WorldWideScience

Sample records for fair detector development

  1. The PANDA detector at FAIR

    International Nuclear Information System (INIS)

    Bersani, Andrea

    2012-01-01

    The PANDA detector will be installed at FAIR to enterprise a long-term, wide-spectrum physics program in the strong interaction framework. The detector will be installed at the HESR accumulation ring, which will provide an anti-proton beam of unprecedented luminosity and momentum definition. The beam will interact with an internal target. The detector has been designed to allow a 4π coverage around the interaction region. Due to the relatively high energy of the beam, up to 15 GeV, PANDA will feature two magnetic spectrometers: the target spectrometer (TS), with a superconducting solenoid and covering the interaction region, and a forward spectrometer (FS), with a normal-conducting dipole and covering the small angles region. Since the physics program is wide and the requirements on the various subsystems are different, the detector has been designed to be as flexible as possible. The complete detector will be described in detail, both from the viewpoint of the proposed techniques and from the viewpoint of the expected performances. An overview of the status of various components of the detector will be presented, too.

  2. The PANDA detector at FAIR

    Science.gov (United States)

    Bersani, Andrea

    2012-10-01

    The PANDA detector will be installed at FAIR to enterprise a long-term, wide-spectrum physics program in the strong interaction framework. The detector will be installed at the HESR accumulation ring, which will provide an anti-proton beam of unprecedented luminosity and momentum definition. The beam will interact with an internal target. The detector has been designed to allow a 4π coverage around the interaction region. Due to the relatively high energy of the beam, up to 15 GeV, PANDA will feature two magnetic spectrometers: the target spectrometer (TS), with a superconducting solenoid and covering the interaction region, and a forward spectrometer (FS), with a normal-conducting dipole and covering the small angles region. Since the physics program is wide and the requirements on the various subsystems are different, the detector has been designed to be as flexible as possible. The complete detector will be described in detail, both from the viewpoint of the proposed techniques and from the viewpoint of the expected performances. An overview of the status of various components of the detector will be presented, too.

  3. Development and test of a prototype for the PANDA barrel DIRC detector at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kalicy, Grzegorz

    2014-07-01

    The PANDA experiment at FAIR will perform world class physics studies using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. A rich physics program requires very good particle identification (PID). Charged hadron PID for the barrel section of the target spectrometer has to cover the angular range of 22-140 and separate pions from kaons for momenta up to 3.5 GeV/c with a separation power of at least 3 standard deviations. The system that will provide it has to be thin and operate in a strong magnetic field. A ring imaging Cherenkov detector using the DIRC principle meets those requirements. The design of the PANDA Barrel DIRC is based on the successful BABAR DIRC counter with several important changes to improve the performance and optimize the costs. The design options are being studied in detailed Monte Carlo simulation, and implemented in increasingly complex system prototypes and tested in particle beams. Before building the full system prototypes the radiator bars and lenses are measured on the test benches. The performance of the DIRC prototype was quantified in terms of the single photon Cherenkov angle resolution and the photon yield. Results for two full system prototypes will be presented. The prototype in 2011 aimed at investigating the full size expansion volume. It was found that the resolution for this configuration is at the level of in good agreement with ray tracing simulation results. A more complex prototype, tested in 2012, provided the first experience with a compact fused silica prism expansion volume, a wide radiator plate, and several advanced lens options for the focusing system. The performance of the baseline configuration of the prototype with a standard lens and an air gap met the requirements for the PANDA PID for most of the polar angle range but failed at polar angles around 90 due to photon loss at the air gap. Measurements with a prototype high-refractive index compound lens without an air gap at a polar

  4. The ̅PANDA Detector at FAIR

    International Nuclear Information System (INIS)

    Ikegami Andersson, W

    2016-01-01

    The future ̅PANDA detector at FAIR is a state-of-the-art internal target detector designed for strong interaction studies. By utilizing an antiproton beam, a rich and unique physics programme is planned. The ̅PANDA experiment, as well as feasibility studies for hyperon and charmonium physics, are discussed. (paper)

  5. The ̅PANDA Detector at FAIR

    Science.gov (United States)

    Ikegami Andersson, W.; ̅PANDA Collaboration

    2016-11-01

    The future ̅PANDA detector at FAIR is a state-of-the-art internal target detector designed for strong interaction studies. By utilizing an antiproton beam, a rich and unique physics programme is planned. The ̅PANDA experiment, as well as feasibility studies for hyperon and charmonium physics, are discussed.

  6. Developing fair compensation structures

    International Nuclear Information System (INIS)

    Trousdale, W.J.

    1998-01-01

    The issue of finding an effective way to incorporate Aboriginal values into the process of developing fair compensation structures was discussed. This paper discusses pricing intangible values using dollars, but it was emphasized that 'values' are whatever are important to us. Therefore, in order to achieve fair compensation, creative alternatives that are value-focused should be pursued. In addition to the more straight-forward monetary compensation, compensation could also be about avoiding losses, mitigating adverse impacts, achieving better communication, and promoting cultural understanding. 25 refs., 2 tabs

  7. The PANDA DIRC detectors at FAIR

    Science.gov (United States)

    Schwarz, C.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kreutzfeld, K.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.; Allison, L.; Hyde, C.

    2017-07-01

    The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Detection of Internally Reflected Cherenkov light) counters in the target spectrometer. The design for the barrel region covering polar angles between 22o to 140o is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. The novel Endcap Disc DIRC will cover the smaller forward angles between 5o (10o) to 22o in the vertical (horizontal) direction. Both DIRC counters will use lifetime-enhanced microchannel plate PMTs for photon detection in combination with fast readout electronics. Geant4 simulations and tests with several prototypes at various beam facilities have been used to evaluate the designs and validate the expected PID performance of both PANDA DIRC counters.

  8. The PANDA detector and its physics program at FAIR

    International Nuclear Information System (INIS)

    Brinkmann, K.

    2005-01-01

    The PANDA detector will make use of the antiprotons produced in the FAIR complex and stored in the High-Energy Storage Ring HESR for the study of strong interactions in antiproton collisions with protons and heavy targets. The detector features a 4π design for charged particles with a solenoidal magnetic field and full coverage of photons by means of an advanced electromagnetic calorimeter. In addition, a dipole spectrometer will allow high-resolution detection of leading particles characteristic for fixed-target experiments. The physics program of PANDA covers a wide range of topics which address central issues of QCD at low and moderate energies. Spectroscopy of hidden charm in the ccbar level scheme is still a very interesting issue, in particular when states are involved which cannot directly be formed in e + e - reactions. Open charm in the D meson section has recently received renewed interest when states were discovered that are not easily explained in conventional qqbar models. Exotic hadrons and glueballs have been predicted by theory within the energy range covered by PANDA. The search for these and the eventual study of their properties is central to the physics program. Using heavy targets, PANDA intends to study the properties of charm quarks in the hadronic medium. The copious production of baryon-antibaryon pairs at HESR will allow studies using secondary targets for the formation of hypernuclei. Each of these physics topics will be touched while the detector properties needed in order to cover the broad physics program are described. Technical developments and the status of the various detector components will be summarized

  9. HOW APPRAISERS DEVELOP FAIR VALUE

    Directory of Open Access Journals (Sweden)

    MIROSLAV ŠKODA

    2012-01-01

    Full Text Available Management is responsible for its own financial decisions. If we take into account, that fair value concept was shown in financial crisis as something that does not work anymore in this way; there is a big need to develop it for the future. Non-professional readers of financial statements believe, however, that company financials are the work of the public accounting firm that had signed the audit certificate. The main reason for bringing this point up is that when companies disclose Fair Value (FV information in their financial statements, they are taking responsibility for the values disclosed. Management may often be encouraged to utilize the services of an outside professional, but at the end of the day, the outside appraiser is a hired gun. Although the appraiser has to take responsibility for his own work, hiring the appraiser does not absolve management of its ultimate responsibility. The obverse of this is also true. Management does not have to hire the appraiser to develop any fair value disclosures made in the financial statements. Developing FV information is not recommended as a do-it yourself undertaking, there is nothing in Generally Accepted Accounting Principles (GAAP or Securities Exchange Commission (SEC regulations, however, that requires an outside appraiser.

  10. Children develop a veil of fairness

    DEFF Research Database (Denmark)

    Shaw, Alex; Montinari, Natalia; Piovesan, Marco

    2014-01-01

    Previous research suggests that children develop an increasing concern with fairness over the course of development. Research with adults suggests that the concern with fairness has at least 2 distinct components: a desire to be fair and a desire to signal to others that they are fair. We explore......INFO Database Record (c) 2013 APA, all rights reserved)....

  11. SciTil Detector for the PANDA experiment at FAIR

    Science.gov (United States)

    Suzuki, Ken; Gruber, Lukas; Brunner, Stefan; Marton, Johann; Orth, Herbert; Schwarz, Carsten; Scitil/Panda Collaboration

    2014-09-01

    The PANDA experiment at the Facility for Antiproton and Ion Research (FAIR) is a fixed-target experiment installed in a antiproton storage ring (HESR) in the energy range of 1 GeV to 15 GeV. FAIR is being build on the area of the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. The universal PANDA detector together with the HESR enables to study fundamental questions of hadron and nuclear physics, e.g. gluonic excitations, the physics of strange and charm quarks and nucleon structure. The SciTil detector is a barrel time-of-flight detector and is a relatively new subcomponent to the system. The demand arose in order to provide a securer event tagging at the event rates of 20-100 MHz instantaneous event rate, to improve a particle identification capability of relatively low momentum particles, and to allow a faster track finding with pattern recognition. The beam test of the SciTil prototype detector in January 2014 showed a promising result. We report the status and outlook of the project.

  12. A fast and compact electromagnetic calorimeter for the PANDA detector at FAIR

    International Nuclear Information System (INIS)

    Wilms, Andrea

    2005-01-01

    In this presentation we report on the electromagnetic calorimeter of the 4π detector PANDA to be installed at the antiproton storage ring of the proposed Facility for Antiproton and Ion Research (FAIR). We present details of the R and D work with two scintillator materials, PbWO4 (PWO) and BGO, and the new developed large area avalanche photodiodes (LAAPDs) as detector readout

  13. Children develop a veil of fairness.

    Science.gov (United States)

    Shaw, Alex; Montinari, Natalia; Piovesan, Marco; Olson, Kristina R; Gino, Francesca; Norton, Michael I

    2014-02-01

    Previous research suggests that children develop an increasing concern with fairness over the course of development. Research with adults suggests that the concern with fairness has at least 2 distinct components: a desire to be fair and a desire to signal to others that they are fair. We explore whether children's developing concern with behaving fairly toward others may in part reflect a developing concern with appearing fair to others. In Experiments 1 and 2, most 6- to 8-year-old children behaved fairly toward others when an experimenter was aware of their choices; fewer children opted to behave fairly, however, when they could be unfair to others yet appear fair to the experimenter. In Experiment 3, we explored the development of this concern with appearing fair by using a wider age range (6- to 11-year-olds) and a different method. In this experiment, children chose how to assign a good or bad prize to themselves and another participant by either unilaterally deciding who would get each prize or using a fair procedure--flipping a coin in private. Older children were much more likely to flip the coin than younger children, yet were just as likely as younger children to assign themselves the good prize by reporting winning the coin flip more than chance would dictate. Overall, the results of these experiments suggest that as children grow older they become increasingly concerned with appearing fair to others, which may explain some of their increased tendency to behave fairly.

  14. Reconstructing Hyperons with the ANDA Detector at FAIR

    International Nuclear Information System (INIS)

    Ikegami Andersson, W

    2016-01-01

    Hyperon production and the study of their properties is an important part of the physics programme of the future ANDA experiment at FAIR. Antihyperon-hyperon pairs will be produced in antiproton-proton collisions through the annihilation of at least one light antiquark-quark ( u, d ) pair and the creation of a corresponding number of antiquark-quark s pairs. By measuring the decay products of the hyperons, spin observables such as the polarisation can be measured. Many hyperons have a long life-time which gives rise to final state particles originating from displaced vertices. A pattern recognition algorithm using information from the ANDA Straw Tube Tracker is extended to reconstruct not only the transversal, but also the longitudinal components of charged tracks. A Hough transform and a path finding method as tools to extract the longitudinal components are being developed. (paper)

  15. Reconstructing Hyperons with the ANDA Detector at FAIR

    Science.gov (United States)

    Ikegami Andersson, W.

    2016-08-01

    Hyperon production and the study of their properties is an important part of the physics programme of the future ANDA experiment at FAIR. Antihyperon-hyperon pairs will be produced in antiproton-proton collisions through the annihilation of at least one light antiquark-quark (u, d) pair and the creation of a corresponding number of antiquark-quark s pairs. By measuring the decay products of the hyperons, spin observables such as the polarisation can be measured. Many hyperons have a long life-time which gives rise to final state particles originating from displaced vertices. A pattern recognition algorithm using information from the ANDA Straw Tube Tracker is extended to reconstruct not only the transversal, but also the longitudinal components of charged tracks. A Hough transform and a path finding method as tools to extract the longitudinal components are being developed.

  16. Software Development Infrastructure for the FAIR Experiments

    International Nuclear Information System (INIS)

    Uhlig, F; Al-Turany, M; Bertini, D; Karabowicz, R

    2011-01-01

    The proposed project FAIR (Facility for Anti-proton and Ion Research) is an international accelerator facility of the next generation. It builds on top of the experience and technological developments already made at the existing GSI facility, and incorporate new technological concepts. The four scientific pillars of FAIR are NUSTAR (nuclear structure and astrophysics), PANDA (QCD studies with cooled beams of anti-protons), CBM (physics of hadronic matter at highest baryon densities), and APPA (atomic physics, plasma physics, and applications). The FairRoot framework used by all of the big FAIR experiments as a base for their own specific developments, provides basic functionality like IO, geometry handling etc. The challenge is to support all the different experiments with their heterogeneous requirements. Due to the limited manpower, one of the first design decisions was to (re)use as much as possible already available and tested software and to focus on the development of the framework. Beside the framework itself, the FairRoot core team also provides some software development tools. We will describe the complete set of tools in this article. The Makefiles for all projects are generated using CMake. For software testing and the corresponding quality assurance, we use CTest to generate the results and CDash as web front end. The tools are completed by subversion as source code repository and trac as tool for the complete source code management. This set of tools allows us to offer the full functionality we have for FairRoot also to the experiments based on FairRoot.

  17. The FAIR Project: Status and New Developments

    International Nuclear Information System (INIS)

    Schmitt, Lars

    2006-01-01

    Detailed planning and R and D for both, the accelerator and the experimental systems of the future international Facility for Antiproton and Ion Research (FAIR) is in progress on many fronts. It involves a wide range of activities, both at laboratories in partner countries participating in the preparatory activities as well as at GSI.This report summarizes the current situation, with emphasis on recent important developments. This includes new performance aspects of FAIR, in particular also the plans towards QCD spin physics with polarized anti-protons. An outlook on facility development and construction is given

  18. Event reconstruction in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Adamczewski, J.; Becker, K.-H.; Belogurov, S.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eom, J.; Eschke, J.; Höhne, C.; Kampert, K.-H.; Kleipa, V.; Kochenda, L.; Kolb, B.; Kopfer, J.; Kravtsov, P.; Lebedev, S.; Lebedeva, E.; Leonova, E.

    2014-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net-baryon densities and moderate temperatures. One of the key signatures will be di-leptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electrons, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In order to access the foreseen rare probes, the detector and the data acquisition have to handle interaction rates up to 10 MHz. Therefore, the development of fast and efficient event reconstruction algorithms is an important and challenging task in CBM. In this contribution event reconstruction and electron identification algorithms in the RICH detector are presented. So far they have been developed on simulated data but could already be tested on real data from a RICH prototype testbeam experiment at the CERN-PS. Efficient and fast ring recognition algorithms in the CBM-RICH are based on the Hough Transform method. Due to optical distortions of the rings, an ellipse fitting algorithm was elaborated to improve the ring radius resolution. An efficient algorithm based on the Artificial Neural Network was implemented for electron identification in RICH. All algorithms were significantly optimized to achieve maximum speed and minimum memory consumption. - Highlights: • Ring Imaging Cherenkov detector will serve for electron identification in CBM. • We present efficient ring recognition algorithm based on the Hough Transform method. • Developed algorithms were significantly optimized to achieve maximum speed up. • Electron identification algorithm in RICH based on the Artificial Neural Network. • Developed algorithms were successfully tested on real data from the RICH prototype

  19. Ring recognition and electron identification in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, S; Hoehne, C; Ososkov, G

    2010-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility at Darmstadt will measure dileptons emitted from the hot and dense phase in heavy-ion collisions. In case of an electron measurement, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In this contribution we will present algorithms and software which have been developed for electron identification in CBM. Efficient and fast ring recognition in the RICH detector is based on the Hough Transform method which has been accelerated considerably compared to a standard implementation. Ring quality selection is done using an Artificial Neural Network which also has been used for electron identification. Due to optical distortions ellipse fitting and radius corre ction routines are used for improved ring radius resolution. These methods allow for a high purity and efficiency of reconstructed electron rings. For momenta above 2 GeV/c the ring reconstruction efficiency for electrons embedded in central Au+Au collisions at 25 AGeV beam energy is 95% resulting in an electron identification efficiency of 90% at a pion suppression factor of 500. Including information from the TRD a pion suppression of 10 4 is reached at 80% efficiency. The developed algorithm is very robust to a high ring density environment. Current work focusses on detector layout studies in order to optimize the detector setup while keeping a high performance. All developed algorithms were tested on large statistics of simulated events and are included into the CBM software framework for common use.

  20. The bar PANDA Barrel-TOF Detector at FAIR

    Science.gov (United States)

    Zimmermann, S.; Suzuki, K.; Steinschaden, D.; Chirita, M.; Ahmed, G.; Dutta, K.; Kalita, K.; Lehmann, A.; Böhm, M.; Schwarz, K.; Orth, H.; Brinkmann, K.-Th.

    2017-08-01

    The barrel-Time-of-Flight subdetector is one of the outer layers of the multi-layer design of the \\panda target spectrometer. It is designed with a minimal material budget in mind mainly consisting of 90×30×5 mm3 thin plastic scintillator tiles read out on each end by a serial connection of 4 SiPMs. 120 such tiles are placed on 16 2460 × 180 mm2 PCB boards forming a barrel covering an azimuthal angle from 22.5o to 150o. The detector is designed to achieve a time resolution below σ< 100 ps which allows to distinguish events in the constant stream of hits, as well as particle identification below the Cherenkov threshold via the time-of-flight; simultaneously providing the interaction times of events. The current prototype achieved a time resolution of ~54 ps, well below the design goal.

  1. Fair

    CERN Multimedia

    2005-01-01

    The 'Presses Polytechniques Universitaires Romandes' is organising a book exhibition. The major topics covered will be science and technology. The fair will take place in the foyer of the main building (building 60), and will be open from 10am - 4pm on 5th July 2005.

  2. Design and performance studies of the micro-vertex-detector for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Amar-Youcef, Samir

    2012-04-12

    The CBM experiment is a fixed target experiment to be installed at the future accelerator facility at GSI/FAIR. It will investigate the properties of nuclear matter at extreme conditions and its underlying strong interaction. The research of the CBM experiment, which focuses on the regime of highest net-baryon densities and moderate temperatures, is complementary to this of the experiments at RHIC/BNL (STAR) and LHC/CERN (ALICE), which mainly focuses on the regime of high energy and zero net-baryon densities. The corresponding conditions in the CBM experiment can be produced in heavy-ion collisions at beam energies between 10 and 40 AGeV. Heavy particles, as e.g. charm carrying particles, could be sensitive to the properties of the medium in the early phase of the collision. However due to the short lifetime of open charm particles, they can only be reconstructed via their decay products and the corresponding track topology. Consequently in order to reconstruct the decay vertex with a high accuracy an ultrathin detector system with excellent spatial resolution is required. For the precise vertexing a microvertex detector (MVD) is envisaged, which has to be located directly behind the target and has to operate in the vacuum. Monolithic Active Pixel Sensors (MAPS) are the most promising candidates for the underlying sensor technology for the MVD of the CBM experiment. In the context of this thesis first attempts haven been initiated in order to integrate mechanically MAPS sensors into an ultra-thin detector dedicated to the CBM experiment. The mechanical integration necessarily needs to contain the MAPS sensors, electrical services and a support structure to cool and mount the sensors. As, apart from the intrinsic properties of the sensor, the support structures contribute notably to the specific functions and properties of the detector, particular care has to be taken during its development. Its implementation is not meant to push already the limits, rather it is

  3. Design and performance studies of the micro-vertex-detector for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Amar-Youcef, Samir

    2012-01-01

    The CBM experiment is a fixed target experiment to be installed at the future accelerator facility at GSI/FAIR. It will investigate the properties of nuclear matter at extreme conditions and its underlying strong interaction. The research of the CBM experiment, which focuses on the regime of highest net-baryon densities and moderate temperatures, is complementary to this of the experiments at RHIC/BNL (STAR) and LHC/CERN (ALICE), which mainly focuses on the regime of high energy and zero net-baryon densities. The corresponding conditions in the CBM experiment can be produced in heavy-ion collisions at beam energies between 10 and 40 AGeV. Heavy particles, as e.g. charm carrying particles, could be sensitive to the properties of the medium in the early phase of the collision. However due to the short lifetime of open charm particles, they can only be reconstructed via their decay products and the corresponding track topology. Consequently in order to reconstruct the decay vertex with a high accuracy an ultrathin detector system with excellent spatial resolution is required. For the precise vertexing a microvertex detector (MVD) is envisaged, which has to be located directly behind the target and has to operate in the vacuum. Monolithic Active Pixel Sensors (MAPS) are the most promising candidates for the underlying sensor technology for the MVD of the CBM experiment. In the context of this thesis first attempts haven been initiated in order to integrate mechanically MAPS sensors into an ultra-thin detector dedicated to the CBM experiment. The mechanical integration necessarily needs to contain the MAPS sensors, electrical services and a support structure to cool and mount the sensors. As, apart from the intrinsic properties of the sensor, the support structures contribute notably to the specific functions and properties of the detector, particular care has to be taken during its development. Its implementation is not meant to push already the limits, rather it is

  4. A readout system for the micro-vertex-detector demonstrator for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Christoph

    2011-06-09

    The Compressed Baryonic Matter Experiment (CBM) is a fixed target heavy ion experiment currently in preparation at the future FAIR accelerator complex in Darmstadt. The CBM experiment focuses on the measurements of diagnostic probes of the early and dense phase of the fireball at beam energies from 8 up to 45 AGeV. As observables, rare hadronic, leptonic and photonic probes are used, including open charm. Open charm will be identified by reconstructing the secondary decay vertex of the corresponding short lived particles. As the central component for track reconstruction, a detector system based on silicon semiconductor detectors is planned. The first three stations of the Silicon Tracking System (STS) make up the so-called Micro-Vertex-Detector (MVD) operating in moderate vacuum. Because of the well-balanced compromise between an excellent spatial resolution (few {mu}m), low material budget ({proportional_to}50 {mu}m Si), adequate radiation tolerance and readout speed, Monolithic Active Pixel Sensors (MAPS) based on CMOS technology are more suited than any other technology for the reconstruction of the secondary vertex in CBM. A new detector concept has to be developed. Two MVD-Demonstrator modules have been successfully tested with 120 GeV pions at the CERN-SPS. The main topic of this thesis is the development of a control and readout concept of several MVD-Demonstrator modules with a common data acquisition system. In order to achieve the required results a front-end electronics device has been developed which is capable of reading the analogue signals of two sensors on a ex-print cable. The high data rate of the MAPS sensors (1.2 Gbit per second and sensor by 50 MHz and 12 bit ADC resolution) requires a readout system which processes the data on-line in a pipeline to avoid dead times. In order to implement the pipeline processing an FPGA is used, which is located on an additional hardware platform. In order to integrate the MVD-Demonstrator readout board in the

  5. A readout system for the micro-vertex-detector demonstrator for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Schrader, Christoph

    2011-01-01

    The Compressed Baryonic Matter Experiment (CBM) is a fixed target heavy ion experiment currently in preparation at the future FAIR accelerator complex in Darmstadt. The CBM experiment focuses on the measurements of diagnostic probes of the early and dense phase of the fireball at beam energies from 8 up to 45 AGeV. As observables, rare hadronic, leptonic and photonic probes are used, including open charm. Open charm will be identified by reconstructing the secondary decay vertex of the corresponding short lived particles. As the central component for track reconstruction, a detector system based on silicon semiconductor detectors is planned. The first three stations of the Silicon Tracking System (STS) make up the so-called Micro-Vertex-Detector (MVD) operating in moderate vacuum. Because of the well-balanced compromise between an excellent spatial resolution (few μm), low material budget (∝50 μm Si), adequate radiation tolerance and readout speed, Monolithic Active Pixel Sensors (MAPS) based on CMOS technology are more suited than any other technology for the reconstruction of the secondary vertex in CBM. A new detector concept has to be developed. Two MVD-Demonstrator modules have been successfully tested with 120 GeV pions at the CERN-SPS. The main topic of this thesis is the development of a control and readout concept of several MVD-Demonstrator modules with a common data acquisition system. In order to achieve the required results a front-end electronics device has been developed which is capable of reading the analogue signals of two sensors on a ex-print cable. The high data rate of the MAPS sensors (1.2 Gbit per second and sensor by 50 MHz and 12 bit ADC resolution) requires a readout system which processes the data on-line in a pipeline to avoid dead times. In order to implement the pipeline processing an FPGA is used, which is located on an additional hardware platform. In order to integrate the MVD-Demonstrator readout board in the HADES data

  6. Studies of SiPM photosensors for time-of-flight detectors within PANDA at FAIR

    International Nuclear Information System (INIS)

    Gruber, L.

    2014-01-01

    The PANDA experiment at FAIR is a planned particle physics experiment dedicated to strong interaction studies using proton-antiproton annihilations. The PANDA time-of-flight (TOF) system is foreseen as a Scintillator Tile (SciTil) Hodoscope, which will deliver valuable input for event timing and particle identification. The proposed detector is based on small plastic scintillator tiles with a size of about 30 x 30 x 5 mm 3 , which are read-out with directly attached Silicon Photomultipliers (SiPMs). The whole system is composed of 5760 scintillator tiles and twice the number of photodetectors, covering an area of about 5.2 m 2 in total. The requirements for the detector are a time resolution in the order of 100 ps sigma and a minimum use of material due to the limited space inside the PANDA spectrometer. SiPMs are extremely versatile photodetectors which tend to successively replace the ordinary vacuum Photomultiplier Tubes (PMTs) in many of the photosensing demands ranging from particle physics to medical imaging. Due to many advantages like good time resolution, high photon detection efficiency (PDE), compactness, low operating voltage, radiation hardness, low cost and, in contrast to PMTs, insensitivity to magnetic fields, SiPMs are well suited for applications in high energy physics like PANDA. Recently, Philips invented the first fully digital SiPM (DPC), which allows to exploit the quasi digital nature of single photon detection. The analog and digital SiPM, respectively, are the main detector technologies used within this work. This thesis describes a detailed study of SiPM properties in order to characterize the new devices and get a profound understanding of their functionality. The characterization studies have been carried out using various experimental setups employing pulsed pico- and femtosecond lasers. With regard to applications in high energy physics experiments, e.g. the PANDA TOF system, parameters like SiPM gain, dark count rate, time resolution

  7. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  8. Development of a Tracking System of Exotic Nuclear Beams for FAIR

    International Nuclear Information System (INIS)

    Fernandez, B.; Abou-Haidar, Z.; Alvarez, M. A. G.; Pancin, J.; Drouart, A.; Kebbiri, M.; Riallot, M.

    2010-01-01

    New accelerators like SPIRAL2 (GANIL, France) or FAIR (GSI, Germany) will be soon constructed, and they will be able to produce radioactive ion beams (RIB) with high intensities of current (≥10 6 pps). These beams, at low energy, lower than 20 MeV/n, usually have high emittance, which imposes the use of tracking detectors before the target in order to reconstruct the trajectory of the ions. The group of Nuclear Physics at CNA (Centro Nacional de Aceleradores), is in charge of developing a tracking system for the low energy branch of FAIR (the HISPEC/DESPEC project). A collaboration with CEA-SACLAY was established, with the aim of developing, building and testing low pressure Secondary electron Detectors (SeD). Within this proposal we have projected and constructed a new Nuclear Physics Line in the CNA in order to be able to receive any kind of detector tests and the associated nuclear instruments.

  9. ATLAS Inner Detector developments

    CERN Document Server

    Barberis, D

    2000-01-01

    The ATLAS Inner Detector consists of three layers of silicon pixels, four double layers of silicon microstrips and a Transition Radiation Tracker (straw tubes). The good performance of the track and vertex reconstruction algorithms is a direct consequence of the small radius (4.3, 10.1 and 13.2 cm), fine pitch ($50 \\times 300~\\mu$m) and low occupancy ($<3 \\times 10^{-4}$ at design luminosity) of the pixel detectors, and of the good tracking capabilities of the SCT and the TRT. The full detector simulation is used to evaluate the performance of the detector and of the reconstruction algorithms. Results are presented on track and vertex reconstruction efficiencies and resolutions, and on the separation between $b$-jets and jets produced by light quarks.

  10. Development of FARICH detector for particle identification system at accelerators

    Science.gov (United States)

    Finogeev, D. A.; Kurepin, A. B.; Razin, V. I.; Reshetin, A. I.; Usenko, E. A.; Barnyakov, A. Yu.; Barnyakov, M. Yu.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kasyanenko, P. V.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Ovtin, I. V.; Podgornov, N. A.; Talyshev, A. A.; Danilyuk, A. F.

    2018-01-01

    Aerogel has been successfully used as a radiator in Cherenkov detectors. In 2004, a multilayer aerogel providing Cherenkov ring focusing was proposed and produced. FARICH (Focusing Aerogel Rich Imaging CHerenkov) detectors such as ARICH for Belle-II (KEK, Japan), Forward RICH for PANDA detector (FAIR, Germany), and FARICH for the Super Charm-Tau factory project (BINP, Novosibirsk) have been developed based on this aerogel. Prototypes of FARICH detector based on MRS APD and Philips DPC photosensors were developed and tested in the framework of this project. An angular resolution for Cherenkov rings of 3.6 mrad was achieved.

  11. Detector research and development

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1984-01-01

    The function of this group is to explore new concepts in detectors and to develop systems that optimize the accuracy of measurement in the specific uses for which they are designed. Experiments this year have been conducted entirely at CERN. Two high-density time-projection chambers (HDPC's) for tagging spectator neutrons in colliding alpha beam experiments at the CERN ISR were constructed, installed, and successfully operated during the August run at the Split Field Magnet (SFM) facility of the CERN ISR. Although the main effort has been associated with the HDPC spectator neutron tagging, some initial thoughts have been given to an experiment (concerned with strange baryon production and the associated instrumentation) to be proposed and conducted at the CERN SPS in 1986. An experiment is being designed and proposed which will take advantage of new opportunities for study of high energy nucleus-nucleus collisions made available with the construction by LBL and GSI of an injector for the CERN SPS. Beam energies up to 225 GeV/nucleon will become available

  12. Development of DIRC counters for the PANDA experiment at FAIR

    International Nuclear Information System (INIS)

    Seitz, B.; Bettoni, D.; Branford, D.; Britting, A.; Carassiti, V.; Cecchi, A.; Cowie, E.; Dodokhof, V.Kh.; Dueren, M.; Eyrich, W.; Foehl, K.; Hayrapetyan, A.; Hill, G.; Hoek, M.; Hohler, R.; Kaiser, R.; Keri, T.; Lehmann, A.; Lehmann, D.; Marton, J.

    2011-01-01

    The PANDA experiment at the planned FAIR facility at GSI, Darmstadt, aims at measuring hadronic final states with unprecedented precision and luminosity. Superior particle identification of charged and neutral particles is mandatory to fulfil PANDA's physics aims. DIRC (Detection of Internally Reflected Cherenkov light) counters are foreseen for charged particle identification. A barrel DIRC will cover the central region while a disc DIRC will provide particle identification in the forward region. Three DIRC concepts differing in the radiator geometry and method for dispersion correction are studied. The barrel DIRC uses a novel imaging system and aims at exploiting a 3D reconstruction to mitigate dispersion effects. Two concepts are investigated for the forward disc DIRC. One concept employs passive dispersion correction and focussing light guides for image reconstruction. Alternatively, time-of-propagation measurements and a wave-length dependent photon detection system are investigated. The three detector designs share common developments such as investigating radiator properties and photon detection systems, and use the same test beam facilities.

  13. Fast parallel ring recognition algorithm in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, S.

    2011-01-01

    The Compressed Baryonic Matter (CBM)experiment at the future FAIR facility at Darmstadt will measure dileptons emitted from the hot and dense phase in heavy ion collisions. In case of an electron measurement, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detector (TRD). Very fast data reconstruction is extremely important for CBM because of the huge amount of data which has to be handled. In this contribution, a parallelized ring recognition algorithm is presented. Modern CPUs have two features, which enable parallel programming. First, the SSE technology allows using the SIMD execution model. Second, multicore CPUs enable the use of multithreading. Both features have been implemented in the ring reconstruction of the RICH detector. A considerable speedup factor from 357 to 2.5 ms/event has been achieved including preceding code optimization for Intel Xeon X5550 processors at 2.67 GHz

  14. The Forward Endcap of the Electromagnetic Calorimeter for the PANDA Detector at FAIR

    International Nuclear Information System (INIS)

    Albrecht, Malte

    2015-01-01

    The versatile 4π-detector PANDA will be built at the Facility for Antiproton and Ion Research (FAIR), an accelerator complex, currently under construction near Darmstadt, Germany. A cooled antiproton beam in a momentum range of 1.5 – 15GeV/c will be provided by the High Energy Storage Ring (HESR). All measurements at PANDA rely on an excellent performance of the detector with respect to tracking, particle identification and energy measurement. The electromagnetic calorimeter (EMC) of the PANDA detector will be equipped with 15744 PbWO 4 crystals (PWO-II), which will be operated at a temperature of – 25° C in order to increase the light output. The design of the forward endcap of the EMC has been finalized. The crystals will be read out with Large Area Avalanche Photo Diodes (LAAPDs) in the outer regions and with Vacuum Photo Tetrodes (VPTTs) in the innermost part. Production of photosensor units utilizing charge integrating preamplifiers has begun. A prototype comprised of 216 PbWO4 crystals has been built and tested at various accelerators (CERN SPS, ELSA/Bonn, MAMI/Mainz), where the crystals have been exposed to electron and photon beams of 25MeV up to 15GeV. The results of these test measurements regarding the energy and position resolution are presented

  15. Fair Trade in Sustainable Development. The Potential for Fair Trade Market Growth in Poland

    Directory of Open Access Journals (Sweden)

    Grażyna Śmigielska

    2015-11-01

    Full Text Available The paper presents the concept of Fair Trade, which is considered an alternative to conventional trade, and becomes increasingly popular in the Western countries. In addition, some results of empirical research, conveyed in Poland and aimed at diagnosis and assessment of Fairtrade products market, are provided. Fair trade is analysed not only in the broad theoretical context which shows its contribution to sustainable development and relation to corporate social responsibility, but also in the framework of supply chains management. The benefits from the Fairtrade label, including transaction costs reduction are indicated. The assumption is that to achieve them, consumer acceptance of the idea and willingness to buy Fairtrade products are necessary. The empirical research was focused on answering the question whether a market niche for Fairtrade goods exists in Poland and how to develop it by the means of communication tools. The market niche, although very small, has been identified and described. It is apparent that, in order to develop it, a public policy, aimed at raising the awareness of Fair Trade idea, is necessary as well as marketing activities like social marketing Internet campaigns and better and more prominently products display.

  16. STAR Vertex Detector Upgrade Development

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu,Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-28

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented.

  17. Recent advances in Detector development

    CERN Document Server

    Bonaudi, Franco

    1993-01-01

    Important programmes of research and development in particle detectors are under way. The main European efforts in this field are centred around the Detector R & D Committee (DRDC) of CERN, which was set up in 1990. More than 40 proposals have been received, and about 30 of these form part of the approved programme. The principal lines of development will be illustrated, under the broad headings of tracking, colarimetry, particle identification and data acquisition

  18. STAR Vertex Detector Upgrade Development

    International Nuclear Information System (INIS)

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu, Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-01

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented

  19. THE DEVELOPMENT OF FAIR CATEGORIES. APPENDIX B.

    Science.gov (United States)

    HANDY, RICKY; AND OTHERS

    A TRANSCRIPTION WAS MADE OF A GROUP DISCUSSION CONDUCTED TO DEVELOP A SCALE FOR MAKING QUANTIFIED RATINGS OF THE INTERACTIONS OF STUDENT TEACHERS AND PUPILS AS OBSERVED FROM A FILM OF A 15-MINUTE LESSON PRESENTED BY THE STUDENT TEACHER. THE INTERACTIONS WERE TO BE JUDGED ON THE BASIS OF THE AMIDON-FLANDERS INTERACTION ANALYSIS SCALE, AND A NEW…

  20. GUARANA ORGANIC: FAIR TRADE AND GREEN DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Adriana Teixeira Bastos

    2014-03-01

    sustainability. This comprises a complex story, as it incorporates elements from various areas of knowledge, such as international strategy, sustainable development, ethics and social organization. The main issue for discussion in this teaching case is the identification of how the Consortium Peoples Aisó Ayira, responsible for Project Wará, can protect against the competition, which offers a similar, cheaper product, to ensure their sustainability.

  1. Report on Advanced Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  2. Barrel time-of-flight detector for the PANDA experiment at FAIR

    Science.gov (United States)

    Gruber, L.; Brunner, S. E.; Marton, J.; Orth, H.; Suzuki, K.; PANDA Tof Group

    2016-07-01

    The barrel time-of-flight detector for the PANDA experiment at FAIR is foreseen as a Scintillator Tile (SciTil) Hodoscope based on several thousand small plastic scintillator tiles read-out with directly attached Silicon Photomultipliers (SiPMs). The main tasks of the system are an accurate determination of the time origin of particle tracks to avoid event mixing at high collision rates, relative time-of-flight measurements as well as particle identification in the low momentum regime. The main requirements are the use of a minimum material amount and a time resolution of σ < 100 ps. We have performed extensive optimization studies and prototype tests to prove the feasibility of the SciTil design and finalize the R&D phase. In a 2.7 GeV/c proton beam at Forschungszentrum Jülich a time resolution of about 80 ps has been achieved using SiPMs from KETEK and Hamamatsu with an active area of 3 × 3mm2. Employing the Digital Photon Counter from Philips a time resolution of about 30 ps has been reached.

  3. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  4. Detector development and test facility

    International Nuclear Information System (INIS)

    Reeder, D.D.

    1993-01-01

    Following the ideas presented in the proposal to the DoE, we have begun to acquire the equipment needed to design, develop construct and test the electronic and mechanical features of detectors used in High Energy Physics Experiments. A guiding principle for the effort is to achieve integrated electronic and mechanical designs which meet the demanding specifications of the modern hadron collider environment yet minimize costs. This requires state of the art simulation of signal processing as well as detailed calculations of heat transfer and finite element analysis of structural integrity

  5. Application of a double-sided silicon-strip detector as a differential pumping barrier for NESR experiments at FAIR

    NARCIS (Netherlands)

    Streicher, B.; Egelhof, P.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kollmus, H.; Kroell, Th; Mutterer, M.; von Schmid, M.; Traeger, M.

    2011-01-01

    The presented work focuses on the development of a differential pumping system using double-sided silicon-strip detectors to separate the ultra-high vacuum of a storage ring from subsequent detectors and outgassing components placed in an auxiliary vacuum. Such a technical concept will give the

  6. Development of a microstrip-based neutron detector

    Indian Academy of Sciences (India)

    The detector has an active area of 20 mm × 15 mm and consists of alternate anodes and ... active area to neutrons and recording the position spectrum. The detector shows fairly uniform efficiency ... ventional multiwire proportional counters (MWPC) in terms of resolution and count rate. The performance of the detector can ...

  7. Development of innovative silicon radiation detectors

    CERN Document Server

    Balbuena, JuanPablo

    Silicon radiation detectors fabricated at the IMB-CNM (CSIC) Clean Room facilities using the most innovative techniques in detector technology are presented in this thesis. TCAD simulation comprises an important part in this work as becomes an essential tool to achieve exhaustive performance information of modelled detectors prior their fabrication and subsequent electrical characterization. Radiation tolerance is also investigated in this work using TCAD simulations through the potential and electric field distributions, leakage current and capacitance characteristics and the response of the detectors to the pass of different particles for charge collection efficiencies. Silicon detectors investigated in this thesis were developed for specific projects but also for applications in experiments which can benefit from their improved characteristics, as described in Chapter 1. Double-sided double type columns 3D (3D-DDTC) detectors have been developed under the NEWATLASPIXEL project in the framework of the CERN ...

  8. Development of leak detector by radiation. 2

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Okano, Yasuhiro; Chisaka, Haruo

    1997-01-01

    Leak detector by radiation has been developed by cooperative research between Water Authority and us. In his fiscal year, the most suitable arrangement of detector system was simulated by Monte Carlo method. The first, the experimental values were compared with the results of simulation. The second, calculation was carried out by changing the quality of reflective materials and distance between radiation source and detector. The simulation results were agreed with the experimental results. On the basis of the rate of presence of leak, the most suitable arrangement of detector system was obtained under the conditions that both radiation source and detector covered with graphite or iron of 5 cm thickness and separated each other 3 cm apart. However, by comparing FOM (figure of merit), the suitable arrangement was that radiation source and detector adjoined each other and covered by graphite or iron of 20 cm thickness. (S.Y.)

  9. Equity, fairness, and the development of a sustainability ethos

    Directory of Open Access Journals (Sweden)

    John Cairns Jr.

    2001-02-01

    Full Text Available Estimates made just before the 21st century indicate that, by the year 2100, Earth may have between 10 and 11 billion people - not quite double the 6 billion population count reached in October 1999. Sustainable use of the planet requires that human needs be met without impairing the integrity of the planet's ecological life support system. This objective will almost certainly require equity and fairness in resource allocation among members of the human species and with natural systems upon which human depend. For the first time in history, humans have the power to create serious disequilibrium in natural systems at a global level. Nature is not vengeful, but it is opportunistic; new 'equilibrium conditions' are likely to be far less favorable to humans than present conditions. To prevent disequilibrium, a new ethos or set of guiding beliefs regarding human society's relationship with natural systems is essential. The best descriptor of the new ethos is eco-ethics (www.eeiu.org guided by ethical science and implemented by compassionate, reasoned environmental politics. ESEP, the publication organ of the Eco-Ethics International Union, should be a powerful force in developing the necessary integration of science and value systems while maintaining the integrity of both.

  10. MCP detector development for UV space missions

    Science.gov (United States)

    Conti, Lauro; Barnstedt, Jürgen; Hanke, Lars; Kalkuhl, Christoph; Kappelmann, Norbert; Rauch, Thomas; Stelzer, Beate; Werner, Klaus; Elsener, Hans-Rudolf; Schaadt, Daniel M.

    2018-04-01

    We are developing imaging and photon counting UV-MCP detectors, which are sensitive in the wavelength range from far ultraviolet to near ultraviolet. A good quantum efficiency, solar blindness and high spatial resolution is the aim of our development. The sealed detector has a Cs-activated photoactive layer of GaN (or similarly advanced photocathode), which is operated in semitransparent mode on (001)-MgF2. The detector comprises a stack of two long-life MCPs and a coplanar cross strip anode with advanced readout electronics. The main challenge is the flawless growth of the GaN photocathode layer as well as the requirements for the sealing of the detector, to prevent a degradation of the photocathode. We present here the detector concept and the experimental setup, examine in detail the status in the production and describe the current status of the readout electronics development.

  11. Development of planar detectors with active edge

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Vianello, E.; Zorzi, N.

    2011-01-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  12. Development of ALICE microstrip detectors at IRST

    International Nuclear Information System (INIS)

    Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Gregori, P.; Rachevskaia, I.; Zorzi, N.

    2001-01-01

    We report on the development of double-sided, AC-coupled, microstrip detectors oriented to the A Large Ion Collider Experiment (ALICE). The main design and processing issues are presented, together with some selected results from the electrical characterization of detectors and related test structures

  13. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2011-12-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  14. Design and construction of the structure of the DEMONSTRATOR of the CALIFA detector for R3B-FAIR using carbon-fiber composites

    Directory of Open Access Journals (Sweden)

    Casarejos E.

    2014-03-01

    Full Text Available In this paper we describe the DEMONSTRATOR structures and active units (PETALs developed for the detector CALIFA of the experiment R3B - FAIR. The design is based in the CALIFA BARREL mechanical solutions, but adapted to the characteristics of the PETALs, namely in what concerns the load distribution during setup and service. The R&D program defined the materials and procedures for both producing the pieces of carbon fiber (CF composites as well as the mounting of the bundles to make an alveolar structure. The procedures also include a quality control program to ensure the dimensional properties of the CF assemblies. We are also developing the use of tomographic imaging analysis for this quality program, that will be of mayor interest in the construction of the future CALIFA CF-structure.

  15. Preamplifier-shaper prototype for the Fast Transition Detector of the Compressed Baryonic Matter (CBM) experiment at FAIR

    CERN Document Server

    Soltveit, Hans Kristian

    2007-01-01

    In this work a preamplifier-shaper prototype for the Fast Transition Detector of the Compressed BaryonicMatter (CBM) experiment at FAIR fabricated using a 0.35 μm CMOS technology will be presented. The ASIC integrates 16 identical Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, two bridged-T filters, Common-Mode FeedBack (CMFB) network and two non-inverting level shifting stages. The circuit is optimized for a detector capacitance Cd of (5-10)pF. Measurement results confirm the noise of 330 e− + 12 e−/pF obtained in simulations for a pulse with a Full Width Half Maximum (FWHM) of 71 ns. The circuit recovers to the baseline within 200 ns. The conversion gain is 12.64 mV/fC. An integral nonlinearity of 0.7% is also achieved. The maximum output swing is 2 V. The power consumption is 16 mW/channel where the main contributors are the input transistor and the level shifting stage with 5.3 mW and 6.6 mW, respectively. The total area of the chip is 12 mm2. Although the circuit was designed for...

  16. Measuring the impact of fair trade on development

    NARCIS (Netherlands)

    Ruben, R.; Fort, R.; Zuniga Arias, G.E.

    2009-01-01

    This study of the impact of fair trade relies on new field data from coffee and banana co-operatives in Peru and Costa Rica, including a detailed assessment of its welfare effects by comparing FT farmers with non-FT farmers as a benchmark. Attention is focused on three major effects: (a) direct

  17. Fast parallel tracking algorithm for the muon detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, A.; Hoehne, C.; Kisel', I.; Ososkov, G.

    2010-01-01

    Particle trajectory recognition is an important and challenging task in the Compressed Baryonic Matter (CBM) experiment at the future FAIR accelerator at Darmstadt. The tracking algorithms have to process terabytes of input data produced in particle collisions. Therefore, the speed of the tracking software is extremely important for data analysis. In this contribution, a fast parallel track reconstruction algorithm, which uses available features of modern processors is presented. These features comprise a SIMD instruction set (SSE) and multithreading. The first allows one to pack several data items into one register and to operate on all of them in parallel thus achieving more operations per cycle. The second feature enables the routines to exploit all available CPU cores and hardware threads. This parallel version of the tracking algorithm has been compared to the initial serial scalar version which uses a similar approach for tracking. A speed-upfactor of 487 was achieved (from 730 to 1.5 ms/event) for a computer with 2 x Intel Core 17 processors at 2.66 GHz

  18. MCP detector development for UV space missions

    OpenAIRE

    Conti, Lauro; Barnstedt, Jürgen; Hanke, Lars; Kalkuhl, Christoph; Kappelmann, Norbert; Rauch, Thomas; Stelzer, Beate; Werner, Klaus; Elsener, Hans-Rudolf; Schaadt, Daniel M.

    2018-01-01

    We are developing imaging and photon counting UV-MCP detectors, which are sensitive in the wavelength range from far ultraviolet to near ultraviolet. A good quantum efficiency, solar blindness and high spatial resolution is the aim of our development. The sealed detector has a Cs-activated photoactive layer of GaN (or similarly advanced photocathode), which is operated in semitransparent mode on (001)-MgF 2 . The detector comprises a stack of two long-life MCPs and a coplanar cross strip anod...

  19. Development of sodium leak detectors for PFBR

    International Nuclear Information System (INIS)

    Sylvia, J.I.; Rao, P. Vijayamohana; Babu, B.; Madhusoodanan, K.; Rajan, K.K.

    2012-01-01

    Highlights: ► Sodium leak detection system developed for PFBR using diverse principle. ► Miniature, remotely locatable diverse leak detector developed for Main Vessel. ► Mutual inductance type leak detectors designed and adapted for different locations. ► Sodium Ionisation detectors used for area monitoring. ► Crosswire type leak detector designed, developed and tested. - Abstract: The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam near Chennai in India. The wide and high operating temperature, highly chemically active nature of sodium and its reaction with air make the sodium instrumentation complex over the conventional instrumentation. Over the years, traditional instruments such as wire type leak detectors, spark plug type leak detectors were developed and used in different sodium systems. The redundant and diverse leak detection method calls for development of special instrumentation for sodium systems which include sodium ionization (leak) detector for detecting minute sodium leak in addition to those systems based on mutual inductance principle. For detection of sodium leak from reactor Main Vessel (MV), diverse methods are used such as miniature, remotely locatable, Mutual Inductance type Leak Detector(MILD) and specially modified spark plug type leak detector. The design of MILD is suitably modified for detecting leak in double wall pipes and Diverse Safety Rod drive Mechanism (DSRDM). Steam/water leak in steam generator produces hydrogen and leads to high pressure and temperature in the system. Rupture disc is used as a safety device which punctures itself due to sudden pressure rise. To detect the discharge of sodium and its reaction products at the downstream of the rupture disc due to bursting of the rupture disc, cross wire type leak detector has been designed, developed and tested. The selection of the leak detection system depends on the location where leak has to be detected. This paper

  20. Development of Large Cryogenic Semiconductor Detectors

    International Nuclear Information System (INIS)

    Mandic, Vuk

    2016-01-01

    This project aims at developing large cryogenic semiconductor detectors for applications in particle physics and more broadly. We have developed a 150 mm diameter, 43 mm thick, Si-based detector that measures ionization released in an interaction of a particle inside the silicon crystal of high purity, operated at 30 mK temperature. We demonstrated that such a detector can be used to measure recoil energies on the keV scale, and that its stable operation can be maintained indefinitely. Detectors of this type could therefore be used in the fields of direct dark matter searches, coherent neutrino scattering measurements, X-ray observations, as well as in broader applications such as homeland security.

  1. Development of high sensitivity radon detectors

    CERN Document Server

    Takeuchi, Y; Kajita, T; Tasaka, S; Hori, H; Nemoto, M; Okazawa, H

    1999-01-01

    High sensitivity detectors for radon in air and in water have been developed. We use electrostatic collection and a PIN photodiode for these detectors. Calibration systems have been also constructed to obtain collection factors. As a result of the calibration study, the absolute humidity dependence of the radon detector for air is clearly observed in the region less than about 1.6 g/m sup 3. The calibration factors of the radon detector for air are 2.2+-0.2 (counts/day)/(mBq/m sup 3) at 0.08 g/m sup 3 and 0.86+-0.06 (counts/day)/(mBq/m sup 3) at 11 g/m sup 3. The calibration factor of the radon detector for water is 3.6+-0.5 (counts/day)/(mBq/m sup 3). The background level of the radon detector for air is 2.4+-1.3 counts/day. As a result, one standard deviation excess of the signal above the background of the radon detector for air should be possible for 1.4 mBq/m sup 3 in a one-day measurement at 0.08 g/m sup 3.

  2. Hybrid pixel detector development for medical radiography

    International Nuclear Information System (INIS)

    Midgley, S.; Berry, A.; Benci, N.; Morton, S.; Phillips, D.; Smith, P.; Troja, S.; Lewis, R.

    2007-01-01

    A 7-year project has been initiated to develop hybrid pixel detectors for medical radiography. Crystalline semiconductor will be bonded to a pixellated readout chip where individual integrated circuits process each event, transferring the position, energy and timing information to the data acquisition controller. Chips will be tiled to produce a large area detector, capable of energy dispersive photon counting at moderate spatial resolution. Preliminary results from studies examining the design features and operation of the device are presented

  3. Development of floating strip micromegas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bortfeldt, Jonathan

    2014-04-28

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10{sup 34} cm{sup -2}s{sup -1} around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm{sup 2} floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm{sup 2} floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm{sup 2} floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the

  4. Development of prototype components for the silicon tracking system of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Lymanets, Anton

    2013-06-26

    The CBM experiment at future accelerator facility FAIR will investigate the properties of nuclear matter under extreme conditions. The experimental programm is different from the heavy-ion experiments at RHIC (BNL) and LHC (CERN) that create nuclear matter at high temperatures. In contrast, the study of the QCD phase diagram in the region of the highest net baryon densities and moderate temperatures that is weakly explored will be performed with high precision. For this, collisions of different heavy-ion beams at the energies of 10-45 GeV/nucleon with nuclear target will be measured. The physics programme of the CBM experiment includes measurement of both rare probes and bulk observables that originate from various phases of a nucleus-nucleus collision. In particular, decay of particles with charm quarks can be registered by reconstructing the decay vertex detached from the primary interaction point by several hundreds of micrometers (e.g., decay length cτ=123 μm for D{sup 0} meson). For this, precise tracking and full event reconstruction with up to 600 charged particle tracks per event within acceptance are required. Other rare probes require operation at interaction rate of up to 10 MHz. The detector system that performs tracking has to provide high position resolution on the order of 10 μm, operate at high rates and have radiation tolerant design with low material budget. The Silicon Tracking System (STS) is being designed for charged-particle tracking in a magnetic field. The system consists of eight tracking station located in the aperture of a dipole magnet with 1 T field. For tracks with momentum above 1 GeV, momentum resolution of such a system is expected to be about 1%. In order to fulfill this task, thorough optimization of the detector design is required. In particular, minimal material budget has to be achieved. Production of a detector module requires research and development activities with respect to the module components and their integration

  5. Development of a CMOS SOI pixel detector

    CERN Document Server

    Ishino, Hirokazu; Hazumi, M; Ikegami, Y; Kohriki, T; Tajima, O; Terada, S; Tsuboyama, T; Unno, Y; Ushiroda, Y; Ikeda, H; Hara, K; Ishino, H; Kawasaki, T; Miyake, H; Martin, E; Varner, G; Tajima, H; Ohno, M; Fukuda, K; Komatsubara, H; Ida, J

    2007-01-01

    We have developed a monolithic radiation pixel detector using silicon on insulator (SOI) with a commercial 0.15 m fullydepleted- SOI technology and a Czochralski high resistivity silicon substrate in place of a handle wafer. The SOI TEG (Test Element Group) chips with a size of 2.5 x 2.5mm2 consisting of 20 x 20 um2 pixels have been designed and manufactured. Performance tests with a laser light illumination and a . ray radioactive source indicate successful operation of the detector. We also brie y discuss the back gate effect as well as the simulation study.

