparan con otros y se discuten algunas implicaciones. CONCLUSIÓN: Se identificaron como factores de riesgo para malaria falciparum complicada, la ausencia de antecedentes de malaria falciparum en el último año y el uso de antimaláricos antes de llegar al hospital.OBJECTIVES: Aimed at identifying host and parasite aspects associated to the presence of Plasmodium falciparum complicated malaria. METHODS: Case and controls study in patients from Tumaco and Turbo (Colombia. We used the World Health Organization criteria to assess the

  6. Plasmodium falciparum multiplicity correlates with anaemia in symptomatic malaria

    NARCIS (Netherlands)

    Mockenhaupt, Frank P.; Ehrhardt, Stephan; Eggelte, Teunis A.; Markert, Miriam; Anemana, Sylvester; Otchwemah, Rowland; Bienzle, Ulrich

    2003-01-01

    In 366 Ghanaian children with symptomatic Plasmodium falciparum malaria, low haemoglobin levels and severe anaemia were associated with a high multiplicity of infection (MOI) and with distinct merozoite surface protein alleles. High MOI not only reflects premunition but may also contribute to

  7. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf

    2008-01-01

    2-Methylbutyryl-CoA dehydrogenase (MBD; coded by the ACADSB gene) catalyzes the step in isoleucine metabolism that corresponds to the isovaleryl-CoA dehydrogenase reaction in the degradation of leucine. Deficiencies of both enzymes may be detected by expanded neonatal screening with tandem...... individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant...

  8. Improving the production of the denatured recombinant N-terminal domain of rhoptry-associated protein 2 from a Plasmodium falciparum target in the pathology of anemia in falciparum malaria

    Directory of Open Access Journals (Sweden)

    Luis Andre Mariuba

    2008-09-01

    Full Text Available Rhoptry-associated protein 2 (RAP2 is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2 was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.

  9. Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar.

    Directory of Open Access Journals (Sweden)

    Myat P Kyaw

    Full Text Available Plasmodium falciparum resistance to artemisinins, the first line treatment for malaria worldwide, has been reported in western Cambodia. Resistance is characterized by significantly delayed clearance of parasites following artemisinin treatment. Artemisinin resistance has not previously been reported in Myanmar, which has the highest falciparum malaria burden among Southeast Asian countries.A non-randomized, single-arm, open-label clinical trial of artesunate monotherapy (4 mg/kg daily for seven days was conducted in adults with acute blood-smear positive P. falciparum malaria in Kawthaung, southern Myanmar. Parasite density was measured every 12 hours until two consecutive negative smears were obtained. Participants were followed weekly at the study clinic for three additional weeks. Co-primary endpoints included parasite clearance time (the time required for complete clearance of initial parasitemia, parasite clearance half-life (the time required for parasitemia to decrease by 50% based on the linear portion of the parasite clearance slope, and detectable parasitemia 72 hours after commencement of artesunate treatment. Drug pharmacokinetics were measured to rule out delayed clearance due to suboptimal drug levels.The median (range parasite clearance half-life and time were 4.8 (2.1-9.7 and 60 (24-96 hours, respectively. The frequency distributions of parasite clearance half-life and time were bimodal, with very slow parasite clearance characteristic of the slowest-clearing Cambodian parasites (half-life longer than 6.2 hours in approximately 1/3 of infections. Fourteen of 52 participants (26.9% had a measurable parasitemia 72 hours after initiating artesunate treatment. Parasite clearance was not associated with drug pharmacokinetics.A subset of P. falciparum infections in southern Myanmar displayed markedly delayed clearance following artemisinin treatment, suggesting either emergence of artemisinin resistance in southern Myanmar or spread

  10. Historical review: Does falciparum malaria destroy isolated tribal populations?

    Science.gov (United States)

    Shanks, G Dennis

    Many isolated populations of tribal peoples were nearly destroyed when they first contacted infectious diseases particularly respiratory pathogens such as measles and smallpox. Surviving groups have often been found to have declining populations in the face of multiple social and infectious threats. Malaria, especially Plasmodium falciparum, was thought to be a major cause of depopulation in some tribal peoples isolated in tropical jungles. The dynamics of such host parasite interactions is unclear especially since most such populations would have had long histories of exposure to malaria. Three groups are individually reviewed: Meruts of Borneo, Yanomami of Amazonia, Jarawas of the Andaman Islands. The purpose of this review is to examine the role of falciparum malaria in the depopulation of some isolated tribal groups in order to understand what measures, if any, would be likely to prevent such losses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Investigating the activity of quinine analogues versus chloroquine resistant Plasmodium falciparum.

    Science.gov (United States)

    Dinio, Theresa; Gorka, Alexander P; McGinniss, Andrew; Roepe, Paul D; Morgan, Jeremy B

    2012-05-15

    Plasmodium falciparum, the deadliest malarial parasite species, has developed resistance against nearly all man-made antimalarial drugs within the past century. However, quinine (QN), the first antimalarial drug, remains efficacious worldwide. Some chloroquine resistant (CQR) P. falciparum strains or isolates show mild cross resistance to QN, but many do not. Further optimization of QN may provide a well-tolerated therapy with improved activity versus CQR malaria. Thus, using the Heck reaction, we have pursued a structure-activity relationship study, including vinyl group modifications of QN. Certain derivatives show good antiplasmodial activity in QN-resistant and QN-sensitive strains, with lower IC(50) values relative to QN. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Noone Cariosa

    2013-01-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality worldwide with over one million deaths annually, particularly in children under five years. This study was the first to examine plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum from four semi-urban villages near Ile-Ife, Osun State, Nigeria. Methods Blood was obtained from 231 children (aged 39–73 months who were classified according to mean P. falciparum density per μl of blood (uninfected (n = 89, low density (10,000, n = 22. IL-12p70, IL-10, Nitric oxide, IFN-γ, TNF, IL-17, IL-4 and TGF-β, C-C chemokine RANTES, MMP-8 and TIMP-1 were measured in plasma. Peripheral blood mononuclear cells were obtained and examined markers of innate immune cells (CD14, CD36, CD56, CD54, CD11c AND HLA-DR. T-cell sub-populations (CD4, CD3 and γδTCR were intracellularly stained for IL-10, IFN-γ and TNF following polyclonal stimulation or stimulated with malaria parasites. Ascaris lumbricoides was endemic in these villages and all data were analysed taking into account the potential impact of bystander helminth infection. All data were analysed using SPSS 15 for windows and in all tests, p Results The level of P. falciparum parasitaemia was positively associated with plasma IL-10 and negatively associated with IL-12p70. The percentage of monocytes was significantly decreased in malaria-infected individuals while malaria parasitaemia was positively associated with increasing percentages of CD54+, CD11c+ and CD56+ cell populations. No association was observed in cytokine expression in mitogen-activated T-cell populations between groups and no malaria specific immune responses were detected. Although A. lumbricoides is endemic in these villages, an analysis of the data showed no impact of this helminth infection on P. falciparum parasitaemia or on immune responses associated with P. falciparum infection

  13. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  14. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  15. Modelling the incidence of Plasmodium vivax and Plasmodium falciparum malaria in Afghanistan 2006-2009.

    Science.gov (United States)

    Alegana, Victor A; Wright, Jim A; Nahzat, Sami M; Butt, Waqar; Sediqi, Amad W; Habib, Naeem; Snow, Robert W; Atkinson, Peter M; Noor, Abdisalan M

    2014-01-01

    Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. From the analysis of healthcare utilisation, over 80% of the population was within 2 hours' travel of the nearest public health facility, while 64.4% were within 30 minutes' travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2-9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4-2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan.

  16. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    Science.gov (United States)

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  17. The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum.

    Science.gov (United States)

    Robbins, Jonathan A; Absalon, Sabrina; Streva, Vincent A; Dvorin, Jeffrey D

    2017-06-13

    All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G 1 -, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G 1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We

  18. Inactivation of Plasmodium falciparum in whole body by riboflavin ...

    African Journals Online (AJOL)

    Background Malaria parasites are frequently trans- mitted by unscreened blood transfusions in Africa. Pathogen reduction methods in whole blood would thus greatly improve blood safety. We aimed to determine the efficacy of riboflavin plus irradiation for treatment of whole blood infected with Plasmodium falciparum.

  19. Dhfr and dhps mutations in Plasmodium falciparum isolates in ...

    African Journals Online (AJOL)

    Sulfadoxine-pyrimethamine (SP), the current first line antimalarial drug in Tanzania, is compromised by evolution and spread of mutations in the parasite's dhfr and dhps genes. In the present study we established the baseline frequencies of Plasmodium falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate ...

  20. Closing plant stomata requires a homolog of an aluminum-activated malate transporter.

    Science.gov (United States)

    Sasaki, Takayuki; Mori, Izumi C; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko

    2010-03-01

    Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure.

  1. Pfatp6 molecular profile of Plasmodium falciparum isolates in the western Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Brasil Larissa W

    2012-04-01

    Full Text Available Abstract Background Anti-malarial drug resistance has emerged as one of the biggest challenges confronting the worldwide effort to control malaria. The appearance of chloroquine and multi-drug resistance had devastating effects on therapeutic efficacy of former first-line agents. Artemisinin has proven to be an excellent therapeutic alternative to fill the void in chemotherapeutic options left by resistance mechanisms. At the time of introduction, no resistance to artemisinins had been recorded, and artemisinins demonstrated excellent parasite reduction rates. In an attempt to protect artemisinin efficacy, the World Health Organization (WHO made artemisinin-based combination therapy (ACT its official first-line treatment recommendation for uncomplicated Plasmodium falciparum in 2006. In Brazil, artemether/lumefantrine became the Brazilian Malaria Control Programme's official treatment recommendation in 2007. The sarco/endoplasmic reticulum Ca2+ - ATPase ortholog of P. falciparum (pfatp6 has been suggested as one of the targets of artemisinins. Consequently, pfatp6 gene polymorphisms are being investigated as markers of artemisinin resistance elsewhere. The goal of this work was to describe the molecular profile of pfatp6 in P. falciparum isolates from different localities in the Amazonas State. Methods DNA polymorphisms of the pfatp6 gene in 80 P. falciparum isolates from 11 municipalities of the Amazonas State (Western Brazilian Amazon, before and after the introduction of ACT in the Brazilian anti-malarial guidelines, were analysed by automatic sequencing. Mutations in the pfatp6 gene were searched using Mutation Surveyor v3.25 software. Results The P. falciparum pfatp6 gene presented polymorphisms at codons 37, 630 and 898. The R37K mutation was found in 16% of the samples, A630S in 32% and I898I in 52%. No S769N mutation, however, was detected in the analysed samples. Conclusion Despite the small number of samples, data presented here

  2. A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation

    Directory of Open Access Journals (Sweden)

    Chauhan Virander S

    2009-04-01

    Full Text Available Abstract Background The P-loop NTPases constitute one of the largest groups of globular protein domains that play highly diverse functional roles in most of the organisms. Even with the availability of nearly 300 different Hidden Markov Models representing the P-loop NTPase superfamily, not many P-loop NTPases are known in Plasmodium falciparum. A number of characteristic attributes of the genome have resulted into the lack of knowledge about this functionally diverse, but important class of proteins. Method In the study, protein sequences with characteristic motifs of NTPase domain (Walker A and Walker B are computationally extracted from the P. falciparum database. A detailed secondary structure analysis, functional classification, phylogenetic and orthology studies of the NTPase domain of repertoire of 97 P. falciparum P-loop NTPases is carried out. Results Based upon distinct sequence features and secondary structure profile of the P-loop domain of obtained sequences, a cladistic classification is also conceded: nucleotide kinases and GTPases, ABC and SMC family, SF1/2 helicases, AAA+ and AAA protein families. Attempts are made to identify any ortholog(s for each of these proteins in other Plasmodium sp. as well as its vertebrate host, Homo sapiens. A number of P. falciparum P-loop NTPases that have no homologue in the host, as well as those annotated as hypothetical proteins and lack any characteristic functional domain are identified. Conclusion The study suggests a strong correlation between sequence and secondary structure profile of P-loop domains and functional roles of these proteins and thus provides an opportunity to speculate the role of many hypothetical proteins. The study provides a methodical framework for the characterization of biologically diverse NTPases in the P. falciparum genome. The efforts made in the analysis are first of its kind; and the results augment to explore the functional role of many of these proteins from

  3. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    Science.gov (United States)

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  4. Variability among inbred lines and RFLP mapping of sunflower isozymes

    Directory of Open Access Journals (Sweden)

    Carrera Alicia D.

