WorldWideScience

Sample records for factors controlling soil

  1. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    Science.gov (United States)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under

  2. Soil Forming Factors

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to

  3. Major controlling factors and predictions for cadmium transfer from the soil into spinach plants.

    Science.gov (United States)

    Liang, Zhenfei; Ding, Qiong; Wei, Dongpu; Li, Jumei; Chen, Shibao; Ma, Yibing

    2013-07-01

    Predicting the mobility, bioavailability and transfer of cadmium (Cd) in the soil-plant system is of great importance with regards to food safety and environmental management. In this study, the transfer characteristics of Cd (exogenous salts) from a wide range of Chinese soils to spinach (Spinacia oleracea L.) were investigated. The major controlling factors and prediction equations for Cd transfer in the soil-plant system were also investigated. The results showed that plant Cd concentration was positively correlated with soil Cd concentration. The maximum transfer factor (ratio of the Cd concentration in the plant to that in the soil) was found in acid soils. The extended Freundlich-type function was able to describe the Cd transfer from soil to spinach plants. Combining soil total Cd, pH and organic carbon (OC) content in the prediction equation greatly improved the correlation performance compared with predictions based on total Cd only. A slight protection effect of OC on Cd uptake was observed at low soil Cd concentrations. The results are a useful tool that can be used to predict Cd transfer from soil to plant. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Soil Nitrogen Storage, Distribution, and Associated Controlling Factors in the Northeast Tibetan Plateau Shrublands

    Directory of Open Access Journals (Sweden)

    Xiuqing Nie

    2017-11-01

    Full Text Available Although the soils in the Tibetan Plateau shrublands store large amounts of total nitrogen (N, the estimated values remain uncertain because of spatial heterogeneity and a lack of field observations. In this study, we quantified the regional soil N storage, spatial and vertical density distributions, and related climatic controls using 183 soil profiles sampled from 61 sites across the Northeast Tibetan Plateau shrublands during the period of 2011–2013. Our analysis revealed a soil N storage value of 132.40 Tg at a depth of 100 cm, with an average density of 1.21 kg m−2. Soil N density was distributed at greater levels in alpine shrublands, compared with desert shrublands. Spatially, soil N densities decreased from south to north and from east to west, and, vertically, the soil N in the upper 30 and 50 cm accounted for 42% and 64% of the total soil N stocks in the Tibetan Plateau. However, compared with desert shrublands, the surface layers in alpine shrublands exhibited a larger distribution of soil N stocks. Overall, the soil N density in the top 30 cm increased significantly with the mean annual precipitation (MAP and tended to decrease with the mean annual temperature (MAT, although the dominant climatic controls differed among shrubland types. Specifically, MAP in alpine shrublands, and MAT in desert shrubland, had a weak effect on N density. Soil pH can significant affect soil N density in the Tibetan Plateau shrublands. In conclusion, changes in soil N density should be monitored over the long term to provide accurate information about the effects of climatic factors.

  5. Factors controlling the spatial distribution of soil piping erosion on loess-derived soils: A case study from central Belgium

    Science.gov (United States)

    Verachtert, E.; Van Den Eeckhaut, M.; Poesen, J.; Deckers, J.

    2010-06-01

    Collapsible loess-derived soils are prone to soil piping erosion, where enlargement of macropores may lead to a subsurface pipe network and eventually to soil collapse and gully development. This study aims at understanding the main factors controlling spatial patterns of piping in loess-derived soils under a temperate climate. To map the spatial distribution of piping and identify the environmental controls on its distribution, a regional survey was carried out in a 236 km 2 study area in the Flemish Ardennes (Belgium). Orthophotos taken at optimal field conditions (winter) were analyzed to detect piping in open landscapes and ground thruthing was systematically done through field surveys. In total, 137 parcels having 560 collapsed pipes were mapped. Dimensions of the sinkholes and local slope gradient were measured in the field and topographical variables were derived from LiDAR data. Land use plays an important role as 97% of the sites with piping are found under pasture. The probability of piping increases rapidly on hillslopes with gradients exceeding 8% and with a concave profile and plan curvature, enhancing subsurface flow concentration. The zones with soil profiles on shallow loess over a relatively thin layer of homogeneous blue massive clays (Aalbeke Member) are most prone to piping. Soil characteristics are of less importance to explain piping occurrence. Furthermore, the topographical threshold line indicating the critical slope gradient for a given contributing drainage area was determined. This threshold line (negative power relation) is similar to the threshold line for shallow gully initiation.

  6. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Badawi, N.; Aamand, Jens

    2014-01-01

    across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance......Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we...... critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates...

  7. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    Directory of Open Access Journals (Sweden)

    Arnaud eDechesne

    2014-12-01

    Full Text Available Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays nonrandom spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH and some agricultural management practices (pesticide application, tillage, while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modelling and experimental systems that do not include soil’s full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil.

  8. Controlling factors in the dynamics of soil organic carbon from the region of Murcia

    International Nuclear Information System (INIS)

    Albaladejo, J.; Martinez-Mena, M.; Almagro, M.; Ruiz-navarro, A.; Ortiz, R.

    2009-01-01

    Sequestration and accumulation of C on the soil is a useful way to reduce the atmospheric concentration of CO 2 and to mitigate the climate change. The purpose of this study was to identify the key factors which determine the accumulation and permanence of CO on the soils of the Murcia Region. The study was arranged from data displayed on the Murcia Region Soils Map (1:100.000). The results showed that quantity of stored CO in the 30cm superficial soil is significantly different depending on soil uses, soil type, altitude and texture. One conclusion is that changes from natural vegetation to cultivated soil are the greatest cause of losses of CO of soil. The increasing of altitude and proportion of thin-silt + clay contributes to CE accumulation. In altitude, the speed of mineralization of organic materials decreases, and the thin particles stimulate the physical protection and the chemical stabilization of CO of soil. (Author) 8 refs.

  9. [Soil respiration dynamics and its controlling factors of typical vegetation communities on meadow steppes in the western Songnen Plain].

    Science.gov (United States)

    Wang, Ming; Liu, Xing-Tu; Li, Xiu-Jun; Zhang, Ji-Tao; Wang, Guo-Dong; Lu, Xin-Rui; Li, Xiao-Yu

    2014-01-01

    In order to accurately explore the soil respiration dynamics and its controlling factors of typical vegetation types in the western Songnen Plain, soil respiration rates of Chloris virgata, Puccinellia distans, Phragmites australis and Leymus chinensis communities were measured. The results showed that the diurnal curves of soil respiration rates of the four vegetation communities had simple peak values, which appeared at 11:00-15:00, and the valley values occurred at 21:00-1:00 or 3:00-5:00. The seasonal dynamic patterns of their soil respiration rates were similar, with the maximum (3.21-4.84 micromol CO2 x m(-2) x s(-1)) occurring in July and August and the minimum (0.46-1.51 micromol CO2 x m(-2) x s(-1)) in October. The soil respiration rates of the four vegetation communities had significant exponential correlations with ambient air temperature and soil temperature. Soil moisture, however, only played an important role in affecting the soil respiration rate of C. virgata community while air humidity near the soil surface was significantly correlated with the soil respiration rates of P. australis and L. chinensis communities. The soil salt contents seriously constrained the CO2 dioxide emission, and the soil pH, electrical conductivity (EC), exchangeable sodium percentage (ESP) could explain 87%-91% spatial variations of the soil respiration rate.

  10. Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shujuan [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Wei [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); Wang, Kelin, E-mail: kelin@isa.ac.cn [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); Pan, Fujing [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station of Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, Guangxi Zhuang Autonomous Region 547100 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Shan [Changsha university, Changsha 410003 (China); Shu, Shiyan [Changjiang Project Supervision & Consultancy Co. Ltd, Wuhan 430010 (China); Changjiang Ecology (Hubei) Technology Development LLC, Wuhan 430010 (China)

    2015-07-15

    Vegetation succession enhances the accumulation of carbon in the soil. However, little is known about the mechanisms underlying soil organic carbon (SOC) accumulation in different vegetation types in the karst region of Southwest China. The goal of this study was to identify and prioritize the effects of environmental parameters, including soil physico-chemical properties, microbial biomass, enzyme activities, and litter characteristics, on SOC accumulation along a vegetation succession sere (grassland, shrubland, secondary forest, and primary forest) in the karst landscape of Southwest China. Relationships between these parameters and SOC were evaluated by redundancy analysis. The results showed that SOC accumulation was significantly different among vegetation types (P < 0.01) and increased with vegetation succession (from 29.10 g·kg{sup −1} in grassland to 73.92 g·kg{sup −1} in primary forest). Soil biochemistry and physical characteristics significantly affected the accumulation of SOC. Soil microbial biomass showed a predominant effect on SOC in each of the four vegetation types. In addition, the soil physical property (especially the silt content) was another controlling factor in the early stages (grassland), and urease activity and saccharase activity were important controlling factors in the early-middle and middle-late stages, respectively. Litter characteristics only showed mild effects on SOC accumulation. Variation partitioning analysis showed that the contribution of sole main factors to SOC variation decreased, while the interaction effect among parameters increased along the succession gradient. - Highlights: • Vegetation restoration is conducive to soil carbon sequestration in karst areas. • The factors controlling SOC accumulation differed along vegetation succession. • The interaction effect among significant factors became more and more prominent along succession.

  11. Key Factors Controlling the Growth of Biological Soil Crusts: Towards a Protocol to Produce Biocrusts in Greenhouse Facilities

    Science.gov (United States)

    Velasco Ayuso, Sergio; María Giraldo Silva, Ana; Nelson, Corey; Barger, Nichole; Antoninka, Anita; Bowker, Matthew; Garcia-Pichel, Ferran

    2016-04-01

    Biological soil crusts (= biocrusts) are topsoil communities comprise of, but not limited to, cyanobacteria, algae, lichens, and mosses that grow intimately associated with soil particles in drylands. Biocrusts have central ecological roles in these areas as sources of carbon and nutrients, and efficiently retain water and prevent soil erosion, which improves soil structure and promotes soil fertility. However, human activities, such as cattle grazing, hiking or military training, are rapidly striking biocrusts. Although it is well known that the inoculation with cyanobacteria or lichens can enhance the recovery of biocrusts in degraded soils, little is known about the factors that control their growth rates. Using soil and inocula from four different sites located in one cold desert (Utah) and in one hot desert (New Mexico), we performed a fractional factorial experiment involving seven factors (water, light, P, N, calcium carbonate, trace metals and type of inoculum) to screen their effects on the growth of biocrusts. After four months, we measured the concentration of chlorophyll a, and we discovered that water, light and P, N or P+N were the most important factors controlling the growth of biocrusts. In the experimental treatments involving these three factors we measured a similar concentration of chlorophyll a (or even higher) to this found in the field locations. Amplification of the 16S rRNA gene segment using universal bacteria primers revealed a microbial community composition in the biocrusts grown that closely corresponds to initial measurements made on inocula. In summary, based on our success in obtaining biocrust biomass from natural communities in greenhouse facilities, without significantly changing its community composition at the phylum and cyanobacterial level, we are paving the road to propose a protocol to produce a high quality-nursed inoculum aiming to assist restoration of arid and semi-arid ecosystems affected by large-scale disturbances.

  12. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O

    Directory of Open Access Journals (Sweden)

    K. Pilegaard

    2006-01-01

    Full Text Available Soil emissions of NO and N2O were measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE. The locations represent different forest types (coniferous/deciduous and different nitrogen loads. Geographically they range from Finland in the north to Italy in the south and from Hungary in the east to Scotland in the west. The highest NO emissions were observed from coniferous forests, whereas the lowest NO emissions were observed from deciduous forests. The NO emissions from coniferous forests were highly correlated with N-deposition. The site with the highest average annual emission (82 μg NO-N m−2 h−1 was a spruce forest in South-Germany (Höglwald receiving an annual N-deposition of 2.9 g m−2. NO emissions close to the detection limit were observed from a pine forest in Finland where the N-deposition was 0.2 g N m−2 a−1. No significant correlation between N2O emission and N-deposition was found. The highest average annual N2O emission (20 μg N2O-N m−2 h−1 was found in an oak forest in the Mátra mountains (Hungary receiving an annual N-deposition of 1.6 g m−2. N2O emission was significantly negatively correlated with the C/N ratio. The difference in N-oxide emissions from soils of coniferous and deciduous forests may partly be explained by differences in N-deposition rates and partly by differences in characteristics of the litter layer and soil. NO was mainly derived from nitrification whereas N2O was mainly derived from denitrification. In general, soil moisture is lower at coniferous sites (at least during spring time and the litter layer of coniferous forests is thick and well aerated favouring nitrification and thus release of NO. Conversely, the higher rates of denitrification in deciduous forests due to a compact and moist litter layer lead to N2O production and NO consumption in the soil. The two factors soil moisture and soil temperature are

  13. Magnitude of Annual Soil Loss from a Hilly Cultivated Slope in Northern Vietnam and Evaluation of Factors Controlling Water Erosion

    International Nuclear Information System (INIS)

    Kurosawa, K.; Hai Do, N.; Nguyen, T.C.; Egashira, K.

    2010-01-01

    A soil erosion experiment was conducted in northern Vietnam over three rainy seasons to clarify the magnitude of soil loss and factors controlling water erosion. The plot had a low (8%) or medium (14.5%) slope with land-cover of cassava or morning glory or being bare. Annual soil loss (177 to 2,361 g/m 2 ) was a tolerable level in all low-slope plots but was not in some medium-slope plots. The effects of slope gradient and seasonal rainfall on the mean daily soil loss of the season were confirmed, but the effect of land-cover was not, owing to the small canopy cover ratio or leaf area index during the season. The very high annual soil loss (>2,200 g/m 2 ) observed in the first year of some medium-slope plots was the site-specific effect from initial land preparation. Since the site-specific effect was large, the preparation must be done carefully on the slope

  14. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient

    Science.gov (United States)

    Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong

    2016-01-01

    Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344

  15. Biological Soil Crusts of Arctic Svalbard—Water Availability as Potential Controlling Factor for Microalgal Biodiversity

    Directory of Open Access Journals (Sweden)

    Nadine Borchhardt

    2017-08-01

    Full Text Available In the present study the biodiversity of biological soil crusts (BSCs formed by phototrophic organisms were investigated on Arctic Svalbard (Norway. These communities exert several important ecological functions and constitute a significant part of vegetation at high latitudes. Non-diatom eukaryotic microalgal species of BSCs from 20 sampling stations around Ny-Ålesund and Longyearbyen were identified by morphology using light microscopy, and the results revealed a high species richness with 102 species in total. 67 taxa belonged to Chlorophyta (31 Chlorophyceae and 36 Trebouxiophyceae, 13 species were Streptophyta (11 Klebsormidiophyceae and two Zygnematophyceae and 22 species were Ochrophyta (two Eustigmatophyceae and 20 Xanthophyceae. Surprisingly, Klebsormidium strains belonging to clade G (Streptophyta, which were so far described from Southern Africa, could be determined at 5 sampling stations. Furthermore, comparative analyses of Arctic and Antarctic BSCs were undertaken to outline differences in species composition. In addition, a pedological analysis of BSC samples included C, N, S, TP (total phosphorus, and pH measurements to investigate the influence of soil properties on species composition. No significant correlation with these chemical soil parameters was confirmed but the results indicated that pH might affect the BSCs. In addition, a statistically significant influence of precipitation on species composition was determined. Consequently, water availability was identified as one key driver for BSC biodiversity in Arctic regions.

  16. Biological Soil Crusts of Arctic Svalbard-Water Availability as Potential Controlling Factor for Microalgal Biodiversity.

    Science.gov (United States)

    Borchhardt, Nadine; Baum, Christel; Mikhailyuk, Tatiana; Karsten, Ulf

    2017-01-01

    In the present study the biodiversity of biological soil crusts (BSCs) formed by phototrophic organisms were investigated on Arctic Svalbard (Norway). These communities exert several important ecological functions and constitute a significant part of vegetation at high latitudes. Non-diatom eukaryotic microalgal species of BSCs from 20 sampling stations around Ny-Ålesund and Longyearbyen were identified by morphology using light microscopy, and the results revealed a high species richness with 102 species in total. 67 taxa belonged to Chlorophyta (31 Chlorophyceae and 36 Trebouxiophyceae), 13 species were Streptophyta (11 Klebsormidiophyceae and two Zygnematophyceae) and 22 species were Ochrophyta (two Eustigmatophyceae and 20 Xanthophyceae). Surprisingly, Klebsormidium strains belonging to clade G (Streptophyta), which were so far described from Southern Africa, could be determined at 5 sampling stations. Furthermore, comparative analyses of Arctic and Antarctic BSCs were undertaken to outline differences in species composition. In addition, a pedological analysis of BSC samples included C, N, S, TP (total phosphorus), and pH measurements to investigate the influence of soil properties on species composition. No significant correlation with these chemical soil parameters was confirmed but the results indicated that pH might affect the BSCs. In addition, a statistically significant influence of precipitation on species composition was determined. Consequently, water availability was identified as one key driver for BSC biodiversity in Arctic regions.

  17. Field evaluation of support practice (P-factor) for stone walls to control soil erosion in an arid area (Northern Jordan)

    Science.gov (United States)

    Gharaibeh, Mamoun; Albalasmeh, Ammar

    2017-04-01

    Stone walls have been adopted for long time to control water erosion in many Mediterranean countries. In soil erosion equations, the support practice factor (P-factor) for stone walls has not been fully studied or rarely taken into account especially in semi-arid and arid regions. Field studies were conducted to evaluate the efficiency of traditional stone walls and to quantify soil erosion in six sites in north and northeastern Jordan. Initial estimates using the Universal Soil Loss Equation (USLE) showed that rainfall erosion was reduced by 65% in areas where stone walls are present. Annual soil loss ranged from 5 to 15 t yr-1. The mean annual soil loss in the absence of stone walls ranged from 10-60 t ha-1 with an average value of 35 t ha-1. Interpolating the slope of thickness of A horizon provided an average initial estimate of 0.3 for P value.

  18. Seasonal variation and controlling factors of soil carbon effluxes in six vegetation types in southeast of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern (Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (SE))

    2007-11-15

    Soil carbon effluxes of a pine stand, a spruce stand, a lichen rock, two oak stands and a meadow in the Laxemar investigation area in south-eastern Sweden (57 deg 5 N, 16 deg 7 E) have been measured with the closed chamber technique at 14 occasions between 23 of March 2004 and 10th of March 2005. Soil temperature at 10 cm depth, air temperature, soil moisture and photosynthetically active radiation (PAR) were also measured. Exponential regressions with soil respiration against air and soil temperature were used to estimate soil respiration between 15th of March 2004 and 14th of March 2005. A light response curve with Gross Primary Production (GPP) against PAR and a cubic regression with GPP against air temperature were used for modelling GPP in meadow for the growing season, 15th of March to 31st of October 2004. The exponential regressions with soil respiration against air and soil temperature explained on average 30.6% and 47.6% of the variation, respectively. Soil moisture had a linear limiting effect on soil respiration for all ecosystems but spruce, where soil moisture was the limiting factor above a threshold value of about 50%vol. In the forest ecosystems, GPP of the ground vegetation were not reducing soil carbon effluxes, while in meadow it was. In meadow, the light response curve with GPP against PAR explained 32.7% of the variation in GPP while the cubic regression against air temperature explained 33.9%. No significant effect of soil moisture on GPP was detected. The exponential regression equations with air and soil temperature against soil respiration could be used to temporally extrapolate the occasional field measurements. The light response curve with GPP against PAR and the cubic regression with GPP against air temperature could also be used for temporal extrapolation. From the modelled soil respiration, annual soil respiration for the ecosystems in Laxemar, during 15th of March 2004 to 14th of March 2005, were estimated to be between 0.56 and 1

  19. Seasonal variation and controlling factors of soil carbon effluxes in six vegetation types in southeast of Sweden

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2007-11-01

    Soil carbon effluxes of a pine stand, a spruce stand, a lichen rock, two oak stands and a meadow in the Laxemar investigation area in south-eastern Sweden (57 deg 5 N, 16 deg 7 E) have been measured with the closed chamber technique at 14 occasions between 23 of March 2004 and 10th of March 2005. Soil temperature at 10 cm depth, air temperature, soil moisture and photosynthetically active radiation (PAR) were also measured. Exponential regressions with soil respiration against air and soil temperature were used to estimate soil respiration between 15th of March 2004 and 14th of March 2005. A light response curve with Gross Primary Production (GPP) against PAR and a cubic regression with GPP against air temperature were used for modelling GPP in meadow for the growing season, 15th of March to 31st of October 2004. The exponential regressions with soil respiration against air and soil temperature explained on average 30.6% and 47.6% of the variation, respectively. Soil moisture had a linear limiting effect on soil respiration for all ecosystems but spruce, where soil moisture was the limiting factor above a threshold value of about 50%vol. In the forest ecosystems, GPP of the ground vegetation were not reducing soil carbon effluxes, while in meadow it was. In meadow, the light response curve with GPP against PAR explained 32.7% of the variation in GPP while the cubic regression against air temperature explained 33.9%. No significant effect of soil moisture on GPP was detected. The exponential regression equations with air and soil temperature against soil respiration could be used to temporally extrapolate the occasional field measurements. The light response curve with GPP against PAR and the cubic regression with GPP against air temperature could also be used for temporal extrapolation. From the modelled soil respiration, annual soil respiration for the ecosystems in Laxemar, during 15th of March 2004 to 14th of March 2005, were estimated to be between 0.56 and 1

  20. Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of Bayan Har Mountains in Qinghai-Tibet Plateau

    Science.gov (United States)

    Cao, W.; Sheng, Y.

    2017-12-01

    The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions. It is very critical to protect the alpine ecology and hydrologic cycle in Qinghai-Tibet Plateau. Especially, it becomes one of the key problems to reveal the spatial-temporal variability of soil moisture movement and its main influence factors in earth system science. Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study. The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree (CART) is adopted to identify the main controlling factors influencing the soil moisture movement. And the relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis (CCA). The results show that: 1) the change of the soil moisture on the permafrost slope is divided into 4 stages, including the freezing stability phase, the rapid thawing phase, the thawing stability phase and the fast freezing phase; 2) this greatly enhances the horizontal flow in the freezing period due to the terrain slope and the freezing-thawing process. Vertical migration is the mainly form of the soil moisture movement. It leads to that the soil-moisture content in the up-slope is higher than that in the down-slope. On the contrary, the soil-moisture content in the up-slope is lower than that in the down-slope during the melting period; 3) the main environmental factors which affect the slope-permafrost soil-moisture are elevation, soil texture, soil temperature and vegetation coverage. But there are differences in the impact factors of the soil moisture in different

  1. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity.

    Science.gov (United States)

    Yallop, A R; Clutterbuck, B

    2009-06-01

    The importance of soil storage in global carbon cycling is well recognised and factors leading to increased losses from this pool may act as a positive feedback mechanism in global warming. Upland peat soils are usually assumed to serve as carbon sinks, there is however increasing evidence of carbon loss from upland peat soils, and DOC concentrations in UK rivers have increased markedly over the past three decades. A number of drivers for increasing DOC release from peat soils have been proposed although many of these would not explain fine-scale variations in DOC release observed in many catchments. We examined the effect of land use and management on DOC production in upland peat catchments at two spatial scales within the UK. DOC concentration was measured in streams draining 50 small-scale catchments (b3 km2) in three discrete regions of the south Pennines and one area in the North Yorkshire Moors. Annual mean DOC concentration was also derived from water colour data recorded at water treatment works for seven larger scale catchments (1.5-20 km2) in the south Pennines. Soil type and land use/management in all catchments were characterised from NSRI digital soil data and ortho-corrected colour aerial imagery. Of the factors assessed, representing all combinations of soil type and land use together with catchment slope and area, the proportion of exposed peat surface resulting from new heather burning was consistently identified as the most significant predictor of variation in DOC concentration. This relationship held across all blanket peat catchments and scales. We propose that management activities are driving changes in edaphic conditions in upland peat to those more favourable for aerobic microbial activity and thus enhance peat decomposition leading to increased losses of carbon from these environments.

  2. Factors Influencing Farmers’ Adoption of Soil and Water Control Technology (SWCT in Keita Valley, a Semi-Arid Area of Niger

    Directory of Open Access Journals (Sweden)

    Boureima Yacouba Karidjo

    2018-01-01

    Full Text Available The AderDoutchiMaggia in Niger, as with other Sahelian zones, undergoes a process of climatic deterioration, which combines with the growing social and economic needs of the increasing population and causes a general economic crisis. Land degradation due to biophysical factors requires that priority action be given to land reclamation and soil conservation and to activities intended to increase agricultural production. This paper takes a look at socio-economic and established factors affecting the adoption of soil and water control technology (SWCT in Keita valley, a semi-arid area in the central of Niger. Well-designed questionnaire survey on key agents was used to gather the indispensable data from farm ménages. The binary dichotomous logistic regression model prognosticated six factors to be affecting the adoption of soil and water control technology in Keita. These variables cover the gender of the respondent, age of the household’s head, income evolution within the family, small craft referring to off farm income, training provide by local institutions, use of credit and, possession of full rights on land and its resources. The results revealed that diffusion of adoption from local organized community is a good alternative to increase the adoption of soil and water control technology in Keita valley agriculture system in Niger. Researchers and policy makers should conceive proper strategies and agenda reflecting the farmers’ interest, position and restriction in advocating new technologies for greater assumption and adoption by the farmers.

  3. Controlling factors in the dynamics of soil organic carbon from the region of Murcia; Factores de control en la dinamica del Carbono Organico de los suelos de la Region de Murcia

    Energy Technology Data Exchange (ETDEWEB)

    Albaladejo, J.; Martinez-Mena, M.; Almagro, M.; Ruiz-navarro, A.; Ortiz, R.

    2009-07-01

    Sequestration and accumulation of C on the soil is a useful way to reduce the atmospheric concentration of CO{sub 2} and to mitigate the climate change. The purpose of this study was to identify the key factors which determine the accumulation and permanence of CO on the soils of the Murcia Region. The study was arranged from data displayed on the Murcia Region Soils Map (1:100.000). The results showed that quantity of stored CO in the 30cm superficial soil is significantly different depending on soil uses, soil type, altitude and texture. One conclusion is that changes from natural vegetation to cultivated soil are the greatest cause of losses of CO of soil. The increasing of altitude and proportion of thin-silt + clay contributes to CE accumulation. In altitude, the speed of mineralization of organic materials decreases, and the thin particles stimulate the physical protection and the chemical stabilization of CO of soil. (Author) 8 refs.

  4. Analysis of factors controlling soil phosphorus loss with surface runoff in Huihe National Nature Reserve by principal component and path analysis methods.

    Science.gov (United States)

    He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Bu, He; Wo, Qiang

    2018-01-01

    Phosphorus (P) loss with surface runoff accounts for the P input to and acceleration of eutrophication of the freshwater. Many studies have focused on factors affecting P loss with surface runoff from soils, but rarely on the relationship among these factors. In the present study, rainfall simulation on P loss with surface runoff was conducted in Huihe National Nature Reserve, in Hulunbeier grassland, China, and the relationships between P loss with surface runoff, soil properties, and rainfall conditions were examined. Principal component analysis and path analysis were used to analyze the direct and indirect effects on P loss with surface runoff. The results showed that P loss with surface runoff was closely correlated with soil electrical conductivity, soil pH, soil Olsen P, soil total nitrogen (TN), soil total phosphorus (TP), and soil organic carbon (SOC). The main driving factors which influenced P loss with surface runoff were soil TN, soil pH, soil Olsen P, and soil water content. Path analysis and determination coefficient analysis indicated that the standard multiple regression equation for P loss with surface runoff and each main factor was Y = 7.429 - 0.439 soil TN - 6.834 soil pH + 1.721 soil Olsen-P + 0.183 soil water content (r = 0.487, p runoff. The effect of physical and chemical properties of undisturbed soils on P loss with surface runoff was discussed, and the soil water content and soil Olsen P were strongly positive influences on the P loss with surface runoff.

  5. Factors affecting emission of AITC and subsequent disease control efficacy of Brassica juncea seed meal soil amendment

    Science.gov (United States)

    Soil physical conditions demonstrably affected allyl isothiocyanate (AITC) emitted from Brassica juncea cv Pacific Gold seed meal (SM) amended soil. The AITC concentration detected increased with an increase in temperature from 10 oC to 30 oC. AITC concentration also increased with an increase in so...

  6. Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO2 and CH4) from semiarid mangrove soils (NE-Brazil).

    Science.gov (United States)

    Nóbrega, Gabriel N; Ferreira, Tiago O; Siqueira Neto, M; Queiroz, Hermano M; Artur, Adriana G; Mendonça, Eduardo De S; Silva, Ebenezer De O; Otero, Xosé L

    2016-01-15

    The soil attributes controlling the CO2, and CH4 emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCSEQV); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO2 and CH4 fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO2 emission. The CH4 flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves.

  7. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties.

    Science.gov (United States)

    Uematsu, Shinichiro; Vandenhove, Hildegarde; Sweeck, Lieve; Van Hees, May; Wannijn, Jean; Smolders, Erik

    2016-03-01

    Food chain contamination with radiocaesium (RCs) in the aftermath of the Fukushima accident calls for an analysis of the specific factors that control the RCs transfer. Here, soil-to-plant transfer factors (TF) of RCs for grass were predicted from the potassium concentration in soil solution (mK) and the Radiocaesium Interception Potential (RIP) of the soil using existing mechanistic models. The mK and RIP were (a) either measured for 37 topsoils collected from the Fukushima accident affected area or (b) predicted from the soil clay content and the soil exchangeable potassium content using the models that had been calibrated for European soils. An average ammonium concentration was used throughout in the prediction. The measured RIP ranged 14-fold and measured mK varied 37-fold among the soils. The measured RIP was lower than the RIP predicted from the soil clay content likely due to the lower content of weathered micas in the clay fraction of Japanese soils. Also the measured mK was lower than that predicted. As a result, the predicted TFs relying on the measured RIP and mK were, on average, about 22-fold larger than the TFs predicted using the European calibrated models. The geometric mean of the measured TFs for grass in the affected area (N = 82) was in the middle of both. The TFs were poorly related to soil classification classes, likely because soil fertility (mK) was obscuring the effects of the soil classification related to the soil mineralogy (RIP). This study suggests that, on average, Japanese soils are more vulnerable than European soils at equal soil clay and exchangeable K content. The affected regions will be targeted for refined model validation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO_2 and CH_4) from semiarid mangrove soils (NE-Brazil)

    International Nuclear Information System (INIS)

    Nóbrega, Gabriel N.; Ferreira, Tiago O.; Siqueira Neto, M.; Queiroz, Hermano M.; Artur, Adriana G.; Mendonça, Eduardo De S.; Silva, Ebenezer De O.

    2016-01-01

    The soil attributes controlling the CO_2, and CH_4 emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCS_E_Q_V); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO_2 and CH_4 fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO_2 emission. The CH_4 flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves. - Highlights: • GHG emission was associated with different soil characteristics. • Highest CO_2 emissions were found in mangroves with larger dissolved C and lower DOP. • Less CH_4 flux was due to low DOP in semiarid mangrove soils.

  9. Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO{sub 2} and CH{sub 4}) from semiarid mangrove soils (NE-Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Nóbrega, Gabriel N. [Departamento de Ciência do Solo, Escola Superior de Agricultura Luiz de Queiroz, ESALQ/USP, Av.Pádua Dias 11, Piracicaba, São Paulo 13.418-260 (Brazil); Ferreira, Tiago O., E-mail: toferreira@usp.br [Departamento de Ciência do Solo, Escola Superior de Agricultura Luiz de Queiroz, ESALQ/USP, Av.Pádua Dias 11, Piracicaba, São Paulo 13.418-260 (Brazil); Siqueira Neto, M. [Laboratório de Biogeoquímica Ambiental, Centro de Energia Nuclear na Agricultura, CENA/USP, Av. Centenário 303, Piracicaba, São Paulo 13.400-970 (Brazil); Queiroz, Hermano M.; Artur, Adriana G. [Departamento de Ciências do Solo, Universidade Federal do Ceará, UFC, Av. Mister Hull 2977, Campus do Pici, Fortaleza, Ceará 60.440-554 (Brazil); Mendonça, Eduardo De S. [Departamento de Produção Vegetal, Universidade Federal do Espírito Santo, UFES, Alto Universitário s/n, Alegre, Espírito Santo 29.500-000 (Brazil); Silva, Ebenezer De O. [Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Agroindústria Tropical, Pós Colheita, Dra. Sara Mesquita Street, 2270, Planalto Pici, Fortaleza, Ceará 60.511-110 (Brazil); and others

    2016-01-15

    The soil attributes controlling the CO{sub 2}, and CH{sub 4} emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCS{sub EQV}); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO{sub 2} and CH{sub 4} fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO{sub 2} emission. The CH{sub 4} flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves. - Highlights: • GHG emission was associated with different soil characteristics. • Highest CO{sub 2} emissions were found in mangroves with larger dissolved C and lower DOP. • Less CH{sub 4} flux was due to low DOP in semiarid mangrove soils.

  10. Experimental Study of Factors Affecting Soil Erodibility

    Science.gov (United States)

    Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovolskaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Litvin, L. F.; Maksimova, I. A.; Sudnitsyn, I. I.

    2018-03-01

    The effect of different factors and preparation conditions of monofraction samples from the arable horizon of leached chernozem on soil erodibility and its relationship with soil tensile strength (STS) has been studied. The exposure of samples at 38°C reduces their erodibility by two orders of magnitude. The drying of samples, on the contrary, increases their erodibility. It has been shown that erodibility decreases during the experiment. It has been found that the inoculation of soil with yeast cultures ( Naganishia albida, Lipomyces tetrasporus) reliably increases the STS value in 1.5-1.9 times. The sterile soil is eroded more intensively than the unsterile soil: at 4.9 and 0.3 g/(m2 s), respectively. The drying of soil followed by wetting to the initial water content (30%) has no significant effect on the STS value in almost all experimental treatments.

  11. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  12. Elucidating key factors affecting radionuclide aging in soils

    Energy Technology Data Exchange (ETDEWEB)

    Roig, M. [Universitat Politecnica Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); Rigola, A.; Vidal, M.; Rauret, G. [Barcelona Univ., Dept. de Quimica Analitica (Spain)

    2004-07-01

    Mechanistic studies allow at present to describe the processes governing the short-term interaction of radiostrontium and radiocaesium in soils. The initial sorption step can be described through the estimation of the soil-soil solution distribution coefficient from soil parameters, as cationic exchange capacity, radiocaesium interception potential and concentration of competing ions in the soil solution. After the initial soil-radionuclide interaction, a fraction of radionuclide is no longer available for exchange with the solution, and it remains fixed in the solid fraction. At present, the initial fixed fraction of a radionuclide in a given soil cannot be predicted from soil properties. Besides, little is known about soil and environmental factors (e.g., temperature; hydric regime) provoking the increase in the fixed fraction with time, the so-called aging process. This process is considered to control the reduction of food contamination with time at contaminated scenarios. Therefore, it is crucial to be able to predict the radionuclide aging in the medium and long term for a better risk assessment, especially when a decision has to be made between relying on natural attenuation versus implementing intervention actions. Here we study radiostrontium and radiocaesium aging in a set of soils, covering a wide range of soil types of contrasting properties (e.g., loamy calcareous; podzol; chernozem, organic). Three factors are separately and simultaneously tested: time elapsed since contamination, temperature and hydric regime. Changes in the radionuclide fixed fraction are estimated with a leaching test based on the use of a mild extractant solution. In addition to this, secondary effects on the radiocaesium interception potential in various soils are also considered. (author)

  13. Towards an effective control programme of soil-transmitted helminth infections among Orang Asli in rural Malaysia. Part 1: Prevalence and associated key factors

    Directory of Open Access Journals (Sweden)

    Nasr Nabil A

    2013-01-01

    Full Text Available Abstract Background Despite the continuous efforts to improve the quality of life of Orang Asli (Aborigines communities, these communities are still plagued with a wide range of health problems including parasitic infections. The first part of this study aimed at determining the prevalence of soil-transmitted helminth (STH infections and identifying their associated factors among rural Orang Asli children. Methods A cross-sectional study was carried out among 484 Orang Asli children aged ≤ 15 years (235 females and 249 males belonging to 215 households from 13 villages in Lipis district, Pahang, Malaysia. Faecal samples were collected and examined by using formalin-ether sedimentation, Kato Katz and Harada Mori techniques. Demographic, socioeconomic, environmental and behavioural information were collected by using a pre-tested questionnaire. Results Overall, 78.1% of the children were found to be infected with one or more STH species. The prevalence of trichuriasis, ascariasis and hookworm infections were 71.7%, 37.4% and 17.6%, respectively. Almost all, three quarters and one fifth of trichuriasis, ascariasis and hookworm infections, respectively, were of moderate-to-heavy intensities. Multiple logistic regression analysis showed that age of ≥ 6 years (school-age, using unsafe water supply as a source for drinking water, absence of a toilet in the house, large family size (≥ 7 members, not washing hands before eating, and not washing hands after defecation were the key factors significantly associated with STH among these children. Conclusion This study reveals an alarmingly high prevalence of STH among Orang Asli children and clearly brings out an urgent need to implement school-based de-worming programmes and other control measures like providing a proper sanitation, as well as a treated drinking water supply and proper health education regarding good personal hygiene practices. Such an integrated control program will help

  14. Deep Compaction Control of Sandy Soils

    Directory of Open Access Journals (Sweden)

    Bałachowski Lech

    2015-02-01

    Full Text Available Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  15. Mechanisms controlling radionuclide mobility in forest soils

    International Nuclear Information System (INIS)

    Delvaux, B.; Kruyts, N.; Maes, E.; Agapkina, G.I.; Kliashtorin, A.; Bunzl, K.; Rafferty, B.

    1996-01-01

    Soil processes strongly influence the radionuclide mobility in soils. The mobility of radionuclides in forest soils is governed by several processes involving both abiotic and biotic factors. The sorption-desorption process chiefly governs the activity of radionuclides in the soil solution, hence thereby their mobility and biological availability. Radiocaesium exhibits a very low mobility in mineral soils. Both mobility and bioavailability however increase as the thickness of organic layers and their content in organic matter increases. Clay minerals of micaceous origin strongly act as slinks for radiocaesium in forest soils. The magnitude of cesium mineral fixation in topsoils is expected to be the highest in mineral soils of Eutric cambisol type, and, to a lesser extent, of type of Distric cambisol and Podzoluvisol. A low mobility of radiocaesium in the surface horizons of forest soils may also be partially explained by a biological mobilization: fungi absorb radiocaesium and transport it to upper layers, thereby contributing to constantly recycle the radioelement in the organic horizons. This mechanism is probably important in soils with thick organic layers (Podsol, Histosol, and, to a lesser extent, Distric cambisol and Podzoluvisol). Radionuclides can be associated with soluble organic anions in the soil solution of forest acid soils. Such associations are highly mobile: they are stable in conditions of poor biological activity (low temperatures, acid soil infertility, water excess, etc.). Their magnitude is expected to be the highest in thick acid organic layers (soils of type Podzol and Histosol)

  16. Soil Plant and plant mammal transfer factors

    NARCIS (Netherlands)

    de Nijs ACM; Vermeire TG

    1990-01-01

    In order to assess the lifetime hazard of ingestion exposure of man to new substances, the RIVM Assessment System for New Substances links environmental concentrations in water and soil to human exposure applying transfer factors. This report discusses indirect human exposure to new substances via

  17. Soil - plant experimental radionuclide transfer factors

    International Nuclear Information System (INIS)

    Dobrin, R.I.; Dulama, C.N.; Toma, Al.

    2006-01-01

    Some experimental research was performed in our institute to assess site specific soil-plant transfer factors. A full characterization of an experimental site was done both from pedo-chemical and radiological point of view. Afterwards, a certain number of culture plants were grown on this site and the evolution of their radionuclide burden was then recorded. Using some soil amendments one performed a parallel experiment and the radionuclide root uptake was evaluated and recorded. Hence, transfer parameters were calculated and some conclusions were drawn concerning the influence of site specific conditions on the root uptake of radionuclides. (authors)

  18. 137Cs Transfer Factor from Latosol Soil to Swamp Gabbages (Ipomea Reptans Poir)

    International Nuclear Information System (INIS)

    Leli-Nirwani; Yurfida; Buchori

    2001-01-01

    A study of 137 Cs transfer factor from Latosol soil to swamp cabbages plant has been conducted using pot treatment system with complete random design. The aim of the research is to determine transfer factor of 137 Cs from latosol soil to swamp cabbages plant. Cs-137 concentration administered was 7.5287 kBq/pot. The number of swamp cabbages planted in 137 Cs treated soil and in cannot soil respectively was 12 pots filled with 1 kg soil/pot. After harvest, the weight of dried plant was measured. Transfer factor was determined according to the accumulation of 137 Cs concentration in swamp cabbages and soil and counted using Spectrometer Gamma. It was found that is a significant difference between 137 Cs concentration in swamp cabbages planted inthe treated soil and that of control soil. Transfer factor ranges between 0.02 and 0.13 with the averageof 0.08. (author)

  19. Suburban Soils: Are they the answer in determining factors controlling non-point-source DOC and DON in urban surface waters?

    Science.gov (United States)

    Aitkenhead-Peterson, J. A.

    2016-12-01

    Generally the quality of urban streams has been attributed to storm water runoff and sewage effluent discharge. Recent work in the upper Trinity Basin downstream from the Dallas/Fort Worth metropolis, TX concluded that sewage effluent only contributed between 1 and 35% of DOC dependent upon the population of the watershed. Change from native to urban land use increased DOC exports to between 938 - 1840 kg km-2 yr-1relative to the 517 kg km-2 yr-1 expected from native land use. Where this excess DOC might come from in an urban ecosystem was addressed in a separate study examining water extractable DOC (WEDOC) and DON (WEDON) in soils of single-family home lawns in Chicago, IL, Frederick, MD, Bryan/College Station, TX and Galveston, TX. These cities were exposed to different sources of sodium. Time of exposure to sodium was considered on the assumption that as new sub-divisions are built, new soil or turfgrass sod is introduced to the site. Exposure times were 0-5, 6-10, 11-20, 21-30 and > 30 yr. Length of exposure time of the soil to the urban environment was significant among the four cities examined for DOC (p < 0.001), DON (p < 0.001), sodium adsorption ratio (p < 0.006) but not for sodium (p = 0.08) or exchangeable sodium percent (ESP) (p = 0.09). In all cities WEDON increased with urban exposure time and in all cities except Galveston WEDOC increased with urban exposure time. Sodium, regardless of its source, explained 60% of the variance in WEDOC and 54% of the variance in WEDON across all cities (n = 136). To determine what other factors might be involved in increasing WEDOC and WEDON losses from suburban soils, backward stepwise regression models were used. Across the four cities, time of urban exposure, soil saturated hydraulic conductivity (Ksat), NO3-N, NH4-N, S, PO4-P, Na, Cu, Ca, Fe and Zn produced a significant model for WEDOC (Adjusted r2 = 0.85; p < 0.001) and Ksat, pH, NH4-N, PO4-P, S, Alkalinity and Cu produced a significant model for WEDON

  20. WEED CONTROL EFFECTS ON SOIL CHEMICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2008-01-01

    Full Text Available The weed control procedures are known to affect the soil physical attributes and the nutrient amount taken up by weed roots. This work hypothesis is that weed control methods might also affect soil chemical attributes. Four experiments were carried out, three with maize (E-1, E-2 and E-3 and one with cotton (E-4, in randomized complete blocks design arranged in split-plots, with five replications. In E-1 experiment, the plots consisted of two weed control treatments: no-weed control and weed shovel-digging at 20 and 40 days after sowing; and the subplots consisted of six maize cultivars. In the three other experiments, the plots consisted of plant cultivars: four maize cultivars (E-2 and E-3 and four cotton cultivars (E-4. And, the subplots consisted of three weed control treatments: (1 no-weed control; (2 weed shovel-digging at 20 and 40 days after sowing; and (3 intercropping with cowpea (E-2 or Gliricidia sepium (Jacq. Walp. (E-3 and E-4. In all experiments, after harvest, eight soil samples were collected from each subplot (0-20 cm depth and composed in one sample. Soil chemical analysis results indicated that the weed control by shovel-digging or intercropping may increase or decrease some soil element concentrations and the alterations depend on the element and experiment considered. In E-2, the weed shovel-dug plots showed intermediate soil pH, lower S (sum of bases values and higher soil P concentrations than the other plots. In E-4, soil K and Na concentrations in plots without weed control did not differ from plots with intercropping, and in both, K and Na values were higher than in weed shovel-dug plots. Maize and cotton cultivars did not affect soil chemical characteristics.

  1. [Interrelationships between soil fauna and soil environmental factors in China: research advance].

    Science.gov (United States)

    Wang, Yi; Wei, Wei; Yang, Xing-zhong; Chen, Li-ding; Yang, Lei

    2010-09-01

    Soil fauna has close relations with various environmental factors in soil ecosystem. To explore the interrelationships between soil fauna and soil environmental factors is of vital importance to deep understand the dynamics of soil ecosystem and to assess the functioning of the ecosystem. The environmental factors affecting soil fauna can be classified as soil properties and soil external environment. The former contains soil basic physical and chemical properties, soil moisture, and soil pollution. The latter includes vegetation, land use type, landform, and climate, etc. From these aspects, this paper summarized the published literatures in China on the interrelationships between soil fauna and soil environmental factors. It was considered that several problems were existed in related studies, e.g., fewer researches were made in integrating soil fauna's bio-indicator function, research methods were needed to be improved, and the studies on the multi-environmental factors and their large scale spatial-temporal variability were in deficiency. Corresponding suggestions were proposed, i.e., more work should be done according to the practical needs, advanced experiences from abroad should be referenced, and comprehensive studies on multi-environmental factors and long-term monitoring should be conducted on large scale areas.

  2. Can we manipulate root system architecture to control soil erosion?

    Science.gov (United States)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  3. Study on Erosion Factors Affecting Kuroboku Soil Loss I. Water Permeability of Stratified Soil and Slope Gradient

    OpenAIRE

    田熊, 勝利; 猪迫, 耕二; 中原 恒,

    2005-01-01

    The authors examined the factors of bed soil affecting the loss of surface soil and the effects of these factors on the extent of the soil loss. They conducted a multivariate analysis using actual measurement value at a laboratory erosion experiment. They also conducted a simulation of erosion in soil loss using the bed soil factors. Soil loss quantity is dependent on the coefficient of permeability of bed soil; the steeper the latter is, the more the former increases. Lateral soil scattering...

  4. Impact of environmental factors and biological soil crust types on soil respiration in a desert ecosystem.

    Science.gov (United States)

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93 ± 0.43 µmol m-2 s-1) and the lowest values in algae-crusted soil (0.73 ± 0.31 µmol m-2 s-1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m-3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level.

  5. Impact of Environmental Factors and Biological Soil Crust Types on Soil Respiration in a Desert Ecosystem

    Science.gov (United States)

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93±0.43 µmol m−2 s−1) and the lowest values in algae-crusted soil (0.73±0.31 µmol m−2 s−1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m−3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level. PMID:25050837

  6. Factors impacting the electro conductivity variations of clayey soils

    International Nuclear Information System (INIS)

    Ouhadi, V. R.; Goodarzi, A. R.

    2007-01-01

    The variation of pore fluid properties in soil has a major effect on soil behaviour. This effect is a function of pore fluid properties and soil mineralogy. Such variation usually happens in the reservoirs of dams or in some geotechnical projects. The electro conductivity measurement is a simple method to monitor any variation in the pore fluid of soils. electro conductivity is the ability of a material to transmit (conduct) an electrical current. This paper focuses attention on the effect of soil-pore fluid interaction on the electro conductivity of clayey soils. A set of physico-chemical experiments are performed and the role of different factors including soil pH, soil mineralogy, soil: water ratio, cation and anion effects are investigated. The results of this study indicate that for soil that has a relatively low CEC, the anion type is an important factor, while the cation type does not noticeably affect the electro conductivity of the soil-solution. However, for such soil, an electrolyte property, i.e. its solubility, is much more effective than the CEC of the soil. In addition, it was observed that in the presence of neutral salts such as pore fluid, the pH of the soil-solution decreases causing an increase in the electro conductivity of the soil sample

  7. Geochemistry of soil around a fluoride contaminated area in Nayagarh District, Orissa, India: factor analytical appraisal.

    Science.gov (United States)

    Tripathy, S; Panigrahi, M K; Kundu, N

    2005-09-01

    Fluoride contamination in soil was studied in the vicinity of a hot spring in Nayagarh district of Orissa. Both bulk soil from 0 to 30 cm depth and profile soils from 0 to 90 cm depth were analyzed for total fluoride (F(t)) and 0.01 M CaCl(2) extractable fluoride (F(ca)), major elements, pH, EC and Organic Carbon (OC). High concentrations of both F(t) and F(ca) were observed in the area surrounding the hot spring and the village of Singhpur. Principal factor analysis (PFA) on the parameters of the bulk soils suggests that two major chemical processes due to three factors, control the soil geochemistry of the area. Factor-1 contributes 37.11% of the total variance and is strongly loaded with Al, Si, Fe, F(t)and F(ca), and explains the fluoride enrichment of the soil, whereas the second and the third factors contribute 16.6 and 12.2%, respectively and explain the controlling process of carbonate precipitation and soil alkalinity. Multiple regression analysis of the scores of the factors was performed to derive a fluoride contamination index in soil. The magnitude of the factor effect on the contamination index follows the order of Factor-1 > Factor-2 > Factor-3. The spatial distribution of the contamination index is used to classify the area into highly contaminated, moderately contaminated and uncontaminated zones.

  8. Soil solarization for weed control in carrot

    Directory of Open Access Journals (Sweden)

    MARENCO RICARDO ANTONIO

    2000-01-01

    Full Text Available Soil solarization is a technique used for weed and plant disease control in regions with high levels of solar radiation. The effect of solarization (0, 3, 6, and 9 weeks upon weed populations, carrot (Daucus carota L. cv. Brasília yield and nematode infestation in carrot roots was studied in São Luís (2º35' S; 44º10' W, MA, Brazil, using transparent polyethylene films (100 and 150 mm of thickness. The maximum temperature at 5 cm of depth was about 10ºC warmer in solarized soil than in control plots. In the study 20 weed types were recorded. Solarization reduced weed biomass and density in about 50% of weed species, including Cyperus spp., Chamaecrista nictans var. paraguariensis (Chod & Hassl. Irwin & Barneby, Marsypianthes chamaedrys (Vahl O. Kuntze, Mitracarpus sp., Mollugo verticillata L., Sebastiania corniculata M. Arg., and Spigelia anthelmia L. Approximately 40% of species in the weed flora were not affected by soil mulching. Furthermore, seed germination of Commelina benghalensis L. was increased by soil solarization. Marketable yield of carrots was greater in solarized soil than in the unsolarized one. It was concluded that solarization for nine weeks increases carrot yield and is effective for controlling more than half of the weed species recorded. Mulching was not effective for controlling root-knot nematodes in carrot.

  9. Hydrological controls on heterotrophic soil respiration across an agricultural landscape

    Science.gov (United States)

    Water availability is an important determinant of variation in soil respiration, but a consistent relationship between soil water and the relative flux rate of carbon dioxide across different soil types remains elusive. Using large undisturbed soil columns (N = 12), we evaluated soil water controls...

  10. Factors influencing adoption of soil and water conservation measures in southern Mali

    NARCIS (Netherlands)

    Bodnar, F.; Graaff, de J.

    2003-01-01

    A soil and water conservation (SWC) extension programme, promoting erosion control measures and soil fertility measures, has been going on in southern Mali since 1986. Five factors that influence farmer adoption of SWC measures were analysed: land pressure, cotton-growing area, possession of

  11. Sensitivity Analysis of the USLE Soil Erodibility Factor to Its Determining Parameters

    Science.gov (United States)

    Mitova, Milena; Rousseva, Svetla

    2014-05-01

    Soil erosion is recognized as one of the most serious soil threats worldwide. Soil erosion prediction is the first step in soil conservation planning. The Universal Soil Loss Equation (USLE) is one of the most widely used models for soil erosion predictions. One of the five USLE predictors is the soil erodibility factor (K-factor), which evaluates the impact of soil characteristics on soil erosion rates. Soil erodibility nomograph defines K-factor depending on soil characteristics, such as: particle size distribution (fractions finer that 0.002 mm and from 0.1 to 0.002 mm), organic matter content, soil structure and soil profile water permeability. Identifying the soil characteristics, which mostly influence the K-factor would give an opportunity to control the soil loss through erosion by controlling the parameters, which reduce the K-factor value. The aim of the report is to present the results of analysis of the relative weight of these soil characteristics in the K-factor values. The relative impact of the soil characteristics on K-factor was studied through a series of statistical analyses of data from the geographic database for soil erosion risk assessments in Bulgaria. Degree of correlation between K-factor values and the parameters that determine it was studied by correlation analysis. The sensitivity of the K-factor was determined by studying the variance of each parameter within the range between minimum and maximum possible values considering average value of the other factors. Normalizing transformation of data sets was applied because of the different dimensions and the orders of variation of the values of the various parameters. The results show that the content of particles finer than 0.002 mm has the most significant relative impact on the soil erodibility, followed by the content of particles with size from 0.1 mm to 0.002 mm, the class of the water permeability of the soil profile, the content of organic matter and the aggregation class. The

  12. Plant parasite control and soil fauna diversity.

    Science.gov (United States)

    Lavelle, Patrick; Blouin, Manuel; Boyer, Johnny; Cadet, Patrice; Laffray, Daniel; Pham-Thi, Anh-Thu; Reversat, Georges; Settle, William; Zuily, Yasmine

    2004-07-01

    The use of pesticides to control plant parasites and diseases has generated serious problems of public health and environmental quality, leading to the promotion of alternative Integrated Pest Management strategies that tend to rely more on natural processes and the active participation of farmers as observers and experimenters in their own fields. We present three case studies that point at different options provided by locally available populations of soil organisms, the maintenance of diverse populations of pests or increased resistance of plants to pest attacks by their interactions with earthworms and other useful soil organisms. These examples demonstrate the diversity of options offered by the non-planned agro-ecosystem diversity in pest control and the need to identify management options that maintain this biodiversity.

  13. Automated Greenhouse : Temperature and soil moisture control

    OpenAIRE

    Attalla, Daniela; Tannfelt Wu, Jennifer

    2015-01-01

    In this thesis an automated greenhouse was built with the purpose of investigating the watering system’s reliability and if a desired range of temperatures can be maintained. The microcontroller used to create the automated greenhouse was an Arduino UNO. This project utilizes two different sensors, a soil moisture sensor and a temperature sensor. The sensors are controlling the two actuators which are a heating fan and a pump. The heating fan is used to change the temperature and the pump is ...

