WorldWideScience

Sample records for factor upregulates expression

  1. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  2. Airway epithelial platelet-activating factor receptor expression is markedly upregulated in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Shukla SD

    2014-08-01

    Full Text Available Shakti Dhar Shukla,1,* Sukhwinder Singh Sohal,1,* Malik Quasir Mahmood,1 David Reid,2 Hans Konrad Muller,1 Eugene Haydn Walters1 1NHMRC Centre for Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia; 2Queensland Institute of Medical Research, Iron Metabolism Laboratory, Brisbane, Queensland, Australia *Shakti Dhar Shukla and Sukhwinder Singh Sohal are joint first authors Background: We recently published that platelet-activating factor receptor (PAFr is upregulated on the epithelium of the proximal airways of current smokers and also in bronchial epithelial cells exposed to cigarette smoke extract. These treated cells also showed upregulation of Streptococcus pneumoniae adhesion. Bacterial wall phosphorylcholine specifically binds to PAFr expressed on airway epithelium, thus facilitating adherence and tissue invasion, which may be relevant to chronic obstructive pulmonary disease (COPD. Moreover, the use of inhaled corticosteroids (ICS in COPD patients is associated with an increased risk of invasive respiratory pneumococcal infections. Objective: In this study, we have investigated whether PAFr expression is especially upregulated in airway epithelium in COPD patients and whether this expression may be modulated by ICS therapy. Methods: We cross-sectionally evaluated PAFr expression in bronchial biopsies from 15 COPD patients who were current smokers (COPD-smokers and 12 COPD-ex-smokers, and we compared these to biopsies from 16 smokers with normal lung function. We assessed immunostaining with anti-PAFr monoclonal antibody. We also used material from a previous double-blinded randomized placebo-controlled 6-month ICS intervention study in COPD patients to explore the effect of ICS on PAFr expression. We employed computer-aided image analysis to quantify the percentage of epithelium stained for PAFr. Results: Markedly enhanced expression of PAFr was found

  3. Upregulation of Endogenous HMOX1 Expression by a Computer-Designed Artificial Transcription Factor

    Directory of Open Access Journals (Sweden)

    Hongfeng Guo

    2010-01-01

    Full Text Available Heme oxygenase-1 (HO-1 is well known as a cytoprotective factor. Research has revealed that it is a promising therapeutic target for cardiovascular diseases. In the current study, an HMOX1 (HO-1 gene enhancer-specific artificial zinc-finger protein (AZP was designed using bioinformatical methods. Then, an artificial transcription factor (ATF was constructed based on the AZP. In the ATF, the p65 functional domain was used as the effector domain (ED, and a nuclear localization sequence (NLS was also included. We next analyzed the affinity of the ATF to the HMOX1 enhancer and the effect of the ATF on endogenous HMOX1 expression. The results suggest that the ATF could effectively upregulate endogenous HMOX1 expression in ECV304 cells. With further research, the ATF could be developed as a potential drug for cardiovascular diseases.

  4. Signal peptide of eosinophil cationic protein upregulates transforming growth factor-alpha expression in human cells.

    Science.gov (United States)

    Chang, Hao-Teng; Kao, Yu-Lin; Wu, Chia-Mao; Fan, Tan-Chi; Lai, Yiu-Kay; Huang, Kai-Ling; Chang, Yuo-Sheng; Tsai, Jaw-Ji; Chang, Margaret Dah-Tsyr

    2007-04-01

    Eosinophil cationic protein (ECP) is a major component of eosinophil granule protein that is used as a clinical bio-marker for asthma and allergic inflammatory diseases. Previously, it has been reported that the signal peptide of human ECP (ECPsp) inhibits the cell growth of Escherichia coli (E. coli) and Pichia pastoris (P. pastoris), but not mammalian A431 cells. The inhibitory effect is due to the lack of human signal peptide peptidase (hSPP), a protease located on the endoplasmic reticulum (ER) membrane, in the lower organisms. In this study, we show that the epidermal growth factor receptor (EGFR) is upregulated by the exogenous ECPsp-eGFP as a result of the increased expression of the transforming growth factor-alpha (TGF-alpha) at both transcriptional and translational levels in A431 and HL-60 clone 15 cell lines. Furthermore, the N-terminus of ECPsp fragment generated by the cleavage of hSPP (ECPspM1-G17) gives rise to over threefold increase of TGF-alpha protein expression, whereas another ECPsp fragment (ECPspL18-A27) and the hSPP-resistant ECPsp (ECPspG17L) do not show similar effect. Our results indicate that the ECPspM1-G17 plays a crucial role in the upregulation of TGF-alpha, suggesting that the ECPsp not only directs the secretion of mature ECP, but also involves in the autocrine system.