    2002-01-01

    Full Text Available Eight isozyme systems were used in this study: acid phosphatase (ACP, alcohol dehydrogenase (ADH, esterase (EST, glutamate dehydrogenase (GDH, malate dehydrogenase (MDH, phosphoglucoisomerase (PGI, 6-phosphogluconate dehydrogenase (PGD, and phosphoglucomutase (PGM. The polymorphism of these enzyme systems was studied in 25 elite inbred lines. A total of 19 loci were identified, but only eight of them were polymorphic in the germplasm tested. The polymorphic index for the eight informative markers ranged from 0.08 to 0.57, with a mean value of 0.36. Five isozyme loci were mapped in F2:3 populations with existing RFLP data. Est-1, Gdh-2 and Pgi-2 were mapped to linkage groups 3, 14 and 9, respectively. As in previous reports, an ACP locus and a PGD locus were found to be linked, both located in linkage group 2 of the public sunflower map.

  5. Five-year surveillance of molecular markers of Plasmodium falciparum antimalarial drug resistance in Korogwe District, Tanzania: accumulation of the 581G mutation in the P. falciparum dihydropteroate synthase gene

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Lusingu, John P; Mmbando, Bruno

    2009-01-01

    .001). In contrast, the chloroquine-sensitive P. falciparum chloroquine resistance transporter (Pfcrt) CVMNK haplotype increased from 6% to 30% (P use of SP for intermittent presumptive treatment of pregnant women......In January 2007, Tanzania replaced sulfadoxine-pyrimethamine (SP) with artemether-lumefantrine for treatment of uncomplicated malaria. This study examined the impact of widespread SP use on molecular markers of Plasmodium falciparum drug resistance in blood samples from persons living in two...

  6. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy

    DEFF Research Database (Denmark)

    Ibitokou, Samad; Oesterholt, Mayke; Brutus, Laurent

    2012-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM) is scarce. We conducted a longitudinal, prospective ...

  7. Plasmodium falciparum: assessment of in vitro growth by [3H]hypoxanthine incorporation

    International Nuclear Information System (INIS)

    Chulay, J.D.; Haynes, J.D.; Diggs, C.L.

    1983-01-01

    To evaluate rapidly Plasmodium falciparum growth in Vitro, [ 3 H]hypoxanthine was added to parasite microcultures and radioisotope incorporation was measured. When culture parameters were carefully controlled, [ 3 H]hypoxanthine incorporation was proportional to the number of parasitized erythrocytes present. Factors affecting [ 3 H]hypoxanthine incorporation included initial parasitemia, duration of culture, duration of radioisotope pulse, parasite stage, concentration of uninfected erythrocytes, the use of serum or plasma to supplement growth, and the concentration of a variety of purines in the culture medium. The method described can be used to measure inhibition of P. falciparum growth by immune serum and has previously been used to study antimalarial drug activity in vitro

  8. Infants' Peripheral Blood Lymphocyte Composition Reflects Both Maternal and Post-Natal Infection with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Odilon Nouatin

    Full Text Available Maternal parasitoses modulate fetal immune development, manifesting as altered cellular immunological activity in cord blood that may be linked to enhanced susceptibility to infections in early life. Plasmodium falciparum typifies such infections, with distinct placental infection-related changes in cord blood exemplified by expanded populations of parasite antigen-specific regulatory T cells. Here we addressed whether such early-onset cellular immunological alterations persist through infancy. Specifically, in order to assess the potential impacts of P. falciparum infections either during pregnancy or during infancy, we quantified lymphocyte subsets in cord blood and in infants' peripheral blood during the first year of life. The principal age-related changes observed, independent of infection status, concerned decreases in the frequencies of CD4+, NKdim and NKT cells, whilst CD8+, Treg and Teff cells' frequencies increased from birth to 12 months of age. P. falciparum infections present at delivery, but not those earlier in gestation, were associated with increased frequencies of Treg and CD8+ T cells but fewer CD4+ and NKT cells during infancy, thus accentuating the observed age-related patterns. Overall, P. falciparum infections arising during infancy were associated with a reversal of the trends associated with maternal infection i.e. with more CD4+ cells, with fewer Treg and CD8+ cells. We conclude that maternal P. falciparum infection at delivery has significant and, in some cases, year-long effects on the composition of infants' peripheral blood lymphocyte populations. Those effects are superimposed on separate and independent age- as well as infant infection-related alterations that, respectively, either match or run counter to them.

  9. Characterization of Plasmodium Lactate Dehydrogenase and Histidine-Rich Protein 2 Clearance Patterns via Rapid On-Bead Detection from a Single Dried Blood Spot

    Science.gov (United States)

    Markwalter, Christine F.; Gibson, Lauren E.; Mudenda, Lwiindi; Kimmel, Danielle W.; Mbambara, Saidon; Thuma, Philip E.; Wright, David W.

    2018-01-01

    Abstract. A rapid, on-bead enzyme-linked immunosorbent assay for Plasmodium lactate dehydrogenase (pLDH) and Plasmodium falciparum histidine-rich protein 2 (HRP2) was adapted for use with dried blood spot (DBS) samples. This assay detected both biomarkers from a single DBS sample with only 45 minutes of total incubation time and detection limits of 600 ± 500 pM (pLDH) and 69 ± 30 pM (HRP2), corresponding to 150 and 24 parasites/μL, respectively. This sensitive and reproducible on-bead detection method was used to quantify pLDH and HRP2 in patient DBS samples from rural Zambia collected at multiple time points after treatment. Biomarker clearance patterns relative to parasite clearance were determined; pLDH clearance followed closely with parasite clearance, whereas most patients maintained detectable levels of HRP2 for 35–52 days after treatment. Furthermore, weak-to-moderate correlations between biomarker concentration and parasite densities were found for both biomarkers. This work demonstrates the utility of the developed assay for epidemiological study and surveillance of malaria. PMID:29557342

  10. A simple, high-throughput method to detect Plasmodium falciparum single nucleotide polymorphisms in the dihydrofolate reductase, dihydropteroate synthase, and P. falciparum chloroquine resistance transporter genes using polymerase chain reaction- and enzyme-linked immunosorbent

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Enosse, Sonia; Pearce, Richard

    2005-01-01

    Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum dihydrofolate reductase (dhfr), and dihydropteroate synthetase (dhps), and chloroquine resistance transporter (Pfcrt) genes are used as molecular markers of P. falciparum resistance to sulfadoxine/pyrimethamine and chloroquine....... However, to be a practical tool in the surveillance of drug resistance, simpler methods for high-throughput haplotyping are warranted. Here we describe a quick and simple technique that detects dhfr, dhps, and Pfcrt SNPs using polymerase chain reaction (PCR)- and enzyme-linked immunosorbent assay (ELISA...

  11. Correlation between 'H' blood group antigen and Plasmodium falciparum invasion.

    Science.gov (United States)

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2016-06-01

    The ABO blood group system is the most important blood group system in clinical practice. The relationship between Plasmodium falciparum and ABO blood groups has been studied for many years. This study was undertaken to investigate the abilities of different blood group erythrocytes to support in vitro growth of P. falciparum parasites. P. falciparum parasites of four different strains (3D7, 7G8, Dd2 and RKL9) were co-cultured with erythrocytes of blood group 'A', 'B', 'O' (n = 10 for each) and 'O(h)' (Bombay group) (n = 7) for 5 days. Statistically significant differences were observed on the fourth day among the mean percent parasitemias of 'O', non-'O' ('A' and 'B') and 'O(h)' group cultures. The parasitemias of four strains ranged from 12.23 to 14.66, 11.68 to 13.24, 16.89 to 22.3, and 7.37 to 11.27 % in 'A', 'B', 'O' and Bombay group cultures, respectively. As the expression of H antigen decreased from 'O' blood group to 'A' and 'B' and then to Bombay blood group, parasite invasion (percent parasitemia) also decreased significantly (p Ulex europaeus seeds. Mean percent parasitemia of lectin-treated cultures on the fourth day was significantly lower (p < 0.05) than that of non-treated cultures and was found to be similar with the mean percent parasitemia demonstrated by the Bombay group erythrocyte cultures, thus further strengthening the hypothesis.

  12. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum

    Science.gov (United States)

    Mallick, Prashant K.; Sutton, Patrick L.; Singh, Ruchi; Singh, Om P.; Dash, Aditya P.; Singh, Ashok K.; Carlton, Jane M.; Bhasin, Virendra K.

    2013-01-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite’s acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST = 0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r = 0.49, P=0.003, N = 83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation

  13. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L

    International Nuclear Information System (INIS)

    Singal, H.R.; Sheoran, I.S.; Singh, R.

    1987-01-01

    Activities of key enzymes of the Calvin cycle and C 4 metabolism, rates of CO 2 fixation, and the initial products of photosynthetic 14 CO 2 fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C 4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of 14 CO 2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO 2 during light. However, respiratory losses were very high during the dark period

  14. Plasmodium falciparum transcriptome analysis reveals pregnancy malaria associated gene expression

    DEFF Research Database (Denmark)

    Tuikue Ndam, Nicaise; Bischoff, Emmanuel; Proux, Caroline

    2008-01-01

    BACKGROUND: Pregnancy-associated malaria (PAM) causing maternal anemia and low birth weight is among the multiple manifestations of Plasmodium falciparum malaria. Infected erythrocytes (iEs) can acquire various adhesive properties that mediate the clinical severity of malaria. Recent advances...

  15. Genetic polymorphisms in the glutamate-rich protein of Plasmodium falciparum field isolates from a malaria-endemic area of Brazil

    DEFF Research Database (Denmark)

    Pratt-Riccio, Lilian Rose; Perce-da-Silva, Daiana de Souza; Lima-Junior, Josué da Costa

    2013-01-01

    The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in...

  16. Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than Plasmodium falciparum across all Malaria Transmission Zones of Papua New Guinea

    Science.gov (United States)

    Fola, Abebe A.; Harrison, G. L. Abby; Hazairin, Mita Hapsari; Barnadas, Céline; Hetzel, Manuel W.; Iga, Jonah; Siba, Peter M.; Mueller, Ivo; Barry, Alyssa E.

    2017-01-01

    Plasmodium falciparum and Plasmodium vivax have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of P. vivax and P. falciparum throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008–2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG. Of these, 892 positive P. vivax samples were genotyped at PvMS16 and PvmspF3, and 758 positive P. falciparum samples were genotyped at Pfmsp2. The data were analyzed for multiplicity of infection (MOI) and genetic diversity. Overall, P. vivax had higher polyclonality (71%) and mean MOI (2.32) than P. falciparum (20%, 1.39). These measures were significantly associated with prevalence for P. falciparum but not for P. vivax. The genetic diversity of P. vivax (PvMS16: expected heterozygosity = 0.95, 0.85–0.98; PvMsp1F3: 0.78, 0.66–0.89) was higher and less variable than that of P. falciparum (Pfmsp2: 0.89, 0.65–0.97). Significant associations of MOI with allelic richness (rho = 0.69, P = 0.009) and expected heterozygosity (rho = 0.87, P < 0.001) were observed for P. falciparum. Conversely, genetic diversity was not correlated with polyclonality nor mean MOI for P. vivax. The results demonstrate higher complexity of infection and genetic diversity of P. vivax across the country. Although P. falciparum shows a strong association of these parameters with prevalence, a lack of association was observed for P. vivax and is consistent with higher potential for outcrossing of this species. PMID:28070005

  17. Polimorfismo enzimático em populações de Melipona quadrifasciata anthidioides Lepeletier (Hymenoptera, Apidae, Meliponinae Enzymatic polymorphism in Melipona quadrifasciata anthidioides Lepeletier populations (Hymenoptera, Apidae, Meliponinae

    Directory of Open Access Journals (Sweden)

    Davi S. Aidar

    2001-06-01

    Full Text Available Them aim scope of this study is to characterize the enzymatic polymorphism found in the Melipona quadrifasciata Lepeletier, 1936 populations from Ribeirão Preto, São Paulo and Espírito Santo, Brazil and its hybrids. Samples from each colony (about 52 were prepared for starch gel electrophoresis in order to investigate the genetic variation of the following enzimes: esterase (EST, isocitrate dehydrogenase (IDH, malic enzyme (ME, phosphoglucomutase (PGM, superoxide desmutase (SOD, α-glycerophosphate dehydrogenase (αPGD, malate dehydrogenase (MDH, leucine aminopeptidase (LAP, hexokinase (HK and phosphoglucose isomerase (PGI. The analysis showed that LAP and HK did not show enzymatic activity and EST showed two alleles(est-sand and est-f while all the others were shown to be monomorphic. The allele EST-S showed a frequency of 82,6%.