  14. 60Co Transfer Factor From Lutosol Soil To Leafy Vegetable (Ipomea reptans poir)

    International Nuclear Information System (INIS)

    Leli-Nirwani; Jumaher; Wahyudi

    2003-01-01

    It has been conducted 60 Co transfer study from Lutosol soil to leafy vegetable plant by using pot treatment system. The aim of the research is to obtain data of the transfer factor of 60 Co from lutosol soil to leafy vegetable plant. Pot experiment was carried out by using the complete random design to evaluate two treatment, namely soil with 60 Co and without 60 Co (as a control). 60 Co concentration was with 6.1371 kBq/pot. Tested plant and control plant amount to 12 pots. Each pot contains 1 kg of soil. After harvesting, the weight of dry plant was determined and was conducted with Spectrometer Gamma to 60 Co concentration in dry plant and dry soil. Transfer factor was found to between 0.02 and 0.68 and the average is 0.2068. (author)

  15. SOIL FORMATION BY ECOLOGICAL FACTORS: CRITICAL REVIEW

    OpenAIRE

    Saeed Zeraat Kar; Aydin Berenjian

    2013-01-01

    Regolith is the term we give parent material that has been weathered. The regolith consists of weathered bedrock near the surface including the soil layer. In the Iranian soil layer we will find: decayed parent materials, decaying plant material, decaying animal matter (manure) along with vegetation. Results of the present study show us that methods stimulating natural fertility in Iran includes composting-adds humus layer, drip irrigation-balances illuviation and eluviation in arid regions, ...

  16. Physical and chemical factors influencing radionuclide behaviour in arable soils

    International Nuclear Information System (INIS)

    Rauret, G.; Vidal, M.; Alexakhin, R.M.; Kruglov, S.V.; Cremers, A.; Wauters, J.; Valcke, E.; Ivanov, Y.

    1996-01-01

    Soil-to-plant transfer of radionuclides integrates plant physiological and soil chemical aspects. Therefore, it is necessary to study the factors affecting the equilibrium of the radionuclides between solid and soil solution phases. Desorption and adsorption studies were applied to the podsolic and peat soils considered in the ECP-2 project. In the desorption approach, both sequential extraction and 'infinite bath' techniques were used. In the adsorption approach, efforts were directed at predicting Cs and Sr-K D on the basis of soil properties and soil solution composition. Desorption approach predicts time-dynamics of transfer with time but it is un sufficient for comparatively predicting transfer. Adsorption studies informs about which are the key factors affecting radionuclide transfer. For Sr, availability depends on the CEC and on the concentration of the Ca + Mg in the soil solution. For Cs, availability is mainly dependent on the partitioning between FES -frayed edge sites-, which are highly specific and REC -regular exchange complex-, with low selectivity for Cs. Moreover, availability depends on the K and NH 4 , levels in the soil solution and fixation properties of the soil. Considering these factors, the calculation of the in situ K D values helps to predict the relative transfer of radionuclides. The calculation of the K D of the materials that could be used as countermeasures could permit the prediction of its suitability to decrease transfer and therefore to help in producing cleaner agricultural products

  17. Chapter 7. Assessing soil factors in wildland improvement programs

    Science.gov (United States)

    Arthur R. Tiedemann; Carlos F. Lopez

    2004-01-01

    Soil factors are an important consideration for successful wildland range development or improvement programs. Even though many soil improvement and amelioration practices are not realistic for wildlands, their evaluation is an important step in selection of adapted plant materials for revegetation. This chapter presents information for wildland managers on: the...

  18. Variability of soil-to-crop transfer factor

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Kamada, Hiroshi; Yokosuka, Setsuko; Ohmomo, Yoichiro

    1987-01-01

    Many European countries have nuclear facilities in inland areas, where extremely low level radioactive waste liquid is discharged to rivers. In those nations, therefore, many studies have been made oncerning the transfer of radioisotopes into plants. In Japan, greater attention has been attracted to such radioisotope transfer into plants and then into human bodies. Thus the present report reviews various studies on this issue. The key parameter for this process is the transfer factor (also called concentration factor, coefficient or ratio). The factor largely depends on various other factors including the characteristics of different nuclides, properties of soil (pH, oxidation-reduction potential, grain size distribution, contents of clay minerals, contents of organic matters, water content, etc.), characteristics of crops and cultivation conditions. It has been reported that I is absorbed by plants more rapidly than IO 3 . Of the various soil parameters, the pH of soil has the greatest effect on the transfer factor. Soil is mostly alkaline in Europe and America while acid soil account for a great part in Japan, suggesting that the transfer factor would be greater in Japan. The total potassium content in soil has the second largest effect on the factor. Radioactive iodine has shown to be transferred into soy beans and spinach 30 times more rapidly than into fruit vegetables. The oxidation-reduction potential also has a significant influence on the transfer factor. (Nogami, K.)

  19. Study on the influence factors about the soil radon measurement

    International Nuclear Information System (INIS)

    Wu Zixiang; Liu Yanbin; Jia Yuxin; Mai Weiji; Liu Xiaolian; Yang Yuhua

    2006-01-01

    Objective: To explore relevant factors about the soil radon measurement and provide gist of formulating correct measure method by studying the way of the soil radon measurement. Methods: Deflation-ionization room standard is adopted. Results: The concentration of soil radon becomes higher with the sample's volume added, it also augmented with the measure depth increased in certain degree; The concentration of soil radon changes little when sample's depth is above 60 cm; The time of deflation has no obvious influence on the concentration of soil radon, but microwave show serious effect on it; The results will be lowered when the desiccant is humidified, raining has the same affection on it; Plant has some impact on it. Conclusion: The measured results will be affected by microwave, oscillate and plant. Sample's volume and depth, soil's humidity can influence it too. The result's veracity can be guaranteed by choosing appropriate sample and measure condition. (authors)

  20. Potential factors affecting accumulation of unsupported 210Pb in soil

    International Nuclear Information System (INIS)

    Mihailović, Aleksandra; Vučinić Vasić, Milica; Todorović, Nataša; Hansman, Jan; Vasin, Jovica; Krmar, Miodrag

    2014-01-01

    Airborne 210 Pb, daughter of 222 Rn, is frequently used as a tracer in different studies concerning atmospheric transport, sedimentation, soil erosion, dating, etc. Concentration of 210 Pb was measured in 40 soil samples collected in urban and industrial areas in order to get evidence of possible influence of some factors on accumulation of airborne 210 Pb in soil. Different soil properties such as the content of organic matter, free CaCO 3 , and available phosphorus (P 2 O 5 ) were measured to explore their possible correlation with the amount of 210 Pb. Special attention was given to the correlation between 210 Pb and stable lead accumulated in the soil. Several samples were taken near a battery manufacturer to check if extremely high concentrations of lead can affect the uptake of the airborne 210 Pb in soil. Soil samples were also taken at different depths to investigate the penetration of lead through the soil. - Highlights: • 210 Pb and 137 Cs were measured in samples of urban soil. • Organic matter, free CaCO 3 content, available phosphorus, and lead were measured in soil samples. • There is no statistically significant correlation between 210 Pb and lead, CaCO 3 and phosphorus. • A strong positive correlation between 210 Pb and organic matter was observed

  1. Controls on soil solution nitrogen along an altitudinal gradient in the Scottish uplands.

    Science.gov (United States)

    Jackson-Blake, L; Helliwell, R C; Britton, A J; Gibbs, S; Coull, M C; Dawson, L

    2012-08-01

    Nitrogen (N) deposition continues to threaten upland ecosystems, contributing to acidification, eutrophication and biodiversity loss. We present results from a monitoring study aimed at investigating the fate of this deposited N within a pristine catchment in the Cairngorm Mountains (Scotland). Six sites were established along an elevation gradient (486-908 m) spanning the key habitats of temperate maritime uplands. Bulk deposition chemistry, soil carbon content, soil solution chemistry, soil temperature and soil moisture content were monitored over a 5 year period. Results were used to assess spatial variability in soil solution N and to investigate the factors and processes driving this variability. Highest soil solution inorganic N concentrations were found in the alpine soils at the top of the hillslope. Soil carbon stock, soil solution dissolved organic carbon (DOC) and factors representing site hydrology were the best predictors of NO(3)(-) concentration, with highest concentrations at low productivity sites with low DOC and freely-draining soils. These factors act as proxies for changing net biological uptake and soil/water contact time, and therefore support the hypothesis that spatial variations in soil solution NO(3)(-) are controlled by habitat N retention capacity. Soil percent carbon was a better predictor of soil solution inorganic N concentration than mass of soil carbon. NH(4)(+) was less affected by soil hydrology than NO(3)(-) and showed the effects of net mineralization inputs, particularly at Racomitrium heath and peaty sites. Soil solution dissolved organic N concentration was strongly related to both DOC and temperature, with a stronger temperature effect at more productive sites. Due to the spatial heterogeneity in N leaching potential, a fine-scale approach to assessing surface water vulnerability to N leaching is recommended over the broad scale, critical loads approach currently in use, particularly for sensitive areas. Copyright © 2012

  2. Factors affecting soil erosion in Beijing mountain forestlands | Zhang ...

    African Journals Online (AJOL)

    The role of regions, vegetation types and forest stand density in controlling soil erosion were investigated in Beijing mountain forest, China. The main objective was to develop some models to estimate soil erosion under different forest conditions including regions, vegetation type, and stand density as influenced by artificial ...

  3. Influence of multiple factors on plant local adaptation: soil type and folivore effects in Ruellia nudiflora (Acanthaceae)

    OpenAIRE

    Ortegón-Campos, I.; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Cervera, J. Carlos; Marrufo-Zapata, Denis; Herrera, Carlos M.

    2011-01-01

    Different environmental factors can have contrasting effects on the extent of plant local adaptation (LA). Here we evaluate the influence of folivory and soil type on LA in Ruellia nudiflora by performing reciprocal transplants at two sites in Yucatan (Mexico) while controlling for soil source and folivory level. Soil samples were collected at each site and half of the plants of each source at each site were grown with one soil source and half with the other. After transplanting, we reduced f...

  4. Soil-plant transfer factors in forest ecosystems

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M.H.

    1995-04-01

    Within scope of an extended study about 137 Cs behaviour in forest ecosystems several parameters were found to influence soil-plant transfer factors. TF-values of different plant species cover a range of two magnitudes. This is partly due to variations in rooting depth of plants and specific physiological adaptations of nutrient supply. Perrenial plants like trees (Picea abies) and dwarf shrubs (Vaccinium myrtillus) showed a distinct age - dependency of 137 Cs - transfer factors. In young plant parts caesium concentration is higher than in old, more signified twigs. A correlation analysis of physico-chemical soil parameters and TF-values to forest vegetation showed, that soil organic matter, especially the degree of humification and the ratio between extractable fulvic to humic acids are important influencing factors of 137 Cs transfer from forest soils to plants. (author)

  5. Soil solid-phase controls lead activity in soil solution.

    Science.gov (United States)

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  6. Control of lead solubility in soil contaminated with lead shot: Effect of soil pH

    International Nuclear Information System (INIS)

    Rooney, Corinne P.; McLaren, Ronald G.; Condron, Leo M.

    2007-01-01

    An incubation experiment was carried out to assess the rate of oxidation of Pb shot and subsequent transfer of Pb to the soil under a range of soil pH conditions. Lead shot corrosion was rapid, so that soil solution and fine earth ( 3 (CO 3 ) 2 (OH) 2 ), developed in crusts surrounding individual Pb pellets. However, irrespective of pH, Pb 2+ activities in the soil solutions, modelled using WHAM 6, were much lower than would be the case if they were controlled by the solubility of the dominant Pb compounds present in the Pb shot crust material. In contrast, modelling of soil solid-solution phase distribution of Pb, again using WHAM 6, suggested that, at least during the 24 months of the study, soil solution Pb concentrations were more likely to be controlled by sorption of Pb by the soil solid phase. - Sorption processes control Pb 2+ ion activity in soils contaminated with Pb shot

  7. Ecological factors governing the distribution of soil microfungi in some forest soils of Pachmarhi Hills, India

    Directory of Open Access Journals (Sweden)

    Shashi Chauhan

    2014-01-01

    Full Text Available An ecological study of the microfungi occurring in the various forest soils of Pachmarhi Hills, India has been carried-out by the soil plate technique. Soil samples from 5 different forest communities viz., moist deciduous forest dominated by tree ferns, Diospyros forest, Terminalia forest, Shorea forest and scrub forest dominated by Acacia and Dalbergia sp. were collected during October, 1983. Some physico-chemical characteristics of the soil were analysed and their role in distribution of fungi in 5 soil types was studied and discussed. 43 fungal species were isolated, of which Asperigillus niger I and Penicillium janthinellum occurred in all the 5 soil types. Statistically, none of the edaphic factors showed positive significant correlation with the number of fungi.

  8. [Dynamic changes in soil respiration components and their regulating factors in the Moso bamboo plantation in subtropical China].

    Science.gov (United States)

    Yang, Wen-jia; Li, Yong-fu; Jiang, Pei-kun; Zhou, Guo-mo; Liu, Juan

    2015-10-01

    Dynamic changes (from April 2013 to March 2014) in soil respiration components were investigated by Li-8100 in the Moso bamboo plantation in Lin' an City, Zhejiang Province. Results showed that the average annual values for the soil total respiration rate, heterotrophic respiration rate, and autotrophic respiration rate in the Moso bamboo plantation were 2.93, 1.92 and 1.01 imol CO2 . m-2 . s-1, respectively. The soil respiration rate and its components exhibited strongly a seasonal dynamic pattern. The maximum appeared in July 2013, and the minimum appeared in January 2014. The annual cumulative CO2 emissions through soil respiration, heterotrophic respiration, and autotrophic respiration were 37.25, 24.61 and 12.64 t CO2 . hm-2 . a-1, respectively. The soil respiration and its components showed a close relation with soil temperature of 5 cm depth, and the corresponding Q10, values at 5 cm depth were 2.05, 1.95 and 2.34, respectively. Both the soil respiration and heterotrophic respiration were correlated to soil water soluble organic C (WSOC) content, but no significant relationship between autotrophic respiration and WSOC was observed. There were no significant relationships between soil respiration components and soil moisture content or microbial biomass C. The seasonal changes in soil respiration components in the Moso bamboo plantation were predominantly controlled by the soil temperature, and the soil WSOC content was an important environmental factor controlling total soil respiration and soil heterotrophic respiration.

  9. Distribution of soil selenium in China is potentially controlled by deposition and volatilization?

    Science.gov (United States)

    Sun, Guo-Xin; Meharg, Andrew A.; Li, Gang; Chen, Zheng; Yang, Lei; Chen, Song-Can; Zhu, Yong-Guan

    2016-02-01

    Elucidating the environmental drivers of selenium (Se) spatial distribution in soils at a continental scale is essential to better understand it’s biogeochemical cycling to improve Se transfer into diets. Through modelling Se biogeochemistry in China we found that deposition and volatilization are key factors controlling distribution in surface soil, rather than bedrock-derived Se (balance in other terrestrial environments worldwide.

  10. Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors.

    Science.gov (United States)

    Srinivasan, Prakash; Sarmah, Ajit K

    2014-05-01

    The dissipation of sulfamethoxazole (SMO) antibiotic in three different soils was investigated through laboratory incubation studies. The experiments were conducted under different incubation conditions such as initial chemical concentration, soil depth, temperature, and with sterilisation. The results indicate that SMO dissipated rapidly in New Zealand pasture soils, and the 50% dissipation times (DT50) in Hamilton, Te Kowhai and Horotiu soils under non-sterile conditions were 9.24, 4.3 and 13.33 days respectively. During the incubation period for each sampling event the soil dehydrogenase activity (DHA) and the variation in microbial community were monitored thorough phospholipid fatty acid extraction analysis (PLFA). The DHA data correlated well with the dissipation rate constants of SMO antibiotic, an increase in the DHA activity resulted in faster antibiotic dissipation. The PLFA analysis was indicative of higher bacterial presence as compared to fungal community, highlighting the type of microbial community responsible for dissipation. The results indicate that with increasing soil depth, SMO dissipation in soil was slower (except for Horotiu) while with increase in temperature the antibiotic loss was faster, and was noticeable in all the soils. Both the degree of biological activity and the temperature of the soil influenced overall SMO dissipation. SMO is not likely to persist more than 5-6 months in all three soils suggesting that natural biodegradation may be sufficient for the removal of these contaminants from the soil. Its dissipation in sterile soils indicated abiotic factors such as strong sorption onto soil components to play a role in the dissipation of SMO. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Transfer factors of Polonium from soil to parsley and mint

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Al-Hamwi, A.; Eadan, Z.; Amin, Y.

    2010-01-01

    Transfer factors of 210 Po from soil to parsley and mint have been determined. Artificial polonium isotope ( 208 Po) was used as a tracer to determine transfer factor of Po from soil to plant in pot experiments. Two plant growing systems were used for this study namely, an outdoor system and a sheltered system by a polyethylene tent. 208 Po and 210 Po were determined in soil and different parts of the studied plants (stem and leaf), using alpha spectroscopy. The results have shown that there was a clear uptake of 208 Po by roots to leaves and stems of both plants. Higher values of transfer factors using the 210 Po activity concentrations than the 208 Po activity concentration were observed. Transfer factors of 210 Po from soil to parsley varied between 20 x 10 -2 and 50 x 10 -2 and 22 x 10 -3 and 67 x 10 -3 in mint, while 208 Po transfer factors varied between 4 x 10 -2 and 12 x 10 -2 for parsley and 10 x 10 -2 and 22 x 10 -2 in mint. Transfer factors of Po were higher in those plants grown in the sheltered system than in the open system; about 75% of Po was transferred from atmosphere to parsley parts using the two systems. Ratios of transferred Po from soil to mint stem and leaf in the sheltered system were higher by 2 times from those in the open system.

  12. Nutrient Enrichment Mediates the Relationships of Soil Microbial Respiration with Climatic Factors in an Alpine Meadow

    Directory of Open Access Journals (Sweden)

    Ning Zong

    2015-01-01

    Full Text Available Quantifying the effects of nutrient additions on soil microbial respiration (Rm and its contribution to soil respiration (Rs are of great importance for accurate assessment ecosystem carbon (C flux. Nitrogen (N addition either alone (coded as LN and HN or in combination with phosphorus (P (coded as LN + P and HN + P were manipulated in a semiarid alpine meadow on the Tibetan Plateau since 2008. Either LN or HN did not affect Rm, while LN + P enhanced Rm during peak growing periods, but HN + P did not affect Rm. Nutrient addition also significantly affected Rm/Rs, and the correlations of Rm/Rs with climatic factors varied with years. Soil water content (Sw was the main factor controlling the variations of Rm/Rs. During the years with large rainfall variations, Rm/Rs was negatively correlated with Sw, while, in years with even rainfall, Rm/Rs was positively correlated with Sw. Meanwhile, in N + P treatments the controlling effects of climatic factors on Rm/Rs were more significant than those in CK. Our results indicate that the sensitivity of soil microbes to climatic factors is regulated by nutrient enrichment. The divergent effects of Sw on Rm/Rs suggest that precipitation distribution patterns are key factors controlling soil microbial activities and ecosystem C fluxes in semiarid alpine meadow ecosystems.

  13. Land management as a factor controlling dissolved organic carbon release from upland peat soils 2: changes in DOC productivity over four decades.

    Science.gov (United States)

    Clutterbuck, B; Yallop, A R

    2010-11-15

    Increasing DOC concentrations in surface waters have been observed across parts of Europe and North America over the past few decades. Most proposed explanations for these widespread trends invoke climate change or reductions in sulphate deposition. However, these factors do not seem apposite to explain either the fine-scale (within kilometres) or regional-scale spatial variation in DOC concentrations observed across the UK. We have reconstructed DOC concentrations and land use for one North Pennine and five South Pennine catchments (UK), located in three discrete areas, over the last four decades. Rainfall, temperature and sulphate deposition data, where available, were also collated and the potential influence of these factors on surface water DOC concentrations was assessed. Four of the six catchments examined showed highly significant (pDOC (hDOC) concentrations in drainage waters over the period 1990-2005. Changes in temperature and sulphate deposition may explain 20-30% of this trend in these four catchments. However, the rapid expansion of new moorland burn on blanket peat can explain a far greater degree (>80%) of the change in hDOC. Far smaller increases in hDOC (10-18%) were identified for the two remaining catchments. These two sites experienced similar changes in sulphur deposition and temperature to those that had seen largest increases in DOC, but contained little or no moorland burn management on blanket peat. This study shows that regional-scale factors undoubtedly underlie some of the recent observed increases in drainage humic coloured DOC. However, changes in land management, in this case the extensive use of fire management on blanket peat, are a far more important driver of increased hDOC release from upland catchments in some parts of the UK. It suggests that the recent rapid increase in the use of burning on blanket peat moorland has implications for ecosystem services and carbon budgets. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. [Research progress on photosynthesis regulating and controlling soil respiration].

    Science.gov (United States)

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  15. Soil-to-plant concentration factors for radiological assessments

    International Nuclear Information System (INIS)

    Ng, Y.C.; Thompson, S.E.; Colsher, C.S.

    1982-09-01

    This report presents the results of a literature review to derive soil-to-plant concentration factors to predict the concentration of a radionuclide in plants from that in soil. The concentration factor, B/sub v/ is defined as the ratio of the concentration of a nuclide in the edible plant part to that in dry soil. CR (the concentration ratio) is similarly defined to denote the concentration factor for dry feed consumed by livestock. B/sub v/ and CR values are used to assess the dose from radionuclides deposited onto soil and transferred into crop plants via roots. Approaches for deriving B/sub v/ and CR values are described, and values for food and feed are tabulated for individual elements. The sources of uncertainty are described, and the factors that contribute to the inherent variability of the B/sub v/ and CR values are discussed. Summary tables of elemental B/sub v/ and CR values and statistical parameters that characterize their distributions provide a basis for a systematic updating of many of the B/sub v/ values in Regulatory Guide 1.109. They also provide a basis for selecting B/sub v/ and CR values for other applications that involve the use of equilibrium models to predict the concentration of radionuclides in plants from that in soil

  16. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  17. Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga watershed in the highlands of Ethiopia

    Science.gov (United States)

    Molla, Tegegne; Sisheber, Biniam

    2017-01-01

    Soil erosion is one of the major factors affecting sustainability of agricultural production in Ethiopia. The objective of this paper is to estimate soil erosion using the universal soil loss equation (RUSLE) model and to evaluate soil conservation practices in a data-scarce watershed region. For this purpose, soil data, rainfall, erosion control practices, satellite images and topographic maps were collected to determine the RUSLE factors. In addition, measurements of randomly selected soil and water conservation structures were done at three sub-watersheds (Asanat, Debreyakob and Rim). This study was conducted in Koga watershed at upper part of the Blue Nile basin which is affected by high soil erosion rates. The area is characterized by undulating topography caused by intensive agricultural practices with poor soil conservation practices. The soil loss rates were determined and conservation strategies have been evaluated under different slope classes and land uses. The results showed that the watershed is affected by high soil erosion rates (on average 42 t ha-1 yr-1), greater than the maximum tolerable soil loss (18 t ha-1 yr-1). The highest soil loss (456 t ha-1 yr-1) estimated from the upper watershed occurred on cultivated lands of steep slopes. As a result, soil erosion is mainly aggravated by land-use conflicts and topographic factors and the rugged topographic land forms of the area. The study also demonstrated that the contribution of existing soil conservation structures to erosion control is very small due to incorrect design and poor management. About 35 % out of the existing structures can reduce soil loss significantly since they were constructed correctly. Most of the existing structures were demolished due to the sediment overload, vulnerability to livestock damage and intense rainfall. Therefore, appropriate and standardized soil and water conservation measures for different erosion-prone land uses and land forms need to be implemented in Koga

  18. The ash in forest fire affected soils control the soil losses. Part 1. The pioneer research

    Science.gov (United States)

    Cerdà, Artemi; Pereira, Paulo

    2013-04-01

    After forest fires, the ash and the remaining vegetation cover on the soil surface are the main protection against erosion agents. The control ash exert on runoff generation mechanism was researched during the 90's (Cerdà, 1998a; 1998b). This pioneer research demonstrated that after forest fires there is a short period of time that runoff and surface wash by water is controlled by the high infiltration rates achieved by the soil, which were high due to the effect of ash acting as a mulch. The research of Cerdà (1998a; 1998b) also contributed to demonstrate that runoff was enhanced four month later upon the wash of the ash by the runoff, but also due to the removal of ash due to dissolution and water infiltration. As a consequence of the ephemeral ash cover the runoff and erosion reached the peak after the removal of the ash (usually four month), and for two years the soil erosion reached the peak (Cerdà, 1998a). Research developed during the last decade shown that the ash and the litter cover together contribute to reduce the soil losses after the forest fire (Cerdà and Doerr, 2008). The fate of the ash is related to the climatic conditions of the post-fire season, as intense thunderstorms erode the ash layer and low intensity rainfall contribute to a higher infiltration rate and the recovery of the vegetation. Another, key factor found during the last two decades that determine the fate of the ash and the soil and water losses is the impact of the fauna (Cerdà and Doerr, 2010). During the last decade new techniques were developed to study the impact of ash in the soil system, such as the one to monitor the ash changes by means of high spatial resolution photography (Pérez Cabello et al., 2012), and laboratory approaches that show the impact of ash as a key factor in the soil hydrology throughout the control they exert on the soil water repellency (Bodí et al., 2012). Laboratory approaches also shown that the fire severity is a key factor on the ash chemical

  19. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.

    Science.gov (United States)

    Mabilde, Lisa; De Neve, Stefaan; Sleutel, Steven

    2017-12-01

    Historic long-term P application to sandy soils in NW-Europe has resulted in abundant sorption, saturation and eventually leaching of P from soil to the groundwater. Although many studies recognize the control of site-specific factors like soil texture and phosphate saturation degree (PSD), the regional-scaled relevance of effects exerted by single factors controlling P leaching is unclear. Very large observational datasets of soil and groundwater P content are furthermore required to reveal indirect controls of soil traits through mediating soil variables. We explored co-variation of phreatic groundwater orthophosphate (o-P) concentration and soil factors in sandy soils in Flanders, Belgium. Correlation analyses were complemented with an exploratory model derived using 'path analysis'. Data of oxalate-extractable Al, Fe, P and pH KCl , phosphate sorption capacity (PSC) and PSD in three depth layers (0-30, 30-60, 60-90 cm), topsoil SOC, % clay and groundwater depth (fluctuation) were interpolated to predict soil properties on exact locations of a very extensive net of groundwater monitoring wells. The mean PSD was only poorly correlated to groundwater o-P concentration, indicating the overriding control of other factors in the transport of P to the groundwater. A significant (P soil pH and groundwater table depth than by PSD indicates the likely oversimplification of the latter index to measure the long-term potential risk of P leaching. Accounting for controls on leaching not included in PSD via an alternative index, however, seems problematic as in Flanders for example groundwater o-P turned out to be higher in finer textured soils or soils with higher pedogenic Fe content, probably because of their lower pedogenic Al content and higher soil pH. Path analysis of extensive soil and groundwater datasets seems a viable way to identify prime local determinants of soil P leaching and could be further on used for 'ground-truthing' more complex P-migration simulation

  20. Anaerobic soil disinfestation for controlling Fusarium wilt in strawberies

    Science.gov (United States)

    A strategy to apply a high rate of carbon resource in the conduct of a fall bed anaerobic soil disinfestation (ASD) treatment did not provide effective control of Fusarium wilt in California strawberries. The lack of disease control efficacy resulted from an increase in soil populations of the caus...

  1. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Discriminating impacts of geomorphological and human factors on vineyard soil erosion (Burgundy, France)

    Science.gov (United States)

    Chevigny, Emmanuel; Quiquerez, Amélie; Petit, Christophe; Curmi, Pierre

    2014-05-01

    The Burgundy vineyards have been recognized for the high diversity of Terroirs, controlled by complex interactions between natural features, historical parameters and soil management practices. Vineyards are known to undergo substantial soil loss in comparison with other types of agricultural land. Hydric erosion on vineyards is controlled by complex interactions of natural and anthropogenic factors leading to intra-plot spatial heterogeneities of topsoil at a scale of a metre. Studying the relationship between soils and their degradation is crucial in this situation where soil sustainability is threatened. This study explores the relative influences of historical and present-day anthropogenic factors and geomorphological processes controlling soil erosion on vineyard hillslopes. The selected area was located in the Monthelie vineyard (Côte de Beaune, France) where intensive erosion occurred during high-intensity rainfall events. Soil erosion quantification was performed at a square-metre scale using dendrogeomorphology. This method is based on the measurement of the unearthing of the stock located on the vine plants, considered as a passive marker of soil-surface vertical displacement since the year of plantation. The obtained maps, together with various complementary datasets, such as geological and geomorphological data, but also historical documents (cadastral plans, cadastral matrices and old aerial photographs) allow landscape evolution to be assessed. The combination of all these data shows that spatial distribution and intensity of erosion are controlled mainly by lithology and slope value. However, our study highlights that the sediment dynamics in this vineyard plot is highly related to historical former plot limits and present-day management practices. Nonetheless, quantification of sediment dynamic for the last decade reveals that the impacts of historical structures are disappearing gradually, in response to present-day management practices and

  3. Polycyclic aromatic hydrocarbons in soils from the Tibetan Plateau, China: distribution and influence of environmental factors.

    Science.gov (United States)

    Wang, Shuang; Ni, Hong-Gang; Sun, Jian-Lin; Jing, Xin; He, Jin-Sheng; Zeng, Hui

    2013-03-01

    Thirty four sampling sites along an elevation transect in the Tibetan Plateau region were chosen. Soil cores were divided into several layers and a total of 175 horizon soil samples were collected from July to September 2011, for determination of polycyclic aromatic hydrocarbons (PAHs). The measured PAHs concentration in surface soils was 56.26 ± 45.84 ng g(-1), and the low molecular weight PAHs (2-3 rings) predominated, accounting for 48% and 35%. We analyzed the spatial (altitudinal and vertical) distribution of PAHs in soil, and explored the influence of related environmental factors. Total organic carbon (TOC) showed a controlling influence on the distribution of PAHs. PAH concentrations declined with soil depth, and the composition patterns of PAHs along soil depth indicated that the heavy PAHs tended to remain in the upper layers (0-10 cm), while the light fractions were transported downward more easily. PAHs inventories (8.77-57.92 mg m(-2)) for soil cores increased with mean annual precipitation, while the topsoil concentrations decreased with it. This implies that an increase in precipitation could transfer more PAHs from the atmosphere to the soil and further transport PAHs from the topsoil to deeper layers.

  4. Urban soils as hotspots of anthropogenic carbon accumulation: Review of stocks, mechanisms and factors

    Science.gov (United States)

    Vasenev, Viacheslav; Kuzyakov, Yakov

    2017-04-01

    Urban soils and cultural layers accumulate carbon (C) over centuries and consequently large C stocks are sequestered below the cities. These C stocks as well as the full range of processes and mechanisms leading to high C accumulation in urban soils remain unknown. We collected data on organic (SOC), inorganic (SOC) and black (pyrogenic) (BC) C content in urban and natural soils from 100 papers based on Scopus and Web-of-Knowledge databases. The yielded database includes 770 values on SOC, SIC and BC stocks from 118 cities worldwide. The collected data were analyzed considering the effects of climatic conditions and urban-specific factors: city size, age and functional zoning. For the whole range of climatic conditions, the C contents in urban soils were 1.5-3 times higher than in respective natural soils. This higher C content and much deeper C accumulation in urban soils resulted in 3 to 5 times higher C stocks compared to natural soils. Urban SOC stocks were positively correlated with latitude, whereas SIC stocks were less affected by climate. The city size and age were the main factors controlling intra-city variability of C stocks with higher stocks in small cities compared to megapolises and in medieval compared to new cities. The inter-city variability of C stocks was dominated by functional zoning: large SOC and N stocks in residential areas and large SIC and BC stocks in industrial zones and roadsides were similar for all climates and for cities of different size and age. Substantial stocks of SOC, SIC and N were sequestered for long-term in the subsoils and cultural layers of the sealed soils, which underline the importance of these 'hidden' stocks for C assessments. Typical and specific for urban soils is that the anthropogenic factor overshadows the other five factors of soil formation. Substantial C stocks in urban soils and cultural layers result from specific mechanisms of C accumulation in cities: i) large and long-term C inputs from outside the

  5. Transfer factors of polonium from soil to parsley and mint.

    Science.gov (United States)

    Al-Masri, M S; Al-Hamwi, A; Eadan, Z; Amin, Y

    2010-12-01

    Transfer factors of (210)Po from soil to parsley and mint have been determined. Artificial polonium isotope ((208)Po) was used as a tracer to determine transfer factor of Po from soil to plant in pot experiments. Two plant growing systems were used for this study namely, an outdoor system and a sheltered system by a polyethylene tent. (208)Po and (210)Po were determined in soil and different parts of the studied plants (stem and leaf), using alpha spectroscopy. The results have shown that there was a clear uptake of (208)Po by roots to leaves and stems of both plants. Higher values of transfer factors using the (210)Po activity concentrations than the (208)Po activity concentration were observed. Transfer factors of (210)Po from soil to parsley varied between 20 × 10⁻² and 50 × 10⁻² and 22 × 10⁻³ and 67 × 10⁻³ in mint, while (208)Po transfer factors varied between 4 × 10⁻² and 12 × 10⁻² for parsley and 10 × 10⁻² and 22 × 10⁻² in mint. Transfer factors of Po were higher in those plants grown in the sheltered system than in the open system; about 75% of Po was transferred from atmosphere to parsley parts using the two systems. Ratios of transferred Po from soil to mint stem and leaf in the sheltered system were higher by 2 times from those in the open system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Transfer factors of Polonium from soil to parsley and mint

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M.S., E-mail: prscientific@aec.org.s [Department of Protection and Safety, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Al-Hamwi, A. [Department of Protection and Safety, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Eadan, Z. [Physics Department, Damascus University (Syrian Arab Republic); Amin, Y. [Department of Protection and Safety, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic)

    2010-12-15

    Transfer factors of {sup 210}Po from soil to parsley and mint have been determined. Artificial polonium isotope ({sup 208}Po) was used as a tracer to determine transfer factor of Po from soil to plant in pot experiments. Two plant growing systems were used for this study namely, an outdoor system and a sheltered system by a polyethylene tent. {sup 208}Po and {sup 210}Po were determined in soil and different parts of the studied plants (stem and leaf), using alpha spectroscopy. The results have shown that there was a clear uptake of {sup 208}Po by roots to leaves and stems of both plants. Higher values of transfer factors using the {sup 210}Po activity concentrations than the {sup 208}Po activity concentration were observed. Transfer factors of {sup 210}Po from soil to parsley varied between 20 x 10{sup -2} and 50 x 10{sup -2} and 22 x 10{sup -3} and 67 x 10{sup -3} in mint, while {sup 208}Po transfer factors varied between 4 x 10{sup -2} and 12 x 10{sup -2} for parsley and 10 x 10{sup -2} and 22 x 10{sup -2} in mint. Transfer factors of Po were higher in those plants grown in the sheltered system than in the open system; about 75% of Po was transferred from atmosphere to parsley parts using the two systems. Ratios of transferred Po from soil to mint stem and leaf in the sheltered system were higher by 2 times from those in the open system.

  7. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  8. Differentiation of nitrous oxide emission factors for agricultural soils

    International Nuclear Information System (INIS)

    Lesschen, Jan Peter; Velthof, Gerard L.; Vries, Wim de; Kros, Johannes

    2011-01-01

    Nitrous oxide (N 2 O) direct soil emissions from agriculture are often estimated using the default IPCC emission factor (EF) of 1%. However, a large variation in EFs exists due to differences in environment, crops and management. We developed an approach to determine N 2 O EFs that depend on N-input sources and environmental factors. The starting point of the method was a monitoring study in which an EF of 1% was found. The conditions of this experiment were set as the reference from which the effects of 16 sources of N input, three soil types, two land-use types and annual precipitation on the N 2 O EF were estimated. The derived EF inference scheme performed on average better than the default IPCC EF. The use of differentiated EFs, including different regional conditions, allows accounting for the effects of more mitigation measures and offers European countries a possibility to use a Tier 2 approach. - Highlights: → We developed an N 2 O emission factor inference scheme for agricultural soils. → This scheme accounts for different N-input sources and environmental conditions. → The derived EF inference scheme performed better than the default IPCC EF. → The use of differentiated EFs allows for better accounting of mitigation measures. - Emission factors for nitrous oxide from agricultural soils are derived as a function of N-input sources and environmental conditions on the basis of empirical information.

  9. Wind tunnel experimental study on the effect of PAM on soil wind erosion control.

    Science.gov (United States)

    He, Ji-Jun; Cai, Qiang-Guo; Tang, Ze-Jun

    2008-10-01

    In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.

  10. Hydrologic controls on equilibrium soil depths

    Science.gov (United States)

    Nicótina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2011-04-01

    This paper deals with modeling the mutual feedbacks between runoff production and geomorphological processes and attributes that lead to patterns of equilibrium soil depth. Our primary goal is an attempt to describe spatial patterns of soil depth resulting from long-term interactions between hydrologic forcings and soil production, erosion, and sediment transport processes under the framework of landscape dynamic equilibrium. Another goal is to set the premises for exploiting the role of soil depths in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography. Geomorphological processes are described by means of well-studied geomorphic transport laws. The modeling approach is applied to the semiarid Dry Creek Experimental Watershed, located near Boise, Idaho. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origins are discussed.

  11. Soil erosion and its control in Chile - An overview

    International Nuclear Information System (INIS)

    Ellies, A.

    2000-01-01

    Accelerate erosion in Chile is a consequence from land use that degrade soil such as compaction, loss of organic matter and soil structure. The erosion is favored by the very hilly landscape of the country that increases erosivity index and the high erodibility given by an elevated annual rate of rainfall with irregular distribution. Several experiences have demonstrated that adequate crop management and crop rotations can minimize erosion. The most effective control is achieved conserving and improving soil structure with management systems that include regular use of soil-improving crops, return of crop residues and tillage practices, thus avoiding unnecessary breakdown soil or compacted soil structure. Conservation tillage increased organic matter levels improving stabile soil structure, aeration and infiltration. (author) [es

  12. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  13. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States); Kleber, Markus [Oregon State Univ., Corvallis, OR (United States); Nico, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-19

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration, control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place

  14. Soil to plant transfer factor of radiocesium by pot experiment

    International Nuclear Information System (INIS)

    Jalil, A.; Rahman, M.M.; Koddus, A.; Chand, M.M.; Zaman, M.A.; Ahmad, G.U.

    2002-01-01

    This paper deals with the soil to plant transfer factor (TF) of radiocesium (Cs 137 ) considered to be an important parameter while calculating radiological doses due to the potential release of radionuclides into the environment. In the present work, TF values were measured for the main foodstuffs in Bangladesh such as leafy vegetables (Lalshak, Palangshak), Ladyfinger, Radish, Potato, Potato Plant, Paddy, Paddy plant, Grass, Ginger, Ginger plant, Turmeric, and Turmeric plant by pot experiments grown in the AERE soil. Soil characteristics have also been investigated to assist the measured values of the corresponding radionuclide. TF values of the leafy parts and products of the corresponding plants were found in the range of 2.02x10 -1 to 1.8x10 -2 , which are reasonably comparable with the value found in the literature. It has been observed that the TF values in the leafy part of the plants are higher than the products. (author)

  15. Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200 km transect

    Science.gov (United States)

    Liu, Dongwei; Zhu, Weixing; Wang, Xiaobo; Pan, Yuepeng; Wang, Chao; Xi, Dan; Bai, Edith; Wang, Yuesi; Han, Xingguo; Fang, Yunting

    2017-03-01

    Nitrogen (N) cycling in drylands under changing climate is not well understood. Our understanding of N cycling over larger scales to date relies heavily on the measurement of bulk soil N, and the information about internal soil N transformations remains limited. The 15N natural abundance (δ15N) of ammonium and nitrate can serve as a proxy record for the N processes in soils. To better understand the patterns and mechanisms of N cycling in drylands, we collected soils along a 3200 km transect at about 100 km intervals in northern China, with mean annual precipitation (MAP) ranging from 36 to 436 mm. We analyzed N pools and δ15N of ammonium, dual isotopes (15N and 18O) of nitrate, and the microbial gene abundance associated with soil N transformations. We found that N status and its driving factors were different above and below a MAP threshold of 100 mm. In the arid zone with MAP below 100 mm, soil inorganic N accumulated, with a large fraction being of atmospheric origin, and ammonia volatilization was strong in soils with high pH. In addition, the abundance of microbial genes associated with soil N transformations was low. In the semiarid zone with MAP above 100 mm, soil inorganic N concentrations were low and were controlled mainly by biological processes (e.g., plant uptake and denitrification). The preference for soil ammonium over nitrate by the dominant plant species may enhance the possibility of soil nitrate losses via denitrification. Overall, our study suggests that a shift from abiotic to biotic controls on soil N biogeochemistry under global climate changes would greatly affect N losses, soil N availability, and other N transformation processes in these drylands in China.

  16. Soil-to-potato transfer factors of elements

    International Nuclear Information System (INIS)

    Tsukada, Hirofumi; Watabe, Teruhisa.

    1996-01-01

    Transfer factors (TFs) of stable elements from soil to potato were determined for 26 pairs of samples which were collected at different sites in Aomori prefecture, Japan. The concentrations of 31 elements in both soil and potato samples were determined by neutron activation analysis. Several of these elements were divided into two groups, each having different TF characteristics. In the first group of elements, such as Cl, K, Ca, etc., an inverse correlation was seen between the TFs for each element and their concentrations in the soil. The relatively constant concentrations of these elements in potato were independent of the concentrations of the same elements in soil. However, in the second group, the TFs for other elements, such as Sc, Co and so on, in potato were independent of their concentrations in the soil. The fluctuation of TF observed in this study was smaller than that previously reported. It may be attributed to the fact that the experiment was done in a relatively narrow geographic area. In addition, the TFs for stable elements in this study were generally one to three orders of magnitude lower than those compiled for radioactive isotopes in IAEA publications. These differences should be precisely examined hereafter. (author)

  17. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content

    Science.gov (United States)

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith

    2007-01-01

    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  18. Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts.

    Directory of Open Access Journals (Sweden)

    Chongfeng Bu

    Full Text Available Biological soil crusts (BSCs cover >35% of the Earth's land area and contribute to important ecological functions in arid and semiarid ecosystems, including erosion reduction, hydrological cycling, and nutrient cycling. Artificial rapid cultivation of BSCs can provide a novel alternative to traditional biological methods for controlling soil and water loss such as the planting of trees, shrubs, and grasses. At present, little is known regarding the cultivation of BSCs in the field due to lack of knowledge regarding the influencing factors that control BSCs growth. Thus, we determined the effects of various environmental factors (shade; watering; N, P, K, and Ca concentrations on the growth of cyanobacteria-dominated BSCs from the Sonoran Desert in the southwestern United States. The soil surface changes and chlorophyll a concentrations were used as proxies of BSC growth and development. After 4 months, five factors were found to impact BSC growth with the following order of importance: NH4NO3 ≈ watering frequency>shading>CaCO3 ≈ KH2PO4. The soil water content was the primary positive factor affecting BSC growth, and BSCs that were watered every 5 days harbored greater biomass than those watered every 10 days. Groups that received NH4NO3 consistently exhibited poor growth, suggesting that fixed N amendment may suppress BSC growth. The effect of shading on the BSC biomass was inconsistent and depended on many factors including the soil water content and availability of nutrients. KH2PO4 and CaCO3 had nonsignificant effects on BSC growth. Collectively, our results indicate that the rapid restoration of BSCs can be controlled and realized by artificial "broadcasting" cultivation through the optimization of environmental factors.

  19. Controlled soil warming powered by alternative energy for remote field sites.

    Science.gov (United States)

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  20. Controlled soil warming powered by alternative energy for remote field sites.

    Directory of Open Access Journals (Sweden)

    Jill F Johnstone

    Full Text Available Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2 plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  1. Principles of control automation of soil compacting machine operating mechanism

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.

  2. Basic Aspects of Deep Soil Mixing Technology Control

    Science.gov (United States)

    Egorova, Alexandra A.; Rybak, Jarosław; Stefaniuk, Damian; Zajączkowski, Przemysław

    2017-10-01

    Improving a soil is a process of increasing its physical/mechanical properties without changing its natural structure. Improvement of soil subbase is reached by means of the knitted materials, or other methods when strong connection between soil particles is established. The method of DSM (Deep Soil Mixing) columns has been invented in Japan in 1970s. The main reason of designing cement-soil columns is to improve properties of local soils (such as strength and stiffness) by mixing them with various cementing materials. Cement and calcium are the most commonly used binders. However new research undertaken worldwide proves that apart from these materials, also gypsum or fly ashes can also be successfully implemented. As the Deep Soil Mixing is still being under development, anticipating mechanical properties of columns in particular soils and the usage of cementing materials in formed columns is very difficult and often inappropriate to predict. That is why a research is carried out in order to find out what binders and mixing technology should be used. The paper presents several remarks on the testing procedures related to quality and capacity control of Deep Soil Mixing columns. Soil improvement methods, their advantages and limitations are briefly described. The authors analyse the suitability of selected testing methods on subsequent stages of design and execution of special foundations works. Chosen examples from engineering practice form the basis for recommendations for the control procedures. Presented case studies concerning testing the on capacity field samples and laboratory procedures on various categories of soil-cement samples were picked from R&D and consulting works offered by Wroclaw University of Science and Technology. Special emphasis is paid to climate conditions which may affect the availability of performing and controlling of DSM techniques in polar zones, with a special regard to sample curing.

  3. Soil bioengineering applied to the environmental rehabilitation of controlled landfills

    International Nuclear Information System (INIS)

    Luria, P.

    2005-01-01

    Soil bioengineering is a discipline characterised by the capability of associating geo-technical approaches (e.g. soil stabilisation) with naturalistic rehabilitation and creation of biotopes. It is extremely suitable for the environmental rehabilitation of controlled landfills, especially of area and depression landfills, mainly through soil protection and stabilisation measures. Its increasing notoriety is mainly due to the great variety and specificity of its techniques, to the capability of joining technical matters with naturalistic aspects, and to the reduced cost of some interventions. Nevertheless, its application to environmental rehabilitation of controlled landfills is still scarce in Italy. Only 3% of 87 closed landfills analysed, whose rehabilitation projects adopt natural techniques for soil stabilisation and protection, explicitly refers to Soil Bioengineering [it

  4. profitability of soil erosion control technologies in eastern uganda

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The lack of farmer awareness of costs and benefits associated with the use of sustainable land management (SLM) .... land under soil erosion control technologies, cost of labour and ..... and promotion of quality protein maize hybrids in Ghana.

  5. Food Offer Inside Agroecosystem Soils as an Ecological Factor for Settling Microhabitats by Soil Saprophagous Mites

    Directory of Open Access Journals (Sweden)

    Jaroslav Smrž

    2015-01-01

    Full Text Available Mainly abiotic factors have been considered in examining soil fauna invasion or settlement. The role of soil animals communities was not considered. Our hypothesis, indeed, can be formulated: the structure and feeding habits of the soil animals community is not able to play some role in the soil rating. Localities, however, can be fragmented into microhabitats. We studied cultivated field and adjacent unploughed areas (so-called baulks, using the common Berlese–Tullgren apparatus for community structure studies followed by histological tests of food consumed by community members. We selected a group of oribatid mites, which are frequent and abundant. In the studied localities and their microhabitats, three groups of oribatid mites can be reported. First – ubiquitous species a second – migrants from the less-impacted to more-impacted microhabitats and third – specialists sensitive to severe environmental conditions in more-impacted microhabitat. They consequently live only in the less-severe, less-impacted unploughed soils and never migrate from these microhabitats. Their grazed and digested food is more diversified, and they included more feeding specialists.

  6. Dependence of soil-to-plant transfer factors of elements on their concentrations in soil

    International Nuclear Information System (INIS)

    Tsukada, Hirofumi; Watabe, Teruhisa.

    1996-01-01

    Transfer factors (TFs) of 31 stable elements from soil to plant were determined by neutron activation analysis. Soil and plant samples were collected from 112 farm fields in Aomori prefecture, Japan. The elements described are those that could be detected by this method, which include essential elements for plant growth and nonessential elements. Several of these elements were divided into two groups, each having different TF characteristics. In the first group of elements there was an inverse correlation between the TFs and the soil concentrations of the elements, especially for Cl, K and Ca. The concentrations of these elements in plants were independent of their soil concentrations. However, in the second group, especially Sc and Co, the TFs were independent of the soil concentrations of the elements. The fluctuation of TFs observed in this study was smaller than that previously reported. This may be attributed to the relatively narrow geographic area of the present study. In addition, the TFs for the stable elements in this study were generally one to three orders of magnitude lower than those compiled for radioactive isotopes in previous publications. (author)

  7. Limiting Factors for Agricultural Production and Differentiation of Soil Management in Romania

    Science.gov (United States)

    Ioana Moraru, Paula; Rusu, Teodor; Bogdan, Ileana; Ioan Pop, Adrian; Pop, Horia

    2017-04-01

    deficit of rainfall, and poor to very poor supply of humus, phosphorus, and potassium. In Forest-Steppe zone limiting factors of the area include: drought, erosion, temporary excessive moisture, soil compaction, slope, exposition, groundwater depth, occurrence of white frost period, and early/late frosts; climate is also highly variable from one sub-area to another. Irrigation and water conservation measures in the soil have a very important role in the forest steppe. Most lands in the forest steppe are situated on slopes so the tillage system must include anti-erosion agrotechnics. Furthermore, finding the optimal timing of tillage is very important for avoiding secondary compaction of the soil. In Forest area limiting factors of the area include mixed relief, reduced field surface, excess surface moisture, lower soil fertility compared to previously studied areas, soil erosion, landslides, primary and secondary soil compaction, soil acidity, pronounced diverse spectrum of weeds and vegetative development opportunities compared to previous areas. Harnessing the sustainable arable lands on slopes and their conservation implies that the organization of the territory and differentiated soil management will achieve the following: i) cultivation of an assortment of plants suitable for the purposes and conditions offered by the slopes and design of crop rotations with an anti-erosion role; ii) use of anti-erosion culture systems on slopes, level curve direction in strips, grassed strips and arable terraces; iii) application of differentiated soil management elements, respecting regional planning projects; iv) execution of soil tillage on the general direction of level curves; v) adaptation of agro-components such as: fertilization, integrated control of weeds (especially herbicide application), and the maintenance, mechanization, and harvesting of the specific land. Acknowledgments This work was supported by a grant of the Romanian National Authority for Scientific Research

  8. Effects of environmental factors and soil properties on topographic variations of soil respiration

    OpenAIRE

    Tamai, K.

    2010-01-01

    Soil respiration rates were measured along different parts of a slope in (a) an evergreen forest with common brown forest soil and (b) a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soi...

  9. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    Science.gov (United States)

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soilsoilsoil+3 HWEsoil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure-activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB-SOM interactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Relations between soil factors and herbage yields of natural ...

    African Journals Online (AJOL)

    Keywords: Cation exchange capacity; Correlation matrix; Nitrogen supplies; Root mass; Root measurements; Soil acidity; Soil variables; Soil water content; Soil water measurements; Yield measurements; nitrogen supply; ph; herbage yield; grassland; soils; productivity; soil depth; dry matter yield; grasses; water content; n; ...

  11. A placebo-controlled study to investigate the effect of Dog Appeasing Pheromone and other environmental and management factors on the reports of disturbance and house soiling during the night in recently adopted puppies (Canis familiaris

    OpenAIRE

    Taylor, Katy; Mills, Daniel S.

    2007-01-01

    Disturbance and house soiling during the night are common problems faced by the new puppy dog owner. They may result as consequence of a mismatch between the developmental status of the puppy and its new environment and/or separation distress in a typically social animal. The aim of this study was to examine the effect of Dog Appeasing Pheromone (DAP, Ceva Santé Animale) as well as a range of other management and environmental factors that might affect this process. It has been suggested tha...

  12. PRINCIPAL COMPONENT ANALYSIS OF FACTORS DETERMINING PHOSPHATE ROCK DISSOLUTION ON ACID SOILS

    Directory of Open Access Journals (Sweden)

    Yusdar Hilman

    2016-10-01

    Full Text Available Many of the agricultural soils in Indonesia are acidic and low in both total and available phosphorus which severely limits their potential for crops production. These problems can be corrected by application of chemical fertilizers. However, these fertilizers are expensive, and cheaper alternatives such as phosphate rock (PR have been considered. Several soil factors may influence the dissolution of PR in soils, including both chemical and physical properties. The study aimed to identify PR dissolution factors and evaluate their relative magnitude. The experiment was conducted in Soil Chemical Laboratory, Universiti Putra Malaysia and Indonesian Center for Agricultural Land Resources Research and Development from January to April 2002. The principal component analysis (PCA was used to characterize acid soils in an incubation system into a number of factors that may affect PR dissolution. Three major factors selected were soil texture, soil acidity, and fertilization. Using the scores of individual factors as independent variables, stepwise regression analysis was performed to derive a PR dissolution function. The factors influencing PR dissolution in order of importance were soil texture, soil acidity, then fertilization. Soil texture factors including clay content and organic C, and soil acidity factor such as P retention capacity interacted positively with P dissolution and promoted PR dissolution effectively. Soil texture factors, such as sand and silt content, soil acidity factors such as pH, and exchangeable Ca decreased PR dissolution.

  13. Wind erosion control of soils using polymeric materials

    Directory of Open Access Journals (Sweden)

    Mohammad Movahedan

    2012-07-01

    Full Text Available Wind erosion of soils is one of the most important problems in environment and agriculture which could affects several fields. Agricultural lands, water reservoires, irrigation canals, drains and etc. may be affected by wind erosion and suspended particles. As a result wind erosion control needs attention in arid and semi-arid regions. In recent years, some polymeric materials have been used for improvement of structural stability, increasing aggregate stability and soil stabilization, though kind of polymer, quantity of polymer, field efficiency and durability and environmental impacts are some important parameters which should be taken into consideration. In this study, a Polyvinil Acetate-based polymer was used to treat different soils. Then polymer-added soil samples were investigated experimentally in a wind tunnel to verify the effecte of polymer on wind erosion control of the soils and the results were compared with water treated soil samples. The results of wind tunnel experiments with a maximum 26 m/s wind velocity showed that there was a significat difference between the erosion of polymer treated and water treated soil samples. Application of 25g/m2 polymer to Aeolian sands reduced the erosion of Aeolian sands samples to zero related to water treated samples. For silty and calyey soils treated by polymer, the wind erosion reduced minimum 90% in relation to water treated samples.

  14. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    Science.gov (United States)

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  15. CS-137 transfer factors soil-plant and density of hyphae in soil of spruce forests

    International Nuclear Information System (INIS)

    Klemt, E.; Deuss, H.; Drissner, J.; Krapf, M.; Miller, R.; Zibold, G.

    1999-01-01

    Samples of soil and plants were taken at spruce stand sites in southern Baden-Wuerttemberg. Fern always had the highest aggregated Cs-137 transfer factor (T ag ) varying between 0.01 and 0.27 m 2 kg -1 . There is a tendency for higher T ag s in soils with thicker raw humus layers, lower pH, lower cation exchange capacity (CEC) in the O h horizon, and lower clay content below the organic deposit. The density of hyphae is determined by the season and its weather conditions and it usually decreases continuously from O f to top B horizon. In analyzing our data no correlation between aggregated or horizon-specific transfer factors of different plants and density of hyphae could be found. Refs. 5 (author)

  16. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    Science.gov (United States)

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  17. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  18. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran

    Science.gov (United States)

    Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali; Naderi, Mehdi; Dematte, Jose Alexandre M.; Kerry, Ruth

    2016-11-01

    The measurement of soil erodibility (K) in the field is tedious, time-consuming and expensive; therefore, its prediction through pedotransfer functions (PTFs) could be far less costly and time-consuming. The aim of this study was to develop new PTFs to estimate the K factor using multiple linear regression, Mamdani fuzzy inference systems, and artificial neural networks. For this purpose, K was measured in 40 erosion plots with natural rainfall. Various soil properties including the soil particle size distribution, calcium carbonate equivalent, organic matter, permeability, and wet-aggregate stability were measured. The results showed that the mean measured K was 0.014 t h MJ- 1 mm- 1 and 2.08 times less than the estimated mean K (0.030 t h MJ- 1 mm- 1) using the USLE model. Permeability, wet-aggregate stability, very fine sand, and calcium carbonate were selected as independent variables by forward stepwise regression in order to assess the ability of multiple linear regression, Mamdani fuzzy inference systems and artificial neural networks to predict K. The calcium carbonate equivalent, which is not accounted for in the USLE model, had a significant impact on K in multiple linear regression due to its strong influence on the stability of aggregates and soil permeability. Statistical indices in validation and calibration datasets determined that the artificial neural networks method with the highest R2, lowest RMSE, and lowest ME was the best model for estimating the K factor. A strong correlation (R2 = 0.81, n = 40, p soils.