  6. Developments in solid state vertex detectors

    International Nuclear Information System (INIS)

    Damerell, C.J.S.

    1984-12-01

    Since the discovery of the J/psi in November 1974, there has been a strong interest in the physics of particles containing higher-flavour quarks (charm, bottom, top, ...). High precision vertex detectors can be used to identify the decay products of parent particles which have lifetimes of the order 10 -13 s. The paper surveys the progress which is being made in developing silicon detectors with the necessary tracking precision (< approx. 5 μm) to be used for this purpose in fixed target experiments and also in colliders such as SLC and LEP. (author)

  7. Semiconductor nuclear radiation detectors. Recent developments

    International Nuclear Information System (INIS)

    Siffert, P.; Ponpon, J.P.; Cornet, A.

    1975-01-01

    Gamma spectroscopy uses semiconductors of atomic number as high as possible. Until recently germanium only was used, in devices of N-I-P structure (P-doped - intrinsic N - doped region) which had to be used and kept at low temperature; germanium detectors of NP structure have now been developed and have the advantage that they can be kept at room temperature. However germanium is not the ideal material for all applications and many laboratories are now studying cadmium telluride and mercuric iodide detectors [fr

  8. Diamond radiation detectors II. CVD diamond development for radiation detectors

    International Nuclear Information System (INIS)

    Kania, D.R.

    1997-01-01

    Interest in radiation detectors has supplied some of the impetus for improving the electronic properties of CVD diamond. In the present discussion, we will restrict our attention to polycrystalhne CVD material. We will focus on the evolution of these materials over the past decade and the correlation of detector performance with other properties of the material

  9. The impact of retailers own brand Fair Trade products on developing countries producers

    DEFF Research Database (Denmark)

    Aguiar, L. K.; Vieira, L. M.; Ferreira, G. C.

    Fair Trade certification allows small producers to access international markets and to add value to their products. The Fair-Trade Labelling Organisation certification body (FLOCERT) is responsible for organising and transferring technical information from the consumer market to producers...... in developing countries. Fair trade certification reduces the complexity of transactions and enables producers to adhere to the certification system. FLOCERT exercises governance power in production sites to meet demand by the enforcement of the standards not dissimilar to what happens in global value chains...

  10. Corporate Taxation and BEPS: A Fair Slice for Developing Countries?

    NARCIS (Netherlands)

    I. Burgers (Irene); I. Mosquera (Irma)

    2017-01-01

    textabstractThe aim of this article is to examine the differences in perception of ‘fairness’ between developing and developed countries, which influence developing countries’ willingness to embrace the Base Erosion and Profit Shifting (BEPS) proposals and to recommend as to how to overcome these

  11. Corporate Taxation and BEPS : A Fair Slice for Developing Countries?

    NARCIS (Netherlands)

    Burgers, Irene; Mosquera, Irma

    The aim of this article is to examine the differences in perception of ‘fairness’ between developing and developed countries, which influence developing countries’ willingness to embrace the Base Erosion and Profit Shifting (BEPS) proposals and to recommend as to how to overcome these differences.

  12. Gas detectors: recent developments and future perspectives

    International Nuclear Information System (INIS)

    Sauli, F.

    1998-01-01

    Thirty years after the invention of the multi-wire proportional chamber, and 20 from the first Vienna Wire Chamber Conference, the interest and research efforts devoted to gas detectors are still conspicuous, as demonstrated by the number of papers submitted to this conference. Innovative and performing devices have been perfected over the years, used in experiments, and still developed today. Introduced 10 years ago, the micro-strip gas chamber appears to fulfill the needs of high-luminosity trackers; progress in this field will be reported, followed by a discussion on discharge problems encountered and possible solutions. Recent and potentially more powerfull devices such as the micro-gap, narrow-gap and micro-dot chambers will be described. A new generation of detectors exploiting avalanche multiplication in narrow gaps has emerged recently, namely micromegas, CAT (compteur a trous) and the Gas Electron Multiplier (GEM); whilst still in their infancy, they have promising performances with increased reliability in harsh operating conditions. I will describe also some 'tools of trade' used to model the counting action and to analyze the properties of the detectors, discuss limitations to their performances, and suggest ways to improvement. Several still controversial subjects of study (as for example, aging), and imaginative efforts of the experimenters ensure a continuing progress in the field of gas detectors, and new editions of this conference for years to come. (author)

  13. Corporate Taxation and BEPS: A Fair Slice for Developing Countries?

    OpenAIRE

    Burgers, Irene; Mosquera, Irma

    2017-01-01

    textabstractThe aim of this article is to examine the differences in perception of ‘fairness’ between developing and developed countries, which influence developing countries’ willingness to embrace the Base Erosion and Profit Shifting (BEPS) proposals and to recommend as to how to overcome these differences. The article provides an introduction to the background of the OECD’s BEPS initiatives (Action Plan, Low Income Countries Report, Multilateral Framework, Inclusive Framework) and the conc...

  14. AIM cryocooler developments for HOT detectors

    Science.gov (United States)

    Rühlich, I.; Mai, M.; Withopf, A.; Rosenhagen, C.

    2014-06-01

    Significantly increased FPA temperatures for both Mid Wave and Long Wave IR detectors, i.e. HOT detectors, which have been developed in recent years are now leaving the development phase and are entering real application. HOT detectors allowing to push size weight and power (SWaP) of Integrated Detectors Cooler Assemblies (IDCA's) to a new level. Key component mainly driving achievable weight, volume and power consumption is the cryocooler. AIM cryocooler developments are focused on compact, lightweight linear cryocoolers driven by compact and high efficient digital cooler drive electronics (DCE) to also achieve highest MTTF targets. This technology is using moving magnet driving mechanisms and dual or single piston compressors. Whereas SX030 which was presented at SPIE in 2012 consuming less 3 WDC to operate a typical IDCA at 140K, next smaller cooler SX020 is designed to provide sufficient cooling power at detector temperature above 160K. The cooler weight of less than 200g and a total compressor length of 60mm makes it an ideal solution for all applications with limited weight and power budget, like in handheld applications. For operating a typical 640x512, 15μm MW IR detector the power consumption will be less than 1.5WDC. MTTF for the cooler will be in excess of 30,000h and thus achieving low maintenance cost also in 24/7 applications. The SX020 compressor is based on a single piston design with integrated passive balancer in a new design achieves very low exported vibration in the order of 100mN in the compressor axis. AIM is using a modular approach, allowing the chose between 5 different compressor types for one common Stirling expander. The 6mm expander with a total length of 74mm is now available in a new design that fits into standard dewar bores originally designed for rotary coolers. Also available is a 9mm coldfinger in both versions. In development is an ultra-short expander with around 35mm total length to achieve highest compactness. Technical

  15. Development of the RICH detectors in LHCb

    CERN Document Server

    Easo, S

    2003-01-01

    For particle identification, LHCb plans to use two RICH detectors, one covering the charged particle momentum range 1-65 GeV/c using aerogel and C//4F//1//0 radiators and the other covering up to 150 Ge V/c using CF//4 radiator. Hybrid photo diodes (HPD) with 80 mm photocathode diameter are being developed to detect the Cherenkov photons in the wavelength range 200-600 nm. The HPDs encapsulate silicon pixel anodes bump bonded to binary readout chips processed using 0.25 mum CMOS technology. Results obtained with prototype radiators and HPDs in test beams will be presented and the design and development of these RICH detectors will be reviewed.

  16. Legitimacy to develop fair value measurement standards: The Case of the IVSC Discussion Paper – Determination of fair value of intangible assets for IFRS reporting purposes

    OpenAIRE

    Deaconu, Adela; Nistor, Cristina Silvia; Filip, Crina

    2009-01-01

    This research studies, through a content analysis of the comment letters to the IVSC project on fair value determination of intangible assets, the legitimacy of this professional body, or of the accounting associations, to develop measurement standards specific to this accounting concept. At present, with the exception of FAS 157, no professional standard offers clear technical solutions for fair value determination for financial reporting purposes. We have come to the conclusion that, among ...

  17. New Detector Development for X-ray Astronomy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We propose to continue our detector development program in X-ray astronomy. Under our current grant we are developing a new type of active pixel detector. The...

  18. Trends and new developments in gaseous detectors

    CERN Document Server

    AUTHOR|(CDS)2069485

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hadron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have p...

  19. Development of Interconnect Technologies for Particle Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Mani [Univ. of California, Davis, CA (United States)

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  20. Particle Detectors: Research and Development at CERN

    International Nuclear Information System (INIS)

    Fabjan, C. W.

    2008-01-01

    Over the past 15 years a worldwide Detector R and D Programme has made the LHC experiments possible. These experiments operate at a new level of event rate and detection capabilities. Based on these advances, Detector R and D is continuing at CERN in close collaboration with University and Research Institutes. Several main directions are being pursued for solid-state and gaseous tracking devices, advanced crystal and noble liquid calorimetry, particle identification methods, and advanced signal-processing techniques. This effort is directed towards experiments at even higher collision rates at the LHC, the requirements for the next generation of linear electron-positron colliders and for applications outside particle physics, such as medical diagnostics instrumentation. We shall illustrate this challenging, stimulating and creative programme with examples and show how these developments are taking place in close collaboration between CERN and institutions around the globe

  1. Characterization of silicon microstrip sensors, front-end electronics, and prototype tracking detectors for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Sorokin, Iurii

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at the extreme conditions will be studied in collisions of a heavy ion beam with a fixed heavy element target. The present work is devoted to the development of the main component of the CBM experiment - the Silicon Tracking System (STS). The STS has to enable reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution Δp/p of 1 %, and withstand the radiation load of up to 10 14 n eq /cm 2 (n eq -neutron equivalent). The STS will be based on double-sided silicon microstrip sensors, that will be arranged in 8 planes in the aperture of the dipole magnet. Selftriggering readout electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass microcables. In the stage of R and D, as well as in the stages of pre-series and series production, characterization of the sensors, of the front-end electronics, and of the complete detector modules has to be performed. In the present work the required techniques were developed, and the performance of the latest detector prototypes was evaluated. A particular attention is paid to evaluation of the signal amplitude, as it is one of the most important detector characteristics. Techniques for measuring the passive electrical characteristics of the sensors were developed. These include: the coupling and the interstrip capacitances, the interstrip resistance, the bias resistance, the strip leakage current, the bulk capacitance, and the bulk leakage current. The techniques will be applied for the quality assurance of the sensors during the pre-series and the series production. Extensive characterization of the prototype readout chip, n-XYTER, was performed. The register settings were optimized, and the dependence of the amplitude response on

  2. Characterization of silicon microstrip sensors, front-end electronics, and prototype tracking detectors for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, Iurii

    2013-07-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at the extreme conditions will be studied in collisions of a heavy ion beam with a fixed heavy element target. The present work is devoted to the development of the main component of the CBM experiment - the Silicon Tracking System (STS). The STS has to enable reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution Δp/p of 1 %, and withstand the radiation load of up to 10{sup 14} n{sub eq}/cm{sup 2} (n{sub eq}-neutron equivalent). The STS will be based on double-sided silicon microstrip sensors, that will be arranged in 8 planes in the aperture of the dipole magnet. Selftriggering readout electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass microcables. In the stage of R and D, as well as in the stages of pre-series and series production, characterization of the sensors, of the front-end electronics, and of the complete detector modules has to be performed. In the present work the required techniques were developed, and the performance of the latest detector prototypes was evaluated. A particular attention is paid to evaluation of the signal amplitude, as it is one of the most important detector characteristics. Techniques for measuring the passive electrical characteristics of the sensors were developed. These include: the coupling and the interstrip capacitances, the interstrip resistance, the bias resistance, the strip leakage current, the bulk capacitance, and the bulk leakage current. The techniques will be applied for the quality assurance of the sensors during the pre-series and the series production. Extensive characterization of the prototype readout chip, n-XYTER, was performed. The register settings were optimized, and the dependence of the

  3. How to implement the Science Fair Self-Help Development Program in schools

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D.

    1994-01-01

    This manual is intended to act as a working guide for setting up a Science Fair Volunteer Support Committee at your school. The Science Fair Volunteer Support Committee, or SFVSC, is the key component of the Science Fair Self-Help program, which was developed by Sandia National Laboratories and is designed to support a school`s science activities. The SFVSC is a team of parents and community volunteers who work in concert with a school`s teaching staff to assist and manage all areas of a school Science and Engineering Fair. The main advantage of creating such a committee is that it frees the science teachers from the organizational aspects of the fair and lets them concentrate on their job of teaching science. This manual is based on information gained through a Self-Help Development pilot program that was developed by Sandia National Laboratories during the 1991--92 school year at three Albuquerque, NM, middle schools. The manual describes the techniques that were successful in the pilot program and discusses how these techniques might be implemented in other schools. This manual also discusses problems that may be encountered, including suggestions for how they might be resolved.

  4. Development and preliminary tests of resistive microdot and microstrip detectors

    CERN Document Server

    Peskov, V; Nappi, E; Martinengo, P; Oliveira, R; Pietropaolo, F; Picchi, P

    2012-01-01

    In the last few years our group have focused on developing various designs of spark-protected micropattern gaseous detectors featuring resistive electrodes instead of the traditional metallic ones: resistive microstrip counters, resistive GEM, resistive MICROMEGAS. These detectors combine in one design the best features of RPCs (spark-protection) and micropattern detectors (a high position resolution). In this paper we report the progress so far made in developing other types of resistive micropattern detectors: a microdot-microhole detector and a microgap-microstrip detector. The former detector is an optimal electron amplifier for some special designs of dual phase noble liquid TPCs, for example with a CsI photocathode immersed inside the noble liquid. Preliminary tests of such a detector, for the first time built and investigated, are reported in this paper. The latter detector is mainly orientated towards medical imaging applications such as X-ray scanners. However, we believe that after a proper gas opti...

  5. Development of a Kevlar/PMR-15 reduced drag DC-9 nacelle fairing

    Science.gov (United States)

    Kawai, R. T.; Hrach, F. J.

    1980-01-01

    The paper describes an advanced composite fairing designed to reduce drag on DC-9 nacelles as a part of the NASA Engine Component Improvement Program. This fairing is the aft enclosure for the thrust reverser actuator system on JT8D engine nacelles and is subjected to a 500 F exhaust flow during the reverse thrust. A reduced-drag configuration was developed by using in-flight tuft surveys for flow visualization in order to identify areas with low-quality flow, and then modifying the aerodynamic lines to improve the flow. A fabrication method for molding the part in an autoclave was developed; this material system is suitable for 500 F. The resultant composite fairing reduces the overall aircraft drag 1% with a weight reduction of 40% when compared with a metal component.

  6. Development of a silicon tracking and vertex detection system for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann M.

    2007-01-01

    The compressed baryonic matter (CBM) experiment is a fixed-target heavy-ion spectrometer planned at the future international Facility for Antiproton and Ion Research (FAIR) at GSI. The CBM research program will explore the phase diagram of Quantum Chromo Dynamics (QCD) in the region of high baryon chemical potentials, in other words nuclear matter at extreme densities. Matter of such forms is believed to exist in the interior of neutron stars and in the cores of certain types of supernovae. In the laboratory, the dense nuclear medium is created in collisions of heavy-ion beams with nuclear targets. With beam intensities of up to 10 12 ions per pulse, beam energies up to 45 GeV/nucleon, and high availability the SIS-300 synchrotron of FAIR will offer unique opportunities for this research. The CBM detector will identify hadrons and leptons in nuclear collisions with up to 1000 charged particles at event rates up to 10 MHz. The experiment will be optimized in particular for the detection of rare probes, like hadronic decays of D mesons and leptonic decays of light vector mesons, that can yield information on the initial dense phase of the collisions. The challenge is to accomplish in this environment high-resolution charged particle tracking, momentum measurement and secondary vertex selection with a silicon tracking and vertex detection system, the central component of the CBM detector. The system requirements include a very low material budget, radiation tolerant sensors with high spatial resolution, and a fast readout compatible with high-level-only triggers. The paper discusses the concept of the silicon detection system, the optimization of its layout, and the R and D on micro-strip and pixel sensors as well as front-end electronics for the building blocks of the detector stations

  7. Silicon detector technology development in India for the participation ...

    Indian Academy of Sciences (India)

    A specific research and development program has been carried out by BARC in India to develop the technology for large area silicon strip detectors for application in nuclear and high energy physics experiments. These strip detectors will be used as pre-shower detector in the CMS experiment at LHC, CERN for 0/ ...

  8. Silicon detector technology development in India for the participation ...

    Indian Academy of Sciences (India)

    Abstract. A specific research and development program has been carried out by BARC in India to develop the technology for large area silicon strip detectors for application in nuclear and high energy physics experiments. These strip detectors will be used as pre-shower detector in the CMS experiment at LHC, CERN for ...

  9. Co-Production in Community Development: A Day at the Educational Fair.

    Science.gov (United States)

    Burke, Richard C.

    1992-01-01

    Describes community development efforts of the Educacion Communitaria Radial (Community Education through Radio) in Bolivia during 1979-80 that encouraged cooperation within and between communities through coproduction of learning activities. The use of theater that evolved into a day-long educational fair is described, and school involvement is…

  10. Signal development in irradiated silicon detectors

    CERN Document Server

    Kramberger, Gregor; Mikuz, Marko

    2001-01-01

    This work provides a detailed study of signal formation in silicon detectors, with the emphasis on detectors with high concentration of irradiation induced defects in the lattice. These defects give rise to deep energy levels in the band gap. As a consequence, the current induced by charge motion in silicon detectors is signifcantly altered. Within the framework of the study a new experimental method, Charge correction method, based on transient current technique (TCT) was proposed for determination of effective electron and hole trapping times in irradiated silicon detectors. Effective carrier trapping times were determined in numerous silicon pad detectors irradiated with neutrons, pions and protons. Studied detectors were fabricated on oxygenated and non-oxygenated silicon wafers with different bulk resistivities. Measured effective carrier trapping times were found to be inversely proportional to fuence and increase with temperature. No dependence on silicon resistivity and oxygen concentration was observ...

  11. Validity and Fairness

    Science.gov (United States)

    Kane, Michael

    2010-01-01

    This paper presents the author's critique on Xiaoming Xi's article, "How do we go about investigating test fairness?," which lays out a broad framework for studying fairness as comparable validity across groups within the population of interest. Xi proposes to develop a fairness argument that would identify and evaluate potential fairness-based…

  12. Advanced thermal neutron area detector. The development and application of an imaging plate neutron detector

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    This report reviews a newly developed imaging plate neutron detector (IP-ND), along with its actual application. First, imaging plate, which is an integrating two-dimensional radiation detector using photostimulated luminescence (PSL), is briefly mentioned. Then, IP-ND is described in terms of the following: design principle, trial manufacture of IP-ND, and performance (such as dynamic range, spatial resolution, neutron detection efficiency, and PSL according to kinds of neutron converters). The application of IP-ND is outlined under the following fields: (1) neutron radiography, (2) electric noiseless detector, (3) fast neutron detector, (4) neutron diffraction, (5) neutron scattering, and (6) neutron reflector. (N.K.)

  13. Price fairness

    OpenAIRE

    Diller, Hermann

    2013-01-01

    Purpose – The purpose of this article is to integrate the various strands of fair price research into a concise conceptual model. Design/methodology/approach – The proposed price fairness model is based on a review of the fair pricing literature, incorporating research reported in not only English but also German. Findings – The proposed fair price model depicts seven components of a fair price: distributive fairness, consistent behaviour, personal respect and regard for the partner, fair dea...

  14. Detector development and experiments at COSY

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1988-05-01

    These proceedings contain the manuscripts of the lectures presented at the named workshop. These concern a review about the COSY project, ideal detectors for hadron physics at COSY, possible experiments at COSY, magnetic spectrometers, a modification of BIG KARL, consideration on COSY experiments in the early stage, a detector for exclusive 2-meson production experiments, the excitation of baryons and physics with complex projectiles, a status report about the Indiana cooler ring, special scintillators, multiwire chambers, position-sensitive semiconductor detectors, detectors for neutral particles, a small large-acceptance photon detector, a status report of the two-arm photon spectrometer TAPS, studies on the parity violation in the pp scattering, the measurement of excitation functions for the study of dibaryon states, and results from the neutron workshop held in February 1988 at the KFA Juelich. (HSI)

  15. Teacher participation in science fairs as professional development in South Africa

    Directory of Open Access Journals (Sweden)

    Clement K. Mbowane

    2017-07-01

    Full Text Available This research was undertaken to understand the perceptions of the Physical Sciences teachers who participate in the South African ‘Eskom Expo for Young Scientists’, regarding the educational significance of the science fair, and the extent to which expo participation provides an opportunity for professional development. The educational significance of this article is found in its contribution to the professional identity of teachers in their roles as organisers, mentors and judges. The model of Beijaard et al. (Teach Teach Educ. 2004;20:107–128 was used to characterise the teachers’ professional identity in terms of professional knowledge, attitudes, beliefs, norms and values, as well as emotions and agency. Interviews with the Physical Sciences teachers were analysed using thematic analysis, ultimately interpreting and linking the categories of responses to the theme of professional identity. The study found that expo participation contributes to pedagogical knowledge, content knowledge (as both procedural and declarative or factual knowledge and pedagogical content knowledge. Self-efficacy beliefs were strengthened, positive attitudes were developed, and strategies of inquiry-based learning and effective methodological instruction were observed during participation, which contributed to the participants’ school-based teaching. Teachers learn both from their engagement with learners, and through networking opportunities with fellow teachers. Teachers themselves value these aspects, and consequently, science fair participation is a sustainable form of professional development. It is recommended that the opportunity for professional development that is provided by teachers’ participation in such school-level science fairs should be acknowledged and promoted by schools and fair organisers. Significance: Science expos offer professional development to participating teachers and improve learners’ academic performance.

  16. Development of advanced silicon radiation detectors for harsh radiation environment

    CERN Document Server

    Groenlund, Tanja

    2012-01-01

    This thesis describes the development of advanced silicon radiation detectors and their characterization by simulations, used in the work for searching elementary particles in the European Organization for Nuclear Research, CERN. Silicon particle detectors will face extremely harsh radiation in the proposed upgrade of the Large Hadron Collider, the future high-energy physics experiment Super-LHC. The increase in the maximal fluence and the beam luminosity up to 1016 neq / cm2 and 1035 cm-2s-1 will require detectors with a dramatic improvement in radiation hardness, when such a fluence will be far beyond the operational limits of the present silicon detectors. The main goals of detector development concentrate on minimizing the radiation degradation. This study contributes mainly to the device engineering technology for developing more radiation hard particle detectors with better characteristics. Also the defect engineering technology is discussed. In the nearest region of the beam in Super-LHC, the only dete...

  17. Handheld emissions detector (HED): overview and development

    Science.gov (United States)

    Valentino, George J.; Schimmel, David

    2009-05-01

    Nova Engineering, Cincinnati OH, a division of L-3 Communications (L-3 Nova), under the sponsorship of Program Manager Soldier Warrior (PM-SWAR), Fort Belvoir, VA, has developed a Soldier portable, light-weight, hand-held, geolocation sensor and processing system called the Handheld Emissions Detector (HED). The HED is a broadband custom receiver and processor that allows the user to easily sense, direction find, and locate a broad range of emitters in the user's surrounding area. Now in its second design iteration, the HED incorporates a set of COTS components that are complemented with L-3 Nova custom RF, power, digital, and mechanical components, plus custom embedded and application software. The HED user interfaces are designed to provide complex information in a readily-understandable form, thereby providing actionable results for operators. This paper provides, where possible, the top-level characteristics of the HED as well as the rationale behind its design philosophy along with its applications in both DOD and Commercial markets.

  18. Development and performance research of array BF3 detector

    International Nuclear Information System (INIS)

    Tang Zhangkui; Tang Zhengyuan; Xu Rongkun; Liu Hangang; Li Bojun; Hu Mengchun; Fan Juan

    2005-01-01

    The array BF 3 detector was designed and developed for measuring DT pulse neutron yields. The detection sensitivity of detector was calibrated by a series of neutron measurement on the accelerator. The relative measuring data and its uncertainty from array BF 3 detection were obtained and compared with that from other measuring methods. Experiment data verifies the reliability of array BF 3 detector to be used for measuring DT pulse neutron. (author)

  19. Doctrine of "Fair Price” by Thomas Aquinas: background, laws of development and specific interpretation

    Directory of Open Access Journals (Sweden)

    Nureev Rustem, M.

    2015-03-01

    Full Text Available The paper is dedicated premises of origin and patterns of development of the doctrine of “fair price” Aquinas. Showing contradictions exchange of agricultural products to urban goods and services, resulting in a developed feudalism. For agricultural products incoming to the city market, the situation was characterized as the free competition, while medieval guild tried to create a monopoly conditions for the production and sale of its products, which objectively leads to distortion of prices. Under these conditions, the development of the problem of "fair price" becomes extremely important. The paper shows how scholasticism using theological methodology, trying to solve this problem. Greed condemned, was considered evil and sin of avarice considered the source of all evils. This tradition goes back to the interpretation of the Gospel of Matthew John Chrysostom. Alexander Halensis one of the first attempted rehabilitation of commercial activities and even tried to criticize the position of the Pseudo-Chrysostom that the merchant is not pleasing to God. In the "sum of all theology" Alexander Halensis wrote that moral qualities profits depend on the circumstances of 6: 1. From the person selling (which allowed the laity, the monks are not allowed; 2. His intentions (satisfaction or desire for profit; 3. The method of sale (by fair means or fraud; 4. Time of trade (on weekdays or holidays, designed for prayer or service of God; 5. Selling place (in the market or in holy places; 6. Relationship to the buyers (which is expressed in the level - excessive or normal - the selling price. Analyzes the rationale arguments to grounding the doctrine of "fair price", show the evolution of the concept during XII - XIV centuries, as well as its relationship with the teachings of the scholastics on the percentage. The paper deals with various estimates of the concept of "fair value" of Thomas Aquinas, resulting in the history of economic thought. Critically

  20. Thermal analysis of the cold mass of the 2T solenoid for the PANDA detector at FAIR

    CERN Document Server

    Rolando, G; Dudarev, A; Pais Da Silva, H; Vodopyanov, A; Schmitt, L

    2015-01-01

    The superconducting solenoid of the PANDA experiment at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt (Germany) is designed to provide a magnetic field of 2 T over a length of about 4 m in a bore of 1.9 m. To allow a warm target feed pipe oriented transversely to the solenoid axis and penetrating through the cryostat and solenoid cold mass, the magnet is split into 3 inter-connected coils fitted in a common support cylinder. During normal operation, cooling of the cold mass to the working temperature of 4.5 K will be achieved through the circulation by natural convection of two-phase helium in cooling pipes attached to the Al-alloy support cylinder. Pure aluminium strips acting as heat drains and glued to the inner surface of the three coils and thermally bonded to the cooling pipes allow minimizing the temperature gradient across the 6-layers coils. In this paper the thermal design of the cold mass during normal operation and current ramps up and down is validated using an analytical appro...

  1. Experimental program of the Super-FRS Collaboration at FAIR and developments of related instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Äystö, J. [Helsinki Institute of Physics, P.O. Box 64, 00014 Helsinki (Finland); Behr, K.-H. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Benlliure, J. [Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Bracco, A. [Dipartimento di Fisica, Università di Milano, 20133 Milano (Italy); Egelhof, P. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Fomichev, A. [Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna (Russian Federation); Galès, S. [Institut de Physique Nucléaire Orsay, 91406 Orsay (France); Horia Hulubei National Institute of Physics and Nuclear Engineering, P.O. Box MG6, Bucharest (Romania); Geissel, H. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Justus-Liebig-Universität, 35392 Gießen (Germany); Grahn, T. [Helsinki Institute of Physics, P.O. Box 64, 00014 Helsinki (Finland); Department of Physics, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla (Finland); Grigorenko, L.V. [Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna (Russian Federation); Harakeh, M.N. [KVI Center for Advanced Radiation Technology, University of Groningen, 9700 Groningen (Netherlands); Hayano, R. [Department of Physics, University of Tokyo, 113-0033 Tokyo (Japan); Heinz, S. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Itahashi, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Jokinen, A. [Helsinki Institute of Physics, P.O. Box 64, 00014 Helsinki (Finland); Department of Physics, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla (Finland); and others

    2016-06-01

    The physics program at the super-conducting fragment separator (Super-FRS) at FAIR, being operated in a multiple-stage, high-resolution spectrometer mode, is discussed. The Super-FRS will produce, separate and transport radioactive beams at high energies up to 1.5 AGeV, and it can be also used as a stand-alone experimental device together with ancillary detectors. Various combinations of the magnetic sections of the Super-FRS can be operated in dispersive, achromatic or dispersion-matched spectrometer ion-optical modes, which allow measurements of momentum distributions of secondary-reaction products with high resolution and precision. A number of unique experiments in atomic, nuclear and hadron physics are suggested with the Super-FRS as a stand-alone device, in particular searches for new isotopes, studies of hypernuclei, delta-resonances in exotic nuclei and spectroscopy of atoms characterized by bound mesons. Rare decay modes like multiple-proton or neutron emission and the nuclear tensor force observed in high-momentum regime can be also addressed. The in-flight radioactivity measurements as well as fusion, transfer and deep-inelastic reaction mechanisms with the slowed-down and energy-bunched fragment beams are proposed for the high-resolution and energy buncher modes at the Super-FRS.

  2. Development of Silicon Drift Detectors using Boron layer technology

    NARCIS (Netherlands)

    Golshani, N.

    2015-01-01

    Radiation detectors are used in a large variety of fields such as medicine, security, defense, geophysics, industry and physics. They have been developed to detect the energy or position of radiation or charge particles. In Chapter 1 several X-ray detectors were introduced briefly. In gas filled

  3. Development of scintillation and luminescent detectors at BARC

    International Nuclear Information System (INIS)

    Pradhan, A.S.

    1991-01-01

    Research and development work carried out at the Bhabha Atomic Research Centre, Bombay, in the field of radiation detectors for various applications, particularly in the area of scintillation and luminescent detectors is reviewed. The review is presented in the form of 7 articles. (author). figs

  4. Detector Development for the European XFEL: Requirements and Status

    International Nuclear Information System (INIS)

    Koch, Andreas; Kuster, Markus; Sztuk-Dambietz, Jolanta; Turcato, Monica

    2013-01-01

    The variety of applications and especially the unique European XFEL time structure will require adequate instrumentation to be developed to exploit the full potential of the light source. Two-dimensional integrating X-ray detectors with ultra-fast read out up to 4.5 MHz for 1024 × 1024 pixel images are under development for a variety of imaging applications. The actual status of the European XFEL detector development projects is presented. Furthermore, an outlook will be given with respect to detector research and development, performance optimization, integration, and commissioning.

  5. Development, prototyping and characterization of double sided silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Topkar, Anita, E-mail: anita@barc.gov.in; Singh, Arvind; Aggarwal, Bharti; Kumar, Amit; Kumar, Arvind; Murali Krishna, L.V.; Das, D.

    2016-10-21

    Double sided DC-coupled silicon strip detectors with geometry of 65 mm×65 mm have been developed in India for nuclear physics experiments. The detectors have 64 P{sup +} strips on the front side and 64 N{sup +} strips on the backside with a pitch of 0.9 mm. These detectors were fabricated using a twelve mask layer process involving double sided wafer processing technology. Semiconductor process and device simulations were carried out in order to theoretically estimate the impact of important design and process parameters on the breakdown voltage of detectors. The performance of the first lot of prototype detectors has been studied using static characterization tests and using an alpha source. The characterization results demonstrate that the detectors have low leakage currents and good uniformity over the detector area of about 40 cm{sup 2}. Overview of the detector design, fabrication process, simulation results and initial characterization results of the detectors are presented in this paper.

  6. How To Implement the Science Fair Self-Help Development Program in Schools. Sandia Report.

    Science.gov (United States)

    Menicucci, David F.

    Often the burden of promoting science and engineering fairs falls upon science teachers who have to add the organizational activities for the fair to their normal teaching load. This manual is intended to assist in the science fair process by providing information about how to create a team of volunteers to manage the organizational activities.…

  7. Digital Acquisition Development for Fast Neutron Detectors

    Science.gov (United States)

    Seagren, T.; Mosby, S.; Mona Collaboration; Lansce P-27 Team

    2015-10-01

    The use of the Modular Neutron Array (MoNA) at FRIB requires a thorough understanding of how neutrons propagate through the array. This leads to the increasing importance of accuracy in detector response simulations, particularly in the case of FRIB's higher beam energies. An upcoming experiment at the LANSCE facility at Los Alamos National Lab will benchmark neutron propagation through the MoNA array and provide a more complete validation of the simulation software. LANSCE also hosts the Chi-Nu experiment, which seeks to measure fission output neutrons using the high-intensity neutron beams there. In both experiments, the instantaneous rate on the detectors involved is expected to be very high, due to the LANSCE/WNR beam structure. Therefore, waveform digitizers with on-board processing are required in order for the experiments to succeed. These digitizers provide on-board timing algorithms using FPGA firmware, and several tests were preformed in order to determine what the optimal timing filter settings were for a variety of detectors, including the plastic and liquid scintillators to be used in MoNA and Chi-Nu respectively. This work will inform the execution of the MoNA and Chi-Nu experiments at LANSCE. The details of the methods used and results will be presented. Supported by funding through Los Alamos National Lab and NSF Grant PHY-1506402.

  8. Development of membrane cryostats for large liquid argon neutrino detectors

    CERN Document Server

    Montanari, D; Gendotti, A; Geynisman, M; Hentschel, S; Loew, T; Mladenov, D; Montanari, C; Murphy, S; Nessi, M; Norris, B; Noto, F; Rubbia, A; Sharma, R; Smargianaki, D; Stewart, J; Vignoli, C; Wilson, P; Wu, S

    2015-01-01

    A new collaboration is being formed to develop a multi-kiloton Long-Baseline neutrino experiment that will be located at the Surf Underground Research Facility (SURF) in Lead, SD. In the present design, the detector will be located inside cryostats filled with 68,400 ton of ultrapure liquid argon (less than 100 parts per trillion of oxygen equivalent contamination). To qualify the membrane technology for future very large-scale and underground implementations, a strong prototyping effort is ongoing: several smaller detectors of growing size with associated cryostats and cryogenic systems will be designed and built at Fermilab and CERN. They will take physics data and test different detector elements, filtration systems, design options and installation procedures. In addition, a 35 ton prototype is already operational at Fermilab and will take data with single-phase detector in early 2016. After the prototyping phase, the multi-kton detector will be constructed. After commissioning, it will detect and study ne...

  9. Developments in thermoelectrically cooled PIN and CZT detectors

    International Nuclear Information System (INIS)

    Redus, R.H.; Pantazis, J.A.; Huber, A.C.

    1998-01-01

    A compact, high-energy-resolution X-ray and gamma-ray spectroscopy system has been developed using thermoelectrically cooled detectors to combine excellent energy resolution and convenient operation. A Si PIN diode is used for low-energy X rays, while a Cd 1-x Zn x Te (CZT) detector is used for higher-energy photons. Cooling is totally transparent to the user, so the system operates as a room temperature system, although the detector itself is cooled for improved performance. The heart of the XR-100 is a hybrid package containing the thermoelectrically cooled detector and feedback components. The detectors are used with a charge-sensitive preamplifier and a seven-pole quasi-triangular shaper with active baseline restoration, pileup rejection, and rise-time discrimination

  10. Development of Micro-Pattern Gas Detectors Technologies

    CERN Multimedia

    Richer, J; Santos, D; Barsuk, S; Hamar, G; Shah, M K; Catanesi, M G; Colaleo, A; Maggi, M; Loddo, F; Berardi, V; Bagliesi, M; Menon, G; Richter, R; Lahonde-hamdoun, C; Dris, M; Chechik, R; Ochi, A; Hartjes, F; Lopes, I M; Deshpande, A; Franz, A; Dabrowski, W; Fiutowski, T A; Ferreira, A; Bastos de oliveira, C A; Miller, B W; Monrabal-capilla, F; Liubarsky, I; Plazas de pinzon, M C; Tsarfati, T; Voss, B J R; Carmona martinez, J M; Stocchi, A; Dinu, N; Semeniouk, I; Giebels, B; Marton, K; De leo, R; De lucia, E; Alviggi, M; Bellerive, A; Herten, L G; Zimmermann, S U; Giomataris, I; Peyaud, A; Schune, P; Delagnes, E; Delbart, A; Charles, G; Wang, W; Markou, A; Arazi, L; Cibinetto, G; Edo, Y; Neves, F F; Solovov, V; Stoll, S; Sampsonidis, D; Mindur, B; Sauli, F; Calapez de albuquerque veloso, J F; Kahlaoui, N; Sharma, A; Zenker, K; Cebrian guajardo, S V; Luzon marco, G M; Guillaudin, O J H; Cornebise, P; Lounis, A; Bruel, P J; Laszlo, A; Mukerjee, K; Nappi, E; Nuzzo, S V; Bencivenni, G; Tessarotto, F; Levorato, S; Dixit, M S; Riallot, M; Jeanneau, F; Nizery, F G; Maltezos, S; Kyriakis, A; Lyashenko, A; Van der graaf, H; Ferreira marques, R; Alexa, C; Liyanage, N; Dehmelt, K; Hemmick, T K; Polychronakos, V; Cisbani, E; Garibaldi, F; Koperny, S Z; Das neves dias carramate, L F; Munoz-vidal, J; Gutierrez, R; Van stenis, M; Resnati, F; Lupberger, M; Desch, K K; Adloff, C J; Chefdeville, M; Vouters, G; Ranieri, A; Lami, S; Shekhtman, L; Dolgov, A; Bamberger, A; Landgraf, U; Kortner, O; Ferrero, A; Aune, S; Attie, D M; Bakas, G; Balossino, I; Tsigaridas, S; Surrow, B; Gnanvo, K A K; Feege, N M; Woody, C L; Bhattacharya, S; Capogni, M; Zielinska, A Z; Veenhof, R J; Tapan, I; Dangendorf, V; Monteiro bernades, C M; Castro serrato, H F; De oliveira, R; Ropelewski, L; Behnke, T; Boudry, V; Radicioni, E; Lai, A; Shemyakina, E; Giganon, A E; Titov, M; Papakrivopoulos, I; Komai, H; Van bakel, N A; Tchepel, V; Repond, J O; Li, Y; Kourkoumelis, C; Tzamarias, S; Majumdar, N; Kowalski, T; Da rocha azevedo, C D; Serra diaz cano, L; Alvarez puerta, V; Trabelsi, A; Riegler, W; Ketzer, B F; Rosemann, C G; Herrera munoz, D C; Drancourt, C; Mayet, F; Geerebaert, Y; De robertis, G; Felici, G; Scribano memoria, A; Cecchi, R; Dalla torre, S; Gregori, M; Buzulutskov, A; Schwegler, P; Sanchez nieto, F J; Colas, P M A; Gros, M; Neyret, D; Zito, M; Ferrer ribas, E; Breskin, A; Martoiu, V S; Purschke, M L; Loomba, D; Gasik, P J; Petridou, C; Kordas, K; Mukhopadhyay, S; Bucciantonio, M; Biagi, S F; Ji, X; Kanaki, K; Zavazieva, D; Capeans garrido, M D M; Schindler, H; Kaminski, J; Krautscheid, T; Lippmann, C; Arora, R; Dafni, T; Garcia irastorza, I; Puill, V; Wicek, F B; Burmistrov, L; Singh, K P; Pugliese, G; Kroha, H; Kunne, F; Alexopoulos, T; Daskalakis, G; Geralis, T; Bettoni, D; Heijhoff, K; Xiao, Z; Tzanakos, G; Leisos, A; Frullani, S; Sahin, O; Kalkan, Y; Giboni, K; Krieger, C; Breton, D R; Bhattacharyya, S; Abbrescia, M; Erriquez, O; Paticchio, V; Cardini, A; Aloisio, A; Turini, N; Bressan, A; Tikhonov, Y; Schumacher, M; Simon, F R; Nowak, S; Herlant, S; Chaus, A; Fanourakis, G; Bressler, S; Homma, Y; Timmermans, J; Fonte, P; Underwood, D G; Azmoun, B; Fassouliotis, D; Wiacek, P; Dos santos covita, D; Monteiro da silva, A L; Yahlali haddou, N; Marques ferreira dos santos, J; Domingues amaro, F

    The proposed R&D collaboration, RD51, aims at facilitating the development of advanced gas-avalanche detector technologies and associated electronic-readout systems, for applications in basic and applied research. Advances in particle physics have always been enabled by parallel advances in radiation-detector technology. Radiation detection and imaging with gas-avalanche detectors, capable of economically covering large detection volumes with a low material budget, have been playing an important role in many fields. Besides their widespread use in particle-physics and nuclear-physics experiments, gaseous detectors are employed in many other fields: astro-particle research and applications such as medical imaging, material science, and security inspection. While extensively employed at the LHC, RHIC, and other advanced HEP experiments, present gaseous detectors (wire-chambers, drift-tubes, resistive-plate chambers and others) have limitations which may prevent their use in future experiments. Present tec...

  11. New developments in radiation detectors for medical imaging

    International Nuclear Information System (INIS)

    Kandarakis, I.; Fountos, G.

    2012-01-01

    On the basis of their fundamental principle of operation radiation detectors can be divided into two main categories: (a) Energy integrating devices and (b) Particle (photon) counting devices. Detectors operated in energy integrating mode produce an output electronic signal, which is directly proportional to the total radiation energy absorbed within their mass. On the other hand detectors operated in photon counting mode produce a series of time separated output pulses, each one originating from a corresponding photon absorbed in the detector. Most systems employed in diagnostic radiology and radiation therapy portal imaging (i.e. flat panel arrays) are energy integrating. Nuclear medicine detectors are principally photon counting devices. Some photon counting prototypes (silicon strip arrays, Medipix) are also used in diagnostic radiology. Considering the physics of photon detection, detectors can be characterized as 'direct' or 'indirect', depending on whether photon energy is directly converted into an electronic signal or whether the energy conversion process passes through an intermediate stage of radiation to light conversion (i.e. scintillation). Description of detector performance is currently based on the Linear Cascaded Systems Analysis (LCSA) theory, incorporating signal and noise analysis in both space and spatial frequency domains. Within this theoretical interpretation basic quality metrics, such as the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE) can be defined and evaluated. Methods of experimental evaluation as well as novel detector design (flat panel or ring configurations) and development follow the basic principles of this theory. (authors)

  12. Technology development for SOI monolithic pixel detectors

    International Nuclear Information System (INIS)

    Marczewski, J.; Domanski, K.; Grabiec, P.; Grodner, M.; Jaroszewicz, B.; Kociubinski, A.; Kucharski, K.; Tomaszewski, D.; Caccia, M.; Kucewicz, W.; Niemiec, H.

    2006-01-01

    A monolithic detector of ionizing radiation has been manufactured using silicon on insulator (SOI) wafers with a high-resistivity substrate. In our paper the integration of a standard 3 μm CMOS technology, originally designed for bulk devices, with fabrication of pixels in the bottom wafer of a SOI substrate is described. Both technological sequences have been merged minimizing thermal budget and providing suitable properties of all the technological layers. The achieved performance proves that fully depleted monolithic active pixel matrix might be a viable option for a wide spectrum of future applications

  13. Amplifier development for multiplexed cryogenic detectors

    Science.gov (United States)

    Kiviranta, Mikko

    2012-12-01

    We make some considerations on the question of driving the cable from the cryogenic stage of refrigerators to the room temperature, in the case of multiplexed detector array systems where a high total Shannon information capacity is required. We have constructed large SQUID arrays for the purpose, some of which exhibit lower than 5 × 10-8 Φ0 Hz-1/2 flux noise at 4.2 K and do not require magnetic shielding in a typical laboratory environment. The option of using class-D amplifiers to reduce the cryogenic heat load is briefly reviewed.

  14. Detector development for x-ray imaging

    Science.gov (United States)

    Mentzer, M. A.; Herr, D. A.; Brewer, K. J.; Ojason, N.; Tarpine, H. A.

    2010-02-01

    X-ray imaging requires unique optical detector system configuration for optimization of image quality, resolution, and contrast ratio. A system is described whereby x-ray photons from multiple anode sources create a series of repetitive images on fast-decay scintillator screens, from which an intensified image is transferred to a fast phosphor on a GEN II image intensifier and collected as a cineradiographic video with high speed digital imagery. The work addresses scintillator material formulation, flash x-ray implementation, image intensification, and high speed video processing and display. Novel determination of optimal scintillator absorption, x-ray energy and dose relationships, contrast ratio determination, and test results are presented.

  15. Indigenous development of diamond detectors for monitoring neutrons

    International Nuclear Information System (INIS)

    Singh, Arvind; Amit Kumar; Topkar, Anita; Pithawa, C.K.

    2013-01-01

    High purity synthetic chemically vapor deposited (CVD) diamond has several outstanding characteristics that make it as an important material for detector applications specifically for extreme environmental conditions like high temperature, high radiation, and highly corrosive environments. Diamond detectors are especially considered promising for monitoring fast neutrons produced by the D-T nuclear fusion reactions in next generation fusion facilities such as ITER. When fast neutrons interact with carbon, elastic, inelastic and (n,α) type reactions can occur. These reactions can be employed for the detection of fast neutrons using diamond. We have initiated the development of diamond detectors based on synthetic CVD substrates. In this paper, the first test of a polycrystalline CVD diamond detector with fast neutrons is reported. The test results demonstrate that this detector can be used for monitoring fast neutrons. The diamond detectors have been fabricated using 5 mm x 5 mm, 300 μm polycrystalline diamond substrates. Aluminum metallization has been used on both sides of the detector to provide electrical contacts. The performance of fabricated detectors was first evaluated using current and capacitance measurements. The leakage current was observed to be stable and about a few pAs for voltages up to 300V. The capacitance-voltage characteristics showed a constant capacitance which is as expected. To confirm the response of the detector to charged particles, the pulse height spectrum (PHS) was obtained using 238 Pu- 239 Pu dual α- source. The PHS showed a continuum without any peak due to polycrystalline nature of diamond film. The response of the detector to fast neutrons has been studied using the fast neutron facility at NXF, BARC. The PHS obtained for a neutron yield of 4 x 10 8 n/s is shown. The average counts per second (cps) measured for diamond detector for different neutron yields is shown. The plot shows linearity with coefficient of determination R

  16. Development of twin Ge detector and its performance

    CERN Document Server

    Shigetome, Y

    2001-01-01

    Twin Ge detector which consists of two large Ge crystals, closely packed in a common housing, has been designed and developed to realize high detection efficiency and peak-to-total ratio (P/T) for high-energy photons in the energy range 10-30 MeV. Performance of the twin Ge detector in an energy range up to 30 MeV is calculated by Monte Carlo simulation method. It is shown that this detector allows extending an energy range for high-resolution photon spectroscopy to over 10 MeV.

  17. Epitaxial silicon semiconductor detectors, past developments, future prospects

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1976-01-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized

  18. Sensor Development for the CMS Pixel Detector

    CERN Document Server

    Rohe, T; Chiochia, V; Cremaldi, L M; Cucciarelli, S; Dorkhov, A; Konecki, M; Prokofiev, K; Regenfus, C; Sanders, D A; Son, S; Speer, T; Swartz, M

    2003-01-01

    This paper reports on a current R&D activity for the sensor part of the CMS pixel detector. Devices featuring several design and technology options have been irradiated up to a proton fluence of 1E15 (1MeV Neutron)/cm**2 at the CERN PS. Afterwards they have been bump bonded to unirradiated readout chips. The chip allows a non zero suppressed full analogue readout and therefore a good characterization of the sensors in terms of noise and charge collection properties. The samples have been tested using high energy pions in the H2 beam line of the CERN SPS in June and September 2003. The results of this test beam are presented and the differences between the sensor options are discussed.

  19. Development of water radiocontamination monitor using a plastic scintillator detector

    International Nuclear Information System (INIS)

    Mesquita, C.H. de; Madi Filho, T.; Hamada, M.M.

    1990-01-01

    An alpha, beta and gamma radiation water monitor was developed using a plastic scintillator detector with a sensitivity level of 15 bplastic scintillator detector with a sensitivity level of 15 Bq.L -1 and a counting efficiency of 25% for 131 I. It was proposed to be used in the radiation monitoring program of the research reactor swimming-pool of Sao Paulo. A simplified design and some properties of this monitor are presented. (author) [pt

  20. Infrastructure for Detector Research and Development towards the International Collider

    CERN Document Server

    Aguilar, J.; Fiutowski, T.; Idzik, M.; Kulis, Sz.; Przyborowski, D.; Swientek, K.; Bamberger, A.; Kohli, M.; Lupberger, M.; Renz, U.; Schumacher, M.; Zwerger, Andreas; Calderone, A.; Cussans, D.G.; Heath, H.F.; Mandry, S.; Page, R.F.; Velthuis, J.J.; Attie, D.; Calvet, D.; Colas, P.; Coppolani, X.; Degerli, Y.; Delagnes, E.; Gelin, M.; Giomataris, I.; Lutz, P.; Orsini, F.; Rialot, M.; Senee, F.; Wang, W.; Alozy, J.; Apostolakis, J.; Aspell, P.; Bergsma, F.; Campbell, M.; Formenti, F.; Santos, H.Franca; Garcia, E.Garcia; de Gaspari, M.; Giudice, P.A.; Grefe, Ch.; Grichine, V.; Hauschild, M.; Ivantchenko, V.; Kehrli, A.; Kloukinas, K.; Linssen, L.; Cudie, X.Llopart; Marchioro, A.; Musa, L.; Ribon, A.; Trampitsch, G.; Uzhinskiy, V.; Anduze, M.; Beyer, E.; Bonnemaison, A.; Boudry, V.; Brient, J.C.; Cauchois, A.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Jauffret, C.; Jeans, D.; Karar, A.; Mathieu, A.; de Freitas, P.Mora; Musat, G.; Rouge, A.; Ruan, M.; Vanel, J.C.; Videau, H.; Besson, A.; de Masi, G.Claus.R.; Doziere, G.; Dulinski, W.; Goffe, M.; Himmi, A.; Hu-Guo, Ch.; Morel, F.; Valin, I.; Winter, M.; Bonis, J.; Callier, S.; Cornebise, P.; Dulucq, F.; Giannelli, M.Faucci; Fleury, J.; Guilhem, G.; Martin-Chassard, G.; de la Taille, Ch.; Poschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Benyamna, M.; Bonnard, J.; Carloganu, C.; Fehr, F.; Gay, P.; Mannen, S.; Royer, L.; Charpy, A.; Da Silva, W.; David, J.; Dhellot, M.; Imbault, D.; Ghislain, P.; Kapusta, F.; Pham, T.Hung; Savoy-Navarro, A.; Sefri, R.; Dzahini, D.; Giraud, J.; Grondin, D.; Hostachy, J.Y.; Morin, L.; Bassignana, D.; Pellegrini, G.; Lozano, M.; Quirion, D.; Fernandez, M.; Jaramillo, R.; Munoz, F.J.; Vila, I.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Aplin, S.; Bachynska, O.; Behnke, T.; Behr, J.; Dehmelt, K.; Engels, J.; Gadow, K.; Gaede, F.; Garutti, E.; Gottlicher, P.; Gregor, I.M.; Haas, T.; Henschel, H.; Koetz, U.; Lange, W.; Libov, V.; Lohmann, W.; Lutz, B.; Mnich, J.; Muhl, C.; Ohlerich, M.; Potylitsina-Kube, N.; Prahl, V.; Reinecke, M.; Roloff, P.; Rosemann, Ch.; Rubinski, Igor; Schade, P.; Schuwalov, S.; Sefkow, F.; Terwort, M.; Volkenborn, R.; Kalliopuska, J.; Mehtaelae, P.; Orava, R.; van Remortel, N.; Cvach, J.; Janata, M.; Kvasnicka, J.; Marcisovsky, M.; Polak, I.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Bergauer, T.; Dragicevic, M.; Friedl, M.; Haensel, S.; Irmler, C.; Kiesenhofer, W.; Krammer, M.; Valentan, M.; Piemontese, L.; Cotta-Ramusino, A.; Bulgheroni, A.; Jastrzab, M.; Caccia, M.; Re, V.; Ratti, L.; Traversi, G.; Dewulf, J.P.; Janssen, X.; De Lentdecker, G.; Yang, Y.; Bryngemark, L.; Christiansen, P.; Gross, P.; Jonsson, L.; Ljunggren, M.; Lundberg, B.; Mjornmark, U.; Oskarsson, A.; Richert, T.; Stenlund, E.; Osterman, L.; Rummel, S.; Richter, R.; Andricek, L.; Ninkovich, J.; Koffmane, Ch.; Moser, H.G.; Boisvert, V.; Green, B.; Green, M.G.; Misiejuk, A.; Wu, T.; Bilevych, Y.; Carballo, V.M.Blanco; Chefdeville, M.; de Nooij, L.; Fransen, M.; Hartjes, F.; van der Graaf, H.; Timmermans, J.; Abramowicz, H.; Ben-Hamu, Y.; Jikhleb, I.; Kananov, S.; Levy, A.; Levy, I.; Sadeh, I.; Schwartz, R.; Stern, A.; Goodrick, M.J.; Hommels, L.B.A.; Ward, R.Shaw.D.R.; Daniluk, W.; Kielar, E.; Kotula, J.; Moszczynski, A.; Oliwa, K.; Pawlik, B.; Wierba, W.; Zawiejski, L.; Bailey, D.S.; Kelly, M.; Eigen, G.; Brezina, Ch.; Desch, K.; Furletova, J.; Kaminski, J.; Killenberg, M.; Kockner, F.; Krautscheid, T.; Kruger, H.; Reuen, L.; Wienemann, P.; Zimmermann, R.; Zimmermann, S.; Bartsch, V.; Postranecky, M.; Warren, M.; Wing, M.; Corrin, E.; Haas, D.; Pohl, M.; Diener, R.; Fischer, P.; Peric, I.; Kaukher, A.; Schafer, O.; Schroder, H.; Wurth, R.; Zarnecki, A.F.