  18. Interstrain polymorphisms of isoenzyme profiles and mitochondrial DNA fingerprints among seven strains assigned to Acanthamoeba polyphaga.

    Science.gov (United States)

    Kong, H H; Park, J H; Chung, D I

    1995-12-01

    Interstrain polymorphisms of isoenzyme profiles and mitochondrial (Mt) DNA fingerprints were observed among seven strains of Acanthamoeba isolated from different sources and morphologically assigned to A. polyphaga. Mt DNA fingerprints by eight restriction endonucleases (Bgl II, Sca I, Cla I, EcoR I, Xba I, Kpn I, Sal I, and Sst I) revealed considerable interstrain polymorphisms. Isoenzyme profiles revealed considerable interstrain polymorphisms for acid phosphatase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase while those for glucose phosphate isomerase, leucine aminopeptidase, and malate dehydrogenase showed similarity. Despite of the interstrain polymorphisms, the isoenzyme profiles and Mt DNA fingerprints of the strain Ap were found to be identical with those of the strain Jones. Mt DNA fingerprinting was found to be highly applicable for the strain identification, characterization, and differentiation.

  19. Relations of enzymes inAspergillus repens grown under sodium chloride stress.

    Science.gov (United States)

    Kelavkar, U P; Chhatpar, H S

    1993-09-01

    Aspergillus repens, a salt-pan isolate, was halotolerant. When grown for 72 h (log phase) and 144 h (beginning of stationary phase) in a medium containing 2M sodium chloride, the activities of invertase, malate dehydrogenase (MDH), glucose-6-phosphate dehydrogenase (G6PDH), and glutamate dehydrogenase (GDH) were found to have increased. Control cultures grown in a medium devoid of 2M NaCl failed to show such changes. The activities of MDH, G6PDH, and GDH increased with rising concentrations of Na(+) (as NaCl) when added up to 100MM in vitro. At higher concentrations they decreased. Changes in kinetic constants, Km and Vmax of these enzymes, as well as their de novo synthesis, were found to be some of the responses to NaCl stress-mediated changes.

  20. Phenotypic and genotypic characterization of Thai isolates of Plasmodium falciparum after an artemisinin resistance containment project.

    Science.gov (United States)

    Thita, Thunyapit; Jadsri, Pimrat; Thamkhantho, Jarupatr; Ruang-Areerate, Toon; Suwandittakul, Nantana; Sitthichot, Naruemon; Mahotorn, Kittiya; Tan-Ariya, Peerapan; Mungthin, Mathirut

    2018-05-15

    In Thailand, artemisinin-based combination therapy (ACT) has been used to treat uncomplicated falciparum malaria since 1995. Unfortunately, artemisinin resistance has been reported from Thailand and other Southeast Asian countries since 2003. Malarone ® , a combination of atovaquone-proguanil (ATQ-PG), has been used to cease artemisinin pressure in some areas along Thai-Cambodia border, as part of an artemisinin resistance containment project since 2009. This study aimed to determine genotypes and phenotypes of Plasmodium falciparum isolates collected from the Thai-Cambodia border after the artemisinin resistance containment project compared with those collected before. One hundred and nine of P. falciparum isolates collected from Thai-Cambodia border from Chanthaburi and Trat provinces during 1988-2016 were used in this study. Of these, 58 isolates were collected after the containment. These parasite isolates were characterized for in vitro antimalarial sensitivities including chloroquine (CQ), quinine (QN), mefloquine (MQ), piperaquine (PPQ), artesunate (AS), dihydroartemisinin (DHA), ATQ and PG and genetic markers for drug resistance including the Kelch13 (k13), Plasmodium falciparum chloroquine resistance transporter (pfcrt), P. falciparum multidrug resistance 1 (pfmdr1) and cytochrome b (cytb) genes. Mean CQ, QN, MQ, PPQ and AS IC 50 s of the parasite isolates collected from 2009 to 2016 exhibited significantly higher than those of parasites collected before 2009. Approximately 57% exhibited in vitro MQ resistance. Approximately 94% of the isolates collected from 2009 to 2016 contained the pfmdr1 184F allele. Mutations of the k13 gene were detected in approximately 90% of the parasites collected from 2009 to 2016 which were significantly higher than the parasite isolates collected before. No ATQ-resistant genotype and phenotype of P. falciparum were found among the isolates collected after the containment project. Although the containment project had been

  1. Ammonium intensifies CAM photosynthesis and counteracts drought effects by increasing malate transport and antioxidant capacity in Guzmania monostachia.

    Science.gov (United States)

    Pereira, Paula Natália; Gaspar, Marília; Smith, J Andrew C; Mercier, Helenice

    2018-04-09

    Guzmania monostachia (Bromeliaceae) is a tropical epiphyte capable of up-regulating crassulacean acid metabolism (CAM) in its photosynthetic tissues in response to changing nutrient and water availability. Previous studies have shown that under drought there is a gradient of increasing CAM expression from the basal (youngest) to the apical (oldest) portion of the leaves, and additionally that nitrogen deficiency can further increase CAM intensity in the leaf apex of this bromeliad. The present study investigated the inter-relationships between nitrogen source (nitrate and/or ammonium) and water deficit in regulating CAM expression in G. monostachia leaves. The highest CAM activity was observed under ammonium nutrition in combination with water deficit. This was associated with enhanced activity of the key enzyme phosphoenolpyruvate carboxylase, elevated rates of ATP- and PPi-dependent proton transport at the vacuolar membrane in the presence of malate, and increased transcript levels of the vacuolar malate channel-encoding gene, ALMT. Water deficit was consistently associated with higher levels of total soluble sugars, which were maximal under ammonium nutrition, as were the activities of several antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase). Thus, ammonium nutrition, whilst associated with the highest degree of CAM induction in G. monostachia, also mitigates the effects of water deficit by osmotic adjustment and can limit oxidative damage in the leaves of this bromeliad under conditions that may be typical of its epiphytic habitat.

  2. A Lectin-Like Receptor is Involved in Invasion of Erythrocytes by Plasmodium falciparum

    Science.gov (United States)

    Jungery, M.; Pasvol, G.; Newbold, C. I.; Weatherall, D. J.

    1983-02-01

    Glycophorin both in solution and inserted into liposomes blocks invasion of erythrocytes by the malaria parasite Plasmodium falciparum. Furthermore, one sugar, N-acetyl-D-glucosamine (GlcNAc), completely blocks invasion of the erythrocyte by this parasite. GlcNAc coupled to bovine serum albumin to prevent the sugar entering infected erythrocytes was at least 100,000 times more effective than GlcNAc alone. Bovine serum albumin coupled to lactose or bovine serum albumin alone had no effect on invasion. These results suggest that the binding of P. falciparum to erythrocytes is lectin-like and is determined by carbohydrates on glycophorin.

  3. Blood monocyte oxidative burst activity in acute P. falciparum malaria

    DEFF Research Database (Denmark)

    Nielsen, H; Theander, T G

    1989-01-01

    The release of superoxide anion from blood monocytes was studied in eight patients with acute primary attack P. falciparum malaria. Before treatment a significant enhancement of the oxidative burst prevailed, which contrasts with previous findings of a depressed monocyte chemotactic responsiveness...

  4. An improved method for the assay of platelet pyruvate dehydrogenase

    International Nuclear Information System (INIS)

    Schofield, P.J.; Griffiths, L.R.; Rogers, S.H.

    1980-01-01

    An improved method for the assay of human platelet pyruvate dehydrogenase is described. By generating the substrate [1- 14 C]pyruvate in situ from [1- 14 C]lactate plus L-lactate dehydrogenase, the rate of spontaneous decarboxylation is dramatically reduced, allowing far greater sensitivity in the assay of low activities of pyruvate dehydrogenase. In addition, no special precautions are required for the storage and use of [1- 14 C]lactate, in contrast to those for [1- 14 C]pyruvate. These factors allow a 5-10-fold increase in sensitivity compared with current methods. The pyruvate dehydrogenase activity of normal subjects as determined by the [1- 14 C]lactate system was 215+-55 pmol min -1 mg -1 protein (n=18). The advantages of this assay system are discussed. (Auth.)

  5. Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia.

    Science.gov (United States)

    Loha, Eskindir; Lindtjørn, Bernt

    2010-06-16

    Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) when there was no significant predictor meteorological variable. Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location to location, and among lagged effects, data

  6. Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia

    Directory of Open Access Journals (Sweden)

    Loha Eskindir

    2010-06-01

    Full Text Available Abstract Background Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Methods Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations, temperature (17 locations, and relative humidity (three locations. Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF models and univariate auto-regressive integrated moving average (ARIMA when there was no significant predictor meteorological variable. Results Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations or when coupled with meteorological variables (four locations was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location

  7. High Performance Liquid Chromatographic Analysis of Almotriptan Malate in Bulk and Tablets

    Directory of Open Access Journals (Sweden)

    Chandra Bala Sekaran

    2013-02-01

    Full Text Available Purpose: A simple RP-HPLC method has been developed and validated for the determination of almotriptan malate (ATM in bulk and tablets. Methods: Chromatographic separation of ATM was achieved by using a Thermo Scientific C18 column. A Mobile phase containing a mixture of methanol, water and acetic acid (4:8:0.1 v/v was pumped at the flow rate of 1 mL/min. Detection was performed at 227 nm. According to ICH guidelines, the method was validated. Results: The calibration curve was linear in the concentration range 5–60 μg/mL for the ATM with regression coefficient 0.9999. The method was precise with RSD <1.2%. Excellent recoveries of 99.60 - 100.80% proved the accuracy of the method. The limits of detection and quantification were found to be 0.025 and 0.075 μg/mL, respectively. Conclusion: The method was successfully applied for the quantification of ATM in tablets with acceptable accuracy and precision.

  8. PEST sequences in the malaria parasite Plasmodium falciparum: a genomic study

    Directory of Open Access Journals (Sweden)

    Bell Angus

    2003-06-01

    Full Text Available Abstract Background Inhibitors of the protease calpain are known to have selectively toxic effects on Plasmodium falciparum. The enzyme has a natural inhibitor calpastatin and in eukaryotes is responsible for turnover of proteins containing short sequences enriched in certain amino acids (PEST sequences. The genome of P. falciparum was searched for this protease, its natural inhibitor and putative substrates. Methods The publicly available P. falciparum genome was found to have too many errors to permit reliable analysis. An earlier annotation of chromosome 2 was instead examined. PEST scores were determined for all annotated proteins. The published genome was searched for calpain and calpastatin homologs. Results Typical PEST sequences were found in 13% of the proteins on chromosome 2, including a surprising number of cell-surface proteins. The annotated calpain gene has a non-biological "intron" that appears to have been created to avoid an unrecognized frameshift. Only the catalytic domain has significant similarity with the vertebrate calpains. No calpastatin homologs were found in the published annotation. Conclusion A calpain gene is present in the genome and many putative substrates of this enzyme have been found. Calpastatin homologs may be found once the re-annotation is completed. Given the selective toxicity of calpain inhibitors, this enzyme may be worth exploring further as a potential drug target.

  9. Cytokine profiles and antibody responses to Plasmodium falciparum ...

    African Journals Online (AJOL)

    Estimated higher ratios of IFN-γ/IL-10 and IFN-γ/IL-12 were also observed in the symptomatic children while the asymptomatic controls had higher IL-12/IL-10 ratio. The mean concentration levels of anti-P. falciparum IgG1, IgG2, IgG3 antibodies were statistically significantly higher in the individuals >5 years of age than <5 ...