  5. Poxue Huayu and Tianjing Busui Decoction for cerebral hemorrhage Upregulation of neurotrophic factor expression**

    Institute of Scientific and Technical Information of China (English)

    Jixiang Ren; Xiangyu Zhou; Jian Wang; Jianjun Zhao; Pengguo Zhang

    2013-01-01

    This study established a rat model of cerebral hemorrhage by injecting autologous anticoagulated blood. Rat models were intragastrical y administered 5, 10, 20 g/kg Poxue Huayu and Tianjing Bu-sui Decoction, supplemented with Hirudo, raw rhubarb, raw Pol en Typhae, gadfly, Fructrs Tricho-santhis, Radix Notoginseng, Rhizoma Acori Talarinowi , and glue of tortoise plastron, once a day, for 14 consecutive days. Results demonstrated that brain water content significantly reduced in rats with cerebral hemorrhage, and intracerebral hematoma volume markedly reduced after treatment. Immunohistochemical staining revealed that brain-derived neurotrophic factor, tyrosine kinase B and vascular endothelial growth factor expression noticeably increased around the surrounding hematoma. Reverse transcription-PCR revealed that brain-derived neurotrophic factor and tyrosine kinase B mRNA expression significantly increased around the surrounding hematoma. Neurologic impairment obviously reduced. These results indicated that Poxue Huayu and Tianjing Busui De-coction exert therapeutic effects on cerebral hemorrhage by upregulating the expression of brain-derived neurotrophic factor.

  6. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production.

    Science.gov (United States)

    Lin, Ligen; Pang, Weijun; Chen, Keyun; Wang, Fei; Gengler, Jon; Sun, Yuxiang; Tong, Qiang

    2012-06-15

    We have reported previously that ETS family transcription factor PU.1 is expressed in mature adipocytes of white adipose tissue. PU.1 expression is increased greatly in mouse models of genetic or diet-induced obesity. Here, we show that PU.1 expression is increased only in visceral but not subcutaneous adipose tissues of obese mice, and the adipocytes are responsible for this increase in PU.1 expression. To further address PU.1's physiological function in mature adipocytes, PU.1 was knocked down in 3T3-L1 cells using retroviral-mediated expression of PU.1-targeting shRNA. Consistent with previous findings that PU.1 regulates its target genes, such as NADPH oxidase subunits and proinflammatory cytokines in myeloid cells, the mRNA levels of proinflammatory cytokines (TNFα, IL-1β, and IL-6) and cytosolic components of NADPH oxidase (p47phox and p40phox) were downregulated significantly in PU.1-silenced adipocytes. NADPH oxidase is a main source for reactive oxygen species (ROS) generation. Indeed, silencing PU.1 suppressed NADPH oxidase activity and attenuated ROS in basal or hydrogen peroxide-treated adipocytes. Silencing PU.1 in adipocytes suppressed JNK1 activation and IRS-1 phosphorylation at Ser(307). Consequently, PU.1 knockdown improved insulin signaling and increased glucose uptake in basal and insulin-stimulated conditions. Furthermore, knocking down PU.1 suppressed basal lipolysis but activated stimulated lipolysis. Collectively, these findings indicate that obesity induces PU.1 expression in adipocytes to upregulate the production of ROS and proinflammatory cytokines, both of which lead to JNK1 activation, insulin resistance, and dysregulation of lipolysis. Therefore, PU.1 might be a mediator for obesity-induced adipose inflammation and insulin resistance.

  7. Hypoxia and proinflammatory factors upregulate apelin receptor expression in human stellate cells and hepatocytes.

    Science.gov (United States)

    Melgar-Lesmes, Pedro; Pauta, Montserrat; Reichenbach, Vedrana; Casals, Gregori; Ros, Josefa; Bataller, Ramon; Morales-Ruiz, Manuel; Jiménez, Wladimiro

    2011-10-01

    The activation of the apelin receptor (APJ) plays a major role in both angiogenic and fibrogenic response to chronic liver injury. However, the mechanisms that govern the induction of APJ expression have not been clarified so far. The regulation and the role of APJ in cultured human liver cells were investigated. Tissular expression of APJ and α-smooth muscle actin was analysed by immunocolocalisation in human cirrhotic liver and in control samples. mRNA and protein expression of APJ were analysed in two cell lines, LX-2 (as hepatic stellate cells, HSCs) and HepG2 (as hepatocytes), under hypoxic conditions or after exposure to proinflammatory or profibrogenic factors. Additionally, both hepatic cell lines were stimulated with apelin to assess cell survival and the expression of angiogenic factors. The APJ-positive signal was negligible in control livers. In contrast, APJ was highly expressed in HSCs and slightly expressed in hepatocytes of human cirrhotic liver. Sustained hypoxia and lipopolysaccharide stimulated the expression of APJ in LX-2 cells. Moreover, hypoxia, tumour necrosis factor α and angiotensin II induced the expression of APJ in HepG2 cells. Activation of APJ stimulated angiopoietin-1 expression and cell survival in LX-2 cells and, in turn, triggered the synthesis of vascular endothelial growth factor type A and platelet-derived growth factor-BB in HepG2 cells. These results suggest that hypoxia and inflammatory factors could play a major role in the activation of the hepatic apelin system leading to angiogenic and fibroproliferative response occurring in chronic liver disease.

  8. Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin β1.