    2012-01-01

    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.

  1. Development of PROSPECT detectors for precision antineutrino studies

    OpenAIRE

    Norcini, Danielle; collaboration, for the PROSPECT

    2015-01-01

    PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, will use two segmented detectors positioned 7-20 m from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory to measure the U-235 antineutrino spectrum and perform a search for short-baseline oscillations as a signature of eV-scale sterile neutrinos. PROSPECT has developed Li-6 loaded liquid scintillator detectors for efficient identification of reactor antineutrinos and has measured reactor and cosmogenic b...

  2. How Fair Is Actuarial Fairness?

    DEFF Research Database (Denmark)

    Landes, Xavier

    2015-01-01

    are the product of the probabilities of losses and the expected losses. This article presents a discussion of the fairness of actuarial fairness through three steps: (1) defining the concept based on its formulation within the insurance industry; (2) determining in which sense it may be about fairness; and (3...... in exchange for the payment of premi- ums. In the insurance industry, the concept of actuarial fairness serves to establish what could be adequate, fair premiums. Accordingly, premiums paid by policyholders should match as closely as possible their risk exposure (i.e. their expected losses). Such premiums......) raising some objections to the actual fairness of actu- arial fairness. The necessity of a normative evaluation of actuarial fairness is justified by the influence of the concept on the current reforms of public insurance systems and the fact that it highlights the question of the repartition of the gains...

  3. Working towards coordination of detector development in Europe

    CERN Multimedia

    AIDA-2020 collaboration

    2015-01-01

    AIDA-2020, the largest EU-funded detector R&D project, kicked off at the beginning of June with a meeting at CERN (see here). The aim of the project is to advance detector technologies beyond current limits by sharing the high-quality infrastructure provided by 52 partners from 19 countries.   Knowledge exchange between the various groups who are involved in developing innovative technological solutions for the next generation of detectors is the emphasis of the AIDA-2020 EU-funded project, which started on 1 May and will run for four years. AIDA-2020 is the successor to AIDA, a four-year EU-funded programme that concluded at the end of January 2015, which successfully coordinated a joint European effort in detector R&D and significantly improved various key European research infrastructures, enabling advanced detector development for the high-energy physics community. Highlights of AIDA’s networking activities were the development of generic toolkits for detector description ...

  4. How fair is fair trade?

    NARCIS (Netherlands)

    Maseland, Robbert; Vaal, Albert de

    2001-01-01

    This paper investigates to what extent fair trade programmes, are indeed ‘fair’. This is accomplished by comparing fair trade with free trade and protectionist trade regimes on their compliance of the criteria set by the fair trade movement itself. This comparison is made using comparative cost

  5. The Deep Roots of the Fairness Committee in Kohlberg's Moral Development Theory

    Science.gov (United States)

    Olson, Christine

    2011-01-01

    Earlier essays in this symposium describe Restorative Justice processes in schools, referred to in our school as a Fairness Committee. Implementing these collaborative, restorative processes does not come without challenges. This essay will explore some of the historical and theoretical roots of the Fairness Committee in Lawrence Kohlberg's work…

  6. Development of computer based ultrasonic flaw detector for nondestructive testing

    International Nuclear Information System (INIS)

    Lee, Weon Heum; Kim, Jin Koo; Kim, Yang Rae; Choi, Kwan Sun; Kim, Sun Hyung; Lee, Sun Heum

    1996-01-01

    Ultrasonic Testing is one of the most widely used method of Nondestructive testing for Pre-Service Inspection(PSI) and In-Service Inspection(ISI) in the structure of Bridges, Power plants, chemical plants and heavy industrial fields. It is very important target to estimate safety, remain life, Quality Control of the Structure. Also, a lot of research for quantities evaluation and analysis inspection data is proceeding. But traditional portable ultrasonic flaw detector had been following disadvantages. 1) Analog ultrasonic flaw detector decreased credibility of ultrasonic test, because it is impossible for saying data and digital signal processing. 2) Stand-alone digital ultrasonic flaw detector cannot effectively evaluate received signals because of lack of its storage memory. To overcome this shortcoming, we develop the computer based ultrasonic flaw detector for nondestructive testing. It can store the received signal and effectively evaluate the signal, and then enhance the reliability of the testing results.

  7. Developments in Thermoelectrically Cooled Pin and CZT Detectors

    International Nuclear Information System (INIS)

    R. H. Redus; J. A. Pantazis; A. C. Huber

    1998-01-01

    A compact high-energy-resolution X-ray and gamma-ray spectroscopy system has been developed using thermoelectrically cooled detectors to combine excellent energy resolution and convenient operation. A Si PIN diode is used for low-energy X rays, while a Cd 1-x Zn x Te (CZT) detector is used for higher-energy photons. Cooling is totally transparent to the user, so the system operates as a room temperature system, although the detector itself is cooled for improved performance. The heart of the XR-100 is a hybrid package containing the thermoelectrically cooled detector and feedback components. The seven-pole quasi-triangular shaper with active baseline restoration, pileup rejection, and rise-time discrimination

  8. Gallium nitride photocathode development for imaging detectors

    Science.gov (United States)

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; McPhate, Jason B.; Hull, Jeffrey S.; Malloy, James; Dabiran, Amir M.

    2008-07-01

    Recent progress in Gallium Nitride (GaN, AlGaN, InGaN) photocathodes show great promise for future detector applications in Astrophysical instruments. Efforts with opaque GaN photocathodes have yielded quantum efficiencies up to 70% at 120 nm and cutoffs at ~380 nm, with low out of band response, and high stability. Previous work with semitransparent GaN photocathodes produced relatively low quantum efficiencies in transmission mode (4%). We now have preliminary data showing that quantum efficiency improvements of a factor of 5 can be achieved. We have also performed two dimensional photon counting imaging with 25mm diameter semitransparent GaN photocathodes in close proximity to a microchannel plate stack and a cross delay line readout. The imaging performance achieves spatial resolution of ~50μm with low intrinsic background (below 1 event sec-1 cm-2) and reasonable image uniformity. GaN photocathodes with significant quantum efficiency have been fabricated on ceramic MCP substrates. In addition GaN has been deposited at low temperature onto quartz substrates, also achieving substantial quantum efficiency.

  9. Development of multiwire gas detectors for X-rays

    International Nuclear Information System (INIS)

    Sales, Eraldo de

    2015-01-01

    This work presents the prototype of a 2D position sensitive gas detector for application in X-ray scattering and diffraction experiments. Starting from a detector initially developed for other applications and will show the required changes on the original concept of this device. The strategy used to determine the necessary adaptations were based on searching in the literature for the overall characteristics of a multi-wire X-ray detector (choice of gas, pressure, window, etc.), the use of simulations, implementation of the changes and finally operational tests. Computational tools were used to calculate the mechanical strength and attenuation of the X-ray photons that helped to determine the most appropriate material for the construction of the entrance window. Detector simulations were built with Garfield software and were used to study the overall properties of the detector, and to determine the optimum parameters for the equipment operation. Typical parameters are the distance between the wires, wire diameter, high voltage to be used, among several other parameters. The results obtained showed that the multi-wire detector concept with the implemented adaptations allowed the detection of X-rays. However, depending on the application, it may be necessary improve the resolution of the equipment, in order to have a better description of the collected data. Several ideas are suggested for this improvement. It is also presented interesting results obtained with a microscopic pattern detector called triple GEM. This device belongs to the Gas Detectors Development group (GDD group) at CERN and was used in my training at this institution. The results showed the potential of the equipment for detection of X-rays. The results and simulations presented in this work, confirmed that the changes in the concept of the original detector permitted it use on X-ray detection applications. Also, it was possible to obtain several indications for further optimization, which may

  10. Research and Development in Micromegas Detector for the ATLAS Upgrade

    CERN Document Server

    Iakovidis, Georgios

    My candidacy as a Ph.D student begun officially on September 2010. It was at the time that the MAMMA collaboration performed R&D on micromegas detectors transforming them spark resistant. This was done by adding a foil of resistive strips on top of the readout strips. Joining the collaboration I started to be active in the test beam periods dedicating time to understand the detector behaviour. In parallel I developed simulation procedures to understand further the detector and finally describe the physical processes taking place when a charged particle traverses the detector. Moreover, the unexplored at that time μTPC method was studied. In late 2011 the micromegas technology was a candidate for the ATLAS New Small Wheel (NSW) upgrade to which I dedicated most of my time in order satisfy the requirements and prove that the detector will work in the ATLAS environment including the magnetic field conditions. Most of the work at that time was dedicated to understand the spatial resolution of the detector an...

  11. Development and performance of a gamma-ray imaging detector

    Science.gov (United States)

    Gálvez, J. L.; Hernanz, M.; Álvarez, J. M.; La Torre, M.; Álvarez, L.; Karelin, D.; Lozano, M.; Pellegrini, G.; Ullán, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2012-09-01

    In the last few years we have been working on feasibility studies of future instruments in the gamma-ray range, from several keV up to a few MeV. The innovative concept of focusing gamma-ray telescopes in this energy range, should allow reaching unprecedented sensitivities and angular resolution, thanks to the decoupling of collecting area and detector volume. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN). In order to achieve the needed performance, a gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. In order to fulfill the combined requirement of high detection efficiency with good spatial and energy resolution, an initial prototype of a gamma-ray imaging detector based on CdTe pixel detectors is being developed. It consists of a stack of several layers of CdTe detectors with increasing thickness, in order to enhance the gamma-ray absorption in the Compton regime. A CdTe module detector lies in a 11 x 11 pixel detector with a pixel pitch of 1mm attached to the readout chip. Each pixel is bump bonded to a fan-out board made of alumina (Al2O3) substrate and routed to the corresponding input channel of the readout ASIC to measure pixel position and pulse height for each incident gamma-ray photon. We will report the main features of the gamma-ray imaging detector performance such as the energy resolution for a set of radiation sources at different operating temperatures.

  12. Development and Production of Array Barrier Detectors at SCD

    Science.gov (United States)

    Klipstein, P. C.; Avnon, E.; Benny, Y.; Berkowicz, E.; Cohen, Y.; Dobromislin, R.; Fraenkel, R.; Gershon, G.; Glozman, A.; Hojman, E.; Ilan, E.; Karni, Y.; Klin, O.; Kodriano, Y.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nevo, I.; Nitzani, M.; Pivnik, I.; Rappaport, N.; Rosenberg, O.; Shtrichman, I.; Shkedy, L.; Snapi, N.; Talmor, R.; Tessler, R.; Weiss, E.; Tuito, A.

    2017-09-01

    XB n or XB p barrier detectors exhibit diffusion-limited dark currents comparable with mercury cadmium telluride Rule-07 and high quantum efficiencies. In 2011, SemiConductor Devices (SCD) introduced "HOT Pelican D", a 640 × 512/15- μm pitch InAsSb/AlSbAs XB n mid-wave infrared (MWIR) detector with a 4.2- μm cut-off and an operating temperature of ˜150 K. Its low power (˜3 W), high pixel operability (>99.5%) and long mean time to failure make HOT Pelican D a highly reliable integrated detector-cooler product with a low size, weight and power. More recently, "HOT Hercules" was launched with a 1280 × 1024/15- μm format and similar advantages. A 3-megapixel, 10- μm pitch version ("HOT Blackbird") is currently completing development. For long-wave infrared applications, SCD's 640 × 512/15- μm pitch "Pelican-D LW" XB p type II superlattice (T2SL) detector has a ˜9.3- μm cut-off wavelength. The detector contains InAs/GaSb and InAs/AlSb T2SLs, and is fabricated into focal plane array (FPA) detectors using standard production processes including hybridization to a digital silicon read-out integrated circuit (ROIC), glue underfill and substrate thinning. The ROIC has been designed so that the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector family. The Pelican-D LW FPA has a quantum efficiency of ˜50%, and operates at 77 K with a pixel operability of >99% and noise equivalent temperature difference of 13 mK at 30 Hz and F/2.7.

  13. Development of a counting pixel detector for 'Digitales Roentgen'

    International Nuclear Information System (INIS)

    Lindner, M.

    2001-08-01

    The development of a single photon counting X-ray imaging detector for medical applications using hybrid pixel detectors is reported. The electronics development from the first prototype derived from detector development for particle physics experiments (ATLAS) to the imaging chip MPEC (multi picture element counters) for medical applications is described. This chip consists of 32 x 32 pixels of 200 μm x 200 μm size, each containing the complete read out electronics, i.e. an amplifier, two discriminators with adjustable thresholds and two 18-bit linear feedback shift-counters allowing energy windowing for contrast increase. Results on electronics performance are shown as well as measurements with several semiconductor materials (Si, GaAs, CdTe). Important aspects like detection efficiency, sensor homogeneity, linearity and spatial resolution are discussed. (orig.)

  14. Sport, Fair Play, and Children's Concepts of Fairness.

    Science.gov (United States)

    Covrig, Duane M.

    1996-01-01

    Examines concepts of fairness potentially available to children who participate in scholastic competitive sport. Reviews meanings of fair play and fairness, examines how sports involvement may nurture or distort such meanings, and suggests techniques for improving sport's effects on children's developing concepts of fairness. Advocates Starratt's…

  15. Silicon detector technology development in India for the participation ...

    Indian Academy of Sciences (India)

    A specific research and development program has been carried out by BARC in India to develop the technology for large area silicon strip detectors for application in nuclear and high energy physics .... found to meet the specifications and show a stable behavior without showing early breakdown of strips after irradiation to ...

  16. An engineering design network for SSC detector development

    International Nuclear Information System (INIS)

    DiGiacomo, N.J.

    1990-01-01

    The detector systems that are being proposed to exploit the capabilities of the SSC are of a scale and scope that will make them among the most complex devices ever built. To successfully design and build these systems over the next decade, the authors must make use of integrated state of the art computer aided engineering and design (CAE/CAD) tools that have been developed and employed in industry. The challenge is to made these tools and associated engineering resources available to the spectrum of institutions - large and small universities, industries and national labs - involved in SSC detector development in such a way that each may contribute and participate in the most effective manner. The authors believe that powerful workstations running sophisticated modeling, analysis and simulation software, linked by high speed data networks and governed by modern configuration management methods offer the ideal means of arriving at the optimum detector configuration for physics at the SSC

  17. Sensor Development and Readout Prototyping for the STAR Pixel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.

    2009-01-14

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.

  18. Solubility investigations in support of ultrasensitive noble gas detector development

    International Nuclear Information System (INIS)

    Gross, K. C.

    1998-01-01

    Argonne National Laboratory (ANL) and the University of Cincinnati (UC) have been developing a new class of ultrasensitive noble gas detectors that are based upon the ANL discovery that corn oil has a high affinity for heavy noble gas absorption at room temperature, but releases the noble gases with warming or by other low-energy-input means. Environmental applications for this new class of fluid-based detectors include ultrahigh sensitivity radioxenon detectors for Comprehensive Test Ban Treaty Surveillance, improved fission gas detectors for enhanced environmental surveillance in the vicinity of DOE, DOD, and NRC-licensed facilities, and improved integrating Rn detectors for earthquake prediction. The purpose of the present paper is to present the results of theoretical and experimental investigations into the solubility phenomena of heavy noble gases (Rn, Xe, and Kr) in triglyceride oils. It is the authors' intention that the findings presented herein may be used to guide future selection, development, and refinement of vegetable and other hydrocarbon oils to bring further enhancements to noble gas detection efficiencies

  19. Solubility investigations in support of ultrasensitive noble gas detector development

    International Nuclear Information System (INIS)

    Gross, K.C.; Andersen, A.; Russ, W.R.; Stuenkel, D.; Valentine, J.D.

    1998-01-01

    Argonne National Laboratory (ANL) and the University of Cincinnati (UC) have been developing a new class of ultrasensitive noble gas detectors that are based upon the ANL discovery that corn oil has a high affinity for heavy noble gas absorption at room temperature but releases the noble gases with warming or by other low-energy-input means. Environmental applications for this new class of fluid-based detectors include ultrahigh sensitivity radioxenon detectors for comprehensive test ban treaty surveillance, improved fission gas detectors for enhanced environmental surveillance in the vicinity of US Department of Energy, US Department of Defense, and US Nuclear Regulatory Commission licensed facilities, and improved integrating Rn detectors for earthquake prediction. They present the results of theoretical and experimental investigations into the solubility phenomena of heavy noble gases (Rn, Xe, and Kr) in triglyceride oils. They intend for the findings presented herein to be used to guide future selection, development, and refinement of vegetable and other hydrocarbon oils to bring further enhancements to noble gas detection efficiencies

  20. Development of a cadmium telluride pixel detector for astrophysical applications

    Science.gov (United States)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Cook, Walter R.; Mao, Peter H.; Rana, Vikram R.; Ishikawa, Shin-Nosuke; Ushio, Masayoshi; Aono, Hiroyuki; Watanabe, Shin; Sato, Goro; Kokubun, Motohide; Takahashi, Tadayuki

    2009-08-01

    We are developing imaging Cadmium Telluride (CdTe) pixel detectors optimized for astrophysical hard X-ray applications. Our hybrid detector consist of a CdTe crystal 1mm thick and 2cm × 2cm in area with segmented anode contacts directly bonded to a custom low-noise application specific integrated circuit (ASIC). The CdTe sensor, fabricated by ACRORAD (Okinawa, Japan), has Schottky blocking contacts on a 605 micron pitch in a 32 × 32 array, providing low leakage current and enabling readout of the anode side. The detector is bonded using epoxy-gold stud interconnects to a custom low noise, low power ASIC circuit developed by Caltech's Space Radiation Laboratory. We have achieved very good energy resolution over a wide energy range (0.62keV FWHM @ 60keV, 10.8keV FWHM @ 662keV). We observe polarization effects at room temperature, but they are suppressed if we operate the detector at or below 0°C degree. These detectors have potential application for future missions such as the International X-ray Observatory (IXO).

  1. NIR Detector Signal Chain Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this proposal are twofold: 1) develop a suite of flight software tools for utilizing the advanced capabilities inherent in the guide-mode features...

  2. Development of Hybrid and Monolithic Silicon Micropattern Detectors

    CERN Multimedia

    Beker, H; Snoeys, W; Campbell, M; Lemeilleur, F; Ropotar, I

    2002-01-01

    %RD-19 \\\\ \\\\ In a collaborative effort between particle physics institutes and microelectronics industry we are undertaking the development of true 2-dimensional semiconductor particle detectors with on-chip signal processing and information extraction: the so-called micropattern detector. This detector is able to cope in a robust way with high multiplicity events at high rates, while allowing for a longer detector lifetime under irradiation and a thinner sensitive depletion region. Therefore, it will be ideally suited for the complicated events in the LHC p-p collider experiments. Following a $^{\\prime}$stepping stone$^{\\prime}$ approach several telescopes of pixel planes, totalling now 600 cm$^{2}$ with \\(>\\)~1~M elements have been used in the WA97, NA50 and NA57 lead ion experiments. This new technology has facilitated the tracking considerably (see Fig.1). Not only Si but also GaAs and possibly diamond matrices can be connected to the readout matrix. Tests with GaAs pixel detectors with the RD-19 readout ...

  3. Development of hybrid low-pressure MSGC neutron detectors

    International Nuclear Information System (INIS)

    Gebauer, B.; Alimov, S.S.; Klimov, A.Yu.; Levchanovski, F.V.; Litvinenko, E.I.; Nikiforov, A.S.; Prikhodko, V.I.; Richter, G.; Rogov, V.; Schulz, Ch.; Shashkin, V.I.; Wilhelm, M.; Wilpert, Th.

    2004-01-01

    For very high rate and resolution time-resolved experiments at next generation pulsed spallation neutron sources like ESS large-area hybrid low-pressure micro-strip gas chamber detectors are being developed. Due to their thin composite converter foil and exponential gas multiplication commencing at the converter surfaces the detectors are free of parallax, and according to detailed modeling the very high transverse and longitudinal localization accuracies in the conversion and gas multiplication processes allow position and time resolutions of ∼100 μm and 8 cps. This will open up novel applications based on time-of-flight (TOF) and single-event detection with very high dynamic range, replacing integrating CCD and image plate detectors, e.g. in radiography/tomography, TOF Laue diffraction, single crystal diffraction and focusing low-Q SANS. In this conference report new results concerning the technical realization of this detector system are reported in conjunction with a brief summary of the detector principle and with reference to earlier results

  4. Some recent developments in nuclear charged particle detectors

    International Nuclear Information System (INIS)

    Stelzer, H.

    1980-08-01

    The latest developments of large-area, position sensitive gas-filled ionization chambers are described. Multi-wire-proportional chambers as position-sensing and parallel-plate-avalanche counters as time-sensing detectors at low pressure (5 torr) have proven to be useful and reliable instruments in heavy ion physics. Gas (proportional) scintillation counters, used mainly for x-ray spectroscopy, have recently been applied as particle detectors. Finally, a brief description of a large plastic scintillator spectrometer, the Plastic Ball, is given and some of the first test and calibration data are shown

  5. Development of a wide-range tritium-concentration detector

    Energy Technology Data Exchange (ETDEWEB)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L. [China Academy of Engineering Physics, Mianyang (China)

    2015-03-15

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10{sup 4} Bq/ml - 5*10{sup 8} Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10{sup -14} A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R{sup 2} = 0.998.

  6. Development of a wide-range tritium-concentration detector

    International Nuclear Information System (INIS)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L.

    2015-01-01

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10 4 Bq/ml - 5*10 8 Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10 -14 A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R 2 = 0.998

  7. Development of a proton Computed Tomography Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Naimuddin, Md. [Delhi U.; Coutrakon, G. [Northern Illinois U.; Blazey, G. [Northern Illinois U.; Boi, S. [Northern Illinois U.; Dyshkant, A. [Northern Illinois U.; Erdelyi, B. [Northern Illinois U.; Hedin, D. [Northern Illinois U.; Johnson, E. [Northern Illinois U.; Krider, J. [Northern Illinois U.; Rukalin, V. [Northern Illinois U.; Uzunyan, S. A. [Northern Illinois U.; Zutshi, V. [Northern Illinois U.; Fordt, R. [Fermilab; Sellberg, G. [Fermilab; Rauch, J. E. [Fermilab; Roman, M. [Fermilab; Rubinov, P. [Fermilab; Wilson, P. [Fermilab

    2016-02-04

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  8. Development of Microstrip Silicon Detectors for Star and ALICE

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Guthneck, L; Higueret, S; Hundt, F; Kühn, C E; Lutz, Jean Robert; Pozdniakov, S; Rami, F; Tarchini, A; Boucham, A; Bouvier, S; Erazmus, B; Germain, M; Giliberto, S; Martin, L; Le Moal, C; Roy, C; Colledani, C; Dulinski, W; Turchetta, R

    1998-01-01

    The physics program of STAR and ALICE at ultra-relativistic heavy ion colliders, RHIC and LHC respectively, requires very good tracking capabilities. Some specific quark gluon plasma signatures, based on strange matter measurements implies quite a good secondary vertex reconstruction.For this purpose, the inner trackers of both experiments are composed of high-granularity silicon detectors. The current status of the development of double-sided silicon microstrip detectors is presented in this work.The global performance for tracking purpose adn particle identification are first reviewed. Then tests of the detectors and of the associated readout electronics are described. In-beam measurements of noise, spatial resolution, efficiency and charge matching capability, as well as radiation hardness, are examined.

  9. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  10. Development of the H1 backward silicon strip detector

    International Nuclear Information System (INIS)

    Eick, W.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Newton, A.M.; Wilburn, C.D.; Horisberger, R.; Pitzl, D.; Haynes, W.J.; Noyes, G.

    1996-10-01

    The development and first results are described of a silicon strip detector telescope for the HERA experiment H1 designed to measure the polar angle of deep inelastic scattered electrons at small Bjorken x and low momentum transfers Q 2 . (orig.)

  11. Development and applications of gas electron multiplier detectors

    CERN Document Server

    Sauli, Fabio

    2003-01-01

    An overview of the recent developments in the field of gas electron multiplier (GEM) detectors was presented. Cascading of several GEM foils permits the sustaining of large gains and thereby allows the detection of minimum ionizing particles. The application of GEM included, fast and position sensitive detection in particle physics, medicine, neutron spectrometry, and astrophysics. (Edited abstract) 19 Refs.

  12. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    Abstract. Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our ...

  13. Development of a blood pressure alarm detector based on seven ...

    African Journals Online (AJOL)

    This paper introduces the development of a blood pressure alarm detector, meant to be incorporated into an electronic blood pressure tracking unit, from which it detects signals for the measured blood pressure (BP), that is, the systolic blood pressure (SBP) and diastolic blood pressure (DBP). It simultaneously displays the ...

  14. The development of a market for sustainable coffee in the Netherlands: Rethinking the contribution of fair trade

    NARCIS (Netherlands)

    Ingenbleek, P.T.M.; Reinders, M.J.

    2013-01-01

    In recent years, researchers have observed the process of mainstreaming Fair Trade and the emergence of alternative sustainability standards in the coffee industry. The underlying market dynamics that have contributed to these developments are, however, under-researched. Insight into these dynamics

  15. High-dose neutron detector development

    Energy Technology Data Exchange (ETDEWEB)

    Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-14

    The development of advanced sustainable nuclear fuel cycles relying on used nuclear fuel is one of the key programs pursued by the DOE Office of Nuclear Energy to minimize waste generation, limit proliferation risk and maximize energy production using nuclear energy. Safeguarding of advanced nuclear fuel cycles is essential to ensure the safety and security of the nuclear material. Current non-destructive assay (NDA) systems typically employ fission chambers or 3He-based tubes for the measurement of used fuel. Fission chambers are capable of withstanding the high gamma-ray backgrounds; however, they provide very low detection efficiency on the order of 0.01%. To benefit from the additional information provided by correlated neutron counting [1] higher detection efficiencies are required. 3He-based designs allow for higher detection efficiencies; however, at the expense of slow signal rise time characteristics and higher sensitivity to the gamma-ray backgrounds. It is therefore desirable to evaluate and develop technologies with potential to exceed performance parameters of standard fission chamber-based or 3He-based detection systems currently used in the NDA instrumentation.

  16. The Role og Fairs in the Development and Division of Fields

    DEFF Research Database (Denmark)

    Csaba, Fabian; Larsen, Frederik

    During the Copenhagen Fashion Week A/W 2010, CPH Kids opened as the first independent trade fair for children’s clothing. Despite considerable resistance, the fair managed to establish itself and challenge the established order by providing a venue devoted fully to children’s clothing and luring......, and ultimately the (economic) value exchange value, of cultural products are established through judgments of their technical/material, social, situational, appreciative and utility values. However, we do not focus as much on specific evaluative practices in the field, as the cultural values and norms around...... of CPH Kids and explore the values, identities and structures of Danish children’s fashion in more depth, our investigation points to the field dividing impact that fairs might have....

  17. Testing of the KRI-developed Silicon PIN Radioxenon Detector

    International Nuclear Information System (INIS)

    Foxe, Michael P.; McIntyre, Justin I.

    2015-01-01

    Radioxenon detectors are used for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in a network of detectors throughout the world called the International Monitoring System (IMS). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Provisional Technical Secretariat (PTS) has tasked Pacific Northwest National Laboratory (PNNL) with testing a V.G. Khlopin Radium Institute (KRI) and Lares Ltd-developed Silicon PIN detector for radioxenon detection. PNNL measured radioxenon with the silicon PIN detector and determined its potential compared to current plastic scintillator beta cells. While the PNNL tested Si detector experienced noise issues, a second detector was tested in Russia at Lares Ltd, which did not exhibit the noise issues. Without the noise issues, the Si detector produces much better energy resolution and isomer peak separation than a conventional plastic scintillator cell used in the SAUNA systems in the IMS. Under the assumption of 1 cm 3 of Xe in laboratory-like conditions, 24-hr count time (12-hr count time for the SAUNA), with the respective shielding the minimum detectable concentrations for the Si detector tested by Lares Ltd (and a conventional SAUNA system) were calculated to be: 131m Xe - 0.12 mBq/m 3 (0.12 mBq/m 3 ); 133 Xe - 0.18 mBq/m 3 (0.21 mBq/m 3 ); 133m Xe - 0.07 mBq/m 3 (0.15 mBq/m 3 ); 135 Xe - 0.45 mBq/m 3 (0.67 mBq/m 3 ). Detection limits, which are one of the important factors in choosing the best detection technique for radioxenon in field conditions, are significantly better than for SAUNA-like detection systems for 131m Xe and 133m Xe, but similar for 133 Xe and 135 Xe. Another important factor is the amount of ''memory effect'' or carry over signal from one radioxenon measurement to the subsequent sample. The memory effect is reduced by a factor of 10 in the Si PIN detector compared to the current plastic scintillator cells. There is potential for further reduction with the

  18. Development of Experimental Superconducting Magnet for the Collector Ring of FAIR Project

    International Nuclear Information System (INIS)

    Zhu Yinfeng; Wu Weiyue; Wu Songtao; Liu Changle; Xu Houchang

    2010-01-01

    A pool cooled experimental magnet based on the copper stabilized NbTi superconducting wire was designed, fabricated and tested, in order to evaluate the engineering design of the dipole superconducting magnet for the collector ring (CR) of the facility for antiproton and ion research (FAIR) project. In this paper, the experimental setup including quench protection system was presented. Performance of the liquid helium pool cooled test was introduced. All of the results indicate both the performance of conductor and the experimental superconducting magnet under low temperature is stable, which suggests the engineering design are feasible for the formal magnet in CR of the FAIR project.

  19. Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1989-01-01

    During the past year, considerable effort has been applied to the development of scintillating fiber detectors in several areas: new scintillation liquids and studies of their fluorescence properties; new fluorescent dyes based on non-intramolecular proton transfer; new dyes based on intramolecular proton transfer; incorporation of these new dyes in plastic (polystyrene) and liquid scintillation solutions; development of small cross section glass capillaries for the containment of liquid scintillators; studies of waveguide characteristics; studies of image intensifier phosphor screen characteristics; initial steps to form a collaboration to study and develop appropriate new properties of the Solid State Photomultiplier; construction of a new laboratory at Notre Dame to enhance our capabilities for further measurements and studies; and organization of and execution of a Workshop on Scintillating Fiber Detector Development for the SSC, held at Fermilab, November 14--16, 1988

  20. Development of cryogenic installations for large liquid argon neutrino detectors

    CERN Document Server

    Adamowski, M; Geynisman, M; Hentschel, S; Montanari, D; Nessi, M; Norris, B

    2015-01-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these...

  1. Updates on Software development for a RICH detector

    Science.gov (United States)

    Voloshin, Andrew; Benmokhtar, Fatiha; Lendacky, Andrew; Goodwill, Justin

    2017-01-01

    The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the improvements is the addition of a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) are going to be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). Software development for slow control as well as online monitoring is under development. I will be presenting my work on the development of a java based programs for a monitor and explain its interaction with a Mysql database where the MAPMTs information is stored as well as the techniques used to visualize Cherenkov rings.

  2. Development of a gaseous photon detector for Cherenkov imaging applications

    CERN Document Server

    Rocco, Elena; Dalla Torre, Silvia

    2010-01-01

    This thesis is dedicated to the R&D activity aiming at a novel micro pattern gaseous photon detector based on the THick Gas Electron Multiplier (THGEM). The goal application of the novel photon detector is the detection of single photon in Ring Imaging CHerenkov (RICH) counters. The THGEM principle is derived from the Gas Electron Multiplier (GEM) one, even if the material, the production technology and the size scale are different: a THGEM is a Circuit Printed Board (PCB) coated with thin copper layers on both faces, with holes obtained by drilling. Part of the THGEM features are similar to those of the GEMs, but a number of characteristics aspects result substantially different: in fact, if the geometrical parameters can be scaled from the GEM ones, the parameters related to the electrons multiplication, which is a microscopic physical phenomenon, do not. This is why, before starting the photon detector development, we have performed a systematic study of the THGEM multiplier. A photon detector is forme...

  3. Development of Strained-Layer Superlattice (SLS) IR Detector Camera

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  4. International free and fair election instruments developed by UN and OSCE

    OpenAIRE

    Azer Kasumov

    2012-01-01

    After collapse of USSR, the international society confronted with a complicated challenge.After this, free and fair election standards became an essential component to establishing ademocratic governments in the new independent states. In order to conduct free and fairelection, the United Nations and the Organization for Security and Cooperation in Europeelection standards played main role the respectively in the context of international andregional level. The Article briefly describes the im...

  5. Development of Si (Li) detectors for charged particles spectrometer

    CERN Document Server

    Onabe, H; Obinata, M; Kashiwagi, T

    2002-01-01

    Lithium drifted silicon (Si (Li)) detectors with high-quality large area for charged particles spectrometer abroad artificial satellite have been developed. Surface stability can be obtained by thin p-n junction fabricated with the applied photo engraving process (PEP) instead of surface barrier. The region compensated with Lithium can be improved by the adequate heat treatment, and this improvement can be monitored by means of a combination of copper plating and subsequent micro-XRF analysis. The detectors fabricated from the thermal treated wafers were found to have better energy resolution both for alpha-particles from sup 2 sup 4 sup 1 Am and conversion electrons from sup 2 sup 0 sup 7 Bi. (author)

  6. Book fair

    CERN Document Server

    2006-01-01

    The Swiss academic publishing house 'Presses Polytechniques Universitaires Romandes'will be presenting its most recent scientific and technical publications at a book fair in the lobby of the Main Building (60) from 10 a.m. to 4 p.m. on Thursday 28 September 2006.

  7. Proton Radiography: Cross Section Measurement and Detector Development

    International Nuclear Information System (INIS)

    Longo, Michael J.

    2007-01-01

    Proton radiography offers significant advantages over conventional X-ray radiography, including the capability of looking into thick, dense materials, better contrast for a wide range of materials, sensitivity to different materials of similar density, and better resolution because of the ability to focus beams. In order to achieve this capability it is crucial to understand the background due to neutrons and photons and to develop techniques to reduce it to tolerable levels. The physics goal of this project is to measure forward production of neutrons and photons produced by high-energy proton beams striking a variety of targets. This work is being carried out in conjunction with the Fermilab Experiment 907 (MIPP) collaboration including physicists from Lawrence Livermore Laboratory. Our group is responsible for the E907 forward neutron/photon calorimeters. These are the only detectors in the experiment that provide information on neutrons and photons. We are taking a leading role in obtaining and analyzing the for-ward production data and in developing an optimal detector for proton radiography. With the support of our Stewardship Science Academic Alliances grant, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. E-907 officially started physics running at Fermilab in January 2005, and data taking continued through February 2006. Data were taken on a range of targets, from liquid hydrogen to uranium, at beam energies from 5 GeV/c to 120 GeV/c. The analysis of the data is challenging because data from many different detector systems must be understood and merged and over 31 million events were accumulated. Our recent efforts have been devoted to the calibration of the neutron and photon detectors, to track and shower reconstruction, identification of forward-going neutrons, and simulation of the calorimeters in a Monte Carlo. Reconstruction of the data with improved tracking is underway

  8. Development and construction of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Aston, D.; Bean, A.; Bienz, T.

    1989-06-01

    We report on the development and construction of the Cerenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC linear collider. In particular, we outline recent progress in the construction, and results from testing the first components of the barrel CRID, including the drift boxes, liquid radiator trays and mirror system. We also review progress in the construction of the barrel CRID gas radiator vessel, the liquid radiator recirculator system, and the electronic readout system. The development of a comprehensive monitor and control system -- upon which the stable operation and physics efficacy of the CRID depend -- is also described. 19 refs., 9 figs

  9. Flat-response x-ray-diode-detector development

    International Nuclear Information System (INIS)

    Tirsell, G.

    1982-10-01

    In this report we discuss the design of an improved sub-nanosecond flat response x-ray diode detector needed for ICF diagnostics. This device consists of a high Z cathode and a complex filter tailored to flatten the response so that the total x-ray energy below 1.5 keV can be measured using a single detector. Three major problems have become evident as a result of our work with the original LLNL design including deviation from flatness due to a peak in the response below 200 eV, saturation at relatively low x-ray fluences, and long term gold cathode instability. We are investigating grazing incidence reflection to reduce the response below 200 eV, new high Z cathode materials for long term stability, and a new complex filter for improved flatness. Better saturation performance will require a modified XRD detector under development with reduced anode to cathode spacing and increased anode bias voltage

  10. Detector Development for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367854; Gößling, Claus

    To maximise the discovery potential of the Large Hadron Collider, it will be upgraded to the High Luminosity Large Hadron Collider in 2024. New detector challenges arise from the higher instantaneous luminosity and the higher particle flux. The new ATLAS Inner Tracker will replace the current tracking detector to be able to cope with these challenges. Many pixel detector technologies exist for particle tracking, but their suitability for the ATLAS Inner Tracker needs to be studied. Active high-voltage CMOS sensors, which are produced in industrialised processes, offer a fast readout and radiation tolerance. In this thesis the HV2FEI4v2 sensor, which is capacitively coupled to the ATLAS Pixel FE-I4 readout chip, is characterised for the usage in the outer layers of the ATLAS Inner Tracker. Key quantities of this prototype module are studied, such as the hit efficiency and the subpixel encoding. The early HV2FEI4v2 prototype shows promising results as a starting point for further module developments. Active CMO...

  11. Industrial workshop on LASL semiconductor radiation-detector research and development

    Energy Technology Data Exchange (ETDEWEB)

    Endebrock, M. (comp.)

    1978-11-01

    An Industrial Workshop on LASL Semiconductor Radiation Detector Research and Development was held at the Los Alamos Scientific Laboratory (LASL) in the spring of 1977. The purpose was to initiate communication between our detector research and development program and industry. LASL research programs were discussed with special emphasis on detector problems. Industrial needs and capabilities in detector research and development were also presented. Questions of technology transfer were addressed. The notes presented here are meant to be informal, as were the presentations.

  12. Development of long wave infrared detectors for space astronomy

    Science.gov (United States)

    Bacon, Candice Marie

    This thesis details the research and development of 10[mu]m cutoff detector arrays conducted at the University of Rochester in conjunction with Rockwell Scientific. Through my data analysis and theoretical modeling of detector characteristics, processes which prevent the detector arrays from meeting low background astronomical specifications are determined and fed back to the manufacturer. The first set of deliveries were manufactured in a banded form at with multiple diode structures. Data analysis indicated that the smallest capacitance diode structure exhibited the lowest dark currents and the highest yield of pixels (28%) meeting the goal of less than 100 e - /s dark current with adequate (> 45mV) well depth. The mechanisms limiting dark current were found to be surface current at lower biases and tunneling (trap-to-band and band-to-band) at higher biases. In order to reduce stress at the junction during hybridization (a leading cause of the observed tunneling current), a proprietary bonding method was developed by Rockwell Scientific. New detector arrays, manufactured with the optimum diode structure and bonded with the new bonding technique to the HAWAII-1RG multiplexer, showed an impressive 75% of pixels exhibiting dark current less than 30 e - /s with sufficient (> 40mV) well depth. Most of these pixels exhibited extremely low dark currents, less than 0.3 e - /s. I found that the dark current limiting mechanism at lower biases was still surface current on the front-side, caused by passivation processing techniques. The limiting mechanism at high biases was dislocation- induced early breakdown which took the shape of a screw dislocation (or micropipe) on an I-V curve of dark current, manifesting as a sharp increase in trap-to-band tunneling current. Burst noise was also detected in the source follower unit cell FET of the multiplexer and was fully characterized and explored. It was discovered that the burst noise was a result of oxide trapping of a single

  13. Testing of the KRI-developed Silicon PIN Radioxenon Detector

    Energy Technology Data Exchange (ETDEWEB)

    Foxe, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McIntyre, Justin I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-23

    Radioxenon detectors are used for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in a network of detectors throughout the world called the International Monitoring System (IMS). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Provisional Technical Secretariat (PTS) has tasked Pacific Northwest National Laboratory (PNNL) with testing a V.G. Khlopin Radium Institute (KRI) and Lares Ltd-developed Silicon PIN detector for radioxenon detection. PNNL measured radioxenon with the silicon PIN detector and determined its potential compared to current plastic scintillator beta cells. While the PNNL tested Si detector experienced noise issues, a second detector was tested in Russia at Lares Ltd, which did not exhibit the noise issues. Without the noise issues, the Si detector produces much better energy resolution and isomer peak separation than a conventional plastic scintillator cell used in the SAUNA systems in the IMS. Under the assumption of 1 cm3 of Xe in laboratory-like conditions, 24-hr count time (12-hr count time for the SAUNA), with the respective shielding the minimum detectable concentrations for the Si detector tested by Lares Ltd (and a conventional SAUNA system) were calculated to be: 131mXe – 0.12 mBq/m3 (0.12 mBq/m3); 133Xe – 0.18 mBq/m3 (0.21 mBq/m3); 133mXe – 0.07 mBq/m3 (0.15 mBq/m3); 135Xe – 0.45 mBq/m3 (0.67 mBq/m3). Detection limits, which are one of the important factors in choosing the best detection technique for radioxenon in field conditions, are significantly better than for SAUNA-like detection systems for 131mXe and 133mXe, but similar for 133Xe and 135Xe. Another important factor is the amount of “memory effect” or carry over signal from one radioxenon measurement to the subsequent sample. The memory effect is

  14. Development of a brand-new radon-thoron discriminative detector

    International Nuclear Information System (INIS)

    Tokonami, S.; Hulber, E.

    2004-01-01

    A brand-new radon-thoron discriminative detector has been developed for the purposes of large-scope surveys. The configuration and features of this facility in comparison to our previous detector are described

  15. Superconducting Cable Development for Future High Energy Physics Detector Magnets

    Science.gov (United States)

    Horvath, I. L.

    1995-11-01

    Under the leadership of the Swiss Federal Institute of Technology (ETHZ) an international ad hoc collaboration for superconducting cables developed an aluminium stabilised superconducting cable for future detector magnets. With the financial support of the Swiss government, this R&D work was carried out for the European Organisation for Nuclear Research (CERN). In this report the manufacturing process is described and results of the quality control measurements are summarised. These tests showed that the industrial manufacturing of an aluminium stabilised superconducting cable is feasible.

  16. New detector developments for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.; Lorenz, E.

    1998-01-01

    The strength of quantitative, functional imaging using positron emission tomography, specially in small animals, is limited due to the spatial resolution. Therefore, various tomograph designs employing new scintillators, light sensors, or coincidence electronic are investigated to improve resolution without losses in sensitivity. Luminous scintillators with short light decay time in combination with novel readout schemes using photomultipliers or semiconductor detectors are currently tested by several groups and are implemented in tomographs for small animals. This review summarises the state of development in high resolution positron emission tomography with a detailed description of a system incorporating avalanche photodiode arrays and small scintillation crystals. (orig.) [de

  17. The development of diamond tracking detectors for the LHC

    CERN Document Server

    Adam, W; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, M; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Doroshenko, J; Dulinski, W; van Eijk, B; Fallou, A; Fischer, P; Fizzotti, F; Furetta, C; Gan, K K; Ghodbane, N; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F; Hrubec, Josef; Husson, D; Kagan, H; Kaplon, J; Karl, C; Kass, R; Keil, M; Knöpfle, K T; Koeth, T W; Krammer, M; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Marshall, R D; Meier, D; Menichelli, D; Meuser, S; Mishina, M; Moroni, L; Noomen, J; Oh, A; Perera, L; Pernegger, H; Pernicka, M; Polesello, P; Potenza, R; Riester, J L; Roe, S; Rudge, A; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Sutera, C; Trischuk, W; Tromson, D; Tuvé, C; Vincenzo, B; Weilhammer, P; Wermes, N; Wetstein, M; Zeuner, W; Zöller, M

    2003-01-01

    Chemical vapor deposition diamond has been discussed extensively as an alternate sensor material for use very close to the interaction region of the LHC where extreme radiation conditions exist. During the last few years diamond devices have been manufactured and tested with LHC electronics with the goal of creating a detector usable by all LHC experiment. Extensive progress on diamond quality, on the development of diamond trackers and on radiation hardness studies has been made. Transforming the technology to the LHC specific requirements is now underway. In this paper we present the recent progress achieved.

  18. Design of the micro vertex detector of the CBM experiment. Development of a detector response model and feasibility studies of open charm measurement

    International Nuclear Information System (INIS)

    Dritsa, Christina Anna

    2011-01-01

    The PhD addresses the feasibility of reconstructing open charm mesons with the Compressed Baryonic Matter experiment, which will be installed at the FAIR accelerator complex at Darmstadt/Germany. The measurements will be carried out by means of a dedicated Micro Vertex Detector (MVD), which will be equipped with CMOS Monolithic Active Pixel Sensors (MAPS). The feasibility of reconstructing the particles with a proposed detector setup was studied. To obtain conclusive results, the properties of a MAPS prototype were measured in a beam test at the CERN-SPS accelerator. Based on the results achieved, a dedicated simulation software for the sensors was developed and implemented into the software framework of CBM (CBMRoot). Simulations on the reconstruction of D 0 -mesons were carried out. It is concluded that the reconstruction of those particles is possible. The PhD introduces the physics motivation of doing open charm measurements, represents the results of the measurements of MAPS and introduces the innovative simulation model for those sensors as much as the concept and results of simulations of the D 0 reconstruction.

  19. Computational Fair Division

    DEFF Research Database (Denmark)

    Branzei, Simina

    Fair division is a fundamental problem in economic theory and one of the oldest questions faced through the history of human society. The high level scenario is that of several participants having to divide a collection of resources such that everyone is satisfied with their allocation -- e.g. two...... heirs dividing a car, house, and piece of land inherited. The literature on fair division was developed in the 20th century in mathematics and economics, but computational work on fair division is still sparse. This thesis can be seen as an excursion in computational fair division divided in two parts....... The first part tackles the cake cutting problem, where the cake is a metaphor for a heterogeneous divisible resource such as land, time, mineral deposits, and computer memory. We study the equilibria of classical protocols and design an algorithmic framework for reasoning about their game theoretic...

  20. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  1. Recent developments in X-ray imaging detectors

    CERN Document Server

    Moy, J P

    2000-01-01

    The replacement of the radiographic film in medical imaging has been the driving force in X-ray imaging developments. It requires a approx 40 cm wide detector to cover all examinations, an equivalent noise level of 1-5 X-ray quanta per pixel, and spatial resolution in the range 100-150 mu m. The need for entirely electronic imaging equipments has fostered the development of many X-ray detectors, most of them based on an array of amorphous silicon pixels, which is the only technology capable to achieve such large areas. Essentially, two concepts have been implemented: - intermediate conversion of X-rays to light by a scintillator, detected by an array of light sensitive pixels, comprising a photodiode and a switching device, either a TFT or a diode. - conversion into electron-hole pairs in a photoconductor, collected by an array of electrodes and switches. In both cases, charge amplifiers read the generated charges line by line. Scintillator and photoconductor-based systems are now close to production. They ac...

  2. Development of Mirror Coatings for Gravitational Wave Detectors

    Directory of Open Access Journals (Sweden)

    Stuart Reid

    2016-11-01

    Full Text Available The first detections of gravitational waves, GW150914 and GW151226, were associated with the coalescence of stellar mass black holes, heralding the opening of an entirely new way to observe the Universe. Many decades of development were invested to achieve the sensitivities required to observe gravitational waves, with peak strains associated with GW150914 at the level of 10−21. Gravitational wave detectors currently operate as modified Michelson interferometers, where thermal noise associated with the highly reflective mirror coatings sets a critical limit to the sensitivity of current and future instruments. This article presents an overview of the mirror coating development relevant to gravitational wave detection and the prospective for future developments in the field.

  3. Development of a digital high-frequency regulation for the pulsed operation of the proton-linac test facility at FAIR; Entwicklung einer digitalen Hochfrequenzregelung fuer den gepulsten Betrieb des Protonenlinac Teststandes bei FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Nonn, Patrick Walter

    2014-06-16

    At the site of the GSI Helmholtzzentrum fuer Schwerionenforschung near Darmstadt, the international Facility for Antiproton and Ion Research (FAIR) is under construction. The research program of FAIR includes experiments with antiproton beams. In order to provide the high intensity proton beam, that is necessary to produce the antiprotons, a new linear accelerator, acting as injector to the SIS18 synchrotron, will be constructed. This linear accelerator, called p-Linac, shall be kept as short as possible. That is why novel CH-type cavities will be used for the main acceleration from 3 MeV to 70 MeV. In order to test these novel cavities and their supporting technology, an rf test stand is under construction at GSI. Within the scope of this thesis a pulsed 325 MHz control system has been developed as part of that test stand. It is based upon the cw rf control system of the superconducting Darmstaedter Linearaccelerator (S-DALINAC), that is designed to drive normal- and superconducting cavities at 3 GHz. Aim of this thesis is, to adapt the frequency of S-DALINAC's rf control to p-Linac's 325 MHz at one hand and on the other hand, to improve the response time in order to achieve a relative amplitude error of below 10{sup -3} and a phase error below 0.1 within the 200 μs long rf pulses. The time that is needed in order to re-achieve the errors after the beam pulse hits the cavity, is also crucial. At first, the dependance of the control rate to various parameters of the cavity and the control has been tested by analytical and numerical methods. Therefore, the behavior of a cavity's amplitude in the base band has been modeled and confirmed by comparison of the model's and a measured step response of a cavity. The dependance of the I- and PI-control's parameters on the decay time of the cavity was shown by analytical methods. With the aid of numerical simulations the extent at which the response time is affected negatively by dead time and

  4. Development of a fabrication technology for double-sided AC-coupled silicon microstrip detectors

    International Nuclear Information System (INIS)

    Dalla Betta, G.-F.; Boscardin, M.; Bosisio, L.; Rachevskaia, I.; Zen, M.; Zorzi, N.

    2001-01-01

    We report on the development of a fabrication technology for double-sided, AC-coupled silicon microstrip detectors for tracking applications. Two batches of detectors with good electrical figures and a low defect rate were successfully manufactured at IRST Laboratory. The processing techniques and the experimental results obtained from these detector prototypes are presented and discussed

  5. Development of multiwire gas detectors for X-rays; Desenvolvimento de detectores a gas multifilares para raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Eraldo de

    2015-06-01

    This work presents the prototype of a 2D position sensitive gas detector for application in X-ray scattering and diffraction experiments. Starting from a detector initially developed for other applications and will show the required changes on the original concept of this device. The strategy used to determine the necessary adaptations were based on searching in the literature for the overall characteristics of a multi-wire X-ray detector (choice of gas, pressure, window, etc.), the use of simulations, implementation of the changes and finally operational tests. Computational tools were used to calculate the mechanical strength and attenuation of the X-ray photons that helped to determine the most appropriate material for the construction of the entrance window. Detector simulations were built with Garfield software and were used to study the overall properties of the detector, and to determine the optimum parameters for the equipment operation. Typical parameters are the distance between the wires, wire diameter, high voltage to be used, among several other parameters. The results obtained showed that the multi-wire detector concept with the implemented adaptations allowed the detection of X-rays. However, depending on the application, it may be necessary improve the resolution of the equipment, in order to have a better description of the collected data. Several ideas are suggested for this improvement. It is also presented interesting results obtained with a microscopic pattern detector called triple GEM. This device belongs to the Gas Detectors Development group (GDD group) at CERN and was used in my training at this institution. The results showed the potential of the equipment for detection of X-rays. The results and simulations presented in this work, confirmed that the changes in the concept of the original detector permitted it use on X-ray detection applications. Also, it was possible to obtain several indications for further optimization, which may

  6. The Compressed Baryonic Matter experiment at FAIR

    Science.gov (United States)

    Höhne, Claudia

    2018-02-01

    The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.

  7. The Compressed Baryonic Matter experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Höhne Claudia

    2018-01-01

    Full Text Available The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.

  8. Development and characterization of the lead iodide semiconductor detector

    International Nuclear Information System (INIS)

    Oliveira, Icimone Braga de

    2001-01-01

    A methodology for purification and growth of PbI 2 crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ( 241 Am) alpha particle and ( 241 Am, 57 Co, 133 Ba and 137 Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for 241 Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI 2 crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  9. Development of a soil detector based on an optical sensor

    Science.gov (United States)

    Zheng, Lihua; Pan, Luan; Li, Minzan; An, Xiaofei

    2008-12-01

    An estimation model of the soil organic matter content has been built based on NIR spectroscopy and a portable soil organic matter detector based on optical sensor is developed. The detector uses a micro processor 89S52 as the Micro Controller Unit (MCU) and consists of an optical system and a control system. The optical system includes a 850nm near-infrared lamp-house, a lamp-house driving-circuit, a Y type optical fiber, a probe, and a photoelectric sensor. The control system includes an amplified circuit, an A/D circuit, a display circuit with LCD, and a storage circuit with USB interface. Firstly the single waveband optical signal from the near-infrared lamp-house is transferred to the surface of the target soil via the incidence fibers. Then the reflected optical signal is collected and transferred to photoelectric sensor, where the optical signal is conveyed to the electrical signal. Subsequently, the obtained electrical signal is processed by 89S52 MCU. Finally, the calculated soil organic matter content is displayed on the LCD and stored in the USB disk. The calibration experiment using the estimation model of the soil organic matter is conducted. The decision coefficient (R2) reaches 0.9839 between the measured data by the soil organic matter sensor and by the laboratory chemistry method.