  10. Impact of child malnutrition on the specific anti-Plasmodium falciparum antibody response

    Directory of Open Access Journals (Sweden)

    Fillol Florie

    2009-06-01

    Full Text Available Abstract Background In sub-Saharan Africa, preschool children represent the population most vulnerable to malaria and malnutrition. It is widely recognized that malnutrition compromises the immune function, resulting in higher risk of infection. However, very few studies have investigated the relationship between malaria, malnutrition and specific immunity. In the present study, the anti-Plasmodium falciparum IgG antibody (Ab response was evaluated in children according to the type of malnutrition. Methods Anthropometric assessment and blood sample collection were carried out during a cross-sectional survey including rural Senegalese preschool children. This cross-sectional survey was conducted in July 2003 at the onset of the rainy season. Malnutrition was defined as stunting (height-for-age P. falciparum whole extracts (schizont antigens was assessed by ELISA in sera of the included children. Results Both the prevalence of anti-malarial immune responders and specific IgG Ab levels were significantly lower in malnourished children than in controls. Depending on the type of malnutrition, wasted children and stunted children presented a lower specific IgG Ab response than their respective controls, but this difference was significant only in stunted children (P = 0.026. This down-regulation of the specific Ab response seemed to be explained by severely stunted children (HAZ ≤ -2.5 compared to their controls (P = 0.03, while no significant difference was observed in mildly stunted children (-2.5 P. falciparum Ab response appeared to be independent of the intensity of infection. Conclusion Child malnutrition, and particularly stunting, may down-regulate the anti-P. falciparum Ab response, both in terms of prevalence of immune responders and specific IgG Ab levels. This study provides further evidence for the influence of malnutrition on the specific anti-malarial immune response and points to the importance of taking into account child

  11. Aotus infulatus monkey is susceptible to Plasmodium falciparum infection and may constitute an alternative experimental model for malaria

    Directory of Open Access Journals (Sweden)

    Carvalho Leonardo JM

    2000-01-01

    Full Text Available Aotus is one of the WHO-recommended primate models for studies in malaria, and several species can be infected with Plasmodium falciparum or P. vivax. Here we describe the successful infection of the species A. infulatus from eastern Amazon with blood stages of P. falciparum. Both intact and splenectomized animals were susceptible to infection; the intact ones were able to keep parasitemias at lower levels for several days, but developed complications such as severe anemia; splenectomized monkeys developed higher parasitemias but no major complications. We conclude that A. infulatus is susceptible to P. falciparum infection and may represent an alternative model for studies in malaria.

  12. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    KAUST Repository

    Ramaprasad, Abhinay; Pain, Arnab; Ravasi, Timothy

    2012-01-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable

  13. Pengaruh Pengasapan (Thermal Fogging Insektisida Piretroid (Malation 95% Terhadap Nyamuk Aedes aegypti dan Culex quinquefasciatus di Pemukiman

    Directory of Open Access Journals (Sweden)

    Hasan Boesri

    2009-12-01

    Full Text Available The evaluation of piretroid insecticide (active ingredient Malation 95% was con-ducted in Sub district Tengarang, Semarang Segency, Central Java Province. The insecti-cide was applied using thermal fogging method for dosages of 125, 250, 375, 500 and 625 ml/ha (diluted in diesel to 10 litters. The evaluation of the efficacy was conducted against two mosquito species, Aedes aegypti (the main dengue haemorrhagic fever and Culex quinquefasciatus (the urban lymphatic fil-ariasis vector. Result of the evaluation was revealed that dosages of 500 and 625 ml/ha were effective against both tested mosquito species indoor and outdoor.

  14. Plasmodium falciparum: genetic diversity and complexity of infections in an isolated village in western Thailand.

    Science.gov (United States)

    Tanabe, Kazuyuki; Zollner, Gabriela; Vaughan, Jefferson A; Sattabongkot, Jetsumon; Khuntirat, Benjawan; Honma, Hajime; Mita, Toshihiro; Tsuboi, Takafumi; Coleman, Russell

    2015-06-01

    Genetic diversity of Plasmodium falciparum is intimately associated with morbidity, mortality and malaria control strategies. It is therefore imperative to study genetic makeup and population structure of this parasite in endemic areas. In Kong Mong Tha, an isolated village in western Thailand, the majority of P. falciparum infections are asymptomatic. In this study we investigated complexity of infections and single nucleotide polymorphisms (SNPs) in the P. falciparum population of Kong Mong Tha, and compared results with those previously obtained from Mae Sod, in northwestern Thailand, where the majority of infections were symptomatic. Using PCR-based determination of the 5' merozoite surface protein 1 gene (msp1) recombinant types, we found that 39% of 59 P. falciparum isolates from Kong Mong Tha had multiple 5' recombinant types with a mean number of 1.54. These values were much lower than those obtained from Mae Sod: 96% for multiple infections and with a mean number of 3.61. Analysis of full-length sequences of two housekeeping genes, the P-type Ca(2+)-transporting ATPase gene (n=33) plus adenylosuccinate lyase gene (n=33), and three vaccine candidate antigen genes, msp1 (n=26), the circumsporozoite protein gene, csp (n=30) and the apical membrane antigen 1 gene, ama 1 (n=32), revealed that in all of these genes within-population SNP diversity was at similar levels between Kong Mong Tha and Mae Sod, suggesting that the extent of MOI and clinical manifestations of malaria are not strongly associated with genetic diversity. Additionally, we did not detect significant genetic differentiation between the two parasite populations, as estimated by the Wright's fixation index of inter-population variance in allele frequencies, suggesting that gene flow prevented the formation of population structuring. Thus, this study highlights unique features of P. falciparum populations in Thailand. The implications of these finding are discussed. © 2013.

  15. Prevalence of Dihydrofolate reductase gene mutations in Plasmodium falciparum isolate from pregnant women in Nigeria

    Directory of Open Access Journals (Sweden)

    Olusola Ojurongbe

    2011-12-01

    Full Text Available We assessed the prevalence of Plasmodium falciparum and the frequency of the dhfr triple mutation that is associated with antifolate drug resistance among P. falciparumisolates obtained from pregnant women in Ilorin, Nigeria. The study included 179 women in the second and third trimester of pregnancy who have been exposed to intermittent preventive treatment in pregnancy (IPTp with sulfadoxinepyrimethamine. Thick and thin blood films and PCR were used for malaria parasite detection. Blood group and hemoglobin concentration were also determined. Mutations in P. falciparum dhfr were analyzed by sequencing DNA obtained from blood spots on filter paper. Prevalence of P. falciparum in the population (PCR corrected was 44.1% (79/179 with 66.7% and 33.3% in the second and third trimester, respectively. Primigravide (51.3% were more infected than multigravide (48.7% but the difference was not statistically significant. Women in blood group A had the highest P. falciparum malaria infection (30.8%. The mean hemoglobin concentration was lower among those infected with malaria parasite. Also, more women with the malaria parasite (38.4% had anemia compare to those without (21.4%. The prevalence of the P. falciparum dhfr mutant alleles was 64.1%, 61.5%, 38.5%, and 12.8% for I51, R59, N108 and T108, respectively. None of the samples had the L164 mutation. The combined triple dhfr mutation (51 + 59 + 108 in the population was 17.9% (7 of 39. Also, the prevalence of the triple mutant alleles was not significantly associated to the number of doses of SP taken by the women. These findings highlight the need for a regular assessment of IPTp/SP efficacy, and evaluation of possible alternative drugs.

  16. Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum?

    Directory of Open Access Journals (Sweden)

    Raquel M Gonçalves

    Full Text Available BACKGROUND: The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85, P. falciparum (n = 30, or both species (n = 12, and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species. CONCLUSIONS: Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction

  17. Crystallization and crystallographic analysis of the ligand-binding domain of the Pseudomonas putida chemoreceptor McpS in complex with malate and succinate

    International Nuclear Information System (INIS)

    Gavira, J. A.; Lacal, J.; Ramos, J. L.; García-Ruiz, J. M.; Krell, T.; Pineda-Molina, E.

    2012-01-01

    The crystallization of the ligand-binding domain of the methyl-accepting chemotaxis protein chemoreceptor McpS (McpS-LBD) is reported. Methyl-accepting chemotaxis proteins (MCPs) are transmembrane proteins that sense changes in environmental signals, generating a chemotactic response and regulating other cellular processes. MCPs are composed of two main domains: a ligand-binding domain (LBD) and a cytosolic signalling domain (CSD). Here, the crystallization of the LBD of the chemoreceptor McpS (McpS-LBD) is reported. McpS-LBD is responsible for sensing most of the TCA-cycle intermediates in the soil bacterium Pseudomonas putida KT2440. McpS-LBD was expressed, purified and crystallized in complex with two of its natural ligands (malate and succinate). Crystals were obtained by both the counter-diffusion and the hanging-drop vapour-diffusion techniques after pre-incubation of McpS-LBD with the ligands. The crystals were isomorphous and belonged to space group C2, with two molecules per asymmetric unit. Diffraction data were collected at the ESRF synchrotron X-ray source to resolutions of 1.8 and 1.9 Å for the malate and succinate complexes, respectively

  18. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10.

    Science.gov (United States)

    Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2017-10-01

    All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with

  19. Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum.

    Science.gov (United States)

    Stocks, Paul A; Raynes, Kaylene J; Bray, Patrick G; Park, B Kevin; O'Neill, Paul M; Ward, Stephen A

    2002-11-07

    A series of short chain chloroquine (CQ) derivatives have been synthesized in one step from readily available starting materials. The diethylamine function of CQ is replaced by shorter alkylamine groups (4-9) containing secondary or tertiary terminal nitrogens. Some of these derivatives are significantly more potent than CQ against a CQ resistant strain of Plasmodium falciparum in vitro. We conclude that the ability to accumulate at higher concentrations within the food vacuole of the parasite is an important parameter that dictates their potency against CQ sensitive and the chloroquine resistant K1 P. falciparum.

  20. Accuracy of PfHRP2 versus Pf-pLDH antigen detection by malaria rapid diagnostic tests in hospitalized children in a seasonal hyperendemic malaria transmission area in Burkina Faso

    OpenAIRE

    Maltha, Jessica; Guiraud, Issa; Lompo, Palpouguini; Kaboré, Bérenger; Gillet, Philippe; Van Geet, Chris; Tinto, Halidou; Jacobs, Jan

    2014-01-01

    Background In most sub-Saharan African countries malaria rapid diagnostic tests (RDTs) are now used for the diagnosis of malaria. Most RDTs used detect Plasmodium falciparum histidine-rich protein-2 (PfHRP2), though P. falciparum-specific parasite lactate dehydrogenase (Pf-pLDH)-detecting RDTs may have advantages over PfHRP2-detecting RDTs. Only few data are available on the use of RDTs in severe illness and the present study compared Pf-pLDH to PfHRP2-detection. Methods Hospitalized children...

  1. Estudo de dose adequada da droga RO42-1611 (Arteflene) no tratamento da malária por Plasmodium falciparum

    OpenAIRE

    SILVA, Rita do Socorro Uchôa

    1997-01-01

    A resistência crescente do P. falciparum aos antimaláricos habitualmente empregados, torna urgente a avaliação de novas drogas. O Ro 42-1611 é um antimalárico derivado da planta chinesa Arlabotrys uncinatus. Usado apenas na África em três trabalhos no tratamento da malária por P. falciparum, tem sua ação desconhecida em sul-americanos com esta doença. Apesar do efeito antimalárico ter sido comprovado, ainda não se encontrou a dose adequada para o tratamento supressivo do P. falciparum. Avalia...