    Science.gov (United States)

    Dong, Yinying; Xie, Xiaoying; Wang, Zhiming; Hu, Chao; Zheng, Qiongdan; Wang, Yaohui; Chen, Rongxin; Xue, Tongchun; Chen, Jie; Gao, Dongmei; Wu, Weizhong; Ren, Zhenggang; Cui, Jiefeng

    2014-02-14

    Matrix stiffness as a novel regulation factor involves in modulating the pathogenesis of hepatocellular carcinoma (HCC) invasion or metastasis. However, the mechanism by which matrix stiffness modulates HCC angiogenesis remains unknown. Here, using buffalo rat HCC models with different liver matrix stiffness backgrounds and an in vitro cell culture system of mechanically tunable Collagen1 (COL1)-coated polyacrylamide gel, we investigated the effects of different matrix stiffness levels on vascular endothelial growth factor (VEGF) expression in HCC cells and explored its regulatory mechanism for controlling HCC angiogenesis. Tissue microarray analysis showed that the expression levels of VEGF and CD31 were gradually upregulated in tumor tissues with increasing COL1 and lysyl oxidase (LOX) expression, indicating a positive correlation between tumor angiogenesis and matrix rigidity. The expression of VEGF and the phosphorylation levels of PI3K and Akt were all upregulated in HCC cells on high-stiffness gel than on low-stiffness gel. Meanwhile, alteration of intergrin β1 expression was found to be the most distinctive, implying that it might mediate the response of HCC cells to matrix stiffness simulation. After integrin β1 was blocked in HCC cells using specific monoclonal antibody, the expression of VEGF and the phosphorylation levels of PI3K and Akt at different culture times were accordingly suppressed and downregulated in the treatment group as compared with those in the control group. All data suggested that the extracellular matrix stiffness stimulation signal was transduced into HCC cells via integrin β1, and this signal activated the PI3K/Akt pathway and upregulated VEGF expression. This study unveils a new paradigm in which matrix stiffness as initiators to modulate HCC angiogenesis.

  9. Mechanical tension promotes skin nerve regeneration by upregulating nerve growth factor expression

    Institute of Scientific and Technical Information of China (English)

    Hu Xiao; Dechang Wang; Ran Huo; Yibing Wang; Yongqiang Feng; Qiang Li

    2013-01-01

    This study aimed to explore the role of mechanical tension in hypertrophic scars and the change in nerve density using hematoxylin-eosin staining and S100 immunohistochemistry, and to observe the expression of nerve growth factor by western blot analysis. The results demonstrated that mechanical tension contributed to the formation of a hyperplastic scar in the back skin of rats, in conjunction with increases in both nerve density and nerve growth factor expression in the scar tissue. These experimental findings indicate that the cutaneous nervous system plays a role in hypertrophic scar formation caused by mechanical tension.

  10. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  11. Expression of nerve growth factor is upregulated in the rat thymic epithelial cells during thymus regeneration following acute thymic involution.

    Science.gov (United States)

    Lee, Hee-Woo; Kim, Sung-Min; Shim, Na-Ri; Bae, Soo-Kyung; Jung, Il-Gun; Kwak, Jong-Young; Kim, Bong-Seon; Kim, Jae-Bong; Moon, Jeon-Ok; Chung, Joo-Seop; Yoon, Sik

    2007-06-07

    Neuroimmune networks in the thymic microenvironment are thought to be involved in the regulation of T cell development. Nerve growth factor (NGF) is increasingly recognized as a potent immunomodulator, promoting "cross-talk" between various types of immune system cells. The present study describes the expression of NGF during thymus regeneration following acute involution induced by cyclophosphamide in the rat. Immunohistochemical stain demonstrated not only the presence of NGF but also its upregulated expression mainly in the subcapsular, paraseptal, and perivascular epithelial cells, and medullary epithelial cells including Hassall's corpuscles in both the normal and regenerating thymus. Biochemical data obtained using Western blot and RT-PCR supported these results and showed that thymic extracts contain NGF protein and mRNA, at higher levels during thymus regeneration. Thus, our results suggest that NGF expressed in these thymic epithelial cells plays a role in the T lymphopoiesis associated with thymus regeneration during recovery from acute thymic involution.

  12. Moxibustion upregulates hippocampal progranulin expression

    Directory of Open Access Journals (Sweden)

    Tao Yi

    2016-01-01

    Full Text Available In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4 and Zusanli (ST36, bilateral were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin.

  13. Moxibustion upregulates hippocampal progranulin expression

    Institute of Scientific and Technical Information of China (English)

    Tao Yi; Li Qi; Ji Li; Jing-jing Le; Lei Shao; Xin Du; Jing-cheng Dong

    2016-01-01

    In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely un-known. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupointsGuanyuan (CV4) and Zusanli (ST36, bilateral) were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open ifeld test, tail suspension test, real-time PCR, enzyme-linked immunosor-bent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These ifndings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin.