  10. Development of decay energy spectroscopy using low temperature detectors.

    Science.gov (United States)

    Jang, Y S; Kim, G B; Kim, K J; Kim, M S; Lee, H J; Lee, J S; Lee, K B; Lee, M K; Lee, S J; Ri, H C; Yoon, W S; Yuryev, Y N; Kim, Y H

    2012-09-01

    We have developed a high-resolution detection technique for measuring the energy and activity of alpha decay events using low-temperature detectors. A small amount of source material containing alpha-emitting radionuclides was enclosed in a 4π metal absorber. The energy of the alpha particles as well as that of the recoiled nuclides, low-energy electrons, and low-energy x-rays and γ-rays was converted into thermal energy of the gold absorber. A metallic magnetic calorimeter serving as a fast and sensitive thermometer was thermally attached to the metal absorber. In the present report, experimental demonstrations of Q spectroscopy were made with a new meander-type magnetic calorimeter. The thermal connection between the temperature sensor and the absorber was established with annealed gold wires. Each alpha decay event in the absorber resulted in a temperature increase of the absorber and the temperature sensor. Using the spectrum measured for a drop of (226)Ra solution in a 4π gold absorber, all of the alpha emitters in the sample were identified with a demonstration of good detector linearity. The resolution of the (226)Ra spectrum showed a 3.3 keV FWHM at its Q value together with an expected gamma escape peak at the energy shifted by its γ-ray energy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Developing Detectors for Scintillation Light in Liquid Argon for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Bruce [Fermilab

    2016-12-22

    The Deep Underground Neutrino experiment will conduct a broad program of physics research by studying a beam of neutrinos from Fermilab, atmospheric neutrinos, neutrinos from potential supernovae, and potential nucleon decay events. In pursuit of these studies, the experiment will deploy four 10kt fiducial mass liquid argon time projection chambers underground in Lead, South Dakota. Liquid argon time projection chambers allow high-resolution tracking and energy measurements. A precise timing signal is needed to provide the necessary time stamp to localize events in the drift direction. As liquid argon is a natural scintillator, a photon detection system will be deployed to provide such a signal, especially for non-beam events. In the baseline design for the single-phase time projection chamber, the detectors are contained within the anode plane assemblies. The design of two prototypes utilizing wavelength shifters and light guides are presented, and aspects of the research and development program are discussed.

  12. Present and future isochronous mass spectrometry at GSI-FAIR. 25 new masses of fission fragments novel analysis method design of a new time-of-flight detector system

    International Nuclear Information System (INIS)

    Diwisch, Marcel

    2015-01-01

    stamps at N max /2, where N max represents the maximum number of turns an individual ion has reached circulating in the ESR. Contrary to previous analysis works no restriction was applied and thus the most exotic nuclides with naturally low statistics were included here. The accuracy for the new mass values are about 180 keV which is mainly determined by the systematic error and the statistics. The performance of the ToF detector, the extraction of the time stamps, and the ion-optical properties determine the accuracy and limitation of IMS including CMM. These different contributions were investigated in the present work by systematic simulations and test experiments. A main result of these studies is that for ions that circulate 200 turns or more the present timing performance of the ToF detector has a minor influence on the possible mass accuracy but the ion-optics of the ring. MOCADI simulations with first- and third-order matrices clearly demonstrate the latter statement, especially for m/q values far from the isochronous ion. In future IMS experiments this requirement can be fulfilled with the new dual ToF detector system designed in the frame work of this doctoral thesis. The timing performance of the present ESR ToF detector has been substantially improved by increasing the electric field strength from 156 V/mm to 300 V/mm. This change has decreased the time spread from 45 ps to 35 ps. The results were obtained in simulations and verified in test experiments with alpha particles. The excellent agreement between measurements and simulations has been the basis for the design of the future dual time-of-flight detector system which will be installed in the Collector Ring of FAIR. The two ToF detectors will be installed about 22 m apart and allow a velocity determination of better than 10 -4 which is needed for accurate mass determination. The new ToF detector is a big challenge because the foil diameter has to be doubled compared to the present ESR detector. The

  13. Development of neutron detectors and neutron radiography at ...

    Indian Academy of Sciences (India)

    A M SHAIKH. Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India ... BARC, Department of Atomic Energy units and some universities and research institutes in India and abroad for a ... Neutron detectors. Radiation detectors play important role in medicine, biology, materials science and.

  14. Development of a generic virus behavioural detector: a preview ...

    African Journals Online (AJOL)

    The Generic Virus Behavioral Detector (GVBD) is a system (program) that monitors various system activities; reading and writing block of disks and memory and the use of Interrupts. A technique for its realisation is presented. Key Words: Computer virus, interrupts, handlers, GVBD (Generic Virus Behavioral Detector).

  15. The Development of Micro-Pattern Gas Detectors

    CERN Document Server

    BALOUZA, Samah

    2014-01-01

    This work is aimed to study the electron transparency in 3-D woven mesh that is used in micromegas detector. The importance of calculating the transparency is because it is enter in the gain calibration of the detector. The simulation tool is COMSOL Multiphysics in which it is solved the differential equations by Finite Element Method.

  16. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Puellen, Lukas

    2015-01-01

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  17. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  18. Overview of DRS uncooled VOx infrared detector development

    Science.gov (United States)

    Li, Chuan; Han, C. J.; Skidmore, George

    2011-06-01

    Significant progress has been made over the past decade on uncooled focal plane array technologies and production capabilities. The detector pixel dimensions have continually decreased with an increase in pixel performance making large format, high-density array products affordable. In turn, this has resulted in the proliferation of uncooled IR detectors in commercial and military markets. Presently, uncooled detectors are widely used in firefighting, surveillance, industrial process monitoring, machine vision, and medical applications. Within the military arena, uncooled detectors are ubiquitous in Army soldier systems such as weapon sights, driver's viewers, and helmet-mounted sights. Uncooled detectors are also employed in airborne and ground surveillance sensors including unmanned aerial vehicles and robot vehicles.

  19. National strategy for sustainable development 2010-2013 - Towards a green and fair economy

    International Nuclear Information System (INIS)

    2012-09-01

    For a set of 'sustainable development' challenges, this report discusses context and stakes, and strategic choices, and gives an overview of action leverages. These challenges deal with consumption and sustainable products, the knowledge society (education and training, research and development), governance, climate change and energies, sustainable transport and mobility, preservation and sustainable management of biodiversity and natural resources, public health and risk prevention and management, demography, immigration and social inclusion, international challenges in the field of sustainable development and poverty in the world

  20. Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer

    Science.gov (United States)

    Zong, Y.; Datla, R. U.

    1998-01-01

    A bolometer detector system was developed for the high accuracy infrared spectrophotometer at the National Institute of Standards and Technology to provide maximum sensitivity, spatial uniformity, and linearity of response covering the entire infrared spectral range. The spatial response variation was measured to be within 0.1 %. The linearity of the detector output was measured over three decades of input power. After applying a simple correction procedure, the detector output was found to deviate less than 0.2 % from linear behavior over this range. The noise equivalent power (NEP) of the bolometer system was 6 × 10−12 W/Hz at the frequency of 80 Hz. The detector output 3 dB roll-off frequency was 200 Hz. The detector output was stable to within ± 0.05 % over a 15 min period. These results demonstrate that the bolometer detector system will serve as an excellent detector for the high accuracy infrared spectrophotometer. PMID:28009364

  1. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    A high resolution (σ∼2μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six monolithic active pixel sensor planes (Mimosa26) with a pixel pitch of 18.4 \\mu m and thinned down to 50 \\mu m. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the European detector infrastructure project AIDA the test beam telescope is being further extended in terms of cooling and powering infrastructure, read-out speed, area of acceptance, and precision. In order to provide a system optimized for the different requirements by the user community a combination of various state-of-the-art pixel technologies is foreseen. Furthermore, new central dead-time-free trigger logic unit (TLU) has been developed to provide LHC-speed response with one-trigger-per-particle operating mode and a synchronous clock for all conn...

  2. The development of a silicon multiplicity detector system

    Energy Technology Data Exchange (ETDEWEB)

    Beuttenmuller, R.H.; Kraner, H.W.; Lissauer, D.; Makowiecki, D.; Polychronakos, V.; Radeka, V.; Sondericker, J.; Stephani, D. [Brookhaven National Laboratory, Upton, NY (United States); Barrette, J.; Hall, J.; Mark, S.K.; Pruneau, C.A. [McGill Univ., Montreal, Quebec (Canada); Wolfe, D. [Univ. of New Mexico, Albuquerque (United States); Borenstein, S.R. [York College-CUNY, Jamaica, NY (United States)

    1991-12-31

    The physics program and the design criteria for a Silicon Pad Detector at RHIC are reviewed. An end cap double sided readout detector configuration for RHIC is presented. Its performance as an on-line and off-line centrality tagging device is studied by means of simulations with Fritiof as the event generator. The results of an in-beam test of a prototype double-sided Si-detector are presented. Good signal-to-noise ratio are obtained with front junction and the resistive back side readout. Good separation between one and two minimum-ionizing particle signals is achieved.

  3. Working with Teachers to Develop Fair and Reliable Measures of Effective Teaching. MET Project

    Science.gov (United States)

    Bill & Melinda Gates Foundation, 2010

    2010-01-01

    In fall 2009, the Bill & Melinda Gates Foundation launched the Measures of Effective Teaching (MET) project to develop and test multiple measures of teacher effectiveness. The goal of the MET project is to improve the quality of information about teaching effectiveness available to education professionals within states and districts--information…

  4. Development of CRID [Cerenkov Ring Imaging Detector] single electron wire detector

    International Nuclear Information System (INIS)

    Aston, D.; Bean, A.; Bienz, T.

    1989-02-01

    We describe the R and D effort to define the design parameters, method of construction and experimental results from the single electron wire detectors. These detectors will be used for particle identification using the Cerenkov Ring Imaging techniques in the SLD experiment at SLAC. We present measurements of pulse heights for several gases as a function of gas gain, charge division performance on a single electron signal using both 7 μm and 33 μm diameter carbon wires, photon feedback in TMAE laden gas, average pulse shape, and its comparison with the predicted shape and cross-talk. In addition, we present results of wire aging tests, and other tests associated with construction of this unusual type of wire chamber. 12 refs., 9 figs

  5. ORION, a multipurpose detector for neutrons. Some new developments

    International Nuclear Information System (INIS)

    Perier, Y.; Lienard, E.; Lott, B.; Galin, J.; Morjean, M.; Peghaire, A.; Quednau, B.; El Masri, Y.; Keutgen, Th.; Tilquin, I.

    1996-01-01

    Different properties of the four-pi neutron detector ORION have been tested: its efficiency in both modes, fast and delayed, its time resolution and position sensitivity. For the later test, the impact of the neutron beam onto the detector was varied by sliding it, perpendicular to the beam direction. All the presented data are tentative with the analysis still in progress. (K.A.)

  6. Development of X-ray detector based on phototransistor

    International Nuclear Information System (INIS)

    Ramacos Fardela; Kusminarto

    2014-01-01

    X-ray interaction with matter can produce phenomenon of fluorescence that emits visible light. This phenomenon has been exploited to design an X-ray detector based on photo transistor by attaching a screen ZnS(Ag) on the surface of the photo transistor which is arranged in a Darlington circuit. Response of detector was done by collimating of X-rays beam from the X-ray generator tube Philips 2000 watts, 60 kV type PW 2215/20 NR 780 026 and measure the detector output voltage (V out ). Varying the current by 5, 10, 15, 20, 25, 30, 35 and 40 mA in the X-ray panel. The experimental results showed that the Darlington circuit can be applied to design the detector of X-ray based on phototransistor. The results show that there is a linear relationship between the change in the intensity of X-ray detectors with voltage output phototransistor when it was closed with fluorescence materials ZnS(Ag), the linearity coefficient was R 2 = 0.99. Sensitivity of detector was obtained to be 3.7 x 10 -2 mV per cpm. (author)

  7. Development of fluctuation monitor type sodium ionization detector

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Sato, Yoshihiko; Ibe, Eishi; Suzuoki, Akira

    1986-01-01

    In order to improve the sensitivity and the reliability of the sodium leak detection system used in the fast breeder reactors, a new type SID (sodium ionization detector) has been developed, in which the monitored signal is only the fluctuating component of the current between the filament and the ion collector. The fluctuating component was extracted by a band pass filter and its root mean square value was calculated as the SID signal. Fluctuation characteristics of the output current were studied by its frequency spectrum. The results revealed that the current spectrum was affected by the particle size distribution of the aerosol and was most clearly distinguished from that of the background current in the frequency region of 0.5 ∼ 10 Hz. Output characteristics of the fluctuation monitor type SID (FM-SID) were obtained as a function of sodium concentration in the gas. The FM-SID sensitivity was lowered by impurities in the gas, such as oxygen and water vapor. Finally, in comparisons with the conventional DC-SIDs, the background noise level of the FM-SID was much lower and S/N ratio was greatly improved. The detectable sodium concentration level was ten times lower than that of the DC-SID. (author)

  8. Development of Ring Imaging Cherenkov Detectors for LHCb

    CERN Document Server

    Bellunato, T; Matteuzzi, C

    2003-01-01

    The work described in this thesis has been carried out in the framework of the development program of the Ring Imaging Cherenkov (RICH) detectors of the LHCb experiment. LHCb will operate at the Large Hadron Collider at CERN, and it will perform a wide range of measurements in the b-hadrons realm. The extensive study of CP violation and rare decays in the b-hadron system are the main goals of the experiment. An introduction to CP violation in hadronic interactions is given in chapter 1. The high b-b bar production cross section at the LHC energy will provide an unprecedented amount of data which will give LHCb a unique opportunity for precision tests on a large set of physics channels as well as a promising discovery potential for sources of CP violation arising from physics beyond the Standard Model. The experiment is designed in such a way to optimally match the kinematic structure of events where a pair of b quarks is produced in the collision between to 7 GeV protons. Chapter 2 is devoted to an overview o...

  9. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Perrey, Hanno

    2013-01-01

    A high resolution ($\\sigma 2 \\sim \\mu$) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six sensor planes using Mimosa26 MAPS with a pixel pitch of $18.4 \\mu$ and thinned down to $50 \\mu$. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the new European detector infrastructure project AIDA the test beam telescope will be further extended in terms of cooling infrastructure, readout speed and precision. In order to provide a system optimized for the different requirements by the user community, a combination of various pixel technologies is foreseen. In this report the design of this even more flexible telescope with three different pixel technologies (TimePix, Mimosa, ATLAS FE-I4) will be presented. First test beam results with the HitOR signal provided by the FE-I4 integrated into the trigger...

  10. Character Development of U.S. Army Leaders: A Laissez Faire Approach

    Science.gov (United States)

    2013-03-01

    and beliefs (character), and that character is developed by correct actions. This circular logic results in an obvious “ chicken or the egg” argument...millennials-confident-connected- open-to-change/ (accessed January 15, 2013). 79 The Pew Research Center, “War and Sacrifice in the Post-9/11 Era,” October 5...2011, http://www.pewsocialtrends.org/2011/10/05/war-and- sacrifice -in-the-post-911-era/6/#chapter-5- the-public-and-the-military (accessed January 15

  11. Development of GaAs Detectors for Physics at the LHC

    CERN Multimedia

    Chu, Zhonghua; Krais, R; Rente, C; Syben, O; Tenbusch, F; Toporowsky, M; Xiao, Wenjiang; Cavallini, A; Fiori, F; Edwards, M; Geppert, R; Goppert, R; Haberla, C; Hornung, M F; Irsigler, R; Rogalla, M; Beaumont, S; Raine, C; Skillicorn, I; Margelevicius, J; Meshkinis, S; Smetana, S; Jones, B; Santana, J; Sloan, T; Zdansky, K; Alexiev, D; Donnelly, I J; Canali, C; Chiossi, C; Nava, F; Pavan, P; Kubasta, J; Tomiak, Z; Tchmil, V; Tchountonov, A; Tsioupa, I; Dogru, M; Gray, R; Hou, Yuqian; Manolopoulos, S; Walsh, S; Aizenshtadt, G; Budnitsky, D L; Gossen, A; Khludkov, S; Koretskaya, O B; Okaevitch, L; Potapov, A; Stepanov, V E; Tolbanov, O; Tyagev, A; Matulionis, A; Pozela, J; Kavaliauskiene, G; Kazukauskas, V; Kiliulis, R; Rinkevicius, V; Slenys, S; Storasta, J V

    2002-01-01

    % RD-8 Development of GaAs Detectors for Physics at the LHC \\\\ \\\\The aims of the collaboration are to investigate the available material options, performance and limitations of simple pad, pixel and microstrip GaAs detectors for minimum ionising particles with radiation hardness and speed which are competitive with silicon detectors. This new technology was originally developed within our university laboratories but now benefits from increasing industrial interest and collaboration in detector fabrication. Initial steps have also been taken towards the fabrication of GaAs preamplifiers to match the detectors in radiation hardness. The programme of work aims to construct a demonstration detector module for an LHC forward tracker based on GaAs.

  12. Development of CdZnTe X-ray detectors at DSRI

    DEFF Research Database (Denmark)

    van Pamelen, M.A.J.; Budtz-Jørgensen, Carl; Kuvvetli, Irfan

    2000-01-01

    An overview of the development of CdZnTe X-ray detectors at the Danish Space Research Institute is presented. Initiated in the beginning of 1996, the main motivation at that time was to develop focal plane detectors for the novel type of hard X-ray telescopes, which are currently under study at D...

  13. CONTINUING THE DEVELOPMENT OF A 100 FEMTOSECOND X-RAY DETECTOR

    International Nuclear Information System (INIS)

    Zenghu Chang

    2005-01-01

    The detector is an x-ray streak camera running in accumulation mode for time resolved x-ray studies at the existing third generation synchrotron facilities and will also be used for the development and applications of the fourth generation x-ray sources. We have made significant progress on both the detector development and its applications at Synchrotron facilities

  14. The National Sustainable Development Strategy for 2010-2013: towards a green and fair economy

    International Nuclear Information System (INIS)

    2011-01-01

    While briefly defining the nine challenges identified within the French National Sustainable Development Strategy which has been adopted in July 2010 in the wake of the Grenelle de l'Environnement and within a more general World and European context, this document recalls the main challenges at the origin of this strategy. It states the 15 key (energy and socio-economic) indicators and the 4 context indicators which have been defined for the strategy. It recalls that many countries are implementing such strategies, and that the French strategy has been defined in coherence with the European one. It evokes the differences which can be noticed between the strategies elaborated in the European countries

  15. Final Report for the UNIVERSITY-BASED DETECTOR RESEARCH AND DEVELOPMENT FOR THE INTERNATIONAL LINEAR COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    Brau, James E [Univ. of Oregon

    2013-04-22

    The U.S Linear Collider Detector R&D program, supported by the DOE and NSF umbrella grants to the University of Oregon, made significant advances on many critical aspects of the ILC detector program. Progress advanced on vertex detector sensor development, silicon and TPC tracking, calorimetry on candidate technologies, and muon detection, as well as on beamline measurements of luminosity, energy, and polarization.

  16. Development of new sealed UV sensitive gaseous detectors and their applications

    CERN Document Server

    Periale, L; Di Mauro, Antonio; Martinengo, P; Picchi, P; Pietropaolo, F; Sipilä, H; Peskov, A

    2007-01-01

    We have developed prototypes of sealed gaseous detectors combined with CsI photocathodes or filled with photosensitive vapors for commercial applications. The first results with these devices for the detection of flames in daylight conditions and of scintillation lights from noble liquids are presented. They show that sealed UV sensitive gaseous detectors can have better performance (higher practical quantum efficiency and a better signal to noise ratio) than existing commercial UV sensitive detectors at lower production cost.

  17. Development of a charged particle detector array in Pelletron-LINAC facility

    International Nuclear Information System (INIS)

    John, Bency; Inkar, A.L.; Saxena, A.; Vind, R.P.; Gupta, Y.K.; Biswas, D.C.; Nayak, B.K.; Thomas, R.G.; Danu, L.S.; Choudhury, R.K.; Kailas, S.; Topkar, A.; Venkatramanan, S.; Kumar, Manish; Sunilkumar, S.

    2010-01-01

    A charged particle detector array consisting of 50 Si-CsI detector telescopes for study of heavy-ion reactions is under construction in BARC-TIFR Pelletron-LINAC facility. Developmental work carried out for the detector modules, front-end and pulse shape discrimination electronics, scattering chamber and other mechanical parts are summarized. Some new ideas developed during the course of work are pointed out. (author)

  18. Development of long-life neutron detectors for the prototype heavy water reactor 'Fugen'

    International Nuclear Information System (INIS)

    Ohteru, Shigeru; Shirayama, Shimpey.

    1981-01-01

    The development of long-life neutron detectors as the flux monitors for the prototype heavy water reactor has been made. Three kinds of neutron monitors, namely start-up monitor (SUM), power up monitor (PUM) and local power monitor (LPM), are provided. The LPM consists of 4 ion chamber type neutron detectors and a guide tube of power calibration monitor (PCM). This is useful for reactor control and fuel soundness monitor. The improvement of the neutron detectors was made for the operation under high neutron flux and gamma-ray heating. For the long-life operation, U-234 was mixed into U-235 for the conversion in the detectors. The ratio of U-234 to U-235 is 3 to 1. The PCM is also an ion chamber type detector with U-235. The mixing ratio of U-234 to U-235 was determined by a test with the JMTR. The characteristic performance was also investigated by the JMTR. After the completion of Fugen, various tests on the long-life detectors were performed with Fugen. It was hard to test the output linearity of the detectors with a large scale reactor. Therefore, it was tested that the operation range of the detectors is within the linear region of detector output. The voltage-current characteristics and the correlation of output current and saturation current were measured. The variation of the neutron sensitivity of the detectors with the cumulative dose was also studied. (Kato, T.)

  19. Development of a neutron imager based on superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Shigeyuki, E-mail: miyajima@nict.go.jp [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Fujimaki, Akira [Department of Quantum Engineering, Nagoya University (Japan); Hidaka, Mutsuo [National Institute of Advanced Industrial Science and Technology (Japan); Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi [J-PARC Center, Japan Atomic Energy Agency (Japan); Ishida, Takekazu [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan)

    2016-11-15

    Highlights: • A neutron detector based on superconducting meander line is demonstrated. • Fast response time of a few tens ns is obtained. • Spatial resolution is 1 μm and can be improved to sub-μm scale. • The proposed neutron detector can operate under the γ-ray fields. - Abstract: We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a {sup 10}B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a {sup 10}B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with {sup 10}B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  20. A program in detector development for the US synchrotron radiation community

    International Nuclear Information System (INIS)

    Thompson, A.; Mills, D.; Naday, S.; Gruner, S.; Siddons, P.; Arthur, J.; Wehlitz, R.; Padmore, H.

    2001-01-01

    There is a clear gulf between the capabilities of modern synchrotrons to deliver high photon fluxes, and the capabilities of detectors to measure the resulting photon, electron or ion signals. While a huge investment has been made in storage ring technology, there has not to date been a commensurate investment in detector systems. With appropriate detector technology, gains in data rates could be 3 to 4 orders of magnitude in some cases. The US community working in detector technology is under-funded and fragmented and works without the long term funding commitment required for development of the most advanced detector systems. It is becoming apparent that the US is falling behind its international competitors in provision of state-of-the-art detector technology for cutting edge synchrotron radiation based experiments

  1. Development of a silicon micro-strip detector for tracking high intensity secondary beams

    Science.gov (United States)

    Kiuchi, R.; Asano, H.; Hasegawa, S.; Honda, R.; Ichikawa, Y.; Imai, K.; Joo, C. W.; Nakazawa, K.; Sako, H.; Sato, S.; Shirotori, K.; Sugimura, H.; Tanida, K.; Watabe, T.

    2014-11-01

    A single-sided silicon micro-strip detector (SSD) has been developed as a tracking detector for hadron experiments at J-PARC where secondary meson beams with intensities of up to 108 Hz are available. The performance of the detector has been investigated and verified in a series of test beam experiments in the years 2009-2011. The hole mobility was deduced from the analysis of cluster events. The beam rate dependence was measured in terms of timing resolution, signal-to-noise ratio, and hit efficiency. This paper describes the detector with its read-out system, details of the test experiments, and discusses the performance achieved.

  2. Development of a silicon micro-strip detector for tracking high intensity secondary beams

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, R. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Asano, H. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Hasegawa, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Honda, R. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Ichikawa, Y. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Joo, C.W. [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Nakazawa, K. [Physics Department, Gifu University, Gifu 501-1193 (Japan); Sako, H.; Sato, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Shirotori, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Sugimura, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Tanida, K., E-mail: tanida@phya.snu.ac.kr [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Watabe, T. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2014-11-01

    A single-sided silicon micro-strip detector (SSD) has been developed as a tracking detector for hadron experiments at J-PARC where secondary meson beams with intensities of up to 10{sup 8} Hz are available. The performance of the detector has been investigated and verified in a series of test beam experiments in the years 2009–2011. The hole mobility was deduced from the analysis of cluster events. The beam rate dependence was measured in terms of timing resolution, signal-to-noise ratio, and hit efficiency. This paper describes the detector with its read-out system, details of the test experiments, and discusses the performance achieved.

  3. The development of gaseous detectors with solid photocathodes for low temperature applications

    CERN Document Server

    Periale, L.; Iacobaeus, C.; Francke, T.; Lund-Jensen, B.; Pavlopoulos, N.; Picchi, P.; Pietropaolo, F.

    2004-01-01

    There are several applications and fundamental research areas which require the detection of VUV light at cryogenic temperatures. For these applications we have developed and successfully tested special designs of gaseous detectors with solid photocathodes able to operate at low temperatures: sealed gaseous detectors with MgF2 windows and windowless detectors. We have experimentally demonstrated, that both primary and secondary (due to the avalanche multiplication inside liquids) scintillation lights could be recorded by photosensitive gaseous detectors. The results of this work may allow one to significantly improve the operation of some noble liquid gas TPCs.

  4. Development of an X-ray detector using photodiodes

    International Nuclear Information System (INIS)

    Gonzalez G, J.; Azorin V, J. C.; Sosa A, M. A.; Ceron, P.

    2016-10-01

    Currently the radiation detectors for medical applications are very high value in the market and are difficult to access as training material. In the Sciences and Engineering Division of the Guanajuato University (Mexico) investigations are carried out related to ionizing radiations, especially with X-rays. To overcome the lack of materials has had to resort to borrowing equipment from other institutions, so its use and availability are intermittent. For these reasons is proposed to design and implement an X-ray detector for the use of the work group and the University. This work aims to build an X-ray semiconductor detector using inexpensive and affordable materials, is also proposed the use of a photodiode sensor and an Arduino analog-digital card and a LCD display showing the data. (Author)

  5. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  6. Development of electron temperature measuring system by silicon drift detector

    International Nuclear Information System (INIS)

    Song Xianying; Yang Jinwei; Liao Min

    2007-12-01

    Soft X-ray spectroscopy with two channels Silicon Drift Detector (SDD) are adopted for electron temperature measuring on HL-2A tokamak in 2005. The working principle, design and first operation of the SDD soft X-ray spectroscopy are introduced. The measuring results of electron temperature are also presented. The results show that the SDD is very good detector for electron temperature measuring on HL-2A tokamak. These will become a solid basic work to establish SDD array for electron temperature profiling. (authors)

  7. The silicon tracking system of the CBM experiment at FAIR. Development of microstrip sensors and signal transmission lines for a low-mass, low-noise system

    International Nuclear Information System (INIS)

    Singla, Minni

    2014-01-01

    In this thesis, different physical and electrical aspects of silicon microstrip sensors and low-mass multi-line readout cables have been investigated. These silicon microstrip sensors and readout cables will be used in the Silicon Tracking System (STS) of the fixed-target heavy-ion Compressed Baryonic Matter (CBM) experiment which is under development at the upcoming Facility for Antiproton and ion Research (FAIR) in Darmstadt, Germany. The highly segmented low-mass tracking system is a central CBM detector system to resolve the high tracking densities of charged particles originating from beam-target interactions. Considering the low material budget requirement the double-sided silicon microstrip detectors have been used in several planar tracking stations. The readout electronics is planned to be installed at the periphery of the tracking stations along with the cooling system. Low-mass multi-line readout cables shall bridge the distance between the microstrip sensors and the readout electronics. The CBM running operational scenario suggests that some parts of the tracking stations are expected to be exposed to a total integrated particle fluence of the order of 1 x 10 14 n eq /cm 2 . After 1 x 10 14 n eq /cm 2 the damaged modules in the tracking stations will be replaced. Thus radiation hard sensor is an important requirement for the sensors. Moreover, to cope with the high reaction rates, free-streaming (triggerless) readout electronics with online event reconstruction must be used which require high signal-to-noise (SNR) ratio (i.e., high signal efficiency, low noise contributions). Therefore, reduction in noise is a major goal of the sensor and cable development. For better insight into the different aspects of the silicon microstrip sensors and multi-line readout cables, the simulation study has been performed using SYNOPSYS TCAD tools. 3D models of the silicon microstrip sensors and the readout cables were implemented which is motivated by the stereoscopic

  8. Development of twin Ge detector for high energy photon measurement and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Shigetome, Yoshiaki; Harada, Hideo [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-03-01

    Prototype twin HPGe detector composed of two large HPGe crystals was developed to obtain better detection efficiency ({epsilon}) and P/T ratio, which was required for high energy photon spectroscopy. In this work, the performances of the twin HPGe detector were evaluated by computer simulation employing EGS4 code. (author)

  9. Development of a 3D CZT detector prototype for Laue Lens telescope

    DEFF Research Database (Denmark)

    Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano

    2010-01-01

    We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode...

  10. CERN at the International Inventions Fair

    CERN Multimedia

    2007-01-01

    CERN is the guest of honour at the 35th International Inventions Fair, which will take place from 18th to 22nd April at Palexpo, in Geneva. CERN has been chosen as the guest of honour for its ability to develop new technologies and translate them for the benefit of society. For the Fair, CERN has teamed up with ten companies that have made use of technologies and ideas from the Laboratory. The CERN stand at the exhibition will be dedicated to a presentation of the Laboratory and the LHC. Each of the technologies featured will be highlighted on the stand, along with the companies that have put them into more general use. This will allow visitors to trace the path from basic research to practical application from start to finish. One example is Medipix, a particle detection technology that has found applications in medical imaging. Visitors to the Fair will be able to see a Medipix detector in action on the CERN stand, and use it to view the particles emitted by everyday objects.

  11. Development of a microstrip-based neutron detector

    Indian Academy of Sciences (India)

    detectors; neutron scattering and diffraction. PACS Nos ... X-rays and neutrons. The details of the fabrication and X-ray test results have been reported elsewhere [7,8]. We report here preliminary results obtained on performance of ... and has high resistance per unit length compared to that of the anode and cathode strips.

  12. Development of neutron detectors and neutron radiography at ...

    Indian Academy of Sciences (India)

    BARC, Department of Atomic Energy units and some universities and research institutes in India and abroad for a variety of ... Demand for neutron detectors with higher count rates, larger scanning angles and ... flexibility of size and fill gas pressure, and need simple counting and pulse process- ing electronics. Large area ...

  13. Recent progress in the development of transition radiation detectors

    Science.gov (United States)

    Cherry, M. L.; Hartmann, G.; Prince, T.; Mueller, D.

    1978-01-01

    Transition-radiation detectors have been used in several recent cosmic-ray experiments for particle identification at energies E/mc-squared of at least about 1000. In order to optimize the design of such detectors and to use them for energy measurements over a broad energy range, it is necessary to study the details of the transition-radiation process. Experimental results are presented which test the theoretical predictions more precisely and at higher energies than in previous experiments. The dependence of the interference pattern in the frequency spectrum on the radiator dimensions is studied, and the total transition-radiation yield generated by electrons in various radiators is measured over a very wide energy range, from 5 to 300 GeV. The significance of the individual experimental parameters in the design of transition radiation detectors is reviewed, and the characteristics of transition-radiation detectors capable of measuring particle energies over the range E/mc-squared from about 300 to 100,000 are discussed.

  14. Development of aerogel Cherenkov counters for KEDR detector

    International Nuclear Information System (INIS)

    Onuchin, A.P.; Shamov, A.G.; Vorobiov, A.I.; Danilyuk, A.F.; Gorodetskaya, T.A.; Kunznetsov, V.L.

    1990-01-01

    A threshold Cherenkov counters were proposed for particle identification in KEDR detector for B-mesons study. The counters are based on silica aerogel and phototubes, which can work in high magnetic field. Counters have a compact design and nearly 4π acceptance. In this paper design of counters is described. Tests of phototubes and Cherenkov counter prototype are presented

  15. The Compressed Baryonic Matter Experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Heuser J.M.

    2011-04-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is being planned at the international research centre FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifications of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/m, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45A GeV. Hadronic, leptonic and photonic observables have to be measured with large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. Two versions of the experiment are being studied, optimized for either electron-hadron or muon identification, combined with silicon detector based charged-particle tracking and micro-vertex detection. The research programme will start at SIS-100 with ion beams between 2 and 11A GeV, and protons up to energies of 29 GeV using the HADES detector and an initial configuration of the CBM experiment. The CBM physics requires the development of novel detector systems, trigger and data acquisition concepts as well as innovative real-time reconstruction techniques. Progress with feasibility studies of the experiment and the development of its detector systems are discussed.

  16. Track reconstruction algorithms for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, Andrey; Hoehne, Claudia; Kisel, Ivan; Ososkov, Gennady

    2010-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR accelerator complex at Darmstadt is being designed for a comprehensive measurement of hadron and lepton production in heavy-ion collisions from 8-45 AGeV beam energy, producing events with large track multiplicity and high hit density. The setup consists of several detectors including as tracking detectors the silicon tracking system (STS), the muon detector (MUCH) or alternatively a set of Transition Radiation Detectors (TRD). In this contribution, the status of the track reconstruction software including track finding, fitting and propagation is presented for the MUCH and TRD detectors. The track propagation algorithm takes into account an inhomogeneous magnetic field and includes accurate calculation of multiple scattering and energy losses in the detector material. Track parameters and covariance matrices are estimated using the Kalman filter method and a Kalman filter modification by assigning weights to hits and using simulated annealing. Three different track finder algorithms based on track following have been developed which either allow for track branches, just select nearest hits or use the mentioned weighting method. The track reconstruction efficiency for central Au+Au collisions at 25 AGeV beam energy using events from the UrQMD model is at the level of 93-95% for both detectors.

  17. Life-finding detector development at NASA GSFC using a custom H4RG test bed

    Science.gov (United States)

    Mosby, Gregory; Rauscher, Bernard; Kutyrev, Alexander

    2018-01-01

    Chemical species associated with life, called biosignatures, should be visible in exoplanet atmospheres with larger space telescopes. These signals will be faint and require very low noise (~e-) detectors to robustly measure. At NASA Goddard we are developing a single detector H4RG test bed to characterize and identify potential technology developments needed for the next generation's large space telescopes. The vacuum and cryogenic test bed will include near infrared light sources from integrating spheres using a motorized shutter. The detector control and readout will be handled by a Leach controller. Detector cables have been manufactured and test planning has begun. Planned tests include testing minimum read noise capabilities, persistence mitigation strategies using long wavelength light, and measuring intrapixel variation which might affect science goals of future missions. In addition to providing a means to identify areas of improvement in detector technology, we hope to use this test bed to probe some fundamental physics of these infrared arrays.

  18. The performance and development of the ATLAS Inner Detector Trigger

    Science.gov (United States)

    Washbrook, A.

    2014-02-01

    A description of the ATLAS Inner Detector (ID) software trigger algorithms and the performance of the ID trigger for LHC Run 1 are presented, as well as prospects for a redesign of the tracking algorithms in Run 2. The ID trigger HLT algorithms are essential for a large number of signatures within the ATLAS trigger. During the shutdown, modifications are being made to the LHC machine, to increase both the beam energy and luminosity. This in turn poses significant challenges for the trigger algorithms both in terms of execution time and physics performance. To meet these challenges the ATLAS HLT software is being restructured to run as a single stage rather than in the two distinct levels present during the Run 1 operation. This is allowing the tracking algorithms to be redesigned to make optimal use of the CPU resources available and to integrate new detector systems being added to ATLAS for post-shutdown running. Expected future improvements in the timing and efficiencies of the Inner Detector triggers are also discussed. In addition, potential improvements in the algorithm performance resulting from the additional spacepoint information from the new Insertable B-Layer are presented.

  19. Development of a free-running readout ASIC for the PANDA micro vertex detector and investigation of the performance to reconstruct anti pp → anti Ξ+Ξ-(1690)

    International Nuclear Information System (INIS)

    Zambanini, Andre

    2015-01-01

    The PANDA experiment is a multi-purpose particle detector, investigating hadron physics topics in the strange and charm quark mass regime. PANDA will measure antiproton-proton annihilation reactions at the FAIR complex, which is currently under construction. Caused by the initial reaction, signal and background events are similar to each other. Hence, self-triggering readout electronics is required throughout all sub-detectors. The innermost sub-detector, the Micro Vertex Detector, is based on silicon sensors with pixel and microstrip segmentation. This thesis describes the development of a readout solution (PASTA) for the microstrip sensors and the preparations for a characterization setup to perform laboratory measurements with this readout prototype. Furthermore, an exploratory study on the reconstructability of the reaction anti pp→ anti Ξ + Ξ - (1690) with PANDA's software framework is presented.

  20. Development of a free-running readout ASIC for the PANDA micro vertex detector and investigation of the performance to reconstruct anti pp → anti Ξ{sup +}Ξ{sup -}(1690)

    Energy Technology Data Exchange (ETDEWEB)

    Zambanini, Andre

    2015-12-08

    The PANDA experiment is a multi-purpose particle detector, investigating hadron physics topics in the strange and charm quark mass regime. PANDA will measure antiproton-proton annihilation reactions at the FAIR complex, which is currently under construction. Caused by the initial reaction, signal and background events are similar to each other. Hence, self-triggering readout electronics is required throughout all sub-detectors. The innermost sub-detector, the Micro Vertex Detector, is based on silicon sensors with pixel and microstrip segmentation. This thesis describes the development of a readout solution (PASTA) for the microstrip sensors and the preparations for a characterization setup to perform laboratory measurements with this readout prototype. Furthermore, an exploratory study on the reconstructability of the reaction anti pp→ anti Ξ{sup +}Ξ{sup -}(1690) with PANDA's software framework is presented.

  1. Compressed baryonic matter experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Jürgen Eschke

    2012-02-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is being planned at the Facility for Antiproton and Ion Research (FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifcations of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/Fm, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45 AGeV. Hadronic, leptonic and photonic observables will be measured in a large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. This requires the development of novel detector systems, trigger and data acquisition concepts as well as in- novative real-time reconstruction techniques. A key observable of the physics program is a precise measurement of lowmass vector mesons and charmonium in their leptonic decay channel. In CBM, electrons will be identified using a gaseous RICH detector combined with several TRD detectors positioned after a system of silicon tracking stations which are located inside a magnetic dipole field. The concept of the RICH detector, results on R & D as well as feasibility studies and invariant mass distributions of charmonium will be discussed.

  2. More than ALICE: Development of an augmented reality mobile application for the ALICE detector

    CERN Document Server

    Stamatouli, Anastasia

    2017-01-01

    More Than ALICE is a mobile application for iOS and Android devices. This project concerns the development of the v2.1 of the application which is meant to enhance the capacity of tracking quickly and reliably parts of the detector and its paper model. It recognises different parts of it and displays labels explaining its structure. Additionally, visualisation of the collisions can also be shown on the top of the camera image. More Than ALICE aims to increase the public awareness of the research goals of the ALICE collaboration. The application provides an Augmented Reality (AR) interface to track the detector during underground visits or its paper model which can be purchased at the ALICE secretariat. For those without access to either the detector or the paper model, the app provides the virtual model of the detector where the users can explore and understand the different parts of the detector and see real-time collisions.

  3. More Than ALICE: Development of an augmented reality mobile application for the ALICE detector

    CERN Document Server

    Ouellette, Jeff

    2016-01-01

    More Than ALICE is a mobile application for iOS and Android built in the Unity Engine. This project concerns the development of the second edition of the application, which is meant to completely succeed the original version built in 2014. The purpose of the application is to describe the various components of the ALICE detector and to overlay live collisions to increase public awareness for the research goals of the ALICE collaboration. The application provides an augmented reality (AR) interface via the Vuforia SDK to track images of the ALICE detector or components of the paper model of ALICE that can be purchased at the ALICE secretariat office. For those without access to either images of the detector or the detector model, the app provides a virtual detector model (VR) that contains the same functionality as the augmented reality.

  4. Are the FAIR Data Principles Fair?

    OpenAIRE

    Dunning, Alastair; de Smaele, Madeleine; Boehmer, Jasmin

    2017-01-01

    Presentation given at IDCC17 about FAIR data research done by Research Data Services of TU Delft, on 22nd February 2018. Relates to practice paper: Dunning, Alastair, de Smaele, Madeleine, & Böhmer, Jasmin. (2017, January 31). Are the FAIR Data Principles fair?. Zenodo. http://doi.org/10.5281/zenodo.321423  Relates to data-set: Dunning, A.C. (Alastair); de Smaele, M.M.E. (Madeleine); Böhmer, J.K. (Jasmin) (2017) Evaluation of data repositories based on the FAIR Principles for ...

  5. Results and present status of the Japan-US collaboration on detector research and development

    International Nuclear Information System (INIS)

    Arai, Yasuo; Takahashi, Kasuke

    1985-02-01

    This is a summary report on the results of the Detector R and D work, which we have been carrying out these three years, under the Japan-U.S. collaboration on High Energy Physics. It is clear that there have been already many considerable progress and outputs in the activities, some of which are already applied to the actual detectors in various ways. It is foreseeable that more extensive development will be realized. It should also be better to emphasize that these detector R and D efforts will be very important for the further development of high energy physics in the near future. (author)

  6. Developments of position-sensitive X-ray detectors at SPring-8

    CERN Document Server

    Toyokawa, H; Hirota, K

    2003-01-01

    In order to efficiently perform diffraction and scattering experiments at the SPring-8 facility, three types of position sensitive detectors have been developed. A silicon pixel detector could detect X-rays above 6-keV in single counting mode, and an image accumulated could be read out within 5 msec. A 128-channel microstrip Germanium detector has made it possible for the users to efficiently investigate high resolution Compton scattering experiments. A high energy X-ray imager with a 128 x 128 matrix of YAP crystal has been developed for high energy X-ray diffraction experiments. (author)

  7. The impact of fair trade

    NARCIS (Netherlands)

    Ruben, R.

    2008-01-01

    Twenty years ago, Fair Trade started as an effort to enable smallholder producers from developing countries to successfully compete in international markets. Better access to market outlets and stable prices are considered key principles for sustainable poverty reduction and stakeholder

  8. SOCIAL ENTREPRENEURSHIP AND FAIR TRADE

    Directory of Open Access Journals (Sweden)

    Dejan Jelovac

    2014-01-01

    Full Text Available In this article we will present different theoretical views and positions on social entrepreneurship, fair trade, buying consumer behaviour and ethical consumerism. The Fair Trade, which is well recognized throughout the world, is an example of good practice of social entrepreneurship. Similarly, globalization processes, the pressure of large corporations, the rapid transmission of information, more and more developed ethical consumer behaviour is clearly contributed to both, the successful development of fair trade and social entrepreneurships. In the empirical part we reviewed and confirmed three of three sets of hypotheses through the quantitative research in Slovenia on sample of 253 respondents. Through the results of our study we also recognized the existence of opportunities for the development of social entrepreneurships in Slovenia. In the discussion and conclusion of the article listed are recommendations for further exploration of ethical consumerism, the development of social entrepreneurship and rising the profile of Fair Trade in Slovenia.

  9. Development of pixel detectors for the IBL and HL-LHC ATLAS experiment upgrade

    CERN Document Server

    Baselga Bacardit, Marta

    2016-03-18

    This thesis presents the development of advanced silicon technology detectors fabricated at CNM-Barcelona for High Energy Physics (HEP) experiments. The pixel size of the tracking silicon detectors for the upgrade of the HL-LHC will have to decrease in size in order to enhance the resolution in position for the measurements and they need to have lower occupancy for the electronics. The future experiments at CERN will cope with fuences up to 2 x 10^^16 neq/cm2, and the smaller 3D silicon detectors will have less trapping of the electron-holes generated in the bulk leading to a better performance under high radiation environment. This thesis studies silicon detectors fabricated at CNM-Barcelona applied to HEP experiments with two different kinds of novel technologies: 3D and Low Gain Avalanche Detectors (LGAD). The 3D detectors make it possible to reduce the size of the depleted region inside the detector and to work at lower voltages, whereas the LGAD detectors have an intrinsic gain which increases the collec...

  10. Development of high resolution N-type HPGe coaxial detectors and their applications

    International Nuclear Information System (INIS)

    Wu Shaoyun

    1995-10-01

    The development results of the high resolution N-type HPGe coaxial detectors are reported. The dependence of the reverse V-I L characteristic on the implantation dose of detector outside P + N junction was investigated under the condition of the fixed ion energy, beam intensity, and implantation angle. The experimental results indicate that a good detector can be steadily obtained at the higher implantation dose. When the implantation dose reaches 1.8 x 10 15 B + /cm 2 , the detectors have the ideal reverse V-I L characteristic. The detectors with good shock-proof performance are obtained by means of a fine mounting technology for N-type coaxial detectors. The detectors NCGL-1 and NCGL-2 have been successfully applied to the neutron capture gamma ray spectrum logging over ten drill wells at the coal field and the detector N49TB is used to the measuring system of the radioactive calibration well at the oil field. (10 refs., 6 figs., 2 tabs.)

  11. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    Science.gov (United States)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  12. DOE seeks applicants to develop next-generation nuclear detectors. (Sensors)

    CERN Multimedia

    2002-01-01

    "DOE's Division of High Energy Physics seeks grant applications for development of advanced detectors in the areas of high energy physics experiments, which includes accelerator-based and non-accelerator based experiments" (1/2 page).

  13. Current tendencies in the development of neutron and X-ray detectors for common use

    Science.gov (United States)

    Mikerov, V. I.; Sviridov, A. S.; Yurkov, D. I.

    2017-01-01

    The paper is a brief review of activities of Federal State Unitary Enterprise “VNIIA” and National Research Nuclear University “MEPhI” in the development of radiation detectors for various applications.

  14. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  15. On a fair verdict

    Directory of Open Access Journals (Sweden)

    Sergei G. Ol'kov

    2014-01-01

    Full Text Available Objective the study of the phenomenon of justice in general and fairness in judicial verdicts in particular. Methods 1 observation 2 deduction 3 use of the laws of formal logic 4 comparative analysis 5 formal legal 6 mathematical modeling. Results the author considers the possibility of creating the scale of good and evil. As a result of rendering of legal laws in the language of mathematics were obtained the following conclusions 1 definition of justice as equality between the objective truth of the real world X and the subjective evaluation of this truth Y Y X assessment is on the line of justice in the Cartesian coordinate system if the deeds axis is correctly scaled ndash quotso it actually is and this is our answerrdquo the fair sentence is an accurate evaluation by the court the value of punishment of the deed the legal relations subject with the exact scaling of deeds and punishments axes y x where y is the assessment x ndash deed 2 general suggestions for scaling coordinate axes of deeds abscissa and penalties ordinates ndash proposal on the need to develop scales of relations for valuation of objects ndash deeds and evaluation as it is ndash the scale of punishments 3 grounds for the idea that not every degree or measure of the consistency of the realworld objects estimation by a wide range of evaluation subjects is fair justice 4 identification of the range of existing problems in the judicial practice in making fair sentences anbspthe absence in the criminal law of the clear scales of deeds and punishments the legislator does not give a clear estimation of the deed but establishes either continuous or multiple evaluation b modern legislator cannot give absolute scale of good and evil but specifies a relative scale in implicit form dependent on time place method of organization of power in the state ideas of the society about good and evil and justice. As a result the relative scale is quotslidingquot in time and space c the

  16. Selected event reconstruction algorithms for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, Semen; Höhne, Claudia; Lebedev, Andrey; Ososkov, Gennady

    2014-01-01

    Development of fast and efficient event reconstruction algorithms is an important and challenging task in the Compressed Baryonic Matter (CBM) experiment at the future FAIR facility. The event reconstruction algorithms have to process terabytes of input data produced in particle collisions. In this contribution, several event reconstruction algorithms are presented. Optimization of the algorithms in the following CBM detectors are discussed: Ring Imaging Cherenkov (RICH) detector, Transition Radiation Detectors (TRD) and Muon Chamber (MUCH). The ring reconstruction algorithm in the RICH is discussed. In TRD and MUCH track reconstruction algorithms are based on track following and Kalman Filter methods. All algorithms were significantly optimized to achieve maximum speed up and minimum memory consumption. Obtained results showed that a significant speed up factor for all algorithms was achieved and the reconstruction efficiency stays at high level.

  17. An Operational Autonomous Meteor Detector: Development Issues and Early Results

    Science.gov (United States)

    Gural, P. S.

    1997-06-01

    A real-time computer-based meteor detector has been in operation by the author in the United States since February 1997. Operating in a completely autonomous mode it has successfully detected several meteors, numerous artificial satellites, and aircraft since its inception. Since the computer system is based on an Intel 486 microprocessor and operates at half the pixel resolution available from a CCD camera, it is believed with the faster computers on the market today, a full resolution system is realizable. A proposal to fund the building of such a system is in the works at this time.

  18. Radiation detectors for personnel monitoring - current developments and future trends

    International Nuclear Information System (INIS)

    Kannan, S.

    2003-01-01

    The radiation detectors for personnel monitoring range from the conventional passive dosimeters like the film badge and the TLD, to sophisticated active dosimeters for integrated gamma, beta and neutron dose measurement. With the availability of high accuracy active dosimeters, the process of personnel monitoring, acceptability among radiation workers, record keeping and dose control have become more simplified. However the high level of sophistication in the active dosimeter has its own inevitable price tag and the new breed of active dosimeters are prohibitively costly. The silver lining, in the otherwise dark cost scenario of these dosimeters is the potential for cost reduction at least in some of the dosimeters in the near future

  19. QCD Matter Physics at FAIR

    Science.gov (United States)

    Senger, P.; CBM Collaboration

    2017-11-01

    The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as hadrons including multi-strange (anti-) hyperons, lepton pairs, and charmed particles with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 1 to 10 MHz. This requires very fast and radiation-hard detectors, a novel data read-out and analysis concept based on free streaming front-end electronics, and a high-performance computing cluster for online event selection. The status of FAIR and the physics program of the proposed CBM experiment will be discussed.

  20. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.

    2013-01-01

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments

  1. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  2. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Ley, J.-L. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Abellan, C.; Cachemiche, J.-P. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille (France); Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Joly, B.; Lambert, D.; Lestand, L. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Létang, J.M. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Magne, M. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); and others

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm{sup 3}, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm{sup 3}, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  3. Detector Developments for the High Luminosity LHC Era (2/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  4. Development of bonded semiconductor device for high counting rate high efficiency photon detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo

    2008-01-01

    We are trying to decrease dose exposure in medical diagnosis by way of measuring the energy of X-rays. For this purpose, radiation detectors for X-ray energy measurement with high counting rate should be developed. Direct bonding of Si wafers was carried out to make a radiation detector, which had separated X-ray absorber and detector. The resistivity of bonding interface was estimated with the results of four-probe measurements and model calculations. Direct bonding of high resistivity p and n-Si wafers was also performed. The resistance of the pn bonded diode was 0.7 MΩ. The resistance should be increased in the future. (author)

  5. Development of Technique for Testing the Long-Term Stability of Silicon Microstrip Detectors

    International Nuclear Information System (INIS)

    Kosinov, A.V.; Maslov, N.I.; Naumov, S.V.; Ovchinnik, V.D.; Starodubtsev, A.F.; Vasiliev, G.P.; Yalovenko, V.I.; Bosisio, L.

    2006-01-01

    An automatic multi-channel set-up prototype for simultaneous testing of the Long-Term Stability (LTS) of more than ten detectors is described. The Inner Tracking System of the ALICE experiment will include about two thousand Double-sided Microstrip Detectors (DSMD). Efficient automatic measurement techniques are crucial for the LTS test, because the corresponding test procedure should be performed on each detector and requires long time, at least two days. By using special adapters for supporting and connecting the bare DSMDs, failing detectors can be screened out before module assembly, thus minimizing the cost. Automated probe stations developed for a special purpose or for microelectronics industry are used for measuring physical static DSMD characteristics and check good-to-bad elements ratio for DSMD. However, automated (or semi-automatic)test benches for studying LTS or testing DSMD long-term stability before developing a detecting module are absent

  6. Development of a sodium ionization detector for sodium-to-gas leaks

    International Nuclear Information System (INIS)

    Swaminathan, K.; Elumalai, G.

    1984-01-01

    A sensitive sodium-to-gas leak detector has been indigenously developed for use in liquid metal cooled fast breeder reactor. The detector relies on the relative ease with which sodium vapour or its aerosols including its oxides and hydroxides can be thermally ionized compared with other possible constituents such as nitrogen, oxygen, water vapour etc. in a carrier gas and is therefore called sodium ionization detector (SID). The ionization current is a measure of sodium concentration in the carrier gas sampled through the detector. Different sensor designs using platinum and rhodium as filament materials in varying sizes were constructed and their responses to different sodium aerosol concentrations in the carrier gas were investigated. Nitrogen was used as the carrier gas. Both the background current and speed of response were found to depend on the diameter of the filament. There was also a particular collector voltage which yielded maximum sensitivity of the detector. The sensor was therefore optimised considering influence of above factors and a detector has been built which demonstrates a sensitivity better than 0.3 nanogram of sodium per cubic centimetre of carrier gas for a signal to background ratio of 1:1. Its usefulness in detecting sodium fires in experimental area was also demonstrated. Currently efforts are under way to improve the life time of the filament used in the above detector. (author)

  7. Test and further development of a silicon picsel detector for detecting ionising radiation

    International Nuclear Information System (INIS)

    Lechner, P.