  2. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  3. Molecular monitoring of Plasmodium falciparum resistance to artemisinin in Tanzania

    Directory of Open Access Journals (Sweden)

    Genton Blaise

    2006-12-01

    Full Text Available Abstract Artemisinin-based combination therapies (ACTs are recommended for use against uncomplicated malaria in areas of multi-drug resistant malaria, such as sub-Saharan Africa. However, their long-term usefulness in these high transmission areas remains unclear. It has been suggested that documentation of the S769N PfATPase6 mutations may indicate an emergence of artemisinin resistance of Plasmodium falciparum in the field. The present study assessed PfATPase6 mutations (S769N and A623E in 615 asymptomatic P. falciparum infections in Tanzania but no mutant genotype was detected. This observation suggests that resistance to artemisinin has not yet been selected in Tanzania, supporting the Ministry of Health's decision to adopt artemether+lumefantrine as first-line malaria treatment. The findings recommend further studies to assess PfATPase6 mutations in sentinel sites and verify their usefulness in monitoring emergency of ACT resistance.

  4. Genetic diversity of merozoite surface protein-2 in Plasmodium falciparum isolates from Aceh province, Indonesia

    Science.gov (United States)

    Jamil, K. F.; Supargiyono, S.; Syafruddin, D.; Pratama, N.; Silvy, S.

    2018-03-01

    Estimated 3.3 million Indonesian population were infected with malaria. However, extensive genetic polymorphism of the field isolates MSP-2 of P. falciparum represents a major obstacle for the development of malaria treatment. The aim of this study to investigate the genetic diversity of MSP-2 genotype in field isolates of P. falciparum collected in Aceh Province. A total of 90 patients enrolled in this study who were selected from positive malaria from eleven district Hospitals in Aceh from 2013-2015. Data was collected by anamnesis, complete physical examination and laboratory tests for MSP-2. All protocol to diagnose malaria assigned following the WHO 2010 guideline. All samples were stored in Eijkman Biology Molecular Institute, Jakarta.Among 90 samples were 57.7% male and 42.3% female with the most cases ages between 21-30 years old. Allele typing analysis displayed the polymorphic nature of P. falciparum. The MSP-2 have two alleles, 62.2% (56/90) for FC27 type and 58.9% (53/90) for 3D7 type and 21.2% (19/90) for mixed FC27 and 3D7 infection were identified. Diverse allele types from Aceh Province was identified in MSP-2 P. falciparum patients; there is the almost similar number of patients infected with both allele. A moderate level of the mixed allele was also observed.

  5. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

    Science.gov (United States)

    Safeukui, Innocent; Deplaine, Guillaume; Brousse, Valentine; Prendki, Virginie; Thellier, Marc; Turner, Gareth D.; Mercereau-Puijalon, Odile

    2011-01-01

    Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum–altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC–spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated. PMID:20852127

  6. Molecular characterization of Plasmodium falciparum in Arunachal Pradesh from Northeast India based on merozoite surface protein 1 & glutamate-rich protein.

    Science.gov (United States)

    Sarmah, Nilanju Pran; Sarma, Kishore; Bhattacharyya, Dibya Ranjan; Sultan, Ali; Bansal, Devendra; Singh, Neeru; Bharti, Praveen K; Kaur, Hargobinder; Sehgal, Rakesh; Mohapatra, Pradyumna Kishore; Mahanta, Jagadish

    2017-09-01

    Northeast (NE) India is one of the high endemic regions for malaria with a preponderance of Plasmodium falciparum, resulting in high morbidity and mortality. The P. falciparum parasite of this region showed high polymorphism in drug-resistant molecular biomarkers. However, there is a paucity of information related to merozoite surface protein 1 (msp-1) and glutamate-rich protein (glurp) which have been extensively studied in various parts of the world. The present study was, therefore, aimed at investigating the genetic diversity of P. falciparum based on msp-1 and glurp in Arunachal Pradesh, a State in NE India. Two hundred and forty nine patients with fever were screened for malaria, of whom 75 were positive for P. falciparum. Blood samples were collected from each microscopically confirmed patient. The DNA was extracted; nested polymerase chain reaction and sequencing were performed to study the genetic diversity of msp-1 (block 2) and glurp. The block 2 of msp-1 gene was found to be highly polymorphic, and overall allelic distribution showed that RO33 was the dominant allele (63%), followed by MAD20 (29%) and K1 (8%) alleles. However, an extensive diversity (9 alleles and 4 genotypes) and 6-10 repeat regions exclusively of R2 type were observed in glurp. The P. falciparum population of NE India was diverse which might be responsible for higher plasticity leading to the survival of the parasite and in turn to the higher endemicity of falciparum malaria of this region.

  7. Adenovirus Particles that Display the Plasmodium falciparum Circumsporozoite Protein NANP Repeat Induce Sporozoite-Neutralizing Antibodies in Mice

    Science.gov (United States)

    Palma, Christopher; Overstreet, Michael G.; Guedon, Jean-Marc; Hoiczyk, Egbert; Ward, Cameron; Karen, Kasey A.; Zavala, Fidel; Ketner, Gary

    2011-01-01

    Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice. Serum obtained from immunized mice recognized both recombinant PfCSP protein and P. falciparum sporozoites, and neutralized P. falciparum sporozoites in vitro. Replicating adenovirus vaccines have provided economical protection against adenovirus disease for over three decades. The recombinants described here may provide a path to an affordable malaria vaccine in the developing world. PMID:21199707

  8. Mitochondrial type II NAD(PH dehydrogenases in fungal cell death

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2015-03-01

    Full Text Available During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(PH dehydrogenases (also called alternative NAD(PH dehydrogenases are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(PH dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(PH dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF-family.

  9. Carbon isotope composition of intermediates of the starch-malate sequence and level of the crassulacean acid metabolism in leaves of Kalanchoe blossfeldiana Tom Thumb.

    Science.gov (United States)

    Deleens, E; Garnier-Dardart, J; Queiroz, O

    1979-09-01

    Isotype analyses were performed on biochemical fractions isolated from leaves of Kalanchoe blossfeldiana Tom Thumb. during aging under long days or short days. Irrespective of the age or photoperiodic conditions, the intermediates of the starch-malate sequence (starch, phosphorylated compounds and organic acids) have a level of (13)C higher than that of soluble sugars, cellulose and hemicellulose. In short days, the activity of the crassulacean acid metabolism pathway is predominant as compared to that of C3 pathway: leaves accumulate organic acids, rich in (13)C. In long days, the activity of the crassulacean acid metabolism pathway increases as the leaves age, remaining, however, relatively low as compared to that of C3 pathway: leaves accumulate soluble sugars, poor in (13)C. After photoperiodic change (long days→short days), isotopic modifications of starch and organic acids suggest evidence for a lag phase in the establishment of the crassulacean acid metabolism pathway specific to short days. The relative proportions of carbon from a C3-origin (RuBPC acitivity as strong discriminating step, isotope discrimination in vivo=20‰) or C4-origin (PEPC activity as weak discriminating step, isotope discrimination in vivo=4‰) present in the biochemical fractions were calculated from their δ(13)C values. Under long days, 30 to 70% versus 80 to 100% under short days, of the carbon of the intermediates linked to the starch-malate sequence, or CAM pathway (starch, phosphorylated compounds and organic acids), have a C4-origin. Products connected to the C3 pathway (free sugars, cellulose, hemicellulose) have 0 to 50% of their carbon, arising from reuptake of the C4 from malate, under long days versus 30 to 70% under short days.

  10. Pyruvate dehydrogenase complex and lactate dehydrogenase as targets for therapy of acute liver failure.

    Science.gov (United States)

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-23

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate in the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-Ab, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by Gene Ontology Enrichment Analysis. Efficacy of histone acetyltransferase inhibitor garcinol and LDH inhibitor galloflavin at reducing liver damage was evaluated in mice with induced hepatotoxicity. Levels and activities of PDHC and LDH were increased in cytoplasmatic and nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-coA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to response to damage. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus and are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive and life-threatening deterioration of liver function resulting in high mortality and

  11. Clinical presentation of severe malaria due plasmodiun falciparum. casecontrol study in Tumaco and Turbo (Colombia. Clínica de la malaria complicada debida a P. falciparum Estudio de casos y controles en Tumaco y Turbo (Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Carmona Fonseca

    2006-04-01

    Full Text Available Background: Latin American studies on severe falciparum malaria are scarce, therefore, the pattern of complications of the region is uknown. Objectives. To identify characterize severe malaria in patients from Tumaco (Nariño and Turbo (Antioquia in Colombia. Methods. The 2000 World Health Organization criteria for complicated malaria were applied in a cases and controls study. Results. 64 cases (P falciparum complicated malaria and 135 controls (P falciparum uncomplicated malaria were included. The time of evolution of the disease (mean 5.6 days in cases and 5.9 in the controls and the frequency of most symptoms were similar in both groups (p>0.05. However, respiratory distress and jaundice was more frequent in the cases (p<0.05. The mean glycemia and creatinina values were similar in both groups; hemoglobin and platelet count were lower in the cases (p<0.05 when compared to controls. On the other hand, blood ureic nitrogen, aspartatoaminotransferase, and total and direct bilirrubin were lower in controls (p<0.05. The frequency of complications in the cases was as follows: hyperparasitaemia 48%, liver dysfunction 44%, acute respiratory distress syndrome 9%, kidney failure 6%, severe thrombocytopenia 5%, severe anemia 3%, cerebral malaria 3% and severe hipoglycemia 2%. The WHO criteria for severe malaria were compared with others and the implications are discussed. Antecedentes y problema: son muy pocos los estudios latinoamericanos sobre malaria por Plasmodium falciparum (P falciparum complicada y se requiere estudiarla para identificar un patrón propio. OBJETIVOS. Identificar las complicaciones presentes en pacientes de Tumaco (Nariño y Turbo (Antioquia en Colombia, con malaria por P falciparum. MÉTODOS. Diseño de casos y controles. Se aplicaron los criterios diagnósticos de complicación OMS-2000 (Organización Mundial de la Salud. RESULTADOS. Se captaron 64 casos (con malaria por P. falciparum complicada y 135 controles (con malaria por

  12. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  13. Multiple essential functions of Plasmodium falciparum actin-1 during malaria blood-stage development.

    Science.gov (United States)

    Das, Sujaan; Lemgruber, Leandro; Tay, Chwen L; Baum, Jake; Meissner, Markus

    2017-08-15

    The phylum Apicomplexa includes intracellular parasites causing immense global disease burden, the deadliest of them being the human malaria parasite Plasmodium falciparum, which invades and replicates within erythrocytes. The cytoskeletal protein actin is well conserved within apicomplexans but divergent from mammalian actins, and was primarily reported to function during host cell invasion. However, novel invasion mechanisms have been described for several apicomplexans, and specific functions of the acto-myosin system are being reinvestigated. Of the two actin genes in P. falciparum, actin-1 (pfact1) is ubiquitously expressed in all life-cycle stages and is thought to be required for erythrocyte invasion, although its functions during parasite development are unknown, and definitive in vivo characterisation during invasion is lacking. Here we have used a conditional Cre-lox system to investigate the functions of PfACT1 during P. falciparum blood-stage development and host cell invasion. We demonstrate that PfACT1 is crucially required for segregation of the plastid-like organelle, the apicoplast, and for efficient daughter cell separation during the final stages of cytokinesis. Surprisingly, we observe that egress from the host cell is not an actin-dependent process. Finally, we show that parasites lacking PfACT1 are capable of microneme secretion, attachment and formation of a junction with the erythrocyte, but are incapable of host cell invasion. This study provides important mechanistic insights into the definitive essential functions of PfACT1 in P. falciparum, which are not only of biological interest, but owing to functional divergence from mammalian actins, could also form the basis for the development of novel therapeutics against apicomplexans.

  14. Multiplicity of Plasmodium falciparum infection following intermittent preventive treatment in infants

    NARCIS (Netherlands)

    Buchholz, Ulrike; Kobbe, Robin; Danquah, Ina; Zanger, Philipp; Reither, Klaus; Abruquah, Harry H.; Grobusch, Martin P.; Ziniel, Peter; May, Jürgen; Mockenhaupt, Frank P.

    2010-01-01

    Intermittent preventive treatment in infants with sulphadoxine-pyrimethamine (IPTi-SP) reduces malaria morbidity by 20% to 33%. Potentially, however, this intervention may compromise the acquisition of immunity, including the tolerance towards multiple infections with Plasmodium falciparum.