  19. Does vivianite control phosphate solubility in anoxic meadow soils?

    DEFF Research Database (Denmark)

    Walpersdorf, Eva Christine; Bender Koch, Christian; Heiberg, Lisa

    2013-01-01

    Vivianite (Fe3(PO4)2·8H2O) may precipitate in anoxic wetland soils where it may control orthophosphate (Pi) equilibrium solution concentrations at micromolar levels, and thus be of key importance in reducing excessive P from agricultural sources and eutrophication. However, vivianite equilibria...... and kinetics under in situ conditions are not fully understood and the occurrence of vivianite in wetland soils is rarely documented. In the present investigation we have monitored the temporal (November to June) variation in the pore water chemistry of a wet meadow soil (Sapric Medihemist) including...... restored. Even after 120 days following perturbation the supersaturation was still high (SIviv~6). It seems that vivianite does contribute to Pi immobilization in anoxic soil horizons, but due to slow precipitation kinetics such soils cannot maintain Pi concentrations at levels below critical thresholds...

  20. Impact of Soil Conservation Measures on Erosion Control and Soil Quality

    International Nuclear Information System (INIS)

    2011-10-01

    This publication summarises the lessons learnt from a FAO/IAEA coordinated research project on the impact of soil conservation measures on erosion control and soil quality over a five-year period across a wide geographic area and range of environments. It demonstrates the new trends in the use of fallout radionuclide-based techniques as powerful tools to assess the effectiveness of soil conservation measures. As a comprehensive reference material it will support IAEA Member States in the use of these techniques to identify practices that can enhance sustainable agriculture and minimize land degradation.

  1. Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in Southern Spain.

    Science.gov (United States)

    Landa, B B; Montes-Borrego, M; Aranda, S; Soriano, M A; Gómez, J A; Navas-Cortés, J A

    2014-04-01

    Nowadays, there is a tendency in olive production systems to reduce tillage or keep a vegetative cover to reduce soil erosion and degradation. However, there is scarce information on the effects of different soil management systems (SMS) in soil bacterial community composition of olive groves. In this study, we have evaluated the effects of soil type and different SMS implemented to control weeds in the structure and diversity of bacterial communities of 58 soils in the two geographic areas that best represent the organic olive production systems in Spain. Bacterial community composition assessed by frequency and intensity of occurrence of terminal restriction profiles (TRFs) derived from terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified 16S ribosomal deoxyribonucleic acid were strongly correlated with soil type/field site (Eutric/Calcaric) that differed mainly in soil particle size distribution and soil pH, followed by a strong effect of SMS, in that order. Canonical discriminant (CD) analysis of TRFs properly classified all of the olive orchard soils as belonging to their respective soil type or SMS. Furthermore, only a small set of TRFs were enough to clearly and significantly differentiate soil samples according to soil type or SMS. Those specific TRFs could be used as bioindicators to assess the effect of changes in SMS aimed to enhance soil quality in olive production systems. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  3. Factors Affecting Soil Quality Maintenance In Northern Katsina State

    African Journals Online (AJOL)

    programs or scientifically based soil management strategies. Soil quality ... envelopment analysis techniques in the reconciliation of two ..... integrated plant production and environmental quality. In ..... Handbook of Soil Science. (Ed). Sumner ...

  4. Preliminary Experimental Analysis of Soil Stabilizers for Contamination Control

    International Nuclear Information System (INIS)

    Lagos, L.; Varona, J.; Zidan, A.; Gudavalli, R.; Wu, Kuang-His

    2006-01-01

    A major focus of Department of Energy's (DOE's) environmental management mission at the Hanford site involves characterizing and remediating contaminated soil and groundwater; stabilizing contaminated soil; remediating disposal sites; decontaminating and decommissioning structures, and demolishing former plutonium production process buildings, nuclear reactors, and separation plants; maintaining inactive waste sites; transitioning facilities into the surveillance and maintenance program; and mitigating effects to biological and cultural resources from site development and environmental cleanup and restoration activities. For example, a total of 470,914 metric tons of contaminated soil from 100 Areas remediation activities were disposed at the Environmental Restoration Disposal Facility (ERDF) during 2004. The Applied Research Center (ARC) at Florida International University (FIU) is supporting the Hanford's site remediation program by analyzing the effectiveness of several soil stabilizers (fixatives) for contamination control during excavation activities. The study is focusing on determining the effects of varying soil conditions, temperature, humidity and wind velocity on the effectiveness of the candidate stabilizers. The test matrix consists of a soil penetration-depth study, wind tunnel experiments for determination of threshold velocity, and temperature and moisture-controlled drying/curing experiments. These three set of experiments are designed to verify performance metrics, as well as provide insight into what fundamental forces are altered by the use of the stabilizer. This paper only presents the preliminary results obtained during wind tunnel experiments using dry Hanford soil samples (with 2.7% moisture by weight). These dry soil samples were exposed to varying wind speeds from 2.22 m/sec to 8.88 m/sec. Furthermore, airborne particulate data was collected for the dry Hanford soil experiments using an aerosol analyzer instrument. (authors)

  5. Chemical factors of soil polution in Taganrog as population health risk factors

    Directory of Open Access Journals (Sweden)

    G.T. Aydinov

    2017-03-01

    Full Text Available Our research goal was to perform a hygienic assessment of soil pollution with chemicals on areas aimed for housing and recreation zones in Taganrog, Rostov region. Due to the fact that surface layer of city soils is an open dynamic system which is tightly connected to atmosphere and hydrosphere we treated pollutants content in soils as indicators of territory anthropogenic transformation and technogenic load on population. We used atomic-adsorption spectrophotometry to detect heavy metals and highly efficient liquid chromatography to detect 3,4-benzpyrene content. The results comprise 660 examined soil samples taken from 19 monitoring points; they were examined to detect 7 pollutants content (lead, zinc, copper, nickel, cadmium, chromium, and mercury over 2008–2015; 144 samples were examined to detect 3,4-benzpyrene content over 2013–2015. We determined that priority pollutants among detected metals were zinc and lead; their content in city soils amounted up to 5.91 and 1.95 maximum permissible concentration. Complex indicator of city soils contamination varied from 1.61 to 2.02, long-term average annual value being 1.83. 3,4-benzpyrene was confirmed to be a substantial risk factor for population health as its concentrations exceeded maximum allowable values in 65.28 % of examined soil samples at average and maximum concentrations (2.45 and 38.05 MPC correspondingly. We recommend to include this chemical into systematic environmental quality monitoring. We detected regional peculiarities of soil pollution with chemicals on city territories aimed for housing, territories of pre-school children facilities, and recreation zones.

  6. The effect of Fe, Mn, Ni and Pb Load on Soil and its enrichment factor ratios in different soil grain size fractions as an Indicator for soil pollution

    International Nuclear Information System (INIS)

    Rabie, F.H.; Abdel-Sabour, M.F.

    2000-01-01

    An industrial area north of greater Cairo was selected to investigate the impact of intensive industrial activities on soil characteristics and Fe, Mn, Ni and Pb total content. The studied area was divided to six sectors according to its source of irrigation water and/or probability of pollution. Sixteen soil profiles were dug and soil samples were taken, air dried, fractionated to different grain size fractions, then total heavy metals (Fe, Mn, Ni and Pb) were determined using ICP technique. The enrichment factor for each metal for each soil fraction/soil layer was estimated and discussed. The highest EF ratios in the clay fraction was mainly with Pb which indicated the industrial impact on the soil. In case of sand fraction, Mn was the highest always compared to other studied metals. Concerning silt fraction, a varied accumulation of Fe, Mn, and Pb was observed with soil depth and different soil profiles

  7. Bioengineering Technology to Control River Soil Erosion using Vetiver (Vetiveria Zizaniodes)

    Science.gov (United States)

    Sriwati, M.; Pallu, S.; Selintung, M.; Lopa, R.

    2018-04-01

    Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock or dissolved material from one location on the earth’s crust, and then transport it away to another location. Bioengineering is an attempt to maximise the use of vegetation components along riverbanks to cope with landslides and erosion of river cliffs and another riverbank damage. This study aims to analyze the bioengineering of Vetiver as a surface layer for soil erosion control using slope of 100, 200, and 300. This study is conducted with 3 variations of rain intensity (I), at 103 mm/hour, 107 mm/hour, and 130 mm/hour by using rainfall simulator tool. In addition, the USLE (Universal Soil Loss Equation) method is used in order to measure the rate of soil erosion. In this study, there are few USLE model parameters were used such as rainfall erosivity factor, soil erodibility factor, length-loss slope and stepness factor, cover management factor, and support practise factor. The results demonstrated that average of reduction of erosion rate using Vetiver, under 3 various rainfalls, namely rainfall intensity 103 mm/hr had reduced 84.971%, rainfall intensity 107 mm/hr had reduced 86.583 %, rainfall intensity 130 mm/hr had reduced 65.851%.

  8. Weathering controls on mechanisms of carbon storage in grassland soils

    Science.gov (United States)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-01-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought. Copyright 2004 by the American Geophysical Union.

  9. Effects of environmental factors and soil properties on topographic variations of soil respiration

    Directory of Open Access Journals (Sweden)

    K. Tamai

    2010-03-01

    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with common brown forest soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by the fact that different soil properties matured within different environments. It can be argued that the low soil respiration rates in the low parts of the slope in the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties. These effects were likely due to the immaturity of the forest soil.

  10. Empirical Site Amplification Factors Incorporating Soil Nonlinearity in Taiwan

    Science.gov (United States)

    Kuo, C. H.; Chung, C. H.; Che-Min, L.; Huang, J. Y.; Wen, K. L.

    2017-12-01

    Characteristics of site amplifications caused by both crustal and subduction earthquakes are important in Taiwan. For example, seismic waves were amplified and led to significant building damages in the Taipei Basin by the 1986 Hualien offshore (subduction interface) and the 1999 Chi-Chi earthquakes (crustal), for which the epicentral distances were about 100 km. To understand local site amplifications in Taiwan, empirical site amplification factors for horizontal ground motions are studied using recently constructed strong motion and site databases for the free-field TSMIP stations in Taiwan. Records of large magnitude earthquakes of ML larger than six from 1994 to 2014 were selected for this study. Site amplification factors at site conditions with Vs30 of 120 m/s to 1500 m/s and base accelerations up to 0.7g were inferred from intensity ratios of station pairs within specific distances. The reference site condition is assumed as Vs30 of 760 m/s (B/C boundary). Preliminary results indicate: 1. Soil nonlinearity is more obviously at short periods (PGA, Sa0.3) than long periods (PGV, Sa1.0). 2. Soil nonlinearity is significant for stations belong to site classes of B, C, D, and E in Taiwan. 3. Effect of station-pair distance is seen at short periods (PGA and Sa0.3). 4. No significant different is found in site amplifications of crustal and subduction earthquakes. The result could be a reference for the Fa and Fv in Taiwan's building code.

  11. Confounding factors in determining causal soil moisture-precipitation feedback

    Science.gov (United States)

    Tuttle, Samuel E.; Salvucci, Guido D.

    2017-07-01

    Identification of causal links in the land-atmosphere system is important for construction and testing of land surface and general circulation models. However, the land and atmosphere are highly coupled and linked by a vast number of complex, interdependent processes. Statistical methods, such as Granger causality, can help to identify feedbacks from observational data, independent of the different parameterizations of physical processes and spatiotemporal resolution effects that influence feedbacks in models. However, statistical causal identification methods can easily be misapplied, leading to erroneous conclusions about feedback strength and sign. Here, we discuss three factors that must be accounted for in determination of causal soil moisture-precipitation feedback in observations and model output: seasonal and interannual variability, precipitation persistence, and endogeneity. The effect of neglecting these factors is demonstrated in simulated and observational data. The results show that long-timescale variability and precipitation persistence can have a substantial effect on detected soil moisture-precipitation feedback strength, while endogeneity has a smaller effect that is often masked by measurement error and thus is more likely to be an issue when analyzing model data or highly accurate observational data.

  12. Factors affecting the determination of the isotopically exchangeable phosphorus in soils

    International Nuclear Information System (INIS)

    Morales, L.E.M.

    1981-06-01

    In order to evaluate the factors that affect the determination of the isotopically exchangeable phosphorus in soils (L value), various greenhouse experiments were carried out. The following factors were considered: carrier level; plant species; harvest time; nitrogen doses; nitrogen sources; culture conditions and soil type. A radioactive solution with an activity level of approximately 10 μCi 32 p/3 kg soil with different carrier levels was located in layers or mixed completely with the soil depending upon the experiment. (author)

  13. Potential microbial risk factors related to soil amendments and irrigation water of potato crops.

    Science.gov (United States)

    Selma, M V; Allende, A; López-Gálvez, F; Elizaquível, P; Aznar, R; Gil, M I

    2007-12-01

    This study assesses the potential microbial risk factors related to the use of soil amendments and irrigation water on potato crops, cultivated in one traditional and two intensive farms during two harvest seasons. The natural microbiota and potentially pathogenic micro-organisms were evaluated in the soil amendment, irrigation water, soil and produce. Uncomposted amendments and residual and creek water samples showed the highest microbial counts. The microbial load of potatoes harvested in spring was similar among the tested farms despite the diverse microbial levels of Listeria spp. and faecal coliforms in the potential risk sources. However, differences in total coliform load of potato were found between farms cultivated in the autumn. Immunochromatographic rapid tests and the BAM's reference method (Bacteriological Analytical Manual; AOAC International) were used to detect Escherichia coli O157:H7 from the potential risk sources and produce. Confirmation of the positive results by polymerase chain reaction procedures showed that the immunochromatographic assay was not reliable as it led to false-positive results. The potentially pathogenic micro-organisms of soil amendment, irrigation water and soil samples changed with the harvest seasons and the use of different agricultural practices. However, the microbial load of the produce was not always influenced by these risk sources. Improvements in environmental sample preparation are needed to avoid interferences in the use of immunochromatographic rapid tests. The potential microbial risk sources of fresh produce should be regularly controlled using reliable detection methods to guarantee their microbial safety.

  14. Factors of the accumulation of heavy metals and metalloids at geochemical barriers in urban soils

    Science.gov (United States)

    Kosheleva, N. E.; Kasimov, N. S.; Vlasov, D. V.

    2015-05-01

    The bulk contents and concentrations of mobile (extracted by an ammonium acetate buffer with EDTA) Cd, Pb, Sb, As, Bi, Zn, and Cu were determined in the surface horizons of urban soils in the Eastern administrative okrug of Moscow. The regression analysis showed that the accumulation of these metals and metalloids in the soils is controlled by the physicochemical soil properties and by number of anthropogenic factors and landscape conditions (geochemical position, type of loose deposits, character of land use, dust load, vehicle emissions, building pattern, percent of green areas, and the extent of sealed soils). The precipitation of studied elements on the geochemical barriers had the following regularities: Cd, Cu, and Zn accumulated on the alkaline barriers; Bi, Sb, As, Cu, Pb, and Zn, on chemisorption barriers; Sb, As, and Pb, on organomineral barriers; and Cd and Cu, on the sorption-sedimentation barriers. Technogenic transformation of the physicochemical properties of urban soils resulted in the increase of the mean bulk contents of heavy metals and metalloids by 33-99%; the portion of elements fixed on the geochemical barriers increased by 26-50%.

  15. Report on a workshop on the measurement of soils to plant transfer factors for radionuclides

    International Nuclear Information System (INIS)

    1982-01-01

    This report includes the proceedings of the workshop on soil-plant transfer factors of radionuclides. Part 1 deals with a general introduction of soil-plant transfer factors, recommendations for the determination of these transfer factors and computer listing of transfer factors specified according to nuclide; type of crop; type of soil; and type of experiment. The second part offers the 12 contributions presented, of which several are included in INIS separately. (G.J.P.)

  16. Factors controlling metal fuel lifetime

    International Nuclear Information System (INIS)

    Porter, D.L.; Hofman, G.L.; Seidel, B.R.; Walters, L.C.

    1986-01-01

    The reliability of metal fuel elements is determined by a fuel burnup at which a statistically predicted number of fuel breaches would occur, the number of breaches determined by the amount of free fission gas which a particular reactor design can tolerate. The reliability is therefore measured using experimentally determined breach statistics, or by modelling fuel element behavior and those factors which contribute to cladding breach. The factors are fuel/cladding mechanical and chemical interactions, fission gas pressure, fuel phase transformations involving volume changes, and fission product effects on cladding integrity. Experimental data for EBR-II fuel elements has shown that the primary, and perhaps the only significant factor affecting metal fuel reliability, is the pressure-induced stresses caused by fission gas release. Other metal fuel/cladding systems may perform similarly

  17. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model].

    Science.gov (United States)

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan

    2002-08-01

    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  18. Factors of influencing dissolved organic carbon stabilization in two cambic forest soils with contrasting soil-forming processes

    Science.gov (United States)

    Kawasaki, M.; Ohte, N.; Asano, Y.; Uchida, T.; Kabeya, N.; Kim, S.

    2004-05-01

    Stabilization of Dissolved Organic Carbon (DOC) in forest soil is a major process of soil organic carbon formation. However, the factors influencing DOC stabilization are poorly understood. To clarify the factors that affect the stabilization of DOC in forest soil mantle, we measured DOC concentrations and soil properties which were DOC adsorption efficiency at two adjacent cambic forest soils with contrasting forest management histories in Tanakami Mountains, central Japan. Matsuzawa was devastated about 1,200 years ago by excessive timber use and remained denuded for a long period. Hillside restoration and reforestation work have been carried out over the last 100 years and soil loss has been reduced. Fudoji is covered with undisturbed forest (mixed stands of cypress and oaks) with developed forest soils (more than 2,600 years old). There was no apparent seasonal variation in DOC concentration in the soil solution in either catchment. In addition, there were no significant relationships between the DOC concentration, soil temperature, and new water ratio. These results indicate that temporal variation in biological activity and rainfall-runoff process have little effect on temporal variation in DOC. The vertical variation in the DOC adsorption efficiency and DOC concentration differed between Matsuzawa and Fudoji, and the highest DOC removal rate occurred at the lowest DOC adsorption efficiency in the 0 to 10-cm soil layer at Fudoji. These results suggest that DOC removal rate is independent of DOC adsorption efficiency. Below 60 cm soil depth, DOC fluxes were constant and dissolved organic Al concentrations were little or zero in either catchment. These results suggest that abiotic precipitation of DOC is a major mechanism for stabilization of DOC. Therefore, DOC content which is able to form metal complexes may be the most important factor of influencing DOC stabilization in cambic forest soil.

  19. INFLUENCE OF HEXAVALENT CHROMIUM INITIAL CONCENTRATION ON RETARDATION FACTOR AND CONTAMINANT VELOCITY IN A SOIL MEDIA

    Directory of Open Access Journals (Sweden)

    K. SHIVA PRASHANTH KUMAR

    2016-02-01

    Full Text Available Sources of soil and ground water contamination are many and include many folds of accidental spills and leaks of toxic and hazardous chemicals. Preparation of ground water contamination model needs good understanding of the behavior of contaminant transport through soil media for predicting the level of contamination of ground water in the near future at the intended site conditions. Sorption is a natural process; due to its presence, the contaminant can move slowly as compared to the ground water and hence the effects of sorption must be taken into consideration while predicting the travel time of the contaminant to reach the ground water sources. This paper discusses the results of column test studies carried out in the laboratory under controlled conditions about the spreading of contaminant (Hexavalent chromium, Cr (VI through the clay mixed red soil at two different initial concentrations (800 mg/L and 4200 mg/L. The variations of the contaminant flow velocity and retardation factor for two different initial concentrations of contaminant were brought out and discussed. The contaminant flow velocity drastically coming down for a relative concentration of 0 to 0.2 and beyond this range, the contaminant flow velocity value is decreasing in a slow rate for both the lower and higher initial contaminant concentrations tested. At the lower relative concentration, the higher retardation factor was observed and it may be due to slowly filling the available sorption sites in the soil column.

  20. Divergence of dominant factors in soil microbial communities and functions in forest ecosystems along a climatic gradient

    Science.gov (United States)

    Xu, Zhiwei; Yu, Guirui; Zhang, Xinyu; He, Nianpeng; Wang, Qiufeng; Wang, Shengzhong; Xu, Xiaofeng; Wang, Ruili; Zhao, Ning

    2018-03-01

    Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north-south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi-bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results

  1. Factors mediating the restoration of structurally degraded soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Schjønning, Per

    with the ability of soils to perform these functions. The present study examines the roles of clay mineralogy, native organic matter, and exogenous organic material on the restoration of structurally degraded soils. Totally seven soils from Denmark and Ghana - five soils dominated by illites, one kaolinitic soil...... the incubation period, structural stability estimated as the amount of water-dispersible clay decreased with prevailing moisture content, and native organic matter. Also, microbial activity significantly increased with addition of exogenous organic matter. At the end of incubation, there was significant...... macroaggregation, decreased bulk density, and increased equivalent pore diameter and tortuosity (derived from measurements of soil-gas diffusivity and soil-air permeability) for all soils. Although aggregate friability was not affected by clay type, aggregate workability was highest for the kaolinitic soil...

  2. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    KAUST Repository

    Serrano, Oscar

    2016-08-15

    Biotic and abiotic factors influence the accumulation of organic carbon (C-org) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher C-org stocks (averaging 6.3 kg C-org m(-2) at 3- to 4-fold higher rates (12.8 gC(org) m(-2) yr(-1) ) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg C-org m(-2) and 3.6 g C-org m(-2) yr(-1) . In shallower meadows, C-org stocks were mostly derived from seagrass detritus (88% in average) compared to meadows closer to the deep limit of distribution (45% on average). In addition, soil accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr(-1) and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr(-1) and 5 %, respectively). The C-org stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg C-org m(-2) and 1.2 g C-org m(-2) yr(-1)were 3- to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8- and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypothesis that Corg storage in seagrass soils is influenced by interactions of biological (e.g., meadow productivity, cover and density), chemical (e.g., recalcitrance of Corg stocks) and physical (e.g., hydrodynamic energy and soil accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  3. [Investigation on prevalence of soil-transmitted nematode infections and influencing factors for children in southwest areas of China].

    Science.gov (United States)

    Wang, Xiao-Bing; Wang, Guo-Fei; Zhang, Lin-Xiu; Luo, Ren-Fu; Tian, Hong-Chun; Tang, Li-Na; Wang, Ju-Jun; Medina, Alexis; Wise, Paul; Rozelle, Scott

    2012-06-01

    To understand the infection status and main risk factors of soil-transmitted nematodes in southwest China so as to provide the evidence for making the control programs for soil-transmitted nematodiasis. The prevalence of soil-transmitted nematode infections was determined by Kato-Katz technique and influencing factors were surveyed by using a standardized questionnaire, and in part of the children, the examination of Enterobius vermicularis eggs was performed by using the cellophane swab method. The relationship between soil-transmitted nematode infections and influencing factors was analyzed by the multiple probit estimated method. A total of 1 707 children were examined, with a soil-transmitted nematode infection rate of 22.2%, the crowd infection rates ofAscaris lumbricoides, hookworm, and Trichuris trichiura were 16.0%, 3.8% and 6.6% respectively and 495 children were examined on Enterobius vermicularis eggs, with the infection rate of 5.1%. The results of probit estimated analysis suggested that the effects of 4 factors on soil-transmitted nematode infections were significant (all P values were less than 0.05), namely the number of sib, educational level of mother, drinking unboiled water and raising livestock and poultry. Among the factors above, the educational level of mother could reduce the probability of infection (ME = -0.074), while the number of sib, drinking unboiled water and raising livestock and poultry could increase the probability of the infections (with ME of 0.028, -0.112 and 0.080, respectively). Soil-transmitted nematode infection rates are still in a high level for children in southwest poor areas of China, with Ascaris lumbricoides as a priority. The changes of children's bad health habits, raising livestock and poultry habits, and implementing the health education about parasitic diseases in mothers would be of great significance for the prevention and control of soil-transmitted nematodiasis.

  4. A Gusseted Thermogradient Table to Control Soil Temperatures for Evaluating Plant Growth and Monitoring Soil Processes.

    Science.gov (United States)

    Welbaum, Gregory E; Khan, Osamah S; Samarah, Nezar H

    2016-10-22

    Thermogradient tables were first developed in the 1950s primarily to test seed germination over a range of temperatures simultaneously without using a series of incubators. A temperature gradient is passively established across the surface of the table between the heated and cooled ends and is lost quickly at distances above the surface. Since temperature is only controlled on the table surface, experiments are restricted to shallow containers, such as Petri dishes, placed on the table. Welding continuous aluminum vertical strips or gussets perpendicular to the surface of a table enables temperature control in depth via convective heat flow. Soil in the channels between gussets was maintained across a gradient of temperatures allowing a greater diversity of experimentation. The gusseted design was evaluated by germinating oat, lettuce, tomato, and melon seeds. Soil temperatures were monitored using individual, battery-powered dataloggers positioned across the table. LED lights installed in the lids or along the sides of the gradient table create a controlled temperature chamber where seedlings can be grown over a range of temperatures. The gusseted design enabled accurate determination of optimum temperatures for fastest germination rate and the highest percentage germination for each species. Germination information from gradient table experiments can help predict seed germination and seedling growth under the adverse soil conditions often encountered during field crop production. Temperature effects on seed germination, seedling growth, and soil ecology can be tested under controlled conditions in a laboratory using a gusseted thermogradient table.

  5. Effects of soil solarization and some amendments to control ...

    African Journals Online (AJOL)

    SCM) (1 kg m-2), solarization + olive processing waste (SOPW) (2 kg m-2), solarization + urea (SU) (100 g m-2) and an untreated control (C). Maximum soil temperatures reached in solarized plots were 54.7 and 43.9°C and in the ...

  6. Response of maize and cucumber intercrop to soil moisture control ...

    African Journals Online (AJOL)

    Replicate field plots were used in experiments aimed at evaluating the yield potentials of maize and cucumber intercrop resulting from the control of soil moisture through irrigation and mulching, for a period of eleven weeks. Three irrigation depths, 2.5, 3.5 and 4.5 mm; and two mulch levels, zero mulch and 10 ton/ha of oil ...

  7. The transfer factors of I, Ba, Sr, Y and Zr from soil to leafy vegetables

    International Nuclear Information System (INIS)

    Luo Daling; Li Mianfeng; Weng Senhan; Wen Guanghao; Liu Xiaowei; Zhang Cunxiang; Zhang Zeng; Yu Junyue

    1996-01-01

    The transfer factors of I, Ba, Sr, Y and Zr from soil to leafy vegetables have been determined using method of radioisotope tracers and element content analysis. The effects of growth period, size of the vegetables, contents of the isotopes in the soil and other climatic factors on the transfer factors have also been studied

  8. Vegetation type and the presence of ash as factors in the evolution of soil water repellency after a forest fire

    Directory of Open Access Journals (Sweden)

    P. Jiménez-Pinilla

    2013-05-01

    Full Text Available After wildfires, burning may induce the occurrence of soil water repellency. Soil water repellency may vary in space and time in function of vegetation, the presence of ash and soil moisture. This study analyzes the evolution of fire-induced soil water repellency in function of these factors, and proposes measures to promote the restoration of fire-affected soils. Burnt and unburnt (control soil plots under pine and shrub from a recently burned area (Gorga, Alicante, SE Spain were established. Three treatments were applied: in some of the plots, the original ash layer was kept on the ground; in a second group, the ash layer was removed for simulating the effects of erosion; finally, in a third group, percolating irrigation was conducted to simulate a possible good input of water into the soil profile after burning, that could occur if the first rains were with high quantity but low intensity. During the dry season, soil moisture content was significantly lower in burned plots due to fire-induced water repellency and reduced vegetation cover. During the wet season, soil moisture decreased in the control unburnt plots due to direct evaporation of water intercepted by vegetation and consumption by roots. Fire increased soil water repellency only in plots under pine. Water repellency decreased during the wet season, disappearing in January and reappearing after declining rainfalls. This baseline recovery of soil water repellency was lower where ash removal was simulated. In unburned plots, seasonal fluctuations were less important. In general, ash removal promotes a rapid reduction of water repellency, since it can induce washing of hydrophobic compounds. Irrigation performed immediately after the fire also contributed to decreased water repellency.

  9. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    Science.gov (United States)

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO 2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO 2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13 C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R 2  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties. © 2016 Her Majesty

  10. Evaluation of soil saturation, soil chemistry, and early spring soil and air temperatures as risk factors in yellow-cedar decline.

    Science.gov (United States)

    D.V. D' Amore; P.E. Hennon

    2006-01-01

    Yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst.) is a valuable tree species that is experiencing a widespread decline and mortality in southeast Alaska. This study evaluated the relative importance of several potential risk factors associated with yellow-cedar decline: soil saturation, soil aluminum (Al) toxicity or calcium (Ca) deficiency...

  11. Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors

    International Nuclear Information System (INIS)

    Liu, Rui; Wang, Meie; Chen, Weiping; Peng, Chi

    2016-01-01

    Accumulations of heavy metals in urban soils are highly spatial heterogeneity and affected by multiple factors including soil properties, land use and pattern, population and climatic conditions. We studied accumulation risks of Cd, Cu, Pb and Zn in unban soils of Beijing and their influencing based on the regression tree analysis and a GIS-based overlay model. Result shows that Zinc causes the most extensive soil pollution and Cu result in the most acute soil pollution. The soil's organic carbon content and CEC and population growth are the most significant factors affecting heavy metal accumulation. Other influence factors in land use pattern, urban landscape, and wind speed also contributed, but less pronounced. The soils in areas with higher degree of urbanization and surrounded by intense vehicular traffics have higher accumulation risk of Cd, Cu, Pb, and Zn. - Highlights: • Zn accumulations were the most extensive and Cu accumulations were the most acute. • Accumulations of Cd, Cu, Pb and Zn in urban soils were caused by different sets of influence factors. • Soil's organic carbon content and CEC and population growth were the most significant factors. • Accumulation risks were highly related with urbanization level and human activities. - A combined approach of employing geographical information systems and regression tree analyses identify the potential risks of accumulation Cd, Cu, Pb, and Zn in urban soils according to soil properties, urban land use patterns, urban landscape, demographics, and microclimatic conditions.

  12. Will PM control undermine China's efforts to reduce soil acidification?

    International Nuclear Information System (INIS)

    Zhao Yu; Duan Lei; Lei Yu; Xing Jia; Nielsen, Chris P.; Hao Jiming

    2011-01-01

    China's strategies to control acidifying pollutants and particulate matter (PM) may be in conflict for soil acidification abatement. Acidifying pollutant emissions are estimated for 2005 and 2020 with anticipated control policies. PM emissions including base cations (BCs) are evaluated with two scenarios, a base case applying existing policy to 2020, and a control case including anticipated tightened measures. Depositions of sulfur (S), nitrogen (N) and BCs are simulated and their acidification risks are evaluated with critical load (CL). In 2005, the area exceeding CL covered 15.6% of mainland China, with total exceedance of 2.2 Mt S. These values decrease in the base scenario 2020, implying partial recovery from acidification. Under more realistic PM control, the respective estimates are 17.9% and 2.4 Mt S, indicating increased acidification risks due to abatement of acid-neutralizing BCs. China's anthropogenic PM abatement will have potentially stronger chemical implications for acidification than developed countries. - Highlights: → We model the emission and deposition of base cations and acid precursors in China. → Soil acidification in China is analyzed with exceedance of critical load. → China's PM control increases the acidification risk even with reduced SO 2 emission. → The impact of PM for acidification is stronger than that in developed countries. - The control of anthropogenic PM emission in China will increase the risk of soil acidification even with reduced SO 2 emission. Such implication is stronger than that in developed countries.

  13. What is the effect of local controls on the temporal stability of soil water contents?

    Science.gov (United States)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.; Vanderlinden, K.; Hardelauf, H.; Herbst, M.

    2012-04-01

    Temporal stability of soil water content (TS SWC) reflects the spatio-temporal organization of SWC. Factors and their interactions that control this organization, are not completely understood and have not been quantified yet. It is understood that these factors should be classified into groups of local and non-local controls. This work is a first attempt to evaluate the effects of soil properties at a certain location as local controls Time series of SWC were generated by running water flow simulations with the HYDRUS6 code. Bare and grassed sandy loam, loam and clay soils were represented by sets of 100 independent soil columns. Within each set, values of saturated hydraulic conductivity (Ks) were generated randomly assuming for the standard deviation of the scaling factor of ln Ks a value ranging from 0.1 to 1.0. Weather conditions were the same for all of the soil columns. SWC at depths of 0.05 and 0.60 m, and the average water content of the top 1 m were analyzed. The temporal stability was characterized by calculating the mean relative differences (MRD) of soil water content. MRD distributions from simulations, developed from the log-normal distribution of Ks, agreed well with the experimental studies found in the literature. Generally, Ks was the leading variable to define the MRD rank for a specific location. Higher MRD corresponded to the lowest values of Ks when a single textural class was considered. Higher MRD were found in the finer texture when mixtures of textural classes were considered and similar values of Ks were compared. The relationships between the spread of the MRD distributions and the scaling factor of ln Ks were nonlinear. Variation in MRD was higher in coarser textures than in finer ones and more variability was seen in the topsoil than in the subsoil. Established vegetation decreased variability of MRD in the root zone and increased variability below. The dependence of MRD on Ks opens the possibility of using SWC sensor networks to

  14. Effects of rates and time of zeolite application on controlling runoff generation and soil loss from a soil subjected to a freeze-thaw cycle

    Directory of Open Access Journals (Sweden)

    Morteza Behzadfar

    2017-06-01

    Full Text Available Many factors such as freeze-thaw (FT cycle influence soil behavior. Application of soil amendments can play an important role on runoff time commencement (RT, volume (RV and soil loss (SL on soils subjected to FT cycles. However, limited studies have been documented on this subject. The present study was therefore carried out under rainfall simulation circumstances to investigate the effect of different rates of zeolite application to control the effects of FT on basic hydrological variables such as runoff production and soil loss. Towards this attempt, the effect of application of different rates of 250, 500 and 750 g m−2 of zeolite applied before, during and after the occurrence of FT cycle on RT, RV and SL was assessed in a completely randomized design. Treatments were set up in two categories viz. control (without zeolite application, and three rates and times of zeolite application in small 0.25 m2-experimental plots in three replications. The results showed that application of zeolite had significant effects on hydrological behavior of soil induced by FT cycles. Application rate of 750 g m−2 prior to FT cycle increased RT and reduced RV and SL at rates of 644%, 68% and 91%, respectively. The results also verified that zeolite could successfully mitigate the impacts of FT cycle on the main soil hydrological variables of soil profile induced by FT cycle. It is accordingly recommended to employ zeolite as an effective amendment to control soil erosion in steep and degraded rangelands where surface soil is exposed to rainfall and runoff.

  15. Control of arsenic mobilization in paddy soils by manganese and iron oxides.

    Science.gov (United States)

    Xu, Xiaowei; Chen, Chuan; Wang, Peng; Kretzschmar, Ruben; Zhao, Fang-Jie

    2017-12-01

    Reductive mobilization of arsenic (As) in paddy soils under flooded conditions is an important reason for the relatively high accumulation of As in rice, posing a risk to food safety and human health. The extent of As mobilization varies widely among paddy soils, but the reasons are not well understood. In this study, we investigated As mobilization in six As-contaminated paddy soils (total As ranging from 73 to 122 mg kg -1 ) in flooded incubation and pot experiments. Arsenic speciation in the solution and solid phases were determined. The magnitude of As mobilization into the porewater varied by > 100 times among the six soils. Porewater As concentration correlated closely with the concentration of oxalate-extractable As, suggesting that As associated with amorphous iron (oxyhydr)oxides represents the potentially mobilizable pool of As under flooded conditions. Soil containing a high level of manganese oxides showed the lowest As mobilization, likely because Mn oxides retard As mobilization by slowing down the drop of redox potential upon soil flooding and maintaining a higher arsenate to arsenite ratio in the solid and solution phases. Additions of a synthetic Mn oxide (hausmannite) to two paddy soils increased arsenite oxidation, decreased As mobilization into the porewater and decreased As concentrations in rice grain and straw. Consistent with previous studies using simplified model systems or pure mineral phases, the present study shows that Mn oxides and amorphous Fe (oxyhydr)oxides are important factors controlling reductive As mobilization in As-contaminated paddy soils. In addition, this study also suggests a potential mitigation strategy using exogenous Mn oxides to decrease As uptake by rice in paddy soils containing low levels of indigenous Mn oxides, although further work is needed to verify its efficacy and possible secondary effects under field conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    Directory of Open Access Journals (Sweden)

    Sandeep Pulla

    Full Text Available We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2 soil spatial variability in a seasonally dry tropical forest (SDTF in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm, rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH, and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(--N nor NH4(+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  17. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches

    International Nuclear Information System (INIS)

    Devau, Nicolas; Cadre, Edith Le; Hinsinger, Philippe; Jaillard, Benoit; Gerard, Frederic

    2009-01-01

    Inorganic P is the least mobile major nutrient in most soils and is frequently the prime limiting factor for plant growth in terrestrial ecosystems. In this study, the extraction of soil inorganic P with CaCl 2 (P-CaCl 2 ) and geochemical modelling were combined in order to unravel the processes controlling the environmentally available P (EAP) of a soil over a range of pH values (pH ∼ 4-10). Mechanistic descriptions of the adsorption of cations and anions by the soil constituents were used (1-pK Triple Plane, ion-exchange and NICA-Donnan models). These models are implemented into the geochemical code Visual MINTEQ. An additive approach was used for their application to the surface horizon of a Cambisol. The geochemical code accurately reproduced the concentration of extracted P at the different soil pH values (R 2 = 0.9, RMSE = 0.03 mg kg -1 ). Model parameters were either directly found in the literature or estimated by fitting published experimental results in single mineral systems. The strong agreement between measurements and modelling results demonstrated that adsorption processes exerted a major control on the EAP of the soil over a large range of pH values. An influence of the precipitation of P-containing mineral is discounted based on thermodynamic calculations. Modelling results indicated that the variations in P-CaCl 2 with soil pH were controlled by the deprotonation/protonation of the surface hydroxyl groups, the distribution of P surface complexes, and the adsorption of Ca and Cl from the electrolyte background. Iron-oxides and gibbsite were found to be the major P-adsorbing soil constituents at acidic and alkaline pHs, whereas P was mainly adsorbed by clay minerals at intermediate pH values. This study demonstrates the efficacy of geochemical modelling to understand soil processes, and the applicability of mechanistic adsorption models to a 'real' soil, with its mineralogical complexity and the additional contribution of soil organic matter.

  18. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Devau, Nicolas [INRA, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Cadre, Edith Le [Supagro, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Hinsinger, Philippe; Jaillard, Benoit [INRA, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Gerard, Frederic, E-mail: gerard@supagro.inra.fr [INRA, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France)

    2009-11-15

    Inorganic P is the least mobile major nutrient in most soils and is frequently the prime limiting factor for plant growth in terrestrial ecosystems. In this study, the extraction of soil inorganic P with CaCl{sub 2} (P-CaCl{sub 2}) and geochemical modelling were combined in order to unravel the processes controlling the environmentally available P (EAP) of a soil over a range of pH values (pH {approx} 4-10). Mechanistic descriptions of the adsorption of cations and anions by the soil constituents were used (1-pK Triple Plane, ion-exchange and NICA-Donnan models). These models are implemented into the geochemical code Visual MINTEQ. An additive approach was used for their application to the surface horizon of a Cambisol. The geochemical code accurately reproduced the concentration of extracted P at the different soil pH values (R{sup 2} = 0.9, RMSE = 0.03 mg kg{sup -1}). Model parameters were either directly found in the literature or estimated by fitting published experimental results in single mineral systems. The strong agreement between measurements and modelling results demonstrated that adsorption processes exerted a major control on the EAP of the soil over a large range of pH values. An influence of the precipitation of P-containing mineral is discounted based on thermodynamic calculations. Modelling results indicated that the variations in P-CaCl{sub 2} with soil pH were controlled by the deprotonation/protonation of the surface hydroxyl groups, the distribution of P surface complexes, and the adsorption of Ca and Cl from the electrolyte background. Iron-oxides and gibbsite were found to be the major P-adsorbing soil constituents at acidic and alkaline pHs, whereas P was mainly adsorbed by clay minerals at intermediate pH values. This study demonstrates the efficacy of geochemical modelling to understand soil processes, and the applicability of mechanistic adsorption models to a 'real' soil, with its mineralogical complexity and the additional

  19. Soil organic carbon stocks assessment in Mediterranean natural areas: a comparison of entire soil profiles and soil control sections.

    Science.gov (United States)

    Parras-Alcántara, L; Lozano-García, B; Brevik, E C; Cerdá, A

    2015-05-15

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Over time, some researches have analyzed entire soil profile (ESP) by pedogenetic horizons and other researches have analyzed soil control sections (SCS) to different thickness. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km(2) forested area in southern Spain. Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The soils investigated in this study included Phaeozems, Cambisols, Regosols and Leptosols. Total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C (10,604.2 Mg km(-2)) to 0.6353 Tg C (8272.1 Mg km(-2)) respectively (1 Tg = 10(12) g). However, when the topsoil (surface horizon and superficial section control) was analyzed, this difference increased to 59.8% in SCS compared to ESP. The comparison between ESP and SCS showed the effect of mixing pedogenetic horizons when depth increments were analyzed. This indicates an overestimate of T-SOCS when sampling by SCS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils

    International Nuclear Information System (INIS)

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-01-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. - Highlights: • Soil pollution in an intensively farmed area of

  1. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Paola, E-mail: paola.adamo@unina.it [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); Iavazzo, Pietro [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); Albanese, Stefano [Dipartimento di Scienze della Terra, dell' Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli (Italy); Agrelli, Diana [Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici (Italy); De Vivo, Benedetto; Lima, Annamaria [Dipartimento di Scienze della Terra, dell' Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli (Italy)

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. - Highlights: • Soil pollution in an intensively farmed area of

  2. A New European Slope Length and Steepness Factor (LS-Factor for Modeling Soil Erosion by Water

    Directory of Open Access Journals (Sweden)

    Panos Panagos

    2015-04-01

    Full Text Available The Universal Soil Loss Equation (USLE model is the most frequently used model for soil erosion risk estimation. Among the six input layers, the combined slope length and slope angle (LS-factor has the greatest influence on soil loss at the European scale. The S-factor measures the effect of slope steepness, and the L-factor defines the impact of slope length. The combined LS-factor describes the effect of topography on soil erosion. The European Soil Data Centre (ESDAC developed a new pan-European high-resolution soil erosion assessment to achieve a better understanding of the spatial and temporal patterns of soil erosion in Europe. The LS-calculation was performed using the original equation proposed by Desmet and Govers (1996 and implemented using the System for Automated Geoscientific Analyses (SAGA, which incorporates a multiple flow algorithm and contributes to a precise estimation of flow accumulation. The LS-factor dataset was calculated using a high-resolution (25 m Digital Elevation Model (DEM for the whole European Union, resulting in an improved delineation of areas at risk of soil erosion as compared to lower-resolution datasets. This combined approach of using GIS software tools with high-resolution DEMs has been successfully applied in regional assessments in the past, and is now being applied for first time at the European scale.

  3. [Progress in improvement of continuous monoculture cropping problem in Panax ginseng by controlling soil-borne disease management].

    Science.gov (United States)

    Wang, Rui; Dong, Lin-Lin; Xu, Jiang; Chen, Jun-Wen; Li, Xi-Wen; Chen, Shi-Lin

    2016-11-01

    The continuous monoculture cropping problem severely has hindered the land resource of Panax ginseng cultivation and threatened the sustainable development of ginseng industry. There are comprehensive factors causing the continuous monoculture cropping problem, such as deterioration of soil physical and chemical properties, accumulation of allelochemical, increase of pesticide residue and heavy metal, imbalance of rhizospheric micro-ecosystem, and increase of soil-borne diseases. Among soil-borne disease was one of the key factors. More than 40 soil-borne diseases have been reported in the ginseng cultivation, especially, the diseases were more serious in the ginseng replanting land. Here main soil-borne diseases and their prevention way have been summarized, and we try to provide the effective improvement strategy of continuous monoculture cropping problem focusing on the disease control and offer reference for overcoming the ginseng continuous monoculture cropping problem. Copyright© by the Chinese Pharmaceutical Association.

  4. Intervention for the control of Soil -transmitted helminthiasis in the community

    Science.gov (United States)

    Albonico, Marco; Montresor, Antonio; Crompton, DWT; Savioli, Lorenzo

    2017-01-01

    The global strategy for the control of soil-transmitted helminthiasis, based on regular anthelminthic treatment, health education, and improved sanitation standards, is reviewed. The reasons for the development of a control strategy based on population intervention rather than on individual treatment are explained. The evidence and experience from control programmes that created the basis for i) the definition of the intervention package, ii) the identification of the groups at risk, iii) the standardization of the community diagnosis, and iv) the selection of the appropriate intervention for each category in the community are discussed. How to best deliver the appropriate intervention, the impact of the control measures on morbidity and on indicators such as school attendance, cognitive development and productivity are presented. The factors influencing the cost-benefits of helminth control are also considered. The recent progress on the control of soil-transmitted helminth infections is illustrated. Research needs are analysed in relation to the most recent perceptions from private-public partnerships involved in helminth control. The way forward for the control of soil-transmitted helminth infections is described as a multi-disease approach that goes beyond deworming and fosters a pro-poor strategy that supports the aims of the Millennium Development Goals. PMID:16735168

  5. Can control of soil erosion mitigate water pollution by sediments?

    Science.gov (United States)

    Rickson, R J

    2014-01-15

    The detrimental impact of sediment and associated pollutants on water quality is widely acknowledged, with many watercourses in the UK failing to meet the standard of 'good ecological status'. Catchment sediment budgets show that hill slope erosion processes can be significant sources of waterborne sediment, with rates of erosion likely to increase given predicted future weather patterns. However, linking on-site erosion rates with off-site impacts is complicated because of the limited data on soil erosion rates in the UK and the dynamic nature of the source-pathway-receptor continuum over space and time. Even so, soil erosion control measures are designed to reduce sediment production (source) and mobilisation/transport (pathway) on hill slopes, with consequent mitigation of pollution incidents in watercourses (receptors). The purpose of this paper is to review the scientific evidence of the effectiveness of erosion control measures used in the UK to reduce sediment loads of hill slope origin in watercourses. Although over 73 soil erosion mitigation measures have been identified from the literature, empirical data on erosion control effectiveness are limited. Baseline comparisons for the 18 measures where data do exist reveal erosion control effectiveness is highly variable over time and between study locations. Given the limitations of the evidence base in terms of geographical coverage and duration of monitoring, performance of the different measures cannot be extrapolated to other areas. This uncertainty in effectiveness has implications for implementing erosion/sediment risk reduction policies, where quantified targets are stipulated, as is the case in the EU Freshwater Fish and draft Soil Framework Directives. Also, demonstrating technical effectiveness of erosion control measures alone will not encourage uptake by land managers: quantifying the costs and benefits of adopting erosion mitigation is equally important, but these are uncertain and difficult to

  6. Using DTPA-extractable soil fraction to assess the bioconcentration factor of plants in phytoremediation of urban soils

    Science.gov (United States)

    Rodríguez-Bocanegra, Javier; Roca, Núria; Tume, Pedro; Bech, Jaume

    2017-04-01

    Urban soils may be highly contaminated with potentially toxic metals, as a result of intensive anthropogenic activities. Developing cities are increasing the number of lands where is practiced the urban agriculture. In this way, it is necessary to assess the part of heavy metals that is transferred to plants in order to a) know the potential health risk that represent soils and b) know the relation soil-plant to assess the ability of these plants to remove heavy metals from soil. Nowadays, to assess the bioconcentration factor (BF) of plants in phytoremediation, the pseudototal o total concentration has been used by many authors. Two different urban soils with similar pH and carbonates content but with different pollution degree were phytoremediated with different plant species. Urban soil from one Barcelona district (Spain), the most contaminated soil, showed an extractability of Cu, Pb and Zn of 9.6, 6.7 and 5.8% of the total fraction respectively. The soil from Talcahuano city (Chile), with contents of heavy metals slightly above the background upper limit, present values of 15.5, 13.5 and 12% of the total fraction of studied heavy metals. Furthermore, a peri-urban analysed soil from Azul (Argentina) also showed an elevated extractability with values of 24, 13.5 and 14% of the Cu, Pb and Zn contents respectively. These soils presented more extractability than other disturbed soils, like for example, soils from mine areas. The urban soils present more developed soil with an interaction between solution and solid phase in polluted systems. The most important soil surface functional groups include the basal plane of phyllosilicates and metal hydroxyls at edge sites of clay minerals, iron oxyhydroxides, manganese oxyhydroxides and organic matter. The interaction between solution and solid phase in polluted urban systems tends to form labile associations and pollutants are more readily mobilized because their bonds with soil particles are weaker. Clay and organic

  7. Comparison of the Soil Dynamic Amplification Factor and Soil Amplification by Using Microtremor and MASW Methods Respectively

    Science.gov (United States)

    Tuncel, Aykut; Cevdet Özdag, Özkan; Pamuk, Eren; Akgün, Mustafa

    2017-12-01

    Single Station Microtremor method, which is widely used nowadays, is an effective and easy applicable method. In this study, dynamic amplification factor distributions of the study area were obtained using scenario earthquake parameters with single station microtremor data gathered at 112 points. In addition, a surface wave active method, which is known as MASW (Multichannel Analysis of Surface Waves), was applied at 43 profiles to calculate the soil amplification values. Dynamic amplification factor (DAF), soil amplification, the predominant soil period (PSP), geology and topography data of the study area were analysed together. Dynamic amplification factor and soil amplification values were obtained 2 or higher at about sea level parts of the study area which are generally composed of alluvial units. Additionally, in high altitude regions that are composed of volcanic rocks, relatively lower dynamic amplification factor and soil amplification values were obtained. The minimum amplification value in the study area was 1.15, while the maximum amplification value was 3.05 according to the dynamic amplification results and the soil amplification values were between 1.16 and 3.85 in harmony. It is seen that the obtained DAF values and the soil amplification values calculated from the seismic velocities are very similar to each other numerically and regionally. Because of this, it is concluded that the values of the soil amplification obtained by the MASW method and the calculated DAF values in this study are in harmony with each other. Although the depths of research in these two calculation methods are different from each other, the similarity of the results allows us to arrive at the result of how effective the ground layer is on the amplification. It has a great importance to calculate the amplification values and other dynamic parameters by in situ measurements for a planned plot because geological units can vary even at very short distances in heterogeneously

  8. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility.

    Science.gov (United States)

    Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2015-09-01

    Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions.

  9. The ash in forest fire affected soils control the soil losses. Part 2. Current and future research challenges

    Science.gov (United States)

    Pereira, Paulo; Cerdà, Artemi

    2013-04-01

    have implications on ash spatial distribution and if soil micro topography changes with time? What the factors that controls it? What it is the impact of ash in vegetation recuperation and the implications of this recover in ash spatial distribution? We need studies with better spatial and temporal resolution, especially in the immediate period after the fire, when the major spatial and temporal changes on ash distribution and impacts occur. Based on high level research conducted by Artemi Cerdà and others, our future research will be focused in these and other aspects in order to have a better knowledge about the impacts of ash on post-fire spatio-temporal erosion. Acknowledgements, Lithuanian Research Council. Project LITFIRE, Fire effects on Lithuanian soils and ecosystems (MIP-48/2011) and the research projects GL2008-02879/BTE and LEDDRA 243857. References Bodí, M., Mataix-Solera, J., Doerr, S., and Cerdà, A. 2011b. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160, 599-607. Cerdà, A. 1998a. Postfire dynamics of erosional processes under mediterranean climatic conditions. Z. Geomorphol., 42 (3) 373-398. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland.Hydrological Processes, 12, 1031-1042. Cerdà, A., and Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Onda, Y., Dietrich W. E., and Booker, F. 2008. Evolution of overland flow after severe forest fire, Point Reyes, California, Catena, 72, 13-20. Pereira, P. Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. 2013. Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, (In press) Pereira, P., Bodi. M., Úbeda, X., Cerdà, A., Mataix-Solera, J., Balfour, V, Woods, S. 2010. Las

  10. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  11. Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors

    Directory of Open Access Journals (Sweden)

    J. C. Tang

    2010-12-01

    Full Text Available Pilot experiments were conducted to analyse the effect of different environmental factors on the rhizoremediation of petroleum-contaminated soil. Different plant species (cotton, ryegrass, tall fescue and alfalfa, the addition of fertilizer, different concentrations of total petroleum hydrocarbons (TPH in the soil, bioaugmentation with effective microbial agents (EMA and plant growth-promoting rhizobacteria (PGPR and remediation time were tested as influencing factors during the bioremediation process of TPH. The results show that the remediation process can be enhanced by different plant species. The order of effectiveness of the plants was the following: tall fescue > ryegrass > alfalfa > cotton. The degradation rate of TPH increased with increased fertilizer addition, and a moderate urea level of 20 g N (Nitrogen/m2 was best for both plant growth and TPH remediation. A high TPH content is toxic to plant growth and inhibits the degradation of petroleum hydrocarbons. The results showed that a 5% TPH content gave the best degradation in soil planted with ryegrass. Bioaugmentation with different bacteria and PGPR yielded the following results for TPH degradation: cotton+EMA+PGPR > cotton+EMA > cotton+PGPR > cotton > control. Rapid degradation of TPH was found at the initial period of remediation caused by the activity of microorganisms. A continuous increase of degradation rate was found during the 30–90 days period followed by a slow increase during the 90–150 days period. These results suggest that rhizoremediation can be enhanced with the proper control of different influencing factors that affect both plant growth and microbial activity in the rhizosphere environment.