    1990-12-01

    The concept of a silicon detector with a MOSFET as an integrating amplification element (DEP-MOSFET) is introduced. The method of functioning of different version and a picture cell (picsel) detector, which makes energy and location resolution possible, is discussed. Quantitative relationships which describe the operation of the component as a detector, and quantitative relationships for the energy resolution of a DEP-MOSFET are derived theoretically. Measurements provide the proof of the detection function of different versions and the confirmation of the results of the theoretical model. The excellent noise properties of DEP-MOSFET detectors with closed structure are pointed out. The further development of the explained detector concept by integration of a JFET as the amplifying element (here introduced in the form of a computer simulation and quantitative relationships which describe the behaviour as a detector) promises progress with regard to energy resolution and radiation resistance, and offers the possibility of producing a picsel detector made from closed structures with little technological effort. (orig.) [de

  8. Development of Silicon Detectors for the High Luminosity LHC

    International Nuclear Information System (INIS)

    Eichhorn, Thomas Valentin

    2015-07-01

    The Large Hadron Collider (LHC) at CERN will be upgraded to a High Luminosity LHC in the year 2022, increasing the instantaneous luminosity by a factor of five. This will have major impacts on the experiments at the LHC, such as the Compact Muon Solenoid (CMS) experiment, and especially for their inner silicon tracking systems. Among other things, the silicon sensors used therein will be exposed to unprecedented levels of radiation damage, necessitating a replacement of the entire tracking detector. In order to maintain the excellent current performance, a new tracking detector has to be equipped with sensors of increased radiation hardness and higher granularity. The CMS experiment is undertaking an extensive R and D campaign in the search for the future silicon sensor technology baseline to be used in this upgrade. This thesis presents two methods suitable for use in this search: finite element TCAD simulations and test beam measurements. The simulations are focussed on the interstrip capacitance between sensor strips and are compared to measurements before and after the inclusion of radiation damage effects. A geometrical representation of the strip sensors used in the campaign has been found, establishing the predictive power of simulations. The test beam measurements make use of the high-precision pixel telescopes available at the DESY-II test beam facility. The performance of these telescopes has been assessed and their achievable pointing resolution has been found to be below 2 μm. Thin, epitaxial silicon is a candidate material for usage in radiation hard sensors for the future CMS tracking detector. Sample strip sensors of this material have been irradiated to fluences of up to 1.3 x 10 16 n eq /cm 2 with 800 MeV or 23 GeV protons. Test beam measurements with 5 GeV electrons have been performed to investigate the radiation hardness of epitaxial sensors using the pixel beam telescopes. The epitaxial device under test (DUT) has been integrated into the

  9. Development of TiBr semiconductor crystal for applications as radiation detector and photodetector

    International Nuclear Information System (INIS)

    Oliveira, Icimone Braga de

    2006-01-01

    In this work, Tlbr crystals were grown by the Bridgman method from zone melted materials. The influence of the purification efficiency and the crystalline surface quality on the crystal were studied, evaluating its performance as a radiation detector. Due to significant improvement in the purification and crystals growth, good results have been obtained for the developed detectors. The spectrometric performance of the Tlbr detector was evaluated by 241 Am (59 keV), 133 Ba (80 e 355 keV), 57 Co (122 keV), 22 Na (511 keV) and 137 Cs (662 keV) at room temperature. The best energy resolution results were obtained from purer detectors. Energy resolutions of 10 keV (16%), 12 keV (15%), 12 keV (10%), 28 keV (8%), 31 keV (6%) and 36 keV (5%) to 59, 80, 122, 355, 511 and 662 keV energies, respectively, were obtained. A study on the detection response at -20 deg C was also carried out, as well as the detector stability in function of the time. No significant difference was observed in the energy resolution between measurements at both temperatures. It was observed that the detector instability causes degradation of the spectroscopic characteristics during measurements at room temperature and the instability varies for each detector. This behavior was also verified by other authors. The viability to use the developed Tlbr crystal as a photodetector coupled to scintillators crystals was also studied in this work. Due to its quantum efficiency in the region from 350 to 500 nm, Tlbr shows to be a promising material to be used as a photodetector. As a possible application of this work, the development of a surgical probe has been initiated using the developed Tlbr crystal as the radiation detector of the probe. (author)

  10. Recent Technological Developments on LGAD and iLGAD Detectors for Tracking and Timing Applications

    OpenAIRE

    Pellegrini, G.; Baselga, M.; Carulla, M.; Fadeyev, V.; Fernández-Martínez, P.; Fernandez-Garcia, M.; Flores, D.; Galloway, Z.; Gallrapp, C.; Hidalgo, S.; Liang, Z.; Merlos, A.; Moll, M.; Quirion, D.; Sadrozinski, H.

    2015-01-01

    This paper reports the last technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer ...

  11. Fair and efficient prices in traffic. Propositions on price policy for the sustainable development of traffic in Switzerland

    International Nuclear Information System (INIS)

    Maibach, M.; Ott, W.; Schreyer, Ch.

    2000-01-01

    Fair and efficient prices are a central topic in traffic policy, both at the EU level and in Switzerland. They should allow the efficient use of the infrastructure, set up fair terms of competition between road and rail traffic and reduce traffic loading. At the same time, they should also make it possible to finance traffic in a sustainable manner. One of the main directions of attack is letting those responsible pay the external costs which result from traffic jams, accidents and environmental pollution. With the planned introduction of the usage-dependent heavy traffic levy, Switzerland has made an important step in the direction of true cost-allocation for goods vehicles. As for the rest of road traffic, however, considerable external costs are still not covered. On the other hand, rail traffic is not able to cover its infrastructure costs itself in spite of compensation it receives for the provision of public services

  12. Fair and efficient prices in traffic. Propositions on price policy for the sustainable development of traffic in Switzerland

    International Nuclear Information System (INIS)

    Maibach, M.; Ott, W.; Schreyer, Ch.

    1999-01-01

    Fair and efficient prices are a central topic in traffic policy, both at the European Union level and in Switzerland. They should allow the efficient use of the infrastructure, set up fair terms of competition between road and rail traffic and reduce traffic loading. At the same time, they should also make it possible to finance traffic in a sustainable manner. One of the main directions of attack is letting those responsible pay the external costs which result from traffic jams, accidents and environmental pollution. With the planned introduction of the usage-dependent heavy traffic levy, Switzerland has made an important step in the direction of true cost-allocation for goods vehicles. As for the rest of road traffic, however, considerable external costs are still not covered. On the other hand, rail traffic is not able to cover its infrastructure costs itself in spite of compensation it receives for the provision of public services [de

  13. Development and characterization of the lead iodide semiconductor detector; Desenvolvimento e caracterizacao do detector semicondutor de iodeto de chumbo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone Braga de

    2001-07-01

    A methodology for purification and growth of PbI{sub 2} crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ({sup 241}Am) alpha particle and ({sup 241}Am, {sup 57}Co, {sup 133}Ba and {sup 137}Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for {sup 241} Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI{sub 2} crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  14. Simulations and developments of the Low Energy Neutron detector Array LENA

    International Nuclear Information System (INIS)

    Langer, C.; Algora, A.; Couture, A.; Csatlós, M.; Gulyás, J.; Heil, M.; Krasznahorkay, A.; O'Donnell, J.M.; Plag, R.; Reifarth, R.; Stuhl, L.; Sonnabend, K.; Tornyi, T.; Tovesson, F.

    2011-01-01

    Prototypes of the Low Energy Neutron detector Array (LENA) have been tested and compared with detailed GEANT simulations. LENA will consist of plastic scintillation bars with the dimensions 1000×45×10 mm 3 . The tests have been performed with γ-ray sources and neutrons originating from the neutron-induced fission of 235 U. The simulations agreed very well with the measured response and were therefore used to simulate the response to mono-energetic neutrons with different detection thresholds. LENA will be used to detect low-energy neutrons from (p,n)-type reactions with low momentum transfer foreseen at the R 3 B and EXL setups at FAIR, Darmstadt.

  15. Development of hybrid photon detectors with integrated silicon pixel readout for the RICH counters of LHCb

    CERN Document Server

    Alemi, M; Formenti, F; Gys, Thierry; Piedigrossi, D; Puertolas, D; Rosso, E; Snoeys, W; Wyllie, Ken H

    1999-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based $9 on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a fast, binary readout chip with matching pixel electronics. The $9 performance of a half-scale prototype is presented, together with the developments and tests of a full-scale tube with large active area. Specific requirements for pixel front-end and readout electronics in LHCb are outlined, and $9 recent results obtained from pixel chips applicable to hybrid photon detector design are summarized.

  16. Development of CANDLES low background HPGe detector and half-life measurement of 180Tam

    Science.gov (United States)

    Chan, W. M.; Kishimoto, T.; Umehara, S.; Matsuoka, K.; Suzuki, K.; Yoshida, S.; Nakajima, K.; Iida, T.; Fushimi, K.; Nomachi, M.; Ogawa, I.; Tamagawa, Y.; Hazama, R.; Takemoto, Y.; Nakatani, N.; Takihira, Y.; Tozawa, M.; Kakubata, H.; Trang, V. T. T.; Ohata, T.; Tetsuno, K.; Maeda, T.; Khai, B. T.; Li, X. L.; Batpurev, T.

    2018-01-01

    A low background HPGe detector system was developed at CANDLES Experimental Hall for multipurpose use. Various low background techniques were employed, including hermatic shield design, radon gas suppression, and background reduction analysis. A new pulse shape discrimination (PSD) method was specially created for coaxial Ge detector. Using this PSD method, microphonics noise and background event at low energy region less than 200 keV can be rejected effectively. Monte Carlo simulation by GEANT4 was performed to acquire the detection efficiency and study the interaction of gamma-rays with detector system. For rare decay measurement, the detector was utilized to detect the nature's most stable isomer tantalum-180m (180Tam) decay. Two phases of tantalum physics run were completed with total livetime of 358.2 days, which Phase II has upgraded shield configuration. The world most stringent half-life limit of 180Tam has been successfully achieved.

  17. Development of a reader for track etch detectors based on a commercially available slide scanner

    CERN Document Server

    Steele, J D; Tanner, R J; Bartlett, D T

    1999-01-01

    NRPB has operated a routine neutron personal dosimetry service based on the electrochemical etch of PADC elements since 1986. Since its inception it has used an automated reader based on a video camera and real time analysis. A new and more powerful replacement system has been developed using a commercially available photographic slide scanner. This permits a complete image of the dosemeter to be grabbed in a single scan, generating a 2592x3888 pixel file which is saved for subsequent analysis. This gives an effective pixel size of 10x10 mu m with an image of the entire dosemeter in one field of view. Custom written software subsequently analyses the image to assess the number of etched pits on the dosemeter and read the detector identification number (code). Batch scanning of up to 40 detectors is also possible using an autofeed attachment. The system can be used for electrochemically etched tracks for neutron detectors and chemically etched tracks for radon detectors.

  18. Development of a high-speed single-photon pixellated detector for visible wavelengths

    CERN Document Server

    Mac Raighne, Aaron; Mathot, Serge; McPhate, Jason; Vallerga, John; Jarron, Pierre; Brownlee, Colin; O’Shea, Val

    2009-01-01

    We present the development of a high-speed, single-photon counting, Hybrid Photo Detector (HPD). The HPD consists of a vacuum tube, containing the detector assembly, sealed with a transparent optical input window. Photons incident on the photocathode eject a photoelectron into a large electric field, which accelerates the incident electron onto a silicon detector. The silicon detector is bump bonded to a Medipix readout chip. This set-up allows for the detection and readout of low incident photon intensities at rates that are otherwise unattainable with current camera technology. Reported is the fabrication of the camera that brings together a range of sophisticated design and fabrication techniques and the expected theoretical imaging performance. Applications to cellular and molecular microscopy are also described in which single-photon-counting abilities at high frame rates are crucial

  19. Development of noise-suppressed detector for single ion hit system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Takuro; Hamano, Tsuyoshi; Suda, Tamotsu; Hirao, Toshio; Kamiya, Tomihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A noise-suppressed detector for single ion detection has been developed, and combined with the heavy ion microbeam apparatus. This detector consists of a pair of micro channel plates (MCP`s) and a very thin carbon foil. The detection signal is formed by the coincidence of the signals from these MCP`s, so that this detector and the coincidence measurement unit can reduce miscounting in the circuit. The detection efficiency for 15 MeV heavy ions was evaluated to be comparable to that of a silicon surface-barrier detector (SSD) and the miscounting rate was 4 orders lower than the noise rate of a single MCP. The rise time of the detection signal was also estimated. (author)

  20. Development of a scintillator detector set with counter and data acquisition for flow measurements

    CERN Document Server

    Costa, F E D

    2002-01-01

    A portable counter with data acquisition system for flow measurements was developed, using the pulse velocity technique. This consists in determining the tracer transit time mixed homogeneously to the liquid or gas pipelines. The counter comprises: (a) two CsI(Tl) crystals solid state detectors, associated with Si PIN photodiodes, with compatible sensitivity to the injected radiotracers activities; (b) amplification units; (c) analogue-to-digital interface, which processes and displays the detectors counting separately and in real time, but in a same temporal axis, via a computer screen and (d) 30-m coaxial cables for signals transmission from each detector to the processing unit. Experiments were carried out for the detector and associated electronic characterizations. The equipment showed to be suitable for flow measurements in an industrial plant, in the real situation.

  1. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  2. 1, 2, 3 ... FAIR !

    International Nuclear Information System (INIS)

    Sturm, C.; Sharkov, B.; Stoecker, H.

    2010-01-01

    The Facility for Antiproton and Ion Research FAIR at Darmstadt/Germany will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented forefront research in hadron, nuclear, atomic and plasma physics and applied sciences. The start version of FAIR, the so called Modularized Start Version includes a basic accelerator as well as three experimental modules - 1, 2, 3 FAIR!

  3. Development of alpha spectroscopy method with solid state nuclear track detector using aluminium thin films

    International Nuclear Information System (INIS)

    Dwaikat, N.

    2015-10-01

    This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 MeV, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 MeV) can penetrate the film and reach the detectors surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 MeV and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source. (Author)

  4. Development of alpha spectroscopy method with solid state nuclear track detector using aluminium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dwaikat, N., E-mail: ndwaikat@kfupm.edu.sa [King Fahd University of Petroleum and Minerals, College of Sciences, Department of Physics, Dhahran 31261 (Saudi Arabia)

    2015-10-15

    This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 MeV, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 MeV) can penetrate the film and reach the detectors surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 MeV and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source. (Author)

  5. Development of a sealed source radiation detector system for gamma ray scanning of petroleum distillation columns

    International Nuclear Information System (INIS)

    Vasquez Salvador, Pablo Antonio

    2004-01-01

    Gamma Ray Scanning is an online technique to 'view' the hydraulic performance of an operating column, with no disruption to operating processes conditions (pressure and temperature), as a cost-effective solution. The principle of this methodology consists of a small suitably sealed gamma radiation source and a radiation detector experimentally positioned to the column, moving concurrently in small increments on opposite sides and the quantity of gamma transmitted. The source-detector system consists of: a sealed ''6 0 Co radioactive source in a panoramic lead radiator, a scintillator detector coupled to a ratemeter / analyzer and a mobile system. In this work, a gamma scanning sealed source-detector system for distillation columns, was developed, comparing two scintillator detectors: NaI(Tl) (commercial) and CsI(Tl) (IPEN). In order to project the system, a simulated model of a tray-type distillation column was used. The equipment developed was tested in an industrial column for water treatment (6.5 m diameter and 40 m height). The required activities of 6 ''0Co, laboratory (11.1 MBq) and industrial works (1.48 TBq) were calculated by simulation software. Both, the NaI(Tl) and the CsI(Tl) detectors showed good proprieties for gamma scanning applications, determining the position and presence or absence of trays. (author)

  6. Development of a fragment detector system for the study of peripheral collisions at high beam energies

    International Nuclear Information System (INIS)

    Spies, H.

    1992-06-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR of the Society for Heavy-Ion research in Darmstadt one of the essential research aims of the LAND collaboration is the study of high-lying collective states after electromagnetic excitation in heavy-ion collisions at nearly relativistic beam energies. By the exchange of virtual photons with high energy giant resonances are excited with high probabilities. The main decay channel of giant resonances in heavy nuclei is the emission of neutrons as well as below the particle threshold the emission of γ radiation. For the study of these states a detector system was developed, which makes the kinematically complete measurement of all reaction partners possible. For the determination of the neutron energy serves the Large Area Neutron Detector LAND, a time-of-flight spectrometer for high-energetic neutrons. For the measurement of the γ radiation emitted by the excited projectile the target is surrounded by an array of 48 BaF 2 crystals. A radiation detector system consisting of 6 single detectors and further 5 help detectors allows together with the magnetic spectrometer ALADIN the identification of the heavy projectile fragments by charge, momentum, and mass. Four position-sensitive plastic scintillators serve for the measurement of the trajectory of the projectile respectively the projectile fragments in front and behind the deviating magnet. Additionally with these detectors the velocity is measured. For the determination of the nuclear charge of the projectile fragments serve a multiple-ionization chamber and a Cherenkov detector. In this thesis the development and taking into operation of the LAND radiation detector system is described. (orig./HSI) [de

  7. The PANDA experiment at FAIR

    International Nuclear Information System (INIS)

    Bussa, M.P.

    2005-01-01

    The approved FAIR upgrade of the GSI facility in Darmstadt, Germany, includes the construction of a High Energy Storage Ring (HESR) for high intensity, phase space cooled antiprotons with momenta up to 15 GeV/c. A wide physics program is planned at this facility to investigate fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei. To serve the many experiments planned at this new facility, an universal, modular, hermetic spectrometer called PANDA (Proton ANtiproton Detector Array) is planned. This talk presents an overview of the physics program pursued by this project and of the PANDA detector system. The feasibility of measurements in the sector of spin degrees of freedom of quarks will be also discussed. (author)

  8. Zeroing and testing units developed for Gerdien atmospheric ion detectors

    International Nuclear Information System (INIS)

    Kolarz, P.; Marinkovic, B.P.; Filipovic, D.M.

    2005-01-01

    Low current measurements in atmospheric ion detection using a Gerdien condenser are subjected to numerous sources of error. Zeroing and testing units described in this article, connected as modules to this type of detector, enable some of these errors to be found and eliminated. The zeroing unit provides digital compensation of the zero drift with a digital sample and hold circuit of 12-bit resolution. It overcomes difficulties related to zero drift and techniques used in the zero conductivity determination when the accelerating potential or airflow rate are zero. The testing unit is a current reference of nominally 10 -12 A intended for testing and correcting the system on current leakage and other measuring deviations due to changes in atmospheric parameters. This unit is an independent battery-powered module, which provides a charge of 10 -12 C per cycle (frequency of order 1 Hz) to the collecting electrode. The control of Gerdien devices is substantially simplified using the zeroing and testing units realized here. Both units are used during 'zero conductivity' regime only

  9. Development of a novel neutron detector for imaging and analysis

    International Nuclear Information System (INIS)

    Darambara, D.G.; Beach, A.C.; Spyrou, N.M.

    1993-01-01

    A hardware system employing dynamic Random Access Memory (dRAM) has been designed to make possible the detection of neutrons. One recognised difficulty with dynamic memory devices is the alpha-particle problem. That is alpha-particle 'contamination' present within the dRAM encapsulating material may interact sufficiently as to corrupt stored data. These corruptions, 'known as soft errors', may be induced in dRAMs by the interaction of charged particles with the chip itself as a basis for system function. A preliminary feasibility study has been carried out to use dynamic RAMs as alpha-particle detectors. The initial system tests provide information upon detection efficiency, soft error reading rate, energy dependence of the soft error rate and the soft error reading rate, energy dependence of the soft error rate and the soft error operating bias relationship. These findings highlight the usefulness of such a device in neutron dosimetry, imaging and analysis, by using a neutron converter with a high cross section for the (n, α) capture reaction. (author) 20 refs.; 8 figs

  10. The HADES-at-FAIR project

    International Nuclear Information System (INIS)

    Lapidus, K.; Agakishiev, G.; Balanda, A.; Bassini, R.; Behnke, C.; Belyaev, A.; Blanco, A.; Böhmer, M.; Cabanelas, P.; Carolino, N.; Chen, J. C.; Chernenko, S.; Díaz, J.; Dybczak, A.

    2012-01-01

    After the completion of the experimental program at SIS18 the HADES setup will migrate to FAIR, where it will deliver high-quality data for heavy-ion collisions in an unexplored energy range of up to 8 A GeV. In this contribution, we briefly present the physics case, relevant detector characteristics and discuss the recently completed upgrade of HADES.

  11. Liquidity and Impact in Fair Markets

    OpenAIRE

    Jaisson, Thibault

    2015-01-01

    We develop a theory which applies to any market dynamics that satisfy a fair market assumption on the nullity of the average profit of simple market making strategies. We show that for any such fair market, there exists a martingale fair price which corresponds to the average liquidation value (at the ask or the bid) of an infinitesimal quantity of stock. We show that this fair price is a natural reference price to compute the ex post gain of limit orders. Using only the fair market assumptio...

  12. Technology Development on P-type Silicon Strip Detectors for Proton Beam Dosimetry

    International Nuclear Information System (INIS)

    Aouadi, K.; Bouterfa, M.; Delamare, R.; Flandre, D.; Bertrand, D.; Henry, F.

    2013-06-01

    In this paper, we present a technology for the fabrication of n-in-p silicon strip detectors, which is based on the use of Al 2 O 3 oxide compared to p-spray insulation scheme. This technology has been developed using the best technological parameters deduced from simulations, particularly for the p-spray implantation parameters. Different wafers were processed towards the fabrication of the radiation detectors with p-spray insulation and Al 2 O 3 . The evaluation of the prototype detectors has been carried out by performing the electrical characterization of the devices through the measurement of current-voltage and capacitance-voltage characteristics, as well as the measurement of detection response under radiation. The results of electrical measurements indicate that detectors fabricated with Al 2 O 3 exhibit a dark current several times lower than p-spray detectors and show an excellent electrical insulation between strips with a higher inter-strip resistance. Response of Al 2 O 3 strip detector under radiation has been found better. The resulting improved output signal dynamic range finally makes the use of Al 2 O 3 more attractive. (authors)

  13. Development of Ultra-Fast Silicon Detectors for 4D tracking

    Science.gov (United States)

    Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.

    2017-12-01

    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.

  14. Development of a modular directional and spectral neutron detection system using solid-state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Weltz, A., E-mail: weltza3@gmail.com; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-21

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a {sup 252}Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  15. Development of a detector based on Silicon Drift Detectors for gamma-ray spectroscopy and imaging applications

    Science.gov (United States)

    Busca, P.; Butt, A. D.; Fiorini, C.; Marone, A.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Bombelli, L.; Giacomini, G.; Piemonte, C.; Camera, F.; Giaz, A.; Million, B.; Nelms, N.; Shortt, B.

    2014-05-01

    This work deals with the development of a new gamma detector based on Silicon Drift Detectors (SDDs) to readout large LaBr3:Ce scintillators for gamma-ray spectroscopy and imaging applications. The research is supported by the European Space Agency through the Technology Research Programme (TRP) and by Istituto Nazionale di Fisica Nucleare (INFN) within the Gamma project. The SDDs, produced at Fondazione Bruno Kessler (FBK) semiconductor laboratories, are designed as monolithic arrays of 3 × 3 units, each one of an active area of 8 mm × 8 mm (overall area of 26 mm × 26 mm). The readout electronics and the architecture of the camera are briefly described and then first experimental results coupling the SDD array with a 1'' × 1'' LaBr3:Ce scintillator are reported. An energy resolution of 3% FWHM at 662 keV has been measured at -20°C, better than coupling the same scintillator with a photomultiplier tube. The same scintillator is also used to evaluate position sensitivity with a 1 mm collimated Cs-137 source. The main difficulty in determining the position of the gamma-ray interaction in the crystal is associated to the high thickness/diameter ratio of the crystal (1:1) and the use of reflectors on all lateral and top sides the crystal. This last choice enhances energy resolution but makes imaging capability more challenging because light is spread over all photodetectors. Preliminary results show that the camera is able to detect shifts in the measured signals, when the source is moved with steps of 5 mm. A modified version of the centroid method is finally implemented to evaluate the imaging capability of the system.

  16. Fairness and nanotechnology concern.

    Science.gov (United States)

    McComas, Katherine A; Besley, John C

    2011-11-01

    Research suggests that fairness perceptions matter to people who are asked to evaluate the acceptability of risks or risk management. Two separate national random surveys (n = 305 and n = 529) addressed Americans' concerns about and acceptance of nanotechnology risk management in the context of the degree to which they view scientists and risk managers as fair. The first survey investigated general views about scientists across four proposed dimensions of fairness (distributional, procedural, interpersonal, and informational). The results show that respondents who believe that the outcomes of scientific research tend to result in unequal benefits (distributional fairness) and that the procedures meant to protect the public from scientific research are biased (procedural fairness) were more concerned about nanotechnology. Believing scientists would treat them with respect (interpersonal fairness) and ensure access to information (informational fairness) were not significant predictors of concern. The second study also looked at these four dimensions of fairness but focused on perceptions of risk managers working for government, universities, and major companies. In addition to concern, it also examined acceptance of nanotechnology risk management. Study 2 results were similar to those of study 1 for concern; however, only perceived informational fairness consistently predicted acceptance of nanotechnology risk management. Overall, the study points to the value of considering fairness perceptions in the study of public perceptions of nanotechnology. © 2011 Society for Risk Analysis.

  17. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    Science.gov (United States)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a

  18. Development of Optics and Detectors for Advanced CMB Polarization Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Measurements of the cosmic microwave background (CMB) have been essential to the development of modern cosmology. Future observations will provide cosmological...

  19. Development of Advanced Gaseous Detectors for Muon Tracking and Triggering in Collider Experiments

    CERN Document Server

    Guan, Liang; Zhao, Zhengguo; Zhu, Junjie

    High luminosity and high energy collider experiments impose big challenges to conventional gaseous detectors used for muon tracking and triggering. Stringent requirements, in terms of time and spatial resolutions, rate capabilities etc. are expected. In the context of ATLAS muon upgrade project, we present extensive researches and developments of advanced gas detectors for precision muon tracking and triggering in high rate environments. Particularly, this dissertation focuses on the studies of Micro-mesh Gaseous structure (Micromegas), thin gap Resistive Plate Chamber (RPC) and small strip Thin Gap multi-wire Chambers (sTGC). In this dissertation, we first present a novel method, based on thermally bonding micro-meshes to anodes, to construct Micromegas detectors. Without employing the traditional photo-lithography process, it is a convenient alternative to build Micromegas. Both experimental and simulation studies of basic performance parameters of thermo-bonded Micromegas will be reported. Development...

  20. Development and characterization of micro-pattern gas detectors for intense beams of hadrons

    International Nuclear Information System (INIS)

    Vandenbroucke, Maxence

    2012-01-01

    This thesis work is dedicated to the design, development and characterization of Micro-Pattern Gas Detectors. The performances of a Time Projection Chamber (TPC) equipped with a triple Gas Electron Multiplier (GEM) amplification structure are reported. The intrinsic ion backflow suppression of GEM foils drastically reduces the space charge produced by wire readout in traditional TPC. The GEM solution allows the operation of a TPC at much higher event rate. The second part of this thesis describes the development of a 40 x 40 cm 2 Micromegas detector with a highly segmented central area. A reduction of discharges compared to conventional Micromegas detectors is needed for stable operation in intense beams of hadrons. Spark reduction technologies have been successfully studied and results are presented.

  1. Note: Development of real-time epithermal neutron detector for boron neutron capture therapy.

    Science.gov (United States)

    Tanaka, H; Sakurai, Y; Takata, T; Watanabe, T; Kawabata, S; Suzuki, M; Masunaga, S-I; Taki, K; Akabori, K; Watanabe, K; Ono, K

    2017-05-01

    The real-time detection of epithermal neutrons forms an important aspect of boron neutron capture therapy. In this context, we developed an epithermal neutron detector based on the combination of a small Eu:LiCaAlF 6 scintillator and a quartz fiber in order to fulfill the irradiation-field requirements for boron neutron capture therapy. The irradiation test is performed with the use of a reactor-based neutron source. The thermal and epithermal neutron sensitivities of our epithermal neutron detector are estimated to be 9.52 × 10 -8 ± 1.59 × 10 -8 cm 2 and 1.20 × 10 -6 cm 2 ± 8.96 × 10 -9 cm 2 , respectively. We also subject the developed epithermal neutron detector to actual irradiation fields, and we confirm that the epithermal neutron flux can be measured in realtime.

  2. Development and characterization of micro-pattern gas detectors for intense beams of hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, Maxence

    2012-07-02

    This thesis work is dedicated to the design, development and characterization of Micro-Pattern Gas Detectors. The performances of a Time Projection Chamber (TPC) equipped with a triple Gas Electron Multiplier (GEM) amplification structure are reported. The intrinsic ion backflow suppression of GEM foils drastically reduces the space charge produced by wire readout in traditional TPC. The GEM solution allows the operation of a TPC at much higher event rate. The second part of this thesis describes the development of a 40 x 40 cm{sup 2} Micromegas detector with a highly segmented central area. A reduction of discharges compared to conventional Micromegas detectors is needed for stable operation in intense beams of hadrons. Spark reduction technologies have been successfully studied and results are presented.

  3. Testing, installation and development of hardware and software components for the forward pixel detector of CMS

    CERN Document Server

    Florez Bustos, Carlos Andres

    2007-01-01

    The LHC (Large Hadron Collider) will be the particle accelerator with the highest collision energy ever. CMS (Compact Muon Solenoid) is one of the two largest experiments at the LHC. A main goal of CMS is to elucidate the electroweak symmetry breaking and determine if the Higgs mechanism is responsible for it. The pixel detector in CMS is the closest detector to the interaction point and is part of the tracker system. This thesis presents four different projects related to the forward pixel detector, performed as part of the testing and development of its hardware and software components. It presents the methods, implementation and results for the data acquisition and installation of the detector control system at the Meson Test Beam Facility of Fermilab for the beam test of the detector; the study of the C.A.E.N power supply and the multi service cable; the layout of the test stands for the assembly of the half-disk and half-service cylinder and the development of a software interface to the data acquisition...

  4. Developing Light Collection Enhancements and Wire Tensioning Methods for LArTPC Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Spagliardi, Fabio [Univ. of Manchester (United Kingdom)

    2017-01-01

    Liquid argon Time Projection Chambers (LArTPCs) are becoming widely used as neutrino detectors because of their image-like event reconstruction which enables precision neutrino measurements. They primarily use ionisation charge to reconstruct neutrino events. It has been shown, however, that the scintillation light emitted by liquid argon could be exploited to improve their performance. As the neutrino measurements planned in the near future require large-scale experiments, their construction presents challenges in terms of both charge and light collection. In this dissertation we present solutions developed to improve the performance in both aspects of these detectors. We present a new wire tensioning measurement method that allows a remote measurement of the tension of the large number wires that constitute the TPC anode. We also discuss the development and installation of WLS-compound covered foils for the SBND neutrino detector at Fermilab, which is a technique proposed t o augment light collection in LArTPCs. This included preparing a SBND-like mesh cathode and testing it in the Run III of LArIAT, a test beam detector also located at Fermilab. Finally, we present a study aimed at understanding late scintillation light emitted by recombining positive argon ions using LArIAT data, which could affect large scale surface detectors.

  5. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Kouhei, E-mail: nakanishi.kouhei@c.mbox.nagoya-u.ac.jp; Yamamoto, Seiichi

    2016-11-21

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  6. Fair market value

    International Nuclear Information System (INIS)

    Williams, J.

    1991-01-01

    This paper presents an examination of fair market value concepts as they pertain to producing petroleum properties. conventional petroleum economic theories of fair market value are examined in light of recent work on the market value of long-life reserves. Their work is expanded to show that sellers rely on comparable sales data for estimating FMV. Both results are used to suggest that current practices over-emphasize the discounted cash flow approach to estimating fair market value

  7. Modern trends in position-sensitive neutron detectors development for condensed matter research

    International Nuclear Information System (INIS)

    Belushkin, A.V.

    2007-01-01

    Detecting neutrons is a more complicated task compared to the detection of ionizing particles or ionizing radiation. This is why the variety of neutron detectors is much more limited. Meanwhile, different types of neutron experiments pose specific and often contradictory requirements for detector characteristics. For experiments on the high-intensity neutron sources, the high counting rate is one of the key issues. This is very important, for example, for small-angle neutron scattering and neutron reflectometry. For other experiments, characteristics like detection efficiency, high position resolution, high time resolution, neutron/gamma discrimination, large-area imaging, or compactness, are very important. Today, the cost of the detector also became one of the most important factors. There is no single type of detector which satisfies all the above criteria. Therefore, compromise is inevitable and some of the characteristics are trade off in favor of others. The present report gives an overview of detector systems presently operating at the leading neutron scattering facilities as well as some development work around the globe

  8. The Use of 3D Printing in the Development of Gaseous Radiation Detectors

    Science.gov (United States)

    Fargher, Sam; Steer, Chris; Thompson, Lee

    2018-01-01

    Fused Deposition Modelling has been used to produce a small, single wire, Iarocci-style drift tube to demonstrate the feasibility of using the Additive Manufacturing technique to produce cheap detectors, quickly. Recent technological developments have extended the scope of Additive Manufacturing, or 3D printing, to the possibility of fabricating Gaseous Radiation Detectors, such as Single Wire Proportional Counters and Time Projection Chambers. 3D printing could allow for the production of customisable, modular detectors; that can be easily created and replaced and the possibility of printing detectors on-site in remote locations and even for outreach within schools. The 3D printed drift tube was printed using Polylactic acid to produce a gas volume in the shape of an inverted triangular prism; base length of 28 mm, height 24.25 mm and tube length 145 mm. A stainless steel anode wire was placed in the centre of the tube, mid-print. P5 gas (95% Argon, 5% Methane) was used as the drift gas and a circuit was built to capacitively decouple signals from the high voltage. The signal rate and average pulse height of cosmic ray muons were measured over a range of bias voltages to characterise and prove correct operation of the printed detector.

  9. Development of a new neutron monitor using a boron-loaded organic liquid scintillation detector

    CERN Document Server

    Rasolonjatovo, A H D; Kim, E; Nakamura, T; Nunomiya, T; Endo, A; Yamaguchi, Y; Yoshizawa, M

    2002-01-01

    A new type of neutron dose monitor was developed by using a 12.7 cm diameterx12.7 cm long boron-loaded organic liquid scintillation detector BC523A. This detector aims to have a response in the wide energy range of thermal energy to 100 MeV by using the H and C reactions to the fast neutrons of organic liquid and the sup 1 sup 0 B(n, alpha) reaction to thermalized neutrons in the liquid. The response functions of this detector were determined by the Monte Carlo simulation in the energy region from thermal energy to 100 MeV. Using these response functions, the spectrum-weighted dose function, G-function, to get the neutron dose from the light output spectrum of the detector was also determined by the unfolding technique. The calculated G-function was applied to determine the neutron dose in real neutron fields having energies ranging from thermal energy to several tens of MeV, where the light output spectra were measured with the BC523A detector. The thus-obtained ambient doses and effective doses show rather ...

  10. Development of a programmable CCD detector for imaging, real time studies and other synchrotron radiation applications

    International Nuclear Information System (INIS)

    Brizard, C.

    1991-01-01

    A new CCD detector has been developed. The working of CCD and programmable detector is detailed in this thesis. The flexibility of the system allows the use of CCDs from different manufactures. The vacuum chamber of the detector is made of a beryllium window for experiments using X-radiation or of a quartz window coupled to a focusing optic system. Its temporal resolution is 2 microseconds with a X-radiation imaging. Images with a high spatial resolution have been obtained with the focusing system having a set of optical lenses and filters. The first X-ray diffraction experiments in the range of milliseconds and microseconds for the study of semiconductor heterostructures have been performed at X16 beam line at NSLS (National Synchrotron Light Source) with the detector illuminated by X-rays. For the first time, a X-ray beam, horizontally focused has been used to record a X-ray diffraction spectra on a 2-D detector. Finally, a X-ray diffraction method has been used to study the first steps of the crystallisation of Fe 8 0B 2 0 amorphous metallic alloy at X6 beam line at NSLS

  11. Development of Large-Area Charged Particle Detector with Inorganic Scintillator Plates and Wavelength Shifting Fibers

    Directory of Open Access Journals (Sweden)

    Mizuno Takahiro

    2018-01-01

    Full Text Available A Large-area charged particle detector for highenergy physics experiments has been developed. This detector includes inorganic scintillator plates with thicknesses of 0.5 mm and wavelength-shifting fibers (WLSFs of 0.2 mm in diameters. The size of effective area is 1 m by 1 m. The WLSFs are connected to both plate surfaces optically, and on the top and the bottom, fibers are attached along to x and y-axis direction, respectively. The best WLSF to obtain large number of photoelectrons is determined, which enables us to detect charged particles with thinner scintillation crystals. This means an improvement of position resolution of this detector. The number of photoelectrons obtained from a new type scintillation crystal, which is more reasonable than the conventional ones are also measured. We also estimated its position resolution. This detector enables us to detect charged particles with higher position resolution and lower cost than conventional scintillation detectors and gas chambers.

  12. Fair Trade - is it really fair?

    Czech Academy of Sciences Publication Activity Database

    Konečný, Tomáš; Mysliveček, Jan

    -, č. 367 (2008), s. 1-53 ISSN 1211-3298 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : Fair Trade * coffee * price setting Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp367.pdf

  13. Research and development of a helium-4 based solar neutrino detector

    International Nuclear Information System (INIS)

    Lanou, R.E.; Maris, H.J.; Seidel, G.M.

    1993-05-01

    Superfluid helium possesses unique properties that enable it to be used as the major component of a very sensitive calorimetric detector: it is extremely pure, and the energy deposited in it is carried out by elementary excitations of the liquid which can produce quantum evaporation of He atoms at a free surface. It has a major advantage of being able to achieve very low background levels. Experimental results presented on the development of helium-4 detector include sensitivity, heat capacity of wafer-calorimeters, coincidence measurements, spectrum of alpha particles in helium, and quantum evaporation: angular dependence and efficiency. 29 refs., 16 figs., 1 tab

  14. Development of an ASIC for CCD readout at the vertex detectors of the intrenational linear collider

    CERN Document Server

    Murray, P; Stefanov, K D; Woolliscroft, T

    2007-01-01

    The Linear Collider Flavour Identification Collaboration is developing sensors and readout electronics suitable for the International Linear Collider vertex detector. In order to achieve high data rates the proposed detector utilises column parallel CCDs, each read out by a custom designed ASIC. The prototype chip (CPR2) has 250 channels of electronics, each with a preamplifier, 5-bit flash ADC, data sparsification logic for identification of significant data clusters, and local memory for storage of data awaiting readout. CPR2 also has hierarchical 2-level data multiplexing and intermediate data memory, enabling readout of the sparsified data via the 5-bit data output bus.

  15. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Antrim, Daniel Joseph; The ATLAS collaboration

    2017-01-01

    The present small wheel muon detector at ATLAS will be replaced with a New Small Wheel (NSW) detector to handle the increase in data rates and harsh radiation environment expected at the LHC. Resistive Micromegas and small-strip Thin Gap Chambers will be used to provide both trigger and tracking primitives. Muon segments found at NSW will be combined with the segments found at the Big Wheel to determine the muon transverse momentum at the first-level trigger. A new trigger and readout system is developed for the NSW detector. The new system has about 2.4 million trigger and readout channels and about 8,000 frontend boards. The large number of input channels, short time available to prepare and transmit data, harsh radiation environment, and low power consumption all impose great challenges on the design. We will discuss the overall electronics design and studies with various ASIC and board prototypes.

  16. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    International Nuclear Information System (INIS)

    Kagan, Harris; Gan, K.K.; Kass, Richard

    2009-01-01

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  17. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Boscardin, Maurizio; Darbo, Giovanni; Gemme, Claudia; La Rosa, Alessandro; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Ronchin, Sabina; Zoboli, Andrea; Zorzi, Nicola

    2011-01-01

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are discussed here.

  18. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Boscardin, Maurizio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Darbo, Giovanni; Gemme, Claudia [INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); La Rosa, Alessandro; Pernegger, Heinz [CERN-PH, CH-1211 Geneve 23 (Switzerland); Piemonte, Claudio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Povoli, Marco [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Ronchin, Sabina [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Zoboli, Andrea [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Zorzi, Nicola [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy)

    2011-04-21

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are discussed here.

  19. Developing LAr Scintillation Light Collection Ideas in the Short Baseline Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelc, A. M. [Manchester U.

    2016-02-08

    Scintillation light is becoming the most rapidly developing feature of Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors due to its capability to enhance and expand their physics reach traditionally based on charge readout. The SBND detector, set to be built on the Booster Neutrino Beam Line at Fermilab, is in a unique position to test novel liquid argon scintillation light readout systems in a detector with physics neutrino events. The different ideas under consideration by the collaboration are described, including an array of PMTs detecting direct light, SiPM coupled lightguide bars and a setup which uses PMTs/SiPMS and wavelength shifter covered reflector foils, as well as their respective strengths and physics foci and the benchmarks used to compare them.

  20. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Guan, Liang; The ATLAS collaboration

    2017-01-01

    The present small wheel muon detector at ATLAS will be replaced with a New Small Wheel (NSW) detector to handle the increase in data rates and harsh radiation environment expected at the LHC. Resistive Micromegas and small strip Thin Gap Chambers will be used to provide both trigger and tracking primitives. Muon segments found at NSW will be combined with the segments found at the Big Wheel to determine the muon transverse momentum at the first-level trigger. A new trigger and readout system is developed for the NSW detector. The new system has about 2.4 million trigger and readout channels and about 8,000 Front-End boards. The large number of input channels, short time available to prepare and transmit data, harsh radiation environment, and low power consumption all impose great challenges on the design. We will discuss the overall electronics design and studies with various ASICs and high-speed circuit board prototypes.

  1. Developments, characterization and proton irradiation damage tests of AlN detectors for VUV solar observations

    Energy Technology Data Exchange (ETDEWEB)

    BenMoussa, A., E-mail: ali.benmoussa@stce.be [Solar Terrestrial Center of Excellence (STCE), Royal Observatory of Belgium, Circular Avenue 3, B-1180 Brussels (Belgium); Soltani, A.; Gerbedoen, J.-C [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), F-59652 Villeneuve d’Ascq (France); Saito, T. [Department of Environment and Energy, Tohoku Institute of Technology, 35-1, Yagiyama-Kasumi-cho, Taihaku-ku, Sendai, Miyagi 982-8577 (Japan); Averin, S. [Fryazino Branch of the Kotel’nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, 141190 Square Vvedenski 1, Fryazino, Moscow Region (Russian Federation); Gissot, S.; Giordanengo, B. [Solar Terrestrial Center of Excellence (STCE), Royal Observatory of Belgium, Circular Avenue 3, B-1180 Brussels (Belgium); Berger, G. [Catholic University of Louvain-la-Neuve, Chemin du Cyclotron 2, B-1348 Louvain la Neuve (Belgium); Kroth, U. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin (Germany); De Jaeger, J.-C. [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), F-59652 Villeneuve d’Ascq (France); Gottwald, A. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin (Germany)

    2013-10-01

    For next generation spaceborne solar ultraviolet radiometers, innovative metal–semiconductor–metal detectors based on wurtzite aluminum nitride are being developed and characterized. A set of measurement campaigns and proton irradiation damage tests was carried out to obtain their ultraviolet-to-visible characterization and degradation mechanisms. First results on large area prototypes up to 4.3 mm diameter are presented here. In the wavelength range of interest, this detector is reasonably sensitive and stable under brief irradiation with a negligible low dark current (3–6 pA/cm{sup 2}). No significant degradation of the detector performance was observed after exposure to protons of 14.4 MeV energy, showing a good radiation tolerance up to fluences of 1 × 10{sup 11} protons/cm{sup 2}.

  2. The Belle II DEPFET pixel vertex detector. Development of a full-scale module prototype

    International Nuclear Information System (INIS)

    Lemarenko, Mikhail

    2013-11-01

    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector.

  3. Development and characterisation of a visible light photon counting imaging detector system

    CERN Document Server

    Barnstedt, J

    2002-01-01

    We report on the development of a visible light photon counting imaging detector system. The detector concept is based on standard 25 mm diameter microchannel plate image intensifiers made by Proxitronic in Bensheim (Germany). Modifications applied to these image intensifiers are the use of three microchannel plates instead of two and a high resistance ceramics plate used instead of the standard phosphor output screen. A wedge and strip anode mounted directly behind the high resistance ceramics plate was used as a read out device. This wedge and strip anode picks up the image charge of electron clouds emerging from the microchannel plates. The charge pulses are fed into four charge amplifiers and subsequently into a digital position decoding electronics, achieving a position resolution of up to 1024x1024 pixels. Mounting the anode outside the detector tube is a new approach and has the great advantage of avoiding electrical feedthroughs from the anode so that the standard image intensifier fabrication process...

  4. BPM Electronics based on Compensated Diode Detectors – Results from development Systems

    CERN Document Server

    Gasior, M; Steinhagen, RJ

    2012-01-01

    High resolution beam position monitor (BPM) electronics based on diode peak detectors is being developed for processing signals from button BPMs embedded into future LHC collimators. Its prototypes were measured in a laboratory as well as with beam signals from the collimator BPM installed on the SPS and with LHC BPMs. Results from these measurements are presented and discussed.

  5. Information-Based Development of New Radiation Detectors

    International Nuclear Information System (INIS)

    Ferris, Kim F.; Webb-Robertson, Bobbie-Jo M.; Jones, Dumont M.

    2006-01-01

    With our present concern for a secure environment, the development of new radiation detection materials has focused on the capability of identifying potential radiation sources at increased sensitivity levels. As the initial framework for a materials-informatics approach to radiation detection materials, we have explored the use of both supervised (Support Vector Machines - SVM and Linear Discriminant Analysis - LDA) and unsupervised (Principal Component Analysis - PCA) learning methods for the development of structural signature models. Application of these methods yields complementary results, both of which are necessary to reduce parameter space and variable degeneracy. Using a crystal structure classification test, the use of the nonlinear SVM significantly increases predictive performance, suggesting trade-offs between smaller descriptor spaces and simpler linear models

  6. Developing the Second Generation of Improvised Explosive Device Detector Dog

    Science.gov (United States)

    2013-04-15

    environmental enrichment while in the pens, we identified two toys that resisted destruction by chewing. • Many of the dogs developed sore foot...frequently until recently; he never had a fever or other clinical signs. In addition to the treatments above, he received a course of amoxicillin (400...Reactivity Test (ERT) was modified by NCSU scientists to screen dogs for emotional reactivity and resilience, resistance to stress effects, and rapid and

  7. A Lower-Cost High-Resolution LYSO Detector Development for Positron Emission Mammography (PEM).

    Science.gov (United States)

    Ramirez, Rocio A; Zhang, Yuxuan; Liu, Shitao; Li, Hongdi; Baghaei, Hossain; An, Shaohui; Wang, Chao; Jan, Meei-Ling; Wong, Wai-Hoi

    2009-10-01

    In photomultiplier-quadrant-sharing (PQS) geometry for positron emission tomography applications, each PMT is shared by four blocks and each detector block is optically coupled to four round PMTs. Although this design reduces the cost of high-resolution PET systems, when the camera consists of detector panels that are made up of square blocks, half of the PMT's sensitive window remains unused at the detector panel edge. Our goal was to develop a LYSO detector panel which minimizes the unused portion of the PMTs for a low-cost, high-resolution, and high-sensitivity positron emission mammography (PEM) camera. We modified the PQS design by using elongated blocks at panel edges and square blocks in the inner area. For elongated blocks, symmetric and asymmetrical reflector patterns were developed and PQS and PMT-half-sharing (PHS) arrangements were implemented in order to obtain a suitable decoding. The packing fraction was 96.3% for asymmetric block and 95.5% for symmetric block. Both of the blocks have excellent decoding capability with all crystals clearly identified, 156 for asymmetric and 144 for symmetric and peak-to-valley ratio of 3.0 and 2.3 respectively. The average energy resolution was 14.2% for the asymmetric block and 13.1% for the symmetric block. Using a modified PQS geometry and asymmetric block design, we reduced the unused PMT region at detector panel edges, thereby increased the field-of-view and the overall detection sensitivity and minimized the undetected breast region near the chest wall. This detector design and using regular round PMT allowed building a lower-cost, high-resolution and high-sensitivity PEM camera.

  8. Extending the FairRoot framework to allow for simulation and reconstruction of free streaming data

    International Nuclear Information System (INIS)

    Al-Turany, M; Klein, D; Manafov, A; Rybalchenko, A; Uhlig, F

    2014-01-01

    The FairRoot framework is the standard framework for simulation, reconstruction and data analysis for the FAIR experiments. The framework is designed to optimise the accessibility for beginners and developers, to be flexible and to cope with future developments. FairRoot enhances the synergy between the different physics experiments. As a first step toward simulation of free streaming data, the time based simulation was introduced to the framework. The next step is the event source simulation. This is achieved via a client server system. After digitization the so called 'samplers' can be started, where sampler can read the data of the corresponding detector from the simulation files and make it available for the reconstruction clients. The system makes it possible to develop and validate the online reconstruction algorithms. In this work, the design and implementation of the new architecture and the communication layer will be described.

  9. Development of light-weight spherical mirrors for RICH detectors

    CERN Document Server

    Metlica, Fabio

    2007-01-01

    Glass-coated beryllium and carbon-fiber light-weight spherical mirrors, with radii of curvature of $\\sim$ 2700mm, have been successfully developed and tested as part of the LHCb RICH experimental programme. The low mass mirror is necessary to minimize the amount of material within the LHCb spectrometer acceptance, with a requirement of less than 2% of a radiation length. Both technologies are suitable for light-weight mirror applications. The R&D and characterization of the mirrors are reported.

  10. Empowerment of Marginalized Producer Groups through Fair Trade ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Fair Trade Forum is a market-based approach to empowering producers and promoting sustainability. Fair Trade Forum India (FTF I) is the national network of fair trade organizations and federations throughout India. As part of the Fair Trade commitment to the environment, members develop a range of ecologically friendly ...

  11. Silicon strip tracking detector development and prototyping for the Phase-2 Upgrade of the ATLAS experiment

    CERN Document Server

    Kuehn, Susanne; The ATLAS collaboration

    2015-01-01

    In about ten years from now, the Phase-2 upgrade of the LHC is planned. This will result in a severe radiation dose and high particle rates for the multipurpose exeperiments because of a foreseen luminosity of ten times higher the LHC design luminosity. Several detector components will have to be upgraded in the experiments. In the ATLAS experiment the current inner detector will be replaced by an all silicon tracking detector aiming for high performance. The poster will present the development and the latest prototyping of the upgrade silicon strip tracking detector. Its layout foresees low mass and modular double-sided structures for the barrel and forward region. Silicon sensors and readout electronics, so-called modules, are planned to be assembled double-sided on larger carbon-core structures. The modularity allows assembly and testing at multiple sites. Many components need to be developed and their prototyping towards full-size components is ongoing. New developments and test results will be presented....

  12. Fairness is intuitive

    DEFF Research Database (Denmark)

    Cappelen, Alexander W.; Panton, Ulrik Haagen; Tungodden, Bertil

    2016-01-01

    In this paper we provide new evidence showing that fair behavior is intuitive to most people. We find a strong association between a short response time and fair behavior in the dictator game. This association is robust to controls that take account of the fact that response time might be affected...

  13. Development of a neutron personal dose equivalent detector

    International Nuclear Information System (INIS)

    Tsujimura, N.; Yoshida, T.; Takada, C.; Momose, T.; Nunomiya, T.; Aoyama, K.

    2007-01-01

    A new neutron-measuring instrument that is intended to measure a neutron personal dose equivalent, H p (10) was developed. This instrument is composed of two parts: (1) a conventional moderator-based neutron dose equivalent meter and (2) a neutron shield made of borated polyethylene, which covers a backward hemisphere to adjust the angular dependence. The whole design was determined on the basis of MCNP calculations so as to have response characteristics that would generally match both the energy and angular dependencies of H p (10). This new instrument will be a great help in assessing the reference values of neutron H p (10) during field testing of personal neutron dosemeters in workplaces and also in interpreting their readings. (authors)

  14. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing

    2009-06-09

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of {sup 76}Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse

  15. Development of an automatic characterisation system for silicon detectors

    Science.gov (United States)

    Hacker, J.; Bergauer, T.; Krammer, M.; Wedenig, R.

    2002-06-01

    The CMS experiment will be equipped with the largest silicon tracker in the world. The tracker will consist of about 25,000 silicon sensors which will cover an area of more than 200 m2. Four quality test centres will carry out various checks on a representative sample of sensors to assure a homogeneous quality throughout the 2 {1}/{2} years of production. One of these centres is based in Vienna. To cope with the large number of sensors a fast and fully automatic characterisation system has been realised. We developed the software in LabView and built a cost-efficient probe station in house by assembling individual components and commercial instruments. Both the global properties of a sensor and the characteristic quantities of the individual strips can be measured. The measured data are immediately analysed and sent to a central database. The mechanical and electrical set-up will be explained and results from CMS prototype sensors are presented.