  15. Characterization of the repertoire diversity of the Plasmodium falciparum stevor multigene family in laboratory and field isolates

    Directory of Open Access Journals (Sweden)

    Holder Anthony A

    2009-06-01

    Full Text Available Abstract Background The evasion of host immune response by the human malaria parasite Plasmodium falciparum has been linked to expression of a range of variable antigens on the infected erythrocyte surface. Several genes are potentially involved in this process with the var, rif and stevor multigene families being the most likely candidates and coding for rapidly evolving proteins. The high sequence diversity of proteins encoded by these gene families may have evolved as an immune evasion strategy that enables the parasite to establish long lasting chronic infections. Previous findings have shown that the hypervariable region (HVR of STEVOR has significant sequence diversity both within as well as across different P. falciparum lines. However, these studies did not address whether or not there are ancestral stevor that can be found in different parasites. Methods DNA and RNA sequences analysis as well as phylogenetic approaches were used to analyse the stevor sequence repertoire and diversity in laboratory lines and Kilifi (Kenya fresh isolates. Results Conserved stevor genes were identified in different P. falciparum isolates from different global locations. Consistent with previous studies, the HVR of the stevor gene family was found to be highly divergent both within and between isolates. Importantly phylogenetic analysis shows some clustering of stevor sequences both within a single parasite clone as well as across different parasite isolates. Conclusion This indicates that the ancestral P. falciparum parasite genome already contained multiple stevor genes that have subsequently diversified further within the different P. falciparum populations. It also confirms that STEVOR is under strong selection pressure.

  16. Plasmodium falciparum infection in febrile Congolese children: prevalence of clinical malaria 10 years after introduction of artemisinin-combination therapies.

    Science.gov (United States)

    Etoka-Beka, Mandingha Kosso; Ntoumi, Francine; Kombo, Michael; Deibert, Julia; Poulain, Pierre; Vouvoungui, Christevy; Kobawila, Simon Charles; Koukouikila-Koussounda, Felix

    2016-12-01

    To investigate the proportion of malaria infection in febrile children consulting a paediatric hospital in Brazzaville, to determine the prevalence of submicroscopic malaria infection, to characterise Plasmodium falciparum infection and compare the prevalence of uncomplicated P. falciparum malaria according to haemoglobin profiles. Blood samples were collected from children aged <10 years with an axillary temperature ≥37.5 °C consulting the paediatric ward of Marien Ngouabi Hospital in Brazzaville. Parasite density was determined and all samples were screened for P. falciparum by nested polymerase chain reaction (PCR) using the P. falciparum msp-2 marker to detect submicroscopic infections and characterise P. falciparum infection. Sickle cell trait was screened by PCR. A total of 229 children with fever were recruited, of whom 10% were diagnosed with uncomplicated malaria and 21% with submicroscopic infection. The mean parasite density in children with uncomplicated malaria was 42 824 parasites/μl of blood. The multiplicity of infection (MOI) was 1.59 in children with uncomplicated malaria and 1.69 in children with submicroscopic infection. The mean haemoglobin level was 10.1 ± 1.7 for children with uncomplicated malaria and 12.0 ± 8.6 for children with submicroscopic infection. About 13% of the children harboured the sickle cell trait (HbAS); the rest had normal haemoglobin (HbAA). No difference in prevalence of uncomplicated malaria and submicroscopic infection, parasite density, haemoglobin level, MOI and P. falciparum genetic diversity was observed according to haemoglobin type. The low prevalence of uncomplicated malaria in febrile Congolese children indicates the necessity to investigate carefully other causes of fever. © 2016 John Wiley & Sons Ltd.

  17. Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR.

    Science.gov (United States)

    Kuamsab, Napaporn; Putaporntip, Chaturong; Pattanawong, Urassaya; Jongwutiwes, Somchai

    2012-06-10

    Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa.

  18. Prevalence of molecular markers of anti-malarial drug resistance in Plasmodium vivax and Plasmodium falciparum in two districts of Nepal

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Schousboe, Mette L; Thomsen, Thomas

    2011-01-01

    ABSTRACT: BACKGROUND: Sulphadoxine-pyrimethamine (SP) and chloroquine (CQ) have been used in treatment of falciparum and vivax malaria in Nepal. Recently, resistance to both drugs have necessitated a change towards artemisinin combination therapy (ACT) against Plasmodium falciparum in highly...... endemic areas. However, SP is still used against P. falciparum infections in low endemic areas while CQ is used in suspected cases in areas with lack of diagnostic facilities. This study examines the prevalence of molecular markers of P. falciparum and Plasmodium vivax CQ and SP resistance to determine...... and P. vivax for CQ (Pfcrt, Pfmdr1, Pvmdr1) and SP (Pfdhfr, Pfdhps, Pvdhfr), using various PCR-based methods. RESULTS AND DISCUSSION: Positive P. vivax and P. falciparum infections were identified by PCR in 92 and 41 samples respectively. However, some of these were negative in subsequent PCRs. Based...

  19. Characterizing the impact of sustained sulfadoxine/pyrimethamine use upon the Plasmodium falciparum population in Malawi

    DEFF Research Database (Denmark)

    Ravenhall, Matt; Benavente, Ernest Diez; Mipando, Mwapatsa

    2016-01-01

    BACKGROUND: Malawi experienced prolonged use of sulfadoxine/pyrimethamine (SP) as the front-line anti-malarial drug, with early replacement of chloroquine and delayed introduction of artemisinin-based combination therapy. Extended use of SP, and its continued application in pregnancy is impacting...... the genomic variation of the Plasmodium falciparum population. METHODS: Whole genome sequence data of P. falciparum isolates covering 2 years of transmission within Malawi, alongside global datasets, were used. More than 745,000 SNPs were identified, and differences in allele frequencies between countries...

  20. 9-Hydroxyprostaglandin dehydrogenase activity in the adult rat kidney. Regional distribution and sub-fractionation.

    Science.gov (United States)

    Asciak, C P; Domazet, Z

    1975-02-20

    1. Catabolism of prostaglandin F2alpha in the adult rat kidney takes place by the following sequence of enzymatic steps: (1) 15-hydroxyprostaglandin dehydrogenase; (2) prostaglandin delta13-reductase; and (3) 9-hydroxyprostaglandin dehydrogenase. 2. 9-Hydroxyprostaglandin dehydrogenase activity was highest in the cortex with lesser amounts in the medulla and negligible activity detected in the papilla. A similar distribution was observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 3. Most of the 9-hydroxyprostaglandin dehydrogenase activity in the homogenate was found in the high-speed supernatant as also observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 4. These observations indicate that the rat kidney contains an abundance of prostaglandin-catabolising enzymes which favour formation of metabolites of the E-type.

  1. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Shulman, Caroline E; Bulmer, Judith N

    2004-01-01

    BACKGROUND: Pregnancy-associated malaria caused by Plasmodium falciparum adherence to chondroitin sulfate A in the placental intervillous space is a major cause of low birthweight and maternal anaemia in areas of endemic P falciparum transmission. Adhesion-blocking antibodies that specifically...... recognise parasite-encoded variant surface antigens (VSA) are associated with resistance to pregnancy-associated malaria. We looked for a possible relation between VSA-specific antibody concentrations, placental infection, and protection from low birthweight and maternal anaemia. METHODS: We used flow...... cytometry to measure VSA-specific IgG concentrations in plasma samples taken during child birth from 477 Kenyan women selected from a cohort of 910 women on the basis of HIV-1 status, gravidity, and placental histology. We measured VSA expressed by one placental P falciparum isolate and two isolates...

  2. Distinct genomic architecture of Plasmodium falciparum populations from South Asia.

    Science.gov (United States)

    Kumar, Shiva; Mudeppa, Devaraja G; Sharma, Ambika; Mascarenhas, Anjali; Dash, Rashmi; Pereira, Ligia; Shaik, Riaz Basha; Maki, Jennifer N; White, John; Zuo, Wenyun; Tuljapurkar, Shripad; Duraisingh, Manoj T; Gomes, Edwin; Chery, Laura; Rathod, Pradipsinh K

    Previous whole genome comparisons of Plasmodium falciparum populations have not included collections from the Indian subcontinent, even though two million Indians contract malaria and about 50,000 die from the disease every year. Stratification of global parasites has revealed spatial relatedness of parasite genotypes on different continents. Here, genomic analysis was further improved to obtain country-level resolution by removing var genes and intergenic regions from distance calculations. P. falciparum genomes from India were found to be most closely related to each other. Their nearest neighbors were from Bangladesh and Myanmar, followed by Thailand. Samples from the rest of Southeast Asia, Africa and South America were increasingly more distant, demonstrating a high-resolution genomic-geographic continuum. Such genome stratification approaches will help monitor variations of malaria parasites within South Asia and future changes in parasite populations that may arise from in-country and cross-border migrations. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Variation of nitric oxide levels in imported Plasmodium falciparum ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... ISSN 1684–5315 © 2008 Academic Journals. Full Length Research Paper. Variation of nitric oxide levels in imported Plasmodium falciparum malaria episodes. De Sousa, Karina*, Silva, Marcelo S. and Tavira, Luís T. Instituto de Higiene e Medicina Tropical, Centro de Malária e outras Doenças Tropicais, ...

  4. Molecular Investigation into a Malaria Outbreak in Cusco, Peru: Plasmodium falciparum BV1 Lineage is Linked to a Second Outbreak in Recent Times

    Science.gov (United States)

    Okoth, Sheila Akinyi; Chenet, Stella M.; Arrospide, Nancy; Gutierrez, Sonia; Cabezas, Cesar; Matta, Jose Antonio; Udhayakumar, Venkatachalam

    2016-01-01

    In November 2013, a Plasmodium falciparum malaria outbreak of 11 cases occurred in Cusco, southern Peru, where falciparum malaria had not been reported since 1946. Although initial microscopic diagnosis reported only Plasmodium vivax infection in each of the specimens, subsequent examination by the national reference laboratory confirmed P. falciparum infection in all samples. Molecular typing of four available isolates revealed identity as the B-variant (BV1) strain that was responsible for a malaria outbreak in Tumbes, northern Peru, between 2010 and 2012. The P. falciparum BV1 strain is multidrug resistant, can escape detection by PfHRP2-based rapid diagnostic tests, and has contributed to two malaria outbreaks in Peru. This investigation highlights the importance of accurate species diagnosis given the potential for P. falciparum to be reintroduced to regions where it may have been absent. Similar molecular epidemiological investigations can track the probable source(s) of outbreak parasite strains for malaria surveillance and control purposes. PMID:26483121

  5. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Magistrado, Pamela; Sharp, Sarah

    2004-01-01

    Parasite-encoded variant surface antigens (VSAs) like the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are responsible for antigenic variation and infected red blood cell (RBC) cytoadhesion in P. falciparum malaria. Parasites causing severe malaria in noni...... genes, such as PFD1235w/MAL7P1.1, appear to be involved in the pathogenesis of severe disease and are thus attractive candidates for a vaccine against life-threatening P. falciparum malaria....

  6. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats

    Directory of Open Access Journals (Sweden)

    Mian Zhang

    2015-04-01

    Full Text Available Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs and alcohol dehydrogenases (ADHs, further converted to retinoic acid by retinal dehydrogenases (RALDHs. The aim of this study was to investigate whether high-fat diet (HFD induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.

  7. Construction of a system for heterologous production of carbonic anhydrase from Plasmodium falciparum in Pichia pastoris

    OpenAIRE

    Gullberg, Erik

    2008-01-01

    Malaria is one of the biggest current global health problems, and with the increasing occurance of drug resistant Plasmodium falciparum strains, there is an urgent need for new antimalarial drugs. Given the important role of carbonic anhydrase in Plasmodium falciparum (PfCA), it is a potential novel drug target. Heterologous expression of malaria proteins is problematic due to the unusual codon usage of the Plasmodium genome, so to overcome this problem a synthetic PfCA gene was designed, opt...

  8. Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Wang, Christian W.; Mkumbaye, Sixbert I.

    2016-01-01

    Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding hum...... the hypothesis that the CIDRα1-EPCR interaction is key to the pathogenesis of severe malaria and strengthen the rationale for pursuing a vaccine or adjunctive treatment aiming at inhibiting or reducing the damaging effects of this interaction....