  12. Insights into tetrabromobisphenol A adsorption onto soils: Effects of soil components and environmental factors.

    Science.gov (United States)

    Tong, Fei; Gu, Xueyuan; Gu, Cheng; Ji, Rong; Tan, Yinyue; Xie, Jinyu

    2015-12-01

    Concerns regarding tetrabromobisphenol A (TBBPA), the most widely utilized brominated flame retardant in the world, are growing because of the wide application and endocrine-disrupting potential of this compound. To properly assess its environmental impacts, it is important to understand the mobility and fate of TBBPA in soil environments. In this study, the effects of soil components, dissolved organic carbon (DOC) and heavy metal cations on TBBPA adsorption onto two Chinese soils (red soil and black soil) were investigated using batch sorption experiments. The desorption behavior of TBBPA when the two soils are irrigated with eutrophicated river water was also investigated. The results showed that pH greatly affects the adsorptive behavior of TBBPA in soils. Iron oxide minerals and phyllosilicate minerals are both active surfaces for TBBPA sorption, in addition to soil organic matter (SOM). DOC (50 mg OC L(-1)) exhibited a limited effect on TBBPA sorption only under neutral conditions. TBBPA sorption was only minimally affected by the heavy metals (Cu2+, Pb2+ and Cd2+) in the studied pH range. Eutrophicated river water significantly enhanced the desorption of TBBPA from red soil due to the change in soil solution pH. These findings indicate that mobility of TBBPA in soils is mainly associated with soil pH, organic matter and clay fractions: it will be retained by soils or sediments with high organic matter and clay fractions under acidic conditions but becomes mobile under alkaline conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    Science.gov (United States)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  14. Human factors challenges for advanced process control

    International Nuclear Information System (INIS)

    Stubler, W.F.; O'Hara, J..M.

    1996-01-01

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls

  15. Investigation of features in radon soil dynamics and search for influencing factors

    Science.gov (United States)

    Yakovlev, Grigorii; Cherepnev, Maxim; Nagorskiy, Petr; Yakovleva, Valentina

    2018-03-01

    The features in radon soil dynamics at two depths were investigated and the main influencing factors were revealed. The monitoring of radon volumetric activity in soil air was performed at experimental site of Tomsk Observatory of Radioactivity and Ionizing Radiation with using radon radiometers and scintillation detectors of alpha-radiation with 10 min sampling frequency. The detectors were installed into boreholes of 0.5 and 1 m depths. The analysis of the soil radon monitoring data has allowed revealing some dependencies at daily and annual scales and main influencing factors. In periods with clearly defined daily radon variations in the soil were revealed the next: 1) amplitude of the daily variations of the soil radon volumetric activity damps with the depth, that is related with the influence of convective fluxes in the soil; 2) temporal shift between times of occurrence of radon volumetric activity maximum (or minimum) values at 0.5 m and 1 m depths can reach 3 hours. In seasonal dynamics of the soil radon the following dependences were found: 1) maximal values are observed in winter, but minimal - in summer; 2) spring periods of snow melting are accompanied by anomaly increasing of radon volumetric activity in the soil up to about 3 times. The main influencing factors are atmospheric precipitations, temperature gradient in the soil and the state of upper soil layer.

  16. Patterns and controls on nitrogen cycling of biological soil crusts

    Science.gov (United States)

    Barger, Nichole N.; Zaady, Eli; Weber, Bettina; Garcia-Pichel, Ferran; Belnap, Jayne

    2016-01-01

    Biocrusts play a significant role in the nitrogen [N ] cycle within arid and semi-arid ecosystems, as they contribute major N inputs via biological fixation and dust capture, harbor internal N transformation processes, and direct N losses via N dissolved, gaseous and erosional loss processes (Fig. 1). Because soil N availability in arid and semi-arid ecosystems is generally low and may limit net primary production (NPP), especially during periods when adequate water is available, understanding the mechanisms and controls of N input and loss pathways in biocrusts is critically important to our broader understanding of N cycling in dryland environments. In particular, N cycling by biocrusts likely regulates short-term soil N availability to support vascular plant growth, as well as long-term N accumulation and maintenance of soil fertility. In this chapter, we review the influence of biocrust nutrient input, internal cycling, and loss pathways across a range of biomes. We examine linkages between N fixation capabilities of biocrust organisms and spatio-temporal patterns of soil N availability that may influence the longer-term productivity of dryland ecosystems. Lastly, biocrust influence on N loss pathways such as N gas loss, leakage of N compounds from biocrusts, and transfer in wind and water erosion are important to understand the maintenance of dryland soil fertility over longer time scales. Although great strides have been made in understanding the influence of biocrusts on ecosystem N cycling, there are important knowledge gaps in our understanding of the influence of biocrusts on ecosystem N cycling that should be the focus of future studies. Because work on the interaction of N cycling and biocrusts was reviewed in Belnap and Lange (2003), this chapter will focus primarily on research findings that have emerged over the last 15 years (2000-2015).

  17. Sinking during earthquakes: Critical acceleration criteria control drained soil liquefaction

    Science.gov (United States)

    Clément, C.; Toussaint, R.; Stojanova, M.; Aharonov, E.

    2018-02-01

    This article focuses on liquefaction of saturated granular soils, triggered by earthquakes. Liquefaction is defined here as the transition from a rigid state, in which the granular soil layer supports structures placed on its surface, to a fluidlike state, in which structures placed initially on the surface sink to their isostatic depth within the granular layer. We suggest a simple theoretical model for soil liquefaction and show that buoyancy caused by the presence of water inside a granular medium has a dramatic influence on the stability of an intruder resting at the surface of the medium. We confirm this hypothesis by comparison with laboratory experiments and discrete-element numerical simulations. The external excitation representing ground motion during earthquakes is simulated via horizontal sinusoidal oscillations of controlled frequency and amplitude. In the experiments, we use particles only slightly denser than water, which as predicted theoretically increases the effect of liquefaction and allows clear depth-of-sinking measurements. In the simulations, a micromechanical model simulates grains using molecular dynamics with friction between neighbors. The effect of the fluid is captured by taking into account buoyancy effects on the grains when they are immersed. We show that the motion of an intruder inside a granular medium is mainly dependent on the peak acceleration of the ground motion and establish a phase diagram for the conditions under which liquefaction happens, depending on the soil bulk density, friction properties, presence of water, and peak acceleration of the imposed large-scale soil vibrations. We establish that in liquefaction conditions, most cases relax toward an equilibrium position following an exponential in time. We also show that the equilibrium position itself, for most liquefaction regimes, corresponds to the isostatic equilibrium of the intruder inside a medium of effective density. The characteristic time to relaxation is

  18. Using elevation gradients to study climate controls on soil carbon dynamics

    Science.gov (United States)

    Trumbore, S.; Marzaioli, F.; Castanha, C.; Amundson, R.

    2009-04-01

    Elevation gradients provide the opportunity to study vegetation and climate gradients in a setting where other soil forming factors such as parent material and soil age are held constant. We use the observed changes in radiocarbon content of organic matter fractionated by density and other methods to infer the dynamics of soil carbon and how it varies with elevation along transects in the Sierra Nevada mountains in California, USA. In surface litter layers, changes in the radiocarbon content from 1992 to 2006 in litter layers show that these layers are more dynamic than originally inferred from a comparison based on changes between the 1950s and the 1990s. In mineral soils, fractions often considered to be the most slowly cycling (hydrolysis residue) showed large changes in 14C in the last decade. We use incubations to determine the mean age of carbon respired by microbes along the same gradients; these data are compared to incubations from other sites and show that climate and vegetation are a major controls of the mean age of fast-cycling carbon in litter and soils.

  19. The Value Range of Contact Stiffness Factor between Pile and Soil Based on Penalty Function

    Science.gov (United States)

    Chen, Sandy H. L.; Wu, Xinliu

    2018-03-01

    The value range of contact stiffness factor based on penalty function is studied when we use finite element software ANSYS to analyze contact problems, take single pile and soil of a certain project for example, the normal contact between pile and soil is analyzed with 2D simplified model in horizontal load. The study shows that when adopting linear elastic model to simulate soil, the maximum contact pressure and penetration approach steady value as the contact stiffness factor increases. The reasonable value range of contact stiffness factor reduces as the underlying element thickness decreases, but the rule reverses when refers to the soil stiffness. If choose DP model to simulate soil, the stiffness factor should be magnified 100 times compares to the elastic model regardless of the soil bears small force and still in elastic deformation stage or into the plastic deformation stage. When the soil bears big force and into plastic deformation stage, the value range of stiffness factor relates to the plastic strain range of the soil, and reduces as the horizontal load increases.

  20. Preliminary identification of the bioremediation limiting factors of a clay bearing soil contaminated with crude oil

    OpenAIRE

    Rizzo, Andréa C. L.; Cunha, Claudia D. da; Santos, Ronaldo L. C.; Santos, Renata M.; Magalhães, Hugo M.; Leite, Selma G. F.; Soriano, Adriana U.

    2008-01-01

    Bioremediation is an attractive alternative to treat soils contaminated with petroleum hydrocarbons. However, the effectiveness of biodegradation process can be limited by both contaminant characteristics and its bioavailability in soil. This work aims at establishing a preliminary procedure to identify the main factor (hydrocarbon recalcitrance or its bioavailability) that impairs the biodegradation, possibly resulting in low remediation efficiencies. Tests in soil microcosms were carried ou...

  1. Influence of environmental factors on the spatial distribution and diversity of forest soil in Latvia

    Directory of Open Access Journals (Sweden)

    Raimonds Kasparinskis

    2012-02-01

    Full Text Available This study was carried out to determine the spatial relationships between environmental factors (Quaternary deposits, topographical situation, land cover, forest site types, tree species, soil texture and soil groups, and their prefix qualifiers (according to the international Food and Agricultural Organization soil classification system World Reference Base for Soil Resources [FAO WRB]. The results show that it is possible to establish relationships between the distribution of environmental factors and soil groups by applying the generalized linear models in data statistical analysis, using the R 2.11.1 software for processing data from 113 sampling plots throughout the forest territory of Latvia.A very high diversity of soil groups in a relatively similar geological structure was revealed. For various reasons there is not always close relationship between the soil group, their prefix qualifiers and Quaternary deposits, as well as between forest site types, the dominant tree species and specific soil group and its prefix qualifiers. Close correlation was established between Quaternary deposits, forest site types, dominant tree species and soil groups within nutrient-poor sediments and very rich deposits containing free carbonates. No significant relationship was detected between the CORINE Land Cover 2005 classes, topographical situation and soil group.

  2. What are the most crucial soil factors for predicting the distribution of alpine plant species?

    Science.gov (United States)

    Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.

    2017-12-01

    Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil p

  3. A PEDOTRANSFER FUNCTION FOR ESTIMATING THE SOIL ERODIBILITY FACTOR IN SICILY

    Directory of Open Access Journals (Sweden)

    Vincenzo Bagarello

    2009-09-01

    Full Text Available The soil erodibility factor, K, of the Universal Soil Loss Equation (USLE is a simple descriptor of the soil susceptibility to rill and interrill erosion. The original procedure for determining K needs a knowledge of soil particle size distribution (PSD, soil organic matter, OM, content, and soil structure and permeability characteristics. However, OM data are often missing and soil structure and permeability are not easily evaluated in regional analyses. The objective of this investigation was to develop a pedotransfer function (PTF for estimating the K factor of the USLE in Sicily (south Italy using only soil textural data. The nomograph soil erodibility factor and its associated first approximation, K’, were determined at 471 sampling points distributed throughout the island of Sicily. Two existing relationships for estimating K on the basis of the measured geometric mean particle diameter were initially tested. Then, two alternative PTFs for estimating K’ and K, respectively, on the basis of the measured PSD were derived. Testing analysis showed that the K estimate by the proposed PTF (eq.11, which was characterized by a Nash-Suttcliffe efficiency index, NSEI, varying between 0.68 and 0.76, depending on the considered data set, was appreciably more accurate than the one obtained by other existing equations, yielding NSEI values varying between 0.21 and 0.32.

  4. Effect of the edaphic factors and metal content in soil on the diversity of Trichoderma spp.

    Science.gov (United States)

    Racić, Gordana; Körmöczi, Péter; Kredics, László; Raičević, Vera; Mutavdžić, Beba; Vrvić, Miroslav M; Panković, Dejana

    2017-02-01

    Influence of edaphic factors and metal content on diversity of Trichoderma species at 14 different soil sampling locations, on two depths, was examined. Forty-one Trichoderma isolates from 14 sampling sites were determined as nine species based on their internal transcribed spacer (ITS) sequences. Our results indicate that weakly alkaline soils are rich sources of Trichoderma strains. Also, higher contents of available K and P are connected with higher Trichoderma diversity. Increased metal content in soil was not inhibiting factor for Trichoderma species occurrence. Relationship between these factors was confirmed by locally weighted sequential smoothing (LOESS) nonparametric smoothing analysis. Trichoderma strain (Szeged Microbiology Collection (SZMC) 22669) from soil with concentrations of Cr and Ni above remediation values should be tested for its potential for bioremediation of these metals in polluted soils.

  5. Topographical controls on soil moisture distribution and runoff response in a first order alpine catchment

    Science.gov (United States)

    Penna, Daniele; Gobbi, Alberto; Mantese, Nicola; Borga, Marco

    2010-05-01

    Hydrological processes driving runoff generation in mountain basins depend on a wide number of factors which are often strictly interconnected. Among them, topography is widely recognized as one of the dominant controls influencing soil moisture distribution in the root zone, depth to water table and location and extent of saturated areas possibly prone to runoff production. Morphological properties of catchments are responsible for the alternation between steep slopes and relatively flat areas which have the potentials to control the storage/release of water and hence the hydrological response of the whole watershed. This work aims to: i) identify the role of topography as the main factor controlling the spatial distribution of near-surface soil moisture; ii) evaluate the possible switch in soil moisture spatial organization between wet and relatively dry periods and the stability of patterns during triggering of surface/subsurface runoff; iii) assess the possible connection between the develop of an ephemeral river network and the groundwater variations, examining the influence of the catchment topographical properties on the hydrological response. Hydro-meteorological data were collected in a small subcatchment (Larch Creek Catchment, 0.033 km²) of Rio Vauz basin (1.9 km²), in the eastern Italian Alps. Precipitation, discharge, water table level over a net of 14 piezometric wells and volumetric soil moisture at 0-30 cm depth were monitored continuously during the late spring-early autumn months in 2007 and 2008. Soil water content at 0-6 and 0-20 cm depth was measured manually during 22 field surveys in summer 2007 over a 44-sampling point experimental plot (approximately 3000 m²). In summer 2008 the sampling grid was extended to 64 points (approximately 4500 m²) and 28 field surveys were carried out. The length of the ephemeral stream network developed during rainfall events was assessed by a net of 24 Overland Flow Detectors (OFDs), which are able to

  6. Soil-plant-transfer factors for I-129 and pasture vegetation

    International Nuclear Information System (INIS)

    Haisch, A.; Schuettelkopf, H.

    1993-07-01

    The transfer factors for soil/plant, I-129 and I-127 and pasture vegetation have been measured with soils developed by wethering of granite, jura and cretaceous formations. Greenhouse (Karlsruhe) and field experiments (Munich) have been performed using lysimeters. Three ground water levels and the influence of a six weeks flooding was measured. About 90% of the transfer factors ranged from 0.000 to 0.020. The highest values have been determined with soils from granite wethering. The flooding of the lysimeters caused an important increase of the transfer factors after the end of flooding. (orig.) [de

  7. Effect of soil solarization using plastic mulch in controlling root-knot ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... effect of soil solarization using plastic mulch in controlling root-knot nematode infestation and yield of ... addition to their increased toxic effects in the soil over the .... thereby promoting conducive environment for the utiliza- ...

  8. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    Science.gov (United States)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  9. Soil-plant transfer factors of Co-60 for alfalfa lettuce and spinach

    International Nuclear Information System (INIS)

    Dumitru, Radu Octavian

    1997-01-01

    The transfer of Co-60 from soil into plants is a less studied problem. Soil-plant transfer factors for Co-60 known from literature vary by about four orders of magnitude for each kind of plants. We have calculated the average values and have determined the field of variability of the known transfer factors. These indicated us that alfalfa, lettuce and spinach have in this order the greatest absorption capacity of Co-60 from soil. We have determined the physical, chemical and mineralogical properties of the utilized soil. This is a brown reddish forest type soil. The plants have been cultivated in pots by plantlet method of Neubauer and Schneider. The results of our measurements of soil-to-plant transfer factors of 60-Co are the followings: 0.0612 ± 0.0047 for alfalfa, 0.0960 ± 0.0072 for lettuce and 0.1446 ± 0.0107 for spinach. These values prove the strong dependence of the type of soil and plant of the soil-plant transfer factors for Co-60. (author)

  10. Control of electrode processes in electrokinetic soil remediation

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M.; Marb, C. [Bavarian State Office for Environmental Protection, Waste Technology Centre, Augsburg (Germany)

    2001-07-01

    Technical control of electrode processes induced by water electrolysis is crucial for the effectiveness of electrokinetic soil remediation. A calculation method for the quantification of electrolysis products is derived and its validity by the consumption of neutralizing agents verified. Steel rods used as sacrificial anodes instead of inert materials cannot counteract the acidification of the anolyte due to the acidic property of Fe-cations released as oxidation products. An an alternative to ordinary porous well materials a tubular cation exchange membrane was used as a cathode well. Thereby the migration of anions stemming from the catholyte neutralisation was hampered and no loss in the electric field strength occured. (orig.)

  11. Factors affecting the selection of a soil water sensing technology

    International Nuclear Information System (INIS)

    Hignett, C.T.

    2000-01-01

    Reviews of soil moisture measurement technologies are counterproductive in attempting to identify the single approach that has the best overall performance for a range of soil, crop and landscape conditions. Not only does such an approach preclude the addition of new technologies, but it also obscures the fact that we have available today sensors and technologies that cover most field conditions, are well understood in terms of technical capability and are mechanically and electronically reliable. This review defines decision-making processes for assessing the characteristics, good and bad, of technology in relation to project objectives. Two processes are needed. The first links soil texture and scale of variability with the nature of the project, single-plant to catchment scale, to the needs for soil water measurement. The second lists the capabilities of some devices and shows how they can be selected to accommodate necessary criteria. It is concluded that the 'best technology' is a function of the project and soil conditions. (author)

  12. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Science.gov (United States)

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  13. A statistical approach to estimating soil-to-plant transfer factor of strontium in agricultural fields

    International Nuclear Information System (INIS)

    Ishikawa, Nao; Tagami, Keiko; Uchida, Shigeo

    2009-01-01

    Soil-to-plant transfer factor (TF) is one of the important parameters in radiation dose assessment models for the environmental transfer of radionuclides. Since TFs are affected by several factors, including radionuclides, plant species and soil properties, development of a method for estimation of TF using some soil and plant properties would be useful. In this study, we took a statistical approach to estimating the TF of stable strontium (TF Sr ) from selected soil properties and element concentrations in plants, which was used as an analogue of 90 Sr. We collected the plant and soil samples used for the study from 142 agricultural fields throughout Japan. We applied a multiple linear regression analysis in order to get an empirical equation to estimate TF Sr . TF Sr could be estimated from the Sr concentration in soil (C Sr soil ) and Ca concentration in crop (C Ca crop ) using the following equation: log TF Sr =-0.88·log C Sr soil +0.93·log C Ca crop -2.53. Then, we replaced our data with Ca concentrations in crops from a food composition database compiled by the Japanese government. Finally, we predicted TF Sr using Sr concentration in soil from our data and Ca concentration in crops from the database of food composition. (author)

  14. Influences Factors of the Cadmium Removal by Magnetic Solid Chelator Powder(MSC in Soil

    Directory of Open Access Journals (Sweden)

    LIU Jun-long

    2017-12-01

    Full Text Available Pot experiments were conducted for the purpose of analyzing the influencing effects for the magnetic solid chelator powder(MSC, magnetic solid chelator powder on removal of cadmium pollution in the soil. The influencing factors included straws,air drying,activation structural material, stirring time and repetition times, etc. The results showed that the straw addition in the soil decreased the removal efficiency of Cd. The different air drying degree in the soil also had the effect of MSC. The air drying in the soil affected the results more by comparison with the straws. When stirring time was 40 min, the removal rate of Cd was 22.67% and achieved the best removal efficiency. With the increasing of stirring time, the effect of MSC on Cd removal increased first, then decreased. Drying MSC material lost the effect of Cd removal in the soil. After activation(soaking in water for 12 h, MSC material could remov Cd in the soil once again. MSC material had removal and remediation effects on soil Cd, the removal effects depended on soil properties, material properties and operation process and other factors. The research of MSC materials in soil remediation had important practical significance.

  15. The influence of site factors on nitrogen mineralization in forest soils ...

    African Journals Online (AJOL)

    The influence of site factors on nitrogen mineralization in forest soils of the ... on N mineralization, as well as the effect of N mineralization on forest productivity. ... of the natural log of mean annual temperature, geological substrate and total N ...

  16. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors.

    Science.gov (United States)

    Charzyński, Przemysław; Plak, Andrzej; Hanaka, Agnieszka

    2017-02-01

    Soil sealing belongs to the most destructive and damaging processes to the soil environment. Soil sealing interrupts or greatly restricts the exchange of matter and energy between the biosphere, hydrosphere, and atmosphere and the soil environment. The aim of this study was to compare the content of heavy metals (Cd, Cr, Cu, Hg, Fe, Ni, Pb, Zn) of Ekranic Technosols by applying indicators such as geoaccumulation index (I geo ), enrichment factor (EF), and pollution load index (PLI), which allowed to determine quantitatively the impact of the soil sealing degree on the content of heavy metals and to distinguish natural from anthropogenic sources of origin of heavy metals. In general, 42 soils from different parts of the city of Toruń (NW Poland) were sampled and divided into three groups according to the degree of soil sealing: completely sealed with asphalt or concrete (A), semi-permeable (partially sealed with cobblestones and concrete paving slabs (B)), and reference (non-sealed) (C). The results indicate that the artificial sealing in urban areas slightly affects the content of heavy metals in soils. However, based on PLI, I geo , and EF, it was found that the sealing has influence on soil properties and unsealed soil is the most exposed to the accumulation of pollutants.

  17. Influence of natural and anthropogenic factors on the dynamics of CO2 emissions from chernozems soil

    Science.gov (United States)

    Syabruk, Olesia

    2017-04-01

    Twentieth century marked a significant expansion of agricultural production. Soil erosion caused by human activity, conversion of forests and grasslands to cropland, desertification, burning nutrient residues, drainage, excessive cultivation led to intense oxidation of soil carbon to the atmosphere and allocation of additional amounts of CO2. According to the UN Intergovernmental Panel on Climate Change, agriculture is one of the main sources of greenhouse gases emissions to the atmosphere. The thesis reveals main patterns of the impact of natural and anthropogenic factors on CO2 emissions in the chernozems typical and podzolized in a Left-bank Forest-Steppe of Ukraine, seasonal and annual dynamics. New provisions for conducting monitoring CO2 emissions from soil were developed by combining observations in natural and controlled conditions, which allows isolating the impact of hydrological, thermal and trophic factors. During the research, the methods for operational monitoring of emission of carbon losses were improved, using a portable infrared gas analyzer, which allows receiving information directly in the field. It was determined that the volumes of emission losses of carbon chernozems typical and podzolized Left-bank Forest-Steppe of Ukraine during the growing season are 480-910 kg/ha and can vary depending on the soil treatment ±( 4,0 - 6,0) % and fertilizer systems ± (3,8 - 7,1) %. The significant impact of long application of various fertilizer systems and soil treatment on the intensity of carbon dioxide emissions was investigated. It was found that most emission occurs in organic- mineral fertilizers systems with direct seeding. The seasonal dynamics of the potential capacity of the soil to produce CO2 were researched. Under identical conditions of humidity and temperature it has maximum in June and July and the gradual extinction of the autumn. It was determined that the intensity of the CO2 emission from the surface of chernozem fluctuates daily from

  18. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    Science.gov (United States)

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  19. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  20. On the structural factors of soil humic matter related to soil water repellence in fire-affected soils

    Science.gov (United States)

    Almendros, G.; González-Vila, F. J.; González-Pérez, J. A.; Knicker, H.; De la Rosa, J. M.; Dettweiler, C.; Hernández, Z.

    2012-04-01

    In order to elucidate the impact of forest fires on physical and chemical properties of the soils as well as on the chemical composition of the soil organic matter, samples from two Mediterranean soils with contrasted characteristics and vegetation (O horizon, Lithic Leptosols under Quercus ilex and Pinus pinaster) and one agricultural soil (Ap horizon, Luvisol) were heated at 350 °C in laboratory conditions for three successive steps up to 600 s. The C- and N-depletion in the course of the heating showed small changes up to an oxidation time of 300 s. On the other side, and after 600 s, considerable C-losses (between 21% in the Luvisol and 50% in the Leptosols) were observed. The relatively low N-depletion ca. 4% (Luvisol) and 21% (Leptosol under pine) suggested preferential loss of C and the subsequent relative enrichment of nitrogen. Paralleling the progressive depletion of organic matter, the Leptosols showed a significant increase of both pH and electrical conductivity. The former change paralleled the rapid loss of carboxyl groups, whereas the latter point to the relative enrichment of ash with a bearing on the concentration of inorganic ions, which could be considered a positive effect for the post-fire vegetation. The quantitative and qualitative analyses by solid-state 13C NMR spectra of the humic fractions in the samples subjected to successive heating times indicate significant concentration of aromatic structures newly-formed in the course of the dehydration and cyclization of carbohydrates (accumulation of black carbon-type polycyclic aromatic structures), and probably lipids and peptides. The early decarboxylation, in addition to the depletion of O-alkyl hydrophilic constituents and further accumulation of secondary aromatic structures resulted in the dramatic increase in the soil water drop penetration time. It was confirmed that this enhancement of the soil hydrophobicity is not related to an increased concentration of soil free lipid, but is

  1. A proposal for soil cover and management factor (C) for RUSLE in vineyards with different soil management across Europe

    Science.gov (United States)

    Gómez, José Alfonso; Biddoccu, Marcella; Guzman, Gema; Bauer, Thomas; Strauss, Peter; Winter, Silvia; Zaller, Johann; Cavallo, Eugenio

    2017-04-01

    The Revised Universal Soil Loss Equation RUSLE (Dabney et al., 2012) is commonly used to estimate rates of soil erosion caused by rainfall and its associated overland flow on cropland and many other disturbed and undisturbed lands. Several studies have been focused on the evaluation of erosion risk in vineyards across Europe, which has four countries, France, Italy, Spain and Portugal, among the world's top ten vine growers. Other European countries, such as Romania, Greece, Austria, Serbia and Hungary, also have significant surface devoted to vineyards (FAO, 2014). However, literature shows a wide variability among C factors from different sources (Auerswald and Schwab, 1999; Kouli et al., 2009; Novara et al., 2011; Pacheco et al., 2014; Rodrigo Comino et al., 2016) that complicates their interpretation and use outside the area where they were developed. Gómez et al. (2016) presented a simplified erosion prediction model based on RUSLE, ORUSCAL, to demonstrate the possibility to calibrate RUSLE for a broad range of management conditions in vineyards with limited datasets. This approach have already been pursued successfully in olives (Gómez et al. 2003, Vanwalleghem et al., 2011). This communication reports the results of an evaluation of the calibration strategies and model predictions of ORUSCAL using a long-term experiment dataset (Bidoccu et al., 2016) in a vineyard in Northern Italy, and its implementation to develop soil cover and management factors (C) in three different soil, climate and management conditions across Europe: Southern Spain, Northern Italy and Austria. The communication, furthermore, explores and discusses of the application of the ORUSCAL model to additional vineyards areas in France and Romania in the context of the Vinedivers project (www.vinedivers.eu). Keywords: vineyard, erosion, soil management, RUSLE, model. References Auerswald K., Schwab, S. 1999. Erosion risk (C factor) of different viticultural practices. Vitic. Enol. Sci.54

  2. Transfer factors of 134Cs for olive and orange trees grown on different soils

    International Nuclear Information System (INIS)

    Skarlou, V.; Nobeli, C.; Anoussis, J.; Haidouti, C.; Papanicolaou, E.

    1999-01-01

    Transfer factors (TF) of 134 Cs to olive and citrus trees grown on two different soils, were determined for a 3-year greenhouse experiment. Two-year-old trees were transplanted with their entire rootball into large pots containing the contaminated soil (110 kg pot -1 ). The soil was transferred to each pot in layers on the top of which 134 Cs as CsCl was dripped (18.5 MBq pot -1 ). For both evergreen trees, soil type significantly influenced radiocaesium transfer. 134 Cs concentration was lower for the calcareous-heavy soil than for the acid-light soil. Transfer factors of orange trees were higher than those of olive trees in the acid-light soil. Although a significant amount of 134 Cs was measured in olives grown on the acid-light soil, no 134 Cs was detected in the unprocessed olive oil when an oil fraction (5% f.w.) was extracted. On the contrary the edible part of the oranges showed the highest 134 Cs concentration of all plant parts. The relationship between 134 Cs uptake and potassium content in the different plant compartments was also studied when selected trees were cut down. The potassium concentration in the plants was not significantly different between the trees growing in the two types of soil in spite of the big differences in the 134 Cs uptake in the two soils. TF values and potassium content in the different plant compartments of each tree were highly correlated. For both crops transfer factors as well as potassium content were the highest in the developing plant parts (new leaves and branches, flowers). The transfer factors of 134 Cs for the studied trees are in the same order of magnitude as the values of annual crops grown under similar conditions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Soil types and limiting factors in agricultural production in the San Fernando district, Tamaulipas, Mexico

    International Nuclear Information System (INIS)

    Espinosa Ramirez, M.; Garza Cedillo, R.; Andrade limas, E.; Belmonte Serrato, F.

    2009-01-01

    The limiting factors in agricultural production, defined as those properties and characteristics of the geographical environment that influence the development of crops, can be diverse and are grouped with the physical environment of soil. They are the result of soil characteristics and soil degradation processes by anthropogenic influence. Due to the above, the objective of this study was to identify and surveying the limitative factors to agricultural production, as well as to define its ability land use capacity in San Fernando district, Tamaulipas. (Author) 7 refs.

  4. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai–Tibetan Plateau

    International Nuclear Information System (INIS)

    Liu Wenjie; Chen Shengyun; Qin Xiang; Zhou Zhaoye; Sun Weijun; Ren Jiawen; Qin Dahe; Baumann, Frank; Scholten, Thomas; Zhang Tongzuo

    2012-01-01

    This study tested the hypothesis that soil organic carbon (SOC) and total nitrogen (TN) spatial distributions show clear relationships with soil properties and vegetation composition as well as climatic conditions. Further, this study aimed to find the corresponding controlling parameters of SOC and TN storage in high-altitude ecosystems. The study was based on soil, vegetation and climate data from 42 soil pits taken from 14 plots. The plots were investigated during the summers of 2009 and 2010 at the northeastern margin of the Qinghai–Tibetan Plateau. Relationships of SOC density with soil moisture, soil texture, biomass and climatic variables were analyzed. Further, storage and vertical patterns of SOC and TN of seven representative vegetation types were estimated. The results show that significant relationships of SOC density with belowground biomass (BGB) and soil moisture (SM) can be observed. BGB and SM may be the dominant factors influencing SOC density in the topsoil of the study area. The average densities of SOC and TN at a depth of 1 m were about 7.72 kg C m −2 and 0.93 kg N m −2 . Both SOC and TN densities were concentrated in the topsoil (0–20 cm) and fell exponentially as soil depth increased. Additionally, the four typical vegetation types located in the northwest of the study area were selected to examine the relationship between SOC and environmental factors (temperature and precipitation). The results indicate that SOC density has a negative relationship with temperature and a positive relationship with precipitation diminishing with soil depth. It was concluded that SOC was concentrated in the topsoil, and that SOC density correlates well with BGB. SOC was predominantly influenced by SM, and to a much lower extent by temperature and precipitation. This study provided a new insight in understanding the control of SOC and TN density in the northeastern margin of the Qinghai–Tibetan Plateau. (letter)

  5. Soil-to-plant transfer factors for radiocaesium measured in different soil types in the Czech Republic

    International Nuclear Information System (INIS)

    Tecl, J.; Mirchi, R.; Malatova, I.; Peskova, I.; Schlesingerova, E.

    2001-01-01

    This study was perform in frame of the SAVEC project (SAVEC = Spatial Analysis of Vulnerable Ecosystems in Central Europe; European Union project). The aim of the SAVEC project was to develop a user-friendly software package that will allow the identification of areas vulnerable or resilient to radiocesium deposition in the Central European countries: Poland, Hungary and the Czech Republic. The software package will incorporate a semi- mechanistic soil-to-plant transfer model which uses commonly measured soil properties to estimate the dynamic behaviour of deposited radiocesium. This model was developed for the European Commission IV th Framework programme Spatial Analysis of Vulnerable Ecosystems (SAVE) project. In the SAVEC software package, spatially variable data (including 137 CS deposition, soil property , agricultural production and dietary data) can be used to assess the consequences of the deposition in the three Central European countries following nuclear accidents. The SAVEC project collates data of sufficient resolution specific to Poland, Hungary and the Czech Republic for integration within the SAVE-IT software package to allow the identification of areas and population groups that may be vulnerable to radiocesium deposition. From this viewpoint the samples of soil and vegetation were collected (1999 and 2000; the locations of the sampling places are in Fig. 1.) in which the content of 137 CS by semiconductor gamma spectrometry were determined. The mass activity of 137 CS were used for calculation of soil-to-plant transfer factors. (authors)

  6. The Validation Of Influence Factors To DDT Concentration In Soil

    International Nuclear Information System (INIS)

    Kamal, Zainul; Poernomo, Herry

    2000-01-01

    Determination concentration of DDT in humidified land's and rising intensity has been done. The amount of natural soil was filled in poliethylene tube, and the amount of humadified soil was filled in order poliethylene tube. The solution of DDT-C sub.14 with volume of 10 ml and activity of 10 muCi was increased in those tube respectively, the latter it was resident for many time under shine. Sample of soil was took first week to sixthweek, it was crushed to reach homogenous, then it was counted by liquid scintillation counter. The experiment result indicated that the DDT content in the unilluminated soil for 1 week is < 0.1 ppb, for 2 week is 0.19 n 0.01 ppb, for 3 week is 1.95 n 0.32 ppb, for 4 week is 14.07 n 0.14 ppb, for 5 week is 3.67 n 0.21 ppb and for 6 week is 2.28 n 0.09 ppb. The DDT content in the humidified soil without sun illumination for 1 week is 0.25 n 0.07 ppb, for 2 week is 6.34 n 0.19 ppb, for 3 week is 9.33 n 0.80 ppb, for 4 week is 12.36 n 0.17 ppb, for 5 week is 4.58 n 0.15 ppb and for 6 week is 2.01 n 0.55 ppb. The DDT content in the natural soil illuminated by VIS for 1 week is 0.74 n 0.08 ppb, for 2 week is 7.48 n 0.14 ppb, for 3 week is 4.06 n 0.28 ppb, for 4 week is 13.16 n 0.20 ppb, for 5 week is 5.00 n 0.70 ppb and for 6 week is 2.03 n 0.03 ppb

  7. Tree species is the major factor explaining C:N ratios in European forest soils

    DEFF Research Database (Denmark)

    Cools, Nathalie; Vesterdal, Lars; De Vos, Bruno

    2014-01-01

    The C:N ratio is considered as an indicator of nitrate leaching in response to high atmospheric nitrogen (N) deposition. However, the C:N ratio is influenced by a multitude of other site-related factors. This study aimed to unravel the factors determining C:N ratios of forest floor, mineral soil...... mineral soil layers it was the humus type. Deposition and climatic variables were of minor importance at the European scale. Further analysis for eight main forest tree species individually, showed that the influence of environmental variables on C:N ratios was tree species dependent. For Aleppo pine...... and peat top soils in more than 4000 plots of the ICP Forests large-scale monitoring network. The first objective was to quantify forest floor, mineral and peat soil C:N ratios across European forests. Secondly we determined the main factors explaining this C:N ratio using a boosted regression tree...

  8. Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils

    International Nuclear Information System (INIS)

    Srinivasan, Prakash; Sarmah, Ajit K.; Manley-Harris, Merilyn

    2013-01-01

    We investigated the effect of soil pH, organic carbon, ionic strength and steroid hormones on the sorption of sulfamethoxazole (SMO) and sulfachloropyridazine (SCP) in three pastoral soils of New Zealand. A model linking sorbate speciation with species-specific sorption coefficients describing the pH dependence of the apparent sorption coefficients was used to derive the fraction of each species of SMO. All soils displayed a decrease in sorption when pH was increased, with SMO exhibiting the highest sorption at pH 2. The cationic form of SMO appeared to sorb more close to pH ≥ pK a1 and, when pH ≥ pK a2 (6.5, 7.5 and 8.5) the anionic species seems to dominate, however, its sorption affinity to all soils was low. SMO sorption was affected by ionic strengths and organic carbon content, while the presence of hormones showed only a subtle decrease in SCP sorption in a selected model pasture soil. -- Highlights: •The effect of OC content on sulfamethoxazole sorption is nullified by the pH effect. •Steroid hormone has a subtle influence on the sulfachloropyridazine sorption in pastoral soil. •Increased hormone concentrations decrease sulfachloropyridazine sorption in soils. -- Sorption affinity of SMO and SCP are strongly governed by multitude of factors, and variations in these factors can be significant when manure and fertilisers are added to soil

  9. Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors.

    Science.gov (United States)

    Wang, Meie; Zhang, Haizhen

    2018-05-24

    Heavy metal contamination in roadside soil due to traffic emission has been recognized for a long time. However, seldom has been reported regarding identification of critical factors influencing the accumulation of heavy metals in urban roadside soils due to the frequent disturbances such as the repair of damaged roads and green belt maintanance. Heavy metals in the roadside soils of 45 roads in Xihu district, Hangzhou city were investigated. Results suggested the accumulation of Cu, Pb, Cd, Cr, and Zn in roadside soil was affected by human activity. However, only two sites had Pb and Zn excessing the standards for residential areas, respectively, according to Chinese Environmental Quality Standards for soils. The concentrations of Cu, Pb, Cd, and Zn were significantly and positively correlated to soil pH and organic matter. An insignificant correlation between the age of the roads or vegetation cover types and the concentration of heavy metals was found although they were reported closely relating to the accumulation of heavy metals in roadside soils of highways. The highest Pb, Cd, and Cr taking place in sites with heavy traffic and significant differences in the concentrations of Cu, Pb, Cd, and Zn among the different categories of roads suggested the contribution of traffic intensity. However, it was difficult to establish a quantitative relationship between traffic intensity and the concentrations of heavy metals in the roadside soil. It could be concluded that impaction of traffic emission on the accumulation of heavy metals in roadside soils in urban area was slight and soil properties such as pH and organic matters were critical factors influencing the retention of heavy metals in soils.

  10. Spatial Data Mining for Estimating Cover Management Factor of Universal Soil Loss Equation

    Science.gov (United States)

    Tsai, F.; Lin, T. C.; Chiang, S. H.; Chen, W. W.

    2016-12-01

    Universal Soil Loss Equation (USLE) is a widely used mathematical model that describes long-term soil erosion processes. Among the six different soil erosion risk factors of USLE, the cover-management factor (C-factor) is related to land-cover/land-use. The value of C-factor ranges from 0.001 to 1, so it alone might cause a thousandfold difference in a soil erosion analysis using USLE. The traditional methods for the estimation of USLE C-factor include in situ experiments, soil physical parameter models, USLE look-up tables with land use maps, and regression models between vegetation indices and C-factors. However, these methods are either difficult or too expensive to implement in large areas. In addition, the values of C-factor obtained using these methods can not be updated frequently, either. To address this issue, this research developed a spatial data mining approach to estimate the values of C-factor with assorted spatial datasets for a multi-temporal (2004 to 2008) annual soil loss analysis of a reservoir watershed in northern Taiwan. The idea is to establish the relationship between the USLE C-factor and spatial data consisting of vegetation indices and texture features extracted from satellite images, soil and geology attributes, digital elevation model, road and river distribution etc. A decision tree classifier was used to rank influential conditional attributes in the preliminary data mining. Then, factor simplification and separation were considered to optimize the model and the random forest classifier was used to analyze 9 simplified factor groups. Experimental results indicate that the overall accuracy of the data mining model is about 79% with a kappa value of 0.76. The estimated soil erosion amounts in 2004-2008 according to the data mining results are about 50.39 - 74.57 ton/ha-year after applying the sediment delivery ratio and correction coefficient. Comparing with estimations calculated with C-factors from look-up tables, the soil erosion

  11. Fire as a Factor of Variation of Soil Respiration in Amazonia of Peru

    Science.gov (United States)

    Suarez, L.; Kruijt, B.

    2007-05-01

    Severe changes are affecting the role of Amazonia in the Earth system. One of these possible effects could be the modification of the relevance of soil in the carbon cycle. In this sense, fire is an important factor for mobilizing C from the soil to the atmosphere, mainly as CO2. This could have an important effect in the global warming. Our proposal will evaluate the variation of the soil respiration related to the seasonality and the fire effects on soils in the Amazonia of Peru and Brasil. In experimental parcels of four locations of Peru with different vegetation cover (forest and pasture), we will measure soil respiration along with the organic carbon and the microbial biomass of soils during campaigns of wet and dry seasons, with complementary measurements of soil temperature, water and nutrient content. Also, we will reproduce a fire experiment simulating local activity of "slash and burn" to evaluate fire effects. Measurements will be taken after the soil cooled and 1, 3, 5, 7 and 10 days after the fire. Additionally, the carbon stock of the subparcels will be evaluated. Evaluation of the variations of CO2 fluxes and the capacity of adaptation to fire and water content will be done through the comparisons of the different locations, type of soils and concentration of available N as an indicator of nutrient content.

  12. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta

    DEFF Research Database (Denmark)

    Siewert, Matthias Benjamin; Hugelius, Gustaf; Heim, Birgit

    2016-01-01

    To project the future development of the soil organic carbon (SOC) storage in permafrost environments, the spatial and vertical distribution of key soil properties and their landscape controls needs to be understood. This article reports findings from the Arctic Lena River Delta where we sampled 50...... in the permafrost. The major geomorphological units of a subregion of the Lena River Delta were mapped with a land form classification using a data-fusion approach of optical satellite imagery and digital elevation data to upscale SOC storage. Landscape mean SOC storage is estimated to 19.2 ± 2.0 kg C m− 2. Our...... results show that the geomorphological setting explains more soil variability than soil taxonomy classes or vegetation cover. The soils from the oldest, Pleistocene aged, unit of the delta store the highest amount of SOC per m2 followed by the Holocene river terrace. The Pleistocene terrace affected...

  13. Atmospheric dust additions as a soil formation factor

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Hernandez, J. L.; Ruoss, J.

    2009-07-01

    The Mediterranean area is distinguished by a least four features that determine the nature of its soils. These are its climate, its mountains, the addition of exogenous dust and ongoing anthropogenic effects. We here present three cases in which the influence of atmospheric dust additions can be detected in the soils of representative circum-Saharan contexts the Canary Islands, Betic intramontane depressions, and the Sierra Bermeja peridotite massif (Malaga). The unique position of the Canary Islands determines important rates of dust deposit, largely depending on position on the relief. the nature of the dust contrasts with the rocky substratum of the islands, and the marine and volcanic context can also affect the nature of the deposits. The numerous, extensive intramontane basins of the Betic Cordilleras act as large captors of atmospheric dust, with rates similar to those found in the Canary archipelago. The carbonate content of these exogenous additions represents a significant components that should be taken into account when establishing the carbonate accumulation regime in these soils. (Author) 13 refs.

  14. Combined climate factors alleviate changes in gross soil nitrogen dynamics in heathlands

    DEFF Research Database (Denmark)

    Bjorsne, Anna-Karin; Rutting, Tobias; Ambus, Per

    2014-01-01

    of exposure to three climate change factors, i.e. warming, elevated CO2 (eCO(2)) and summer drought, applied both in isolation and in combination. By conducting laboratory N-15 tracing experiments we show that warming increased both gross N mineralization and nitrification rates. In contrast, gross......The ongoing climate change affects biogeochemical cycling in terrestrial ecosystems, but the magnitude and direction of this impact is yet unclear. To shed further light on the climate change impact, we investigated alterations in the soil nitrogen (N) cycling in a Danish heathland after 5 years......CO(2). In the full treatment combination, simulating the predicted climate for the year 2075, gross N transformations were only moderately affected compared to control, suggesting a minor alteration of the N cycle due to climate change. Overall, our study confirms the importance of multifactorial field...

  15. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    Science.gov (United States)

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-05-17

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing.

  16. Lithologic Control on the Form of Soil Mantled Hillslopes

    Science.gov (United States)

    Johnstone, S. A.; Hilley, G. E.

    2014-12-01

    Slopes on steady-state soil-mantled hillslopes tend to increase downslope in a way that balances local transport capacity with the sediment supplied from progressively larger source areas. Most predictions for the transport of soil depend purely on topographic slope and constants. Thus, soil mantled topography should evolve toward smooth forms in which soils act to buffer these forms from the underlying geologic structure. However, in the Gabilan Mesa, CA, oscillations in the slope of soil-mantled hillslopes mirror oscillations in the underlying stratigraphy. Using field measurements of stratigraphy and soil depths, topographic analysis, and numerical modeling, we demonstrate that variations in rock type can impact the form of soil-mantled hillslopes. Specifically, variations in the properties of underlying rocks may yield different soil thicknesses. Balancing transport rates across these variations in thickness requires slopes to change when soil transport depends on both soil thickness and slope. A compilation of published data on the variation in activity with depth of various transport processes provides the basis for a geomorphic transport law (GTL) that generalizes the depth dependence of various transport processes. While this GTL is explicitly depth dependent, it is also capable of describing situations in which hillslope transport is relatively insensitive to variations in thickness and therefore essentially equivalent to existing formulations. We use dimensional analysis and numerical modeling to demonstrate the conditions under which transport on soil mantled slopes, and consequently topographic forms, may be sensitive to variations in soil thickness and therefore lithology.

  17. Soil acidification in China: is controlling SO2 emissions enough?

    Science.gov (United States)

    Zhao, Yu; Duan, Lei; Xing, Jia; Larssen, Thorjorn; Nielsen, Chris P; Hao, Jiming

    2009-11-01

    Facing challenges of increased energy consumption and related regional air pollution, China has been aggressively implementing flue gas desulfurization (FGD) and phasing out small inefficient units in the power sector in order to achieve the national goal of 10% reduction in sulfur dioxide (SO(2)) emissions from 2005 to 2010. In this paper, the effect of these measures on soil acidification is explored. An integrated methodology is used, combining emission inventory data, emission forecasts, air quality modeling, and ecological sensitivities indicated by critical load. National emissions of SO(2), oxides of nitrogen (NO(X)), particulate matter (PM), and ammonia (NH(3)) in 2005 were estimated to be 30.7, 19.6, 31.3, and 16.6 Mt, respectively. Implementation of existing policy will lead to reductions in SO(2) and PM emissions, while those of NO(X) and NH(3) will continue to rise, even under tentatively proposed control measures. In 2005, the critical load for soil acidification caused by sulfur (S) deposition was exceeded in 28% of the country's territory, mainly in eastern and south-central China. The area in exceedance will decrease to 26% and 20% in 2010 and 2020, respectively, given implementation of current plans for emission reductions. However, the exceedance of the critical load for nitrogen (N, combining effects of eutrophication and acidification) will double from 2005 to 2020 due to increased NO(X) and NH(3) emissions. Combining the acidification effects of S and N, the benefits of SO(2) reductions during 2005-2010 will almost be negated by increased N emissions. Therefore abatement of N emissions (NO(X) and NH(3)) and deposition will be a major challenge to China, requiring policy development and technology investments. To mitigate acidification in the future, China needs a multipollutant control strategy that integrates measures to reduce S, N, and PM.

  18. Intrinsic factors of Peltigera lichens influence the structure of the associated soil bacterial microbiota.

    Science.gov (United States)

    Leiva, Diego; Clavero-León, Claudia; Carú, Margarita; Orlando, Julieta

    2016-11-01

    Definition of lichens has evolved from bi(tri)partite associations to multi-species symbioses, where bacteria would play essential roles. Besides, although soil bacterial communities are known to be affected by edaphic factors, when lichens grow upon them these could become less preponderant. We hypothesized that the structure of both the lichen microbiota and the microbiota in the soil underneath lichens is shaped by lichen intrinsic and extrinsic factors. In this work, intrinsic factors corresponded to mycobiont and cyanobiont identities of Peltigera lichens, metabolite diversity and phenoloxidase activity and extrinsic factors involved the site of the forest where lichens grow. Likewise, the genetic and metabolic structure of the lichen and soil bacterial communities were analyzed by fingerprinting. Among the results, metabolite diversity was inversely related to the genetic structure of bacterial communities of lichens and soils, highlighting the far-reaching effect of these substances; while phenoloxidase activity was inversely related to the metabolic structure only of the lichen bacterial microbiota, presuming a more limited effect of the products of these enzymes. Soil bacterial microbiota was different depending on the site and, strikingly, according to the cyanobiont present in the lichen over them, which could indicate an influence of the photobiont metabolism on the availability of soil nutrients. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Application of of artificial neural networks for estimation of soil-plant transfer factor for "1"3"7Cs

    International Nuclear Information System (INIS)

    Santos, Anna Karla Gomes dos

    2016-01-01

    pedological parameters pH, CEC and exchangeable K, was capable of estimating TF soil-plant values in cereals for "1"3"7Cs with deviations inferior to 6% in almost 86% of the cases, showing the availability of the ANN use as a tool to predict the soil-plant transfer factor values for "13"7Cs. The results of this emphasize the influence of these pedological parameters in the control of the "1"3"7Cs soil-plant transfer process. The previous knowledge of transfer factors, enable to infer the degree of radio vulnerability of a soil that's potentially subject to radioactive contamination, which will help in the planning of emergency treatment in short, medium and long term in rural areas close to nuclear plants, as well as the selection of adequate places for the waste storage and nuclear installations. (author)

  20. Socio-Economic Factors Assessment Affecting the Adoption of Soil Conservation Technologies on Rwenzori Mountain

    Directory of Open Access Journals (Sweden)

    Nabalegwa Wambede Muhamud

    2015-06-01

    Full Text Available This study analysed the role of socio-economic factors in influencing farmers’ adoption to soil conservation technologies in Bugoye Sub-county, Rwenzori Mountain. A cross sectional household survey design was used in this study, using systematic sampling to obtain 150 household samples. Qualitative analysis and chi-square tests were used to analyze these data. Results indicated that only 54% of the sampled households have adopted soil conservation, and revealed that eight of the nine factors significantly influenced farmers’ adoption, which are slope, farm size, farm distance from home, education level, family income, training, membership to NGOs, and credit accessibility. Only family size was insignificant. Other constraints are labour demands, cost of conservation work, land fragmentation, crop pests, and the limited agricultural extension services. It is recommended to perform training for farmers on designing soil conservation structures. Policies for empowering farmers with extra income are crucial to increase the adoption of soil conservation efforts.

  1. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    Science.gov (United States)

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.

  2. Relationships between physical-geographical factors and soil degradation on agricultural land.

    Science.gov (United States)

    Bednář, Marek; Šarapatka, Bořivoj

    2018-07-01

    It is a well-known fact that soil degradation is dramatically increasing and currently threatens agricultural soils all around the world. The objective of this study was to reveal the possible connection between soil degradation and seven physical-geographical factors - slope steepness, altitude, elevation differences, rainfall, temperature, soil texture and solar radiation - in the form of threshold values (if these exist), where soil degradation begins and ends. The analysis involved the whole area of the Czech Republic which consists of 13,027 cadasters (78,866 km 2 ). The greatest total degradation threat occurs in areas with slope steepness >7 degrees, average annual temperature 10.54, altitude >766 m a.s.l. Similarly, the results for water erosion, wind erosion, soil compaction, loss of organic matter, acidification and heavy metal contamination were processed. The results enable us to identify the relationships of different levels of threats which could consequently be used in various ways - for classification of threatened areas, for more effective implementation of anti-degradation measures, or purely for a better understanding of the role of physical geographical factors in soil degradation in the Czech Republic, and thus could increase the chances of reducing vulnerability to land degradation not only in the Czech Republic. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Microhabitat Effects on N2O Emissions from Floodplain Soils under Controlled Conditions

    Science.gov (United States)

    Ley, Martin; Lehmann, Moritz F.; Niklaus, Pascal A.; Kuhn, Thomas; Luster, Jörg

    2016-04-01

    Semi-terrestrial soils such as floodplain soils are considered to be potential hotspots of nitrous oxide (N2O) emissions. The quantitative assessment of N2O release from these hotspots under field conditions, and of the microbial pathways that underlie net N2O production (ammonium oxidation, nitrifier-denitrification, and denitrification) is challenging because of their high spatial and temporal variability. The production and consumption of N2O appears to be linked to the presence or absence of micro-niches, providing specific conditions that may be favorable to either of the relevant microbial pathways. Flood events have been shown to trigger moments of enhanced N2O emission through a close coupling of niches with high and low oxygen availabilities. This coupling might be modulated by microhabitat effects related to soil aggregate formation, root soil interactions and the degradation of organic matter accumulations. In order to assess how these factors can modulate N2O production and consumption under simulated flooding/drying conditions, we have set up a mesocosm experiment with N-rich floodplain soils comprising different combinations of soil aggregate size classes and inert matrix material. These model soils were either planted with basket willow (Salix viminalis L.), mixed with leaf litter, or left untreated. Throughout a simulated flood event, we repeatedly measured the net N2O production rate. In addition, soil water content, redox potential, as well as C and N substrate availability were monitored. In order to gain insight into the sources of, and biogeochemical controls on N2O production, we also measured the bulk δ15N signature of the produced N2O, as well as its intramolecular 15N site preference (SP). In this presentation we focus on a period of enhanced N2O emission during the drying phase after 48 hrs of flooding. We will discuss the observed emission patterns in the context of possible treatment effects. Soils with large aggregates showed a

  4. Cenotic and physiological control of the radionuclides migration into system soil-plant

    International Nuclear Information System (INIS)

    Kravets, A.P.

    1998-01-01

    Some biological - cenotic and physiological - factors which determine the availability of radionuclides for a plant and the general capacity for the accumulation of pollutants were investigated and analysed. Metabolites of soil microorganisms and especially root excretion of higher plants increase the rate of destruction of solid forms of pollution and enhance the leaching of radionuclides from the solid matrix. The following facts were demonstrated in the conditions of contamination heterogeneity of Chernobyl fallout: (i) During the period of vegetation the plants of different species of f. Poacea, 1 .5 to 2.7-fold increase in the chemical mobility and biological availability of radionuclides; (ii) Additional increase in the concentration of soil microorganisms (micromycetes) leads to enhanced contents of the mobile form of the pollutant in soil and increases the level of accumulation of the radionuclides by higher plants; (iii) Increase in the density of sowing (and competition, respectively) of the different species of the plants also leads to an enhanced availability of the radionuclides and 1 .7 to 2.4- fold increase in the level of accumulation of the radionuclides by the plants. Other aspect of formation of the level of plant pollution include the peculiarities of radionuclide absorption and accumulation by the plant biomass. The effects of a high density of sowing, high level of the watering and gamma irradiation on the changes in the level of radionuclide accumulation and, at the same time, the cation exchange capacity (CEC) of the plant biomass were investigated in the laboratory and in a greenhouse experiment. In parallel, increased CEC and radionuclide accumulation by a factor of 1.5 to 2.7 was demonstrated. These facts suggest that the biological factors are a powerful tool of control of the pollutants availability and accumulation and may be take into account under development of the modern agricultural technology for clear products formation

  5. Safety factor profile control in a tokamak

    CERN Document Server

    Bribiesca Argomedo, Federico; Prieur, Christophe

    2014-01-01

    Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the  spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium. Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs). The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The t...