  16. Development of an automatic characterisation system for silicon detectors

    CERN Document Server

    Hacker, J; Krammer, M; Wedenig, R

    2002-01-01

    The CMS experiment will be equipped with the largest silicon tracker in the world. The tracker will consist of about 25,000 silicon sensors which will cover an area of more than 200 m sup 2. Four quality test centres will carry out various checks on a representative sample of sensors to assure a homogeneous quality throughout the 2((1)/(2)) years of production. One of these centres is based in Vienna. To cope with the large number of sensors a fast and fully automatic characterisation system has been realised. We developed the software in LabView and built a cost-efficient probe station in house by assembling individual components and commercial instruments. Both the global properties of a sensor and the characteristic quantities of the individual strips can be measured. The measured data are immediately analysed and sent to a central database. The mechanical and electrical set-up will be explained and results from CMS prototype sensors are presented.

  17. Development of Si-based detectors for intermediate energy heavy-ion physics at a storage-ring accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Jaworowski, J.; Leandersson, M.; El Bouanani, M. [Lund Institute of Technology, Solvegatan Lund, (Sweden). Department of Nuclear Physics; Jakobsson, B. [Lund Univ. (Sweden). Dept. of Cosmic and Subatomic Physics; Romanski, J.; Westerberg, L.; Van Veldhuizen, E.J. [Uppsala Univ. (Sweden); The Chicsi Collaboration

    1996-12-31

    Ultrahigh vacuum (UHV) compatible Si detectors are being developed by the CELSIUS Heavy lon Collaboration (CHIC) for measuring the energy and identity of Intermediate Mass Fragments (IMF) with Z {approx} 3 - 12 and energies of 0.7 - I 0 A MeV. Here we give an overview of the development of Si {delta}E-E detector telescopes and investigations on IMF identification based on the pulse shape from Si-detectors where the particles impinge on the rear-face of the detector. 9 refs., 4 figs.

  18. Simulations with the PANDA micro-vertex-detector

    International Nuclear Information System (INIS)

    Kliemt, Ralf

    2013-01-01

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  19. Simulations with the PANDA micro-vertex-detector

    Energy Technology Data Exchange (ETDEWEB)

    Kliemt, Ralf

    2013-07-17

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  20. The development and performance of the EXAM detector to search for extragalactic antimatter

    International Nuclear Information System (INIS)

    Coan, T.E.

    1989-01-01

    The design and development of a practical balloon borne instrument capable of detecting heavy (Z approximately equal to -26) antimatter in the cosmic rays are described. Emphasis is placed on describing the essential physics of the EXAM (extragalactic antimatter) instrument's individual detectors that make such a detection possible. In particular, it is shown that the responses from a plastic scintillator, a Cerenkov radiation detector, dielectric track detectors, and proportional drift tube arrays can be used to uniquely determine the speed, charge magnitude, and charge sign of a cosmic ray nucleus. This novel nonmagnetic detection scheme permits the construction of a relatively light weight (approximately 2,000 kg) detector with a large collecting power (approximately 10 sq m sr). The profound cosmological and elementary particle physics implications of the detection of just a single heavy antimatter nucleus are discussed in chapter one, along with arguments that imply that such a detected antinucleus must necessarily be extragalactic in origin. Chapters two through six describe the response of EXAM's individual detectors to the passage of heavily ionizing charged particles. Chapter seven is an overview of the mechanical construction of the entire instrument. Details of the measurement of the light collection efficiency of EXAM's Cerenkov detector and primary scintillator using sea-level muons and how this will be used to assist in the flight data analysis are contained in chapter eight. This chapter also includes a description of the instrument's electronic configuration and its data acquisition system. Finally, there are two appendices summarizing some important mechanical stress calculations that were required to actually build the instrument

  1. Development of innovative micro-pattern gaseous detectors with resistive electrodes and first results of their applications

    CERN Document Server

    Di Mauro, A; Martinengo, P; Nappi, E; Oliveira, R; Peskov, Vladimir; Periale, L; Picchi, P; Pietropaolo, F; Rodionov, I; Santiard, Jean-Claude

    2007-01-01

    The paper summarizes our latest progress in the development of newly introduced micro pattern gaseous detectors with resistive electrodes. These resistive electrodes protect the detector and the front-end electronics in case of occasional discharges and thus make the detectors very robust and reliable in operation. As an example, we describe in greater detail a new recently developed GEM-like detector, fully spark-protected with electrodes made of resistive kapton. We discovered that all resistive layers used in these studies (including kapton), that are coated with photosensitive layers, such as CsI, can be used as efficient photo cathodes for detectors operating in a pulse counting mode. We describe the first applications of such detectors combined with CsI or SbCs photo cathodes for the detection of UV photons at room and cryogenic temperatures.

  2. Development and operational performance of a single calibration chamber for radon detectors

    International Nuclear Information System (INIS)

    Lopez-Coto, I.; Bolivar, J.P.; Mas, J.L.; Garcia-Tenorio, R.; Vargas, A.

    2007-01-01

    This work shows the design, setup and performance of a new single radon detector calibration chamber developed at the University of Huelva (Environmental Radioactivity Group). This system is based on a certified radon source and a traceable reference radon detector, which allows radon concentrations inside the chamber radon to be obtained in steady-state conditions within a range of 400-22 000 Bq m -3 with associated uncertainties in the range of 4%. In addition, the development of a new ad hoc calibration protocol (UHU-RC/01/06 'Rachel'), which is based on the modelling of radon concentration within the chamber, allows it to be used without the reference detector. To do that, a complete characterization and calibration of the different leakage constants and the flow meter reading have been performed. The accuracy and general performance of both working methods for the same chamber (i.e., with and without the reference detector) have been tested by means of their participation in an intercomparison exercise involving five active radon monitors

  3. High-Dose Neutron Detector Development Using 10B Coated Cells

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    During FY16 the boron-lined parallel-plate technology was optimized to fully benefit from its fast timing characteristics in order to enhance its high count rate capability. To facilitate high count rate capability, a novel fast amplifier with timing and operating properties matched to the detector characteristics was developed and implemented in the 8” boron plate detector that was purchased from PDT. Each of the 6 sealed-cells was connected to a fast amplifier with corresponding List mode readout from each amplifier. The FY16 work focused on improvements in the boron-10 coating materials and procedures at PDT to significantly improve the neutron detection efficiency. An improvement in the efficiency of a factor of 1.5 was achieved without increasing the metal backing area for the boron coating. This improvement has allowed us to operate the detector in gamma-ray backgrounds that are four orders of magnitude higher than was previously possible while maintaining a relatively high counting efficiency for neutrons. This improvement in the gamma-ray rejection is a key factor in the development of the high dose neutron detector.

  4. Development of a novel direction-position sensing fast neutron detector using tensioned metastable fluids

    Science.gov (United States)

    Archambault, Brian C.; Webster, Jeffrey A.; Lapinskas, Joseph R.; Grimes, Thomas F.; Taleyarkhan, Rusi

    2012-05-01

    A directional-position sensing fast neutron sensor utilizing the acoustic tensioned metastable fluid detector (ATMFD) is described. This ATMFD system enables the determination of directionality of incoming neutron radiation with a single detector, and is developed based on a combination of experimentation and theoretical assessments. Benchmarking and qualifications studies conducted with a 1 Ci Pu-Be neutron source produced encouraging results. These results indicated that the ATMFD is not only comparable in technical performance with competing directional fast neutron detector-bank technologies under development worldwide, but it promised to do so with a single detector and at a significant reduction in both cost and size while remaining completely blind to nonneutron background radiation. Applications to neutron source spatial imaging and standoff detection with the ATMFD system are also presented. The ATMFD was found to successfully locate a hidden neutron source in a blind test. Assessments for practically relevant situations were conducted and it was revealed that an ATMFD system (with a 6 cm×10 cm cross-sectional area) could offer directionality on incoming neutron radiation from a 8 kg Pu source at 25 m standoff, with a resolution of 11.2°, with 68% confidence within 60 s. Position and neutron source image sensing capability were also demonstrated using two ATMFDs.

  5. The development of a single-crystal fiber-array scintillator area detector

    International Nuclear Information System (INIS)

    Loong, Chun; Vitt, Richard; Sayir, Ali; Sayir, Haluk

    2001-01-01

    The scientific output of a neutron instrument is directly proportional to the effectiveness of its detector system-coverage of scattering area, pixel resolution, counting efficiency, signal-to-noise ratio, life time and cost. The current neutron scintillator detectors employ mainly 6 Li-doped glass and ZnS, both of which present well-know limitations such as low light output, high gamma sensitivity in the case of 6 Li-glass and optical opacity in the case of ZnS. We aim to develop a position-sensitive, flight-time differentiable, efficient and cost-effective neutron detector system based on single-crystal scintillator fiber-arrays. The laser-heated melt modulation fiber growth technology developed at NASA provides the means to grow high-purity single-crystal fibers or rods of variable diameters (200 μm to 5 mm) and essentially unlimited length. Arrays of such fibers can be tailored to meet the requirements of pixel size, geometric configuration, and coverage area for a detector system. We report a plan in the growth and characterization of scintillators based on lithium silicates and boron aluminates using Ce as activator. (author)

  6. Development of Detector Systems for Internal and Fixed Target Heavy Ion Physics Experiments

    International Nuclear Information System (INIS)

    Golubev, Pavel

    2003-04-01

    This thesis deals with intermediate energy heavy ion reactions with the particular aim to study the nuclear matter equation of state which defines the relation between statistical parameters of a fermionic system. The development of equipment for two experiments, CA47 at The Svedberg Laboratory in Uppsala, Sweden and R16 at Kernfysisch Versneller Inst. (KVI), Groningen, The Netherlands, are described. CA47 contains the CHICSi detector, a modular, ultra-high vacuum (UHV) compatible, multi-detector system, covering a solid angle of 3pi sr around the collision point. Together with two auxiliary detector systems CHICSi is placed at the cluster-jet target chamber of the CELSIUS storage ring. This thesis gives a technical overview of the detector and the development carried out in order to achieve the desired detection performance. Some laboratory and in-beam tests are described and the analysis of the first experimental results is discussed. The nuclear intensity interferometry experiment (R16) was performed in a dedicated beam-line of the AGOR superconducting cyclotron. Small-angle two-particle correlations were measured for the E/A = 61 MeV 36 Ar + 27 Al, 112 Sn, 124 Sn reactions, together with singles spectra. The experimental energy distributions of neutrons and light charged particles for the 36 Ar + 27 Al reaction have been analyzed with a Maxwellian multi-source prescription. These results, together with correlation function data, are used to extract information on the size of the emitting sources and their time evolution

  7. Towards a Fair Global Economic Regime?

    DEFF Research Database (Denmark)

    Staricco, Juan Ignacio

    This dissertation offers an assessment of Fair Trade’s transformative potential through an empirical examination of the case of Fair Trade wine produced in Argentina and consumed in the United Kingdom. Guided by a dialectical understanding of the research process, the analysis is done at various...... levels of generality, offering both case-specific and universal arguments about the Fair Trade system as a whole. Theoretically, the dissertation develops a regulationist framework based on a critical engagement with the French Regulation Approach and the Amsterdam Project in International Political....... The further exploration of Fair Trade’s political and ideological dimensions sheds light on the reasons behind the system’s current limitations. The analysis shows that Fair Trade offers very limited improvements compared to the conventional economy. Additionally, for the Argentinean wine industry, Fair Trade...

  8. Development of dual-layer GSO depth-of-interaction block detector using angled optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Satoshi, E-mail: okumura.satoshi@c.mbox.nagoya-u.ac.jp [Nagoya University Graduate School of Medicine (Japan); Yamamoto, Seiichi [Nagoya University Graduate School of Medicine (Japan); Watabe, Hiroshi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University (Japan); Kato, Natsuki; Hamamura, Huka [Nagoya University Graduate School of Medicine (Japan)

    2015-05-01

    A PET system for small animals requires a small detector ring to obtain high-spatial resolution images. However, when we use a relatively large size of photodetector such as a position-sensitive photomultiplier tube (PSPMT), the detector ring is arranged in a hexagonal- or octagonal-shape, and the PET system has large gaps between the block detectors. The large gaps produce image distortion, and the reconstruction algorithm is difficult. To solve these problems, we proposed to arrange two scintillator blocks on one PSPMT using two angled optical fiber-based image guides. We could set two scintillator blocks angled at 22.5° on a PSPMT so that these scintillator blocks are arranged in a nearly circular (hexadecagonal) shape with eight developed block detectors. We used Gd{sub 2}SiO{sub 5} (GSO) scintillators with Ce concentrations of 1.5 mol% (decay time: 39 ns) and 0.4 mol% (decay time: 63 ns). Sizes of these GSO cells were 1.6×2.4×7.0 mm{sup 3} and 1.6×2.4×8.0 mm{sup 3} for 1.5 mol% Ce and 0.4 mol% Ce, respectively. These two types of GSO were arranged in an 11×15 matrix and optically coupled in the depth direction to form a depth-of-interaction (DOI) detector. Two GSO blocks and two optical fiber-based image guides were optically coupled to a 2-in. PSPMT (Hamamatsu Photonics H8500: 8×8 anodes). We measured the performances of the block detector with Cs-137 gamma photons (662-keV). We could resolve almost all pixels clearly in a two-dimensional position histogram. The average peak-to-valley ratios (P/Vs) of the two-dimensional position histogram along profiles were 2.6 and 4.8 in horizontal and vertical directions, respectively. The energy resolution was 28.4% full-width at half-maximum (FWHM). The pulse shape spectra showed good separation with a P/V of 5.2. The developed block detector performed well and shows promise for the development of high-sensitivity and high-spatial resolution PET systems.

  9. Development of dual-layer GSO depth-of-interaction block detector using angled optical fiber

    Science.gov (United States)

    Okumura, Satoshi; Yamamoto, Seiichi; Watabe, Hiroshi; Kato, Natsuki; Hamamura, Huka

    2015-05-01

    A PET system for small animals requires a small detector ring to obtain high-spatial resolution images. However, when we use a relatively large size of photodetector such as a position-sensitive photomultiplier tube (PSPMT), the detector ring is arranged in a hexagonal- or octagonal-shape, and the PET system has large gaps between the block detectors. The large gaps produce image distortion, and the reconstruction algorithm is difficult. To solve these problems, we proposed to arrange two scintillator blocks on one PSPMT using two angled optical fiber-based image guides. We could set two scintillator blocks angled at 22.5° on a PSPMT so that these scintillator blocks are arranged in a nearly circular (hexadecagonal) shape with eight developed block detectors. We used Gd2SiO5 (GSO) scintillators with Ce concentrations of 1.5 mol% (decay time: 39 ns) and 0.4 mol% (decay time: 63 ns). Sizes of these GSO cells were 1.6×2.4×7.0 mm3 and 1.6×2.4×8.0 mm3 for 1.5 mol% Ce and 0.4 mol% Ce, respectively. These two types of GSO were arranged in an 11×15 matrix and optically coupled in the depth direction to form a depth-of-interaction (DOI) detector. Two GSO blocks and two optical fiber-based image guides were optically coupled to a 2-in. PSPMT (Hamamatsu Photonics H8500: 8×8 anodes). We measured the performances of the block detector with Cs-137 gamma photons (662-keV). We could resolve almost all pixels clearly in a two-dimensional position histogram. The average peak-to-valley ratios (P/Vs) of the two-dimensional position histogram along profiles were 2.6 and 4.8 in horizontal and vertical directions, respectively. The energy resolution was 28.4% full-width at half-maximum (FWHM). The pulse shape spectra showed good separation with a P/V of 5.2. The developed block detector performed well and shows promise for the development of high-sensitivity and high-spatial resolution PET systems.

  10. Development of an X-ray detector using photodiodes; Desarrollo de un detector de rayos X usando fotodiodos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez G, J.; Azorin V, J. C.; Sosa A, M. A.; Ceron, P., E-mail: gonzalezgj2012@licifug.ugto.mx [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Loma del Bosque No. 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico)

    2016-10-15

    Currently the radiation detectors for medical applications are very high value in the market and are difficult to access as training material. In the Sciences and Engineering Division of the Guanajuato University (Mexico) investigations are carried out related to ionizing radiations, especially with X-rays. To overcome the lack of materials has had to resort to borrowing equipment from other institutions, so its use and availability are intermittent. For these reasons is proposed to design and implement an X-ray detector for the use of the work group and the University. This work aims to build an X-ray semiconductor detector using inexpensive and affordable materials, is also proposed the use of a photodiode sensor and an Arduino analog-digital card and a LCD display showing the data. (Author)

  11. DEVELOPMENT OF WIRELESS TECHNIQUES IN DATA AND POWER TRANSMISSION APPLICATION FOR PARTICLE-PHYSICS DETECTORS

    CERN Document Server

    Brenner, R; Dehos, C; De Lurgio, P; Djurcic, Z; Drake, G; Gonzales Gimenez, JL; Gustafsson, L; Kim, DW; Locci, E; Pfeiffer, U; Röhrich, D; Rydberg, D; Schöning, A; Siligaris, A; Soltveit, HK; Ullaland, K; Vincent, P; Vasquez, PR; Wiedner, D; Yang, S

    2017-01-01

    In the WADAPT project described in this Letter of Intent, we propose to develop wireless techniques for data and power transmission in particle-physics detectors. Wireless techniques have developed extremely fast over the last decade and are now mature for being considered as a promising alternative to cables and optical links that would revolutionize the detector design. The WADAPT consortium has been formed to identify the specific needs of different projects that might benefit from wireless techniques with the objective of providing a common platform for research and development in order to optimize effectiveness and cost. The proposed R&D will aim at designing and testing wireless demonstrators for large instrumentation systems.

  12. Physics at FAIR

    International Nuclear Information System (INIS)

    Chattopadhyay, Subhasis

    2014-01-01

    The Facility for Antiproton and Ion Research (FAIR) is under construction at Darmstadt, Germany. It will deliver high intensity beams of ions and antiprotons for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics and biophysics. One of the scientific pillars of FAIR is the Compressed Baryonic Matter (CBM) experiment which is designed for the study of high density nuclear matter as it exists in the core of neutron stars. In this article the scientific program of FAIR will be reviewed with emphasis on the CBM experiment

  13. Developement of proportional chamber detectors and simulations to measure charm hadrons in antiproton-proton annihilation

    International Nuclear Information System (INIS)

    Sokolov, A.

    2005-07-01

    The present thesis describes the results of the simulation and the design of the tracking system of the anti PANDA detector together with the study of the physics efficiency of the complete system. The central tracking system of the proposed anti PANDA at FAIR/Darmstadt was studied by Monte-Carlo simulations. From this a spatial resolution of 20 μm for the micro-vertex detector (MVD) resulted. A new, more realistic design of the MVD was established on the base of the simulation results, in order to reach a better balance between the physical and technical requirements. It was shown that a momentum resolution of 0.4% can be reached with the straw-tube tracker (SST). The chosen gas mixture of Ar+10% CO 2 combines the measured good spatial resolution of ∝120 μm with a drift time of less than 100 ns, which is necessary in order to process the high hit rates. With a straw-tube prototype it was shown that is is possible, to determine the z coordinate from the measurement od the signal charge on both ends of the tube. A resolution of 8.9 mm or of 0.6% of the tube length was reached. Basing on these measurements a new design of the SST without a stereo-angle between single layers was proposed. The study of the only very unprecisely known charmonium spectrum above the d anti d threshold is one of the most important aspects of the anti PANDA physics program. In order to check, whether the anti PANDA detector fulfils the physical requirements the reactions: anti pp→ψ(3770)toD anti D and anti pp→ψ(4040)→D *+ D *- were studied as benchmark processes. A resolution of the invariant mass of 10 and of 16 MeV/c were demonstrated for the ψ(3770) respectively the ψ(4040). It was furthermore shown that the necessary background suppression by the factor 10 10 is reached. The widths of the states D * sJ (2317) + and D sJ (2460) + can be measured with a precission of better than 100 keV because of the excellent beam quality of the HESR storage ring. The reconstruction

  14. Development of Micromegas detectors for the CLAS12 experiment at Jefferson Laboratory

    CERN Document Server

    Charles, Gabriel

    This thesis presents my work performed since 2010 to develop Micromegas detectors for the CLAS12 spectrometer that will be installed in the Hall B of Jefferson Laboratory (USA). The Micromegas are robust, fast and cheap gaseous detectors. Nevertheless, they must be adapted to the specific CLAS12 environment as there are many challenges to face : presence of a strong magnetic field, off-detector frontend electronics, high hadrons rate, necessity to curve the detectors, few space available. My PhD started by beam tests at CERN that allowed to evaluate the spark rate in CLAS12 Micromegas at a few Hertz. An important part of this document is therefore devoted to the study of several innovative methods to minimize the dead time induced by sparks. Thus, I have performed intensive tests on the optimization of the micromesh high voltage filter, with on Micromegas equipped with a GEM foild or on resistive Micromegas. The latter giving excellent results, full scale prototypes, one of which built by a company, have been...

  15. Development and operation of tracking detectors in silicon technology for the LHCb upgrade

    CERN Document Server

    Rodriguez Perez, Pablo; Adeva, Bernardo

    The LHCb experiment is one of the four main experiments at the Large Hadron Collider (LHC) at CERN. It uses the energy density provided by the LHC to attempt to probe asymmetries between particles and antiparticles that can not be explained by the Standard Model, and thus provide evidence that would allow us to build a new model of fundamental physics. This thesis covers the author's work in the Silicon Tracker $(\\textit{ST})$ and VErtex LOcator $(\\textit{VELO})$ detectors of the LHCb experiment. The thesis explains the installation and commissioning of the $ST$, as well as the development of the slow control for the detector. The $ST$ is a silicon micro-strip detector which provides precise momentum measurements of ionizing particles coming from the collisions. The $ST$consists of two sub-detectors: the Tracker Turicensis $ (TT)$, located upstream of the 4 Tm dipole magnet covering the full acceptance of the experiment, and the Inner Tracker $(IT)$, which covers the region of highest particle density closest...

  16. KENIS: a high-performance thermal imager developed using the OSPREY IR detector

    Science.gov (United States)

    Goss, Tristan M.; Baker, Ian M.

    2000-07-01

    `KENIS', a complete, high performance, compact and lightweight thermal imager, is built around the `OSPREY' infrared detector from BAE systems Infrared Ltd. The `OSPREY' detector uses a 384 X 288 element CMT array with a 20 micrometers pixel size and cooled to 120 K. The relatively small pixel size results in very compact cryogenics and optics, and the relatively high operating temperature provides fast start-up time, low power consumption and long operating life. Requiring single input supply voltage and consuming less than 30 watts of power, the thermal imager generates both analogue and digital format outputs. The `KENIS' lens assembly features a near diffraction limited dual field-of-view optical system that has been designed to be athermalized and switches between fields in less than one second. The `OSPREY' detector produces near background limited performance with few defects and has special, pixel level circuitry to eliminate crosstalk and blooming effects. This, together with signal processing based on an effective two-point fixed pattern noise correction algorithm, results in high quality imagery and a thermal imager that is suitable for most traditional thermal imaging applications. This paper describes the rationale used in the development of the `KENIS' thermal imager, and highlights the potential performance benefits to the user's system, primarily gained by selecting the `OSPREY' infra-red detector within the core of the thermal imager.

  17. Development of the liquid level meters for the PandaX dark matter detector

    International Nuclear Information System (INIS)

    Hu Jie; Gong Haowei; Lin Qing; Ni Kaixuan; Wei Yuehuan; Xiao Mengjiao; Xiao Xiang; Zhao Li; Tan Andi

    2014-01-01

    The two-phase xenon detector is at the frontier of dark matter direct search. This kind of detector uses liquid xenon as the sensitive target and is operated in two-phase (liquid/gas) mode, where the liquid level needs to be monitored and controlled in sub-millimeter precision. In this paper, we present a detailed design and study of two kinds of level meters for the PandaX dark matter detector. The long level meter is used to monitor the overall liquid level while short level meters are used to monitor the inclination of the detector. These level meters are cylindrical capacitors that are custom-made from two concentric metal tubes. Their capacitance values are read out by a universal transducer interface chip and are recorded by the PandaX slow control system. We present the developments that lead to level meters with long-term stability and sub-millimeter precision. Fluctuations (standard deviations) of less than 0.02 mm for the short level meters and less than 0.2 mm for the long level meter were achieved during a few days of test operation. (authors)

  18. Development of fast data processing electronics for a stacked x-ray detector system with application as a polarimeter

    Science.gov (United States)

    Maier, Daniel; Dick, Jürgen; Distratis, Giuseppe; Kendziorra, Eckhard; Santangelo, Andrea; Schanz, Thomas; Tenzer, Christoph; Warth, Gabriele

    2012-09-01

    We have assembled a stacked setup consisting of a soft and hard X-ray detector with cooling capability and control-, readout-, and data processing electronics at the Institut für Astronomie und Astrophysik Tübingen (IAAT). The detector system is a 64 ×64 DePFET-Matrix in front of a CdTe-Caliste module. The detectors were developed at the Max-Planck Institute Semiconductor Laboratory (HLL) in Neuperlach and the Commissariat a l'Energie Atomique (CEA) in Saclay, respectively. In this combined structure the DePFET detector works as Low Energy Detector (LED) while the Caliste module (HED) only detects the high energy photons that have passed through the LED. In this work we present the current status of the setup. Furthermore, an intended application of the detector system as a polarimeter is described.

  19. Development and characterisation of MCT detectors for space astrophysics at CEA

    Science.gov (United States)

    Boulade, O.; Baier, N.; Castelein, P.; Cervera, C.; Chorier, P.; Destefanis, G.; Fièque, B.; Gravrand, O.; Guellec, F.; Moreau, V.; Mulet, P.; Pinsard, F.; Zanatta, J.-P.

    2017-11-01

    The Laboratoire Electronique et Traitement de l'Information (LETI) of the Commissariat à l'Energie Atomique (CEA, Grenoble, France) has been involved in the development of infrared detectors based on HgCdTe (MCT) material for over 30 years, mainly for defence and security programs [1]. Once the building blocks are developed at LETI (MCT material process, diode technology, hybridization, …), the industrialization is performed at SOFRADIR (also in Grenoble, France) which also has its own R&D program [2]. In past years, LETI also developed infrared detectors for space astrophysics in the mid infrared range - the long wave detector of the ISOCAM camera onboard ISO - as well as in the far infrared range - the bolometer arrays of the Herschel/PACS photometer unit -, both instruments which were under the responsibility of the Astrophysics department of CEA (IRFU/SAp, Saclay, France). Nowadays, the infrared detectors used in space and ground based astronomical instruments all come from vendors in the US. For programmatic reasons - increase the number of available vendors, decrease the cost, mitigate possible export regulations, …- as well as political ones - spend european money in Europe -, the European Space Agency (ESA) defined two roadmaps (one in the NIR-SWIR range, one in the MWIR-LWIR range) that will eventually allow for the procurement of infrared detectors for space astrophysics within Europe. The French Space Agency (CNES) also started the same sort of roadmaps, as part of its contribution to the different space missions which involve delivery of instruments by French laboratories. It is important to note that some of the developments foreseen in these roadmaps also apply to Earth Observations. One of the main goal of the ESA and CNES roadmaps is to reduce the level of dark current in MCT devices at all wavelengths. The objective is to use the detectors at the highest temperature where the noise induced by the dark current stays compatible with the photon

  20. Is Equality Fair?

    Directory of Open Access Journals (Sweden)

    Arthur Tarasov

    2015-11-01

    Full Text Available This paper attempts to answer the question whether people consider decisions that lead to equal outcomes fair. I find that this is not always the case. In an experiment where subjects are given equal opportunities to choose how to divide money between each other in a two-player game, any strategy is perceived to be fair more than half the time, including the profit-maximizing strategy. The equal divisions that lead to equal outcomes are sometimes considered unfair by both players. Moreover, players frequently punished the others, whose decisions led to equal outcomes. I hypothesize that such punishments occur because people have different conceptions of what a fair outcome and fair punishment are

  1. Vehicle underbody fairing

    Science.gov (United States)

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  2. Customizing Fair Use Transplants

    Directory of Open Access Journals (Sweden)

    Peter K. Yu

    2018-02-01

    Full Text Available In the past decade, policymakers and commentators across the world have called for the introduction of copyright reform based on the fair use model in the United States. Thus far, Israel, Liberia, Malaysia, the Philippines, Singapore, South Korea, Sri Lanka and Taiwan have adopted the fair use regime or its close variants. Other jurisdictions such as Australia, Hong Kong and Ireland have also advanced proposals to facilitate such adoption. This article examines the increasing efforts to transplant fair use into the copyright system based on the U.S. model. It begins by briefly recapturing the strengths and weaknesses of legal transplants. The article then scrutinizes the ongoing effort to transplant fair use from the United States. Specifically, it identifies eight modalities of transplantation. This article concludes with five lessons that can be drawn from studying the ongoing transplant efforts.

  3. Developing the Storyline for an Advance Care Planning Video for Surgery Patients: Patient-Centered Outcomes Research Engagement from Stakeholder Summit to State Fair.

    Science.gov (United States)

    Aslakson, Rebecca A; Schuster, Anne L R; Lynch, Thomas J; Weiss, Matthew J; Gregg, Lydia; Miller, Judith; Isenberg, Sarina R; Crossnohere, Norah L; Conca-Cheng, Alison M; Volandes, Angelo E; Smith, Thomas J; Bridges, John F P

    2018-01-01

    Patient-centered outcomes research (PCOR) methods and social learning theory (SLT) require intensive interaction between researchers and stakeholders. Advance care planning (ACP) is valuable before major surgery, but a systematic review found no extant perioperative ACP tools. Consequently, PCOR methods and SLT can inform the development of an ACP educational video for patients and families preparing for major surgery. The objective is to develop and test acceptability of an ACP video storyline. The design is a stakeholder-guided development of the ACP video storyline. Design-thinking methods explored and prioritized stakeholder perspectives. Patients and family members evaluated storyboards containing the proposed storyline. The study was conducted at hospital outpatient surgical clinics, in-person stakeholder summit, and the 2014 Maryland State Fair. Measurements are done through stakeholder engagement and deidentified survey. Stakeholders evaluated and prioritized evidence from an environmental scan. A surgeon, family member, and palliative care physician team iteratively developed a script featuring 12 core themes and worked with a medical graphic designer to translate the script into storyboards. For 10 days, 359 attendees of the 2014 Maryland State Fair evaluated the storyboards and 87% noted that they would be "very comfortable" or "comfortable" seeing the storyboard before major surgery, 89% considered the storyboards "very helpful" or "helpful," and 89% would "definitely recommend" or "recommend" this story to others preparing for major surgery. Through an iterative process utilizing diverse PCOR engagement methods and informed by SLT, storyboards were developed for an ACP video. Field testing revealed the storyline to be highly meaningful for surgery patients and family members.

  4. Search for Physics beyond the Standard Model with the ATLAS detector and the development of radiation detectors

    CERN Document Server

    Silver, Yiftah

    We are investigating a radiation detector based on plasma display panel technology, the principal component of plasma television displays. This Plasma Panel Sensor (PPS) technology is a variant of micro-pattern gas radiation detectors. Based on the properties of existing plasma display panels, we expect eventually to be able to build a sealed array of plasma discharge gas cells to detect ionizing radiation with fast rise time of less than 10ns and high spatial resolution using a pixel pitch of less than 100 micrometer. In this thesis I shall describe our program of testing plasma display panels as detectors, including simulations, design and the first laboratory and beam studies that demonstrate the detection of cosmic ray muons, beta rays and medium energy protons. The ATLAS detector is used to search for high-mass resonances, in particular heavy neutral gauge bosons (Z') and excited states of Kaluza-Klein γ/Z bosons decaying to an electron-positron pair or a muon-antimuon pair. Results are presented based ...

  5. Development of microwave kinetic inductance detectors and their readout system for LiteBIRD

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, K.; Hazumi, M. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Ishino, H.; Kibayashi, A. [Okayama University, Okayama 700-8530 (Japan); Kibe, Y., E-mail: kibe@fphy.hep.okayama-u.ac.jp [Okayama University, Okayama 700-8530 (Japan); Mima, S. [Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Okamura, T.; Sato, N.; Tomaru, T. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Yamada, Y. [Okayama University, Okayama 700-8530 (Japan); Yoshida, M. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Yuasa, T. [Okayama University, Okayama 700-8530 (Japan); Watanabe, H. [SOKENDAI, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-12-21

    Primordial gravitational waves generated by inflation have produced an odd-parity pattern B-mode in the cosmic microwave background (CMB) polarization. LiteBIRD (Light satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection) aims at detecting this B-mode polarization precisely. It requires about 2000 detectors capable of detecting a frequency range from 50 GHz to 250 GHz with ultra low noise. Superconducting detectors are suitable for this requirement. We have fabricated and tested microwave kinetic inductance detectors (MKIDs) and developed a new readout system. We have designed antenna-coupled MKIDs. Quasi-particles are created by incident radiation and are detected as a change of the surface impedance of a superconductor strip. This change of the surface impedance is translated into the change of the resonant frequency of a microwave signal transmitted through the resonator. We also have developed a new readout system for MKIDs. The newly developed readout system is not only able to read out the amplitude and the phase data with the homodyne detection for multi-channels, but also provides a unique feature of tracking the resonant frequency of the target resonator. This mechanism enables us to detect signals with a large dynamic range. We report on the recent R and D status of the developing MKIDs and on the read-out system for LiteBIRD.

  6. Development of Strained-Layer Superlattice (SLS) IR Detector Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  7. Development of Strained-Layer Superlattice (SLS) IR Detector Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors.   In our FY12 IRAD “Strained Layer Superlattice Infrared Detector Array...

  8. Development and Studies of Novel Microfabricated Radiation Hard Scintillation Detectors With High Spatial Resolution

    CERN Document Server

    Mapelli, A; Haguenauer, M; Jiguet, S; Renaud, P; Vico Triviño, N

    2011-01-01

    A new type of scintillation detector is being developed with standard microfabrication techniques. It consists of a dense array of scintillating waveguides obtained by coupling microfluidic channels filled with a liquid scintillator to photodetectors. Easy manipulation of liquid scintillators inside microfluidic devices allow their flushing, renewal, and exchange making the active medium intrinsically radiation hard. Prototype detectors have been fabricated by photostructuration of a radiation hard epoxy resin (SU-8) deposited on silicon wafers and coupled to a multi-anode photomultiplier tube (MAPMT) to read-out the scintillation light. They have been characterized by exciting the liquid scintillator in the 200 micrometers thick microchannels with electrons from a 90Sr yielding approximately 1 photoelectron per impinging Minimum Ionizing Particle (MIP). These promising results demonstrate the concept of microfluidic scintillating detection and are very encouraging for future developments.

  9. Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    CERN Document Server

    Locci, E.; Dehos, C.; De Lurgio, P.; Djurcic, Z.; Drake, G.; Gimenez, J. L. Gonzalez; Gustafsson, L.; Kim, D.W.; Roehrich, D.; Schoening, A.; Siligaris, A.; Soltveit, H.K.; Ullaland, K.; Vincent, P.; Wiednert, D.; Yang, S.; Brenner, R.

    2015-01-01

    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that m...

  10. The Entrepreneur Fair: Fifth Grade Student Businesses

    Science.gov (United States)

    Moore, Teresa

    2010-01-01

    In twenty years of teaching, the author has never been involved in a project that sparked as much enthusiasm from students, parents, the administration, and other teachers as the Entrepreneur Fair. In an effort to challenge students to become entrepreneurs, the author developed a one-day market called the Entrepreneur Fair at Stonewall Elementary…

  11. Development and characterisation of new high-rate muon drift tube detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Bernhard

    2012-07-25

    With the increase of the LHC luminosity above the design value and the higher background counting rates, detectors in the ATLAS muon spectrometer have to be replaced because the limits of the radiation tolerance will be exceeded. Therefore drift tube chambers with 15 mm tube diameter were developed. The required construction accuracy was verified and the limits of the resolution and efficiency were determined in a muon beam and under gamma irradiation and compared to model expectations.

  12. Development of Thermal Kinetic Inductance Detectors suitable for X-ray spectroscopy

    OpenAIRE

    Giachero, A.; Cruciani, A.; D'Addabbo, A.; Day, P. K.; Di Domizio, S.; Faverzani, M.; Ferri, E.; Margesin, B.; Martinez, M.; Mezzena, R.; Minutolo, L.; Nucciotti, A.; Puiu, A.; Vignati, M.

    2017-01-01

    We report on the development of Thermal Kinetic Inductance Detectors (TKIDs) suitable to perform X-ray spectroscopy measurements. The aim is to implement MKIDs sensors working in thermal quasi-equilibrium mode to detect X-ray photons as pure calorimeters. The thermal mode is a variation on the MKID classical way of operation that has generated interest in recent years. TKIDs can offer the MKIDs inherent multiplexibility in the frequency domain, a high spatial resolution comparable with CCDs, ...

  13. Development and characterisation of new high-rate muon drift tube detectors

    International Nuclear Information System (INIS)

    Bittner, Bernhard

    2012-01-01

    With the increase of the LHC luminosity above the design value and the higher background counting rates, detectors in the ATLAS muon spectrometer have to be replaced because the limits of the radiation tolerance will be exceeded. Therefore drift tube chambers with 15 mm tube diameter were developed. The required construction accuracy was verified and the limits of the resolution and efficiency were determined in a muon beam and under gamma irradiation and compared to model expectations.

  14. Estimation of interface resistivity in bonded Si for the development of high performance radiation detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Yamashita, Makoto; Nomiya, Seiichiro; Onabe, Hideaki

    2007-01-01

    For the development of high performance radiation detectors, direct bonding of Si wafers would be an useful method. Previously, p-n bonded Si were fabricated and they showed diode characteristics. The interface resistivity was, however, not investigated in detail. For the study of interface resistivity, n-type Si wafers with different resistivities were bonded. The resistivity of bonded Si wafers were measured and the interface resistivity was estimated by comparing with the results of model calculations. (author)

  15. Discovery of transcription factors and regulatory regions driving in vivo tumor development by ATAC-seq and FAIRE-seq open chromatin profiling.

    Directory of Open Access Journals (Sweden)

    Kristofer Davie

    2015-02-01

    Full Text Available Genomic enhancers regulate spatio-temporal gene expression by recruiting specific combinations of transcription factors (TFs. When TFs are bound to active regulatory regions, they displace canonical nucleosomes, making these regions biochemically detectable as nucleosome-depleted regions or accessible/open chromatin. Here we ask whether open chromatin profiling can be used to identify the entire repertoire of active promoters and enhancers underlying tissue-specific gene expression during normal development and oncogenesis in vivo. To this end, we first compare two different approaches to detect open chromatin in vivo using the Drosophila eye primordium as a model system: FAIRE-seq, based on physical separation of open versus closed chromatin; and ATAC-seq, based on preferential integration of a transposon into open chromatin. We find that both methods reproducibly capture the tissue-specific chromatin activity of regulatory regions, including promoters, enhancers, and insulators. Using both techniques, we screened for regulatory regions that become ectopically active during Ras-dependent oncogenesis, and identified 3778 regions that become (over-activated during tumor development. Next, we applied motif discovery to search for candidate transcription factors that could bind these regions and identified AP-1 and Stat92E as key regulators. We validated the importance of Stat92E in the development of the tumors by introducing a loss of function Stat92E mutant, which was sufficient to rescue the tumor phenotype. Additionally we tested if the predicted Stat92E responsive regulatory regions are genuine, using ectopic induction of JAK/STAT signaling in developing eye discs, and observed that similar chromatin changes indeed occurred. Finally, we determine that these are functionally significant regulatory changes, as nearby target genes are up- or down-regulated. In conclusion, we show that FAIRE-seq and ATAC-seq based open chromatin profiling

  16. Development of a serial powering scheme and a versatile characterization system for the ATLAS pixel detector upgrade

    International Nuclear Information System (INIS)

    Filimonov, Viacheslav

    2017-08-01

    In order to increase the probability of new discoveries the LHC will be upgraded to the HL-LHC. The upgrade of the ATLAS detector is an essential part of this program. The entire ATLAS tracking system will be replaced by an all-silicon detector called Inner Tracker (ITk) which should be able to withstand the increased luminosity of 5 x 10 34 cm -2 s -1 . The work presented in this thesis is focused on the ATLAS ITk pixel detector upgrade. Advanced silicon pixel detectors will be an essential part of the ITk pixel detector where they will be used for tracking and vertexing. Characterization of the pixel detectors is one of the required tasks for a successful ATLAS tracker upgrade. Therefore, the work presented in this thesis includes the development of a versatile and modular test system for advanced silicon pixel detectors for the HL-LHC. The performance of the system is verified. Single and quad FE-I4 modules functionalities are characterized with the developed system. The reduction of the material budget of the ATLAS ITk pixel detector is essential for a successful operation at high luminosity. Therefore, a low mass, efficient power distribution scheme to power detector modules (serial powering scheme) is investigated as well in the framework of this thesis. A serially powered pixel detector prototype is built with all the components that are needed for current distribution, data transmission, sensor biasing, bypassing and redundancy in order to prove the feasibility of implementing the serial powering scheme in the ITk. Detailed investigations of the electrical performance of the detector prototype equipped with FE-I4 quad modules are made with the help of the developed readout system.

  17. Development and characterization of a modular acquisition system for a 4D PET block detector

    International Nuclear Information System (INIS)

    Marcatili, Sara; Belcari, Nicola; Bisogni, Maria G.; Collazuol, Gianmaria; Ambrosi, Giovanni; Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito; Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres; Del Guerra, Alberto

    2011-01-01

    Next generation PET scanners should fulfill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultiplier (SiPM) matrices is proposed for the construction of a 4D PET module based on LSO continuous crystals, which is envisaged to replace the standard PET block detector. The expected spatial resolution of the module for the photon hit position is below 1 mm, and it will perform at the same time, the Depth Of Interaction (DOI) calculation and the Time Of Flight (TOF) measurement. The use of large area multi-pixel Silicon Photomultiplier (SiPM) detectors requires the development of a multichannel Digital Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector performances. We have developed a flexible and modular DAQ system for the read-out of two modules in time coincidence for Positron Emission Tomography (PET) applications. The DAQ system is based on a previously developed custom front-end ASIC chip (BASIC) which allows to read-out SiPM matrices preserving their spectroscopy and timing capabilities. Here we describe the acquisition system architecture and its characterization measurements.

  18. New Generation GridPix: Development and characterisation of pixelated gaseous detectors based on the Timepix3 chip

    CERN Document Server

    AUTHOR|(CDS)2082958; Hessey, Nigel

    Due to the increasing demands of high energy physics experiments there is a need for particle detectors which enable high precision measurements. In this regard, the GridPix detector is a novel detector concept which combines the benefits of a pixel chip with an integrated gas amplification structure. The resulting unit is a detector sensitive to single electrons with a great potential for particle tracking and energy loss measurements. This thesis is focusing on the development of a new generation of GridPix detectors based on the Timepix3 chip, which implements a high resolution Time to Digital Converter (TDC) in each pixel. After an introductory chapter describing the motivation behind GridPix, the manuscript presents the physics of gaseous detectors in chapter 2 along with the gaseous detectors used for particle tracking in chapter 3. Chapters 4 and 5 are focusing on the tracking performance of GridPix detectors. Chapter 4 presents results obtained with a GridPix detector based on a small scale prototy...

  19. Development of a portable triple silicon detector telescope for beta spectroscopy and skin dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Helt-Hansen, J

    2000-11-01

    It is now recognized that beta radiation can be a significant radiation problem for exposure of the skin. There is thus a need for a portable and rugged active beta dosemeter-spectrometer to carry out immediate measurements of doses and energies of beta particles even in the presence of photon radiation. The main objective of this report is to describe the development of such an instrument. A beta-spectrometer has been developed consisting of three silicon surface barrier detectors with the thickness: 50{mu}m/150{mu}m/7000{mu}m covered by a 2 {mu}m thick titanium window. The spectrometer is capable of measuring electron energies from 50 keV to 3.5 MeV. The spectrometer is characterized by a compact low weight design, achieved by digital signal processing beginning at an early stage in the signal chain. 255 channels are available for each of the three detectors. The spectrometer is controlled by a laptop computer, which also handles all subsequent data analysis. By use of coincidence/anti-coincidence considerations of the absorbed energy in the three detector elements, counts caused by electrons are separated from those originating from photons. The electron energy distribution is multiplied by a set of conversion coefficients to obtain the dose at 0.07 mm tissue. Monte Carlo calculations has been used to derive the conversion coefficients and to investigate the influence of noise and the design of detector assembly on the performance of the spectrometer. This report describes the development of the spectrometer and its mode of operation, followed by a description of the Monte Carlo calculations carried out to obtain the conversion coefficients. Finally is the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in pure beta and mixed beta/photon radiation fields described. (au)

  20. What Is Fair in the Fair Transport Concept?

    DEFF Research Database (Denmark)

    Borgström, Benedikte

    It starts in a simple question and purpose of what is fair in the transport chain concept, and develops to an abductive reasoning based on critical business ethics research and polyphonic narratives for an understanding of the mess that involves people, ethics in supply chains, interest organizat......It starts in a simple question and purpose of what is fair in the transport chain concept, and develops to an abductive reasoning based on critical business ethics research and polyphonic narratives for an understanding of the mess that involves people, ethics in supply chains, interest...... organizations and EU institutions. Analytical understanding arrives from the Spinozian ethical principles in societies, justice and mercy. Justice as a social pact in order to escape the natural injustice and inequality outside the social system. Mercy as recognizing individuals in collective co...

  1. PNC status report on leak detector development for LMFBR steam generators

    International Nuclear Information System (INIS)

    Kuroha, M.; Sato, M.

    1984-01-01

    Chemical and acoustic type leak detectors have been developed for detecting a small sodium-water reaction in an LMFBR steam generator. This paper presents a summary of the development. (1) Test results on PNC type in-sodium hydrogen meters including a description of the structure, the long-term reliability and the durability, and the improved meter with an orifice, (2) Development of in-cover gas hydrogen meters, (3) Hydrogen detection tests and analyses, (4) Operating experiences of electrochemical in-sodium oxygen meters, and (5) Basic studies on acoustic characteristics of the sodium-water reaction. (author)

  2. FE-I4 Firmware Development and Integration with FELIX for the Pixel Detector

    CERN Document Server

    Yadav, Amitabh; Sharma, Abhishek; CERN. Geneva. EP Department

    2017-01-01

    CERN has planned a series of upgrades for the LHC. The last in this current series of planned upgrades is designated the HL-LHC. At the same time, the ATLAS Experiment will be extensively changed to meet the challenges of this upgrade (termed as the “Phase-II” upgrade). The Inner Detector will be completely rebuilt for the phase-II. The TRT, SCT and Pixel will be replaced by the all-silicon tracker, termed as the Inner Tracker (ITk). The read-out of this future ITk detector is an engineering challenge for the routing of services and quality of the data. This document describes the FPGA firmware development that integrates the GBT, Elink and Rx-Tx Cores for communication between the FE-I4 modules and the FELIX read-out system.

  3. Development of program DETSIM to simulate detector's full energy peak efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Thien; Tao, Chau Van; Au, Bui Hai; Chuong, Huynh Dinh [Vietnam National Univ., Ho Chi Minh City (Viet Nam). Faculty of Physics and Engineering Physics

    2012-12-15

    In this paper, the new software named DETector SIMulation (DETSIM) was developed from PENELOPE code system method to simulate gamma spectra and calculating full energy peak efficiency (FEPE). The new software is using graphic user interfaces for easy-to-use purpose. As a first application post test calculations has been performed for an experiment of a mixed source ({sup 241}Am, {sup 109}Cd, {sup 57}Co, {sup 139}Ce, {sup 51}Cr, {sup 113}Sn, {sup 85}Sr, {sup 137}Cs, {sup 60}Co and {sup 88}Y) located at two positions away from detector window and energy ranges between 60 keV and 2 000 keV. The results showed a general agreement between the simulated efficiencies and the experimental data. The simulation results are typically 7% higher than the experimental data in the low energy range. This means that our simulation program is good enough for later studies on our HPGe spectrometer.

  4. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Kohrs, Robert

    2008-09-15

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  5. Recent Developments in the processing of P-type Spiral Drift Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.; Gatti, E.; Li, Z.; Rehak, P.

    2004-12-01

    Recently we have designed and developed various methods of fabricating a new p-type drift detector (PDD), which possesses one-sided hexagonal spiral shaped cathodes around the center anode. We have utilized gettering methods in order to remove detrimental impurities from the critical device-active area and transport them to a different part of the wafer. In this work, we discuss the intrinsic and the extrinsic gettering methods involved in the process. In the intrinsic gettering, we use the magnetic Czochralski silicon material that has a high resistivity ({ge} 2 k{Omega}cm). This material naturally has high oxygen concentration (about 10{sup 18}/cm{sup 3}), and under a high temperature cycling it provides nucleation sites where the impurities can precipitate. In the extrinsic process we utilize the phosphorus implantation to form a region with increased impurity solubility. The goal of these processes is to reduce the leakage current of the detector thus improving its energy resolution.

  6. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Kohrs, Robert

    2008-09-01

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  7. Software development for studies of diffuse scattering using CCD-detectors and synchrotron radiation sources

    CERN Document Server

    Paulmann, C; Bismayer, U

    2001-01-01

    A graphical-user-interface based software system was developed to cover advanced data processing requirements which arise from studies of diffuse scattering in disordered minerals using synchrotron radiation sources and CCD-detectors. The software includes interfaces to standard applications, procedures for numerical processing of large data sets, corrections for sample external scattering and detector-specific distortions, different scaling options to correct the data set against the varying primary beam intensity as well as procedures to reconstruct arbitrary slices in reciprocal space on a regular grid. The software system was successfully applied in studies of diffuse scattering in disordered REE-doped germanates, phase-transition studies of synthetic titanite and studies of the thermal recrystallization behaviour of radiation-damaged (metamict) minerals.

  8. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    Science.gov (United States)

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  9. Development and application of a luminol-based nitrogen dioxide detector

    International Nuclear Information System (INIS)

    Wendel, G.J.

    1985-01-01

    An instrument for the continuous measurement of nitrogen dioxide (NO 2 ) at all atmospheric concentration ranges and conditions was developed. The detector is based on the chemiluminescent reaction between 5-amino-2,3-dihydro-1,4-phthalazinedione (luminol) and NO 2 in alkaline aqueous solution. Development included the optimization of the cell design and the solution composition. Sodium sulfite (Na 2 SO 3 ) and methanol (CH 3 OH) were added to the solution to improve sensitivity and specificity. The detector was favorably compared to two different instruments measuring NO 2 by NO + O 3 chemiluminescent and by a tunable diode laser absorption spectrometry system. The detector has demonstrated a detection limit of 30 parts-per-trillion by volume (ppt) and a frequency response of 0.3 Hz. The instrument was operated for two one-month periods on Bermuda. The purpose was to study air masses from the East Coast of the United States after transport over the ocean. Average daily values were 400 ppt with values as low as 100 ppt measured. Other field experiments involved monitoring of NO 2 in ambient air in the range of 1 to 60 parts-per-billion by volume

  10. Development and characterisation of a radiation hard readout chip for the LHCb outer tracker detector

    International Nuclear Information System (INIS)

    Stange, U.

    2005-01-01

    The reconstruction of charged particle tracks in the Outer Tracker detector of the LHCb experiment requires to measure the drift times of the straw tubes. A Time to Digital Converter (TDC) chip has been developed for this task. The chip integrates into the LHCb data acquisition schema and fulfils the requirements of the detector. The OTIS chip is manufactured in a commercial 0.25 μm CMOS process. A 32-channel TDC core drives the drift time measurement (25 ns measurement range, 390 ps nominal resolution) without introducing dead times. The resulting drift times are buffered until a trigger decision arrives after the fixed latency of 4 μs. In case of a trigger accept signal, the digital control core processes and transmits the corresponding data to the following data acquisition stage. Drift time measurement and data processing are independent from the detector occupancy. The digital control core of the OTIS chip has been developed within this doctoral thesis. It has been integrated into the TDC chip together with other constituents of the chip. Several test chips and prototype versions of the TDC chip have been characterised. The present version of the chip OTIS1.2 fulfils all requirements and is ready for mass production. (Orig.)