  9. 2A and the auxin-based degron system facilitate control of protein levels in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Andrea Kreidenweiss

    Full Text Available Analysis of gene function in Plasmodium falciparum, the most important human malaria parasite, is restricted by the lack of robust and simple reverse genetic tools. Approaches to manipulate protein levels post-translationally are powerful tools to study protein-off effects especially in the haploid malaria parasite where genetic knockouts of essential genes are lethal. We investigated if the auxin-inducible degron system is functional in P. falciparum and found that degron-tagged yellow fluorescent protein levels were efficiently reduced upon addition of auxin which otherwise had no effect on parasite viability. The genetic components required in this conditional approach were co-expressed in P. falciparum by applying the small peptide 2A. 2A is a self-processing peptide from Foot-And-Mouth Disease virus that allows the whole conditional system to be accommodated on a single plasmid vector and ensures stoichiometric expression levels.

  10. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati...

  11. Loading of erythrocyte membrane with pentacyclic triterpenes inhibits Plasmodium falciparum invasion

    DEFF Research Database (Denmark)

    Ziegler, Hanne L; Staalsø, Trine; Jaroszewski, Jerzy W

    2006-01-01

    Lupeol and betulinic acid inhibit the proliferation of Plasmodium falciparum parasites by inhibition of the invasion of merozoites into erythrocytes. This conclusion is based on experiments employing parasite cultures synchronized by magnetic cell sorting (MACS). Identical inhibitory effects were...

  12. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  13. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites

    Science.gov (United States)

    Charnaud, Sarah C.; Dixon, Matthew W. A.; Nie, Catherine Q.; Chappell, Lia; Sanders, Paul R.; Nebl, Thomas; Hanssen, Eric; Berriman, Matthew; Chan, Jo-Anne; Blanch, Adam J.; Beeson, James G.; Rayner, Julian C.; Przyborski, Jude M.; Tilley, Leann; Crabb, Brendan S.

    2017-01-01

    Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins. PMID:28732045

  14. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites.

    Directory of Open Access Journals (Sweden)

    Sarah C Charnaud

    Full Text Available Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins.

  15. Cytoadhesion to gC1qR through Plasmodium falciparum erythrocyte membrane protein 1 in severe malaria

    DEFF Research Database (Denmark)

    Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau

    2016-01-01

    Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed...

  16. Allozyme comparison of three Trypanosoma species (Kinetoplastida: Trypanosomatidae) of toads and frogs by starch-gel electrophoresis.

    Science.gov (United States)

    Martin, D S; Desser, S S; Hong, H

    1992-04-01

    Six metabolic enzymes, glucose-6-phosphate dehydrogenase, glucosephosphate isomerase, isocitrate dehydrogenase, malate dehydrogenase, phosphoglucomutase, and purine nucleoside phosphorylase, from clonal isolates of 3 presumptive species of Trypanosoma (T. fallisi, T. ranarum, and T. rotatorium) from 3 anuran hosts (Bufo americanus, Rana clamitans, and Rana catesbeiana) were compared using starch-gel electrophoresis. Although bands were shared among the different zymodemes of isolates of the same host genus, low genetic polymorphism of the enzyme loci was observed with few apparent shared bands between samples isolated from frogs and toads. A distance value calculated between toad and frog trypanosome isolates suggests the likelihood of long-time separation of species. Cluster analysis based on overall similarity distinguished the trypanosomes of toads and frogs as separate taxa, suggesting that host specificity and observed morphological differences are consistent with heritable allozyme differences.

  17. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) - A Receptor Associated with Severe Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes....... Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has...

  18. The effect of stimulating rates of ionizing radiation on the stability of liver cell mitochondria in chick embryos and young chickens

    International Nuclear Information System (INIS)

    Todorov, B.

    1976-01-01

    Treatments at the rate of 3 rad of chick embryos and young birds have led to the stabilizing of the mitochondrial structures and to lowering the access of enzymes to their substrates. The free activity of malate dehydrogenase drops. Electron microscopic studies reveal that the number of mitochondria rises following irradiation with stimulating doses (3 rad). Mitochondrial cristae remain intact and the matrix presents higher electronic density. (author)

  19. Various pfcrt and pfmdr1 Genotypes of Plasmodium falciparum Cocirculate with P. malariae, P. ovale spp., and P. vivax in Northern Angola

    Science.gov (United States)

    Fançony, Cláudia; Gamboa, Dina; Sebastião, Yuri; Hallett, Rachel; Sutherland, Colin; Sousa-Figueiredo, José Carlos

    2012-01-01

    Artemisinin-based combination therapy for malaria has become widely available across Africa. Populations of Plasmodium falciparum that were previously dominated by chloroquine (CQ)-resistant genotypes are now under different drug selection pressures. P. malariae, P. ovale curtisi, and P. ovale wallikeri are sympatric with P. falciparum across the continent and are frequently present as coinfections. The prevalence of human Plasmodium species was determined by PCR using DNA from blood spots collected during a cross-sectional survey in northern Angola. P. falciparum was genotyped at resistance-associated loci in pfcrt and pfmdr1 by real-time PCR or by direct sequencing of amplicons. Of the 3,316 samples collected, 541 (16.3%) contained Plasmodium species infections; 477 (88.2%) of these were P. falciparum alone, 6.5% were P. falciparum and P. malariae together, and 1.1% were P. vivax alone. The majority of the remainder (3.7%) harbored P. ovale curtisi or P. ovale wallikeri alone or in combination with other species. Of 430 P. falciparum isolates genotyped for pfcrt, 61.6% carried the wild-type allele CVMNK at codons 72 to 76, either alone or in combination with the resistant allele CVIET. No other pfcrt allele was found. Wild-type alleles dominated at codons 86, 184, 1034, 1042, and 1246 of the pfmdr1 locus among the sequenced isolates. In contrast to previous studies, P. falciparum in the study area comprises an approximately equal mix of genotypes associated with CQ sensitivity and with CQ resistance, suggesting either lower drug pressure due to poor access to treatment in rural areas or a rapid impact of the policy change away from the use of standard monotherapies. PMID:22850519

  20. An FtsH protease is recruited to the mitochondrion of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Aiman Tanveer

    Full Text Available The two organelles, apicoplast and mitochondrion, of the malaria parasite Plasmodium falciparum have unique morphology in liver and blood stages; they undergo complex branching and looping prior to division and segregation into daughter merozoites. Little is known about the molecular processes and proteins involved in organelle biogenesis in the parasite. We report the identification of an AAA+/FtsH protease homolog (PfFtsH1 that exhibits ATP- and Zn(2+-dependent protease activity. PfFtsH1 undergoes processing, forms oligomeric assemblies, and is associated with the membrane fraction of the parasite cell. Generation of a transfectant parasite line with hemagglutinin-tagged PfFtsH1, and immunofluorescence assay with anti-PfFtsH1 Ab demonstrated that the protein localises to P. falciparum mitochondria. Phylogenetic analysis and the single transmembrane region identifiable in PfFtsH1 suggest that it is an i-AAA like inner mitochondrial membrane protein. Expression of PfFtsH1 in Escherichia coli converted a fraction of bacterial cells into division-defective filamentous forms implying a sequestering effect of the Plasmodium factor on the bacterial homolog, indicative of functional conservation with EcFtsH. These results identify a membrane-associated mitochondrial AAA+/FtsH protease as a candidate regulatory protein for organelle biogenesis in P. falciparum.

  1. Chronic Plasmodium falciparum infections in an area of low intensity malaria transmission in the Sudan

    DEFF Research Database (Denmark)

    Hamad, A A; El Hassan, I M; El Khalifa, A A

    2000-01-01

    Chronic Plasmodium falciparum malaria infections in a Sudanese village, in an area of seasonal and unstable malaria transmission, were monitored and genetically characterized to study the influence of persistent infection on the immunology and epidemiology of low endemicity malaria. During...... the October-December malaria season of 1996, 51 individuals out of a population of 420 had confirmed and treated P. falciparum malaria in the village of Daraweesh in eastern Sudan. In a cross-sectional survey carried out in December 1996, an additional 6 individuals were found to harbour a microscopically...

  2. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  3. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine.

    Directory of Open Access Journals (Sweden)

    Stephen A Kaba

    Full Text Available The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+ and CD4(+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.To establish the basis for a SAPN-based vaccine, B- and CD8(+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP. We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year protective antibody and poly-functional (IFNγ(+, IL-2(+ long-lived central memory CD8(+ T-cells. Furthermore, we demonstrated that these Ab or CD8(+ T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.

  4. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families.

    Directory of Open Access Journals (Sweden)

    Selina E R Bopp

    Full Text Available Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level, parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing (totaling 14 terabases revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen evolved clones (avg. 5.4 per clone. In clones exposed to atovaquone, we found cytochrome b mutations as well as an amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1 on chromosome 1. We observed 18 large-scale (>1 kb on average deletions of telomere-proximal regions encoding multigene families, involved in immune evasion (9.5×10(-6 structural variants per base pair per generation. Six of these deletions were associated with chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P. falciparum (1.0-9.7×10(-9 mutations per base pair per generation, we can now model the frequency at which drug or immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum. These results will help improve our understanding of how P. falciparum

  5. Modelling the Incidence of Plasmodium vivax and Plasmodium falciparum Malaria in Afghanistan 2006–2009

    Science.gov (United States)

    Alegana, Victor A.; Wright, Jim A.; Nahzat, Sami M.; Butt, Waqar; Sediqi, Amad W.; Habib, Naeem; Snow, Robert W.; Atkinson, Peter M.; Noor, Abdisalan M.

    2014-01-01

    Background Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. Methods To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. Findings From the analysis of healthcare utilisation, over 80% of the population was within 2 hours’ travel of the nearest public health facility, while 64.4% were within 30 minutes’ travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2–9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4–2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. Conclusion This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan. PMID:25033452

  6. Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families

    Science.gov (United States)

    Bopp, Selina E. R.; Manary, Micah J.; Bright, A. Taylor; Johnston, Geoffrey L.; Dharia, Neekesh V.; Luna, Fabio L.; McCormack, Susan; Plouffe, David; McNamara, Case W.; Walker, John R.; Fidock, David A.; Denchi, Eros Lazzerini; Winzeler, Elizabeth A.

    2013-01-01

    Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level, parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing (totaling 14 terabases) revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen evolved clones (avg. 5.4 per clone). In clones exposed to atovaquone, we found cytochrome b mutations as well as an amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1) on chromosome 1. We observed 18 large-scale (>1 kb on average) deletions of telomere-proximal regions encoding multigene families, involved in immune evasion (9.5×10−6 structural variants per base pair per generation). Six of these deletions were associated with chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P. falciparum (1.0–9.7×10−9 mutations per base pair per generation), we can now model the frequency at which drug or immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum. These results will help improve our understanding of how P. falciparum evolves to

  7. Standardization and validation of a cytometric bead assay to assess antibodies to multiple Plasmodium falciparum recombinant antigens

    Directory of Open Access Journals (Sweden)

    Ondigo Bartholomew N

    2012-12-01

    Full Text Available Abstract Background Multiplex cytometric bead assay (CBA have a number of advantages over ELISA for antibody testing, but little information is available on standardization and validation of antibody CBA to multiple Plasmodium falciparum antigens. The present study was set to determine optimal parameters for multiplex testing of antibodies to P. falciparum antigens, and to compare results of multiplex CBA to ELISA. Methods Antibodies to ten recombinant P. falciparum antigens were measured by CBA and ELISA in samples from 30 individuals from a malaria endemic area of Kenya and compared to known positive and negative control plasma samples. Optimal antigen amounts, monoplex vs multiplex testing, plasma dilution, optimal buffer, number of beads required were assessed for CBA testing, and results from CBA vs. ELISA testing were compared. Results Optimal amounts for CBA antibody testing differed according to antigen. Results for monoplex CBA testing correlated strongly with multiplex testing for all antigens (r = 0.88-0.99, P values from Conclusion With optimization, CBA may be the preferred method of testing for antibodies to P. falciparum antigens, as CBA can test for antibodies to multiple recombinant antigens from a single plasma sample and produces a greater range of values in positive samples and lower background readings for blank samples than ELISA.