  14. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells

    Directory of Open Access Journals (Sweden)

    Uchida Daisuke

    2009-08-01

    Full Text Available Abstract Background We have demonstrated that the stromal cell-derived factor-1 (SDF-1; CXCL12/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (SCC. Chemotherapy is a powerful tool for the treatment of oral cancer, including oral SCC; however, the effects of chemotherapeutic agents on the expression of CXCR4 are unknown. In this study, we examined the expression of CXCR4 associated with the chemotherapeutic agents in oral cancer cells. Results The expression of CXCR4 was examined using 3 different chemotherapeutic agents; 5-fluorouracil, cisplatin, and vesnarinone (3,4-dihydro-6-[4-(3,4-dimethoxybenzoyl-1-piperazinyl]-2-(1H-quinolinone in B88, a line of oral cancer cells that exhibits high levels of CXCR4 and lymph node metastatic potential. Of the 3 chemotherapeutic agents that we examined, only vesnarinone downregulated the expression of CXCR4 at the mRNA as well as the protein level. Vesnarinone significantly inhibited lymph node metastasis in tumor-bearing nude mice. Moreover, vesnarinone markedly inhibited 2.7-kb human CXCR4 promoter activity, and we identified the transcription factor, Krüppel-like factor 2 (KLF2, as a novel vesnarinone-responsive molecule, which was bound to the CXCR4 promoter at positions -300 to -167 relative to the transcription start site. The forced-expression of KLF2 led to the downregulation of CXCR4 mRNA and impaired CXCR4 promoter activity. The use of siRNA against KLF2 led to an upregulation of CXCR4 mRNA. Conclusion These Results indicate that vesnarinone downregulates CXCR4 via the upregulation of KLF2 in oral cancer.

  15. Pro-MMP-9 upregulation in HT1080 cells expressing CD9 is regulated by epidermal growth factor receptor.

    Science.gov (United States)

    Herr, Michael J; Mabry, Scott E; Jameson, Jessica F; Jennings, Lisa K

    2013-12-06

    Degradation of the surrounding extracellular matrix (ECM) by matrix metalloproteinases (MMPs) drives invasion and metastasis of cancer cells. We previously demonstrated that tetraspanin CD9 expression upregulates pro-MMP-9 expression and release and promotes cellular invasion in a human fibrosarcoma cell line (HT1080). These events were dependent upon the highly functional second extracellular loop of CD9. We report here that the epidermal growth factor receptor (EGFR) tyrosine kinase expression and activity are involved in the CD9-mediated increase in pro-MMP-9 release and cellular invasion. Pro-MMP-9 expression was significantly decreased in a dose-dependent manner using first a broad spectrum receptor tyrosine kinase inhibitor and multiple specific EGFR inhibitors in CD9-HT1080 cells. Furthermore, gefitinib treatment of CD9-HT1080 cells reduced invasion through matrigel. EGFR knockdown using short interfering RNA resulted in decreased pro-MMP-9 expression and release into the media and subsequent cellular invasion without affecting CD9 expression or localization. Conclusively, this study points to EGFR as a key mediator between CD9-mediated pro-MMP-9 release and cellular invasion of HT1080 cells. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor

    Directory of Open Access Journals (Sweden)

    Anna Janowska-Wieczorek

    2012-07-01

    Full Text Available Membrane type-1 matrix metalloproteinase (MT1-MMP has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML cells. Because tumor necrosis factor (TNF-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  17. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Curtis, Leah A.; Shirvaikar, Neeta [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Turner, A. Robert [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Mirza, Imran [Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2B7 (Canada); Surmawala, Amir; Larratt, Loree M. [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Janowska-Wieczorek, Anna, E-mail: anna.janowska@blood.ca [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada)

    2012-07-25

    Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  18. Growth differentiation factor 8 suppresses cell proliferation by up-regulating CTGF expression in human granulosa cells.

    Science.gov (United States)

    Chang, Hsun-Ming; Pan, Hui-Hui; Cheng, Jung-Chien; Zhu, Yi-Min; Leung, Peter C K

    2016-02-15

    Connective tissue growth factor (CTGF) is a matricellular protein that plays a critical role in the development of ovarian follicles. Growth differentiation factor 8 (GDF8) is mainly, but not exclusively, expressed in the mammalian musculoskeletal system and is a potent negative regulator of skeletal muscle growth. The aim of this study was to investigate the effects of GDF8 and CTGF on the regulation of cell proliferation in human granulosa cells and to examine its underlying molecular determinants. Using dual inhibition approaches (inhibitors and small interfering RNAs), we have demonstrated that GDF8 induces the up-regulation of CTGF expression through the activin receptor-like kinase (ALK)4/5-mediated SMAD2/3-dependent signaling pathways. In addition, the increase in CTGF expression contributes to the GDF8-induced suppressive effect on granulosa cell proliferation. Our findings suggest that GDF8 and CTGF may play critical roles in the regulation of proliferative events in human granulosa cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Liver Growth Factor (LGF) Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich’s Ataxia Transgenic Mice

    Science.gov (United States)

    Calatrava-Ferreras, Lucía; Gonzalo-Gobernado, Rafael; Reimers, Diana; Herranz, Antonio S.; Casarejos, María J.; Jiménez-Escrig, Adriano; Regadera, Javier; Velasco-Martín, Juan; Vallejo-Muñoz, Manuela; Díaz-Gil, Juan José; Bazán, Eulalia

    2016-01-01

    Friedreich’s ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF), which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXN)YG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse) exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold) and heart (1.2-fold). LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA. PMID:27941692

  20. Liver Growth Factor (LGF Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich’s Ataxia Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Lucía Calatrava-Ferreras

    2016-12-01

    Full Text Available Friedreich’s ataxia (FA is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF, which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXNYG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold and heart (1.2-fold. LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA.