  6. Intestinal parasites in children and soil from Turbaco, Colombia and associated risk factors.

    Science.gov (United States)

    Villafañe-Ferrer, Lucy M; Pinilla-Pérez, Mavianis

    2016-02-01

    Objective To determine the frequency of intestinal parasites in children and soil from Turbaco- Colombia and associated risks factors. Methods Analytical study in which 390 children between 2 and 12 years old from 10 neighborhoods of Turbaco were included, whose legal representatives gave informed consent. Three serial samples of feces and 10 soil samples were processed. Risk factors were determined through an interview. Physicochemical and structural characteristics of soils were also evaluated. Results Parasites were found in 30.5 % of children. 162 parasites were observed; the most frequent protozoan was Endolimax nana (30.3 %) and in terms of helminthes, the most frequent was Ascaris lumbricoides (4.9 %). No statistical association between age or sex and intestinal parasites (p>0.05) or between risk factors and intestinal parasites (p>0.05) was found. Low frequencies of intestinal parasites were encountered in soil samples, being more common Entamoeba spp., Giardia spp., and Ascaris lumbricoides. Neighborhoods of Turbaco had sandy dry soil with low content of ions, low conductivity and low organic matter. Conclusion This study showed a low frequency of intestinal parasites in feces and soils. Despite this, pathogenic parasites were found which can affect the health of the population. Besides this, a high percentage of intestinal parasites that are transmitted through feces were detected indicating fecal contamination and low level of hygiene.

  7. Input-driven versus turnover-driven controls of simulated changes in soil carbon due to land-use change

    Science.gov (United States)

    Nyawira, S. S.; Nabel, J. E. M. S.; Brovkin, V.; Pongratz, J.

    2017-08-01

    Historical changes in soil carbon associated with land-use change (LUC) result mainly from the changes in the quantity of litter inputs to the soil and the turnover of carbon in soils. We use a factor separation technique to assess how the input-driven and turnover-driven controls, as well as their synergies, have contributed to historical changes in soil carbon associated with LUC. We apply this approach to equilibrium simulations of present-day and pre-industrial land use performed using the dynamic global vegetation model JSBACH. Our results show that both the input-driven and turnover-driven changes generally contribute to a gain in soil carbon in afforested regions and a loss in deforested regions. However, in regions where grasslands have been converted to croplands, we find an input-driven loss that is partly offset by a turnover-driven gain, which stems from a decrease in the fire-related carbon losses. Omitting land management through crop and wood harvest substantially reduces the global losses through the input-driven changes. Our study thus suggests that the dominating control of soil carbon losses is via the input-driven changes, which are more directly accessible to human management than the turnover-driven ones.

  8. Quantitative Analysis of the Factors Influencing Soil Heavy Metal Lateral Migration in Rainfalls Based on Geographical Detector Software: A Case Study in Huanjiang County, China

    Directory of Open Access Journals (Sweden)

    Pengwei Qiao

    2017-07-01

    Full Text Available Quantitative analysis of the factors influencing heavy metal migration could be useful for controlling heavy metal migration. In this paper, a geographical detector was used to calculate the contributions of and interactions among factors in Huanjiang County, South China, covering an area of 273 km2. In this paper, nine factors were analyzed. The results showed that, among these factors, soil type was the main factor influencing the migration of As, Pb and Cd; the other eight factors did not have big differences and were lower than soil type. In addition, there were obvious synergistic effects between the soil type and concentration of water-soluble heavy metals (CWS and the concentration of water-insoluble heavy metals (CWI and NDVI. Therefore, these factors of the study area were especially focused on. Furthermore, the results of the key factor identification and the high-risk region identification in the nine factors were reliable, based on the geographical detector software. Therefore, the geographical detector software could be used as an effective tool to quantitatively analyze the contribution of the factors, and identify the high-risk regions for the factors influencing soil heavy metal lateral migration in rainfalls.

  9. Temperature versus plant effects on diel dynamics of soil CO2 production and efflux: a controlled environment study

    Science.gov (United States)

    Reinthaler, David; Roy, Jacques; Landais, Damien; Piel, Clement; Resco de Dios, Victor; Bahn, Michael

    2015-04-01

    Soil respiration (Rs) is the biggest source of CO2 emitted from terrestrial ecosystems to the atmosphere. Therefore the understanding of its drivers is of major importance for models of carbon cycling. Next to temperature as a major abiotic factor, photosynthesis has been suggested as an important driver influencing diel patterns in Rs. Under natural conditions it is difficult to disentangle abiotic and biotic effects on soil CO2 production, as fluctuating light intensity affects both photosynthetic activity and soil temperature. To analyse individual and combined effects of soil temperature and light on the dynamics of soil CO2 production and efflux, we performed a controlled environment study at the ECOTRON facility in Montpellier. The study manipulated temperature and photosynthetically active radiation independently and was carried out in large macrocosms, hosting canopies of either a woody (cotton) or a herbaceous (bean) crop. In each macrocosm membrane tubes had been installed across the soil profile for continuous measurement of soil CO2 concentrations. In addition, an automated soil respiration system was installed in each macrocosm, whose data were also used for validating a model of soil CO2 production and transport based on the concentration profiles. Both for cotton and for bean canopies, under conditions of naturally fluctuating temperature and light conditions, soil CO2 production and efflux followed a clear diel pattern. Under constantly dark conditions (excluding immediate effects of photosynthesis) and constant temperature, no significant diel changes in Rs could be observed. Furthermore, soil CO2 production and efflux did not increase significantly upon exposure of previously darkened macrocosms to light. Under constant temperature and fluctuating light conditions, we observed a dampened diel pattern of Rs, which did not match diurnal solar cycles. A detailed residual analysis accounting for temporal trends in soil moisture suggested a significant

  10. Use of Low-Cost Methods of Soil Erosion Control In Kisii District, South Western kenya

    International Nuclear Information System (INIS)

    Nzabi, A.W; Makini, F; Onyango, M; Mureithi, J.G

    1999-01-01

    Kisii District has a topography of undulating hills and is prone to severe soil erosion. The average rainfall is 1900 mm and occurs in biomodal pattern. During a participatory appraisal survey in 1995, farmers indicated that soil erosion in the area had contributed to decline in soil fertility resulting in low crop yields. To address this problem, an on-farm trial was conducted in 1996 at Nyamonyo village to test the effectiveness of four low cost methods of controlling soil erosion. These included maize stover trash line, sweet potatoes,Penicum maximum var. Makarikari grass strip and vetiveria zizanioides (Vertiver) grass strip. A treatment without soil erosion control measure was included. The trial was planted in three farms which acted as replicates. The treatments were planted in runoff plots measuring 4 x 2 m in which had a maize crop were laid down in a randomized complete block design. Surface runoff and eroded soils were collected in 50-l buckets. The experimental site had a slope ranging from 16 to 35%. Preliminary results indicated that maize stover trash line and sweet potato strips were more effective in controlling soil erosion than the grass strips. As the season progressed the grass strips became increasingly more effective in erosion control. The trail is still continuing but results indicate that for short term soil erosion control, maize stover trash lines and sweet potatoes are more effective while Makarikari and Vertiver grass strips are promising as long term soil erosion control measure

  11. Possibility of environmentally-safe casing soil disinfection for control of cobwebdisease of button mushroom

    Directory of Open Access Journals (Sweden)

    Ivana Potočnik

    2014-12-01

    Full Text Available The soil-borne pathogen Cladobotryum dendroides causes cobweb disease of button mushroom (Agaricus bisporus and its significant yield losses. Casing soil disinfection by toxic formaldehyde is a widespread practice. The aim of this study was to investigate the potential of two environmentally friendly substances, colloidal silver and peracetic acid, against C. dendroides. Their biological efficacy (impact on mushroom yield, effectiveness (disease control and type of interactions between them and the fungicide prochloraz-manganese were evaluated. Black peat/lime casing soil was applied to a colonized substrate with the white button mushroom strain 737, then inoculated with C. dendroides and treated with the fungicide prochloraz-manganse and two environmentally friendly disinfectants based on peracetic acid and colloidal silver. The effects of fungicides on mushroom productivity were evaluated as biological efficacy and calculated as a ratio of fresh weight of total mushroom yield to the weight of dry substrate. Fungicide effectiveness and synergy factor were calculated by Abbott’s (1925 formula. Tests for synergism between prochloraz-manganese and both other substances were performed using Limpel’s formula. The highest biolgical efficacy, exceeding 92.00, was achieved in treatments with prochlorazmanganese, applied alone or in combination with both other disinfectants. The highest effectiveness of 93.33% was attained in treatments with peracetic acid combined with prochloraz-manganese. Trials against cobweb disease revealed a synergistic reaction between the fungicide and peracetic acid and antagonistic between the fungicide and colloidal silver. Peracetic acid provided better disease control, compared to colloidal silver applied alone or in combination with the fungicide. Based on these findings, peracetic acid should be recomended as an environmentally friendly casing soil disinfectant against cobweb disease of A. bisporus.

  12. [Effects of controlled release blend bulk urea on soil nitrogen and soil enzyme activity in wheat and rice fields].

    Science.gov (United States)

    Zhang, Jing Sheng; Wang, Chang Quan; Li, Bing; Liang, Jing Yue; He, Jie; Xiang, Hao; Yin, Bin; Luo, Jing

    2017-06-18

    A field experiment was conducted to investigate the effect of controlled-release fertilizer (CRF) combined with urea (UR) on the soil fertility and environment in wheat-rice rotation system. Changes in four forms of nitrogen (total nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass nitrogen) and in activities of three soil enzymes participating in nitrogen transformation (urease, protease, and nitrate reductase) were measured in seven fertilization treatments (no fertilization, routine fertilization, 10%CRF+90%UR, 20%CRF+80%UR, 40%CRF+60%UR, 80%CRF+20%UR, and 100%CRF). The results showed that soil total nitrogen was stable in the whole growth period of wheat and rice. There was no significant difference among the treatments of over 20% CRF in soil total nitrogen content of wheat and rice. The soil inorganic nitrogen content was increased dramatically in treatments of 40% or above CRF during the mid-late growing stages of wheat and rice. With the advance of the growth period, conventional fertilization significantly decreased soil microbial biomass nitrogen, but the treatments of 40% and above CRF increased the soil microbial biomass nitrogen significantly. The soil enzyme activities were increased with over 40% of CRF in the mid-late growing stage of wheat and rice. By increasing the CRF ratio, the soil protease activity and nitrate reductase activity were improved gradually, and peaked in 100% CRF. The treatments of above 20% CRF could decrease the urease activity in tillering stage of rice and delay the peak of ammonium nitrogen, which would benefit nitrogen loss reduction. The treatments of 40% and above CRF were beneficial to improving soil nitrogen supply and enhancing soil urease and protease activities, which could promote the effectiveness of nitrogen during the later growth stages of wheat and rice. The 100% CRF treatment improved the nitrate reductase activity significantly during the later stage of wheat and rice. Compared with the

  13. Impacts of terracing on soil erosion control and crop yield in two agro-ecological zones of Rwanda

    Science.gov (United States)

    Rutebuka, Jules; Ryken, Nick; Uwimanzi, Aline; Nkundwakazi, Olive; Verdoodt, Ann

    2017-04-01

    Soil erosion remains a serious limiting factor to the agricultural production in Rwanda. Terracing has been widely adopted in many parts of the country in the past years, but its effectiveness is not yet known. Besides the standard radical (bench) terraces promoted by the government, also progressive terraces (with living hedges) become adopted mainly by the farmers. The aim of this study was to measure short-term (two consecutive rainy seasons 2016A and 2016B) run-off and soil losses for existing radical (RT) and progressive (PT) terraces versus non-protected (NP) fields using erosion plots installed in two agro-ecological zones, i.e. Buberuka highlands (site Tangata) and Eastern plateau (site Murehe) and determine their impacts on soil fertility and crop production. The erosion plot experiment started with a topsoil fertility assessment and during the experiment, maize was grown as farmer's cropping preference in the area. Runoff data were captured after each rainfall event and the collected water samples were dried to determine soil loss. Both erosion control measures reduced soil losses in Tangata, with effectiveness indices ranging from 43 to 100% when compared to the NP plots. RT showed the highest effectiveness, especially in season A. In Murehe, RT minimized runoff and soil losses in both seasons. Yet, the PT were largely inefficient, leading to soil losses exceeding those on the NP plots (ineffectiveness index of -78% and -65% in season A and B, respectively). Though topsoil fertility assessment in the erosion plots showed that the soil quality parameters were significantly higher in RT and NP plots compared to the PT plots on both sites, maize grain yield was not correlated with the physical effectiveness of the erosion control measures. Finally, the effectiveness of soil erosion control measures as well as their positive impacts on soil fertility and production differ not only by terracing type but also by agro-ecological zone and the management or

  14. Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China

    International Nuclear Information System (INIS)

    Wang Degao; Tian Fulin; Yang Meng; Liu Chenlin; Li Yifan

    2009-01-01

    Soil derived sources of polycyclic aromatic hydrocarbons (PAHs) in the region of Dalian, China were investigated using positive matrix factorization (PMF). Three factors were separated based on PMF for the statistical investigation of the datasets both in summer and winter. These factors were dominated by the pattern of single sources or groups of similar sources, showing seasonal and regional variations. The main sources of PAHs in Dalian soil in summer were the emissions from coal combustion average (46%), diesel engine (30%), and gasoline engine (24%). In winter, the main sources were the emissions from coal-fired boiler (72%), traffic average (20%), and gasoline engine (8%). These factors with strong seasonality indicated that coal combustion in winter and traffic exhaust in summer dominated the sources of PAHs in soil. These results suggested that PMF model was a proper approach to identify the sources of PAHs in soil. - PMF model is a proper approach to identify potential sources of PAHs in soil based on the PAH profiles measured in the field and those published in the literature.

  15. Controlled experimental soil organic matter modification for study of organic pollutant interactions in soil

    International Nuclear Information System (INIS)

    Ahmed, Ashour A.; Kühn, Oliver; Leinweber, Peter

    2012-01-01

    Interactions of organic pollutants with soil organic matter can be studied by adsorption of the pollutants on well-characterized soil samples with constant mineralogy but different organic matter compositions. Therefore, the objectives of the current study are establishing a set of different, well-characterized soil samples by systematic modifications of their organic matter content and molecular composition and prove these modifications by advanced complementary analytical techniques. Modifications were done by off-line pyrolysis and removal/addition of hot-water extracted organic fraction (HWE) from/to the original soil sample. Both pyrolysis-field ionization mass spectrometry (Py-FIMS) and synchrotron-based C- and N- X-ray absorption near-edge structure spectroscopy (XANES) were applied to investigate the composition of the soil organic matter. These complementary analytical methods in addition to elemental analysis agreed in showing the following order of organic matter contents: pyrolyzed soil < soil residue < original soil < soil + 3 HWE < soil + 6 HWE < HWE. The addition of HWE to the soil sample increases the relative proportions of carbohydrates, N-containing heterocyclic compounds and peptides, and decreases the relative proportions of phenols, lignin monomers and dimers, and lipids. The most abundant organic compound classes in the pyrolyzed sample are aromatics, aliphatic nitriles, aldehydes, five- and six-membered N-containing heterocyclic compounds, and aliphatic carboxylic acids. It can be expected that removal or addition of HWE, that mimic biomass inputs to soil or soil amendments, change the binding capacity for organic pollutants less intensively than heat impact, e.g. from vegetation burning. It will be possible to interpret kinetic data on the pollutants adsorption by these original and modified soil samples on the basis of the bond- and element-specific speciation data through C-XANES and N-XANES and the molecular-level characterization

  16. Interactions between soil texture, water, and nutrients control patterns of biocrusts abundance and structure

    Science.gov (United States)

    Young, Kristina; Bowker, Matthew; Reed, Sasha; Howell, Armin

    2017-04-01

    Heterogeneity in the abiotic environment structures biotic communities by controlling niche space and parameters. This has been widely observed and demonstrated in vascular plant and other aboveground communities. While soil organisms are presumably also strongly influenced by the physical and chemical dimensions of the edaphic environment, there are fewer studies linking the development, structure, productivity or function of surface soil communities to specific edaphic gradients. Here, we use biological soil crusts (biocrusts) as a model system to determine mechanisms regulating community structure of soil organisms. We chose soil texture to serve as an edaphic gradient because of soil texture's influence over biocrust distribution on a landscape level. We experimentally manipulated texture in constructed soil, and simultaneously manipulated two main outcomes of texture, water and nutrient availability, to determine the mechanism underlying texture's influence on biocrust abundance and structure. We grew biocrust communities from a field-sourced inoculum on four different soil textures, sieved from the same parent soil material, manipulating watering levels and nutrient additions across soil textures in a full-factorial design over a 5-month period of time. We measured abundance and structure of biocrusts over time, and measured two metrics of function, N2 fixation rates and soil stabilization, at the conclusion of the experiment. Our results showed finer soil textures resulted in faster biocrust community development and dominance by mosses, whereas coarser textures grew more slowly and had biocrust communities dominated by cyanobacteria and lichen. Additionally, coarser textured soils contained cyanobacterial filaments significantly deeper into the soil profile than fine textured soils. N2-fixation values increased with increasing moss cover and decreased with increasing cyanobacterial cover, however, the rate of change depended on soil texture and water amount

  17. Soil moisture control over autumn season methane flux, Arctic Coastal Plain of Alaska

    Directory of Open Access Journals (Sweden)

    C. S. Sturtevant

    2012-04-01

    Full Text Available Accurate estimates of annual budgets of methane (CH4 efflux in arctic regions are severely constrained by the paucity of non-summer measurements. Moreover, the incomplete understanding of the ecosystem-level sensitivity of CH4 emissions to changes in tundra moisture makes prediction of future CH4 release from the Arctic extremely difficult. This study addresses some of these research gaps by presenting an analysis of eddy covariance and chamber measurements of CH4 efflux and supporting environmental variables during the autumn season and associated beginning of soil freeze-up at our large-scale water manipulation site near Barrow, Alaska (the Biocomplexity Experiment. We found that the autumn season CH4 emission is significant (accounting for 21–25% of the average growing season emission, and that this emission is mostly controlled by the fraction of inundated landscape, atmospheric turbulence, and the decline in unfrozen water during the period of soil freezing. Drainage decreased autumn CH4 emission by a factor of 2.4 compared to our flooded treatment. Flooding slowed the soil freezing process which has implications for extending elevated CH4 emissions longer into the winter season.

  18. Soil chemical factors and grassland species density in Emas National Park (central Brazil).

    Science.gov (United States)

    Amorim, P K; Batalha, M A

    2008-05-01

    Studies of grasslands on specific soil types suggest that different nutrients can limit biomass production and, hence, species composition and number. The Brazilian cerrado is the major savanna region in America and once covered about 2 million km(2), mainly in the Brazilian Central Plateau, under seasonal climate, with wet summer and dry winter. In view of the importance of soil chemical factors in the distribution of the vegetation forms within the Cerrado domain and which may influence the number of species, we analyzed some soil characteristics in three herbaceous vegetation forms -- hyperseasonal cerrado, seasonal cerrado, and wet grassland -- in Emas National Park, a core cerrado site, to investigate the relationship between number of species and soil characteristics. We collected vegetation and soil samples in these three vegetation forms and submitted the obtained data to multiple linear regression. We found out that aluminum and pH were the best predictors of species density, the former positively related to species density and the latter negatively related. Since the predictable variation in species density is important in determining areas of conservation, we can postulate that these two soil factors are indicators of high species density areas in tropical grasslands, which could be used in selecting priority sites for conservation.

  19. Factor value determination and applicability evaluation of universal soil loss equation in granite gneiss region

    Directory of Open Access Journals (Sweden)

    Wen-hai Zhang

    2009-06-01

    Full Text Available Six types of runoff plots were set up and an experimental study was carried out to examine natural rate of soil and water loss in the granite gneiss region of northern Jiangsu Province in China. Through correlation analysis of runoff and soil loss during 364 rainfall events, a simplified and convenient mathematical formula suitable for calculating the rainfall erosivity factor (R for the local region was established. Other factors of the universal soil loss equation (USLE model were also determined. Relative error analysis of the soil loss of various plots calculated by the USLE model on the basis of the observed values showed that the relative error ranged from -3.5% to 9.9% and the confidence level was more than 90%. In addition, the relative error was 5.64% for the terraced field and 12.36% for the sloping field in the practical application. Thus, the confidence level was above 87.64%. These results provide a scientific basis for forecasting and monitoring soil and water loss, for comprehensive management of small watersheds, and for soil and water conservation planning in the region.

  20. Soil Moisture (SMAP) and Vapor Pressure Deficit Controls on Evaporative Fraction over the Continental U.S.

    Science.gov (United States)

    Salvucci, G.; Rigden, A. J.; Gianotti, D.; Entekhabi, D.

    2017-12-01

    We analyze the control over evapotranspiration (ET) imposed by soil moisture limitations and stomatal closure due to vapor pressure deficit (VPD) across the United States using estimates of satellite-derived soil moisture from SMAP and a meteorological, data-driven ET estimate over a two year period at over 1000 locations. The ET data are developed independent of soil moisture using the emergent relationship between the diurnal cycle of the relative humidity profile and ET based on ETRHEQ (Salvucci and Gentine (2013), PNAS, 110(16): 6287-6291, Rigden and Salvucci, 2015, WRR, 51(4): 2951-2973; Rigden and Salvucci, 2017, GCB, 23(3) 1140-1151). The key advantage of using this approach to estimate ET is that no measurements of surface limiting factors (soil moisture, leaf area, canopy conductance) are required; instead, ET is estimated from only meteorological data. The combination of these two independent datasets allows for a unique spatial analysis of the control on ET imposed by the availability of soil moisture vs. VPD. Spatial patterns of limitations are inferred by fitting the ETRHEQ-inferred surface conductance to a weighted sum of a Jarvis type stomatal conductance model and bare soil evaporation conductance model, with separate moisture-dependent evaporation efficiency relations for bare soil and vegetation. Spatial patterns are visualized by mapping the optimal curve fitting coefficients and by conducting sensitivity analyses of the resulting fitted model across the Unites States. Results indicate regional variations in rate-limiting factors, and suggest that in some areas the VPD effect on stomatal closure is strong enough to induce a decrease in ET under projected climate change, despite an increase in atmospheric drying (and thus evaporative demand).

  1. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey in field-contaminated soils.

    Science.gov (United States)

    Rosenfeld, Carla E; Chaney, Rufus L; Martínez, Carmen E

    2018-03-01

    Cadmium contamination in soil is a substantial global problem, and of significant concern due to high food-chain transfer. Cadmium hyperaccumulators are of particular interest because of their ability to tolerate and take up significant amounts of heavy metal pollution from soils. One particular plant, Noccaea caerulescens (formerly, Thlaspi caerulescens), has been extensively studied in terms of its capacity to accumulate heavy metals (specifically Zn and Cd), though these studies have primarily utilized hydroponic and metal-spiked model soil systems. We studied Cd and nutrient uptake by two N. caerulescens ecotypes, Prayon (Zn-only hyperaccumulator) and Ganges (Zn- and Cd-hyperaccumulator) in four long-term field-contaminated soils. Our data suggest that individual soil properties such as total soil Cd, Zn:Cd molar ratio, or soil pH do not accurately predict Cd uptake by hyperaccumulating plants. Additionally, total Cd uptake by the hyperaccumulating Ganges ecotype was substantially less than its physiological capacity, which is likely due to Cd-containing solid phases (primarily iron oxides) and pH that play an important role in regulating and limiting Cd solubility. Increased P accumulation in the Ganges leaves, and greater plant Fe accumulation from Cd-containing soils suggests that rhizosphere alterations via proton, and potentially organic acid, secretion may also play a role in nutrient and Cd acquisition by the plant roots. The current study highlights the role that soil geochemical factors play in influencing Cd uptake by hyperaccumulating plants. While these plants may have high physiological potential to accumulate metals from contaminated soils, individual soil geochemical factors and the plant-soil interactions in that soil will dictate the actual amount of phytoextractable metal. This underlines the need for site-specific understanding of metal-containing solid phases and geochemical properties of soils before undertaking phytoextraction efforts

  2. Soil Properties Control Glyphosate Sorption in Soils Amended with Birch Wood Biochar

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo, Marcos

    2016-01-01

    Abstract Despite a contemporary interest in biochar application to agricultural fields to improve soil quality and long-term carbon sequestration, a number of potential side effects of biochar incorporation in field soils remain poorly understood, e.g., in relation to interactions...... with agrochemicals such as pesticides. In a fieldbased study at two experimental sites in Denmark (sandy loam soils at Risoe and Kalundborg), we investigated the influence of birch wood biochar with respect to application rate, aging (7–19 months), and physico- chemical soil properties on the sorption coefficient......, Kd (L kg−1), of the herbicide glyphosate. We measured Kd in equilibrium batch sorption experiments with triplicate soil samples from 20 field plots that received biochar at different application rates (0 to 100 Mg ha−1). The results showed that pure biochar had a lower glyphosate Kd value as compared...

  3. Soil-to-crop transfer factors of radium in Japanese agricultural fields

    International Nuclear Information System (INIS)

    Uchida, S.; Tagami, K.

    2007-01-01

    The concentrations of 226 Ra in upland field crops (e.g., cabbage, leek, onion, potato, and so on) and associated soils collected from 45 locations throughout Japan were determined in order to obtain soil-to-crop transfer factors (TFs). Concentrations of 226 Ra in the soils collected in southwestern Japan were higher than those in northeastern Japan; however, no correlations between 226 Ra concentrations in crops and soils were observed. The TFs ranged from -3 to 5.8 x 10 -2 with a geometric mean of 6.4 x 10 -3 . These data were within the 95% confidential range of TF-Ra for several crops as reported in the IAEA Technical Reports Series No.364. Among the alkaline earth metals. TF-Ba was similar to TF-Ra. (author)

  4. Transfer factors of radionuclides 137Cs and 65Zn from soil to pearl millet and sorghum

    International Nuclear Information System (INIS)

    Sachdev, P.; Sachdev, M.S.; Deb, D.L.

    1996-01-01

    The soil to plant transfer factors (TF) of 137 Cs and 65 Zn were determined for two crops, sorghum and pearl millet, under irrigated conditions in greenhouse and under rain fed conditions in field. In the greenhouse experiment, the accumulation of 137 Cs was almost doubled when the soil contamination level was doubled. Under field conditions, 137 Cs concentration in both pearl millet and sorghum grains as well as straw was nearly four times more at 148 kBq Kg -1 level of soil contamination as compared to lower level of 74 kBq kg -1 soil. The TF values for 65 Zn determined under greenhouse conditions for both the crops were nearly a hundred-fold higher as compared to 137 Cs. (author). 7 refs., 2 tabs

  5. UNDERSTANDING PLANT-SOIL RELATIONSHIPS USING CONTROLLED ENVIRONMENT FACILITIES

    Science.gov (United States)

    Although soil is a component of terrestrial ecosystems, it is comprised of a complex web of interacting organisms, and therefore, can be considered itself as an ecosystem. Soil microflora and fauna derive energy from plants and plant residues and serve important functions in mai...

  6. Factors controlling contrail cirrus optical depth

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2009-08-01

    Full Text Available Aircraft contrails develop into contrail cirrus by depositional growth and sedimentation of ice particles and horizontal spreading due to wind shear. Factors controlling this development include temperature, ice supersaturation, thickness of ice-supersaturated layers, and vertical gradients in the horizontal wind field. An analytical microphysical cloud model is presented and validated that captures these processes. Many individual contrail cirrus are simulated that develop differently owing to the variability in the controlling factors, resulting in large samples of cloud properties that are statistically analyzed. Contrail cirrus development is studied over the first four hours past formation, similar to the ages of line-shaped contrails that were tracked in satellite imagery on regional scales. On these time scales, contrail cirrus optical depth and microphysical variables exhibit a marked variability, expressed in terms of broad and skewed probability distribution functions. Simulated mean optical depths at a wavelength of 0.55 μm range from 0.05-0.5 and a substantial fraction 20-50% of contrail cirrus stay subvisible (optical depth <0.02, depending on meteorological conditions.

    A detailed analysis based on an observational case study over the continental USA suggests that previous satellite measurements of line-shaped persistent contrails have missed about 89%, 50%, and 11% of contrails with optical depths 0-0.05, 0.05-0.1, and 0.1-0.2, respectively, amounting to 65% of contrail coverage of all optical depths. When comparing observations with simulations and when estimating the contrail cirrus climate impact, not only mean values but also the variability in optical depth and microphysical properties need to be considered.

  7. [Relation between species distribution of plant community and soil factors under grazing in alpine meadow].

    Science.gov (United States)

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min

    2017-12-01

    The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.

  8. The influence of use-related, environmental, and managerial factors on soil loss from recreational trails

    Science.gov (United States)

    Olive, Nathaniel D.; Marion, Jeffrey L.

    2009-01-01

    Recreational uses of unsurfaced trails inevitably result in their degradation, with the type and extent of resource impact influenced by factors such as soil texture, topography, climate, trail design and maintenance, and type and amount of use. Of particular concern, the loss of soil through erosion is generally considered a significant and irreversible form of trail impact. This research investigated the influence of several use-related, environmental, and managerial factors on soil loss on recreational trails and roads at Big South Fork National River and Recreation Area, a unit of the U.S. National Park Service. Regression modeling revealed that trail position, trail slope alignment angle, grade, water drainage, and type of use are significant determinants of soil loss. The introduction of individual and groups of variables into a series of regression models provides improved understanding and insights regarding the relative influence of these variables, informing the selection of more effective trail management actions. Study results suggest that trail erosion can be minimized by avoiding “fall-line” alignments, steep grades, and valley-bottom alignments near streams, installing and maintaining adequate densities of tread drainage features, applying gravel to harden treads, and reducing horse and all-terrain vehicle use or restricting them to more resistant routes.This research also sought to develop a more efficient Variable Cross-Sectional Area method for assessing soil loss on trails. This method permitted incorporation of CSA measures in a representative sampling scheme applied to a large (24%) sample of the park's 526 km trail system. The variety of soil loss measures derived from the Variable CSA method, including extrapolated trail-wide soil loss estimates, permit an objective quantification of soil erosion on recreational trails and roads. Such data support relational analyses to increase understanding of trail degradation, and long

  9. The influence of use-related, environmental, and managerial factors on soil loss from recreational trails.

    Science.gov (United States)

    Olive, Nathaniel D; Marion, Jeffrey L

    2009-03-01

    Recreational uses of unsurfaced trails inevitably result in their degradation, with the type and extent of resource impact influenced by factors such as soil texture, topography, climate, trail design and maintenance, and type and amount of use. Of particular concern, the loss of soil through erosion is generally considered a significant and irreversible form of trail impact. This research investigated the influence of several use-related, environmental, and managerial factors on soil loss on recreational trails and roads at Big South Fork National River and Recreation Area, a unit of the U.S. National Park Service. Regression modeling revealed that trail position, trail slope alignment angle, grade, water drainage, and type of use are significant determinants of soil loss. The introduction of individual and groups of variables into a series of regression models provides improved understanding and insights regarding the relative influence of these variables, informing the selection of more effective trail management actions. Study results suggest that trail erosion can be minimized by avoiding "fall-line" alignments, steep grades, and valley-bottom alignments near streams, installing and maintaining adequate densities of tread drainage features, applying gravel to harden treads, and reducing horse and all-terrain vehicle use or restricting them to more resistant routes. This research also sought to develop a more efficient Variable Cross-Sectional Area method for assessing soil loss on trails. This method permitted incorporation of CSA measures in a representative sampling scheme applied to a large (24%) sample of the park's 526 km trail system. The variety of soil loss measures derived from the Variable CSA method, including extrapolated trail-wide soil loss estimates, permit an objective quantification of soil erosion on recreational trails and roads. Such data support relational analyses to increase understanding of trail degradation, and long-term monitoring of

  10. Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh

    Science.gov (United States)

    Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.

    2017-12-01

    Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three

  11. Relationship between soil chemical factors and grassland diversity

    NARCIS (Netherlands)

    Janssens, F; Peeters, A; Tallowin, JRB; Bakker, JP; Bekker, RM; Fillat, F; Oomes, MJM

    Many studies carried out during these last few years have focused on the factors influencing plant diversity in species-rich grasslands. This is due to the fact that these ecosystems, among the most diversified in temperate climates, are extremely threatened; in some areas, they have almost

  12. Hot regions of labile and stable soil organic carbon in Germany - Spatial variability and driving factors

    Science.gov (United States)

    Vos, Cora; Jaconi, Angélica; Jacobs, Anna; Don, Axel

    2018-06-01

    Atmospheric carbon dioxide levels can be mitigated by sequestering carbon in the soil. Sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools, as labile pools with a high turnover may be accumulated much faster but are also more vulnerable to losses. The aims of this study were to (1) assess how soil organic carbon (SOC) is distributed among SOC fractions on a national scale in Germany, (2) identify factors influencing this distribution and (3) identify regions with high vulnerability to SOC losses. The SOC content and proportion of two different SOC fractions were estimated for more than 2500 mineral topsoils (soil texture, bulk soil C / N ratio, total SOC content and pH. For some regions, the drivers were linked to the land-use history of the sites. Arable topsoils in central and southern Germany were found to contain the highest proportions and contents of stable SOC fractions, and therefore have the lowest vulnerability to SOC losses. North-western Germany contains an area of sandy soils with unusually high SOC contents and high proportions of light SOC fractions, which are commonly regarded as representing a labile carbon pool. This is true for the former peat soils in this area, which have already lost and are at high risk of losing high proportions of their SOC stocks. Those black sands can, however, also contain high amounts of stable SOC due to former heathland vegetation and need to be treated and discussed separately from non-black sand agricultural soils. Overall, it was estimated that, in large areas all over Germany, over 30 % of SOC is stored in easily mineralisable forms. Thus, SOC-conserving management of arable soils in these regions is of great importance.

  13. Use of the neutron activation technique: soil-plant transfer factor

    International Nuclear Information System (INIS)

    Silva, Wellington Ferrari da; Menezes, Maria Ângela de B.C.; Marques, Douglas José

    2017-01-01

    Recent studies have demonstrated the importance of the soil-plant transfer factor in the absorption and translocation of chemical elements, thus, it is possible to evaluate a better decision-making in the consecutive plantations. To determine these values, the content of a chemical element present in the plant or part of it with the total content present in the same soil where it is grown is considered. The objective of this study was to determine the concentrations of the chemical elements present in soil, leaf and grains corn, by neutron activation analysis and to compare the different soil-plant transfer factors. The samples were collected in a property located in the region of Biquinhas, MG, and irradiated in the TRIGA MARK I IPR-R1 CDTN / CNEN nuclear reactor. Thus, the concentrations of Br, Ce Fe, K, La, Na, Rb, Zn were determined. The soil-plant transfer factors for the elements found were varied, indicating a greater potassium absorption capacity (K). (author)

  14. Use of the neutron activation technique: soil-plant transfer factor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wellington Ferrari da, E-mail: wferrari250@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pós-Graduação em Ciências e Técnicas Nucleares; Menezes, Maria Ângela de B.C., E-mail: menezes@cdtn.br [Centro Desenvolvimento da Tecnologia Nuclear (SERTA/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serviço de Técnicas Analíticas. Laboratório de Ativação Neutrônica; Marques, Douglas José, E-mail: douglasjmarques81@yahoo.com.br [Universidade José do Rosário Vellano, Alfenas, MG (Brazil). Setor de Olericultura e Experimentação em Agricultura Orgânica

    2017-07-01

    Recent studies have demonstrated the importance of the soil-plant transfer factor in the absorption and translocation of chemical elements, thus, it is possible to evaluate a better decision-making in the consecutive plantations. To determine these values, the content of a chemical element present in the plant or part of it with the total content present in the same soil where it is grown is considered. The objective of this study was to determine the concentrations of the chemical elements present in soil, leaf and grains corn, by neutron activation analysis and to compare the different soil-plant transfer factors. The samples were collected in a property located in the region of Biquinhas, MG, and irradiated in the TRIGA MARK I IPR-R1 CDTN / CNEN nuclear reactor. Thus, the concentrations of Br, Ce Fe, K, La, Na, Rb, Zn were determined. The soil-plant transfer factors for the elements found were varied, indicating a greater potassium absorption capacity (K). (author)

  15. Concentration and measuring Platinum Group Elements (PGE) Transfer Factor in soil and vegetations

    International Nuclear Information System (INIS)

    Adibah Sakinah Oyub

    2012-01-01

    This study was conducted to determine the concentration and to measure platinum group elements (PGE) transfer factor in environmental samples of roadside soil and vegetation. The use of vehicle catalytic converter has released platinum group elements (PGE) and other gases into the environment. Thus, roadside soil and plants were exposed to this element and has become the medium for the movement of this elements. Samples of roadside soil and vegetation were taken at various locations in UKM Bangi Toll and the concentration of platinum group elements (PGE) is determined using mass spectrometry-inductively coupled plasma (ICP-MS). Overall, the concentrations of platinum group elements (PGE), which is the element platinum (Pt) in soil was 0.016 ± 0.036 μgg -1 . While the concentration of the elements palladium (Pd) was 0.079 ± 0.019 μgg -1 and element rhodium (Rh) is at a concentration of 0.013 ± 0.020 μgg -1 . Overall, the transfer factor for the element platinum (Pt) is 1. While the transfer factor of the element palladium (Pd) is 0.96 and the element rhodium (Rh) is 1.11. In conclusion, the concentration of platinum group elements (PGE) in soils have increased. (author)

  16. Ecosystem development in roadside grasslands: biotic control, plant–soil interactions and dispersal limitations

    Science.gov (United States)

    García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián

    2015-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late

  17. Ecosystem development in roadside grasslands: Biotic control, plant-soil interactions, and dispersal limitations

    Science.gov (United States)

    Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.

    2011-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late

  18. Improving and disaggregating N_2O emission factors for ruminant excreta on temperate pasture soils

    International Nuclear Information System (INIS)

    Krol, D.J.; Carolan, R.; Minet, E.; McGeough, K.L.; Watson, C.J.; Forrestal, P.J.; Lanigan, G.J.; Richards, K.G.

    2016-01-01

    Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N_2O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N_2O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N_2O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatments were applied in spring, summer and autumn to three temperate grassland sites with varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N_2O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (− 0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N_2O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type. - Highlights: • N_2O emissions were measured from cattle excreta applied to pasture. • N_2O was universally higher from urine compared with dung. • N_2O was driven by rainfall, temperature and soil moisture deficit. • Emission

  19. Effect of EM Bokashi application on control of secondary soil salinization

    Directory of Open Access Journals (Sweden)

    Shao Xiaohou

    2008-12-01

    Full Text Available In order to ameliorate saline-alkaline soil, EM Bokashi has been applied to rice production in conjunction with subdrainage in Ningxia Autonomous Region and Zhejiang Province. The preliminary results can be summarized as follows: EM Bokashi can increase soil organic matter content, improve soil porosity and permeability, and raise the soil's levels of available nutrients; and EM Bokashi combined with subdrainage treatment is more effective in controlling secondary soil salinization and raising the grain yield and quality than other treatments. The results suggest that EM Bokashi can reduce the necessary amount of chemical fertilizer application, thereby improving the agricultural environment, and that the introduction of EM Bokashi into systems of secondary soil salinization control systems has resulted in significant benefits.

  20. Hydrologic controls on the development of equilibrium soil depths

    Science.gov (United States)

    Nicotina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2010-12-01

    The object of the present work was the study of the coevolution of runoff production and geomorphological processes and its effects on the formation of equilibrium soil depth by focusing on their mutual feedbacks. The primary goal of this work is to describe spatial patterns of soil depth resulting, under the hypothesis of dynamic equilibrium, from long-term interactions between hydrologic forcings and soil production, erosion and sediment transport processes. These processes dominate the formation of actual soil depth patterns that represent the boundary condition for water redistribution, thus this paper also proposes and attempt to set the premises for decoding their individual role and mutual interactions in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Moreover the setup of a coupled hydrologic-geomorphologic approach represents a first step into the study of such interactions and in particular of the effects of soil moisture in determining soil production functions. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography from high resolution digital terrain models (DTM). Geomorphological processes are described by means of well-studied geomorphic transport laws. Soil depth is assumed, in the exponential soil production function, as a proxy for all the mechanisms that induce mechanical disruption of bedrock and it’s conversion into soil. This formulation, although empirical, has been widely used in the literature and is currently accepted. The modeling approach is applied to the semi-arid Dry Creek Experimental Watershed, located near Boise, Idaho, USA. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment

  1. The diel imprint of leaf metabolism on the δ13 C signal of soil respiration under control and drought conditions.

    Science.gov (United States)

    Barthel, Matthias; Hammerle, Albin; Sturm, Patrick; Baur, Thomas; Gentsch, Lydia; Knohl, Alexander

    2011-12-01

    Recent (13) CO(2) canopy pulse chase labeling studies revealed that photosynthesis influences the carbon isotopic composition of soil respired CO(2) (δ(13) C(SR)) even on a diel timescale. However, the driving mechanisms underlying these short-term responses remain unclear, in particular under drought conditions. The gas exchange of CO(2) isotopes of canopy and soil was monitored in drought/nondrought-stressed beech (Fagus sylvatica) saplings after (13) CO(2) canopy pulse labeling. A combined canopy/soil chamber system with gas-tight separated soil and canopy compartments was coupled to a laser spectrometer measuring mixing ratios and isotopic composition of CO(2) in air at high temporal resolution. The measured δ(13) C(SR) signal was then explained and substantiated by a mechanistic carbon allocation model. Leaf metabolism had a strong imprint on diel cycles in control plants, as a result of an alternating substrate supply switching between sugar and transient starch. By contrast, diel cycles in drought-stressed plants were determined by the relative contributions of autotrophic and heterotrophic respiration throughout the day. Drought reduced the speed of the link between photosynthesis and soil respiration by a factor of c. 2.5, depending on the photosynthetic rate. Drought slows the coupling between photosynthesis and soil respiration and alters the underlying mechanism causing diel variations of δ(13) C(SR). © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  2. Control of aromatic-waste air streams by soil bioreactors

    International Nuclear Information System (INIS)

    Miller, D.E.; Canter, L.W.

    1991-01-01

    Contamination of groundwater resources is a serious environmental problem which is continuing to increase in occurrence in the United States. It has been reported that leaking underground gasoline storage tanks may pose the most serious threat of all sources of groundwater contamination. Gasolines are comprised of a variety of aliphatic and aromatic hydrocarbons. The aromatic portion consists primarily of benzene, toluene, ethylbenzene, and xylenes (BTEX compounds). BTEX compounds are also among the most frequency identified substances at Superfund sites. Pump and treat well systems are the most common and frequently used technique for aquifer restoration. Treatment is often in the form of air stripping to remove the volatile components from the contaminated water. Additionally, soil ventilation processes have been used to remove volatile components from the vadose zone. Both air stripping and soil ventilation produce a waste gas stream containing volatile compounds which is normally treated by carbon adsorption or incineration. Both treatment processes require a substantial capital investment and continual operation and maintenance expenditures. The objective of the study was to examine the potential of using soil bioreactors to treat a waste gas stream produced by air stripping or soil ventilation process. Previous studies have shown that various hydrocarbons can be successfully treated with soils. The study examined the removal of BTEX compounds within soil columns and the influence of soil type, inlet concentration, and inlet flow rate on the removal efficiency

  3. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review

    Science.gov (United States)

    Jamiołkowska, Agnieszka; Księżniak, Andrzej; Gałązka, Anna; Hetman, Beata; Kopacki, Marek; Skwaryło-Bednarz, Barbara

    2018-01-01

    Arbuscular mycorrhizal fungi inhabiting soil play an important role for vascular plants. Interaction between arbuscular mycorrhizal fungi, plants and soil microorganisms leads to many mutual advantages. However, the effectiveness of mycorrhizal fungi depends not only on biotic, but also abiotic factors such as physico-chemical properties of the soil, availability of water and biogenic elements, agricultural practices, and climatic conditions. First of all, it is important to adapt the arbuscular mycorrhizal fungi species to changing environmental conditions. The compactness of the soil and its structure have a huge impact on its biological activity. Soil pH reaction has a substantial impact on the mobility of ions in soil dilutions and their uptake by plants and soil microflora. Water excess can be a factor negatively affecting arbuscular mycorrhizal fungi because these microorganisms are sensitive to a lower availability of oxygen. Mechanical cultivation of the soil has a marginal impact on the arbuscular mycorrhizal fungi spores. However, soil translocation can cause changes to the population of the arbuscular mycorrhizal fungi abundance in the soil profile. The geographical location and topographic differentiation of cultivated soils, as well as the variability of climatic factors affect the population of the arbuscular mycorrhizal fungi in the soils and their symbiotic activity.

  4. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic

  5. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    International Nuclear Information System (INIS)

    Pauget, B.; Gimbert, F.; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-01-01

    Although soil characteristics modulate metal mobility and bioavailability to organisms, they are often ignored in the risk assessment of metal transfer. This paper aims to determine the ability of chemical methods to assess and predict cadmium (Cd), lead (Pb) and zinc (Zn) environmental bioavailability to the land snail Cantareus aspersus. Snails were exposed in the laboratory for 28 days to 17 soils from around a former smelter. The soils were selected for their range of pH, organic matter, clay content, and Cd, Pb and Zn concentrations. The influence of soil properties on environmental availability (estimated using HF-HClO 4 , EDTA, CaCl 2 , NH 4 NO 3 , NaNO 3 , free ion activity and total dissolved metal concentration in soil solution) and on environmental bioavailability (modelled using accumulation kinetics) was identified. Among the seven chemical methods, only the EDTA and the total soil concentration can be used to assess Cd and Pb environmental bioavailability to snails (r² adj = 0.67 and 0.77, respectively). For Zn, none of the chemical methods were suitable. Taking into account the influence of the soil characteristics (pH and CEC) allows a better prediction of Cd and Pb environmental bioavailability (r² adj = 0.82 and 0.83, respectively). Even though alone none of the chemical methods tested could assess Zn environmental bioavailability to snails, the addition of pH, iron and aluminium oxides allowed the variation of assimilation fluxes to be predicted. A conceptual and practical method to use soil characteristics for risk assessment is proposed based on these results. We conclude that as yet there is no universal chemical method to predict metal environmental bioavailability to snails, and that the soil factors having the greatest impact depend on the metal considered. - Highlights: ► New approach to identify chemical methods able to predict metal bioavailability to snails. ► Bioavailability of cadmium, lead and zinc to snails was determined by

  6. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    Energy Technology Data Exchange (ETDEWEB)

    Pauget, B.; Gimbert, F., E-mail: frederic.gimbert@univ-fcomte.fr; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-08-01

    Although soil characteristics modulate metal mobility and bioavailability to organisms, they are often ignored in the risk assessment of metal transfer. This paper aims to determine the ability of chemical methods to assess and predict cadmium (Cd), lead (Pb) and zinc (Zn) environmental bioavailability to the land snail Cantareus aspersus. Snails were exposed in the laboratory for 28 days to 17 soils from around a former smelter. The soils were selected for their range of pH, organic matter, clay content, and Cd, Pb and Zn concentrations. The influence of soil properties on environmental availability (estimated using HF-HClO{sub 4}, EDTA, CaCl{sub 2}, NH{sub 4}NO{sub 3}, NaNO{sub 3}, free ion activity and total dissolved metal concentration in soil solution) and on environmental bioavailability (modelled using accumulation kinetics) was identified. Among the seven chemical methods, only the EDTA and the total soil concentration can be used to assess Cd and Pb environmental bioavailability to snails (r Superscript-Two {sub adj} = 0.67 and 0.77, respectively). For Zn, none of the chemical methods were suitable. Taking into account the influence of the soil characteristics (pH and CEC) allows a better prediction of Cd and Pb environmental bioavailability (r Superscript-Two {sub adj} = 0.82 and 0.83, respectively). Even though alone none of the chemical methods tested could assess Zn environmental bioavailability to snails, the addition of pH, iron and aluminium oxides allowed the variation of assimilation fluxes to be predicted. A conceptual and practical method to use soil characteristics for risk assessment is proposed based on these results. We conclude that as yet there is no universal chemical method to predict metal environmental bioavailability to snails, and that the soil factors having the greatest impact depend on the metal considered. - Highlights: Black-Right-Pointing-Pointer New approach to identify chemical methods able to predict metal bioavailability

  7. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  8. Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar.

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Harchegani, Mahboobeh Kiani

    2016-01-15

    Many different amendments, stabilizers, and conditioners are usually applied for soil and water conservation. Biochar is a carbon-enriched substance produced by thermal decomposition of organic material in the absence of oxygen with the goal to be used as a soil amendment. Biochar can be produced from a wide range of biomass sources including straw, wood, manure, and other organic wastes. Biochar has been demonstrated to restore soil fertility and crop production under many conditions, but less is known about the effects of its application on soil erosion and runoff control. Therefore, a rainfall simulation study, as a pioneer research, was conducted to evaluate the performance of the application of vinasse-produced biochar on the soil erosion control of a sandy clay loam soil packed in small-sized runoff 0.25-m(2) plots with 3 replicates. The treatments were (i) no biochar (control), (ii) biochar (8 tha(-1)) application at 24h before the rainfall simulation and (iii) biochar (8 tha(-1)) application at 48 h before the rainfall simulation. Rainfall was applied at 50 mm h(-1) for 15 min. The mean change of effectiveness in time to runoff could be found in biochar application at 24 and 48 h before simulation treatment with rate of +55.10% and +71.73%, respectively. In addition, the mean runoff volume 24 and 48 h before simulation treatments decreased by 98.46% and 46.39%, respectively. The least soil loss (1.12 ± 0.57 g) and sediment concentration (1.44 ± 0.48 gl(-1)) occurred in the biochar-amended soil treated 48 h before the rainfall simulation. In conclusion, the application of vinasse-produced biochar could effectively control runoff and soil loss. This study provided a new insight into the effects of biochar on runoff, soil loss, and sediment control due to water erosion in sandy clay loam soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. [Seasonal variation of soil heat conduction in a larch plantation and its relations to environmental factors].

    Science.gov (United States)

    Wang, Wen-Jie; Cui, Song; Liu, Wei; Zu, Yuan-Gang; Sun, Wei; Wang, Hui-Min

    2008-10-01

    Based on a 3-year (2003-2005) observation of soil heat flux (SHF) in a larch (Larix gmelinii) plantation, the characteristics of soil heat conduction in the plantation and their relationships with environment factors were analyzed. The results showed that there was an obvious seasonal variation of SHF in different years and sampling sites. The SHF was positive from April to August and mostly negative from September to next March, with an almost balance between heat income and outcome at annual scale. Solar net radiation had significant effects on the SHF and soil heat conductance (k), and an obvious time-lag effect was found, with 4-5 hours' time-lag in winter and 2-3 hours' time-lag in summer. Based on the real-time measurement of SHF and soil temperature difference at the study sites, the k value was significantly higher in early spring (P 0.05). Therefore, when we use the observation data of soil temperature from weather stations to estimate soil heat flux, the k value in spring (from March to May) could induce a bias estimation.

  10. Factors influencing the chemical extractability of 241Am from a contaminated soil

    International Nuclear Information System (INIS)

    Nishita, H.; Hamilton, M.

    1976-01-01

    Factors influencing the extractability of 241 Am from an artificially contaminated soil were investigated. This was done with an equilibrium batch technique using CH 3 COOH-NH 4 OH and HNO 3 -NaOH extracting systems. The influence of several soil components was determined indirectly by selectively removing them from the soil. The effect of water- and HCl-soluble salts and organic matter on 241 Am extractability was small. The most marked effect was due to the soil organic fraction that was not water- or HCl-soluble. This organic fraction was influential under both low and high pH conditions, but its influence was particularly marked under low pH conditions. The free iron-oxides had an appreciable effect under low pH conditions, but no observable effect in the high pH range. Though to a lesser extent, the free silica and alumina, amorphous alumino-silicate, and possibly residual organic matter also showed some influence. These results provide some implications on the conditions that influence the movement of 241 Am in soils and its availability to plants. A review of the literature on the behavior of Am in soils is included

  11. Soil-to-Plant Transfer Factors of {sup 99}Tc for Korean Major Upland Crops

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ho; Lim, Kwang Muk; Jun, In; Keum, Dong Kwon [Korea Atomic Energy Reserach Institute, Daejeon (Korea, Republic of)

    2011-12-15

    In order to investigate the soil-to-plant transfer factor (TF) of {sup 99}Tc for Korean major upland crops (soybean, radish and Chinese cabbage), pot experiments were performed in a greenhouse. Soils were collected from four upland fields (two for soybean and two for radish and Chinese cabbage) around Gyeongju radioactive-waste disposal site. Three to four weeks before sowing, dried soils were mixed with a {sup 99}Tc solution and the mixtures were put into pots and irrigated. TF values were expressed as the ratios of the {sup 99}Tc concentrations in plants (Bq kg{sup -1}-dry or fresh) to those in soils (Bq kg{sup -1}-dry). There was no great difference in the TF value between soils. The TF values for soybean seeds were extremely lower than those for the straws, indicating a very low mobility of {sup 99}Tc to seeds. As representative TF values of{sup 99}Tc,1.8 X 10{sup -1}, 1.2 X 10{sup 1}, 3.2 X 10{sup 2} and 1.3 X 10{sup 2} (for dry plants), arithmetic means for two soils, were proposed for soybean seeds, radish roots, radish leaves and Chinese cabbage leaves, respectively. In the case of the vegetables, proposals for fresh plants were also made. The proposed values are not sufficiently representative so successive updates are needed.

  12. Geologic and edaphic factors influencing susceptibility of forest soils to environmental change

    Science.gov (United States)

    Scott W. Bailey

    2000-01-01

    There is great diversity in the structure and function of the northern forest across the 20-state portion of the United States considered in this book. The interplay of many factors accounts for the mosaic of ecological regimes across the region. In particular, climate, physiography, geology, and soils influence dominance and distribution of vegetation communities...

  13. Magnetic and chemical parameters of andic soils and their relation to selected pedogenesis factors

    Czech Academy of Sciences Publication Activity Database

    Grison, Hana; Petrovský, Eduard; Kapička, Aleš; Stejskalová, Šárka

    2016-01-01

    Roč. 139, April (2016), s. 179-190 ISSN 0341-8162 R&D Projects: GA ČR GA13-10775S Institutional support: RVO:67985530 Keywords : andosols * magnetic susceptibility * basalts * iron oxides * frequency-dependent susceptibility Subject RIV: DF - Soil Science Impact factor: 3.191, year: 2016

  14. Soil moisture and biogeochemical factors influence the distribution of annual Bromus species

    Science.gov (United States)

    Jayne Belnap; John M. Stark; Benjamin M. Rau; Edith B. Allen; Susan Phillips

    2016-01-01

    Abiotic factors have a strong influence on where annual Bromus species are found. At the large regional scale, temperature and precipitation extremes determine the boundaries of Bromus occurrence. At the more local scale, soil characteristics and climate influence distribution, cover, and performance. In hot, dry, summer-rainfall-dominated deserts (Sonoran, Chihuahuan...

  15. Estimation of N2O emission factors for soils depending on environmental conditions and crop management

    NARCIS (Netherlands)

    Lesschen, J.P.; Velthof, G.L.

    2009-01-01

    Nitrous oxide (N2O) contributes 8% to anthropogenic global warming, of which about one third are direct emissions of agricultural soils. These N2O emissions are often estimated using the default IPCC 2006 emission factor of 1% of the amount of N applied for mineral fertilizer, manure and crop

  16. 3rd Report of the workgroup on soil-to-plant transfer factors

    International Nuclear Information System (INIS)

    1984-01-01

    This report presents about 2000 soil-to-plant transfer factors obtained in different countries. They are included in a data bank compiled by the different IUR working groups. Some remarks on organisation and present status of the data bank, are followed up with 11 contributions presented at the conference, of which 5 are included in Atomindex separately. (Auth.)