  11. Development of the mercury iodide semiconductor crystal for application as a radiation detector

    International Nuclear Information System (INIS)

    Martins, Joao Francisco Trencher

    2011-01-01

    In this work, the establishment of a technique for HgI growth and preparation of crystals, for use as room temperature radiation semiconductor detectors is described. Three methods of crystal growth were studied while developing this work: physical vapor transport (PVT); saturated solution of HgI 2 , using two different solvents; (a) dimethyl sulfoxide (DMSO) and (b) acetone, and the Bridgman method. In order to evaluate the obtained crystals by the three methods, systematic measurements were carried out for determining the stoichiometry, structure, orientation, surface morphology and impurity of the crystal. The influence of these physical chemical properties on the crystals development was studied, evaluating their performance as radiation detectors. The X-ray diffractograms indicated that the crystals were, preferentially, oriented in the (001) e (101) directions with tetragonal structure for all crystals. Nevertheless, morphology with a smaller deformation level was observed for the crystal obtained by the PVT technique, comparing to other methods. Uniformity on the surface layer of the PVT crystal was detected, while clear incrustations of elements distinct from the crystal could be viewed on the DMSO crystal surface. The best results as to radiation response were found for the crystal grown by physical vapor transport. Significant improvement in the HgI z2 radiation detector performance was achieved for purer crystals, growing the crystal twice by PVT technique. (author)

  12. Implementation of national sustainable development strategy 2010-2013, towards a green and fair economy. First report to Parliament

    International Nuclear Information System (INIS)

    2011-01-01

    This report proposes a presentation of the strategy by distinguishing several challenges. For each of them, the report describes the context, presents a key measure or a key indicator, describes the different strategic choices, and gives some quantitative objectives. These challenges are: sustainable consumption and production, knowledge society (education and training, research and development), governance, climate change and energy, sustainable transport and mobility, biodiversity and natural resource preservation and management, public health and risk prevention and management, demography, immigration and social inclusion, international challenges in terms of sustainable development and poverty in the word. A table precisely presents the various sustainable development indicators

  13. FINAL SCIENTIFIC REPORT - PROTON RADIOGRAPHY: CROSS SECTION MEASUREMENTS AND DETECTOR DEVELOPMENT

    International Nuclear Information System (INIS)

    Longo, Michael J.; Gustafson, H. Richard.; Rajaram, Durga; Nigmanov, Turgun

    2007-01-01

    Proton radiography offers significant advantages over conventional X-ray radiography, including the capability of looking into thick, dense materials, better contrast for a wide range of materials, sensitivity to different materials of similar density, and better resolution because of the ability to focus beams. In order to achieve this capability it is crucial to understand the background due to neutrons and photons and to develop techniques to reduce it to tolerable levels. The physics goal of this project is to measure forward production of neutrons and photons produced by high-energy proton beams striking a variety of targets. This work is being carried out in conjunction with the Fermilab Experiment 907 (MIPP) collaboration including physicists from Lawrence Livermore Laboratory. Our group is responsible for the E907 forward neutron/photon calorimeters. These are the only detectors in the experiment that provide information on neutrons and photons. We are taking a leading role in obtaining and analyzing the for-ward production data and in developing an optimal detector for proton radiography. With the support of our Stewardship Science Academic Alliances grant, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. E-907 officially started physics running at Fermilab in January 2005, and data taking continued through February 2006. Data were taken on a range of targets, from liquid hydrogen to uranium, at beam energies from 5 GeV/c to 120 GeV/c. The analysis of the data is challenging because data from many different detector systems must be understood and merged and over 31 million events were accumulated. Our recent efforts have been devoted to the calibration of the neutron and photon detectors, to track and shower reconstruction, identification of forward-going neutrons, and simulation of the calorimeters in a Monte Carlo. Reconstruction of the data with improved tracking is underway

  14. Development of a timing detector for the TOTEM experiment at the LHC

    Science.gov (United States)

    Minafra, Nicola

    2017-09-01

    The upgrade program of the TOTEM experiment will include the installation of timing detectors inside vertical Roman Pots to allow the reconstruction of the longitudinal vertex position in the presence of event pile-up in high- β^{\\ast} dedicated runs. The small available space inside the Roman Pot, optimized for high-intensity LHC runs, and the required time precision led to the study of a solution using single crystal CVD diamonds. The sensors are read out using fast low-noise front-end electronics developed by the TOTEM Collaboration, achieving a signal-to-noise ratio larger than 20 for MIPs. A prototype was designed, manufactured and tested during a test beam campaign, proving a time precision below 100ps and an efficiency above 99%. The geometry of the detector has been designed to guarantee uniform occupancy in the expected running conditions keeping, at the same time, the number of channels below 12. The read-out electronics was developed during an extensive campaign of beam tests dedicated first to the characterization of existing solution and then to the optimization of the electronics designed within the Collaboration. The detectors were designed to be read out using the SAMPIC chip, a fast sampler designed specifically for picosecond timing measurements with high-rate capabilities; later, a modified version was realized using the HPTDC to achieve the higher trigger rates required for the CT-PPS experiment. The first set of prototypes was successfully installed and tested in the LHC in November 2015; moreover the detectors modified for CT-PPS are successfully part of the global CMS data taking since October 2016.

  15. Development of a DAQ system for a plasma display panel-based X-ray detector (PXD)

    International Nuclear Information System (INIS)

    Lee, Hakjae; Jung, Young-Jun; Eom, Sangheum; Kang, Jungwon; Lee, Kisung

    2015-01-01

    Recently, a novel plasma display panel (PDP)-based X-ray detector (PXD) was developed. The goal of this study is to develop a data acquisition system for use with the PXD as an imaging detector. Since the prototype detector does not have any barrier ribs or a switching device in a detector pixel, a novel pixelation scheme—the line-scan method—is developed for this new detector. To implement line scanning, a multichannel high-voltage switching circuit and a multichannel charge-acquisition circuit are developed. These two circuits are controlled by an FPGA-based digital signal processing board, from which the information about the charge and position of each pixel can be sent to a PC. FPGA-based baseline compensation and switching noise rejection algorithms are used to improve the signal-to-noise ratio (SNR). The characteristic curve of the entire PXD system is acquired, and the correlation coefficients between the X-ray dose, and the signal intensity and the SNR were determined to be approximately 0.99 and 52.9, respectively. - Highlights: • We developed a data acquisition circuit for a novel X-ray imaging detector. • Line scan, noise rejection, and data transmission methods have been implemented by the FPGA. • The linearity and SNR of the proposed detector system have been measured quantitatively

  16. Studies and development of a readout ASIC for pixelated CdTe detectors for space applications

    International Nuclear Information System (INIS)

    Michalowska, A.

    2013-01-01

    The work presented in this thesis is part of a project where a new instrument is developed: a camera for hard X-rays imaging spectroscopy. It is dedicated to fundamental research for observations in astrophysics, at wavelengths which can only be observed using space-borne instruments. In this domain the spectroscopic accuracy as well as the imaging details are of high importance. This work has been realized at CEA/IRFU (Institut de Recherche sur les lois Fondamentales de l'Univers), which has a long-standing and successful experience in instruments for high energy physics and space physics instrumentation. The objective of this thesis is the design of the readout electronics for a pixelated CdTe detector, suitable for a stacked assembly. The principal parameters of this integrated circuit are a very low noise for reaching a good accuracy in X-ray energy measurement, very low power consumption, a critical parameter in space-borne applications, and a small dead area for the full system combining the detector and the readout electronics. In this work I have studied the limits of these three parameters in order to optimize the circuit. In terms of the spectral resolution, two categories of noise had to be distinguished to determine the final performance. The first is the Fano noise limit, related to detector interaction statistics, which cannot be eliminated. The second is the electronic noise, also unavoidable; however it can be minimized through optimization of the detection chain. Within the detector, establishing a small pixel pitch of 300 μm reduces the input capacitance and the dark current. This limits the effects of the electronic noise. Also in order to limit the input capacitance the future camera is designed as a stacked assembly of the detector with the readout ASIC. This allows to reach extremely good input parameters seen by the readout electronics: a capacitance in range of 0.3 pF-1 pF and a dark current below 5 pA. In the frame of this thesis I have

  17. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  18. Development of a mercuric iodide detector array for medical imaging applications

    Science.gov (United States)

    Patt, Bradley E.; Iwanczyk, Jan S.; Tornai, Martin P.; Levin, Craig S.; Hoffman, Edward J.

    1995-02-01

    A nineteen element mercuric iodide (HgI 2) detector array has been developed as a prototype for a larger (169 element) array, which is intended for use as an intra-operative gamma camera (IOGC). This work is motivated by the need for identifying and removing residual tumor cells after the removal of bulk tumor, while sparing normal tissue. Prior to surgery, a tumor seeking radiopharmaceutical is injected into the patient, and the IOGC is used to locate and map out the radioactivity. The IOGC can be used with commercially available radioisotopes such as 201Tl, 99mTc, and 123I which have low energy X- and gamma-rays. The use of HgI 2 detector arrays in this application facilitates construction of an imaging head that is very compact and has a high signal-to-noise ratio. The prototype detectors were configured as discrete pixel elements joined by fine wires into novel pseudo crossed-grid arrays to promote improved electric field distribution compared with previous designs, and to maximize the fill factor for the expected circular probe shape. Pixel dimensions are hexagonal with 1.5 mm and 1.9 mm diameters separated by 0.2 mm thick lead septa. The overall detectors are hexagonal with a diameter of ˜1 cm. The sensitive detector thickness is 1.2 mm, which corresponds to >99% efficiency at 59 keV and 67% efficiency at 140 keV. Row, column, and pixel spectra have been measured on the prototypical detector array. Energy resolution was found to vary with the width of the row/column coincidence window that was applied. With the low edge of the coincidence window at 30% below the photopeak, pixel energy resolutions of 2.98% and 3.88% FWHM were obtained on the best individual pixels at 59 keV ( 241Am) and 140 keV ( 99mTc), respectively. To characterize this array as an imaging device, the spatial response of the pixels was measured with stepped point sources. The spatial response corresponded well with the pixel geometry, indicating that the spatial resolution was determined

  19. Advances in Physical and Biological Radiation Detectors. Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors

    International Nuclear Information System (INIS)

    1971-01-01

    Radiation dosimetry is a fundamental part of all radiation protection work. The measurements are made with a variety of instruments, and health physicists, after professional interpretation of the data, can assess the levels of exposure which might be encountered in a given area or the individual doses received by workers, visitors and others at places where the possibility of radiation exposure exists. The types of radiation concerned here are photon radiations, ranging from soft X-rays to gamma rays, and particulate radiations such as β-rays, α-particles, protons, neutrons and fission fragments. The type of technique used depends not only on the type of radiation but also on such factors as whether the radiation is from a source internal or external to the body. Radiation dosimetry is not only used at nuclear facilities; it has diverse applications, for example in determining doses when radiation sources are employed for medical diagnostics and therapy, in safeguarding workers in any industry where isotopes are used, and in assessing the effect of both naturally occurring and man-made radiations on the general public and the environment. The advances of modern technology have increased the variety of sources; an example can be given from colour television, where the high potential necessary in certain colour cathode-ray tubes generates a non-negligible amount of X-rays. The Symposium on New Developments in Physical and Biological Radiation Detectors was one of a continuing series of meetings in which the International Atomic Energy Agency furthers the exchange of information on all aspects of personnel and area dosimetry. The Symposium was devoted in particular to a study of the dose meters themselves - their radiation-sensitive elements (both physical and biological),their instrumentation, and calibration and standardization. Several speakers suggested that the situation in the standardization and calibration of measuring equipment and sources was

  20. Development of CMOS Pixel Sensors fully adapted to the ILD Vertex Detector Requirements

    CERN Document Server

    Winter, Marc; Besson, Auguste; Claus, Gilles; Dorokhov, Andrei; Goffe, Mathieu; Hu-Guo, Christine; Morel, Frederic; Valin, Isabelle; Voutsinas, Georgios; Zhang, Liang

    2012-01-01

    CMOS Pixel Sensors are making steady progress towards the specifications of the ILD vertex detector. Recent developments are summarised, which show that these devices are close to comply with all major requirements, in particular the read-out speed needed to cope with the beam related background. This achievement is grounded on the double- sided ladder concept, which allows combining signals generated by a single particle in two different sensors, one devoted to spatial resolution and the other to time stamp, both assembled on the same mechanical support. The status of the development is overviewed as well as the plans to finalise it using an advanced CMOS process.

  1. Development of a circular shape Si-PM-based detector ring for breast-dedicated PET system

    Science.gov (United States)

    Nakanishi, Kouhei; Yamamoto, Seiichi; Watabe, Hiroshi; Abe, Shinji; Fujita, Naotoshi; Kato, Katsuhiko

    2018-02-01

    In clinical situations, various breast-dedicated positron emission tomography (PET) systems have been used. However, clinical breast-dedicated PET systems have polygonal detector ring. Polygonal detector ring sometimes causes image artifact, so complicated reconstruction algorithm is needed to reduce artifact. Consequently, we developed a circular detector ring for breast-dedicated PET to obtain images without artifact using a simple reconstruction algorithm. We used Lu1.9Gd0.1SiO5 (LGSO) scintillator block which was made of 1.5 x 1.9 x 15 mm pixels that were arranged in an 8 x 24 matrix. As photodetectors, we used silicon photomultiplier (Si-PM) arrays whose channel size was 3 x 3 mm. A detector unit was composed of four scintillator blocks, 16 Si-PM arrays and a light guide. The developed detector unit had angled configuration since the light guide was bending. A detector unit had three gaps with an angle of 5.625° between scintillator blocks. With these configurations, we could arrange 64 scintillator blocks in nearly circular shape (regular 64-sided polygon) using 16 detector units. The use of the smaller number of detector units could reduce the size of the front-end electronics circuits. The inner diameter of the developed detector ring was 260 mm. This size was similar to those of brain PET systems, so our breast-dedicated PET detector ring can measure not only breast but also brain. Measured radial, tangential and axial spatial resolution of the detector ring reconstructed by the filtered back-projection (FBP) algorithm were 2.1 mm FWHM, 2.0 mm FWHM and 1.7 mm FWHM at center of field of view (FOV), respectively. The sensitivity was 2.0% at center of the axial FOV. With the developed detector ring, we could obtain high resolution image of the breast phantom and the brain phantom. We conclude that our developed Si-PM-based detector ring is promising for a high resolution breast-dedicated PET system that can also be used for brain PET system.

  2. Development of a moderated neutron detector for establishment of reference field

    Energy Technology Data Exchange (ETDEWEB)

    Tanimura, Yoshihiko; Saegusa, Jun; Yoshizawa, Michio; Yoshida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A neutron detector with a cylindrical moderator and a position sensitive {sup 3}He proportional counter was developed for application of transferring standard in calibration fields with continuous spectra. The structure of the cylindrical moderator was optimized with two devices by using MCNP-4B code. One was to use low-hydrogen density material as a part of the moderator. The other was to set a cadmium plate in the moderator so as to prevent thermal neutron from diffusing to other position. The position sensitive {sup 3}He proportional counter was designed and manufactured with suitable size and suitable gas composition. It was confirmed with thermal neutrons from graphite pile that the counter had enough performance of position measuring to use in the neutron detector. Neutrons from {sup 252}Cf and {sup 241}Am-Be sources are measured with the detector which consist of the moderator and the counter. The distributions of detected position obtained by measurements consisted with the distribution simulated by MCNP-4B code. (author)

  3. Development of a multi-detector and a systematic imaging system on the AGLAE external beam

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, L., E-mail: laurent.pichon@culture.gouv.fr [Centre de recherche et de restauration des musées de France, C2RMF, Palais du Louvre – Porte des Lions, 14 Quai François Mitterrand, 75001 Paris (France); Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); Moignard, B.; Lemasson, Q.; Pacheco, C. [Centre de recherche et de restauration des musées de France, C2RMF, Palais du Louvre – Porte des Lions, 14 Quai François Mitterrand, 75001 Paris (France); Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); Walter, P. [Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); UPMC Univ Paris 06, CNRS-UMR 8220, Laboratoire d’archéologie moléculaire et structurale, LAMS, F-75005 Paris (France)

    2014-01-01

    The New AGLAE external beamline provides analytical data for the understanding of the structure of archaeological and artistic objects, their composition, properties, and changes over time. One of the objectives of this project is to design and set up a new non-invasive acquisition system increasing the quality of the X-ray spectra and reducing the beam current on sensitive materials from work of art. To that end, the surface and the number of PIXE detectors have been increased to implement a cluster of SDD detectors. This can also provide the possibility to accomplish large and/or fast maps on artifacts with a scanning of the beam on the sample. During the mapping, a multi-parameter system saves each event from X-ray, gamma and particle detectors, simultaneously with the X and Y positions of the beam on the sample. To process the data, different softwares have been developed or updated. A first example on a decorated medieval shard highlights the perspectives of the technique.

  4. DEVELOPMENT OF A HIGH RATE HIGH RESOLUTION DETECTOR FOR EXAFS EXPERIMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    DE GERONIMO,G.; O CONNOR,P.; BEUTTENMULLER,R.H.; LI,Z.; KUCZEWSKI,A.J.; SIDDONS,D.P.

    2002-11-10

    A new detector for EXAFS experiments is being developed. It is based on a multi-element Si sensor and dedicated readout ASICs. The sensor is composed of 384 pixels, each having 1 mm{sup 2} area, arranged in four quadrants of 12 x 8 elements, and wire-bonded to 32-channel front-end ASICs. Each channel implements low noise preamplification with self-adaptive continuous reset, high order shaper, band-gap referenced baseline stabilizer, one threshold comparator and two DAC adjustable window comparators, each followed by a 24-bit counter. Fabricated in 0.35{micro}m CMOS dissipates about 8mW per channel. First measurements show at room temperature a resolution of 14 rms electrons without the detector and of 40 rms electrons (340eV) with the detector connected and biased. Cooling at -35C a FWHM of 205eV (167eV from electronics) was measured at the Mn-K{alpha} line. A resolution of about 300eV was measured for rates approaching 100kcps/cm{sup 2} per channel, corresponding to an overall rate in excess of 10MHz/cm{sup 2}. A channel-to-channel threshold dispersion after DACs adjustment of 2.5 rms electrons was also measured.

  5. Development of a multi-detector and a systematic imaging system on the AGLAE external beam

    International Nuclear Information System (INIS)

    Pichon, L.; Moignard, B.; Lemasson, Q.; Pacheco, C.; Walter, P.

    2014-01-01

    The New AGLAE external beamline provides analytical data for the understanding of the structure of archaeological and artistic objects, their composition, properties, and changes over time. One of the objectives of this project is to design and set up a new non-invasive acquisition system increasing the quality of the X-ray spectra and reducing the beam current on sensitive materials from work of art. To that end, the surface and the number of PIXE detectors have been increased to implement a cluster of SDD detectors. This can also provide the possibility to accomplish large and/or fast maps on artifacts with a scanning of the beam on the sample. During the mapping, a multi-parameter system saves each event from X-ray, gamma and particle detectors, simultaneously with the X and Y positions of the beam on the sample. To process the data, different softwares have been developed or updated. A first example on a decorated medieval shard highlights the perspectives of the technique

  6. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    International Nuclear Information System (INIS)

    Boscardin, Maurizio; Calvo, Daniela; Giacomini, Gabriele; Wheadon, Richard; Ronchin, Sabina; Zorzi, Nicola

    2013-01-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10 16 n eq /cm 2 . Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics

  7. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, Maurizio, E-mail: boscardi@fbk.eu [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Calvo, Daniela [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Giacomini, Gabriele [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Wheadon, Richard [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Ronchin, Sabina; Zorzi, Nicola [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy)

    2013-08-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10{sup 16} n{sub eq}/cm{sup 2}. Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics.

  8. Development of Cryogenic Readout Electronics for Sensitive Far-Infrared Detectors

    Science.gov (United States)

    Watabe, Toyoki; Shibai, Hiroshi; Hirao, Takanori; Nagata, Hirohisa; Hibi, Yasunori; Kawada, Mitsunobu; Nakagawa, Takao; Noda, Manabu

    We have successfully developed low-noise, low-power cryogenic readout electronics (CRE) for sensitive far-infrared detectors operated at low temperatures. The CRE must be mounted besides of the detector, and thus, it must be operated at cryogenic temperatures. The reasons of that are to avoid electrical interferences to the high-impedance portion between the detector itself and the CRE, and to minimize the stray capacitance that may decrease the read-out gain. The goals of the CRE performance are the operation temperature can be down to 2K, the noise level is 2µV/√Hz at 1Hz, the power consumption is 10µW/channel, and the open-loop gain of differential amplifier is over 1000. We have so far manufactured the CRE four times, and evaluated the performances at 4.2K. The present performance achieved is nearly acceptable for the far-infrared sensor of the next Japanese infrared astronomical satellite, ASTRO-F.

  9. Development of a hotspot detector with an acrylic filter and dose rate survey meters

    International Nuclear Information System (INIS)

    Shirakawa, Yoshiyuki; Yamano, Toshiya; Kobayashi, Yusuke; Hara, Masaki

    2013-01-01

    Fukushima and adjacent regions still have a large number of high dose rate areas called hotspots. It is necessary to know these hotspots for efficient decontamination of radioactive substances such as 137 Cs and for relief of residents coming home. To find the hotspots rapidly, we have to specify the direction of the area where the dose rate is at least 1μSv/h higher than those of surroundings. We have developed a detector that consists of an acrylic filter and three NaI(Tl) scintillation survey meters, and the detector can be expected to indicate the direction of the hotspot in the short time. A basic performance of the detector was examined by using acrylic filters of 10, 15, 20 and 25cm diameter and a tiny sealed 137 Cs source of 3 MBq as the alternative of a hotspot. It demonstrated the possibility of identifying the direction of γ-rays emitted from the source in 90 seconds. (author)

  10. The development of a gas-filled time-of-flight detector

    International Nuclear Information System (INIS)

    Guan Yongjing; He Ming; Ruan Xiangdong; Wang Huijuan; Wu Shaoyong; Dong Kejun; Lin Min; Yuan Jian; Jiang Shan

    2007-01-01

    A gas-filled time-of-flight (GF-TOF) detector system for isobaric identification has been developed at the AMS facility of the China Institute of Atomic Energy (CIAE). The newly built GF-TOF detector was tested by using a 36 Cl standard sample ( 36 Cl/Cl = 2.88 x 10 -11 ) with the 36 Cl ion energies of 64, 49 and 33 MeV. Time resolutions of 350 ps, 580 ps and 920 ps were obtained for 64, 49 and 33 MeV 36 S, respectively, without gas. 36 Cl and 36 S particles were successfully separated in the TOF spectra from the GF-TOF detector at the three different incident energies. The dependence of time resolution and separation power of GF-TOF method on the incidence energy and the residual energy is discussed. The comparison of separation power for isobars between the GF-TOF method and the ΔE-E method is described. A combination of GF-TOF method and ΔE-E method may further improve the separation power for isobars. The results show that the sensitivity for 36 Cl AMS measurements is 10 -14 at the energy of 33 MeV. Some results obtained with the GF-TOF method are given

  11. Development of high-resolution detector module with depth of interaction identification for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Niknejad, Tahereh, E-mail: tniknejad@lip.pt [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Pizzichemi, Marco [University of Milano-Bicocca (Italy); Stringhini, Gianluca [University of Milano-Bicocca (Italy); CERN, Geneve (Switzerland); Auffray, Etiennette [CERN, Geneve (Switzerland); Bugalho, Ricardo; Da Silva, Jose Carlos; Di Francesco, Agostino [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Ferramacho, Luis [PETsys Electronics, Oeiras (Portugal); Lecoq, Paul [CERN, Geneve (Switzerland); Leong, Carlos [PETsys Electronics, Oeiras (Portugal); Paganoni, Marco [University of Milano-Bicocca (Italy); Rolo, Manuel [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); INFN, Turin (Italy); Silva, Rui [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Silveira, Miguel [PETsys Electronics, Oeiras (Portugal); Tavernier, Stefaan [PETsys Electronics, Oeiras (Portugal); Vrije Universiteit Brussel (Belgium); Varela, Joao [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); CERN, Geneve (Switzerland); Zorraquino, Carlos [Biomedical Image Technologies Lab, Universidad Politécnica de Madrid (Spain); CIBER-BBN, Universidad Politécnica de Madrid (Spain)

    2017-02-11

    We have developed a Time-of-flight high resolution and commercially viable detector module for the application in small PET scanners. A new approach to depth of interaction (DOI) encoding with low complexity for a pixelated crystal array using a single side readout and 4-to-1 coupling between scintillators and photodetectors was investigated. In this method the DOI information is estimated using the light sharing technique. The detector module is a 1.53×1.53×15 mm{sup 3} matrix of 8×8 LYSO scintillator with lateral surfaces optically depolished separated by reflective foils. The crystal array is optically coupled to 4×4 silicon photomultipliers (SiPM) array and readout by a high performance front-end ASIC with TDC capability (50 ps time binning). The results show an excellent crystal identification for all the scintillators in the matrix, a timing resolution of 530 ps, an average DOI resolution of 5.17 mm FWHM and an average energy resolution of 18.29% FWHM. - Highlights: • A new method for DOI encoding for PET detectors based on light sharing is proposed. • A prototype module with LYSO scintillator matrix coupled to SiPMs array is produced. • The module has one side readout and 4-to-1 coupling between scintillators and SiPMs. • A compact TOF front-end ASIC is used. • Excellent performances are shown by the prototype module.

  12. Development of an imaging plate as a heavy-nuclide detector

    Science.gov (United States)

    Kanase, G.; Sakurai, H.; Noma, M.; Gunji, S.; Yasuda, N.; Kobayashi, T.

    1999-12-01

    It is very important for the study of nucleo-synthesis in supernova explosion to be able to measure the abundance of heavy nuclides in cosmic rays. Though a large-area detector is necessary for measurements of the abundance, it takes very long time to analyze the data for large-area detectors such as emulsion chamber. To address this need, we are developing a new type of heavy nuclide detector using an imaging plate which is manufactured by Fuji Film Co. Ltd. This film has a position resolution of 25 /spl mu/m and a sensitivity 1000 times higher than X-ray film. Moreover it is easy to enlarge since the area of one plate can be 20/spl times/25 cm/sup 2/, and the accumulated cosmic-ray-interaction information can be read out in about 10 minutes. To measure the characteristics of the imaging plate for heavy nuclides, we irradiated it with several kinds of nuclides using an accelerator in the National Institute of Radiological Sciences. These tests demonstrated that using an imaging plate, carbon, silicon, and argon nuclides can be distinguished.

  13. Recent Developments on the Silicon Drift Detector readout scheme for the ALICE Inner Tracking System

    CERN Document Server

    Mazza, G; Bonazzola, G C; Bonvicini, V; Cavagnino, D; Cerello, P G; De Remigis, P; Falchieri, D; Gabrielli, A; Gandolfi, E; Giubellino, P; Hernández, R; Masetti, M; Montaño-Zetina, L M; Nouais, D; Rashevsky, A; Rivetti, A; Tosello, F

    1999-01-01

    Proposal of abstract for LEB99, Snowmass, Colorado, 20-24 September 1999Recent developments of the Silicon Drift Detector (SDD) readout system for the ALICE Experiment are presented. The foreseen readout system is based on 2 main units. The first unit consists of a low noise preamplifier, an analog memory which continuously samples the amplifier output, an A/D converter and a digital memory. When the trigger signal validates the analog data, the ADCs convert the samples into a digital form and store them into the digital memory. The second unit performs the zero suppression/data compression operations. In this paper the status of the design is presented, together with the test results of the A/D converter, the multi-event buffer and the compression unit prototype.Summary:In the Inner Tracker System (ITS) of the ALICE experiment the third and the fourth layer of the detectors are SDDs. These detectors provide the measurement of both the energy deposition and the bi-dimensional position of the track. In terms o...

  14. Development of an ASIC for Si/CdTe detectors in a radioactive substance visualizing system

    Science.gov (United States)

    Harayama, Atsushi; Takeda, Shin`ichiro; Sato, Goro; Ikeda, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki

    2014-11-01

    We report on the recent development of a 64-channel analog front-end ASIC for a new gamma-ray imaging system designed to visualize radioactive substances. The imaging system employs a novel Compton camera which consists of silicon (Si) and cadmium telluride (CdTe) detectors. The ASIC is intended for the readout of pixel/pad detectors utilizing Si/CdTe as detector materials, and covers a dynamic range up to 1.4 MeV. The readout chip consists of 64 identical signal channels and was implemented with X-FAB 0.35 μm CMOS technology. Each channel contains a charge-sensitive amplifier, a pole-zero cancellation circuit, a low-pass filter, a comparator, and a sample-hold circuit, along with a Wilkinson-type A-to-D converter. We observed an equivalent noise charge of 500 e- and a noise slope of 5 e-/pF (r.m.s.) with a power consumption of 2.1 mW per channel. The chip works well when connected to Schottky CdTe diodes, and delivers spectra with good energy resolution, such as 12 keV (FWHM) at 662 keV and 24 keV (FWHM) at 1.33 MeV.

  15. Development of a beam ion velocity detector for the heavy ion beam probe

    International Nuclear Information System (INIS)

    Fimognari, P. J.; Crowley, T. P.; Demers, D. R.

    2016-01-01

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  16. Effect of gamma irradiation on the etching and optical properties of a newly developed nuclear track detector called (PNADAC) homopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, P.C. [Radiochemistry Division, BARC, Trombay, Mumbai 400085 (India)], E-mail: pckalsi@barc.gov.in; Nadkarni, V.S. [Department of Chemistry, Goa University, Goa 403206 (India); Manchanda, V.K. [Radiochemistry Division, BARC, Trombay, Mumbai 400085 (India)

    2008-09-15

    In the present work, we have determined the bulk-etch rates of a newly developed track detector called poly-[N-allyloxycarbonyl diethanolamine-bis allylcarbonate] (PNADAC) homopolymer at different temperatures to deduce its activation energy. The energy of activation is found to be (1.02{+-}0.04) eV. This compares very well with the values of activation energy reported in the literature for the most commonly used nuclear track detectors. The effects of gamma irradiation on this new detector in the dose range of 4.7-14.5 Mrad have also been studied using UV-visible spectroscopic technique. The optical band gaps of the unirradiated and the gamma-irradiated detectors determined from the UV-visible spectra were found to decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation.

  17. Assembly and Commissioning of a Liquid Argon Detector and Development of a Slow Control System for the COHERENT Experiment

    Science.gov (United States)

    Kaemingk, Michael; Cooper, Robert; Coherent Collaboration

    2016-09-01

    COHERENT is a collaboration whose goal is to measure coherent elastic neutrino-nucleus scattering (CEvNS). COHERENT plans to deploy a suite of detectors to measure the expected number-of-neutrons squared dependence of CEvNS at the Spallation Neutron Source at Oak Ridge National Laboratory. One of these detectors is a liquid argon detector which can measure these low energy nuclear recoil interactions. Ensuring optimal functionality requires the development of a slow control system to monitor and control various aspects, such as the temperature and pressure, of these detectors. Electronics manufactured by Beckhoff, Digilent, and Arduino among others are being used to create these slow control systems. This poster will generally discuss the assembly and commissioning of this CENNS-10 liquid argon detector at Indiana University and will feature work on the slow control systems.

  18. Dreidel Fairness Study

    OpenAIRE

    Nemiroff, Robert; Nemiroff, Eva

    2016-01-01

    Are dreidels fair? In other words, does the average dreidel have an equal chance of turning up any one of its four sides? To explore this hypothesis, three different dreidels were each spun hundreds of times with the number of occurrences of each side recorded. It was found that all three dreidels tested -- a cheap plastic dreidel, an old wooden dreidel, and a dreidel that came embossed with a picture of Santa Claus -- were not fair. Statistically, for each dreidel, some sides came up signifi...

  19. The FAIR start

    International Nuclear Information System (INIS)

    Stoecker, H.; Sturm, C.

    2011-01-01

    At the 4th of October 2010 nine countries signed the international agreement on the construction of the Facility for Antiproton and Ion Research, FAIR. Adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, FAIR substantially expands research goals and technical possibilities. It will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in hadron, nuclear, atomic and plasma physics as well as applied sciences which will be described in this article briefly.

  20. Development of a large area thermal neutron detector based on a scintillator

    International Nuclear Information System (INIS)

    Engels, Ralf

    2012-01-01

    In the present work, the development and construction of a detector prototype based on wavelength shifting fiber in combination with a scintillator has been investigated and optimized. This development aims at an alternative for large area neutron detectors based on 3 He detectors, which was the main construction in the past. After the study of the components and assemblies, such as: the scintillator, the wavelength-shifting-fibers and available photomultiplier tubes, the construction of the first prototype module begun. The neutron converter was selected as a 6 LiF/ZnS scintillator, which produces a big light yield per absorbed neutron. The prototype itself is square and has an edge length of 30 cm in combination with two orthogonal layers of crossed wavelength-shifting-fibers. The top fiber layer, which is closer to the 6 LiF/ZnS top scintillator produces the x-coordinates and the lower layer produces the y-coordinates for each event. In the prototype, MSJ-fibers from the company Kuraray were used with 1 mm diameter and spacing in the top layer of 1.5 mm and 1 mm in the lower layer. Due to the orthogonal arrangement of the wires in the two layers, one may identify where the neutron was absorbed in the scintillator and produced the light yield. In order to reduce the light loss of the absorbed photons inside the fibers, a bending radius of greater than 20 mm was used and achieved by warming up the fibers to 80 C during the bending process. The increased temperature reduces the crack formation in the fibers which increases the light loss. At this time it is expected that a photomultiplier from Hamamatsu with 256 individual pixels for readout will be used. This H9500 flat panel photomultiplier has the advantage of readout of all fibers of the prototype in one photomultiplier housing. In combination with integrated readout electronics one can minimize the homogeneity/gain differences of the photocathode pixels, the different light loss in each fiber, and the gain

  1. [Development of a portable SOM detector based on NIR diffuse reflection].

    Science.gov (United States)

    Li, Min-Zan; Pan, Luan; Zheng, Li-Hua; An, Xiao-Fei

    2010-04-01

    A portable soil organic matter detector based on near infrared diffuse reflectance was developed. The detector uses a microprocessor 89S52 as the micro controller unit (MCU) and consists of an optical system and a control system. The optical system includes an 850 nm near-infrared LED lamp-house, a lamp-house driving-circuit, a Y type optical fiber, a probe, and a photoelectric sensor. The control system includes an amplifying circuit, an A/D circuit, a display circuit with LCD, and a storage circuit with USB interface. Firstly the single waveband optical signal from the near-infrared LED is transferred to the surface of the target soil via the incidence fibers. Then the reflected optical signal is collected and transferred to the photoelectric sensor, where the optical signal is converted to the electrical signal. Subsequently, the obtained electrical signal is processed by 89S52 MCU. Finally, the calculated soil organic matter content is displayed on the LCD and stored in the USB disk. The calibration experiments using the estimation model of the soil organic matter were conducted. Thirteen kinds of natural soil samples were prepared, each divided into five sub-samples. After measurement, the natural samples were dried under the condition of 105 degrees C for 24 h, and then the same measurements were performed. The analysis of the correlation between the detected SOM content and the measured reflectance was carried out. For the natural soil samples, R2 = 0.907, while R2 reached 0.963 for the dried soil samples. The average reflectance of the five sub-samples from the same kind soil was calculated for each kind of soil. And then the same correlation analysis was conducted, for the natural samples R2 = 0.950, and for the dried samples R2 = 0.982. The results showed that the developed detector is practical. And the soil moisture has an effect on the accuracy of the detector. It is necessary to correct the real time measurement result of the detector based on soil

  2. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  3. Welcome to Choctaw Fair!

    Science.gov (United States)

    Boykin, Deborah; And Others

    Designed to assist students in math, language, and reading, the booklet illustrates five events that may occur at the Choctaw Fair, such as a princess pageant, dancing, riding a ferris wheel, eating hominy, and throwing rabbit sticks. A teacher's guide on the last page offers four suggested activities for preschoolers based on the booklet.…

  4. Fairness Doctrine in Advertising.

    Science.gov (United States)

    Martin, Charles Vance

    After a decade of debate, numerous Federal Communications Commission (FCC) rulings, and many court decisions, the application of the "fairness doctrine"--an act that mandates objectivity in the presentation of facts concerning controversial issues--remains unsettled. This report discusses issues involved in the application of the…

  5. Restoring Fairness to Dukego

    OpenAIRE

    Martin, Greg

    2000-01-01

    In this paper we correct an analysis of the two-player perfect-information game Dukego given in Berlekamp, Conway, and Guy's Winning Ways for your Mathematical Plays (Chapter 19). In particular, we characterize the board dimensions that are fair, i.e., those for which the first player to move has a winning strategy.

  6. Advanced radiation detector development mercuric iodide, silicon with internal gain, hybrid scintillator/semiconductor detectors. Comprehensive summary report, 1976-1985

    International Nuclear Information System (INIS)

    Huth, G.C.; Dabrowski, A.J.

    1985-01-01

    Accomplishments are reported in the development of a compound semi-insulator mercuric iodide (HgI 2 ) for nuclear radiation detection and spectroscopy, early lung cancer detection and localization in the uranium miner/worker population, computer digital image processing and image reconstruction research, and a concept for multiple, filtered x-ray computed tomography scanning to reveal chemical compositional information. Another area of interest is the study of new advances in the area of silicon detectors with internal gain (''avalanche'')

  7. Recent developments in detectors/phantoms for dosimetry, X-ray quality assurance and imaging

    International Nuclear Information System (INIS)

    Sankaran, A.

    2009-01-01

    During the past years, many new developments have taken place in detectors/phantoms for high energy photon and electron dosimetry (for radiotherapy), protection monitoring, X-ray quality assurance and X-ray imaging (for radiodiagnosis). A variety of detectors and systems, quality assurance (QA) gadgets and special phantoms have been developed for diverse applications. This paper discusses the important developments with some of which the author was actively associated in the past. For dosimetry and QA of 60 Co and high energy X-ray units, state-of-the-art radiation field analyzers, matrix ion chambers, MOSFET devices and Gafchromic films are described. OSL detectors find wide use in radiotherapy dosimetry and provide a good alternative for personnel monitoring. New systems introduced for QA/dosimetry of X-ray units and CT scanners include: multi-function instruments for simultaneous measurement of kVp, dose, time, X-ray waveform and HVT on diagnostic X-ray units; pencil chamber with head and body phantoms for CTDI check on CT scanners. Examples of phantoms used for dosimetry and imaging are given. Advancements in the field of diagnostic X-ray imaging (with applications in portal imaging/dosimetry of megavoltage X-ray units) have led to emergence of: film-replacement systems employing CCD-scintillator arrays, computed radiography (CR) using storage phosphor plate; digital radiography (DR), using a pixel-matrix of amorphous selenium, or amorphous silicon diode coupled to scintillator. All these provide (a) in radiotherapy, accurate dose delivery to tumour, saving the surrounding tissues and (b) in radiodiagnosis, superior image quality with low patient exposure. Lastly, iPODs and flash drives are utilized for storage of gigabyte-size images encountered in medical and allied fields. Although oriented towards medical applications, some of these have been of great utility in other fields, such as industrial radiography as well as a host of other research areas. (author)

  8. Development of a Temperature Compensation Method for the Radiation Detector of a Radiation Monitoring System

    International Nuclear Information System (INIS)

    Park, Ki Sun; Jeong, Jae Jun

    2014-01-01

    Americium, which has been used to date for the assessment of integrity and efficiency of the radiation detector, was replaced by an LED to resolve these problems. However, while americium is negligibly affected by the temperature and the surrounding environment, the LED is significantly affected by the temperature. Accordingly, a method to resolve this issue is needed. In this study, a temperature-compensated preamplifier was developed, where the reference luminous output of the LED affecting on temperatures is constantly maintained to be uniform by controlling the current and the PMT gain difference is compensated by controlling the high voltage from a comparison of the input and output pulse values. After setting up the experimental apparatus, the validity of the preamplifier was verified through radiation measurement experiments where the temperature was varied from 10 .deg. C to 60 .deg. C. The output signals of the scintillation detector of the RMS are intricately related to the temperature. In particular, the output signal value is greatly affected by the thermal equilibrium in the process of converting electro-magnetic energy to light energy and back to electrical energy. To compensate for these temperature characteristics, the americium standard source is used, since it is not affected by temperature, or a temperature compensation method using an LED optical-pulse as a reference value is used. In this study, instead of the americium standard source, an LED and a temperature detector were used to develop a temperature compensation device for the PMT amplification factor. To verify the validity of the developed method, a reference temperature of 25 .deg. C and a reference current of a 60μA LED optical-pulse were used to experimentally measure the radiation while varying the temperature from 10 .deg. C to 60 .deg. C using a Cs-137 standard source. The experiment results showed that the measurement error is reduced by approximately 83.3 % by using the

  9. Development of a alpha spectrometer system with the surface barrier detector

    International Nuclear Information System (INIS)

    Alencar, Marcus Alexandre Vallini de

    1994-04-01

    The aim of this work is the development of an α spectrometer of low cost and home made technology. The spectrometer is mounted in a double NIM module and includes a surface barrier detector and dedicate electronic system. Six barrier surface detectors were made, three of which with η type silicon wafer 3350 Ω.cm, 270mm 2 and three other with ρ type silicon wafer 5850 Ω.cm and 220mm 2 . The rectifier and the ohmic contacts were prepared at high vacuum (10 -2 to 10 -3 Pa) evaporation with 40μg/cm 2 of Au and Al respectively for the η type detectors, and with Al and Au respectively for the ρ type detectors. The electronic system is composed by a low noise charge sensitive preamplifier with the operational amplifier LF-356 mounted with 1OOMΩ feedback resistor and a 0.5 pF capacitor. The linear amplifier is also based in the LF-356 and the LM-310 operational amplifier. The bipolar output is formatted through a (CR) 2- (RC) 4 shaping network and the unipolar output is obtained through a CR-(RC) 4 shaping system which is sufficient to realize a almost true Gaussian shaping pulse with a time constant of 3.0μs. This format was chosen because we can expect a low counting rate and the gaussian pulse can improve the signal/noise ratio. The first CR differentiation has also a active pole-zero cancellation network.The resolution of detectors for 241 Am α particles at room temperature (24 degree) vary 21 to 44 keV FWHM. The electronic noise of the noise of the system is 7.5 keV FWHM at OpF input capacitance. The overall resolution of the spectrometer was found to be 62 keV FWHM at room temperature. The simplicity of the electronic system, the low cost of the construction and the overall resolution show that this alpha spectrometer can be readily used in measurements where high resolution is not a premium. (author)

  10. Development and Performance of a Thin Membrane Scintillator Containment Vessel for a Solar Neutrino Detector

    Science.gov (United States)

    Vogelaar, R. B.; Benziger, J. B.; Calaprice, F. P.; Chen, M.; Darnton, N.; Johnson, M.; Loeser, F.

    1996-10-01

    The Borexino solar neutrino experiment will detect neutrino-electron scattering interactions in a large mass (300 tons) of an organic solvent-based liquid scintillator. Requirements for the scintillator containment vessel include optical clarity, chemical resistance to the scintillator, ultra-low radioactivity and mechanical strength. These requirements are met in a thin membrane design utilizing a nylon copolymer C38F, manufactured by the Miles-Mobay Corporation. For the Borexino Counting Test Facility, a 2 meter diameter nylon sphere was constructed and used. Its performance will be discussed and the status of the development of an 8.5 meter diameter sphere for the Borexino detector will be presented.

  11. Development of ultra-light pixelated ladders for an ILC vertex detector

    CERN Document Server

    Chon-Sen, N.; Claus, G.; De Masi, R.; Deveaux, M.; Dulinski, W.; Goffe, M.; Goldstein, J.; Gregor, I.-M.; Hu-Guo, Ch.; Imhoff, M.; Muntz, C.; Nomerotski, A.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Winter, M.

    2010-01-01

    The development of ultra-light pixelated ladders is motivated by the requirements of the ILD vertex detector at ILC. This paper summarizes three projects related to system integration. The PLUME project tackles the issue of assembling double-sided ladders. The SERWIETE project deals with a more innovative concept and consists in making single-sided unsupported ladders embedded in an extra thin plastic enveloppe. AIDA, the last project, aims at building a framework reproducing the experimental running conditions where sets of ladders could be tested.

  12. Development of a Rubric to Assess Academic Writing Incorporating Plagiarism Detectors

    Directory of Open Access Journals (Sweden)

    Salim Razı

    2015-06-01

    Full Text Available Similarity reports of plagiarism detectors should be approached with caution as they may not be sufficient to support allegations of plagiarism. This study developed a 50-item rubric to simplify and standardize evaluation of academic papers. In the spring semester of 2011-2012 academic year, 161 freshmen’s papers at the English Language Teaching Department of Çanakkale Onsekiz Mart University, Turkey, were assessed using the rubric. Validity and reliability were established. The results indicated citation as a particularly problematic aspect, and indicated that fairer assessment could be achieved by using the rubric along with plagiarism detectors’ similarity results.

  13. The Silicon Tracking System of the CBM experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Teklishyn Maksym

    2018-01-01

    Full Text Available The Silicon Tracking System (STS is the central detector in the Compressed Baryonic Matter (CBM experiment at FAIR. Operating in the 1Tm dipole magnetic field, the STS will enable pile-up free detection and momentum measurement of the charged particles originating from beam-target nuclear interactions at rates up to 10 MHz. The STS consists of 8 tracking stations based on double-sided silicon micro-strip sensors equipped with fast, self-triggering read-out electronics. With about two million read-out channels, the STS will deliver a high-rate stream of time-stamped data that is transferred to a computing farm for on-line event determination and analysis. The functional building block is a detector module consisting of a sensor, micro-cables and two front-end electronics boards. In this contribution, the development status of the STS components and the system integration is discussed and an outlook on the detector construction is given.

  14. An overview of current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes

    CERN Document Server

    Gys, Thierry

    1999-01-01

    Current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes have stimulated increased interest from a variety of fields such as astronomy, biomedical imaging and high- energy physics. These devices are sensitive to single photons over a photon energy spectrum defined by the transmission of the optical entrance window and the photo-cathode type. Their spatial resolution ranges from a few millimeters for pad hybrid photon detectors and multi-anode photo-multiplier tubes down to a few tens of microns for pixel hybrid photon detectors and electron-bombarded charge-coupled devices. Basic technological and design aspects are assessed in this paper. (21 refs).

  15. Development of a new generation of micropattern gaseous detectors for high energy physics, astrophysics and environmental applications

    CERN Document Server

    Peskov, V.; Fonte, P.; Martinengo, P.; Nappi, E.; Oliveira, R.; Pietropaolo, P.; Picchi, P.

    2013-01-01

    We have developed a cost effective technology for manufacturing various layouts of micropattern gaseous detectors for a wide range of applications. Such devices feature resistive electrodes interfaced to a network of thin readout strips/electrodes. The following three examples of such innovative designs and their applications will be presented: a prototype of a novel double-phase LAr detector with a CsI photocathode immersed inside the LAr, a CsI-RICH detector prototype for ALICE upgrade and GEM-like sensors for environmental safety/security applications.

  16. QCD studies with anti-protons at FAIR: Indian participation in PANDA

    International Nuclear Information System (INIS)

    Kailas, S.; Roy, B.J.; Dutta, D.; Jha, V.; Varma, R.

    2011-01-01

    The Facility for Antiproton and Ion Research (FAIR) is a future project at GSI which will extend hadron physics studies up to the charm meson region using antiproton beams together with a state-of-the-art detector antiproton annihilation at Darmstadt (PANDA). The physics aim, in a broader sense, is to address the fundamental problems of hadron physics and aspects of quantum chromo-dynamics (QCD) at low energies. The proposed work in India will consist of several parts: R and D studies of silicon micro-strip detector, development of a scintillator hodoscope with silicon photomultiplier (SiPM) readout, studies of SiPM as photon counter and simulation studies of the detector design as well as physics case studies. The present article describes the physics motivation and initial progress made towards achieving these goals. (author)

  17. Development of Microwave Kinetic Inductance Detectors for Applications in Optical to Near-IR Astronomy

    Science.gov (United States)

    Szypryt, Paul

    used ARCONS to observe orbital expansion in the eclipsing binary system SDSS J0926+3624, with a period rate of change of 9.68 microseconds/year. I open my thesis with an general introduction to the field of low temperature detectors and describe the role that MKIDs have within the field. In Chapter 2, I provide a detailed description of the detection principles behind MKIDs and define important superconducting resonator parameters. In Chapter 3, I move on to describe some of the issues that were limiting the performance of MKIDs. I examine some of the early fabrication techniques and material systems utilized to try to mitigate these issues. In Chapter 4, I describe the platinum silicide material system, which proved to be the most important recent development for advancing the detectors described in this work. The early PtSi work was done using simple one-layer test masks, but the material system was later adapted to the full-multilayer fabrication process. The fabrication of large-format MKID arrays using PtSi for the DARKNESS and MEC arrays is described in detail in Chapter 5. I conclude my thesis with an overview of some of the astronomical applications of MKIDs. More specifically, I describe my work with compact binary systems that was done with ARCONS. Finally, I explain exciting new MKID applications that are only recently becoming possible as the technology continues to advance.

  18. Development of a new readout system for the near-infrared detector of HONIR

    Science.gov (United States)

    Ui, Takahiro; Sako, Shigeyuki; Yamashita, Takuya; Akitaya, Hiroshi; Kawabata, Koji S.; Nakaya, Hidehiko; Moritani, Yuki; Itoh, Ryosuke; Takaki, Katsutoshi; Urano, Takeshi; Ueno, Issei; Ohsugi, Takashi; Yoshida, Michitoshi; Nakao, Hikaru; Hashiba, Yasuhito

    2014-08-01

    We developed a new readout system for the near-infrared detector VIRGO-2K (2kx2k HgCdTe array) installed in the optical-infrared simultaneous camera, HONIR, for the 1.5 m Kanata telescope at Higashi-Hiroshima observatory. The main goal of this development is to read out one frame within ~ 1 second through 16 output readout mode of the detector, in order to reduce the overhead time per exposure. The system is based on a CCD controller, Kiso Array Controller (KAC). We redesigned the analog part of KAC to fit VIRGO-2K. We employed a fully differential input circuit and a third order Bessel low-pass filter for noise reduction and a constant current system to improve the linearity of the detector. We set the cutoff frequency of the Bessel low-pass filter at the readout clock rate (120 kHz). We also set the constant current at 200 μA according to the data sheet of VIRGO-2K. We tested the new readout system at room temperature and confirmed that the low-pass filter works well as designed. The fluctuation of the current level of the constant current system is less than 2% for the typical output voltage range of VIRGO-2K (3.2-4.4 V). We measured the readout noise caused by the new readout system (connected to cooled multiplexer) and found that it is 30-40 μV rms, being comparable to or slightly higher than the typical readout noise of VIRGO-2K, ˜ 37 μV rms.

  19. Development of a microcontroller based vehicle monitor using plastic scintillator detector

    International Nuclear Information System (INIS)

    Thakur, Vaishali M.; Harikumar, M.; Chaudhury, Probal; Jain, Amit; Verma, Amit K.; Babu, D.A.R.; Sharma, D.N.

    2010-01-01

    Full text: The regular operation of nuclear facilities generates significant amounts of radioactive and non radioactive wastes. Often there is a possibility of these getting mixed up and inadvertently being sent for recycling leading to radioactive contamination in the public domain. It is mandatory that all scrap and garbage generated in and around nuclear facilities are monitored before being sent out for recycling or dumping. This becomes more important particularly during the decommissioning of reactors when optimization of the amount nuclear waste generated is very important. A very effective method for monitoring is by using large volume plastic scintillator detectors. The Vehicle Monitoring System (VMS) that was developed for this purpose uses four plastic scintillator detectors of 0.05 m diameter and 0.5 m length. The system designed and was calibrated to independently measure the radiation field of each detector. The hardware for the system was developed using Philips 80C552 microcontroller based Single Board Computer (SBC). The microcontroller software was developed using Keil environment on a Windows Platform. The counts recorded for 5 seconds are sent to the PC continuously. As a backup the minutely average data is also stored in the SBC RAM and can be transferred to the PC on request. The SBC RAM can store the 18 hours data. A watchdog timer was also incorporated in the SBC software to keep it operational after a system hang up due to any unforeseen electrical disturbances. The scrap containing vehicles or trucks to be monitored have to be stationed on the road alongside the Vehicle Monitor. The radiation field data is sent to a remote PC for analysis and storage. A comparative study was done with a Gamma Tracer with the average of the data from 4 detectors. There was very good correlation between data from the two systems. The Vehicle Monitor has much more stability and sensitivity as compared with Gamma Tracer. Apart from vehicle monitoring, the

  20. Design and development of position sensitive detector for hard x-ray using SiPM and new generation scintillators

    Science.gov (United States)

    Goyal, S. K.; Naik, Amisha P.; N. P. S., Mithun; Vadawale, S. V.; Tiwari, Neeraj K.; Chattopadhyay, T.; Nagrani, N.; Madhavi, S.; Ladiya, T.; Patel, A. R.; Shanmugam, M.; Adalja, H. L.; Patel, V. R.; Ubale, G. P.

    2017-08-01

    There is growing interest in high-energy astrophysics community for the development of sensitive instruments in the hard X-ray energy extending to few hundred keV. This requires position sensitive detector modules with high efficiency in the hard X-ray energy range. Here, we present development of a detector module, which consists of 25 mm x 25 mm CeBr3 scintillation detector, read out by a custom designed two dimensional array of Silicon Photo-Multipliers (SiPM). Readout of common cathode of SiPMs provides the spectral measurement whereas the readout of individual SiPM anodes provides measurement of interaction position in the crystal. Preliminary results for spectral and position measurements with the detector module are presented here.

  1. Development of cryogenic Si detectors by CERN RD39 Collaboration for ultra radiation hardness in SLHC environment

    CERN Document Server

    Li, Z; Anbinderis, P; Anbinderis, T; D’Ambrosio, N; de Boer, Wim; Borchi, E; Borer, K; Bruzzi, M; Buontempo, S; Chen, W; Cindro, V; Dierlamm, A; Eremin, V; Gaubas, E; Gorbatenko, V; Grigoriev, E; Hauler, F; Heijne, Erik H M; Heising, S; Hempel, O; Herzog, R; Härkönen, J; Ilyashenko, I; Janos, S; Jungermann, L; Kalesinskas, V; Kapturauskas, J; Laiho, R; Luukka, P; Mandic, I; De Masi, R; Menichelli, D; Mikuz, M; Militaru, O; Niinikosky, T O; O’Shea, V; Pagano, S; Paul, S; Piotrzkowski, K; Pretzl, K; Rato-Mendes, P; Rouby, X; Ruggiero, G; Smith, K; Sonderegger, P; Sousa, P; Tuominen, E; Tuovinen, E; Verbitskaya, E; Vaitkus, J; Wobst, E; Zavrtanik, M

    2007-01-01

    There are two key approaches in our CERN RD 39 Collaboration efforts to obtain ultra-radiation-hard Si detectors: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (150 K), and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the liquid nitrogen (LN2) temperature. In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures.

  2. FAIR VALUE MEASUREMENT UNDER IFRS 13

    Directory of Open Access Journals (Sweden)

    COZMA IGHIAN DIANA

    2015-07-01

    Full Text Available The IFRS 13, „Fair Value Measurement”, was first published in May 2011 and it applies to annual reporting periods that begin on or after January 1st 2013; this standard comes as a result of shared efforts on the part of the IASB and the FASB to develop a convergent framework regarding fair value measurement. The main purpose of this paper is to describe the main provisions of the IFRS 13 regarding fair value measurement, with a special emphasis on key concepts found throughout the standard, which refer to the principal market, the most advantageous market, the highest and best use, valuation techniques, and value hierarchy.