  1. Tumor Necrosis Factor Receptor 1 Expression Is Upregulated in Dendritic Cells in Patients with Chronic HCV Who Respond to Therapy

    Directory of Open Access Journals (Sweden)

    Raul Cubillas

    2010-01-01

    Full Text Available The present studies assessed the level of tumor necrosis factor receptor (TNFR expression in peripheral blood mononuclear cells (PBMCs subsets from patients with chronic HCV undergoing interferon /ribavirin-based therapy (Ifn/R. Methods. TNFR family member mRNA expression was determined using quantitative real-time PCR assays (RTPCRs in PBMC from 39 HCV+ patients and 21 control HCV− patients. Further subset analysis of HCV + patients (untreated (U, sustained virological responders (SVR, and nonresponders (NR/relapsers (Rel PBMC was performed via staining with anti-CD123, anti-CD33, anti-TNFR1 or via RTPCR for TNFR1 mRNA. Results. A similar level of TNFR1 mRNA in PBMC from untreated HCV+ genotype 1 patients and controls was noted. TNFR1 and TNFR2 mRNA levels in PBMC from HCV+ patients with SVR were statistically different than levels in HCV(− patients. A significant difference was noted between the peak values of TNFR1 of the CD123+ PBMC isolated from SVR and the NR/Rel. Conclusion. Upregulation of TNFR1 expression, occurring in a specific subset of CD123+ dendritic cells, appeared in HCV+ patients with SVR.

  2. Electroacupuncture upregulated platelet derived growth factor expression in spared dorsal root ganglion of cats

    Institute of Scientific and Technical Information of China (English)

    Xifeng Wang; Lianshuang Zhang; Xiaobo Xu; Wei Zhao; Guixiang Liu

    2012-01-01

    A bilateral spared dorsal root ganglion model was established in healthy adult cats by bilateral resection of L1-5 and L7-S2 dorsal root ganglia. L6 dorsal root ganglia were spared. Zusanli (ST36) and Xuanzhong (BL39) or Futu (ST32) and Sanyinjiao (SP6) were alternatively electro-stimulated on the right leg. Immunohistochemical staining of anti-serum platelet-derived growth factor demonstrated that the number of total neurons and medium-small sized platelet-derived growth factor positive neurons was significantly decreased on the 7th day following injury. After 7 days of acupuncture, the total number of positive and large neurons staining for platelet-derived growth factor on the acupuncture side significantly increased compared to the non-acupuncture side. After acupuncture for 14 days, the total positive and medium-small sized neurons significantly increased compared with the non-acupuncture side. Results indicate that acupuncture promoted the synthesis of platelet-derived growth factor in spared dorsal root ganglia.

  3. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression

    Science.gov (United States)

    Takahashi, Tetsuya; Fujimura, Masatake; Koyama, Misaki; Kanazawa, Masato; Usuki, Fusako; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2017-01-01

    Clinical manifestations of methylmercury (MeHg) intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB) damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG) and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF), a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity. PMID:28118383

  4. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    as the expression of transforming growth factor-alpha peptide. The level of epidermal growth factor receptor and transforming growth factor-alpha mRNA expression was found to correlate both in control and growth factor-treated animals, whereas the expression of epidermal growth factor receptor and epidermal growth...

  5. Transforming growth factor β signaling upregulates the expression of human GDP-fucose transporter by activating transcription factor Sp1.

    Science.gov (United States)

    Xu, Yu-Xin; Ma, Anna; Liu, Li

    2013-01-01

    GDP-fucose transporter plays a crucial role in fucosylation of glycoproteins by providing activated fucose donor, GDP-fucose, for fucosyltransferases in the lumen of the Golgi apparatus. Fucose-containing glycans are involved in many biological processes, which are essential for growth and development. Mutations in the GDP-fucose transporter gene cause leukocyte adhesion deficiency syndrome II, a disease characterized by slow growth, mental retardation and immunodeficiency. However, no information is available regarding its transcriptional regulation. Here, by using human cells, we show that TGF-β1 specifically induces the GDP-fucose transporter expression, but not other transporters tested such as CMP-sialic acid transporter, suggesting a diversity of regulatory pathways for the expression of these transporters. The regulatory elements that are responsive to the TGF-β1 stimulation are present in the region between bp -330 and -268 in the GDP-fucose transporter promoter. We found that this region contains two identical octamer GC-rich motifs (GGGGCGTG) that were demonstrated to be essential for the transporter expression. We also show that the transcription factor Sp1 specifically binds to the GC-rich motifs in vitro and Sp1 coupled with phospho-Smad2 is associated with the promoter region covering the Sp1-binding motifs in vivo using chromatin immunoprecipitation (ChIP) assays. In addition, we further confirmed that Sp1 is essential for the GDP-fucose transporter expression stimulated by TGF-β1 using a luciferase reporter system. These results highlight the role of TGF-β signaling in regulation of the GDP-fucose transporter expression via activating Sp1. This is the first transcriptional study for any nucleotide sugar transporters that have been identified so far. Notably, TGF-β1 receptor itself is known to be modified by fucosylation. Given the essential role of GDP-fucose transporter in fucosylation, the finding that TGF-β1 stimulates the expression of