  17. Model analysis of mechanisms controlling pneumatic soil vapor extraction

    DEFF Research Database (Denmark)

    Høier, Camilla Kruse; Sonnenborg, Torben Obel; Jensen, Karsten Høgh

    2009-01-01

    of heterogeneous soils by enforcing large fluctuating pressure fronts through the contaminated area. Laboratory experiments have suggested that pneumatic SVE considerably improves the recovery rate from low-permeable units. We have analyzed the experimental results using a numerical code and quantified......The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency...... level the pneumatic venting technology is superior to the traditional technique, and that the method is particularly efficient in cases where large permeability contrasts exist between soil units in the subsurface....

  18. Interrelationships of metal transfer factor under wastewater reuse and soil pollution.

    Science.gov (United States)

    Papaioannou, D; Kalavrouziotis, I K; Koukoulakis, P H; Papadopoulos, F; Psoma, P

    2018-06-15

    The transfer of heavy metals under soil pollution wastewater reuse was studied in a Greenhouse experiment using a randomized block design, including 6 treatments of heavy metals mixtures composed of Zn, Mn, Cd, Co, Cu, Cr, Ni, and Pb, where each metal was taking part in the mixture with 0, 10, 20, 30, 40, 50 mg/kg respectively, in four replications. The Beta vulgaris L (beet) was used as a test plant. It was found that the metal transfer factors were statistically significantly related to the: (i) DTPA extractable soil metals, (ii) the soil pollution level as assessed by the pollution indices, (iii) the soil pH, (iv) the beet dry matter yield and (v) the interactions between the heavy metals in the soil. It was concluded that the Transfer Factor is subjected to multifactor effects and its real nature is complex, and there is a strong need for further study for the understanding of its role in metal-plant relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Factors affecting cadmium absorbed by pistachio kernel in calcareous soils, southeast of Iran.

    Science.gov (United States)

    Shirani, H; Hosseinifard, S J; Hashemipour, H

    2018-03-01

    Cadmium (Cd) which does not have a biological role is one of the most toxic heavy metals for organisms. This metal enters environment through industrial processes and fertilizers. The main objective of this study was to determine the relationships between absorbed Cd by pistachio kernel and some of soil physical and chemical characteristics using modeling by stepwise regression and Artificial Neural Network (ANN), in calcareous soils in Rafsanjan region, southeast of Iran. For these purposes, 220 pistachio orchards were selected, and soil samples were taken from two depths of 0-40 and 40-80cm. Besides, fruit and leaf samples from branches with and without fruit were taken in each sampling point. The results showed that affecting factors on absorbed Cd by pistachio kernel which were obtained by regression method (pH and clay percent) were not interpretable, and considering unsuitable vales of determinant coefficient (R 2 ) and Root Mean Squares Error (RMSE), the model did not have sufficient validity. However, ANN modeling was highly accurate and reliable. Based on its results, soil available P and Zn and soil salinity were the most important factors affecting the concentration of Cd in pistachio kernel in pistachio growing areas of Rafsanjan. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Determination of factors associated with natural soil suppressivity to potato common scab.

    Directory of Open Access Journals (Sweden)

    Marketa Sagova-Mareckova

    Full Text Available Common scab of potatoes is a disease, which is difficult to manage due to complex interactions of the pathogenic bacteria (Streptomyces spp. with soil, microbial community and potato plants. In Bohemian-Moravian Highlands in the Czech Republic two sites (Vyklantice and Zdirec were selected for a study of common scab disease suppressivity. At both sites, a field with low disease severity occurs next to one with high severity and the situation was regularly observed over four decades although all four fields undergo a crop rotation. In the four fields, quantities of bacteria, actinobacteria and the gene txtB from the biosynthetic gene cluster of thaxtomin, the main pathogenicity factor of common scab, were analyzed by real-time PCR. Microbial community structure was compared by terminal fragment length polymorphism analysis. Soil and potato periderm were characterized by contents of carbon, nitrogen, phosphorus, sulphur, calcium, magnesium, and iron. Quality of organic matter was assessed by high performance liquid chromatography of soil extracts. The study demonstrated that the suppressive character of the fields is locally specific. At Zdirec, the suppressivity was associated with low txtB gene copies in bulk soil, while at Vyklantice site it was associated with low txtB gene copies in the tuberosphere. The differences were discussed with respect to the effect of abiotic conditions at Zdirec and interaction between potato plant and soil microbial community at Vyklantice. Soil pH, Ca soil content or cation concentrations, although different were not in the range to predict the disease severity. Low severity of common scab was associated with low content of soil C, N, C/N, Ca and Fe suggesting that oligotrophic conditions may be favorable to common scab suppression.

  1. Determination of factors associated with natural soil suppressivity to potato common scab.

    Science.gov (United States)

    Sagova-Mareckova, Marketa; Daniel, Ondrej; Omelka, Marek; Kristufek, Vaclav; Divis, Jiri; Kopecky, Jan

    2015-01-01

    Common scab of potatoes is a disease, which is difficult to manage due to complex interactions of the pathogenic bacteria (Streptomyces spp.) with soil, microbial community and potato plants. In Bohemian-Moravian Highlands in the Czech Republic two sites (Vyklantice and Zdirec) were selected for a study of common scab disease suppressivity. At both sites, a field with low disease severity occurs next to one with high severity and the situation was regularly observed over four decades although all four fields undergo a crop rotation. In the four fields, quantities of bacteria, actinobacteria and the gene txtB from the biosynthetic gene cluster of thaxtomin, the main pathogenicity factor of common scab, were analyzed by real-time PCR. Microbial community structure was compared by terminal fragment length polymorphism analysis. Soil and potato periderm were characterized by contents of carbon, nitrogen, phosphorus, sulphur, calcium, magnesium, and iron. Quality of organic matter was assessed by high performance liquid chromatography of soil extracts. The study demonstrated that the suppressive character of the fields is locally specific. At Zdirec, the suppressivity was associated with low txtB gene copies in bulk soil, while at Vyklantice site it was associated with low txtB gene copies in the tuberosphere. The differences were discussed with respect to the effect of abiotic conditions at Zdirec and interaction between potato plant and soil microbial community at Vyklantice. Soil pH, Ca soil content or cation concentrations, although different were not in the range to predict the disease severity. Low severity of common scab was associated with low content of soil C, N, C/N, Ca and Fe suggesting that oligotrophic conditions may be favorable to common scab suppression.

  2. A cross-site comparison of factors influencing soil nitrification rates in northeastern USA forested watersheds

    Science.gov (United States)

    Ross, D.S.; Wemple, B.C.; Jamison, A.E.; Fredriksen, G.; Shanley, J.B.; Lawrence, G.B.; Bailey, S.W.; Campbell, J.L.

    2009-01-01

    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small forested research watersheds in the northeastern USA to determine if there were common factors related to soil ammonification and nitrification. Vegetation varied between mixed northern hardwoods and mixed conifers. Watershed surface soils (Oa or A horizons) were sampled at grid or transect points and analyzed for a suite of chemical characteristics. At each sampling point, vegetation and topographic metrics (field and GIS-based) were also obtained. Results were examined by watershed averages (n = 10), seasonal/watershed averages (n = 28), and individual sampling points (n = 608). Using both linear and tree regression techniques, the proportion of conifer species was the single best predictor of nitrification rates, with lower rates at higher conifer dominance. Similar to other studies, the soil C/N ratio was also a good predictor and was well correlated with conifer dominance. Unlike other studies, the presence of Acer saccharum was not by itself a strong predictor, but was when combined with the presence of Betula alleghaniensis. Topographic metrics (slope, aspect, relative elevation, and the topographic index) were not related to N transformation rates across the watersheds. Although found to be significant in other studies, neither soil pH, Ca nor Al was related to nitrification. Results showed a strong relationship between dominant vegetation, soil C, and soil C/N. ?? 2008 Springer Science+Business Media, LLC.

  3. Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado

    Science.gov (United States)

    Lawrence, Corey R.; Reynolds, Richard L.; Kettterer, Michael E.; Neff, Jason C.

    2013-01-01

    When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50–80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.

  4. Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado

    Science.gov (United States)

    Lawrence, Corey R.; Reynolds, Richard L.; Ketterer, Michael E.; Neff, Jason C.

    2013-04-01

    When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50-80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.

  5. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controlled [correction of controled] environment conditions.

    Science.gov (United States)

    Tikhomirov, A A; Ushakova, S A; Gribovskaya, I A; Tirranen, L S; Manukovsky, N S; Zolotukhin, I G; Karnachuk, R A; Gros, J B; Lasseur, Ch

    2003-01-01

    advantages over the cultivation on neutral substrates, which require continual replenishment of the plant nutrient solution from the system's store to complement the macro- and micro-elements. Yet, a number of problems arise, including those related to the controlling of the production activity of the plants by the intensity of photosynthetically active radiation. It is essential to understand why the intensity of production processes is limited at higher irradiation levels and to overcome the factors responsible for this, so that the soil-like substrate could have an even better chance in the competition for the best plant cultivation technology to be used in biological life support systems. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  6. Fugitive dust control experiments using soil fixatives on vehicle traffic surfaces

    International Nuclear Information System (INIS)

    Winberg, M.R.; Wixom, V.E.

    1992-08-01

    This report presents the results of engineering scale dust control experiments using soil fixative for contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of soil fixatives to control generation of fugitive dusts during vehicle traffic operations. Previous experiments conducted in FY 1990 included testing of the soil fixative, ENTAC. These experiments showed that ENTAC was effective in controlling dust generation but had several undesirable properties such as slow cure times and clogged the pumps and application nozzles. Therefore, other products would have to be evaluated to find a suitable candidate. As a result, two soil fixatives were tested in these present experiments, COHEREX-PM, an asphalt emulsion product manufactured by Witco Corporation and FLAMBINDER, a calcium lignosulfonate product manufactured by Flambeau Corporation. The results of the experiments include product performance and recommended application methods for application in a field deployable contamination control unit to be built in FY 1993

  7. Development of a desiccated cadaver delivery system to apply entomopathogenic nematodes for control of soil pests

    Science.gov (United States)

    Pentomopathogenic nematodes may be more capable of controlling soil pests when they are harbored by desiccated cadavers. A small-scale system was developed from a modified crop seed planter to effectively deliver desiccated nematode-infected cadavers into the soil. The system mainly consists of a me...

  8. Possibility of environmentally-safe casing soil disinfection for control of cobweb disease of button mushroom

    OpenAIRE

    Potočnik Ivana; Rekanović Emil; Stepnović Miloš; Milijašević-Marčić Svetlana; Todorović Biljana; Nikolić-Bujanović Ljiljana; Čekerevac Milan

    2014-01-01

    The soil-borne pathogen Cladobotryum dendroides causes cobweb disease of button mushroom (Agaricus bisporus) and its significant yield losses. Casing soil disinfection by toxic formaldehyde is a widespread practice. The aim of this study was to investigate the potential of two environmentally friendly substances, colloidal silver and peracetic acid, against C. dendroides. Their biological efficacy (impact on mushroom yield), effectiveness (disease control) ...

  9. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  10. Soil and water losses in eucalyptus plantation and natural forest and determination of the USLE factors at a pilot sub-basin in Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Bárbara Pereira Christofaro Silva

    Full Text Available ABSTRACT Monitoring water erosion and the factors that control soil and water loss are essential for soil conservation planning. The objective of this study was to evaluate soil and water losses by water erosion under natural rainfall in eucalyptus plantations established in 2001 (EF2, and 2004 (EF1, native forest (NF and bare soil (BS, during the period of 2007 to 2012; and to determine the USLE factors: rain erosivity (R, erodibility (K of a Red Argisol and the cover-management factor (C for EF1, EF2 and NF at a pilot sub-basin, in Eldorado do Sul, RS, Brazil. The R factor was estimated by the EI30 index, using rainfall data from a gauging station located at the sub-basin. The soil and water losses were monitored in erosion plots, providing consistent data for the estimation of the K and C factors. The sub-basin presented an average erosivity of 4,228.52 MJ mm ha-1 h-1 yr-1. The average annual soil losses em EF1 and EF2 (0.81 e 0.12 Mg ha-1 year-1, respectively were below of the limit of tolerance, 12.9 Mg ha-1 year-1. The percentage values of water loss relating to the total rainfall decreased annually, approaching the values observed at the NF. From the 5th year on after the implantation of the eucalyptus systems, soil losses values were similar to the ones from NF. The erodibility of the Red Argisol was of 0.0026 Mg ha h ha-1 MJ-1mm-1 and the C factor presented values of 0.121, 0.016 and 0.015 for EF1, EF2 and NF, respectively.

  11. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  12. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold.

    Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  13. Soil to rice transfer factors for 210Pb: a study on rice grown in India

    International Nuclear Information System (INIS)

    Karunakara, N.; Rao, Chetan; Ujwal, P.; Yashodhara, I.; Sudeep Kumara; Somashekarappa, H.M.; Bhaskara Shenoy, K.; Ravi, P.M.

    2013-01-01

    India is the second largest producer of rice (Oryza sativa L.) in the world and rice is the essential component of the diet for the majority of the population of India. However, detailed studies aimed at evaluation of radionuclide transfer factors (F v ) for rice grown in India are almost non-existent. This paper presents soil to rice transfer factors for 210 Pb for rice grown in natural field conditions on the West Coast of India. A rice field was developed very close to the Kaiga nuclear power plant for the field studies. For a comparative study of radionuclide transfer factors, rice samples were also collected from the rice fields of nearby villages. The soil to un-hulled rice grain 210 Pb varied in the range <1.2 x10 -2 to 8.1 x 10 -1 with a mean of 1.4 x 10 -1 . The mean values of un-hulled grain to white rice processing retention factors (F r ) was 0.03 for 210 Pb. Using the processing retention factors the soil to white rice transfer factor was estimated and found to have the mean value of 4.2 x 10 -3 . The study has shown that the transfer of 210 Pb was retained in the root and its transfer to above ground organs of rice plant is significantly lower. (author)

  14. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton.

    Directory of Open Access Journals (Sweden)

    Jun-Yu Luo

    Full Text Available An increasing area of transgenic Bacillus thuringiensis (Bt cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW Helicoverpa armigera (Hübner in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]. We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

  15. Utilization of air pollution control residues for the stabilization/solidification of trace element contaminated soil.

    Science.gov (United States)

    Travar, I; Kihl, A; Kumpiene, J

    2015-12-01

    The aim of this study was to evaluate the stabilization/solidification (S/S) of trace element-contaminated soil using air pollution control residues (APCRs) prior to disposal in landfill sites. Two soil samples (with low and moderate concentrations of organic matter) were stabilized using three APCRs that originated from the incineration of municipal solid waste, bio-fuels and a mixture of coal and crushed olive kernels. Two APCR/soil mixtures were tested: 30% APCR/70% soil and 50% APCR/50% soil. A batch leaching test was used to study immobilization of As and co-occurring metals Cr, Cu, Pb and Zn. Solidification was evaluated by measuring the unconfined compression strength (UCS). Leaching of As was reduced by 39-93% in APCR/soil mixtures and decreased with increased amounts of added APCR. Immobilization of As positively correlated with the amount of Ca in the APCR and negatively with the amount of soil organic matter. According to geochemical modelling, the precipitation of calcium arsenate (Ca3(AsO4)2/4H2O) and incorporation of As in ettringite (Ca6Al2(SO4)3(OH)12 · 26H2O) in soil/APCR mixtures might explain the reduced leaching of As. A negative effect of the treatment was an increased leaching of Cu, Cr and dissolved organic carbon. Solidification of APCR/soil was considerably weakened by soil organic matter.

  16. Winter climate controls soil carbon dynamics during summer in boreal forests

    International Nuclear Information System (INIS)

    Haei, Mahsa; Öquist, Mats G; Ilstedt, Ulrik; Laudon, Hjalmar; Kreyling, Juergen

    2013-01-01

    Boreal forests, characterized by distinct winter seasons, store a large proportion of the global terrestrial carbon (C) pool. We studied summer soil C-dynamics in a boreal forest in northern Sweden using a seven-year experimental manipulation of soil frost. We found that winter soil climate conditions play a major role in controlling the dissolution/mineralization of soil organic-C in the following summer season. Intensified soil frost led to significantly higher concentrations of dissolved organic carbon (DOC). Intensified soil frost also led to higher rates of basal heterotrophic CO 2 production in surface soil samples. However, frost-induced decline in the in situ soil CO 2 concentrations in summer suggests a substantial decline in root and/or plant associated rhizosphere CO 2 production, which overrides the effects of increased heterotrophic CO 2 production. Thus, colder winter soils, as a result of reduced snow cover, can substantially alter C-dynamics in boreal forests by reducing summer soil CO 2 efflux, and increasing DOC losses. (letter)

  17. Controls on shallow landslide initiation: Diverse hydrologic pathways, 3D failure geometries, and unsaturated soil suctions

    Science.gov (United States)

    Reid, Mark; Iverson, Richard; Brien, Dianne; Iverson, Neal; LaHusen, Richard; Logan, Matthew

    2017-04-01

    Shallow landslides and ensuing debris flows are a common hazard worldwide, yet forecasting their initiation at a specific site is challenging. These challenges arise, in part, from diverse near-surface hydrologic pathways under different wetting conditions, 3D failure geometries, and the effects of suction in partially saturated soils. Simplistic hydrologic models typically used for regional hazard assessment disregard these complexities. As an alterative to field studies where the effects of these governing factors can be difficult to isolate, we used the USGS debris-flow flume to conduct controlled, field-scale landslide initiation experiments. Using overhead sprinklers or groundwater injectors on the flume bed, we triggered failures using three different wetting conditions: groundwater inflow from below, prolonged moderate-intensity precipitation, and bursts of high-intensity precipitation. Failures occurred in 6 m3 (0.65-m thick and 2-m wide) prisms of loamy sand on a 31° slope; these field-scale failures enabled realistic incorporation of nonlinear scale-dependent effects such as soil suction. During the experiments, we monitored soil deformation, variably saturated pore pressures, and moisture changes using ˜50 sensors sampling at 20 Hz. From ancillary laboratory tests, we determined shear strength, saturated hydraulic conductivities, and unsaturated moisture retention characteristics. The three different wetting conditions noted above led to different hydrologic pathways and influenced instrumental responses and failure timing. During groundwater injection, pore-water pressures increased from the bed of the flume upwards into the sediment, whereas prolonged moderate infiltration wet the sediment from the ground surface downward. In both cases, pore pressures acting on the impending failure surface slowly rose until abrupt failure. In contrast, a burst of intense sprinkling caused rapid failure without precursory development of widespread positive pore

  18. Soil Erodibility under Natural Rainfall Conditions as the K Factor of the Universal Soil Loss Equation and Application of the Nomograph for a Subtropical Ultisol

    Directory of Open Access Journals (Sweden)

    Elemar Antonino Cassol

    2018-05-01

    Full Text Available ABSTRACT: Erodibility represents the intrinsic susceptibility of the soil to the erosion process, represented by the K factor in the Universal Soil Loss Equation (USLE. In Brazil, there are few field experiments determined with a series larger than ten years of data, which are the most reliable for quantifying the K factor. The aim of this study was to determine the K factor of the USLE by the direct method, relating soil losses determined in the field under standard conditions to erosivity of rains, and by the analytic method, applying the Wischmeier nomograph. The data on soil loss by water erosion were obtained in a field experiment under natural rainfall conditions from 1976 to 1989 in an Ultisol at the Agronomic Experimental Station in Eldorado do Sul, RS, Brazil. The value of the K factor by the direct method was 0.0338 Mg ha h ha-1 MJ-1 mm-1, which is high, showing considerable susceptibility of the soil to erosion. From the analytical method, the K factor obtained was 0.0325 Mg ha h ha-1 MJ-1 mm-1, a value very close to that determined experimentally. Thus, the Wischmeier nomograph proved to be valid for determination of the K factor of the Ultisol under study. This method proved to be valid for this type of soil. These results can be used for calibration models based on the USLE.

  19. Colon cancer controls versus population controls in case-control studies of occupational risk factors

    DEFF Research Database (Denmark)

    Kaerlev, Linda; Lynge, Elsebeth; Sabroe, Svend

    2004-01-01

    are interchangeable with the experience for population controls. Patient controls may even be preferable from population controls under certain conditions. In this study we examine if colon cancer patients can serve as surrogates for proper population controls in case-control studies of occupational risk factors...... about occupational, medical and life style conditions. RESULTS: No statistical significant difference for educational level, medical history or smoking status was seen between the two control groups. There was evidence of a higher alcohol intake, less frequent work as a farmer and less exposure...... to pesticides among colon cancer controls. CONCLUSIONS: Use of colon cancer controls may provide valid exposure estimates in studies of many occupational risk factors for cancer, but not for studies on exposure related to farming....

  20. Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration

    DEFF Research Database (Denmark)

    Christophersen, Mette; Kjeldsen, Peter

    2001-01-01

    was observed. There was a good correlation between pressure above the barometric pressure and the methane concentration in the soil, indicating that advective flow was the controlling process. This was confirmed by calculations. Diurnal measurement during a drop in barometric pressure showed that lateral...

  1. Application of Geomorphologic Factors for Identifying Soil Loss in Vulnerable Regions of the Cameron Highlands

    Directory of Open Access Journals (Sweden)

    Kahhoong Kok

    2018-03-01

    Full Text Available The main purpose of this study is to propose a methodology for identifying vulnerable regions in the Cameron Highlands that are susceptible to soil loss, based on runoff aggregation structure and the energy expenditure pattern of the natural river basin, within the framework of power law distribution. To this end, three geomorphologic factors, namely shear stress and stream power, as well as the drainage area of every point in the basin of interest, have been extracted using GIS, and then their complementary cumulative distributions are graphically analyzed by fitting them to power law distribution, with the purpose of identifying the sensitive points within the basin that are susceptible to soil loss with respect to scaling regimes of shear stress and stream power. It is observed that the range of vulnerable regions by the scaling regime of shear stress is much narrower than by the scaling regime of stream power. This result seems to suggest that shear stress is a scale-dependent factor, which does not follow power law distribution and does not adequately reflect the energy expenditure pattern of a river basin. Therefore, stream power is preferred as a more reasonable factor for the evaluation of soil loss. The methodology proposed in this study can be validated by visualizing the path of soil loss, which is generated from the hillslope process (characterized by the local slope to the valley through a fluvial process (characterized by the drainage area as well as the local slope.

  2. Factors affecting spatial variation of annual apparent Q₁₀ of soil respiration in two warm temperate forests.

    Directory of Open Access Journals (Sweden)

    Junwei Luan

    Full Text Available A range of factors has been identified that affect the temperature sensitivity (Q₁₀ values of the soil-to-atmosphere CO₂ flux. However, the factors influencing the spatial distribution of Q₁₀ values within warm temperate forests are poorly understood. In this study, we examined the spatial variation of Q₁₀ values and its controlling factors in both a naturally regenerated oak forest (OF and a pine plantation (PP. Q₁₀ values were determined based on monthly soil respiration (R(S measurements at 35 subplots for each stand from Oct. 2008 to Oct. 2009. Large spatial variation of Q₁₀ values was found in both OF and PP, with their respective ranges from 1.7 to 5.12 and from 2.3 to 6.21. In PP, fine root biomass (FR (R = 0.50, P = 0.002, non-capillary porosity (NCP (R = 0.37, P = 0.03, and the coefficients of variation of soil temperature at 5 cm depth (CV of T₅ (R = -0.43, P = 0.01 well explained the spatial variance of Q₁₀. In OF, carbon pool lability reflected by light fractionation method (LLFOC well explained the spatial variance of Q₁₀ (R = -0.35, P = 0.04. Regardless of forest type, LLFOC and FR correlation with the Q₁₀ values were significant and marginally significant, respectively; suggesting a positive relationship between substrate availability and apparent Q₁₀ values. Parameters related to gas diffusion, such as average soil water content (SWC and NCP, negatively or positively explained the spatial variance of Q₁₀ values. Additionally, we observed significantly higher apparent Q₁₀ values in PP compared to OF, which might be partly attributed to the difference in soil moisture condition and diffusion ability, rather than different substrate availabilities between forests. Our results suggested that both soil chemical and physical characters contributed to the observed large Q₁₀ value variation.

  3. Determination of the factors that control migration and entry of radon into basements

    International Nuclear Information System (INIS)

    Borak, T.B.; Gadd, M.S.; Ward, D.C.; Barry, M.S.

    1992-01-01

    'Full Text:' Elevated concentrations of radon gas indoors are the result or a complicated combination of factors. This report describes results from a facility designed to test and verify theories of radon migration into underground structures. The buildings resemble miniature basements using conventional construction methods, hut eliminate other confounding factors introduced by the activities of occupants. Sensors accumulate data on soil properties such as temperature, moisture, pressure differentials, and permeability, as well as outdoor meteorological conditions and indoor environment. Results indicate that indoor radon concentrations do not correlate with changes in the adjacent soil gas concentration or the rate that radon enters the structure. When no attempt is made to control the indoor environment, periods of highest indoor concentration occur when the rate of entry is low. Methods to identify the driving mechanisms and implication for mitigation and control will he described. (author)

  4. Erosion and Soil Contamination Control Using Coconut Flakes And Plantation Of Centella Asiatica And Chrysopogon Zizanioides

    Science.gov (United States)

    Roslan, Rasyikin; Che Omar, Rohayu; Nor Zuliana Baharuddin, Intan; Zulkarnain, M. S.; Hanafiah, M. I. M.

    2016-11-01

    Land degradation in Malaysia due to water erosion and water logging cause of loss of organic matter, biodiversity and slope instability but also land are contaminated with heavy metals. Various alternative such as physical remediation are use but it not showing the sustainability in term of environmental sustainable. Due to that, erosion and soil contamination control using coconut flakes and plantation of Centella asiatica and Chrysopogon zizanioides are use as alternative approach for aid of sophisticated green technology known as phytoremediation and mycoremediation. Soil from cabonaceous phyllite located near to Equine Park, Sri Kembangan are use for monitoring the effect of phytoremediation and mycoremediation in reducing soil contamination and biotechnology for erosion control. Five laboratory scale prototypes were designed to monitor the effect of different proportion of coconut flakes i.e. 10%, 25%, 50% & 100% and plantation of Centella asiatica and Chrysopogon zizanioides to reduce the top soil from eroding and reduce the soil contamination. Prototype have been observe started from first week and ends after 12 weeks. Centella asiatica planted on 10% coconut flakes with 90% soil and Chrysopogon zizanioides planted on 25% coconut flakes with 75% soil are selected proportion to be used as phytoremediation and mycoremediation in reducing soil contamination and biotechnology for erosion control.

  5. Physiochemical, site, and bidirectional reflectance factor characteristics of uniformly moist soils. [Brazil, Spain and the United States of America

    Science.gov (United States)

    Stoner, E. R.; Baumgardner, M. F. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. The bidirectional reflectance factor (0.5 micron to 2.3 micron wavelength interval) and physiochemical properties of over 500 soils from 39 states, Brazil and Spain were measured. Site characteristics of soil temperature regime and moisture zone were used as selection criteria. Parent material and internal drainage were noted for each soil. At least five general types of soil reflectance curves were identified based primarily on the presence or absence of ferric iron absorption bands, organic matter content, and soil drainage characteristics. Reflectance in 10 bands across the spectrum was found to be negatively correlated with the natural log of organic matter content.

  6. Factors responsible for the patchy distribution of natural soil water repellency in Mediterranean semiarid forest

    Science.gov (United States)

    Lozano, E.; Jiménez-Pinilla, P.; Mataix-Solera, J.; González-Pérez, J. A.; García-Orenes, F.; Torres, M. P.; Arcenegui, V.; Mataix-Beneyto, J.

    2012-04-01

    H and between SOM and pH for all except for Q. rotundifolia. However, the negative correlation found between pH and persistence of WR seems to be related to soil organic matter (SOM) content for all vegetal species. Glomalin exudates from arbuscular mycorrhizal fungi in soil revealed significant differences between species. However, the first results do not point to a direct relationship between EEG content and WR but to soil mineralogy or certain components within SOM pool i.e. litter debris degradation products or specific components within the glomalin extract, as main factors affecting soil WR. Nonetheless, since some samples with the same SOM content (including some under the same vegetation cover) showed different WR persistence, complementary research including a more detailed characterization of most soil functional fractions (SOM and clays) is planned in order to elucidat the main factors influencing the presence and persistence of WR in soils under Mediterranean semiarid forest. Keywords: Water repellency, hydrophobicity, easily extractable glomalin, mycelium, arbuscular mycorrhizal fungi.

  7. Soil-to-plant transfer factors for natural radionuclides in the Brazilian cerrado region

    International Nuclear Information System (INIS)

    Jacomino, Vanusa M.F.; Oliveira, Kerley A.; Menezes, Maria Angela de B.; Mello, Jaime de; Silva, David F. da

    2009-01-01

    Large amounts of phosphogypsum produced have been attracting attention of Radiological Protection institutions and Environmental Protection agencies worldwide, given its high potential for environmental contamination. In Brazil, this material has been used for several decades, especially for agricultural purposes. Due to the presence of radionuclides in its composition, it is necessary to understand the mechanisms for natural radionuclide transfer in the soil/plant system and to evaluate if the use of phosphogypsum in soil contributes to increased exposition of humans to natural radioactivity. Experiments were accomplished in a greenhouse with lettuce cultivation in two types of soil (sandy and clayey) fertilized with four different amounts of phosphogypsum. Samples of phosphogypsum, soil, lettuce and drainage water were then analyzed for key radionuclides. 238 U and 232 Th analyses were carried out by Neutron Activation Analysis; 226 Ra, 228 Ra, and 210 Pb by analyzed by Gamma Spectrometry; and 210 Po by Alpha Spectrometry Technique. Finally, Transfer Factors of soil-plant were calculated as well as annual contribution to the effective dose due to the ingestion of lettuces. 22 '6Ra average specific activity in phosphogypsum samples (252 Bq kg -1 ) was below the maximum level recommended by USEPA, which is 370 Bq.kg -1 for agricultural use. Although most of the results for mean specific activity of radionuclides in lettuce presented values below the Minimum Detectable Activity (MDA), Transfer Factors were estimated for those conditions in which the mean specific activity proved to be superior to MDA. Values ranged from 1.8 10 -3 to 2.3 10 -2 for 232 Th; 3.5 10 - '2 to 4.1 10 -2 for 226 Ra, 2.4 10 -1 to 3.2 10 - '1 for 228 Ra, and 3.5 10 -2 to 8.5 10 -2 for 210 Po, depending on the type of soil used for planting vegetables. In general, results obtained in the present study indicated that mobility of radionuclides was low in both soils studied. Calculated effective

  8. Soil-to-plant transfer factors for natural radionuclides in the Brazilian cerrado region

    Energy Technology Data Exchange (ETDEWEB)

    Jacomino, Vanusa M.F.; Oliveira, Kerley A.; Menezes, Maria Angela de B., E-mail: vmfj@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Mello, Jaime de; Silva, David F. da, E-mail: jwvmello@ufv.b [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Solos; Siqueira, Maria C.; Taddei, Maria H.; Dias, Fabiana F., E-mail: mc_quimica@hotmail.co, E-mail: mhtaddei@cnen.gov.b, E-mail: fdias@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN-MG), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas (LAPOC)

    2009-07-01

    Large amounts of phosphogypsum produced have been attracting attention of Radiological Protection institutions and Environmental Protection agencies worldwide, given its high potential for environmental contamination. In Brazil, this material has been used for several decades, especially for agricultural purposes. Due to the presence of radionuclides in its composition, it is necessary to understand the mechanisms for natural radionuclide transfer in the soil/plant system and to evaluate if the use of phosphogypsum in soil contributes to increased exposition of humans to natural radioactivity. Experiments were accomplished in a greenhouse with lettuce cultivation in two types of soil (sandy and clayey) fertilized with four different amounts of phosphogypsum. Samples of phosphogypsum, soil, lettuce and drainage water were then analyzed for key radionuclides. {sup 238}U and {sup 232}Th analyses were carried out by Neutron Activation Analysis; {sup 226}Ra, {sup 228}Ra, and {sup 210}Pb by analyzed by Gamma Spectrometry; and {sup 210}Po by Alpha Spectrometry Technique. Finally, Transfer Factors of soil-plant were calculated as well as annual contribution to the effective dose due to the ingestion of lettuces. {sup 22}'6Ra average specific activity in phosphogypsum samples (252 Bq kg{sup -1}) was below the maximum level recommended by USEPA, which is 370 Bq.kg{sup -1} for agricultural use. Although most of the results for mean specific activity of radionuclides in lettuce presented values below the Minimum Detectable Activity (MDA), Transfer Factors were estimated for those conditions in which the mean specific activity proved to be superior to MDA. Values ranged from 1.8 10{sup -3} to 2.3 10{sup -2} for {sup 232}Th; 3.5 10{sup -}'2 to 4.1 10{sup -2} for {sup 226}Ra, 2.4 10{sup -1} to 3.2 10{sup -}'1 for {sup 228}Ra, and 3.5 10{sup -2} to 8.5 10{sup -2} for {sup 210}Po, depending on the type of soil used for planting vegetables. In general, results

  9. Ionomics: Genes and QTLs controlling heavy metal uptake in perennial grasses grown on phytoxic soil

    Science.gov (United States)

    Perennial grasses occupy diverse soils throughout the world, including many sites contaminated with heavy metals. Uncovering the genetic architecture of QTLs controlling mineral homoeostasis is critical for understanding the biochemical pathways that determine the elemental profiles of perennial pl...

  10. Soil water regulates the control of photosynthesis on diel hysteresis between soil respiration and temperature in a desert shrubland

    Science.gov (United States)

    Wang, Ben; Zha, Tian Shan; Jia, Xin; Gong, Jin Nan; Bourque, Charles; Feng, Wei; Tian, Yun; Wu, Bin; Qing Zhang, Yu; Peltola, Heli

    2017-09-01

    Explanations for the occurrence of hysteresis (asynchronicity) between diel soil respiration (Rs) and soil temperature (Ts) have evoked both biological and physical mechanisms. The specifics of these explanations, however, tend to vary with the particular ecosystem or biome being investigated. So far, the relative degree of control of biological and physical processes on hysteresis is not clear for drylands. This study examined the seasonal variation in diel hysteresis and its biological control in a desert-shrub ecosystem in northwest (NW) China. The study was based on continuous measurements of Rs, air temperature (Ta), temperature at the soil surface and below (Tsurf and Ts), volumetric soil water content (SWC), and photosynthesis in a dominant desert shrub (i.e., Artemisia ordosica) over an entire year in 2013. Trends in diel Rs were observed to vary with SWC over the growing season (April to October). Diel variations in Rs were more closely associated with variations in Tsurf than with photosynthesis as SWC increased, leading to Rs being in phase with Tsurf, particularly when SWC > 0.08 m3 m-3 (ratio of SWC to soil porosity = 0.26). However, as SWC decreased below 0.08 m3 m-3, diel variations in Rs were more closely related to variations in photosynthesis, leading to pronounced hysteresis between Rs and Tsurf. Incorporating photosynthesis into a Q10-function eliminated 84.2 % of the observed hysteresis, increasing the overall descriptive capability of the function. Our findings highlight a high degree of control by photosynthesis and SWC in regulating seasonal variation in diel hysteresis between Rs and temperature.

  11. Comparison of transfer factors of Sr-85 and Cs-134 for soils and crops of Greece

    International Nuclear Information System (INIS)

    Skarlou, V.; Papanicolaou, E. P.; Nobeli, C.

    1994-01-01

    The transfer of Sr-85 and Cs-134 from soil to plant (CR) was studied in two successive and similar in design glasshouse experiments. Six plant species (wheat, alfalfa, radish, string bean, cucumber, lettuce - only for Sr-85 - and endives - only for Cs-134), were grown in pots on eight Greek soils differing significantly in their physical and chemical properties. After the necessary measurements and analyses, big differences were detected in the transfer factors of both radionuclides with the soil types. The CRs of Sr-85 were higher than those of Cs-134 and for the tested crops and soils ranged between 0.3 and 36.5 for Sr-85 and between < 0.01 and 1.72 for Cs-134. The CRs of grains and seeds were much lower than those of leafy material for Sr-85 while the difference was not so high for Cs-134. The correlation between CRs and pH, negative in all cases, was significant or highly significant for all tested crops or plant parts (for Sr-85 r-bar = - 0.89, for Cs-134 r-bar = - 0.82). The values of CRs indicated a trend for negative correlation with other soil properties (cation exchange capacity-CEC, clay %). From exchangeable cations, exchangeable (Ca + Mg) as well as exchangeable bases, expressed as percentages of CEC, gave a significant or highly significant correlation with CRs of both radionuclides. (author)

  12. Effects of soil solarization and some amendments to control ...

    African Journals Online (AJOL)

    hope&shola

    2010-10-04

    Oct 4, 2010 ... plots were 44.4 and 37.4°C at 5 and 20 cm soil depth, respectively. ... and solarization with olive processing waste showed an increased recovery and .... At the onset of the study, shallow trenches were dug around each.

  13. The parameters controlling the strength of soil-steel structures

    International Nuclear Information System (INIS)

    Barkhordari, M. A.; Abdel-Sayed, G.

    2001-01-01

    The present paper examines the ultimate load carrying capacity of soil-steel structures taking into consideration the sequence of the developments of plastic hinges, their location, and their sustained plastic moment. Non-linear analysis has been conducted using a micro-computer program in which a structural model is applied with the soil replaced by normal and tangential springs acting at the nodal points of a polygon representing the conduit wall. A comparative study has been conducted for the parameters which affect the load carrying capacity of soil-steel structure, leading to the following conclusions: (1) the load carrying capacity of the composite structure is significantly affected by the shear stiffness (or friction) of the surrounding soil; (2) the conduit span may be used when calculating the buckling load rather than the local radius of the conduit wall; (3) circular arches with sector angle of less than 180 d eg have higher load carrying capacity than equivalent re-entrant arches, i.e. arches with sector angle of more than 180 d eg; (4) the buckling load of the conduit is slightly affected by the rigidity of the lower zone of the conduit wall; (5) eccentric application of the load has practically little effect on its load carrying capacity

  14. The Role of Soil Solarization in India: How an Unnoticed Practice Could Support Pest Control

    Directory of Open Access Journals (Sweden)

    Harsimran K. Gill

    2017-09-01

    Full Text Available Plant protection represents one of the strategies to fill the yield gap and to achieve food security, a key topic for India development. Analysis of climate risks for crops indicates that South Asia is one of the regions most exposed to the adverse impact on many plants that are relevant to inhabitants exposed to food safety risks. Furthermore, accumulation of pesticide residues in the aquatic and other ecosystems is becoming a significant threat in India. These perspectives require to develop programs of crop protection that can be feasible according to Indian rural development and pollution policy. Here we review the research works done on soil solarization in India. Soil solarization (also called plasticulture is an eco-friendly soil disinfestations method for managing soil-borne plant pathogens. This is the process of trapping solar energy by moist soil covered with transparent polyethylene films and chemistry, biology and physical properties of soil are involved in pest control. So far, this technique is applied in more than 50 countries, mostly in hot and humid regions. India has 29 states and these states fall under five climatic zones, from humid to arid ones. We report pest management application in different climatic zones and their effects on production, weeds, nematodes, and pathogenic microorganisms. The analysis of soil temperatures and crop protection results indicate as environmental requirement for soil solarization fits in most of Indian rural areas. Soil solarization is compatible with future Indian scenarios and may support Indian national food security programs.

  15. Spatial patterns and controls of soil chemical weathering rates along a transient hillslope

    Science.gov (United States)

    Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.

    2009-01-01

    Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable

  16. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    Science.gov (United States)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    fuel for preparing the germination bed. Presently it is necessary a change concerning the concept of conservation practices and a new approach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditional understanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus to another level concerning conservation by focusing on of soil quality. Carbon management is necessary for a complex of matters including soil, water management, field productivity, biological fuel and climatic change. Profound research is necessary in order to establish the carbon sequestration practices and their implementation impact.

  17. Environmental and Geographical Factors Structure Soil Microbial Diversity in New Caledonian Ultramafic Substrates: A Metagenomic Approach.

    Directory of Open Access Journals (Sweden)

    Véronique Gourmelon

    Full Text Available Soil microorganisms play key roles in ecosystem functioning and are known to be influenced by biotic and abiotic factors, such as plant cover or edaphic parameters. New Caledonia, a biodiversity hotspot located in the southwest Pacific, is one-third covered by ultramafic substrates. These types of soils are notably characterised by low nutrient content and high heavy metal concentrations. Ultramafic outcrops harbour diverse vegetation types and remarkable plant diversity. In this study, we aimed to assess soil bacterial and fungal diversity in New Caledonian ultramafic substrates and to determine whether floristic composition, edaphic parameters and geographical factors affect this microbial diversity. Therefore, four plant formation types at two distinct sites were studied. These formations represent different stages in a potential chronosequence. Soil cores, according to a given sampling procedure, were collected to assess microbial diversity using a metagenomic approach, and to characterise the physico-chemical parameters. A botanical inventory was also performed. Our results indicated that microbial richness, composition and abundance were linked to the plant cover type and the dominant plant species. Furthermore, a large proportion of Ascomycota phylum (fungi, mostly in non-rainforest formations, and Planctomycetes phylum (bacteria in all formations were observed. Interestingly, such patterns could be indicators of past disturbances that occurred on different time scales. Furthermore, the bacteria and fungi were influenced by diverse edaphic parameters as well as by the interplay between these two soil communities. Another striking finding was the existence of a site effect. Differences in microbial communities between geographical locations may be explained by dispersal limitation in the context of the biogeographical island theory. In conclusion, each plant formation at each site possesses is own microbial community resulting from

  18. Transfer factors of 137Cs and 9Sr from soil to trees in arid regions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Asfary, A.F.; Mukhalallti, H.; Al-Hamwi, A.; Kanakri, S.

    2006-01-01

    Transfer factors of 137 Cs and 9 Sr from contaminated soil (Aridisol) to olive, apricot trees and grape vines were determined under irrigated field conditions for four successive years. The transfer factors (calculated as Bq kg -1 dry plant material per Bq kg -1 dry soil) of both radionuclides varied among tree parts and were highest in olive and apricot fruits. However, the values for 9 Sr were much higher than those for 137 Cs in all plant parts. The geometric mean of the transfer factors in olives, apricots and grapes were 0.007, 0.095 and 0.0023 for 137 Cs and 0.093, 0.13 and 0.08 for 9 Sr, respectively, and were negligible in olive oil for both radionuclides. The transfer factors of both radionuclides were similar to, or in the lower limits of, those obtained in other areas of the world. This could be attributed to differences in soil characteristics: higher pH, lower organic matter, high clay content, and higher exchangeable potassium and calcium

  19. Transfer factors for the „soil-cereals” system in the region of Pcinja, Serbia

    Directory of Open Access Journals (Sweden)

    Marković Jelena S.

    2016-01-01

    Full Text Available The aim of the paper was to estimate the values of transfer factors for natural radionuclides (40K, 226Ra, 232Th, 235U, and 238U and 137Cs from soil to plants (cereals: wheat, corn and barley as important parameters for the agricultures in the selection of the location and the sort of cereals to be planted on. The results presented in this paper refer to the „soil-cereals” system in the region of Pcinja, Serbia. Total of 9 samples of soil and 7 samples of cereals were measured in the Department of Radiation and Environmental Protection, Vinca Institute of Nuclear Sciences, using three high-purity germanium detectors for gamma spectrometry measurements. In all the samples, transfer factors for 226Ra are significantly lower than for 40K, but they are all in good agreement with the literature data. On the three investigated locations, the calculated values of transfer factors for 40K were in the range of 0.144 to 0.392, while in the case of 226Ra, the transfer factors ranged from 0.008 to 0.074. Only one value (0.051 was obtained for transfer factor of 232Th. Specific activities of 137Cs, as well as uranium isotopes, in all the investigated cereal samples, were below minimal detectable activity concentrations. Also, the absorbed dose rate and the annual absorbed dose from the natural radionuclides in the soil, were calculated. The absorbed dose rate ranged from 49-86 nSv/h, while the annual absorbed dose ranged from 0.061-0.105 mSv. The measurements presented in this manuscript are the first to be conducted in the region of Pcinja, thus providing the results that can be used as a baseline for future measurements and monitoring.

  20. Transfer Factor of Radioactive Cs and Sr from Egyptian Soils to Roots and Leafs of Wheat Plant

    International Nuclear Information System (INIS)

    Abu Khadra, S.A.; Abdel Fattah, A.T.; Eissa, H.S.; Abdel Sabour, M.F.

    2009-01-01

    Transfer factors (TFs) of long lived radionuclide such as 137 Cs and 90 Sr from three different Egyptian soils type to wheat plant have been studied by radiotracer experiments. Most typical Egyptian soils (sandy, sandy loam and clayey) from three different locations (Al -Oboor, Abu- Zaabal and Shebeen cities) were selected for the experiments carried out under outdoor conditions. The plant selected was wheat because the high consumption of wheat in Egypt. In the present study radioactive strontium and caesium uptake from different types of soil was investigated .These radionuclide showed a considerable difference in their distribution within the plant .The results showed that soil type influences the transfer factors. Sandy soil resulted in the highest transfer factor for both (Cs and Sr) from soil to wheat. TFs for leafs were higher than those for roots in case of 90 Sr (for all types of soil). However, TFs of ( 137 Cs) for roots were higher than those for leafs for all soils. Grains of the wheat showed the lowest transfer factor for the Cs and Sr (for all types of soil)

  1. Soil-water distribution coefficients and plant transfer factors for {sup 134}Cs, {sup 85}Sr and {sup 65}Zn under field conditions in tropical Australia

    Energy Technology Data Exchange (ETDEWEB)

    Twining, J.R. E-mail: jrt@ansto.gov.au; Payne, T.E.; Itakura, T

    2004-07-01

    Measurements of soil-to-plant transfer of {sup 134}Cs, {sup 85}Sr and {sup 65}Zn from two tropical red earth soils ('Blain' and 'Tippera') to sorghum and mung crops have been undertaken in the north of Australia. The aim of the study was to identify factors that control bioaccumulation of these radionuclides in tropical regions, for which few previous data are available. Batch sorption experiments were conducted to determine the distribution coefficient (K{sub d}) of the selected radionuclides at pH values similar to natural pH values, which ranged from about 5.5 to 6.7. In addition, K{sub d} values were obtained at one pH unit above and below the soil-water equilibrium pH values to determine the effect of pH. The adsorption of Cs showed no pH dependence, but the K{sub d} values for the Tippera soils (2300-4100 ml/g) exceeded those for the Blain soils (800-1200 ml/g) at equilibrium pH. This was related to the greater clay content of the Tippera soil. Both Sr and Zn were more strongly adsorbed at higher pH values, but the K{sub d} values showed less dependence on the soil type. Strontium K{sub d}s were 30-60 ml/g whilst Zn ranged from 160 to 1630 ml/g for the two soils at equilibrium pH. With the possible exception of Sr, there was no evidence for downward movement of radionuclides through the soils during the course of the growing season. There was some evidence of surface movement of labelled soil particles. Soil-to-plant transfer factors varied slightly between the soils. The average results for sorghum were 0.1-0.3 g/g for Cs, 0.4-0.8 g/g for Sr and 18-26 g/g for Zn (dry weight) with the initial values relating to Blain and the following values to Tippera. Similar values were observed for the mung bean samples. The transfer factors for Cs and Sr were not substantially different from the typical values observed in temperate studies. However, Zn transfer factors for plants grown on both these tropical soils were greater than for soils in

  2. Effect of weed control methods on some soil properties of a newly ...

    African Journals Online (AJOL)

    Weed control constitutes a high percentage of the total field maintenance cost of newly planted cocoa. Soil samples were collected from an experiment that was designed to evaluate some weed control methods during cocoa establishment. The objective of the experiment was to assess the effect of the weed control ...

  3. Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    Science.gov (United States)

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil. PMID:21998695

  4. Experimental investigation of the seismic control of a nonlinear soil-structure system using MR dampers

    International Nuclear Information System (INIS)

    Li, Hui; Wang, Jian

    2011-01-01

    This paper reports the results of an experimental study conducted to demonstrate the feasibility and capability of magnetorheological (MR) dampers commanded by a decentralized control algorithm for seismic control of nonlinear civil structures considering soil-structure interaction (SSI). A two-story reinforced concrete (RC) frame resting in a laminar soil container is employed as the test specimen, and two MR dampers equipped in the first story are used to mitigate the response of this frame subjected to various intensity seismic excitations. A hyperbolic tangent function is used to represent the hysteretic behavior of the MR damper and a decentralized control approach for commanding MR dampers is proposed and implemented in the shaking table tests. Only the response of the first story is feedback for control command calculation of the MR dampers. The results indicate that the MR damper can effectively reduce the response of the soil-structure system, even when the soil-structure system presents complex nonlinear hysteretic behavior. The robustness of the proposed decentralized control algorithm is validated through the shaking table tests on the soil-structure system with large uncertainty. The most interesting findings in this paper are that MR dampers not only mitigate the superstructure response, but also reduce the soil response, pile response and earth pressure on the pile foundation

  5. Seasonal abundance of soil arthropods in relation to meteorological and edaphic factors in the agroecosystems of Faisalabad, Punjab, Pakistan

    Science.gov (United States)

    Shakir, Muhammad Mussadiq; Ahmed, Sohail

    2015-05-01

    Soil arthropods are an important component of agroecosystems, contributing significantly to their biodiversity and functioning. However, seasonal patterns, population dynamics, and significant roles of these soil arthropods in improvement of soil structures and functions are influenced by many factors. The objective of the current study was to investigate soil arthropod abundance in relation to a blend of meteorological and edaphic factors and to find out the difference in abundance among various crops (sugarcane, cotton, wheat, alfalfa fodder, and citrus orchards). The arthropod sampling was done by pitfall traps and Tullgren extractions on fortnightly intervals. Soil temperature and relative humidity were noted on the field sites while analysis for soil pH, organic matter, and soil moisture contents were done in the laboratory. The rainfall data was obtained from an observatory. Results showed that significant differences were found in soil arthropod abundance across different sampling months and crops. Out of total 13,673 soil arthropods sampled, 38 % belonged to Collembola, followed by 15 % Hymenoptera, 15 % Acarina, 11 % Myriapods, 6 % Coleoptera, 5 % Orthoptera, and 5 % Araneae. Mean abundance per sample was highest in summer months as compared to winter. Overall abundance per sample was significantly different between all crops ( p Aranae, Coleoptera), least abundant (Dermaptera, Hemiptera, Diptera), and rare (Blattaria, Isoptera, Diplura, Lepidoptera). Soil temperature and soil organic matter showed significant positive correlation with abundance, while relative humidity was significantly negatively correlated. Soil moisture and soil pH showed no significant correlations while no correlation was found with total rainfall. PCA analysis revealed that soil surface arthropods were the major contributors of variation in overall abundance in extreme temperature months while microarthropods in low-temperature months. CCA analysis revealed the occurrence of

  6. Seasonal abundance of soil arthropods in relation to meteorological and edaphic factors in the agroecosystems of Faisalabad, Punjab, Pakistan.

    Science.gov (United States)

    Shakir, Muhammad Mussadiq; Ahmed, Sohail

    2015-05-01

    Soil arthropods are an important component of agroecosystems, contributing significantly to their biodiversity and functioning. However, seasonal patterns, population dynamics, and significant roles of these soil arthropods in improvement of soil structures and functions are influenced by many factors. The objective of the current study was to investigate soil arthropod abundance in relation to a blend of meteorological and edaphic factors and to find out the difference in abundance among various crops (sugarcane, cotton, wheat, alfalfa fodder, and citrus orchards). The arthropod sampling was done by pitfall traps and Tullgren extractions on fortnightly intervals. Soil temperature and relative humidity were noted on the field sites while analysis for soil pH, organic matter, and soil moisture contents were done in the laboratory. The rainfall data was obtained from an observatory. Results showed that significant differences were found in soil arthropod abundance across different sampling months and crops. Out of total 13,673 soil arthropods sampled, 38 % belonged to Collembola, followed by 15 % Hymenoptera, 15 % Acarina, 11 % Myriapods, 6 % Coleoptera, 5 % Orthoptera, and 5 % Araneae. Mean abundance per sample was highest in summer months as compared to winter. Overall abundance per sample was significantly different between all crops (p arthropods according to abundance, i.e., highly abundant (Collembola, Acarina, Myripoda, Hymenoptera), moderately abundant (Orthoptera, Aranae, Coleoptera), least abundant (Dermaptera, Hemiptera, Diptera), and rare (Blattaria, Isoptera, Diplura, Lepidoptera). Soil temperature and soil organic matter showed significant positive correlation with abundance, while relative humidity was significantly negatively correlated. Soil moisture and soil pH showed no significant correlations while no correlation was found with total rainfall. PCA analysis revealed that soil surface arthropods were the major contributors of variation in overall

  7. Soil invertebrate fauna affect N2O emissions from soil

    NARCIS (Netherlands)

    Kuiper, I.; Deyn, de G.B.; Thakur, M.P.; Groenigen, van J.W.

    2013-01-01

    Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna

  8. Alaskan soil carbon stocks: spatial variability and dependence on environmental factors

    Directory of Open Access Journals (Sweden)

    U. Mishra

    2012-09-01

    Full Text Available The direction and magnitude of soil organic carbon (SOC changes in response to climate change depend on the spatial and vertical distributions of SOC. We estimated spatially resolved SOC stocks from surface to C horizon, distinguishing active-layer and permafrost-layer stocks, based on geospatial analysis of 472 soil profiles and spatially referenced environmental variables for Alaska. Total Alaska state-wide SOC stock was estimated to be 77 Pg, with 61% in the active-layer, 27% in permafrost, and 12% in non-permafrost soils. Prediction accuracy was highest for the active-layer as demonstrated by highest ratio of performance to deviation (1.5. Large spatial variability was predicted, with whole-profile, active-layer, and permafrost-layer stocks ranging from 1–296 kg C m−2, 2–166 kg m−2, and 0–232 kg m−2, respectively. Temperature and soil wetness were found to be primary controllers of whole-profile, active-layer, and permafrost-layer SOC stocks. Secondary controllers, in order of importance, were found to be land cover type, topographic attributes, and bedrock geology. The observed importance of soil wetness rather than precipitation on SOC stocks implies that the poor representation of high-latitude soil wetness in Earth system models may lead to large uncertainty in predicted SOC stocks under future climate change scenarios. Under strict caveats described in the text and assuming temperature changes from the A1B Intergovernmental Panel on Climate Change emissions scenario, our geospatial model indicates that the equilibrium average 2100 Alaska active-layer depth could deepen by 11 cm, resulting in a thawing of 13 Pg C currently in permafrost. The equilibrium SOC loss associated with this warming would be highest under continuous permafrost (31%, followed by discontinuous (28%, isolated (24.3%, and sporadic (23.6% permafrost areas. Our high-resolution mapping of soil carbon stock reveals the

  9. Altitudinal patterns and controls of trace metal distribution in soils of a remote high mountain, Southwest China.

    Science.gov (United States)

    Li, Rui; Bing, Haijian; Wu, Yanhong; Zhou, Jun; Xiang, Zhongxiang

    2018-02-01

    The aim of this study is to reveal the effects of regional human activity on trace metal accumulation in remote alpine ecosystems under long-distance atmospheric transport. Trace metals (Cd, Pb, and Zn) in soils of the Mt. Luoji, Southwest China, were investigated along a large altitudinal gradient [2200-3850 m above sea level (a.s.l.)] to elaborate the key factors controlling their distribution by Pb isotopic composition and statistical models. The concentrations of Cd, Pb, and Zn in the surface soils (O and A horizons) were relatively low at the altitudes of 3500-3700 m a.s.l. The enrichment factors of trace metals in the surface soils increased with altitude. After normalization for soil organic matter, the concentrations of Cd still increased with altitude, whereas those of Pb and Zn did not show a clear altitudinal trend. The effects of vegetation and cold trapping (CTE) (pollutant enrichment by decreasing temperature with increasing altitude) mainly determined the distribution of Cd and Pb in the O horizon, whereas CTE and bedrock weathering (BW) controlled that of Zn. In the A horizon, the distribution of Cd and Pb depended on the vegetation regulation, whereas that of Zn was mainly related to BW. Human activity, including ores mining and fossil fuels combustion, increased the trace metal deposition in the surface soils. The anthropogenic percentage of Cd, Pb, and Zn quantified 92.4, 67.8, and 42.9% in the O horizon, and 74.5, 33.9, and 24.9% in the A horizon, respectively. The anthropogenic metals deposited at the high altitudes of Mt. Luoji reflected the impact of long-range atmospheric transport on this remote alpine ecosystem from southern and southwestern regions.