  3. X-ray detectors in axial computed tomography development; Sensori di radiazioni X negli sviluppi della tomografia assiale computerizzata

    Energy Technology Data Exchange (ETDEWEB)

    Gislon, R.; Imperiali, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Innovazione

    1996-12-01

    The increase of potentially of axial computed tomography as a non destructive investigation method in industrial field is particularly tied to the development of the X-rays detectors. The transition from the first gas ionization detectors to the last semiconductor detectors has indeed dramatically increased the performances of tomographic systems. In this report, after a quick analysis of fundamental principles of tomography, the most significant parameters for a detector to be used in a tomographic system are reviewed. The examination of the principal kinds of detectors that have been up to now used, with their working schemes, allows to delineate their characteristics and so to compare them with the ideal detector sketched above. The necessity of using high definition arrays brings to put into evidence the inadequacy of both gas and liquid ionization detectors and also of those types of light conversion devices which utilize for signal amplification a photomultiplier tube. Systems based on charge coupled devices or on a light conversion obtained with semiconductor photodiode arrays are definitely to be preferred. The progress of the last years in microelectronic technologies has brought great improvements in this field.

  4. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.; Gelain, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35121 Padova (Italy); Eberth, J. [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln (Germany); Grimaldi, M. G.; Tatí, S. [Department of Physics and Astronomy, University of Catania (Italy); Riccetto, S. [University of Camerino and INFN of Perugia (Italy); Mea, G. Della [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); University of Trento (Italy)

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  5. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Hilary B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 1011 cmHz 1/2W-1 for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 1010 cmHz1/2W-1 . KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. SixNymembranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO3/Pt/Ti/SixNy/Si and SrRuO3/SixNy/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is ~380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom

  6. 24 CFR 200.625 - Affirmative fair housing marketing plan.

    Science.gov (United States)

    2010-04-01

    ... Regulations § 200.625 Affirmative fair housing marketing plan. Each applicant for participation in FHA housing... information indicating his affirmative fair housing marketing plan to comply with the requirements set forth... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Affirmative fair housing marketing...

  7. Bargaining and fairness.

    Science.gov (United States)

    Binmore, Kenneth

    2014-07-22

    The idea that human morality might be the product of evolution is not popular. The reason is partly that the moral principles that actually govern our day-to-day behavior have been idealized in a way that makes a natural origin seem impossible. This paper puts the case for a more down-to-earth assessment of human morality by arguing that the evolution of our sense of fairness can be traced to the practicalities of food-sharing. When animals share food, they can be seen as enjoying the fruits of an implicit bargain to ensure each other against hunger. The implications of this observation are explored using the tools of game theory. The arguments lead to a structure for fair bargains that closely resembles the structure proposed by John Rawls, the leading moral philosopher of the last century.

  8. Investigation of the physics potential and detector development for the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Ohlerich, Martin

    2010-02-15

    In this thesis, we investigate two rather separate topics - the precision measurement of the Higgs boson mass and of its coupling to the neutral gauge boson Z and the research and development of sensors for BEAMCAL, which is a sub-detector system of the ILC detector. We employ the Higgs-strahlung process for this purpose. A virtual Z boson is created in the e{sup +}e{sup -} collisions, which emits a Higgs-boson while becoming on-shell. Using the so-called recoil technique, we determine the Higgs boson mass by reconstructing the Z boson momentum and using the center-of-mass energy of the colliding leptons. Monte-Carlo studies including a full detector simulation and a full event reconstruction were performed to simulate the impact of a realistic detector model on the precision of the Higgs boson mass and production cross-section measurement. Also, an analytical estimate of the influence of a given detector performance on the Higgs boson mass measurement uncertainty is given. We included a complete sample of background events predicted by the Standard Model, which may have a detector response similar to the signal events. A probabilistic method is used for the signal-background separation. Several other probabilistic methods were used to investigate and improve the measurement of the Higgs-strahlung cross-section and the Higgs boson mass from the recoil mass spectrum obtained after the signal-background separation. For a Higgs boson mass of 120 GeV, a center-of-mass energy of {radical}(s)=250 GeV and an integrated luminosity of L=50 fb{sup -1}, a relative uncertainty of 10 % is obtained for the cross-section measurement, and a precision of 118 MeV for the Higgs boson mass. For a Higgs boson mass of 180 GeV and {radical}(s)=350 GeV, a statistics corresponding to L=50 fb{sup -1} is not sufficient to achieve the necessary significance of the recoil mass peak above the background. The BEAMCAL is a calorimeter in the very forward region, about 3 m away from the nominal

  9. Investigation of the physics potential and detector development for the ILC

    International Nuclear Information System (INIS)

    Ohlerich, Martin

    2010-02-01

    In this thesis, we investigate two rather separate topics - the precision measurement of the Higgs boson mass and of its coupling to the neutral gauge boson Z and the research and development of sensors for BEAMCAL, which is a sub-detector system of the ILC detector. We employ the Higgs-strahlung process for this purpose. A virtual Z boson is created in the e + e - collisions, which emits a Higgs-boson while becoming on-shell. Using the so-called recoil technique, we determine the Higgs boson mass by reconstructing the Z boson momentum and using the center-of-mass energy of the colliding leptons. Monte-Carlo studies including a full detector simulation and a full event reconstruction were performed to simulate the impact of a realistic detector model on the precision of the Higgs boson mass and production cross-section measurement. Also, an analytical estimate of the influence of a given detector performance on the Higgs boson mass measurement uncertainty is given. We included a complete sample of background events predicted by the Standard Model, which may have a detector response similar to the signal events. A probabilistic method is used for the signal-background separation. Several other probabilistic methods were used to investigate and improve the measurement of the Higgs-strahlung cross-section and the Higgs boson mass from the recoil mass spectrum obtained after the signal-background separation. For a Higgs boson mass of 120 GeV, a center-of-mass energy of √(s)=250 GeV and an integrated luminosity of L=50 fb -1 , a relative uncertainty of 10 % is obtained for the cross-section measurement, and a precision of 118 MeV for the Higgs boson mass. For a Higgs boson mass of 180 GeV and √(s)=350 GeV, a statistics corresponding to L=50 fb -1 is not sufficient to achieve the necessary significance of the recoil mass peak above the background. The BEAMCAL is a calorimeter in the very forward region, about 3 m away from the nominal interaction point and

  10. The system of digital-image optical microscope in semiconductor particle detector development

    International Nuclear Information System (INIS)

    Han Lixiang; Li Zhankui; Jin Genming; Wang Zhusheng; Xiao Guoqing

    2009-01-01

    Optical microscopic detection is very important in the process of semiconductor particle detector development. A system of digital-image optical microscope has been constructed with rather low price, which performance is comparable with the moderate-level imports. The system mounts powerful dry objective, and a 2μm resolution could be achieved. Observations with bright and dark field, polarized light,and interference light can be carried out on it. The system have large area on-line monitor,and the photographic device can be controlled by PC. It can be used in the control of defects and contaminations, pattern test, identification of crystal backing, inspection of the smoothness and the flatness of the crystal surface. It can also be used in some precise procedures, such as test, assembly, packaging and repairing. The quality of the bond could be examined by observing the appearance of the bond point and the microscopic structure of the solder. The surface fluctuation can be precisely measured under the microscope with the technology of multi-beam interference. In the article, the application of this system for semiconductor particle detector development has been illustrated, and the construction information has been described in detail. (authors)

  11. ATLAS inner tracking detectors: Run 1 performance and developments for Run 2

    Science.gov (United States)

    Lukas, Wolfgang; ATLAS Collaboration

    2016-04-01

    The measurement of charged-particle trajectories with the inner tracking detectors of the ATLAS experiment at the LHC is a key input for higher-level object reconstruction, ranging from leptons to the identification of heavy-flavor jets. The information provided by the inner tracking systems has also been proven to be very powerful for disentangling the effects of several interactions occurring in the same bunch crossing. In this contribution, the performance during the Run 1 data-taking period and preparation for the next run in 2015 is reviewed. In particular, it is shown how the passive material inside the inner tracking acceptance has been further studied in order to reduce the systematic errors on the tracking efficiency, with benefits for physics measurements. In addition, the developments in disentangling close-by tracks which naturally occur in the decay of very high-pT objects (e.g. tau leptons) or jets are presented. The ongoing upgrade of the ATLAS detector includes an additional silicon layer (IBL) in the inner tracking system; the preparation for the integration of the new hardware and its expected performance is reviewed as well. Finally a summary of recent developments of the tracking software aiming for speed and disk-space optimizations is presented.

  12. DEVELOPMENT OF NEXT-GENERATION DETECTORS AND INSTRUMENTATION FOR PHOTOELECTRON SPECTROSCOPY, DIFFRACTION AND HOLOGRAPHY

    International Nuclear Information System (INIS)

    Charles S. Fadley, Principal Investigator

    2005-01-01

    We have developed a new multichannel detector for use in photoelectron spectroscopy (as well as other types of high-count-rate spectroscopy) that will operate at rates of up to 1 GHz. Such detectors are crucial to the full utilization of the high-brightness radiation generated by third-generation synchrotron radiation sources. In addition, new software and hardware has been developed to permit rapidly and accurately scanning photoelectron spectra that will be accumulated in as little as a 200 micros. A versatile next-generation sample goniometer permitting equally rapid scanning of specimen angles or photon energies for angle-resolved photoemission studies, photoelectron diffraction, and photoelectron holography measurements, and cooling to below 10K has also been designed and constructed. These capabilities have been incorporated into a unique photoelectron spectrometer/diffractometer at the Advanced Light Source of the Lawrence Berkeley National Laboratory; this experimental system includes ultrahigh energy resolution, in situ rotation, variable polarization, and optional spin detection. This overall system is now being used in studies of a variety of problems including magnetic metals and oxides; metal/metal, metal/metal oxide, and metal-oxide/metal-oxide multilayers; and systems exhibiting giant and colossal magnetoresistance

  13. Development and characterization of the CsI(Tl) scintillator to be used as radiation detector

    International Nuclear Information System (INIS)

    Pereira, Maria da Conceicao Costa

    1997-01-01

    Scintillator detectors using CsI(Tl) show high gamma ray detection efficiency for unit volume. New developments of Si-photodiode with low capacitance, large sensitivity area and with an emission spectra distribution matching the CsI(Tl) luminescence spectra have stimulated the use of this CsI(Tl) crystal as scintillator. In this work, the CsI(Tl) crystal grown by the Bridgman technique and its characterization and evaluation as scintillator were described. To evaluate the developed scintillator, measurements of luminescence emission spectra, optical transmission spectra, luminescence decay time, global counting rate efficiency and energy resolution for gamma rays were carried out. The measurements of energy resolution were performed with a CsI(Tl) scintillator coupled to a PIN photodiode and using the following gamma ray sources 137 Cs, 60 Co, 22 Na, 54 Mn and 131 . For comparison, the same evaluation measurements using a bi-alkaline photomultiplier were also carried out. From the experimental results of this work, we can conclude for the effectiveness of the scintillator CsI(Tl) coupled to a PIN photodiode for applications in the area of radiation detectors. (author)

  14. Leadership and Fairness: The state of the art.

    OpenAIRE

    van Knippenberg, D.; de Cremer, D.; van Knippenberg, B.M.

    2007-01-01

    textabstractResearch in leadership effectiveness has paid less to the role of leader fairness than probably it should have. More recently, this has started to change. To capture this development, we review the empirical literature in leadership and fairness to define the field of leadership and fairness, to assess the state of the art, and to identify a research agenda for future efforts in the field. The review shows that leader distributive, procedural, and especially interactional fairness...

  15. PROTON MICROSCOPY AT FAIR

    International Nuclear Information System (INIS)

    Merrill, F. E.; Mariam, F. G.; Golubev, A. A.; Turtikov, V. I.; Varentsov, D.

    2009-01-01

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and a facility has been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international effort has investigated a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located in Darmstadt, Germany. This new Proton microscope for FAIR(PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. It is also proposed to install the PRIOR system at the GSI Helmholtzzentrum fuer Schwerionenforschung before installation at FAIR for dynamic experiments with different drivers including high explosives, pulsed power and lasers. The design of the proton microscope and expected radiographic performance is presented.

  16. FAIR-share

    CERN Multimedia

    2009-01-01

    Twenty-seven engineers involved in the FAIR project in Germany recently spent three days at CERN. The purpose of their visit: tour ALICE and meet with CERN engineers. This marks the start of a close cooperation. The FAIR project engineers and their CERN counterparts.If you want to build a new particle accelerator and wish to benefit from existing expertise, who do you go to see? Well… why not go straight to CERN? That’s what this group of 27 engineers did. They are working on a new accelerator project, the Facility for Antiproton and Ion Research (FAIR), to be built at the heavy-ion research centre GSI located near Darmstadt, Germany. Representing a variety of disciplines, from manufacturing to architecture, they will be responsible for making the project a reality. The visit was organised from 14-16 October, making it possible to include a tour of the ALICE experiment prior to the re-start of the LHC. However, the main goal was ...

  17. Development and implementation of a new trigger and data acquisition system for the HADES detector

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Jan

    2012-11-16

    One of the crucial points of instrumentation in modern nuclear and particle physics is the setup of data acquisition systems (DAQ). In collisions of heavy ions, particles of special interest for research are often produced at very low rates resulting in the need for high event rates and a fast data acquisition. Additionally, the identification and precise tracking of particles requires fast and highly granular detectors. Both requirements result in very high data rates that have to be transported within the detector read-out system: Typical experiments produce data at rates of 200 to 1,000 MByte/s. The structure of the trigger and read-out systems of such experiments is quite similar: A central instance generates a signal that triggers read-out of all sub-systems. The signals from each detector system are then processed and digitized by front-end electronics before they are transported to a computing farm where data is analyzed and prepared for long-term storage. Some systems introduce additional steps (high level triggers) in this process to select only special types of events to reduce the amount of data to be processed later. The main focus of this work is put on the development of a new data acquisition system for the High Acceptance Di-Electron Spectrometer HADES located at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. Fully operational since 2002, its front-end electronics and data transport system were subject to a major upgrade program. The goal was an increase of the event rate capabilities by a factor of more than 20 to reach event rates of 20 kHz in heavy ion collisions and more than 50 kHz in light collision systems. The new electronics are based on FPGA-equipped platforms distributed throughout the detector. Data is transported over optical fibers to reduce the amount of electromagnetic noise induced in the sensitive front-end electronics. Besides the high data rates of up to 500 MByte/s at the design event rate of 20 kHz, the

  18. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  19. Use of diffusion bonded SS-Al composite material in the development of neutron detectors

    International Nuclear Information System (INIS)

    Alex, Mary; Prasad, K.R.; Pappachan, A.L.; Grover, A.K.; Krishnan, J.; Derose, D.J.; Bhanumurthy, K.; Kale, G.B.

    2005-01-01

    The present paper describes the development of a SS-Al composite plate in-house at BARC by diffusion bonding technique. Details of the several tests carried out on the composite material and the use of the plate in the development of a boron lined neutron chamber for Dhruva reactor control instrumentation has been described. The bonded sample has withstood tensile strength test, leak test and thermal cycling test and the leak rate was observed to be less than 3 x 10 -10 stdcc/sec. The chamber with the composite material has been installed in Dhruva Basket C location and connected to the log rate safety channel. It has been working successfully for the past two years. The use of SS-Al composite material has improved the reliability and long-term performance of the detector. (author)

  20. Development of accurate radioactivity assessment system for radiation survey with various detectors

    International Nuclear Information System (INIS)

    Kurihara, Osamu; Kim, Eunjoo; Ueda, Junichi; Yamada, Yuji; Akashi, Makoto; Kido, Hiroko; Oguri, Tomomi; Nemoto, Shintaro; Nemoto, Makoto

    2011-01-01

    In response to requests from the sites of radiation emergency medicine, we developed a prototype of a computer system for assessing radioactive contaminants remaining in a wound or on the skin surface. This system implements numerical calibration of detectors measuring the contamination using a Monte Carlo simulation-based radiation transport code (MCNPX), coupled to a numerical phantom modeling the contaminants and the surrounding tissue. With the help of functional graphical user interfaces (GUIs) provided by the system, a user can perform desired simulations without complicated procedures to prepare input files for MCNPX. Benchmark calculations of MCNPX were conducted to verify the simulations and adjust detection-related parameter values not sufficiently provided by suppliers. The developed system should aid in making better assessments of the radiological contamination. (author)

  1. Detector development and background estimation for the observation of Coherent Neutrino Nucleus Scattering (CNNS)

    Energy Technology Data Exchange (ETDEWEB)

    Guetlein, Achim; Ciemniak, Christian; Feilitzsch, Franz von; Lanfranchi, Jean-Come; Oberauer, Lothar; Potzel, Walter; Roth, Sabine; Schoenert, Stefan; Sivers, Moritz von; Strauss, Raimund; Wawoczny, Stefan; Willers, Michael; Zoeller, Andreas [Technische Universitaet Muenchen, Physik-Department, E15 (Germany)

    2012-07-01

    The Coherent Neutrino Nucleus Scattering (CNNS) is a neutral current process of the weak interaction and is thus flavor independent. A low-energetic neutrino scatters off a target nucleus. For low transferred momenta the wavelength of the transferred Z{sup 0} boson is comparable to the diameter of the target nucleus. Thus, the neutrino interacts with all nucleons coherently and the cross section for the CNNS is enhanced. To observe CNNS for the first time we are developing cryogenic detectors with a target mass of about 10 g each and an energy threshold of less than 0.5 keV. The current status of this development is presented as well as the estimated background for an experiment in the vicinity of a nuclear power reactor as a strong neutrino source.

  2. Results From Cs Activated GaN Photocathode Development for MCP Detector Systems at GSFC

    Science.gov (United States)

    Norton, Tim; Woodgate, Bruce; Stock, Joe; Hilton, George; Ulmer, Mel; Aslam, Shahid; Vispute, R. D.

    2003-01-01

    We describe the development of high quantum efficiency W photocathodes for use in large area two dimensional microchannel plate based detector arrays to enable new W space astronomy missions. Future W missions will require improvements in detector sensitivity, which has the most leverage for cost-effective improvements in overall telescope/instrument sensitivity. We use new materials such as p-doped GaN, AIGaN, ZnMgO, Sic and diamond. We have currently obtained QE values > 40 % at 185 nm with Cesiated GaN, and hope to demonstrate higher values in the future. By using controlled internal fields and nano-structuring of the surfaces, we plan to provide field emission assistance for photoelectrons while maintaining their energy distinction from dark noise electrons. We will transfer these methods from GaN to ZnMgO, a new family of wide band-gap materials more compatible with microchannel plates. We also are exploring technical parameters such as doping profiles, internal and external field strengths, angle of incidence, field emission assistance, surface preparation, etc.

  3. Results from Cs activated GaN photocathode development for MCP detector systems at NASA GSFC

    Science.gov (United States)

    Norton, Timothy J.; Woodgate, Bruce E.; Stock, Joseph; Hilton, George; Ulmer, Melville P.; Aslam, Shahid; Vispute, R. D.

    2003-12-01

    We describe the development of high quantum efficiency UV photocathodes for use in large area two dimensional microchannel plated based, detector arrays to enable new UV space astronomy missions. Future UV missions will require improvements in detector sensitivity, which has the most leverage for cost-effective improvements in overall telescope/instrument sensitivity. We use new materials such as p-doped GaN, AlGaN, ZnMgO, SiC and diamond. We have currently obtained QE values > 40% at 185 nm with Cesiated GaN, and hope to demonstrate higher values in the future. By using controlled internal fields and nano-structuring of the surfaces, we plan to provide field emission assistance for photoelectrons while maintaining their energy distinction from dark noise electrons. We will transfer these methods from GaN to ZnMgO a new family of wide band-gap materials more compatible with microchannel plates. We also are exploring technical parameters such as doping profiles, internal and external field strengths, angle of incidence, field emission assistance, surface preparation, etc.

  4. Pixel readout electronics development for the ALICE pixel vertex and LHCb RICH detector

    CERN Document Server

    Snoeys, W; Cantatore, E; Cencelli, V; Dinapoli, R; Heijne, Erik H M; Jarron, Pierre; Lamanna, P; Minervini, D; O'Shea, V; Quiquempoix, V; San Segundo-Bello, D; Van Koningsveld, B; Wyllie, Ken H

    2001-01-01

    The ALICE1LHCB pixel readout chip emerged from previous experience at CERN. The RD-19 collaboration provided the basis for the installation of a pixel system in the WA97 and NA57 experiments. Operation in these experiments was key in the understanding of the system issues. In parallel the RD-49 collaboration provided the basis to obtain radiation tolerance in commercial submicron CMOS through special circuit layout. The new ALICE1LMB chip was developed to serve two different applications: particle tracking in the ALICE Silicon Pixel Detector and particle identification in the LHCb Ring Imaging Cherenkov detector. To satisfy the different needs for these two experiments, the chip can be operated in two different modes. In tracking mode all the 50 mu m*435 mu m pixel cells in the 256*32 array are read out individually, whilst in particle identification mode they are combined in groups of 8 to form a 32*32 array of 400 mu m*425 mu m cells. The circuit is currently being manufactured in a commercial 0.25 mu m CMO...

  5. Design and development of a silicon-segmented detector for 2D dose measurements in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menichelli, David [Department of Clinical Phisiopathology, University of Florence, v.le Morgagni, 85-50134 Florence (Italy); INFN, Florence division, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy)], E-mail: david.menichelli@cern.ch; Bruzzi, Mara [Department of Energetics, University of Florence, via S. Marta, 3-50139 Florence (Italy); INFN, Florence division, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Bucciolini, Marta; Talamonti, Cinzia; Casati, Marta; Marrazzo, Livia [Department of Clinical Phisiopathology, University of Florence, v.le Morgagni, 85-50134 Florence (Italy); INFN, Florence division, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Tesi, Mauro [Department of Energetics, University of Florence, via S. Marta, 3-50139 Florence (Italy); Piemonte, Claudio; Pozza, Alberto; Zorzi, Nicola [ITC-irst, via Sommarive, 18-38050 Trento (Italy); Brianzi, Mirko [INFN, Florence division, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); De Sio, Antonio [Department of Astronomy and Space Science, University of Florence, L.go E. Fermi, 2-50125 Florence (Italy)

    2007-12-11

    Modern radiotherapy treatment techniques, such as intensity Modulated Radiation Therapy (IMRT) and protontherapy, require detectors with specific features, usually not available in conventional dosimeters. IMRT dose measurements, for instance, must face non-uniform beam fluences as well as a time-varying dose rate. Two-dimensional detectors present a great interest for dosimetry in beams with steep dose gradients, but they must satisfy a number of requirements and, in particular, they must exhibit high spatial resolution. With the aim of developing a dosimetric system adequate for 2D pre-treatment dose verifications, we designed a modular dosimetric device based on a monolithic silicon-segmented module. State and results of this work in progress are described in this article. The first 441 pixels, 6.29x6.29 cm{sup 2} silicon module has been produced by ion implantation on a 50 {mu}m thick p-type epitaxial layer. This sensor has been connected to a discrete readout electronics performing current integration, and has been tested with satisfactory results. In the final configuration, nine silicon modules will be assembled together to cover an area close to 20x20 cm{sup 2} with 3969 channels. In this case, the readout electronics will be based on an ASIC capable to read 64 channels by performing current-to-frequency conversion.

  6. ATLAS Inner Tracking detectors: Run 1 performance and developments for Run 2

    CERN Document Server

    Lukas, W; The ATLAS collaboration

    2014-01-01

    The measurement of charge particle trajectories with the inner tracking detectors at the ATLAS experiment is a key input for higher-level object reconstructions, ranging from leptons to the identification of heavy-flavor jets. In addition the information provided by the inner tracking systems has been proven to be very powerful for disentangling the effects of several interactions occurring in the same bunch crossing (pile-up). In this contribution, we will review the performance during the Run 1 data-taking and preparation for the next run in 2015. In particular, we will show how the knowledge of the passive material inside the inner tracking acceptance has been further studied to reduce the systematic errors on the tracking efficiency, with benefits for physics measurements. In addition, the developments in disentangling close-by tracks which naturally occur in the decay of very high-pT objects (e.g. taus, of close to the core of jets) will be presented. The ongoing upgrade of the ATLAS detector includes an...

  7. Development of an Indium Bump Bond Process for Silicon Pixel Detectors at PSI

    CERN Document Server

    Brönnimann, C; Gobrecht, J; Heising, S; Horisberger, M; Horisberger, R P; Kästli, H C; Lehmann, J; Rohe, T; Streuli, S; Broennimann, Ch.

    2006-01-01

    The hybrid pixel detectors used in the high energy physics experiments currently under construction use a three dimensional connection technique, the so-called bump bonding. As the pitch below 100um, required in these applications, cannot be fullfilled with standard industrial processes (e.g. the IBM C4 process), an in-house bump bond process using reflown indium bumps was developed at PSI as part of the R&D for the CMS-pixel detector. The bump deposition on the sensor is performed in two subsequent lift-off steps. As the first photolithographic step a thin under bump metalization (UBM) is sputtered onto bump pads. It is wettable by indium and defines the diameter of the bump. The indium is evaporated via a second photolithographic step with larger openings and is reflown afterwards. The height of the balls is defined by the volume of the indium. On the readout chip only one photolithographic step is carried out to deposit the UBM and a thin indium layer for better adhesion. After mating both parts a seco...

  8. Development of Fast and High Precision CMOS Pixel Sensors for an ILC Vertex Detector

    CERN Document Server

    Hu-Guo, Christine

    2010-01-01

    The development of CMOS pixel sensors with column parallel read-out and integrated zero-suppression has resulted in a full size, nearly 1 Megapixel, prototype with ~100 \\mu s read-out time. Its performances are quite close to the ILD vertex detector specifications, showing that the sensor architecture can presumably be evolved to meet these specifications exactly. Starting from the existing architecture and achieved performances, the paper will expose the details of how the sensor will be evolved in the coming 2-3 years in perspective of the ILD Detector Baseline Document, to be delivered in 2012. Two different devices are foreseen for this objective, one being optimized for the inner layers and their fast read-out requirement, while the other exploits the dimmed background in the outer layers to reduce the power consumption. The sensor evolution relies on a high resistivity epitaxial layer, on the use of an advanced CMOS process and on the combination of column-level ADCs with a pixel array. The paper will p...

  9. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Balbi, G; The ATLAS collaboration; Gabrielli, A; Lama, L; Travaglini, R; Backhaus, M; Bindi, M; Chen, S-P; Flick, T; Kretz, M; Kugel, A; Wensing, M

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBLROD firmware development was three-fold: keeping as much of the PixelROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBLDAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBLROD data path im...

  10. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Gabrielli, Alessandro; The ATLAS collaboration; Balbi, Gabriele; Bindi, Marcello; Chen, Shaw-pin; Falchieri, Davide; Flick, Tobias; Hauck, Scott Alan; Hsu, Shih-Chieh; Kretz, Moritz; Kugel, Andreas; Lama, Luca; Travaglini, Riccardo; Wensing, Marius; ATLAS Pixel Collaboration

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data pat...

  11. Superconducting dipole magnet for the CBM experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Kurilkin P.

    2017-01-01

    Full Text Available The scientific goal of the CBM (Compressed Baryonic Matter experiment at FAIR (Darmstadt is to explore the phase diagram of strongly interacting matter at highest baryon densities. The physics program of the CBM experiment is complimentary to the programs to be realized at MPD and BMN facilities at NICA and will start with beam derived by the SIS100 synchrotron. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. The magnet will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. The results of the development of dipole magnet of the CBM experiment are presented.

  12. Development and deployment of miniature MI type sodium leak detector for FBTR

    International Nuclear Information System (INIS)

    Babu, B.; Sylvia, J.I.; Sureshkumar, K.V.; Rajan, K.K.

    2013-01-01

    Highlights: ► Development and commissioning of SG leak detection system for FBTR. ► Performance satisfactory except for a sodium leak due to failure of nicked diffuser. ► Available sodium leak detection systems explored. ► Mutual inductance leak detector designed and developed for sodium leak detection. ► System was tested and deployed in FBTR with satisfactory performance. -- Abstract: The energy produced in Fast Breeder Test Reactor (FBTR) is transferred to feed water for generating superheated steam in once-through shell and tube type counter current steam generator (SG). Sodium and water/steam flow in shell and tube side respectively are separated by thin-walls of ferritic steel tubes. Material defects in these tubes can lead to leakage of water/steam into sodium, resulting in sodium water reactions leading to undesirable consequences. Detection of a leak at its inception, therefore, is important for the safe and reliable operation of the reactor. Monitoring hydrogen in sodium, produced during reaction of sodium with the leaked water or steam is a convenient way to accomplish this. Nickel diffuser based instrumentation has been developed for real time detection of steam generator leak of FBTR at Kalpakkam. Though the performance of the system has been satisfactory, the failure of Nickel diffuser cannot be ruled out. This paper deals with the development and deployment of a miniature Mutual Inductance (MI) type leak detector for detection of sodium leak resulting from failure/rupture of the Nickel diffuser tubes in the SG leak detection system in FBTR

  13. Shlaer-Mellor object-oriented analysis and recursive design, an effective modern software development method for development of computing systems for a large physics detector

    International Nuclear Information System (INIS)

    Kozlowski, T.; Carey, T.A.; Maguire, C.F.

    1995-01-01

    After evaluation of several modern object-oriented methods for development of the computing systems for the PHENIX detector at RHIC, we selected the Shlaer-Mellor Object-Oriented Analysis and Recursive Design method as the most appropriate for the needs and development environment of a large nuclear or high energy physics detector. This paper discusses our specific needs and environment, our method selection criteria, and major features and components of the Shlaer-Mellor method

  14. The Silicon Tracking System of the CBM Experiment at FAIR

    Science.gov (United States)

    Heuser, Johann M.

    The Compressed Baryonic Matter (CBM) experiment at FAIR will conduct a systematic research program to explore the phase diagram of strongly interacting matter at highest net baryon densities and moderate temperatures. These conditions are to be created in collisions of heavy-ion beams with nuclear targets in the projectile beam energy range of 2 to 45 GeV/nucleon, initially coming from the SIS 100 synchrotron (up to 14 GeV/nucleon) and in a next step from SIS 300 enabling studies at the highest net baryon densities. Collision rates up to 107 per second are required to produce very rare probes with unprecedented statistics in this energy range. Their signatures are complex. These conditions call for detector systems designed to meet the extreme requirements in terms of rate capability, momentum and spatial resolution, and a novel data acquisition and trigger concept which is not limited by latency but by throughput. In the paper we describe the concept and development status of CBM's central detector, the Silicon Tracking System (STS). The detector realizes a large, highly granular and redundant detector system with fast read-out, and lays specific emphasis on low material budget in its physics aperture to achieve for charged particle tracks a momentum resolution of δp/p ≈ 1% at p > 1 GeV/c, at >95% track reconstruction efficiency. The detector employs 1220 highly segmented double-sided silicon micro-strip sensors of 300 µm thickness, mounted into 896 modular structures of various types that are aggregated on 106 low-mass carbon fiber ladders of different sizes that build up the tracking stations. The read-out electronics with its supply and cooling infrastructure is arranged at the periphery of the ladders, and provides a total channel count of 1.8 million. The signal transmission from the silicon sensors to the electronics is realized through ultra-thin multi-line aluminum-polyimide cables of up to half a meter length. The electronics generates a free

  15. Technology development of 3D detectors for high energy physics and medical imaging

    CERN Document Server

    Pellegrini, G

    2003-01-01

    This thesis is concerned with the fabrication, characterisation and simulation of 3D semiconductor detectors. Due to their geometry, these detectors have more efficient charge collection properties than current silicon and gallium arsenide planar detectors. The unit cell of these detectors is hexagonal with a central anode surrounded by six cathode contacts. This geometry gives a uniform electric field with the maximum drift and depletion distance set by electrode spacing, 85m in this project, rather than detector thickness, as in the case of planar detectors (typically 100-300m). This results in lower applied biases (35-40 V in the work of this project) compared to >200 V in typical planar detectors. The reduction in bias offers the possibility of improved detector operation in the presence of bulk radiation damage as lower voltage reduces leakage current which limits the signal to noise ratio and hence the overall detector efficiency. In this work, 3D detectors realised in Si, GaAs and SiC have ...

  16. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  17. Fractions: How to Fair Share

    Science.gov (United States)

    Wilson, P. Holt; Edgington, Cynthia P.; Nguyen, Kenny H.; Pescosolido, Ryan S.; Confrey, Jere

    2011-01-01

    Children learn from a very early age what it means to get their "fair share." Whether it is candy or birthday cake, many children successfully create equal-size groups or parts of a collection or whole but later struggle to create fair shares of multiple wholes, such as fairly sharing four pies among a family of seven. Recent research suggests…

  18. Aspects of Fair Division,

    Science.gov (United States)

    1980-04-01

    Kuhn, H. W. "On Games of Fair Division," in Essays in Mathematical Economics in honor of Oskar Morgenstern , Princeton University Press, 1967, [9] Neyman...valuation of the ith participant. If the game (N,v) is symmetric in the Von Nuemann- Morgenstern sense (14], Ch.X), it can be shown that D = = " = tn...Mathematicae, Vol. 16, 1930, pp. 140-150. [14] Von Neumann, J., and 0. Morgenstern , Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1944.

  19. Development of a DAQ system for a plasma display panel-based X-ray detector (PXD)

    Science.gov (United States)

    Lee, Hakjae; Jung, Young-Jun; Eom, Sangheum; Kang, Jungwon; Lee, Kisung

    2015-06-01

    Recently, a novel plasma display panel (PDP)-based X-ray detector (PXD) was developed. The goal of this study is to develop a data acquisition system for use with the PXD as an imaging detector. Since the prototype detector does not have any barrier ribs or a switching device in a detector pixel, a novel pixelation scheme-the line-scan method-is developed for this new detector. To implement line scanning, a multichannel high-voltage switching circuit and a multichannel charge-acquisition circuit are developed. These two circuits are controlled by an FPGA-based digital signal processing board, from which the information about the charge and position of each pixel can be sent to a PC. FPGA-based baseline compensation and switching noise rejection algorithms are used to improve the signal-to-noise ratio (SNR). The characteristic curve of the entire PXD system is acquired, and the correlation coefficients between the X-ray dose, and the signal intensity and the SNR were determined to be approximately 0.99 and 52.9, respectively.

  20. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    Science.gov (United States)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  1. Development of Large Area Gas Electron Multiplier Detector and Its Application to a Digital Hadron Calorimeter for Future Collider Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jaehoon; White, Andrew

    2014-09-25

    The UTA High Energy Physics Group conducted generic detector development based on large area, very thin and high sensitivity gas detector using gas electron multiplier (GEM) technology. This is in preparation for a use as a sensitive medium for sampling calorimeters in future collider experiments at the Energy Frontier as well as part of the tracking detector in Intensity Frontier experiments. We also have been monitoring the long term behavior of one of the prototype detectors (30cmx30cm) read out by the SLAC-developed 13-bit KPiX analog chip over three years and have made presentations of results at various APS meetings. While the important next step was the development of large area (1m x 1m) GEM planes, we also have looked into opportunities of applying this technology to precision tracking detectors to significantly improve the performance of the Range Stack detector for CP violation experiments and to provide an amplification layer for the liquid Argon Time Projection Chamber in the LBNE experiment. We have jointly developed 33cmx100cm large GEM foils with the CERN gas detector development group to construct 33cm x100cm unit chambers. Three of these unit chambers will be put together to form a 1m x 1m detector plane. Following characterization of one 33cmx100cm unit chamber prototype, a total of five 1m x 1m planes will be constructed and inserted into an existing 1m3 RPC DHCAL stack to test the performance of the new GEM DHCAL in particle beams. The large area GEM detector we planned to develop in this proposal not only gives an important option to DHCAL for future collider experiments but also the potential to expand its use to Intensity Frontier and Cosmic Frontier experiments as high efficiency, high amplification anode planes for liquid Argon time projection chambers. Finally, thanks to its sensitivity to X-rays and other neutral radiations and its light-weight characteristics, the large area GEM has a great potential for the use in medical imaging and

  2. FairMQ for Online Reconstruction - An example on \\overline{{\\rm{P}}}ANDA test beam data

    Science.gov (United States)

    Stockmanns, Tobias; PANDA Collaboration

    2017-10-01

    One of the large challenges of future particle physics experiments is the trend to run without a first level hardware trigger. The typical data rates exceed easily hundreds of GBytes/s, which is way too much to be stored permanently for an offline analysis. Therefore a strong data reduction has to be done by selection of only those data, which are physically interesting. This implies that all detector data are read out and have to be processed with the same rate as it is produced. Several different hardware approaches from FPGAs, GPUs to multicore CPUs and mixtures of these systems are under study. Common to all of them is the need to process the data in massive parallel systems. One very convenient way to realize parallel systems on heterogeneous systems is the usage of message queue based multiprocessing. One package that allow development of such application is the FairMQ module in the FairRoot simulation framework developed at GSI. FairRoot is used by several different experiments at and outside the GSI including the \\overline{{{P}}}ANDA experiment. FairMQ is an abstract layer for message queue base application, it has up to now two implementations: ZeroMQ and nanomsg. For the \\overline{{{P}}}ANDA experiment, FairMQ is under test in two different ways. On the one hand side for online processing test beam data of prototypes of sub-detectors of \\overline{{{P}}}ANDA and, in a more generalized way, on time-based simulated data of the complete detector system. The first test on test beam data is presented in this paper.

  3. Development and performance of track reconstruction algorithms at the energy frontier with the ATLAS detector

    Science.gov (United States)

    Gagnon, Louis-Guillaume; ATLAS Collaboration

    2017-10-01

    ATLAS track reconstruction software is continuously evolving to match the demands from the increasing instantaneous luminosity of the LHC, as well as the increased center-of-mass energy. These conditions result in a higher abundance of events with dense track environments, such as the core of jets or boosted tau leptons undergoing three-prong decays. These environments are characterised by charged particle separations on the order of the ATLAS inner detector sensor dimensions and are created by the decay of boosted objects. Significant upgrades were made to the track reconstruction software to cope with the expected conditions during LHC Run 2. In particular, new algorithms targeting dense environments were developed. These changes lead to a substantial reduction of reconstruction time while at the same time improving physics performance. The employed methods are presented and physics performance studies are shown, including a measurement of the fraction of lost tracks in jets with high transverse momentum.

  4. Development and performance of track reconstruction algorithms at the energy frontier with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00441787; The ATLAS collaboration

    2017-01-01

    ATLAS track reconstruction software is continuously evolving to match the demands from the increasing instantaneous luminosity of the LHC, as well as the increased center-of-mass energy. These conditions result in a higher abundance of events with dense track environments, such as the core of jets or boosted tau leptons undergoing three-prong decays. These environments are characterised by charged particle separations on the order of the ATLAS inner detector sensor dimensions and are created by the decay of boosted objects. Significant upgrades were made to the track reconstruction software to cope with the expected conditions during LHC Run 2. In particular, new algorithms targeting dense environments were developed. These changes lead to a substantial reduction of reconstruction time while at the same time improving physics performance. The employed methods are presented and physics performance studies are shown, including a measurement of the fraction of lost tracks in jets with high transverse momentum.

  5. Development of a customized SSC pixel detector readout for vertex tracking

    International Nuclear Information System (INIS)

    Barkan, O.; Atlas, E.L.; Marking, W.L.; Worley, S.; Yacoub, G.Y.; Kramer, G.; Arens, J.F.; Jernigan, J.G.; Shapiro, S.L.; Nygren, D.; Spieler, H.; Wright, M.

    1990-01-01

    The authors describe the readout architecture and progress to date in the development of hybrid PIN diode arrays for use as vertex detectors in the SSC environment. The architecture supports a self-timed mechanism for time stamping hit pixels, storing their xy coordinates and later selectively reading out only those pixels containing interesting data along with their coordinates. The peripheral logic resolves ambiguous pixel ghost locations and controls pixel neighbor readout to achieve high spatial resolution. A test lot containing 64 x 32 pixel arrays has been processed and is currently being tested. Each pixel contains 23 transistors and six capacitors consuming an area of 50μm by 150μm and dissipating about 20μW of power

  6. Development of a customized SSC pixel detector readout for vertex tracking

    International Nuclear Information System (INIS)

    Barkan, O.; Atlas, E.L.; Marking, W.L.; Worley, S.; Yacoub, G.Y.; Kramer, G.; Arens, J.F.; Jernigan, J.G.; Nygren, D.; Spieler, H.; Wright, M.

    1990-10-01

    We describe the readout architecture and progress to date in the development of hybrid PIN diode arrays for use as vertex detectors in the SSC environment. The architecture supports a self-timed mechanism for time stamping hit pixels, storing their xy coordinates and later selectively reading out only those pixels containing interesting data along with their coordinates. The peripheral logic resolves ambiguous pixel ghost locations and controls pixel neighbor readout to achieve high spatial resolution. A test lot containing 64 x 32 pixel arrays has been processed and is currently being tested. Each pixel contains 23 transistors and six capacitors consuming an area of 50 μm by 150 μm and dissipating about 20μW of power. 6 refs., 2 figs

  7. Development of neutron personnel monitoring system based on CR-39 solid state nuclear track detector

    International Nuclear Information System (INIS)

    Massand, O.P.; Kundu, H.K.; Marathe, P.K.; Supe, S.J.

    1990-01-01

    Personnel neutron monitoring aims at providing a method to evaluate the magnitude of the detrimental effects on the personnel exposed to neutrons. Neutron monitoring is done for a small though growing number of personnel working with neutrons in a wide range of situations. Over the years, many solid state nuclear track detectors (SSNTD) have been tried for neutron personnel monitoring. CR-39 SSNTD is a proton sensitive polymer and offers a lot of promise for neutron personnel monitoring due to its high sensitivity and lower energy threshold for neutron detection. This report presents the mechanism of track formation in this polymer, the development of this neutron personnel monitoring system in our laboratory, its various characteristics and its promise as a routine personnel neutron monitor. (author). 1 tab., 7 figs

  8. Development of large-area silicon photomultiplier detectors for PET applications at FBK

    Energy Technology Data Exchange (ETDEWEB)

    Zorzi, Nicola, E-mail: zorzi@fbk.eu [Fondazione Bruno Kessler (FBK), Via Sommarive 18, I-38123 Trento Povo (Italy); Melchiorri, Mirko; Piazza, Alessandro; Piemonte, Claudio; Tarolli, Alessandro [Fondazione Bruno Kessler (FBK), Via Sommarive 18, I-38123 Trento Povo (Italy)

    2011-04-21

    This paper reports on the development of large-area silicon photomultiplier (SiPM) detectors specifically designed for positron emission tomography (PET) instruments. The sensors under study are monolithic arrays of two different types: a 2x2 array of {approx}4x4 mm{sup 2} elements and an 8x8 array of 1.5x1.5 mm{sup 2} pixels. These devices are characterized at wafer level by means of an automatic test procedure, consisting of current-voltage curves in forward and reverse bias. The tests allowed selection of functioning devices and evaluation of the uniformity of basic parameters. Results of the electrical characterization are reported showing that acceptable values of yield together with rather uniform distribution of parameters have been obtained. Reliability of produced SiPMs has been proved by long-term accelerated stress tests.

  9. Development of large-area silicon photomultiplier detectors for PET applications at FBK

    International Nuclear Information System (INIS)

    Zorzi, Nicola; Melchiorri, Mirko; Piazza, Alessandro; Piemonte, Claudio; Tarolli, Alessandro

    2011-01-01

    This paper reports on the development of large-area silicon photomultiplier (SiPM) detectors specifically designed for positron emission tomography (PET) instruments. The sensors under study are monolithic arrays of two different types: a 2x2 array of ∼4x4 mm 2 elements and an 8x8 array of 1.5x1.5 mm 2 pixels. These devices are characterized at wafer level by means of an automatic test procedure, consisting of current-voltage curves in forward and reverse bias. The tests allowed selection of functioning devices and evaluation of the uniformity of basic parameters. Results of the electrical characterization are reported showing that acceptable values of yield together with rather uniform distribution of parameters have been obtained. Reliability of produced SiPMs has been proved by long-term accelerated stress tests.

  10. Development and performance of track reconstruction algorithms at the energy frontier with the ATLAS detector

    CERN Document Server

    Gagnon, Louis-Guillaume; The ATLAS collaboration

    2016-01-01

    ATLAS track reconstruction code is continuously evolving to match the demands from the increasing instantaneous luminosity of LHC, as well as the increased centre-of-mass energy. With the increase in energy, events with dense environments, e.g. the cores of jets or boosted tau leptons, become much more abundant. These environments are characterised by charged particle separations on the order of ATLAS inner detector sensor dimensions and are created by the decay of boosted objects. Significant upgrades were made to the track reconstruction code to cope with the expected conditions during LHC Run 2. In particular, new algorithms targeting dense environments were developed. These changes lead to a substantial reduction of reconstruction time while at the same time improving physics performance. The employed methods are presented. In addition, physics performance studies are shown, e.g. a measurement of the fraction of lost tracks in jets with high transverse momentum.

  11. Research ampersand development of a helium-4 based solar neutrino detector

    International Nuclear Information System (INIS)

    Lanou, R.E.; Maris, H.J.; Seidel, G.M.

    1989-12-01

    This Progress Report covers the first six months of our May 1989 Continuation Grant. The purpose of the project is to develop and test a new detection technique for neutrinos using 4 He in the superfluid state. Based upon the expected test results it should be possible to design a practical detector leading to the ultimate goal of detecting low energy solar neutrinos. During the last six months the construction phase has moved ahead substantially. Among the areas of progress discussed in the report are: the construction of the cryostat and dilution refrigerators; the gas handling systems; computer system design; tests for radioactivity of construction materials and roton pulse simulation by computer. 5 figs

  12. Development of ionizing radiations dosimetry by plastic detectors and films of radiography; Desenvolvimento de dosimetria de radiacoes ionizantes por detectores plasticos e filmes de radiografia

    Energy Technology Data Exchange (ETDEWEB)

    Levit, Vladimir; Santos, Ari S.; Louzada, Ana R.; Silveira, Cristina M.; Vaniel, Ana P. [Pelotas Univ., RS (Brazil). Inst. de Quimica e Geociencias]. E-mail: vlevit@ufpel.tche.br; Fedorov, Dmitri [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)]. E-mail: fedorov@nucleo.inpe.br

    2000-07-01

    This work shows the development of an automatic and computerized system for detection and analysis of the ionizing radiation trace in solid detectors and one of the signals of this irradiation in radiography films with the main goal of improve the ionizing radiation detection methods. On the development of this method it was used a calibration source of {sup 252}Cf, which is a radionuclide with alpha decay and spontaneous fission and, by this reason, irradiates {alpha} and {gamma} particles and nuclear fragments. Solid detectors of makrofol ware used for the nuclear fragments and radiography films ware used for the detection of {alpha} and {gamma} particles. Those signals images reveled of the {alpha} and {gamma} particles and of the nuclear fragments traces ware analysed on a microscopy and recorded on computers. The computer system developed allows to capture those images from the microscope as computer files, the identification of nuclear fragments traces and the {alpha} and {gamma} particles signals and the separation of the objects of interest to do the counting and analysis of the size and the shape of those traces.

  13. CERN Book fair

    CERN Multimedia

    CERN Central Library and IT Department Bookshop

    2004-01-01

    The CERN Library, in conjunction with the IT Department Bookshop, is organizing a book fair on the 28th and 29th October. Some 15 major publishers will be represented, including 6 who will be here in person, and more than 700 of their latest titles will be on display (for sale or order). The major topics covered will be computing, physics, technology, mathematics, engineering and popular science. Those present at this event will include Alpha Science, Cambridge University Press, Elsevier, Institute of Physics, Microsoft Press, O'Reilly, OLF Switzerland, Oxford University Press, McGraw-Hill, Springer, Pearson, Thali Switzerland, Wiley, World Scientific and Ebooks Corporation. The fair will take place on the first floor of the Main Building (bldg.60), Salle des Pas Perdus, and will be open from 10.00 to 17.00 on both days. In addition, EBooks Corporation will describe their electronic book system; insight into this is available at http://www.eblib.com/ We look forward to your support for this initiative. Sh...

  14. Study of the reaction 22O(p,p') with MUST detector. Development of the Cs(Tl) part of MUST-2 detector

    International Nuclear Information System (INIS)

    Becheva, E.

    2004-11-01

    Elastic and inelastic proton scattering on the unstable nuclei 22 O was measured in inverse kinematics at the GANIL facility. A secondary beam of 22 O at 46.6 MeV/A with intensity of ∼ 1000 pps, impinged on a (CH 2 ) n target. Recoiling protons were detected in the silicon strip array MUST. We measured the angular distributions of the ground and 2 1 + states of 22 O. Phenomenological and microscopic analysis of the data were performed. The phenomenological analysis using a global potential parameterization of Becchetti and Greenlees and CH89 yields a value of the deformation parameter β p,p , = 0.23±0.04 for 22 O, much lower than that of 20 O. The ratio of neutron and proton matrix element M n /M p is found equal to 1.46±0.50. The microscopic analysis used of densities and transition densities calculated within HFB and QRPA models respectively. Optical potential were obtained through both folding and JLM procedures. A ratio M n /M p =2.5±1.0 is deduced. Contrary of 20 O, 22 O behaviours like a doubly magic nucleus, suggesting a pronounced sub-shell closure at N=14. To develop the study of direct reactions induced by radioactive beams, we have developed and built, a new multi-detector MUST II devoted to light charged particle detection. In this work we established the requirements for the CsI(Tl) detector stage, and test four CsI detector prototypes, constructed by the SCIONIX company. (author)

  15. The development of neutron detectors for the GEM instrument at ISIS

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, N.J.; Johnson, M.W.; Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon (United Kingdom)

    2001-03-01

    GEM is a new General Materials diffractometer now being commissioned at ISIS. To meet its broad based scientific programme GEM requires a large area position sensitive detector which covers a wide range of scattering angles and exhibits a high neutron count rate stability. This paper discusses the design of a ZnS/{sup 6}Li fibre coupled detector array that meets the GEM requirements. Typical detector characteristics are documented together with the current status of the project. Two thirds of the detector array are operational and from the results obtained to date it is already obvious that the impact of this instrument on neutron scattering studies will be profound. (author)

  16. QCD physics at hadron storage rings: From COSY to FAIR

    Indian Academy of Sciences (India)

    hadrons with charm quark content with the high energy storage ring for antiprotons at the new GSI/FAIR facility. .... of the experimental potential both of WASA and COSY, where a photon detector has been missing up to ... the structure of matter, from the quark-gluon structure of hadrons to the physics of astronomical objects.

  17. FEASIBILITY STUDIES FOR THE PANDA EXPERIMENT AT FAIR

    NARCIS (Netherlands)

    Biegun, A.

    PANDA, the detector to study AntiProton ANnihilations at DArmstadt, will be installed at the future international Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The PANDA physics program is oriented towards the studies of the strong interaction and hadron structure performed

  18. Development of low temperature solid state detectors for ultra-cold neutrons within superfluid sup 4 He

    CERN Document Server

    Baker, C A; Green, K; Grinten, M G D; Iaydjiev, P S; Ivanov, S N; Pendlebury, J M; Shiers, D B; Tucker, M A H; Yoshiki, H; Geltenbort, P

    2003-01-01

    As part of an R and D programme for the development of a next-generation experiment to measure the neutron electric dipole moment, in which ultra-cold neutrons (UCN) are produced and stored in superfluid sup 4 He (superthermal source), we have developed cryogenic detectors of UCN that can operate in situ within the superfluid. Surface barrier detectors and PIN diode detectors have been tested and proven to work well at temperatures as low as 80 mK. When combined with a layer of sup 6 LiF which converts neutrons to charged particles, these detectors form a reliable UCN detection system which has been tested in liquid helium down to 430 mK. The detectors have operated within superfluid helium for periods of up to 30 days with no signs of degradation. The development of this detection system has enabled us to measure the flux of UCN from a superthermal UCN source with no intervening transmission windows which can attenuate the flux. The addition of thin films of magnetically aligned iron also enables these detec...

  19. RICOR Cryocoolers for HOT IR detectors from development to optimization for industrialized production

    Science.gov (United States)

    Levin, Eli; Katz, Amiram; Bar Haim, Zvi; Nachman, Ilan; Riabzev, Sergey; Gover, Dan; Segal, Victor; Filis, Avishai

    2017-05-01

    The modern needs of the electro-optical market for small low-power and light-weight IR systems are impelling research and development of High Operating Temperature (HOT) IR detectors, requiring development of dedicated "HOT" cryocoolers. The development of cryocoolers with emphasis on the "SWAP3" configuration means small size, low weight, improved performance, low power consumption and low price, in order to optimize IDDCA for future hand held thermal sights. This paper will present the development and the progress made with the new "HOT" cryocooler, including customer data after the evaluation process, performances achieved using a common cold finger, test results update on a large series of production coolers, life and qualification test update and acoustic noise reduction. All the above mentioned information relates to the FPA temperature range of 130 - 200K for various cryocooler models based on rotary and linear design concepts. The paper will also review the progress with the latest development activities implemented in the cryocoolers and the electronic control modules in order to improve reliability and minimize regulated power consumption.

  20. GasFair/PowerFair/EnergyUser '98 : Presentations

    International Nuclear Information System (INIS)

    1998-01-01

    Papers presented at three conferences, reviewing recent activities in the natural gas and electric power industries and matters of concern to energy consumers in North America are contained on this single CD-ROM. Seven presentations relate to the natural gas industry, nine to electric power generation and transmission, and ten to a wide range of topics dealing with various concerns relating to the environment, financial and cost management aspects of energy utilization. Speakers at the GasFair sessions discussed recent developments in natural gas supply, marketing, purchasing, risk management and the impact of energy convergence on natural gas. Presentations at the PowerFair segment dealt with issues in electricity deregulation, supply and financing, purchasing and marketing. Issues discussed at the EnergyUser sessions included presentations dealing with ways to save costs with energy technology and integrated services, environmental performance contracting and engineering and energy cost control. The CD-ROM also contains the summary of a round table discussion and five individual presentations made at the Natural Gas Pipeline Forum. This pre-conference institute dealt with the likely effects of new pipelines and pipeline extensions on North American natural gas consumers. . tabs., figs