  6. Upregulation of T-Cell-Specific Transcription Factor Expression in Pediatric T-Cell Acute Lymphoblastic Leukemia (T-ALL

    Directory of Open Access Journals (Sweden)

    Müge Sayitoğlu

    2012-12-01

    Full Text Available OBJECTIVE: T-cell acute lymphoblastic leukemia (T-ALL is associated with recurrent chromosomal aberrations and abnormal ectopic gene expression during T-cell development. In order to gain insight into the pathogenesis of T-ALL this study aimed to measure the level of expression of 7 T-cell oncogenes (LMO2, LYL1, TAL1, TLX1, TLX3, BMI1, and CALM-AF10 in pediatric T-ALL patients. METHODS: LMO2, LYL1, TLX1, TLX3, BMI1, TAL1, and CALM-AF10 expression was measured using quantitative real-time PCR in 43 pediatric T-ALL patients. RESULTS: A high level of expression of LMO2, LYL1, TAL1, and BMI1 genes was observed in a large group of T-ALL. Several gene expression signatures indicative of leukemic arrest at specific stages of normal thymocyte development (LYL1 and LMO2 were highly expressed during the cortical and mature stages of T-cell development. Furthermore, upregulated TAL1 and BMI1 expression was observed in all phenotypic subgroups. In all, 6 of the patients had TLX1 and TLX3 proto-oncogene expression, which does not occur in normal cells, and none of the patients had CALM-AF10 fusion gene transcription. Expression of LYL1 alone and LMO2-LYL1 co-expression were associated with mediastinal involvement; however, high-level oncogene expression was not predictive of outcome in the present pediatric T-ALL patient group, but there was a trend towards a poor prognostic impact of TAL1 and/or LMO2 and/or LYL1 protooncogene expression. CONCLUSION: Poor prognostic impact of TAL1 and/or LMO2 and/or LYL1 proto-oncogene expression indicate the need for extensive study on oncogenic rearrangement and immunophenotypic markers in T-ALL, and their relationship to treatment outcome.

  7. Up-regulation of intestinal epithelial cell derived IL-7 expression by keratinocyte growth factor through STAT1/IRF-1, IRF-2 pathway.

    Directory of Open Access Journals (Sweden)

    Yu-Jiao Cai

    Full Text Available BACKGROUND: Epithelial cells(EC-derived interleukin-7 (IL-7 plays a crucial role in control of development and homeostasis of neighboring intraepithelial lymphocytes (IEL, and keratinocyte growth factor (KGF exerts protective effects on intestinal epithelial cells and up-regulates EC-derived IL-7 expression through KGFR pathway. This study was to further investigate the molecular mechanism involved in the regulation of IL-7 expression by KGF in the intestine. METHODS: Intestinal epithelial cells (LoVo cells and adult C57BL/6J mice were treated with KGF. Epithelial cell proliferation was studied by flow cytometry for BrdU-incorporation and by immunohistochemistry for PCNA staining. Western blot was used to detect the changes of expression of P-Tyr-STAT1, STAT1, and IL-7 by inhibiting STAT1. Alterations of nuclear extracts and total proteins of IRF-1, IRF-2 and IL-7 following IRF-1 and IRF-2 RNA interference with KGF treatment were also measured with western blot. Moreover, IL-7 mRNA expressions were also detected by Real-time PCR and IL-7 protein level in culture supernatants was measured by enzyme linked immunosorbent assay(ELISA. RESULTS: KGF administration significantly increased LoVo cell proliferation and also increased intestinal wet weight, villus height, crypt depth and crypt cell proliferation in mice. KGF treatment led to increased levels of P-Tyr-STAT1, RAPA and AG490 both blocked P-Tyr-STAT1 and IL-7 expression in LoVo cells. IRF-1 and IRF-2 expression in vivo and in vitro were also up-regulated by KGF, and IL-7 expression was decreased after IRF-1 and IRF-2 expression was silenced by interfering RNA, respectively. CONCLUSION: KGF could up-regulate IL-7 expression through the STAT1/IRF-1, IRF-2 signaling pathway, which is a new insight in potential effects of KGF on the intestinal mucosal immune system.

  8. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury

    OpenAIRE

    Jieshi Xie; Le Yang; Lei Tian; Weiyang Li; Lin Yang; Liying Li

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver an...

  9. Transcription factor Ets-1 inhibits glucose-stimulated insulin secretion of pancreatic β-cells partly through up-regulation of COX-2 gene expression.