  8. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Theodore R Sana

    Full Text Available Malaria is a global infectious disease that threatens the lives of millions of people. Transcriptomics, proteomics and functional genomics studies, as well as sequencing of the Plasmodium falciparum and Homo sapiens genomes, have shed new light on this host-parasite relationship. Recent advances in accurate mass measurement mass spectrometry, sophisticated data analysis software, and availability of biological pathway databases, have converged to facilitate our global, untargeted biochemical profiling study of in vitro P. falciparum-infected (IRBC and uninfected (NRBC erythrocytes. In order to expand the number of detectable metabolites, several key analytical steps in our workflows were optimized. Untargeted and targeted data mining resulted in detection of over one thousand features or chemical entities. Untargeted features were annotated via matching to the METLIN metabolite database. For targeted data mining, we queried the data using a compound database derived from a metabolic reconstruction of the P. falciparum genome. In total, over one hundred and fifty differential annotated metabolites were observed. To corroborate the representation of known biochemical pathways from our data, an inferential pathway analysis strategy was used to map annotated metabolites onto the BioCyc pathway collection. This hypothesis-generating approach resulted in over-representation of many metabolites onto several IRBC pathways, most prominently glycolysis. In addition, components of the "branched" TCA cycle, partial urea cycle, and nucleotide, amino acid, chorismate, sphingolipid and fatty acid metabolism were found to be altered in IRBCs. Interestingly, we detected and confirmed elevated levels for cyclic ADP ribose and phosphoribosyl AMP in IRBCs, a novel observation. These metabolites may play a role in regulating the release of intracellular Ca(2+ during P. falciparum infection. Our results support a strategy of global metabolite profiling by untargeted

  9. Histochemical localization of cytokinin oxidase/dehydrogenase ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    dehydrogenase, Withania somnifera, CKX localization. INTRODUCTION. Cytokinin (Ck) is a plant hormone that plays a crucial role in many fundamental processes of plant development throughout the life cycle. These include ...

  10. Diversidad genética de Plasmodium falciparum y sus implicaciones en la epidemiología de la malaria.

    Directory of Open Access Journals (Sweden)

    Judy Natalia Jiménez

    2005-12-01

    Full Text Available La diversidad genética le confiere a Plasmodium falciparum la capacidad de evadir la respuesta inmune del hospedero y producir variantes resistentes a medicamentos y a vacunas, aspectos que juegan un papel importante en el establecimiento de medidas de control contra la malaria. Diferentes autores han documentado la existencia de diversas cepas o clones de P. falciparum, cuya diversidad genética se ha confirmado a través de distintos ensayos de PCR (reacción en cadena de la polimerasa. Numerosas investigaciones realizadas en poblaciones con diferente grado de transmisión de malaria han mostrado la relación existente entre la estructura de la población de P. falciparum y la epidemiología de la enfermedad. En este artículo se describen las fases del ciclo de vida en las que los eventos de recombinación originan la diversidad genética de P. falciparum, se revisan los estudios realizados sobre este aspecto en regiones con diferentes grados de endemicidad, así como sobre sus implicaciones en la adquisición de inmunidad y en el desarrollo de medidas de control.

  11. Correlation Between Haematological Parameters, Kidney Function Tests and Liver Function Tests in Plasmodium Falciparum and Vivax Malaria

    Directory of Open Access Journals (Sweden)

    Mitul Chhatriwala

    2017-12-01

    Full Text Available Abstract: Malaria remains a major cause of morbidity and mortality in India. Plasmodium falciparum remains the main culprit although cases with vivax malaria are on the rise. Severe malaria as defined by the WHO criteria has high rate of complications and mortality. In our study we recruited microscopy positive falciparum and vivax malaria patients. Haematological and biochemical laboratory investigations were carried out in recruited patients. Both parameters were found to be significantly derailed in falciparum cases as compared to vivax. A direct correlation has been observed between kidney function tests (serum creatinine,serum urea and direct bilirubin levels across all cases of malaria. Hence these parameters can be used to identify and monitor the progress of cases of severe malaria as significant proportion of patients fulfilled the criteria of severe malaria in the cohort.

  12. Mapping the binding site of a cross-reactive Plasmodium falciparum PfEMP1 monoclonal antibody inhibitory of ICAM-1 binding

    DEFF Research Database (Denmark)

    Lennartz, Frank; Bengtsson, Anja; Olsen, Rebecca W

    2015-01-01

    The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IE) to adhere to the vascular endothelium, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). In this article, we report the functional characterization of an mAb that recognizes a panel of P...

  13. Genetic diversity of Plasmodium falciparum populations in southeast and western Myanmar.

    Science.gov (United States)

    Soe, Than Naing; Wu, Yanrui; Tun, Myo Win; Xu, Xin; Hu, Yue; Ruan, Yonghua; Win, Aung Ye Naung; Nyunt, Myat Htut; Mon, Nan Cho Nwe; Han, Kay Thwe; Aye, Khin Myo; Morris, James; Su, Pincan; Yang, Zhaoqing; Kyaw, Myat Phone; Cui, Liwang

    2017-07-04

    The genetic diversity of malaria parasites reflects the complexity and size of the parasite populations. This study was designed to explore the genetic diversity of Plasmodium falciparum populations collected from two southeastern areas (Shwekyin and Myawaddy bordering Thailand) and one western area (Kyauktaw bordering Bangladesh) of Myanmar. A total of 267 blood samples collected from patients with acute P. falciparum infections during 2009 and 2010 were used for genotyping at the merozoite surface protein 1 (Msp1), Msp2 and glutamate-rich protein (Glurp) loci. One hundred and eighty four samples were successfully genotyped at three genes. The allelic distributions of the three genes were all significantly different among three areas. MAD20 and 3D7 were the most prevalent alleles in three areas for Msp1 and Msp2, respectively. The Glurp allele with a bin size of 700-750 bp was the most prevalent both in Shwekyin and Myawaddy, whereas two alleles with bin sizes of 800-850 bp and 900-1000 bp were the most prevalent in the western site Kyauktaw. Overall, 73.91% of samples contained multiclonal infections, resulting in a mean multiplicity of infection (MOI) of 1.94. Interestingly, the MOI level presented a rising trend with the order of Myawaddy, Kyauktaw and Shwekyin, which also paralleled with the increasing frequencies of Msp1 RO33 and Msp2 FC27 200-250 bp alleles. Msp1 and Msp2 genes displayed higher levels of diversity and higher MOI rates than Glurp. PCR revealed four samples (two from Shwekyin and two from Myawaddy) with mixed infections of P. falciparum and P. vivax. This study genotyped parasite clinical samples from two southeast regions and one western state of Myanmar at the Msp1, Msp2 and Glurp loci, which revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations at these sites. The results indicated that malaria transmission intensity in these regions remained high and more strengthened control efforts are

  14. Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia.

    Directory of Open Access Journals (Sweden)

    Mohd Ridzuan Mohd Abd Razak

    Full Text Available Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1, merozoite surface protein-2 (MSP-2, glutamate rich protein (GLURP and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI, mean number of alleles (Na, expected heterozygosity (He, linkage disequilibrium (LD and genetic differentiation (FST were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01 and Kota Marudu P. falciparum populations (0.601, p<0.01. High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0

  15. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields.

    Directory of Open Access Journals (Sweden)

    Lorena M Coronado

    Full Text Available The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways.

  16. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway

    Directory of Open Access Journals (Sweden)

    F.T.M. Costa

    2006-12-01

    Full Text Available Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM. This specific maternal-fetal syndrome causes maternal anemia, low birth weight and the death of 62,000 to 363,000 infants per year in sub-Saharan Africa, and thus has a poor outcome for both mother and fetus. However, PAM and non-PAM parasites have been shown to differ antigenically and genetically. After multiple pregnancies, women from different geographical areas develop adhesion-blocking antibodies that protect against placental parasitemia and clinical symptoms of PAM. The recent description of a new parasite ligand encoded by the var2CSA gene as the only gene up-regulated in PAM parasites renders the development of an anti-PAM vaccine more feasible. The search for a vaccine to prevent P. falciparum sequestration in the placenta by eliciting adhesion-blocking antibodies and a cellular immune response, and the development of new methods for evaluating such antibodies should be key priorities in mother-child health programs in areas of endemic malaria. This review summarizes the main molecular, immunological and physiopathological aspects of PAM, including findings related to new targets in the P. falciparum var gene family. Finally, we focus on a new methodology for mimicking cytoadhesion under blood flow conditions in human placental tissue.

  17. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle.

    Science.gov (United States)

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I

    2012-12-01

    Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase.

    Science.gov (United States)

    Nkrumah, Louis J; Muhle, Rebecca A; Moura, Pedro A; Ghosh, Pallavi; Hatfull, Graham F; Jacobs, William R; Fidock, David A

    2006-08-01

    Here we report an efficient, site-specific system of genetic integration into Plasmodium falciparum malaria parasite chromosomes. This is mediated by mycobacteriophage Bxb1 integrase, which catalyzes recombination between an incoming attP and a chromosomal attB site. We developed P. falciparum lines with the attB site integrated into the glutaredoxin-like cg6 gene. Transfection of these attB(+) lines with a dual-plasmid system, expressing a transgene on an attP-containing plasmid together with a drug resistance gene and the integrase on a separate plasmid, produced recombinant parasites within 2 to 4 weeks that were genetically uniform for single-copy plasmid integration. Integrase-mediated recombination resulted in proper targeting of parasite proteins to intra-erythrocytic compartments, including the apicoplast, a plastid-like organelle. Recombinant attB x attP parasites were genetically stable in the absence of drug and were phenotypically homogeneous. This system can be exploited for rapid genetic integration and complementation analyses at any stage of the P. falciparum life cycle, and it illustrates the utility of Bxb1-based integrative recombination for genetic studies of intracellular eukaryotic organisms.

  19. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase.

    Science.gov (United States)

    Sharma, Arvind; Sharma, Amit

    2015-02-01

    The Plasmodium falciparum protein translation enzymes aminoacyl-tRNA synthetases (aaRSs) are an emergent family of drug targets. The aaRS ensemble catalyses transfer of amino acids to cognate tRNAs, thus providing charged tRNAs for ribosomal consumption. P. falciparum proteome expression relies on a total of 36 aaRSs for the three translationally independent compartments of cytoplasm, apicoplast and mitochondria. In the present study, we show that, of this set of 36, a single genomic copy of mitochondrial phenylalanyl-tRNA synthetase (mFRS) is targeted to the parasite mitochondria, and that the mFRS gene is exclusive to malaria parasites within the apicomplexan phyla. Our protein cellular localization studies based on immunofluorescence data show that, along with mFRS, P. falciparum harbours two more phenylalanyl-tRNA synthetase (FRS) assemblies that are localized to its apicoplast and cytoplasm. The 'extra' mFRS is found in mitochondria of all asexual blood stage parasites and is competent in aminoacylation. We show further that the parasite mitochondria import tRNAs from the cytoplasmic tRNA pool. Hence drug targeting of FRSs presents a unique opportunity to potentially stall protein production in all three parasite translational compartments.

  20. Evidence that Plasmodium falciparum diacylglycerol acyltransferase is essential for intraerythrocytic proliferation

    International Nuclear Information System (INIS)

    Palacpac, Nirianne Marie Q.; Hiramine, Yasushi; Seto, Shintaro; Hiramatsu, Ryuji; Horii, Toshihiro; Mitamura, Toshihide

    2004-01-01

    In triacylglycerol (TAG)-accumulating organisms, the physiological roles of diacylglycerol acyltransferase (DGAT), a principal enzyme in the major biosynthetic pathway for TAG, appear to be diverse. Apicomplexan parasite, Plasmodium falciparum, shows unique features in TAG metabolism and trafficking during intraerythrocytic development, and unlike most eukaryotes, only one open reading frame (ORF) encoding a candidate DGAT could be found in its genome. However, whether this candidate ORF encodes P. falciparum DGAT and its physiological relevance have not been assessed. Here, we demonstrate that the ORF is transcribed as a ∼3.6 kb single mRNA throughout intraerythrocytic development, markedly elevated at trophozoite, schizont, and segmented schizont, and indeed encodes a protein exhibiting DGAT activity. Further, we provide evidence that the parasite in which the ORF was disrupted via double crossover recombination cannot be enriched, implying a fundamental role of PfDGAT in intraerythrocytic proliferation