  10. Determination of factors associated with natural soil suppressivity to potato common scab

    Czech Academy of Sciences Publication Activity Database

    Ságová-Marečková, M.; Daniel, O.; Omelka, M.; Krištůfek, Václav; Diviš, J.; Kopecký, J.

    2015-01-01

    Roč. 10, č. 1 (2015), e0116291 E-ISSN 1932-6203 R&D Projects: GA MZe QJ1210359 Grant - others:GA ČR(CZ) GPP201/11/P290 Program:GP Institutional support: RVO:60077344 Keywords : natural soil suppressivity * potato common scab * pathogenic bacteria Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 3.057, year: 2015

  11. Factors determining outcome in children with chronic constipation and faecal soiling.

    OpenAIRE

    Loening-Baucke, V

    1989-01-01

    To evaluate factors which might contribute to treatment failure in children with chronic constipation and soiling, we evaluated the history, physical findings, defecation dynamics, and anorectal function in 97 patients. We treated them with milk of magnesia, high fibre diet, and bowel training techniques and evaluated outcome at one year when 43% had recovered. Recovery rates were similar for boys and girls. Fifty seven per cent of the patients had not recovered. This group at the outset had ...

  12. Global controls on carbon storage in mangrove soils

    Science.gov (United States)

    Rovai, André S.; Twilley, Robert R.; Castañeda-Moya, Edward; Riul, Pablo; Cifuentes-Jara, Miguel; Manrow-Villalobos, Marilyn; Horta, Paulo A.; Simonassi, José C.; Fonseca, Alessandra L.; Pagliosa, Paulo R.

    2018-06-01

    Global-scale variation in mangrove ecosystem properties has been explained using a conceptual framework linking geomorphological processes to distinct coastal environmental settings (CES) for nearly 50 years. However, these assumptions have not been empirically tested at the global scale. Here, we show that CES account for global variability in mangrove soil C:N:P stoichiometry and soil organic carbon (SOC) stocks. Using this ecogeomorphology framework, we developed a global model that captures variation in mangrove SOC stocks compatible with distinct CES. We show that mangrove SOC stocks have been underestimated by up to 50% (a difference of roughly 200 Mg ha-1) in carbonate settings and overestimated by up to 86% (around 400 Mg ha-1) in deltaic coastlines. Moreover, we provide information for 57 nations that currently lack SOC data, enabling these and other countries to develop or evaluate their blue carbon inventories.

  13. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    Science.gov (United States)

    Mishra, U.; Riley, W. J.

    2015-07-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data set with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained

  14. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    Science.gov (United States)

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Factors influencing the profitability of optimizing control systems

    International Nuclear Information System (INIS)

    Broussaud, A.; Guyot, O.

    1999-01-01

    Optimizing control systems supplement conventional Distributed Control Systems and Programmable Logic Controllers. They continuously implement set points, which aim at maximizing the profitability of plant operation. They are becoming an integral part of modern mineral processing plants. This trend is justified by economic considerations, optimizing control being among the most cost-effective methods of improving metallurgical plant performance. The paper successively analyzes three sets of factors, which influence the profitability of optimizing control systems, and provides guidelines for analyzing the potential value of an optimizing control system at a given operation: external factors, such as economic factors and factors related to plant feed; features of the optimizing control system; and subsequent maintenance of the optimizing control system. It is shown that pay back times for optimization control projects are typically measured in days. The OCS software used by the authors for their applications is described briefly. (author)

  16. Mineralogical controls on microbial biomass accumulation on two tropical soils

    Science.gov (United States)

    Block, K. A.; Pena, S. A.; Katz, A.; Gottlieb, P.; Volta, A.

    2017-12-01

    The characteristics of soil organic matter (SOM) generated by microbes and associated with minerals are not well defined. This information is critical to reducing uncertainty in climate models related to C cycling and ecosystem feedbacks. The resistance to degradation of mineral-associated SOM is influenced by aggregate structure, mineral chemistry and microbial community. In this work we examine the influence of mineral composition, including amorphous coatings on the biomass yield and aggregate structure through thermogravimetric analysis, X-ray diffraction and electron microscopy. Two soil organisms, Pseudomonas phaseolicola, and Streptomyces griseosporus, were each incubated over a 72-hour period in minimal media with the cultured under the same conditions. In all samples, approximately half of the sample mass loss occurred between 175 ºC - 375 ºC, which we attribute to biomolecules accumulated on the mineral surfaces. We observed a slightly larger mass loss in the Inceptisol than in the Oxisol, most of which corresponded to compounds that underwent pyrolysis at 300 ºC. HRTEM micrographs and TEM-EDS image maps showing the spatial relationship of microbial necromass to soil minerals will be reported.

  17. Microbial control on decomposition of radionuclides-containing oily waste in soil

    Science.gov (United States)

    Selivanovskaya, Svetlana; Galitskaya, Polina

    2014-05-01

    The oily wastes are formed annually during extraction, refinement, and transportation of the oil and may cause pollution of the environment. These wastes contain different concentrations of waste oil (40-60%), waste water (30-90%), and mineral particles (5-40%). Some oily wastes also contain naturally occurring radionuclides which were incorporated by water that was pumped up with the oil. For assessment of the hazard level of waste treated soil, not only measurements of contaminants content are needed, because bioavailability of oily components varies with hydrocarbon type, and soil properties. As far as namely microbial communities control the decomposition of organic contaminants, biological indicators have become increasingly important in hazard assessment and the efficiency of remediation process. In this study the decomposition of radionuclides-containing oily waste by soil microbial communities were estimated. Waste samples collected at the Tikchonovskii petroleum production yard (Tatarstan, Russia) were mixed with Haplic greyzem soil at ratio 1:4 and incubated for 120 days. During incubation period, the total hydrocarbon content of the soil mixed with the waste reduced from 156 ± 48 g kg-1 to 54 ± 8 g kg-1 of soil. The concentrations of 226Ra and 232Th were found to be 643 ± 127, 254 ± 56 Bq kg-1 and not changed significantly during incubation. Waste application led to a soil microbial biomass carbon decrease in comparison to control (1.9 times after 1 day and 1.3 times after 120 days of incubation). Microbial respiration increased in the first month of incubation (up to 120% and 160% of control after 1 and 30 days, correspondingly) and decreased to the end of incubation period (74% of control after 120 days). Structure of bacterial community in soil and soil/waste mixture was estimated after 120 days of incubation using SSCP method. The band number decreased in contaminated soil in comparison to untreated soil. Besides, several new dominant DNA

  18. Mineralogical Controls over Carbon Storage and Residence Times in Grassland Soils

    Science.gov (United States)

    Dwivedi, D.; Riley, W. J.; Torn, M. S.; Spycher, N.

    2014-12-01

    Globally, soil organic matter (SOM) contains approximately three times more carbon than the atmosphere and terrestrial vegetation contain combined. However, it is not well understood why some SOM persists for a long time while other SOM decomposes quickly. For future climate predictions, representing soil organic matter (SOM) dynamics accurately in Earth system models is essential. Soil minerals stabilize organic carbon in soil; however, there are gaps in our understanding of how soil mineralogy controls the quantity and turnover of long-residence-time organic carbon. To investigate the impact of soil mineralogy on SOM dynamics, we used a new model (Biotic and Abiotic Model of SOM—BAMS1 [Riley et al., 2014]) integrated with a three-dimensional, multiphase reactive transport solver (TOUGHREACT). The model represents bacterial and fungal activity, archetypal polymer and monomer carbon substrate groups, aqueous chemistry, gaseous diffusion, aqueous advection and diffusion, and adsorption and desorption processes. BAMS1 can predict bulk SOM and radiocarbon signatures without resorting to an arbitrary depth-dependent decline in SOM turnover rates. Results show a reasonable match between observed and simulated depth-resolved SOM and Δ14C in grassland ecosystems (soils formed on terraces south of Eureka, California, and the Central Chernozem Region of Russia) and were consistent with expectations of depth-resolved profiles of lignin content and fungi:aerobic bacteria ratios. Results also suggest that clay-mineral surface area and soil sorption coefficients constitute dominant controls over organic carbon stocks and residence times, respectively. Bibliography: Riley, W.J., F.M. Maggi, M. Kleber, M.S. Torn, J.Y. Tang, D. Dwivedi, and N. Guerry (2014), Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics, Geoscientific Model Development, vol. 7, 1335

  19. [Analysis of soil respiration and influence factors in wheat farmland under conservation tillage in southwest hilly region].

    Science.gov (United States)

    Zhang, Sai; Zhang, Xiao-Yu; Wang, Long-Chang; Luo, Hai-Xiu; Zhou, Hang-Fei; Ma, Zhong-Lian; Zhang, Cui-Wei

    2013-07-01

    In order to investigate the effect of conservation tillage on soil respiration in dry cropping farmland in southwest purple hilly region, the LI6400-09 respiratory chamber was adopted in the experiment conducted in the experimental field in Southwest University in Beibei, Chongqing. The respiration and the hydrothermal and biotic factors of soil were measured and analyzed during the growth period of wheat in the triple intercropping system of wheat/maize/soybean. There were four treatments including T (traditional tillage), R (ridge tillage), TS (traditional tillage + straw mulching) and RS (ridge tillage + straw mulching), which were all in triplicates. The results indicated that the soil respiration rate changed in the range of 1.100-2.508 micromol x (m2 x s)(-1) during the reproductive growth stage of wheat. There were significant differences in soil respiration rate among different treatments, which could be ranked as RS > R > TS > T. The soil temperature in the 10cm layer was ranked as T > R > TS > RS. The relationship between soil respiration and soil temperature fitted well with an exponential function, in which the Q10 values were 1.25, 1.20, 1.31 and 1.26, respectively. The soil moisture in the 5cm layer was ranked as TS > RS > T > R. The best fitting model between soil moisture and soil respiration was a parabolic curve, indicating the presence of soil moisture with the strongest soil respiration. The response threshold of wheat to soil moisture was 14.80%-17.47% during the reproductive stage. The dominant groups of soil animals were Collembola and Acarina, which were correlated with soil respiration to some extent. The correlation was high in the treatments T and R, ranged from 0.669-0.921, whereas there was no remarkable correlation in the other treatments.

  20. Spatial patterns of soil pH and the factors that influence them in plantation forests of northern China

    Science.gov (United States)

    Hong, Songbai; Liu, Yongwen; Piao, Shilong

    2017-04-01

    Climate and anthropogenic activities such as afforestation and nitrogen deposition all impact soil pH. Understanding the spatial pattern of soil pH and the factors that influence it can provide basic information for generating appropriate strategies for soil resource management and protection, especially in light of increasing anthropogenic influences and climate change. In this study, we investigated the spatial and vertical pattern of soil pH and evaluated the influence of climate and nitrogen deposition using 1647 soil profiles 1 meter in depth from 549 plots in plantation forests of northern China. We found that soil pH decreased from the southwest to the northeast in the study region and had a similar spatial pattern before and after afforestation. Furthermore, our results show that climate and nitrogen deposition fundamentally influence the pattern of soil pH. Specifically, increasing precipitation significantly decreased soil pH (with a mean rate of 0.3 for every 100 mm rainfall, ppH (0.13 for every degree centigrade, ppH (ppH directly and indirectly through climate-plant-soil interactions. As the risks from both climate change and nitrogen deposition increase, there is an urgent need to further understanding of soil pH dynamics and to develop informed policies to protect soil resources.

  1. Modelling nitrous oxide emissions from organic and conventional cereal-based cropping systems under different management, soil and climate factors

    DEFF Research Database (Denmark)

    Doltra, J; Olesen, Jørgen E; Báez, D

    2015-01-01

    Mitigation of greenhouse gas emissions from agriculture should be assessed across cropping systems and agroclimatic regions. In this study, we investigate the ability of the FASSET model to analyze differences in the magnitude of N2O emissions due to soil, climate and management factors in cereal...... on the seasonal soil N2O fluxes than the environmental factors. Overall, in its current version FASSET reproduced the effects of the different factors investigated on the cumulative seasonal soil N2O emissions but temporally it overestimated emissions from nitrification and denitrification on particular days when...... soil operations, ploughing or fertilization, took place. The errors associated with simulated daily soil N2O fluxes increased with the magnitude of the emissions. For resolving causes of differences in simulated and measured fluxes more intensive and temporally detailed measurements of N2O fluxes...

  2. Transgenic potatoes for potato cyst nematode control can replace pesticide use without impact on soil quality.

    Science.gov (United States)

    Green, Jayne; Wang, Dong; Lilley, Catherine J; Urwin, Peter E; Atkinson, Howard J

    2012-01-01

    Current and future global crop yields depend upon soil quality to which soil organisms make an important contribution. The European Union seeks to protect European soils and their biodiversity for instance by amending its Directive on pesticide usage. This poses a challenge for control of Globodera pallida (a potato cyst nematode) for which both natural resistance and rotational control are inadequate. One approach of high potential is transgenically based resistance. This work demonstrates the potential in the field of a new transgenic trait for control of G. pallida that suppresses root invasion. It also investigates its impact and that of a second transgenic trait on the non-target soil nematode community. We establish that a peptide that disrupts chemoreception of nematodes without a lethal effect provides resistance to G. pallida in both a containment and a field trial when precisely targeted under control of a root tip-specific promoter. In addition we combine DNA barcoding and quantitative PCR to recognise nematode genera from soil samples without microscope-based observation and use the method for nematode faunal analysis. This approach establishes that the peptide and a cysteine proteinase inhibitor that offer distinct bases for transgenic plant resistance to G. pallida do so without impact on the non-target nematode soil community.

  3. Transgenic potatoes for potato cyst nematode control can replace pesticide use without impact on soil quality.

    Directory of Open Access Journals (Sweden)

    Jayne Green

    Full Text Available Current and future global crop yields depend upon soil quality to which soil organisms make an important contribution. The European Union seeks to protect European soils and their biodiversity for instance by amending its Directive on pesticide usage. This poses a challenge for control of Globodera pallida (a potato cyst nematode for which both natural resistance and rotational control are inadequate. One approach of high potential is transgenically based resistance. This work demonstrates the potential in the field of a new transgenic trait for control of G. pallida that suppresses root invasion. It also investigates its impact and that of a second transgenic trait on the non-target soil nematode community. We establish that a peptide that disrupts chemoreception of nematodes without a lethal effect provides resistance to G. pallida in both a containment and a field trial when precisely targeted under control of a root tip-specific promoter. In addition we combine DNA barcoding and quantitative PCR to recognise nematode genera from soil samples without microscope-based observation and use the method for nematode faunal analysis. This approach establishes that the peptide and a cysteine proteinase inhibitor that offer distinct bases for transgenic plant resistance to G. pallida do so without impact on the non-target nematode soil community.

  4. Soil-plant transfer factors for Pu in the field and laboratory in relation to desorption from the solid phase

    International Nuclear Information System (INIS)

    Mudge, S.; Kelly, M.; Hamilton-Taylor, J.; Horrill, A.D.

    1990-01-01

    Laboratory hydroponics experiments using an environmentally contaminated sediment as source of Pu, were carried out to determine the soil-plant, soil solution-plant and root-plant transfer factors. Soil-plant transfer factors, calculated from field observations, varied according to the degree of animal usage and were more than two orders of magnitude larger than those from the laboratory experiments. The discrepancies between field and laboratory measurements are probably due to the complex sediment speciation and desorption chemistry of Pu. The transfer factors based on the solution or root activities are likely to provided a better estimate of the vegetation activity than those based on the solid phase activity. (author)

  5. Sensitivity Analysis of b-factor in Microwave Emission Model for Soil Moisture Retrieval: A Case Study for SMAP Mission

    Directory of Open Access Journals (Sweden)

    Dugwon Seo

    2010-05-01

    Full Text Available Sensitivity analysis is critically needed to better understand the microwave emission model for soil moisture retrieval using passive microwave remote sensing data. The vegetation b-factor along with vegetation water content and surface characteristics has significant impact in model prediction. This study evaluates the sensitivity of the b-factor, which is function of vegetation type. The analysis is carried out using Passive and Active L and S-band airborne sensor (PALS and measured field soil moisture from Southern Great Plains experiment (SGP99. The results show that the relative sensitivity of the b-factor is 86% in wet soil condition and 88% in high vegetated condition compared to the sensitivity of the soil moisture. Apparently, the b-factor is found to be more sensitive than the vegetation water content, surface roughness and surface temperature; therefore, the effect of the b-factor is fairly large to the microwave emission in certain conditions. Understanding the dependence of the b-factor on the soil and vegetation is important in studying the soil moisture retrieval algorithm, which can lead to potential improvements in model development for the Soil Moisture Active-Passive (SMAP mission.

  6. Transfer factors of radioiodine from volcanic-ash soil (Andosol) to crops

    International Nuclear Information System (INIS)

    Ban-Nai, Tadaaki; Muramatsu, Yasuyuki

    2003-01-01

    In order to obtain soil-to-plant transfer factors (TFs) of radioiodine from volcanic-ash soil to agricultural crops, we carried out radiotracer experiments. The mean values of TFs (on a wet weight basis) of radioiodine from Andosol to edible parts of crops were as follows: water dropwort, 0.24; lettuce, 0.00098; onion, 0.0011; radish, 0.0044; turnip, 0.0013 and eggplant, 0.00010. The mean value of the TFs of radioiodine for edible parts of wheat (on a dry weight basis) was 0.00015. We also studied the distributions of iodine in crops. There was a tendency for the TFs of leaves to be higher than those of tubers, fruits and grains. A very high TF was found for water dropwort, because this plant was cultivated under a waterlogged condition, in which iodine desorbed from soil into soil solution with a drop in the Eh value. The data obtained in this study should be helpful to assess the long-lived 129 I (half life: 1.57 x l0 7 yr) pathway related to the fuel cycle. (author)

  7. Cs-137 soil to plant transfer factors derived from pot experiments and field studies

    International Nuclear Information System (INIS)

    Horak, O.; Gerzabek, M.H.; Mueck, K.

    1989-11-01

    Soil to plant transfer factors (TF) of 137 Cs for different crop plants were determined in pot experiments, in outdoor experiments with plastic containers of 50 l volume, and in field studies. In all cases the soil contamination with 137 Cs resulted from fallout after the Chernobyl reactor accident. Mean TF derived for outdoor plants on a fresh weight basis, ranged from 0,0017 (leaf vegetables) to 0,059 (rye straw) and showed characteristic differences depending on plant part and species. Generally, for fruits and potato tubers a lower TF was found than for vegetative plant parts. Moreover, the data were compared with those from former experiments, carried out before the Chernobyl accident. There is a good agreement for cereals (with exception of rye) fruit vegetables and fodder crops, while actual TF are substantially lower for potatoes, leaf and root vegetables, but higher for rye. A significant negative correlation was observed between the TF and the soil activity concentrations for 137 Cs. In container experiments the TF were found to be influenced mainly by the clay content of the soil. 11 refs., 2 figs., 2 tabs. (Authors)

  8. Distribution of Soil Organic Carbon and the Influencing Factors in An Oasis Farmland Area

    Directory of Open Access Journals (Sweden)

    WANG Ze

    2014-08-01

    Full Text Available The soil organic carbon(SOC of a typical oasis farmland in middle part of Manasi county of Xinjiang was used as the research ob原 ject. Using remote sensing and lab analysis techniques, influences of soil texture, terrain, land uses, and crop types on SOC content of farmland were studied. Results showed that the SOC distribution in farmland of Manasi was mainly determined by comprehensive natural environmental factors. The SOC content decreased along with the increasing soil depth. For soil textures, the SOC content from high to low was clay loam>powder loam>silty loam. Slope direction had significantly positive correlations with SOC contents at 0~30 cm and 30~60 cm, while altitude and SOC content at 60~100 cm were significantly positive correlation. The SOC content of orchard was the highest, and the uncultivated land was the lowest under different land-use patterns. For different crop planting systems, the order of SOC content was corn field >wine grapes field>cotton field, and the difference was significant.

  9. Transfer factors of radioiodine from volcanic-ash soil (Andosol) to crops

    Energy Technology Data Exchange (ETDEWEB)

    Ban-Nai, Tadaaki; Muramatsu, Yasuyuki [National Inst. of Radiological Sciences, Chiba (Japan). Environmental and Toxicological Sciences Research Group

    2003-03-01

    In order to obtain soil-to-plant transfer factors (TFs) of radioiodine from volcanic-ash soil to agricultural crops, we carried out radiotracer experiments. The mean values of TFs (on a wet weight basis) of radioiodine from Andosol to edible parts of crops were as follows: water dropwort, 0.24; lettuce, 0.00098; onion, 0.0011; radish, 0.0044; turnip, 0.0013 and eggplant, 0.00010. The mean value of the TFs of radioiodine for edible parts of wheat (on a dry weight basis) was 0.00015. We also studied the distributions of iodine in crops. There was a tendency for the TFs of leaves to be higher than those of tubers, fruits and grains. A very high TF was found for water dropwort, because this plant was cultivated under a waterlogged condition, in which iodine desorbed from soil into soil solution with a drop in the Eh value. The data obtained in this study should be helpful to assess the long-lived {sup 129}I (half life: 1.57 x l0{sup 7} yr) pathway related to the fuel cycle. (author)

  10. Factors controlling superelastic damping capacity of SMAs

    Czech Academy of Sciences Publication Activity Database

    Heller, Luděk; Šittner, Petr; Pilch, Jan; Landa, Michal

    2009-01-01

    Roč. 18, 5-6 (2009), 603-611 ISSN 1059-9495 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z20760514 Keywords : shape memory alloys * superelastic damping * thermomechanical testing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.592, year: 2009

  11. Survey of History Utilization on Metribuzin Efficiency to Control Commonlamb’squarters (Chenopodium album in Different Soils

    Directory of Open Access Journals (Sweden)

    S. E. Mofidi

    2016-06-01

    Full Text Available Introduction: Potato is a cool-season vegetable that ranks with wheat and rice as one of the most important staple crops in the human diet around the world. Weed control is important in potato production management, because without doing it potato harvest would not be cost- effective. Metribuzin (4-amino-6-tert butyl-3-methylthio-1, 2, 4-triazin-5-one, a triazine, is used as a selective herbicides for control of annuals grasses and broadleaf weeds inpotato. Its herbicide efficiency and its relatively low toxicity are such that it is widely used around the world. Replacing metribuzin with other herbicide that have the greatest effect on weed control in potato seems unlikely. The persistence of metribuzin in soil is defined as the period or extension of time in which it remains active. Knowing the case of herbicides is particularly important because, on one hand, it determines the period of time in which weeds can be controlled, and on the other, it is related to the later phytotoxic effects which can damage the subsequent crops. In order to understand about affiance of this herbicide in potato fields, researches on metribuzin toxicity in common lamb’squarters in soils with different utilizations are essential. Material and Methods: This experiment was conducted to study the effect of soil characteristics and utilization history of metribuzin on its efficiency to common lamb’squarters control as a factorial on the base of randomized complete blocks design with three replications in green house of Institue of Plant Protection in 2012. First factor was soil type in six levels (Hamedan with 15 years and without utilization history, Jiroft with 15 years and without utilization history, Isfahan with 2 years utilization history and Mashhad with 3 years utilization history and second factor was concentration of metribuzin in six levels (included 0, 100, 300, 700 and 1000 g ai h-1. Soil samples were collected from 0-15 cm depth. Before cultivating

  12. Mobility of Cs137 and Sr90 in organic soils and its control

    International Nuclear Information System (INIS)

    Rovdan, E.

    2002-01-01

    In the management of the radionuclide contaminated areas and application of a countermeasure strategy for reduction of both the external and internal doses to the population it is extremely important to know the environmental mechanisms governing the behaviour of radionuclides in soil ecosystems. The purpose of work is to investigate by means of laboratory, field experiments and mathematical modelling the mechanisms and dynamics of radionuclide transfer in the organic soil to propose measures for control their mobility. The Chernobyl radionuclides behaviour was studied for ameliorated peat-mire soil (peat deposit Pogonyanskoye, 21 km off the ChNPP). To control the mobility of radionuclides in soils the characteristics of the migration and sorption of Cs 137 and Sr 90 in sedge peat, quartz sand, bentonite, kaolin, sapropel as well as the electrolytes impact upon the radionuclide behaviour have been experimentally investigated

  13. Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor

    Science.gov (United States)

    W. J. Massman; J. M. Frank

    2004-01-01

    Some fires can be beneficial to soils but, if a fire is sufficiently intense, soil can be irreversible altered. We measured soil temperatures and heat fluxes at several soil depths before, during, and after a controlled surface burn at Manitou Experimental Forest (southern Colorado, USA) to evaluate its effects on the soil's thermophysical properties (thermal...

  14. Geostatistical modelling of soil-transmitted helminth infection in Cambodia: do socioeconomic factors improve predictions?

    Science.gov (United States)

    Karagiannis-Voules, Dimitrios-Alexios; Odermatt, Peter; Biedermann, Patricia; Khieu, Virak; Schär, Fabian; Muth, Sinuon; Utzinger, Jürg; Vounatsou, Penelope

    2015-01-01

    aggregated large-scale analysis due to their large between- and within-village heterogeneity. Specific information of both the infection risk and potential predictors might be needed to obtain any existing association. The presented soil-transmitted helminth infection risk estimates for Cambodia can be used for guiding and evaluating control and elimination efforts. Copyright © 2014. Published by Elsevier B.V.

  15. Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-11-01

    Full Text Available The effectiveness of plant growth – promoting bacteria is variable under different biotic and abiotic conditions. Abiotic factors may negatively affect the beneficial properties and efficiency of the introduced PGPR inoculants. The aim of this study was to evaluate the effect of plant growth – promoting rhizobacteria on plant growth and on the control of foot and root rot of tomatoes caused by Fusarium solani under different soil salinity conditions. Among the five tested strains, only Pseudomonas chlororaphis TSAU13, and Pseudomonas extremorientalis TSAU20 were able to stimulate plant growth and act as biological controls of foot and root rot disease of tomato. The soil salinity did not negatively affect the beneficial impacts of these strains, as they were able to colonize and survive on the roots of tomato plants under both saline and non-saline soil conditions. The improved plant height and fruit yield of tomato was also observed for plants inoculated with P. extremorientalis TSAU20. Our results indicated that, saline condition is not crucial factor in obtaining good performance with respect to the plant growth stimulating and biocontrol abilities of PGPR strains. The bacterial inoculant also enhanced antioxidant enzymes activities thereby preventing ROS induced oxidative damage in plants, and the proline concentrations in plant tissue that play an important role in plant stress tolerance.

  16. Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest.

    Science.gov (United States)

    Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard

    2009-09-01

    The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.

  17. HUMAN FACTORS GUIDANCE FOR CONTROL ROOM EVALUATION

    International Nuclear Information System (INIS)

    OHARA, J.; BROWN, W.; STUBLER, W.; HIGGINS, J.; WACHTEL, J.; PERSENSKY, J.J.

    2000-01-01

    The Human-System Interface Design Review Guideline (NUREG-0700, Revision 1) was developed by the US Nuclear Regulatory Commission (NRC) to provide human factors guidance as a basis for the review of advanced human-system interface technologies. The guidance consists of three components: design review procedures, human factors engineering guidelines, and a software application to provide design review support called the ''Design Review Guideline.'' Since it was published in June 1996, Rev. 1 to NUREG-0700 has been used successfully by NRC staff, contractors and nuclear industry organizations, as well as by interested organizations outside the nuclear industry. The NRC has committed to the periodic update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool in the face of emerging and rapidly changing technology. This paper addresses the current research to update of NUREG-0700 based on the substantial work that has taken place since the publication of Revision 1

  18. Factors Affecting Sustainable Animal Trypanosomosis Control in ...

    African Journals Online (AJOL)

    trypanosomiasis control in parts of Kaduna State within the sub- humid savannah ... livestock farmers in planning and implementation. Across ... help to ensure a better management of livestock in tsetse fly infested areas with minimal loses in .... market and administered by them. This drug ... Table 2 shows the analysis of.

  19. What factors control dimerization of coniferyl alcohol?

    Science.gov (United States)

    Carl J. Houtman

    1999-01-01

    Data suggest that the dimerization of coniferyl alcohol is not under thermodynamic control. In this study, molecular dynamics calculations were used to estimate the effect of the solvent environment. In water, the coniferyl alcohol radicals were forced to associate by the formation of a solvent cage. In glycerol, the solvent cage effect appeared to be absent. These...

  20. Evaluation of soil-plant transfer factors of iodine. Estimation of annual ingestion for iodine from the diet

    International Nuclear Information System (INIS)

    Saas, Arsene.

    1980-11-01

    The author presents the iodine middle contents of the soils and vegetables. A synthesis on the iodine evolution in the soils and vegetables allows to conclude that the vegetable absorption of this isotope is correlated with the isotopiquely exchangeable iodine of the soil. The soil-plant transfer-factors are calculated for the vegetables, cereals, fruits from the stable iodine quantitative analysis. The annual iodine ingestion has been estimated from the dietary of the European Communites areas. This one is a little different of the quantity estimated by CRESTA-LACOURLY-R 2979, yet the contribution by consummation unity is different [fr

  1. Soft-Starting Power-Factor Motor Controller

    Science.gov (United States)

    Nola, F. J.

    1983-01-01

    Three-phase power-factor controller with soft start is based on earlier version that does not control starting transients. Additional components serve to turn off "run" command signal and substitute gradual startup command signal during preset startup interval. Improved controller reduces large current surge that usually accompanies starting. Controller applies power smoothly, without causing motor vibrations.

  2. Human factors methods for nuclear control room design. Volume I. Human factors enhancement of existing nuclear control rooms. Final report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Seidenstein, S.; Eckert, S.K.; Smith, D.L.

    1979-11-01

    Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. Human factors approaches were applied in the design of representative nuclear power plant control panels. First, methods for upgrading existing operational control panels were examined. Then, based on detailed human factors analyses of operator information and control requirements, designs of reactor, feedwater, and turbine-generator control panels were developed to improve the operator-control board interface, thereby reducing the potential for operator errors. In addition to examining present-generation concepts, human factors aspects of advanced systems and of hybrid combinations of advanced and conventional designs were investigated. Special attention was given to warning system designs. Also, a survey was conducted among control board designers to (1) develop an overview of design practices in the industry, and (2) establish appropriate measures leading to a more systematic concern for human factors in control board design

  3. Variation and control of soil organic carbon and other nutrients in permafrost regions on central Qinghai-Tibetan Plateau

    International Nuclear Information System (INIS)

    Liu, Wenjie; Chen, Shengyun; Zhao, Qian; Ren, Jiawen; Qin, Dahe; Sun, Zhizhong

    2014-01-01

    The variation and control of soil organic carbon (SOC) and other nutrients in permafrost regions are critical for studying the carbon cycle and its potential feedbacks to climate change; however, they are poorly understood. Soil nutrients samples at depths of 0–10, 10–20, 20–30, and 30–40 cm, were sampled eight times in 2009 in alpine swamp meadow, alpine meadow and alpine steppe in permafrost regions of the central Qinghai-Tibetan Plateau. SOC and total nitrogen (TN) in the alpine swamp meadow and meadow decreased with soil depth, whereas the highest SOC content in the alpine steppe was found at depths of 20–30 cm. The vertical profiles of total and available phosphorus (P) and potassium (K) were relatively uniform for all the three grassland types. Correlation and linear regression analyses showed that soil moisture (SM) was the most important parameter for the vertical variation of SOC and other soil nutrients, and that belowground biomass (BGB) was the main source of SOC and TN. The spatial variations (including seasonal variation) of SOC and TN at plot scale were large. The relative deviation of SOC ranged from 7.18 to 41.50 in the alpine swamp meadow, from 2.88 to 35.91 in the alpine meadow, and from 9.33 to 68.38 in the alpine steppe. The spatial variations in the other soil nutrients varied among different grassland types. The most important factors for spatial variations (including seasonal variation) of SOC, TN, total P, available P, and both total and available K were: SM, SM and temperature, SM, air temperature, and SM and BGB, respectively. The large variation in the three grassland types implies that spatial variation at plot scale should be considered when estimating SOC storage and its dynamics. (letter)

  4. Examining an underappreciated control on lignin decomposition in soils? Effects of reactive manganese species on intact plant cell walls

    Science.gov (United States)

    Keiluweit, M.; Bougoure, J.; Pett-Ridge, J.; Kleber, M.; Nico, P. S.

    2011-12-01

    Lignin comprises a dominant proportion of carbon fluxes into the soil (representing up to 50% of plant litter and roots). Two lines of evidence suggest that manganese (Mn) acts as a strong controlling factor on the residence time of lignin in soil ecosystems. First, Mn content is highly correlated with litter decomposition in temperate and boreal forest soil ecosystems and, second, microbial agents of lignin degradation have been reported to rely on reactive Mn(III)-complexes to specifically oxidize lignin. However, few attempts have been made to isolate the mechanisms responsible for the apparent Mn-dependence of lignin decomposition in soils. Here we tested the hypothesis that Mn(III)-oxalate complexes may act as a perforating 'pretreatment' for structurally intact plant cell walls. We propose that these diffusible oxidizers are small enough to penetrate and react with non-porous ligno-cellulose in cell walls. This process was investigated by reacting single Zinnia elegans tracheary elements with Mn(III)-oxalate complexes in a continuous flow-through microreactor. The uniformity of cultured tracheary elements allowed us to examine Mn(III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as synchrotron-based infrared and X-ray spectromicroscopy. Our results show that Mn(III)-complexes substantially oxidize specific lignin components of the cell wall, solubilize decomposition products, severely undermine the cell wall integrity, and cause cell lysis. We conclude that Mn(III)-complexes induce oxidative damage in plant cell walls that renders ligno-cellulose substrates more accessible for microbial lignin- and cellulose-decomposing enzymes. Implications of our results for the rate limiting impact of soil Mn speciation and availability on litter decomposition in forest soils will be discussed.

  5. Field Scale Spatial Modelling of Surface Soil Quality Attributes in Controlled Traffic Farming

    Science.gov (United States)

    Guenette, Kris; Hernandez-Ramirez, Guillermo

    2017-04-01

    The employment of controlled traffic farming (CTF) can yield improvements to soil quality attributes through the confinement of equipment traffic to tramlines with the field. There is a need to quantify and explain the spatial heterogeneity of soil quality attributes affected by CTF to further improve our understanding and modelling ability of field scale soil dynamics. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. We contrasted standard geostatistical methods such as ordinary kriging (OK) and covariate kriging (COK) as well as the hybrid method of regression kriging (ROK) to predict the spatial distribution of soil properties across two annual cropland sites actively employing CTF in Alberta, Canada. Field scale variability was quantified more accurately through the inclusion of covariates; however, the use of ROK was shown to improve model accuracy despite the regression model composition limiting the robustness of the ROK method. The exclusion of traffic from the un-trafficked areas displayed significant improvements to bulk density, macroporosity and Km while subsequently enhancing AN, STN and SOC. The ability of the regression models and the ROK method to account for spatial trends led to the highest goodness-of-fit and lowest error achieved for the soil physical properties, as the rigid traffic regime of CTF altered their spatial distribution at the field scale. Conversely, the COK method produced the most optimal predictions for the soil nutrient properties and Km. The use of terrain covariates derived from light ranging and detection (LiDAR), such as of elevation and topographic position index (TPI), yielded the best models in the COK method at the field scale.

  6. Sampling and Mapping Soil Erosion Cover Factor for Fort Richardson, Alaska. Integrating Stratification and an Up-Scaling Method

    National Research Council Canada - National Science Library

    Wang, Guangxing; Gertner, George; Anderson, Alan B; Howard, Heidi

    2006-01-01

    When a ground and vegetation cover factor related to soil erosion is mapped with the aid of remotely sensed data, a cost-efficient sample design to collect ground data and obtain an accurate map is required...

  7. In-situ Mass Distribution Quotient (iMDQ) - A New Factor to Compare Bioavailability of Pesticides in Soils?

    Science.gov (United States)

    Schroll, R.; Folberth, C.; Scherb, H.; Suhadolc, M.; Munch, J. C.

    2009-04-01

    Aim of this work was the development of a new non-biological factor to determine microbial in-situ bioavailability of chemicals in soils. Pesticide residues were extracted from ten highly different agricultural soils that had been incubated with the 14C-herbicide isoproturon (IPU) under comparable soil conditions (water tension - 15 kPa; soil density 1.3 g cm 3). Two different pesticide extraction approaches were compared: (i) 14C-Pesticide residues were measured in the pore water (PW) which was extracted from soil by centrifugation; (ii) 14C-Pesticide residues were extracted from soil samples with an excess of water (EEW). We introduce the pesticide's in-situ mass distribution quotient (iMDQ) as a measure for pesticide bioavailability, which is calculated as a quotient of adsorbed and dissolved chemical amounts for both approaches (iMDQPW, iMDQEEW). Pesticide mineralization in soils served as a reference for real microbial availability. A highly significant correlation between iMDQPW and mineralization showed that pore water extraction is adequate to assess IPU bioavailability. In contrast, no correlation exists between IPU mineralization and its extractability from soil with an excess of water. Therefore, it can be concluded that soil equilibration at comparable conditions and subsequent pore water extraction is vital for a isoproturon bioavailability ranking of soils.

  8. Control of Cellular Morphology by Mechanical Factors

    Science.gov (United States)

    Thoumine, Olivier

    1996-11-01

    This short review deals with the influence of mechanical factors on eucaryotic cell morphology and structure. We classify these factors into two types: i) external forces (e.g. gravitational forces or hemodynamic stresses), which when applied experimentally allow characterization of passive mechanical properties; and ii) internal forces, e.g. generated by molecular motors or polymerization processes. Perturbation of one or more of these forces induces significant changes in cell shape, cytoskeleton and pericellular matrix organization. We describe these phenomena in view of current models. Cette brève revue traite de l'influence des facteurs mécaniques sur la morphologie et la structure des cellules eucaryotes. Nous classifions ces facteurs en deux catégories : i) les forces externes (par exemple les forces de gravitation et les contraintes hèmodynamiques) qui, imposées in vitro, permettent de caractériser les propriétés mécaniques passives ; et ii) les forces internes, par exemple celles générées par les moteurs moléculaires ou les processus de polymérisation. La perturbation de l'une ou de l'autre de ces forces provoque des changements significatifs de la morphologie cellulaire ainsi que l'organisation du cytosquelette et de la matrice péricellulaire. Nous décrivons ces phénomènes en fonction de modèles existants.

  9. Denitrification potential of riparian soils in relation to multiscale spatial environmental factors: a case study of a typical watershed, China.

    Science.gov (United States)

    Wei, Jianbing; Feng, Hao; Cheng, Quanguo; Gao, Shiqian; Liu, Haiyan

    2017-02-01

    The objective of this study was to test the hypothesis that environmental regulators of riparian zone soil denitrification potential differ according to spatial scale within a watershed; consequently, a second objective was to provide spatial strategies for conserving and restoring the purification function of runoff in riparian ecosystems. The results show that soil denitrification in riparian zones was more heterogeneous at the profile scale than at the cross-section and landscape scales. At the profile scale, biogeochemical factors (including soil total organic carbon, total nitrogen, and nitrate-nitrogen) were the major direct regulators of the spatial distribution of soil denitrification enzyme activity (DEA). At the cross-section scale, factors included distance from river bank and vegetation density, while landscape-scale factors, including topographic index, elevation, and land use types, indirectly regulated the spatial distribution of DEA. At the profile scale, soil DEA was greatest in the upper soil layers. At the cross-section scale, maximum soil DEA occurred in the mid-part of the riparian zone. At the landscape scale, soil DEA showed an increasing trend towards downstream sites, except for those in urbanized areas.

  10. Regional scale soil salinity assessment using remote sensing based environmental factors and vegetation indicators

    Science.gov (United States)

    Ma, Ligang; Ma, Fenglan; Li, Jiadan; Gu, Qing; Yang, Shengtian; Ding, Jianli

    2017-04-01

    Land degradation, specifically soil salinization has rendered large areas of China west sterile and unproductive while diminishing the productivity of adjacent lands and other areas where salting is less severe. Up to now despite decades of research in soil mapping, few accurate and up-to-date information on the spatial extent and variability of soil salinity are available for large geographic regions. This study explores the po-tentials of assessing soil salinity via linear and random forest modeling of remote sensing based environmental factors and indirect indicators. A case study is presented for the arid oases of Tarim and Junggar Basin, Xinjiang, China using time series land surface temperature (LST), evapotranspiration (ET), TRMM precipitation (TRM), DEM product and vegetation indexes as well as their second order products. In par-ticular, the location of the oasis, the best feature sets, different salinity degrees and modeling approaches were fully examined. All constructed models were evaluated for their fit to the whole data set and their performance in a leave-one-field-out spatial cross-validation. In addition, the Kruskal-Wallis rank test was adopted for the statis-tical comparison of different models. Overall, the random forest model outperformed the linear model for the two basins, all salinity degrees and datasets. As for feature set, LST and ET were consistently identified to be the most important factors for two ba-sins while the contribution of vegetation indexes vary with location. What's more, models performances are promising for the salinity ranges that are most relevant to agricultural productivity.

  11. Biophysical controls on soil respiration in the dominant patch types of an old-growth, mixed-conifer forest

    Science.gov (United States)

    Siyan Ma; Jiquan Chen; John R. Butnor; Malcolm North; Eugénie S. Euskirchen; Brian Oakley

    2005-01-01

    Little is known about biophysical controls on soil respiration in California's Sierra Nevada old-growth, mixed-conifer forests. Using portable and automated soil respiration sampling units, we measured soil respiration rate (SRR) in three dominant patch types: closed canopy (CC), ceanothus-dominated patches (CECO), and open canopy (OC). SRR varied significantly...

  12. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control

    Science.gov (United States)

    Qingchao Li; H. Lee Allen; Arthur G. Wollum

    2004-01-01

    The effects of organic matter removal, soil compaction, and vegetation control on soil microbial biomass carbon, nitrogen, C-to-N ratio, and functional diversity were examined in a 6-year loblolly pine plantation on a Coastal Plain site in eastern North Carolina, USA. This experimental plantation was established as part of the US Forest Service's Long Term Soil...

  13. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, Martha Marie; Orth, René; Cheruy, Frederique; Hagemann, Stefan; Lorenz, Ruth; van den Hurk, Bart; Seneviratne, Sonia Isabelle

    2017-04-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate here the role of soil moisture-temperature feedbacks for this response based on multi-model experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate physical processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America and between 42%-52% in Amazonia, Northern Australia and Southern Africa. Soil moisture trends (multi-decadal soil moisture variability) are more important for this response than short-term (e.g. seasonal, interannual) soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections. Vogel, M.M. et al.,2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, accepted.

  14. Temperature Dependence of Factors Controlling Isoprene Emissions

    Science.gov (United States)

    Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.

    2009-01-01

    We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.

  15. Effects of organic matter removal, soil compaction, and vegetation control on 5-year seedling performance: a regional comparison of long-term soil productivity sites

    Science.gov (United States)

    Robert L. Fleming; Robert F. Powers; Neil W. Foster; J. Marty Kranabetter; D. Andrew Scott; Felix Jr. Ponder; Shannon Berch; William K. Chapman; Richard D. Kabzems; Kim H. Ludovici; David M. Morris; Deborah S. Page-Dumroese; Paul T. Sanborn; Felipe G. Sanchez; Douglas M. Stone; Allan E. Tiarks

    2006-01-01

    We examined fifth-year seedling response to soil disturbance and vegetation control at 42 experimental locations representing 25 replicated studies within the North American Long-Term Soil Productivity (LTSP) program. These studies share a common experimental design while encompassing a wide range of climate, site conditions, and forest types. Whole-tree harvest had...

  16. Exploring plant factors for increasing phosphorus utilization from rock phosphates and native soil phosphates in acidic soils

    International Nuclear Information System (INIS)

    Feng Guanglin; Xiong Liming

    2002-01-01

    Six plant species with contrasting capacity in utilizing rock phosphates were compared with regard to their responses to phosphorus starvation in hydroponic cultures. Radish, buckwheat and oil rapeseed are known to have strong ability to use rock phosphates while ryegrass, wheat and sesbania are less efficient. Whereas other plants acidified their culture solution under P starvation (-P), radish plants make alkaline the solution. When neutralizing the pH of the solutions cultured with plants under either -P or + P conditions, solutions with P starved buckwheat, rapeseed, and radish had a higher ability to solubilize Al and Fe phosphates than did those cultured with sesbania, ryegrass and wheat. Characterization of organic ligands in the solutions identified that citrate and malate were the major organic anions exuded by rapeseed and radish. Besides citrate and malate, buckwheat exuded a large amount of tartrate under P starvation. In contrast, ryegrass, wheat and sesbania secreted only a limited amount of oxalic acid, regardless of P status. Changes in activities of phosphoenolpyruvate carboxylase, acid phosphatase, and nitrate reductase in these plants were also compared under P- sufficient or -deficient conditions. The results indicated that plant ability to use rock phosphates or soil phosphates is closely related to their responses toward P starvation. The diversity of P starvation responses was discussed in the context of co-evolution between plants and their environment. Approaches to use plant factors to enhance the effectiveness of rock phosphates were also discussed. (author)

  17. Soil organic carbon stocks quantification in Mediterranean natural areas, a trade-off between entire soil profiles and soil control sections

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Brevik, Eric. C.; Cerdá, Artemi

    2015-04-01

    Soil organic carbon (SOC) is extremely important in the global carbon (C) cycle; also, SOC is a soil property subject to changes, inasmuch as SOC is highly variable in space and time. The scientific community is researching the fate of the organic carbon in the ecosystems and this is why there is a blooming interest on this topic (Oliveira et al., 2014; Kukal et al., 2015). Soil organic matter play a key role in the Soil System (Fernández-Romero et al., 2014; Parras-Alcántara and Lozano García, 2014; Lozano-García and Parras-Alcántara; Parras-Alcántara et al., 2015).Globally it is known that soil C sequestration is a strategy to mitigate climate change. Over time, some researchers have analyzed entire soil profiles (ESP) by pedogenetic horizons and other researchers have analyzed soil control sections (SCS) (edaphic controls to different thickness), and in each case the benefits of the methodology established was justified. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km2 forested area in southern Spain. The park is in a Mediterranean environment and is a natural area (free of human disturbance). Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C to 0.6353 Tg C respectively (1 Tg = 10E12 g). However, when the top soil (surface horizon and superficial section control) was analyzed, this difference increased to

  18. Dealing With A Controllable Risk Factor Like Diet In The ...

    African Journals Online (AJOL)

    Cardiovascular disease (CVD) is a silent killer in Nigeria and many parts of the world. Certain factors increase the risk of CVD. While there are controllable factors that contribute and predispose to the development of CVD like diet, exercise, tobacco use, high blood pressure and obesity, there are uncontrollable factors like ...

  19. Meloidogyne javanica control by Pochonia chlamydosporia, Gracilibacillus dipsosauri and soil conditioner in tomato

    Directory of Open Access Journals (Sweden)

    Guilherme Silva de Podestá

    2013-06-01

    Full Text Available Organic matter plays a fundamental role in the antagonistic activity of microorganisms against phytonematode populations on the soil. In this study, the compatibility between the fungus Pochonia chlamydosporia (Pc-12 and the rhizobacterium Gracilibacillus dipsosauri (MIC 14 was evaluated in vitro, as well as the effect of the fungus at the concentration of 5,000 chlamydospores per gram of soil, rhizobacterium at 4.65 x 10(9 cells/g of soil, and the soil conditioner Ribumin® at 10 g/pot, either alone or in combination, against Meloidogyne javanica population in tomato plants (3,000 eggs/pot. A suspension of water or Ribumin® alone was applied on the soil as negative control, while a suspension of nematode eggs was applied as positive control. The reduction in the number of galls in roots per plant was 48 and 41% for the treatments Ribumin + MIC 14 + Pc-12 and MIC 14 + Pc-12, respectively. Regarding to the number of eggs per plant, MIC 14 and Pc-12 + Ribumin led to a reduction by 26 and 21%, respectively, compared to the control treatment. Interaction between the nematophagous fungus and the rhizobacterium was positive for the nematode control, even though G. dipsosauri inhibited P. chlamydosporia growth by up to 30% in in vitro tests.

  20. Transfer factors of some selected radionuclides (radioactive Cs, Sr, Mn, Co and Zn) from soil to leaf vegetables

    International Nuclear Information System (INIS)

    Ban-nai, Tadaaki; Muramatsu, Yasuyuki; Yanagisawa, Kei

    1995-01-01

    Transfer factors of radionuclides from soil to leaf vegetables (cabbage, Chinese cabbage, komatsuna, spinach and lettuce) have been studied by radiotracer experiments using Andosol as a representative of Japanese soils. The transfer factors of radioactive Cs, Sr, Mn, Co and Zn for edible parts of vegetables (average of five vegetables) were 0.11, 0.24, 0.61, 0.05 and 0.52, respectively. These values should be used in safety assessment for Japanese agricultural environment. The transfer factors of Mn, Co and Zn for spinach were higher than those for the other vegetables. The transfer factors of Cs for different organs of the leaf vegetables were rather homogeneous. The transfer factors of Sr and Mn were higher for older (outer) leaves than younger (inner) ones. In contrast to Sr and Mn, transfer factors of Zn for younger leaves were higher than those for older ones. The distribution ratios of the elements between soil-solution and soil were in the order Sr>Mn>Cs>Co>Zn, whereas the distribution ratios of the elements between plant and soil-solution were in the order Zn>Cs>Mn>Co>Sr. These results indicate that the selectivity for Sr by plants from the soil-solution was low and that for Zn was very high. (author)

  1. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European Scale

    NARCIS (Netherlands)

    Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C.

    2015-01-01

    The USLE/RUSLE support practice factor (P-factor) is rarely taken into account in soil erosion risk modelling at sub-continental scale, as it is difficult to estimate for large areas. This study attempts to model the P-factor in the European Union. For this, it considers the latest policy

  2. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  3. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    Lara, Evelise G.; Oliveira, Arno Heeren de

    2015-01-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226 Ra, 232 Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226 Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232 Th and U content. The soil permeability is 5.0 x 10 -12 , which is considered average. The 226 Ra (22.2 ± 0.3 Bq.m -3 ); U content (73.4 ± 3.6 Bq.kg -1 ) and 232 Th content (55.3 ± 4.0 Bq.kg -1 ) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg -1 ) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m -3 ) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m -3 ). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  4. Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem

    Science.gov (United States)

    Faist, Akasha M; Herrick, Jeffrey E.; Belnap, Jayne; Van Zee, Justin W; Barger, Nichole N

    2017-01-01

    Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems, and these processes may then be dramatically altered with soil surface disturbance. In this study, we examined biocrust hydrologic responses to disturbance at different developmental stages on sandy soils on the Colorado Plateau. Our results showed that all disturbance (trampling, scalping and trampling+scalping) of the early successional light cyanobacterial biocrusts generally reduced runoff. In contrast, trampling well-developed dark-cyano-lichen biocrusts increased runoff and sediment loss relative to intact controls. Scalping did not increase runoff, implying that soil aggregate structure was important to the infiltration process. Well-developed, intact dark biocrusts generally had lower runoff, low sediment loss, and highest aggregate stability whereas the less-developed light biocrusts were highest in runoff and sediment loss when compared to the controls. These results suggest the importance of maintaining the well-developed dark biocrusts, as they are beneficial for lowering runoff and reducing soil loss and redistribution on the landscape. These data also suggest that upslope patches of light biocrust may either support water transport to downslope vegetation patches or alternatively this runoff may place dark biocrust patches at risk of disruption and loss, given that light patches increase runoff and thus soil erosion potential.

  5. Risk factors for caries - control and prevention

    Directory of Open Access Journals (Sweden)

    Melida Hasanagić

    2008-08-01

    Full Text Available Objectives. To investigate a prevalence of caries, filled permanentand extracted permanent teeth, as well as caries risk factors inschool children aged 7, 9 and 11.Methods. The survey included 800 children (296 children aged7; 254 children aged 9 and 250 children aged 11 from the MostarMunicipality, 400 of them living in both rural and urban areas.A dental mirror and standard light of dental chair were used forexamination. The DMF index (Dental Caries, Missing Teeth andFilled Teeth was determined, as well as failure in keeping teethhygiene, sugar intake with food, and incidence of oral cavity infection.Results. The dental state of permanent teeth in children aged 7and 9 has shown significant difference between the children fromrural and urban areas (p < 0,001. Out of 2,698 and 2,790 permanentteeth in children aged 11 from rural and urban areas, 1,086(40,25 % and 884 (31.68 % had caries, respectively (p < 0.01.The difference between these groups of children has been foundin relation to the index of oral hygiene too (p < 0.05.Conclusion. An identification of risk groups for getting caries wasvery important and could help health and social structures to maintaintheir programs in order to improve oral health.

  6. Chemical factors that control lignin polymerization.

    Science.gov (United States)

    Sangha, Amandeep K; Davison, Brian H; Standaert, Robert F; Davis, Mark F; Smith, Jeremy C; Parks, Jerry M

    2014-01-09

    Lignin is a complex, branched polymer that reinforces plant tissue. Understanding the factors that govern lignin structure is of central importance to the development of technologies for converting lignocellulosic biomass into fuels because lignin imparts resistance to chemical, enzymatic, and mechanical deconstruction. Lignin is formed by enzymatic oxidation of phenolic monomers (monolignols) of three main types, guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) subunits. It is known that increasing the relative abundance of H subunits results in lower molecular weight lignin polymers and hence more easily deconstructed biomass, but it is not known why. Here, we report an analysis of frontier molecular orbitals in mono-, di-, and trilignols, calculated using density functional theory, which points to a requirement of strong p-electron density on the reacting phenolic oxygen atom of the neutral precursor for enzymatic oxidation to occur. This model is consistent with a proton-coupled electron transfer (PCET) mechanism and for the first time explains why H subunits in certain linkages (β-β or β-5) react poorly and tend to "cap" the polymer. In general, β-5 linkages with either a G or H terminus are predicted to inhibit elongation. More broadly, the model correctly accounts for the reactivity of the phenolic groups in a diverse set of dilignols comprising H and G subunits. Thus, we provide a coherent framework for understanding the propensity toward growth or termination of different terminal subunits in lignin.