    Science.gov (United States)

    Zhang, Xiong-Fei; Zhu, Yi; Liang, Wen-Biao; Zhang, Jing-Jing

    2014-08-01

    Increased cyclooxygenase-2 (COX-2) expression is associated with pancreatic β-cell dysfunction. We previously demonstrated that the transcription factor Ets-1 significantly up-regulated COX-2 gene promoter activity. In this report, we used the pancreatic β-cell line INS-1 and isolated rat islets to investigate whether Ets-1 could induce β-cell dysfunction through up-regulating COX-2 gene expression. We investigated the effects of ETS-1 overexpression and the effects of ETS-1 RNA interference on endogenous COX-2 expression in INS-1 cells. We used site-directed mutagenesis and a dual luciferase reporter assay to study putative Ets-1 binding sites in the COX-2 promoter. The effect of ETS-1 1 overexpression on the insulin secretion function of INS-1 cells and rat islets and the potential reversal of these effects by a COX-2 inhibitor were determined in a glucose-stimulated insulin secretion (GSIS) assay. ETS-1 overexpression significantly induces endogenous COX-2 expression, but ETS-1 RNA interference has no effect on basal COX-2 expression in INS-1 cells. Ets-1 protein significantly increases COX-2 promoter activity through the binding site located in the -195/-186 region of the COX-2 promoter. ETS-1 overexpression significantly inhibited the GSIS function of INS-1 cells and islet cells and COX-2 inhibitor treatment partly reversed this effect. These findings indicated that ETS-1 overexpression induces β-cell dysfunction partly through up-regulation of COX-2 gene expression. Moreover, Ets-1, the transcriptional regulator of COX-2 expression, may be a potential target for the prevention of β-cell dysfunction mediated by COX-2.

  10. Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras–Raf–ERK–Sp1 signaling axis in C6 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kai-Wei [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China); Huang, Yuan-Li [Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan (China); Wong, Zong-Ruei; Su, Peng-Han [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China); Huang, Bu-Miin [Department of Cell Biology and Anatomy, National Cheng-Kung University, Tainan 701, Taiwan (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei 106, Taiwan (China); Technology Commons, College of Life Science, National Taiwan University, Taipei 106, Taiwan (China); Yang, Hsi-Yuan, E-mail: hyhy@ntu.edu.tw [Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan (China)

    2013-05-17

    Highlights: •Nestin expression in C6 glioma cells is induced by FGF-2. •Nestin expression is induced by FGF-2 via de novo RNA and protein synthesis. •The FGFR inhibitor SU5402 blocks the FGF-2-induced nestin expression. •The mRNA of FGFR1 and 3 are detected in C6 glioma cells. •Ras–Raf–ERK–Sp1 signaling pathway is responsibe for FGF-2-induced nestin expression. -- Abstract: Nestin is a 240-kDa intermediate filament protein expressed mainly in neural and myogenic stem cells. Although a substantial number of studies have focused on the expression of nestin during development of the central nervous system, little is known about the factors that induce and regulate its expression. Fibroblast growth factor-2 (FGF-2) is an effective mitogen and stimulates the proliferation and differentiation of a subset of nestin-expressing cells, including neural progenitor cells, glial precursor cells, and smooth muscle cells. To assess whether FGF-2 is a potent factor that induces the expression of nestin, C6 glioma cells were used. The results showed that nestin expression was up-regulated by FGF-2 via de novo RNA and protein synthesis. Our RT-PCR results showed that C6 glioma cells express FGFR1/3, and FGFRs is required for FGF-2-induced nestin expression. Further signaling analysis also revealed that FGF-2-induced nestin expression is mediated through FGFR–MAPK–ERK signaling axis and the transcriptional factor Sp1. These findings provide new insight into the regulation of nestin in glial system and enable the further studies on the function of nestin in glial cells.

  11. Angiotensin II upregulates the expression of placental growth factor in human vascular endothelial cells and smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Guo Yingqiang

    2010-05-01

    Full Text Available Abstract Background Atherosclerosis is now recognized as a chronic inflammatory disease. Angiotensin II (Ang II is a critical factor in inflammatory responses, which promotes the pathogenesis of atherosclerosis. Placental growth factor (PlGF is a member of the vascular endothelial growth factor (VEGF family cytokines and is associated with inflammatory progress of atherosclerosis. However, the potential link between PlGF and Ang II has not been investigated. In the current study, whether Ang II could regulate PlGF expression, and the effect of PlGF on cell proliferation, was investigated in human vascular endothelial cells (VECs and smooth muscle cells (VSMCs. Results In growth-arrested human VECs and VSMCs, Ang II induced PlGF mRNA expression after 4 hour treatment, and peaked at 24 hours. 10-6 mol/L Ang II increased PlGF protein production after 8 hour treatment, and peaked at 24 hours. Stimulation with Ang II also induced mRNA expression of VEGF receptor-1 and -2(VEGFR-1 and -2 in these cells. The Ang II type I receptor (AT1R antagonist blocked Ang II-induced PlGF gene expression and protein production. Several intracellular signals elicited by Ang II were involved in PlGF synthesis, including activation of protein kinase C, extracellular signal-regulated kinase 1/2 (ERK1/2 and PI3-kinase. A neutralizing antibody against PlGF partially inhibited the Ang II-induced proliferation of VECs and VSMCs. However, this antibody showed little effect on the basal proliferation in these cells, whereas blocking antibody of VEGF could suppress both basal and Ang II-induced proliferation in VECs and VSMCs. Conclusion Our results showed for the first time that Ang II could induce the gene expression and protein production of PlGF in VECs and VSMCs, which might play an important role in the pathogenesis of vascular inflammation and atherosclerosis.