  7. Redox-controlled release dynamics of thallium in periodically flooded arable soil.

    Science.gov (United States)

    Antić-Mladenović, Svetlana; Frohne, Tina; Kresović, Mirjana; Stärk, Hans-Joachim; Savić, Dubravka; Ličina, Vlado; Rinklebe, Jörg

    2017-07-01

    To our knowledge, this is the first work to mechanistically study the impact of the redox potential (E H ) and principal factors, such as pH, iron (Fe), manganese (Mn), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), chlorides (Cl - ) and sulfates (SO 4 2- ), on the release dynamics of thallium (Tl) in periodically flooded soil. We simulated flooding using an automated biogeochemical microcosm system that allows for systematical control of pre-defined redox windows. The E H value was increased mechanistically at intervals of approximately 100 mV from reducing (-211 mV) to oxidizing (475 mV) conditions. Soluble Tl levels (0.02-0.28 μg L -1 ) increased significantly with increases in E H (r = 0.80, p Thallium mobilization was found to be related to several simultaneous processes involving the gradual oxidation of Tl-bearing sulfides, reductive dissolution of Fe-Mn oxides and desorption from mineral sorbents. Manganese oxides did not appear to have a considerable effect on Tl retention under oxidizing conditions. Before conducting the microcosm experiment, Tl geochemical fractionation was assessed using the modified BCR sequential extraction procedure. The BCR revealed a majority of Tl in the residual fraction (77.7%), followed by reducible (13.3%) and oxidizable fractions (5.9%). By generating high levels of Tl toxicity at low doses, Tl released under oxidizing conditions may pose an environmental threat. In the future, similar studies should be conducted on various soils along with a determination of the Tl species and monitoring of the Tl content in plants to achieve more detailed insight into soluble Tl behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Non-target effects of the microbial control agents Pseudomonas fluorescens DR54 and Clonostachys rosea IK726 in soils cropped with barley followed by sugar beet: a greenhouse assessment

    DEFF Research Database (Denmark)

    Johansen, A.; Knudsen, I. M. B.; Binnerup, S. J.

    2005-01-01

    Non-target effects of a bacterial (Pseudomonas fluorescens DR54) and a fungal (Clonostachys rosea IK726) microbial control agent (MCA), on the indigenous microbiota in bulk soil and rhizosphere of barley, and subsequent a sugar beet crop, were studied in a greenhouse experiment. MCAs were...... introduced by seed and soil inoculation. Bulk and rhizosphere soils were sampled regularly during the growth of barley and sugar beet. The soils were assayed for the fate of MCAs and various features of the indigenous soil microbiota. At the end of the experiment (193 d), DR54 and IK726 had declined...... by a factor of 106 and 20, respectively, and DR54 showed a short-lasting growth increase in the sugar beet rhizosphere. In general, the non-target effects were small and transient. IK726 seemed to have general stimulating effects on soil enzyme activity and the soil microbiota, and resulted in a significant...

  9. Soil transmitted Helminthiasis and associated risk factors among elementary school children in ambo town, western Ethiopia

    Directory of Open Access Journals (Sweden)

    Fikreslasie Samuel

    2017-10-01

    Full Text Available Abstract Background Soil-transmitted helminths (STHs are widespread in underdeveloped countries. In Ethiopia, the prevalence and distribution of helminth infection varies by different exposing risk factors. We therefore investigated the prevalence of and risk factors of STHs infection in school children living in Ambo town, west Shoa Ethiopia. Methods In 2014/15, among 375 school children planed to be included in this study, only 321 school children were recruited in the study. Data onto school children from different schools were collected, including stool samples for qualitative STHs analysis. Questionnaire data on various demographic, housing and lifestyle variables were also available. Results Prevalence of any STHs infection was 12.6%. The respective prevalence of major soil-transmitted helminths is Ascaris (7.8%, Hookworm (2.8% and Trichuris (2.2%. This study result shows STHs prevalence varies regards to age, sex, latrine use, family size and nail trimming. Conclusion The results of the present study indicated that the percentage of positive finding for STHs in Ambo area is low. Besides, Large Family size, not nail trimming and unavailability of improved latrine were identified as predisposing factor for STHs infections. All school children enrolled and not enrolled in this study should be treated twice a year until the prevalence falls below the level of public health importance.

  10. Soil transmitted Helminthiasis and associated risk factors among elementary school children in ambo town, western Ethiopia.

    Science.gov (United States)

    Samuel, Fikreslasie; Demsew, Asalif; Alem, Yonas; Hailesilassie, Yonas

    2017-10-10

    Soil-transmitted helminths (STHs) are widespread in underdeveloped countries. In Ethiopia, the prevalence and distribution of helminth infection varies by different exposing risk factors. We therefore investigated the prevalence of and risk factors of STHs infection in school children living in Ambo town, west Shoa Ethiopia. In 2014/15, among 375 school children planed to be included in this study, only 321 school children were recruited in the study. Data onto school children from different schools were collected, including stool samples for qualitative STHs analysis. Questionnaire data on various demographic, housing and lifestyle variables were also available. Prevalence of any STHs infection was 12.6%. The respective prevalence of major soil-transmitted helminths is Ascaris (7.8%), Hookworm (2.8%) and Trichuris (2.2%). This study result shows STHs prevalence varies regards to age, sex, latrine use, family size and nail trimming. The results of the present study indicated that the percentage of positive finding for STHs in Ambo area is low. Besides, Large Family size, not nail trimming and unavailability of improved latrine were identified as predisposing factor for STHs infections. All school children enrolled and not enrolled in this study should be treated twice a year until the prevalence falls below the level of public health importance.

  11. Modeling redistribution of α-HCH in Chinese soil induced by environment factors

    International Nuclear Information System (INIS)

    Tian, Chongguo; Liu Liyan; Ma Jianmin; Tang Jianhui; Li Yifan

    2011-01-01

    This study explores long-term environmental fate of α-HCH in China from 1952 to 2007 using ChnGPERM (Chinese Gridded Pesticide Emission and Residue Model). The model captures well the temporal and spatial variations of α-HCH concentration in Chinese soils by comparing with a number of measured data across China in different periods. The results demonstrate α-HCH grasshopping effect in Eastern China and reveal several important features of the chemical in Northeast and Southeast China. It is found that Northeast China is a prominent sink region of α-HCH emitted from Chinese sources and α-HCH contamination in Southwest China is largely attributed to foreign sources. Southeast China is shown to be a major source contributing to α-HCH contamination in Northeast China, incurred by several environmental factors including temperature, soil organic carbon content, wind field and precipitation. - Highlights: → Grasshopping effect is found in Eastern China. → Northeast China is a prominent sink region of α-HCH emitted from Chinese sources. → Southeast China is a major source region to α-HCH contamination in Northeast China. → The source-sink relationship is incurred by several environmental factors. - This study provides the first comprehensive overview to redistribution of a toxic chemical incurred by long-term variation of environmental factors across China.

  12. Transfer factors of 137Cs and 90Sr from soil to some trees in Syria

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Al-Asfary, A. F.; Mukalati, H.; Hamwi, A.; Kanakri, S.

    2004-12-01

    The transfer factor of Cs 137 and 90 Sr from contaminated soil (Aridisol = Yermosol according to FAO - UNESCO) to some common trees (olive, apricot, grape, pine, apple and lemon) were investigated under field condition for 3 to 6 years. There were large variation in transfer factors values among tree species, and between different parts of tree. The values in fruits for 137 Cs were: 0.011 (highest) in Apricot, 0.0071 in olive, and 0.0025 in vine, and about 0.0012 in olive oil (lowest). The mean transfer factor of 137 Cs in the one year old leaves and stems, ranged between 0.011 and 0.0093 in lemon (highest) and 0.0016 and 0.0015 in pine (lowest). The transfer factor values of 90 Sr were much higher than that of 137 Cs, they were in fruits: 0.13 in apricot, 0.093 in olive, and 0.075 in vine and 0.0053 in olive oil. The transfer factors values of 90 Sr ranged in one year old leaves between 2.89 (apple) and 0.1 (pine), while they ranged in one year old stems between 1.91 (apricot) and 0.16 (pine). The transfer factor of both 137 Cs and 90 Sr decrease in most trees parts with time especially in the one year old leaves, due to aging effects. The transfer factor values of 137 Cs and 90 Sr were lower than that reported for other areas. This might be due to the physical and chemical properties of the soil, where the soil used had a loamy clay structure with high ph (7.8) and high CEC (25.9 meq/100g), exchangeable potassium (1.6 meq/100g) and calcium (14.9 meq/100g), further more, climatic condition in the area, like high light intensity, high temperature and low air humidity, can lead to decrease the uptake of both 137 Cs and 90 Sr. (Authors)

  13. Affecting factors analysis of soil moisture for arid mining area based on TM images

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Zheng-fu; Lei, Shao-gang; Chang, Lu-qun; Zhang, Ri-chen [Jiangsu Key Laboratory of Resources and Environmental Informatics Engineering, Xuzhou (China)

    2009-04-15

    The model for calculating soil moisture (SM) in terms of thermal inertia using thematic mapper (TM) image and MODIS image was developed. There was a remarkable difference between two sets of average SM calculated by limited field sampling points taken from two different sampling sites, mined site and unmined site, and there were not a distinct difference between two sets of average SM calculated by the model using TM image. Domain factors affecting the SM were analyzed. The SM is in inverse proportion to the elevation and in direct proportion to the vegetation index. Coal mining resulted in a change of soil infiltration capacity. The vertical filtration index increased at the mined site, thereafter, the condition to supply ground water changed,the soil surface transpiration increased and SM changed. A drop of ground water level caused by mining can affect plant growth. When the plant root is extends downwards to reach the zone of capillary zone, ground water will be available for plant growth. 18 refs., 2 figs., 5 tabs.

  14. Factors determining outcome in children with chronic constipation and faecal soiling.

    Science.gov (United States)

    Loening-Baucke, V

    1989-07-01

    To evaluate factors which might contribute to treatment failure in children with chronic constipation and soiling, we evaluated the history, physical findings, defecation dynamics, and anorectal function in 97 patients. We treated them with milk of magnesia, high fibre diet, and bowel training techniques and evaluated outcome at one year when 43% had recovered. Recovery rates were similar for boys and girls. Fifty seven per cent of the patients had not recovered. This group at the outset had more frequent soiling episodes, more severe constipation, were less likely to defecate water filled rectal balloons and to relax the external sphincter during defecation. In general girls had more severe constipation, abdominal pain, and a previous urinary tract infection than boys. Girls were more compliant during treatment and had less frequent soiling episodes at one year. Stepwise logistic regression showed that severe constipation, abnormal contraction of the external sphincter and pelvic floor during attempted defecation, and inability to defecate the 100 ml balloon in less than or equal to 1 min was significantly related to treatment failure. Defecation of smaller balloons, volumes for threshold of rectal sensation, critical volume and rectal contraction, and compliance with treatment could not predict treatment failure.

  15. Underlying Factors for Practicality of the Production Control Systems

    DEFF Research Database (Denmark)

    Arica, Emrah; Strandhagen, Jan Ola; Hvolby, Hans-Henrik

    2012-01-01

    and communication technology, coordination and feedback, human factors and decision making, and measurement are the identified factors to be taken into account. Industrial interviews with three case companies, that are participating to the research program called The Norwegian Manufacturing Future (SFI NORMAN......This paper gives indications to important factors that must be considered for effectiveness of the production control systems under uncertainty. Five key factors have been identified by the literature study. Production schedule generation and execution approach under uncertainty, information...

  16. Erosion control technology: a user's guide to the use of the Universal Soil Loss Equation at waste burial facilities

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Lane, L.J.

    1986-05-01

    The Universal Soil Loss Equation (USLE) enables the operators of shallow land burial sites to predict the average rate of soil erosion for each feasible alternative combination of plant cover and land management practices in association with a specified soil type, rainfall pattern, and topography. The equation groups the numerous parameters that influence erosion rate under six major factors, whose site-specific values can be expressed numerically. Over a half century of erosion research in the agricultural community has supplied information from which approximate USLE factor values can be obtained for shallow land burial sites throughout the United States. Tables and charts presented in this report make this information readily available for field use. Extensions and limitations of the USLE to shallow land burial systems in the West are discussed, followed by a detailed description of the erosion plot research performed by the nuclear waste management community at Los Alamos, New Mexico. Example applications of the USLE at shallow land burial sites are described, and recommendations for applications of these erosion control technologies are discussed

  17. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors.

    Science.gov (United States)

    Pickles, Brian J; Twieg, Brendan D; O'Neill, Gregory A; Mohn, William W; Simard, Suzanne W

    2015-08-01

    Separating edaphic impacts on tree distributions from those of climate and geography is notoriously difficult. Aboveground and belowground factors play important roles, and determining their relative contribution to tree success will greatly assist in refining predictive models and forestry strategies in a changing climate. In a common glasshouse, seedlings of interior Douglas-fir (Pseudotsuga menziesii var. glauca) from multiple populations were grown in multiple forest soils. Fungicide was applied to half of the seedlings to separate soil fungal and nonfungal impacts on seedling performance. Soils of varying geographic and climatic distance from seed origin were compared, using a transfer function approach. Seedling height and biomass were optimized following seed transfer into drier soils, whereas survival was optimized when elevation transfer was minimised. Fungicide application reduced ectomycorrhizal root colonization by c. 50%, with treated seedlings exhibiting greater survival but reduced biomass. Local adaptation of Douglas-fir populations to soils was mediated by soil fungi to some extent in 56% of soil origin by response variable combinations. Mediation by edaphic factors in general occurred in 81% of combinations. Soil biota, hitherto unaccounted for in climate models, interacts with biogeography to influence plant ranges in a changing climate. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Analytic of elements for the determination of soil->plant transfer factors

    International Nuclear Information System (INIS)

    Liese, T.

    1985-02-01

    This article describes a part of the conventional analytical work, which was done to determine soil to plant transfer factors. The analytical methods, the experiments to find out the best way of sample digestion and the resulting analytical procedures are described. Analytical methods are graphite furnace atomic absorption spectrometry (GFAAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). In case of ICP-AES the necessity of right background correction and correction of the spectral interferences is shown. The reliability of the analytical procedure is demonstrated by measuring different kinds of standard reference materials and by comparison of AAS and AES. (orig./HP) [de

  19. Control of soil moisture with radio frequency in a photovoltaic-powered drip irrigation system

    OpenAIRE

    DURSUN, Mahir; ÖZDEN, Semih

    2015-01-01

    Solar-powered irrigation systems are becoming increasingly widespread. However, the initial setup costs of these systems are very high. To reduce these costs, both the energy usage and the prevention of losses from irrigation systems are very important. In this study, a drip irrigation control system of 1000 dwarf cherry trees was controlled using soil moisture sensors in order to prevent excessive water consumption and energy losses in a solar-powered irrigation system. The control sys...

  20. Factors influencing U(VI adsorption onto soil from a candidate very low level radioactive waste disposal site in China

    Directory of Open Access Journals (Sweden)

    Zuo Rui

    2016-01-01

    Full Text Available The properties of soil at disposal sites are very important for geological disposal of very low level radioactive waste in terms of U(VI. In this study, soil from a candidate very low level radioactive waste disposal site in China was evaluated for its capacity on uranium sorption. Specifically, the equilibrium time, initial concentration, soil particle, pH, temperature, and carbonate were evaluated. The results indicated that after 15-20 days of sorption, the Kd value fluctuated and stabilized at 355-360 mL/g. The adsorptive capacity of uranium was increased as the initial uranium concentration increased, while it decreased as the soil particle size increased. The pH value played an important role in the U(VI sorption onto soil, especially under alkaline conditions, and had a great effect on the sorption capacity of soil for uranium. Moreover, the presence of carbonate decreased the sorption of U(VI onto soil because of the role of the strong complexation of carbonate with U(VI in the groundwater. Overall, this study assessed the behavior of U(VI sorption onto natural soil, which would be an important factor in the geological barrier of the repository, has contribution on mastering the characteristic of the adsorption of uranium in the particular soil media for the process of very low level radioactive waste disposal.

  1. Soil transmitted helminths and associated factors among schoolchildren in government and private primary school in Jimma Town, Southwest Ethiopia.

    Science.gov (United States)

    Debalke, Serkadis; Worku, Amare; Jahur, Nejat; Mekonnen, Zeleke

    2013-11-01

    Soil transmitted helminth infections are among the most common human infections. They are distributed throughout the world with high prevalence rates in tropical and sub-tropical countries mainly because of lack of adequate sanitary facilities, inappropriate waste disposal systems, lack of safe water supply, and low socio-economic status. A comparative cross sectional study was conducted from December 2011 to June 2012 to determine and assess the prevalence of soil transmitted helminths and their associated factors among government and private primary school children. Stool samples were collected from 369 randomly selected children and examined microscopically for eggs of soil transmitted helminth following McMaster techniques. Soil samples were collected from different parts of the school compound and microscopic examination was performed for eggs of the helminths using sodium nitrate flotation technique. The overall prevalence rate of soil transmitted helminth infections in private and government schools was 20.9% and 53.5% respectively. T. trichiura was the most common soil transmitted helminth in both schools while hookworm infections were identified in government school students only. Type of school and sex were significantly associated with soil transmitted helminth. Soil contamination rate of the school compounds was 11.25% with predominant parasites of A. lumbricoides. Higher prevalence of soil transmitted helminth infection was found among government school students. Thus, more focus, on personal hygiene and sanitary facilities, should be given to children going to government schools.

  2. Principal factors of soil spatial heterogeneity and ecosystem services at the Central Chernozemic Region of Russia

    Science.gov (United States)

    Vasenev, Ivan; Valentini, Riccardo

    2013-04-01

    The essential spatial heterogeneity is mutual feature for most natural and man-changed soils at the Central Chernozemic Region of Russia which is not only one of the biggest «food baskets» in RF but very important regulator of ecosystem principal services at the European territory of Russia. The original spatial heterogeneity of dominated here forest-steppe and steppe Chernozems and the other soils has been further complicated by a specific land-use history and different-direction soil successions due to environmental changes and more than 1000-year history of human impacts. The carried out long-term researches of representative natural, rural and urban landscapes in Kursk, Orel, Tambov and Voronezh oblasts give us the regional multi-factorial matrix of elementary soil cover patterns (ESCP) with different land-use practices and history, soil-geomorphologic features, environmental and microclimate conditions. The validation and ranging of the limiting factors of ESCP regulation and development, ecosystem principal services, land functional qualities and agroecological state have been done for dominating and most dynamical components of ESCP regional-typological forms - with application of regional and local GIS, soil spatial patterns mapping, traditional regression kriging, correlation tree models. The outcomes of statistical modeling show the essential amplification of erosion, dehumification and CO2 emission, acidification and alkalization, disaggregation and overcompaction processes due to violation of agroecologically sound land-use systems and traditional balances of organic matter, nutrients, Ca and Na in agrolandscapes. Due to long-term intensive and out-of-balance land-use practices the famous Russian Chernozems begin to lose not only their unique natural features of (around 1 m of humus horizon, 4-6% of Corg and favorable agrophysical features), but traditional soil cover patterns, ecosystem services and agroecological functions. Key-site monitoring

  3. Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions

    International Nuclear Information System (INIS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya; Nagai, Haruyasu

    2012-01-01

    The Fukushima Dai-ichi nuclear power plant accident in Japan, triggered by a big earthquake and the resulting tsunami on 11 March 2011, caused a substantial release of radiocesium ( 137 Cs and 134 Cs) and a subsequent contamination of soils in a range of terrestrial ecosystems. Identifying factors and processes affecting radiocesium retention in these soils is essential to predict how the deposited radiocesium will migrate through the soil profile and to other biological components. We investigated vertical distributions of radiocesium and physicochemical properties in soils (to 20 cm depth) at 15 locations under different land-use types (croplands, grasslands, and forests) within a 2 km × 2 km mesh area in Fukushima city. The total 137 Cs inventory deposited onto and into soil was similar (58.4 ± 9.6 kBq m −2 ) between the three different land-use types. However, aboveground litter layer at the forest sites and herbaceous vegetation at the non-forested sites contributed differently to the total 137 Cs inventory. At the forest sites, 50–91% of the total inventory was observed in the litter layer. The aboveground vegetation contribution was in contrast smaller ( 137 Cs in mineral soil layers; 137 Cs penetrated deeper in the forest soil profiles than in the non-forested soil profiles. We quantified 137 Cs retention at surface soil layers, and showed that higher 137 Cs retention can be explained in part by larger amounts of silt- and clay-sized particles in the layers. More importantly, the 137 Cs retention highly and negatively correlated with soil organic carbon content divided by clay content across all land-use types. The results suggest that organic matter inhibits strong adsorption of 137 Cs on clay minerals in surface soil layers, and as a result affects the vertical distribution and thus the mobility of 137 Cs in soil, particularly in the forest ecosystems. - Highlights: ► Vertical distribution of radiocesium was investigated for 15 soils. ► Forest

  4. Effects of different agricultural management on a stagnic Luvisol in Lower Saxony, Germany - Factors for sustainable soil protection

    Science.gov (United States)

    Lorenz, Marco; Brunotte, Joachim; Ortmeier, Berthold

    2017-04-01

    Regarding increasing pressures by global societal and climate change, for example, the assessment of the impact of land use and land management practices on land productivity, land degradation and the related decrease in sustainable food production and the provision of ecosystem services gains increasing interest. Regarding international research on land use and soil threats, main problems in agricultural land use on global scale are erosion by water and wind, soil organic matter loss, salinization, depletion of nutrients, chemical and physical deterioration, including e.g. soil compaction. When coming to soil sciences, basically soil functions are affected negatively by intensive food production and field traffic. Management based negative changes in soil functions and a suboptimal soil structure have multiple negative effects on physical, biological and chemical soil functions, like a poor water balance, air and water permeability, disturbed soil fauna, impeded root penetration etc. and in consequence on the achievable yields. The presentation deals with the multiple effects of different agricultural machinery and technologies and different agricultural soil tillage (e.g. no-till, conservation tillage, ploughing), on various soil properties of a stagnic Luvisol in Lower Saxony, Germany. These are e.g. bulk density, air capacity, saturated water permeability, changes in pore size distribution and water retention curve as well as crop yields. Furthermore results of a long term study of bulk density and total pore size on more then 20 farms in Lower Saxony since the year 1952 will be presented. Finally, key factors and first recommendations for sustainable agricultural soil protection will be derived from the results.

  5. Factors causing spatial heterogeneity in soil properties, plant cover, and soil fauna in a non-reclaimed post-mining site

    Czech Academy of Sciences Publication Activity Database

    Frouz, J.; Kalčík, Jiří; Velichová, V.

    2011-01-01

    Roč. 37, č. 11 (2011), s. 1910-1913 ISSN 0925-8574 R&D Projects: GA MŠk 2B08023 Institutional research plan: CEZ:AV0Z60660521 Keywords : soil chemistry * vegetation * invertebrates Subject RIV: EH - Ecology, Behaviour Impact factor: 3.106, year: 2011

  6. The Effects of Fungicide, Soil Fumigant, Bio-Organic Fertilizer and Their Combined Application on Chrysanthemum Fusarium Wilt Controlling, Soil Enzyme Activities and Microbial Properties

    Directory of Open Access Journals (Sweden)

    Shuang Zhao

    2016-04-01

    Full Text Available Sustained monoculture often leads to a decline in soil quality, in particular to the build-up of pathogen populations, a problem that is conventionally addressed by the use of either fungicide and/or soil fumigation. This practice is no longer considered to be either environmentally sustainable or safe. While the application of organic fertilizer is seen as a means of combating declining soil fertility, it has also been suggested as providing some control over certain soil-borne plant pathogens. Here, a greenhouse comparison was made of the Fusarium wilt control efficacy of various treatments given to a soil in which chrysanthemum had been produced continuously for many years. The treatments comprised the fungicide carbendazim (MBC, the soil fumigant dazomet (DAZ, the incorporation of a Paenibacillus polymyxa SQR21 (P. polymyxa SQR21, fungal antagonist enhanced bio-organic fertilizer (BOF, and applications of BOF combined with either MBC or DAZ. Data suggest that all the treatments evaluated show good control over Fusarium wilt. The MBC and DAZ treatments were effective in suppressing the disease, but led to significant decrease in urease activity and no enhancement of catalase activity in the rhizosphere soils. BOF including treatments showed significant enhancement in soil enzyme activities and microbial communities compared to the MBC and DAZ, evidenced by differences in bacterial/fungi (B/F ratios, Shannon–Wiener indexes and urease, catalase and sucrase activities in the rhizosphere soil of chrysanthemum. Of all the treatments evaluated, DAZ/BOF application not only greatly suppressed Fusarium wilt and enhanced soil enzyme activities and microbial communities but also promoted the quality of chrysanthemum obviously. Our findings suggest that combined BOF with DAZ could more effectively control Fusarium wilt disease of chrysanthemum.

  7. The contribution of mulches to control high soil erosion rates in vineyards in Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; Jordán, Antonio; Zavala, Lorena; José Marqués, María; Novara, Agata

    2014-05-01

    Soil erosion take place in degraded ecosystem where the lack of vegetation, drought, erodible parent material and deforestation take place (Borelli et al., 2013; Haregeweyn et al., 2013; Zhao et al., 2013). Agriculture management developed new landscapes (Ore and Bruins, 2012) and use to trigger non-sustainable soil erosion rates (Zema et al., 2012). High erosion rates were measured in agriculture land (Cerdà et al., 2009), but it is also possible to develop managements that will control the soil and water losses, such as organic amendments (Marqués et al., 2005), plant cover (Marqués et al., 2007) and geotextiles (Giménez Morera et al., 2010). The most successful management to restore the structural stability and the biological activity of the agriculture soil has been the organic mulches (García Orenes et al; 2009; 2010; 2012). The straw mulch is also very successful on bare fire affected soil (Robichaud et al., 2013a; 2013b), which also contributes to a more stable soil moisture content (García-Moreno et al., 2013). The objective of this research is to determine the impact of two mulches: wheat straw and chipped branches, on the soil erosion rates in a rainfed vineyard in Eastern Spain. The research site is located in the Les Alcusses Valley within the Moixent municipality. The Mean annual temperature is 13 ºC, and the mean annual rainfall 455 mm. Soil are sandy loam, and are developed at the foot-slope of a Cretaceous limestone range, the Serra Grossa range. The soils use to be ploughed and the features of soil erosion are found after each thunderstorm. Rills are removed by ploughing. Thirty rainfall simulation experiments were carried out in summer 2011 during the summer drought period. The simulated rainfall lasted during 1 hour at a 45 mmh-1 intensity on 1 m2 plots (Cerdà and Doerr, 2010; Cerdà and Jurgensen 2011). Ten experiments were carried out on the control plots (ploughed), 10 on straw mulch covered plots, and 10 on chipped branches covered

  8. What is Soil?

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil? 2 The Skin of the Earth 3 Soil Ingredients 4 Soil Recipes 5 CLORPT for Short >> What Is Soil? Soils Make Life Plants grow in and from

  9. Risk factors associated with lipomyelomeningocele: a case-control study.

    Science.gov (United States)

    Esmaeili, Arash; Hanaei, Sara; Fadakar, Kaveh; Dadkhah, Sahar; Arjipour, Mahdi; Habibi, Zohreh; Nejat, Farideh; El Khashab, Mostafa

    2013-01-01

    In general, it seems that both genetic and environmental factors play important roles in the induction of neural tube defects. Lipomyelomeningocele (LipoMMC) is a rather common type of closed neural tube defect, but only limited studies have investigated the potential risk factors of this anomaly. Therefore, the purpose of this case-control study was to investigate the risk factors involved in LipoMMC formation. Various risk factors were evaluated in 35 children between 1 month and 10 years of age with LipoMMC in a hospital-based case-control study. The 2 control arms consisted of 35 children with myelomeningocele (MMC group) and 35 children with congenital anomalies other than central nervous system problems (control group). All groups were matched for age and visited the same hospital. A structured questionnaire was used for the collection of all data, including the mothers' weight and height during pregnancy, education, reproductive history, previous abortions, and socioeconomic status, as well as the parents' consanguinity and family history of the same anomalies. Univariate analysis of the children with LipoMMC compared to the control group showed that the use of periconceptional folic acid supplementation was significantly lower in the MMC and LipoMMC groups compared to the control group. In addition, comparison of the MMC and control groups revealed statistically significant differences regarding the use of folic acid and maternal obesity. In multivariate analysis, use of folic acid in the periconceptional period and during the first trimester was an independent risk factor for LipoMMC and MMC. Furthermore, maternal obesity was a significantly positive risk factor for MMC. The probable risk factors for LipoMMC were investigated in this case-control study. Consumption of folic acid in the periconceptional period and during the first trimester is an independent protective factor against LipoMMC. It seems that larger studies are needed to examine other possible

  10. Extreme soil erosion rates in citrus slope plantations and control strategies. A literature review

    Science.gov (United States)

    Cerdà, Artemi; Ángel González Peñaloza, Félix; Pereira, Paulo; Reyes Ruiz Gallardo, José; García Orenes, Fuensanta; Burguet, María

    2013-04-01

    Soil Erosion is a natural process that shapes the Earth. Due to the impact of agriculture, soil erosion rates increase, landforms show gullies and rills, and soils are depleted. In the Mediterranean, wheat, olive and vineyards were the main agriculture products, but new plantations are being found in sloping terrain due to the drip-irrigation. This new strategy results in the removal of the traditional terraces in order to make suitable for mechanization the agriculture plantation. Citrus is a clear example of the impact of the new chemical agriculture with a high investment in herbicides, pesticides, mechanisation, land levelling and drip computer controlled irrigation systems. The new plantation of citrus orchards is found in the Mediterranean, but also in California, Florida, China and Brazil. Chile, Argentina, and South Africa are other producers that are moving to an industrial production of citrus. This paper shows how the citrus plantations are found as one of the most aggressive plantation due to the increase in soil erosion, and how we can apply successful control strategies. The research into the high erosion rates of citrus orchard built on the slopes are mainly found in China (Wu et al., 1997; Xu et al., 2010; Wang et al., 2011; Wu et al., 2011; Liu et al., 2011; Lü et al., 2011; Xu et al., 2012) and in the Mediterranean (Cerdà and Jurgensen, 2008; 2009; Cerdà et al., 2009a; 2009b; Cerdà et al., 2011; 2012) Most of the research done devoted to the measurements of the soil losses but also some research is done related to the soil properties (Lu et al., 1997; Lü et al., 2012; Xu et al., 2012) and the impact of cover crops to reduce the soil losses (Lavigne et al., 2012; Le Bellec et al., 2012) and the use of residues such as dried citrus peel in order to reduce the soil losses. There are 116 million tonnes of citrus produced yearly, and this affects a large surface of the best land. The citrus orchards are moving from flood irrigated to drip

  11. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  12. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  13. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model

    Science.gov (United States)

    Shellito, Peter J.; Small, Eric E.; Livneh, Ben

    2018-03-01

    Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.

  14. An analysis of domestic experimental results for soil-to-crops transfer factors of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Jun, In; Choi, Young Ho; Keum, Dong Kwon; Kang, Hee Seok; Lee, Han Soo; Lee, Chang Woo [KAERI, Daejeon (Korea, Republic of)

    2006-12-15

    For more realistic assessment of Korean food chain radiation doses due to the operation of nuclear facilities, it is required to use domestically produced data for radionuclide transfer parameters in crop plants. This paper analyzed results of last about 10 year's studies on radionuclide transfer parameters in major crop plants by the Korean Atomic Energy Research Institute, comparing with the published international data, and consequently suggested the proper parameters to use. The trends of transfer parameter shows normal distributions if we have a lot of experimental data, but some radionuclides showed enormous variations with the environment of experimental, crops and soils. These transfer factors can be used to assess realistic radiation doses or to predict the doses in crops for normal operation or accidental release. Some kinds of parameter can be produced as conservatives or fragmentary results because soil-to-plant transfer factors were measured through greenhouse experiments which sometimes showed improper field situations. But these parameters mentioned in this paper can be representative of the status of Korean food chain than that of foreign country.

  15. An analysis of domestic experimental results for soil-to-crops transfer factors of radionuclides

    International Nuclear Information System (INIS)

    Jun, In; Choi, Young Ho; Keum, Dong Kwon; Kang, Hee Seok; Lee, Han Soo; Lee, Chang Woo

    2006-01-01

    For more realistic assessment of Korean food chain radiation doses due to the operation of nuclear facilities, it is required to use domestically produced data for radionuclide transfer parameters in crop plants. This paper analyzed results of last about 10 year's studies on radionuclide transfer parameters in major crop plants by the Korean Atomic Energy Research Institute, comparing with the published international data, and consequently suggested the proper parameters to use. The trends of transfer parameter shows normal distributions if we have a lot of experimental data, but some radionuclides showed enormous variations with the environment of experimental, crops and soils. These transfer factors can be used to assess realistic radiation doses or to predict the doses in crops for normal operation or accidental release. Some kinds of parameter can be produced as conservatives or fragmentary results because soil-to-plant transfer factors were measured through greenhouse experiments which sometimes showed improper field situations. But these parameters mentioned in this paper can be representative of the status of Korean food chain than that of foreign country

  16. Changing redox potential by controlling soil moisture and addition of inorganic oxidants to dissipate pentachlorophenol in different soils

    International Nuclear Information System (INIS)

    Lin Jiajiang; He Yan; Xu Jianming

    2012-01-01

    The potential for dissipation of pentachlorophenol (PCP) was investigated in soils from four different sites in China. These were an umbraqualf (Soil 1), a Plinthudult (Soil 2), a Haplustalf (Soil 3) and an Argiustoll (Soil 4) which were either flooded, to produce anaerobic conditions, or incubated aerobically at 60% water-holding capacity (WHC). The dissipation of PCP in Soil 1 at 60% WHC was higher than under flooded condition, while the opposite occurred in the other three soils. Under flooded conditions, the redox potential decreased significantly in Soil 1 and Soil 4, where sulphate reduction was occurred and the dissipation of PCP was statistically significant (about 96% and 98%, respectively) at the end of incubation. After addition of inorganic oxidants, dissipation of PCP was significantly inhibited by FeCl 3 , while Na 2 SO 4 and NaNO 3 had different effects, depending upon the soil type. - Highlights: ► The extent of the aerobic/anaerobic interface depends upon the soil properties. ► The dissipation of PCP was accelerated in some soils due to the soil-water interface. ► The addition of oxidants inhibited the decrease in soil redox potential. ► Most external oxidants added under flooded condition inhibited PCP dechlorination. - The addition of inorganic oxidants limited the decrease in redox potential and inhibited the reductive dechlorination of pentachlorophenol.

  17. Developing relations between soil erodibilty factors in two different soil erosion prediction models (USLE/RUSLE and wWEPP) and fludization bed technique for mechanical soil cohesion

    Science.gov (United States)

    Soil erosion models are valuable analysis tools that scientists and engineers use to examine observed data sets and predict the effects of possible future soil loss. In the area of water erosion, a variety of modeling technologies are available, ranging from solely qualitative models, to merely quan...

  18. Gaseous elemental mercury emissions and CO2 respiration rates in terrestrial soils under controlled aerobic and anaerobic laboratory conditions

    International Nuclear Information System (INIS)

    Obrist, Daniel; Fain, Xavier; Berger, Carsen

    2010-01-01

    Mercury (Hg) levels in terrestrial soils are linked to the presence of organic carbon (C). Carbon pools are highly dynamic and subject to mineralization processes, but little is known about the fate of Hg during decomposition. This study evaluated relationships between gaseous Hg emissions from soils and carbon dioxide (CO 2 ) respiration under controlled laboratory conditions to assess potential losses of Hg to the atmosphere during C mineralization. Results showed a linear correlation (r 2 = 0.49) between Hg and CO 2 emissions in 41 soil samples, an effect unlikely to be caused by temperature, radiation, different Hg contents, or soil moisture. Stoichiometric comparisons of Hg/C ratios of emissions and underlying soil substrates suggest that 3% of soil Hg was subject to evasion. Even minute emissions of Hg upon mineralization, however, may be important on a global scale given the large Hg pools sequestered in terrestrial soils and C stocks. We induced changes in CO 2 respiration rates and observed Hg flux responses, including inducement of anaerobic conditions by changing chamber air supply from N 2 /O 2 (80% and 20%, respectively) to pure N 2 . Unexpectedly, Hg emissions almost quadrupled after O 2 deprivation while oxidative mineralization (i.e., CO 2 emissions) was greatly reduced. This Hg flux response to anaerobic conditions was lacking when repeated with sterilized soils, possibly due to involvement of microbial reduction of Hg 2+ by anaerobes or indirect abiotic effects such as alterations in soil redox conditions. This study provides experimental evidence that Hg volatilization, and possibly Hg 2+ reduction, is related to O 2 availability in soils from two Sierra Nevada forests. If this result is confirmed in soils from other areas, the implication is that Hg volatilization from terrestrial soils is partially controlled by soil aeration and that low soil O 2 levels and possibly low soil redox potentials lead to increased Hg volatilization from soils.

  19. Factors influencing warfarin control in Australia and Singapore.

    Science.gov (United States)

    Bernaitis, Nijole; Ching, Chi Keong; Teo, Siew Chong; Chen, Liping; Badrick, Tony; Davey, Andrew K; Crilly, Julia; Anoopkumar-Dukie, Shailendra

    2017-09-01

    Warfarin is widely used for patients with non-valvular atrial fibrillation (NVAF). Variations in warfarin control, as measured by time in therapeutic range (TTR), have been reported across different regions and ethnicities, particularly between Western and Asian countries. However, there is limited data on comparative factors influencing warfarin control in Caucasian and Asian patients. Therefore, the aim of this study was to determine warfarin control and potential factors influencing this in patients with NVAF in Australia and Singapore. Retrospective data was collected for patients receiving warfarin for January to June 2014 in Australia and Singapore. TTR was calculated for individuals with mean patient TTR used for analysis. Possible influential factors on TTR were analysed including age, gender, concurrent co-morbidities, and concurrent medication. The mean TTR was significantly higher in Australia (82%) than Singapore (58%). At both sites, chronic kidney disease significantly lowered this TTR. Further factors influencing control were anaemia and ageWarfarin control was significantly higher in Australia compared to Singapore, however chronic kidney disease reduced control at both sites. The different levels of control in these two countries, together with patient factors further reducing control may impact on anticoagulant choice in these countries with better outcomes from warfarin in Australia compared to Singapore. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Litter type control on soil C and N stabilization dynamics in a temperate forest.

    Science.gov (United States)

    Hatton, Pierre-Joseph; Castanha, Cristina; Torn, Margaret S; Bird, Jeffrey A

    2015-03-01

    While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type ((13) C/(15) N-labeled needles vs. fine roots) and placement-depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5 years. Litter type rather than placement-depth controlled soil C and N retention after 5 years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root-derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle-derived C and N was transferred into stable SOM fractions. The stoichiometry of litter-derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N-rich compounds for long-term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates. © 2014 John Wiley & Sons Ltd.

  1. Controls on the spatial variability of key soil properties: comparing field data with a mechanistic soilscape evolution model

    Science.gov (United States)

    Vanwalleghem, T.; Román, A.; Giraldez, J. V.

    2016-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  2. [Characteristics of mercury exchange flux between soil and atmosphere under the snow retention and snow melting control].

    Science.gov (United States)

    Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi

    2013-02-01

    Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange

  3. Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments

    Science.gov (United States)

    Hammond, J. C.; Harpold, A. A.; Kampf, S. K.

    2017-12-01

    Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers

  4. Performance ratings and personality factors in radar controllers.

    Science.gov (United States)

    1970-09-01

    The purpose of the study was to determine whether primary or second-order personality questionnaire factors were related to job performance ratings on the Employee Appraisal Record in a sample of 264 radar controllers. A Pearson correlation matrix wa...

  5. Factors Influencing Prevention and Control of Malaria among ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    investigate factors that influence malaria prevention and control practices among pregnant ... treatment of clinical cases and the promotion of ... influence their decision regarding malaria ..... have the ability to purchase anti-malaria drugs that.

  6. Vulnerability of Permafrost Soil Carbon to Climate Warming: Evaluating Controls on Microbial Community Composition

    Science.gov (United States)

    Abstract: Despite the fact that permafrost soils contain up to half of the carbon (C) in terrestrial pools, we have a poor understanding of the controls on decomposition in thawed permafrost. Global climate models assume that decomposition increases linearly with temperature, yet decomposition in th...

  7. Evaluation of steam and soil solarization for Meloidogyne arenaria control in Florida floriculture crops

    Science.gov (United States)

    Steam and soil solarization were investigated for control of the root-knot nematode Meloidogyne arenaria in two years of field trials on a commercial flower farm in Florida. The objective was to determine if pre-plant steam treatments in combination with solarization, or solarization alone effective...

  8. Prospects for biological soil-borne disease control: application of indigenous versus synthetic microbiomes

    Science.gov (United States)

    Biological disease control of soil-borne plant diseases has traditionally employed the biopesticide approach whereby single strains or strain mixtures are introduced into production systems through inundative/inoculative release. The approach has significant barriers that have long been recognized,...

  9. Effect of soil solarization using plastic mulch in controlling root-knot ...

    African Journals Online (AJOL)

    A field experiment was conducted from February to May, 2004 and 2005 planting seasons at the Vegetable Evaluation and Research Station Farm located at Anse Boileau, Seychelles to evaluate the effect of soil solarization using plastic mulch in controlling root-knot nematode infestation and yield of lettuce.

  10. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, C.; Tagesson, T.

    2013-01-01

    controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4...... short-term control factors (temperature and water table). Our findings suggest the importance of multiyear studies with a continued focus on shoulder seasons in Arctic ecosystems....

  11. Human factors methods for nuclear control room design. Volume 2. Human factors survey of control room design practices

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.

    1979-11-01

    An earlier review of the control rooms of operating nuclear power plants identified many design problems having potential for degrading operator performance. As a result, the formal application of human factors principles was found to be needed. This report demonstrates the use of human factors in the design of power plant control rooms. The approaches shown in the report can be applied to operating power plants, as well as to those in the design stage. This study documents human factors techniques required to provide a sustained concern for the man-machine interface from control room concept definition to system implementation

  12. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem.

    Science.gov (United States)

    Guan, Chao; Li, Xinrong; Zhang, Peng; Chen, Yongle

    2018-01-01

    Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems.

  13. Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project.

    Science.gov (United States)

    Dercon, G; Mabit, L; Hancock, G; Nguyen, M L; Dornhofer, P; Bacchi, O O S; Benmansour, M; Bernard, C; Froehlich, W; Golosov, V N; Haciyakupoglu, S; Hai, P S; Klik, A; Li, Y; Lobb, D A; Onda, Y; Popa, N; Rafiq, M; Ritchie, J C; Schuller, P; Shakhashiro, A; Wallbrink, P; Walling, D E; Zapata, F; Zhang, X

    2012-05-01

    This paper summarizes key findings and identifies the main lessons learnt from a 5-year (2002-2008) coordinated research project (CRP) on "Assessing the effectiveness of soil conservation measures for sustainable watershed management and crop production using fallout radionuclides" (D1.50.08), organized and funded by the International Atomic Energy Agency through the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The project brought together nineteen participants, from Australia, Austria, Brazil, Canada, Chile, China, Japan, Morocco, Pakistan, Poland, Romania, Russian Federation, Turkey, United Kingdom, United States of America and Vietnam, involved in the use of nuclear techniques and, more particularly, fallout radionuclides (FRN) to assess the relative impacts of different soil conservation measures on soil erosion and land productivity. The overall objective of the CRP was to develop improved land use and management strategies for sustainable watershed management through effective soil erosion control practices, by the use of ¹³⁷Cs (half-life of 30.2 years), ²¹⁰Pb(ex) (half-life of 22.3 years) and ⁷Be (half-life of 53.4 days) for measuring soil erosion over several spatial and temporal scales. The environmental conditions under which the different research teams applied the tools based on the use of fallout radionuclides varied considerably--a variety of climates, soils, topographies and land uses. Nevertheless, the achievements of the CRP, as reflected in this overview paper, demonstrate that fallout radionuclide-based techniques are powerful tools to assess soil erosion/deposition at several spatial and temporal scales in a wide range of environments, and offer potential to monitor soil quality. The success of the CRP has stimulated an interest in many IAEA Member States in the use of these methodologies to identify factors and practices that can enhance sustainable agriculture and minimize land degradation. Copyright

  14. Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project

    International Nuclear Information System (INIS)

    Dercon, G.; Mabit, L.; Nguyen, M.L.

    2012-01-01

    This paper summarizes key findings and identifies the main lessons learnt from a 5-year (2002-2008) coordinated research project (CRP) on Assessing the effectiveness of soil conservation measures for sustainable watershed management and crop production using fallout radionuclides (D1.50.08), organized and funded by the International Atomic Energy Agency through the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The project brought together nineteen participants, from Australia, Austria, Brazil, Canada, Chile, China, Japan, Morocco, Pakistan, Poland, Romania, Russian Federation, Turkey, United Kingdom, United States of America and Vietnam, involved in the use of nuclear techniques and, more particularly, fallout radionuclides (FRN) to assess the relative impacts of the different soil conservation measure on soil erosion and land productivity. The overall objective of the CRP was to develop improved land use and management strategies for sustainable watershed management through effective soil erosion control practices, by the use of 137 Cs (half-life of 30.2 years), 210 Pb ex (half-life of 22.3 years) and 7 Be (half-life of 53.4 days) for measuring soil erosion over several spatial and temporal scales. The environmental conditions under which the different research teams applied the tools based on the use of fallout radionuclides varied considerably - a variety of climates, soils, topographies and land uses. Nevertheless, the achievements of the CRP, as reflected in this overview paper, demonstrate that fallout radionuclide-based techniques are powerful tools to assess soil erosion/deposition at several spatial and temporal scales in a wide range of environments, and offer potential to monitor soil quality. The success of the CRP has stimulated an interest in many IAEA Member States in the use of these methodologies to identify factors and practices that can enhance sustainable agriculture and minimize land degradation. (author)

  15. pH controls over methanogenesis and iron reduction along soil depth profile in Arctic tundra

    Science.gov (United States)

    Zheng, J.; Gu, B.; Wullschleger, S. D.; Graham, D. E.

    2017-12-01

    Increasing soil temperature in the Arctic is expected to accelerate rates of soil organic matter decomposition. However, the magnitude of this impact is uncertain due to the many physical, chemical, and biological processes that control the decomposition pathways. Varying soil redox conditions present a key control over pathways of organic matter decomposition by diverting the flow of reductants among different electron accepting processes and further driving acid-base reactions that alter soil pH. In this study we investigated the pH controls over anaerobic carbon mineralization, methanogenesis, Fe(III) reduction and the interplay between these processes across a range of pH and redox conditions. pH manipulation experiments were conducted by incubating soils representing organic, mineral, cryoturbated transitional layers and permafrost. In the experiments we sought to understand (1) if methanogenesis or Fe(III) reduction had similar pH optima; (2) if this pH response also occurs at `upstream' fermentation process; and (3) if pH alters organo-mineral association or organic matter sorption and desorption and its availability for microbial degradation. Our preliminary results suggest that the common bell-shaped pH response curve provides a good fit for both Fe(III) reduction and methanogenesis, with optimum pH at 6.0-7.0. Exceptions to this were found in transitional layer where methanogenesis rates positively correlated with increasing pH, with maximum rates measured at pH 8.5. It is likely that the transitional layer harbors distinct groups of methanogens that prefer a high pH. Variations in the optimum pH of Fe(III) reduction and methanogenesis may play a significant role in regulating organic matter decomposition pathways and thus greenhouse gas production in thawing soils. These results support biogeochemical modeling efforts to accurately simulate organic matter decomposition under changing redox and pH conditions.

  16. PMBLDC motor drive with power factor correction controller

    DEFF Research Database (Denmark)

    George, G.J.; Ramachandran, Rakesh; Arun, N.

    2012-01-01

    reliability, and low maintenance requirements. The proposed Power Factor Controller topology improves power quality by improving performance of PMBLDCM drive, such as reduction of AC main current harmonics, near unity power factor. PFC converter forces the drive to draw sinusoidal supply current in phase...

  17. Simplifying the audit of risk factor recording and control

    DEFF Research Database (Denmark)

    Zhao, Min; Cooney, Marie Therese; Klipstein-Grobusch, Kerstin

    2016-01-01

    BACKGROUND: To simplify the assessment of the recording and control of coronary heart disease risk factors in different countries and regions. DESIGN: The SUrvey of Risk Factors (SURF) is an international clinical audit. METHODS: Data on consecutive patients with established coronary heart disease...

  18. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil

    International Nuclear Information System (INIS)

    Sun, Mingming; Ye, Mao; Hu, Feng; Li, Huixin; Teng, Ying; Luo, Yongming; Jiang, Xin; Kengara, Fredrick Orori

    2014-01-01

    Highlights: • Enhanced anaerobic bioremediation of a red paddy soil polluted with PAHs. • 1% (w/w) methyl-β-cyclodextrin (MCD) and 20 mM nitrate addition acted as solubility-enhancing agent and electron acceptor respectively. • Tenax extraction and a first-three-compartment modeling were applicable to explore the rate-limiting factors in the biodegradation. • Lack of PAH-degraders hindered biodegradation in control and MCD addition treatments. • Inadequate bioaccessible PAHs was vital rate-limiting factor in nitrate addition treatments. -- Abstract: The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20 mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies

  19. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingming, E-mail: sunmingming@njau.edu.cn [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Key Laboratory of Soil Environmental and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Ye, Mao [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Feng, E-mail: fenghu@njau.edu.cn [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li, Huixin [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Teng, Ying [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Jiang, Xin [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Kengara, Fredrick Orori [Department of Chemistry, Maseno University, Private Bag, Maseno 40105 (Kenya)

    2014-01-15

    Highlights: • Enhanced anaerobic bioremediation of a red paddy soil polluted with PAHs. • 1% (w/w) methyl-β-cyclodextrin (MCD) and 20 mM nitrate addition acted as solubility-enhancing agent and electron acceptor respectively. • Tenax extraction and a first-three-compartment modeling were applicable to explore the rate-limiting factors in the biodegradation. • Lack of PAH-degraders hindered biodegradation in control and MCD addition treatments. • Inadequate bioaccessible PAHs was vital rate-limiting factor in nitrate addition treatments. -- Abstract: The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20 mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies.

  20. Quality control for measurement of soil samples containing 237Np and 241Am as radiotracer

    International Nuclear Information System (INIS)

    Sha Lianmao; Zhang Caihong; Song Hailong; Ren Xiaona; Han Yuhu; Zhang Aiming; Chu Taiwei

    2003-01-01

    This paper reports quality control (QC) for the measurement of soil samples containing 237 Np and 241 Am as radiotracers in migration test of transuranic nuclides. All of the QC were done independently by the QA members of analytical work. It mainly included checking 5%-10% of the total analyzed samples; preparing blank samples, blind replicate sample and spiked samples used as quality control samples to check the quality of analytical work

  1. COMPLIANCE AS FACTORING BUSINESS RISK MANAGEMENT: CONTROL ASPECTS

    Directory of Open Access Journals (Sweden)

    V.K. Makarovych

    2016-03-01

    Full Text Available Indetermination of modern economy conditions and the lack of theoretical knowledge gained by domestic scientists about risk in factoring business actualize the research concerning the methodology and technique of factoring companies’ risk management. The article examines compliance which is the technology innovative for Ukrainian market of factoring risk management technologies. It is determined that the compliance is the risk management process directed to free will correspondence to state, international legislation as well as to the ethics standards accepted in the field of regulated legal relations and to the traditions of business circulation to sustain the necessary regulations and standards of market behaviour, and to consolidate the image of a factoring company. Compliance risks should be understood as the risks of missed profit or losses caused by the conflicts of interests and the discrepancy of employees’ actions to internal and external standard documents. The attention is paid to the control over the compliance. The author singles out 3 kinds of the compliance control such as institutional, operational and the compliance control over the observance of conducting business professional ethics regulations which are necessary for providing of efficient management of factoring business risks. The paper shows the organizing process of factoring business compliance control (by the development of internal standard documents, a compliance program, the foundation of compliance control subdivision, monitoring of the risks cause the choice, made by management entities of a factoring company, of the management methods of risks for their business. The development of new and improvement of existed forms of compliance control organizing process help satisfy users’ information needs and requests of the risk management factoring company department. The suggestions proposed create the grounds for the transformation and improvement of factoring

  2. Complete release from regulatory control via the density of radioactive contamination of soil of the Chornobyl exclusion zone

    International Nuclear Information System (INIS)

    Bondarenko, Oleg; Fadeev, Mykhaylo; Kireev, Serhiy; Proskura, Mykola

    2008-01-01

    Full text: In this work a general procedure of establishment the criterion of complete release from regulatory control via the density of radioactive contamination of soil of alone areas of the Chornobyl exclusion zone is represented by the following three stages, namely: 1) Justification of the dose criterion of complete release by applying the fundamental approaches of regulating the prolonged exposure of the public on a basement of ICRP Publication No. 82; 2) Justification of a procedure for establishment of dose constraint through evaluation of the statistical distribution of a controlled radiation value through determination of the high boundary of the confidence interval; 3) Generalization of conversion coefficients (via the density of radioactive contamination of soil) and coverage coefficients for the dose forming factors of the public (inhalation intake of transuranium radionuclides both at natural and technogenic dust resuspension, peroral intake of 137 Cs and 90 Sr via food stuff, external exposure from 137 Cs); on a basis of these coefficients average doses and dose constraint of a critical group of the public are calculated. As it is shown in the work, the generalized criterion of complete release from regulatory control via the density of radioactive contamination of soil of the Chornobyl exclusion zone can be defined by dividing the recommended ICRP dose clearance level for situation of the post-accidental prolonged exposure of a critical group of the public, namely, 0.3 mSv·year -1 to the dose conversion coefficient (i.e. transfer from the superficial soil contamination of radioactivity to the dose constraint for the Chornobyl exclusion zone), namely, 12.9 μSv·year -1 /((kBq·M -2 ). Thus, a level of the density of radioactive contamination of soil, that provides the complete release from regulatory control makes 23.3 kBq·M -2 . For completion of the work on justification of the criterion of complete territory release in the conditions of

  3. Evaluation of factors affecting adherence to asthma controller ...

    African Journals Online (AJOL)

    Evaluation of factors affecting adherence to asthma controller therapy in chest clinics in a sub-Saharan African setting: a cross-sectional study. ... Background: Adherence to controller therapy in asthma is a major concern during the management of the disease. Objective: To determine the adherence rate and identify the ...

  4. The history and assessment of effectiveness of soil erosion control measures deployed in Russia

    Directory of Open Access Journals (Sweden)

    Valentin Golosov

    2013-09-01

    Full Text Available Research activities aimed at design and application of soil conservation measures for reduction of soil losses from cultivated fields started in Russia in the last quarter of the 19th century. A network of "zonal agrofor-estry melioration experimental stations" was organized in the different landscape zones of Russia in the first half of the 20th century. The main task of the experiments was to develop effective soil conservation measures for Russian climatic,soil and land use conditions. The most widespread and large-scale introduction of coun-termeasures to cope with soil erosion by water and wind into agricultural practice supported by serious governmental investments took place during the Soviet Union period after the Second World War. After the Soviet Union collapse in 1991 ,general deterioration of the agricultural economy sector and the absence of investments resulted in cessation of organized soil conservation measures application at the nation-wide level. However, some of the long-term erosion control measures such as forest shelter belts, artificial slope terracing, water diversion dams above formerly active gully heads survived until the present. In the case study of sediment redistribution within the small c