  12. Up-regulation of fibroblast growth factor (FGF) 9 expression and FGF-WNT/β-catenin signaling in laser-induced wound healing.

    Science.gov (United States)

    Zheng, Zhenlong; Kang, Hye-Young; Lee, Sunha; Kang, Shin-Wook; Goo, Boncheol; Cho, Sung Bin

    2014-01-01

    Fibroblast growth factor (FGF) 9 is secreted by both mesothelial and epithelial cells, and plays important roles in organ development and wound healing via WNT/β-catenin signaling. The aim of this study was to evaluate FGF9 expression and FGF-WNT/β-catenin signaling during wound healing of the skin. We investigated FGF9 expression and FGF-WNT/β-catenin signaling after laser ablation of mouse skin and adult human skin, as well as in cultured normal human epidermal keratinocytes (NHEKs) upon stimulation with recombinant human (rh) FGF9 and rh-transforming growth factor (TGF)-β1. Our results showed that laser ablation of both mouse skin and human skin leads to marked overexpression of FGF9 and FGF9 mRNA. Control NHEKs constitutively expressed FGF9, WNT7b, WNT2, and β-catenin, but did not show Snail or FGF receptor (FGFR) 2 expression. We also found that FGFR2 was significantly induced in NHEKs by rhFGF9 stimulation, and observed that FGFR2 expression was slightly up-regulated on particular days during the wound healing process after ablative laser therapy. Both WNT7b and WNT2 showed up-regulated protein expression during the laser-induced wound healing process in mouse skin; moreover, we discerned that the stimulatory effect of rhFGF9 and rhTGF-β1 activates WNT/β-catenin signaling via WNT7b in cultured NHEKs. Our data indicated that rhFGF9 and/or rhTGF-β1 up-regulate FGFR2, WNT7b, and β-catenin, but not FGF9 and Snail; pretreatment with rh dickkopf-1 significantly inhibited the up-regulation of FGFR2, WNT7b, and β-catenin. Our results suggested that FGF9 and FGF-WNT/β-catenin signaling may play important roles in ablative laser-induced wound healing processes. © 2014 by the Wound Healing Society.

  13. Ape1/Ref-1 induces glial cell-derived neurotropic factor (GDNF) responsiveness by upregulating GDNF receptor alpha1 expression.

    Science.gov (United States)

    Kim, Mi-Hwa; Kim, Hong-Beum; Acharya, Samudra; Sohn, Hong-Moon; Jun, Jae Yeoul; Chang, In-Youb; You, Ho Jin

    2009-04-01

    Apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) dysregulation has been identified in several human tumors and in patients with a variety of neurodegenerative diseases. However, the function of Ape1/Ref-1 is unclear. We show here that Ape1/Ref-1 increases the expression of glial cell-derived neurotropic factor (GDNF) receptor alpha1 (GFRalpha1), a key receptor for GDNF. Expression of Ape1/Ref-1 led to an increase in the GDNF responsiveness in human fibroblast. Ape1/Ref-1 induced GFRalpha1 transcription through enhanced binding of NF-kappaB complexes to the GFRalpha1 promoter. GFRalpha1 levels correlate proportionally with Ape1/Ref-1 in cancer cells. The knockdown of endogenous Ape1/Ref-1 in pancreatic cancer cells markedly suppressed GFRalpha1 expression and invasion in response to GNDF, while overexpression of GFRalpha1 restored invasion. In neuronal cells, the Ape1/Ref-1-mediated increase in GDNF responsiveness not only stimulated neurite outgrowth but also protected the cells from beta-amyloid peptide and oxidative stress. Our results show that Ape1/Ref-1 is a novel physiological regulator of GDNF responsiveness, and they also suggest that Ape1/Ref-1-induced GFRalpha1 expression may play important roles in pancreatic cancer progression and neuronal cell survival.

  14. Hypoxia-independent upregulation of placental hypoxia inducible factor-1α gene expression contributes to the pathogenesis of preeclampsia.

    Science.gov (United States)

    Iriyama, Takayuki; Wang, Wei; Parchim, Nicholas F; Song, Anren; Blackwell, Sean C; Sibai, Baha M; Kellems, Rodney E; Xia, Yang

    2015-06-01

    Accumulation of hypoxia inducible factor-1α (HIF-1α) is commonly an acute and beneficial response to hypoxia, whereas chronically elevated HIF-1α is associated with multiple disease conditions, including preeclampsia, a serious hypertensive disease of pregnancy. However, the molecular basis underlying the persistent elevation of placental HIF-1α in preeclampsia and its role in the pathogenesis of preeclampsia are poorly understood. Here we report that Hif-1α mRNA and HIF-1α protein were elevated in the placentas of pregnant mice infused with angiotensin II type I receptor agonistic autoantibody, a pathogenic factor in preeclampsia. Knockdown of placental Hif-1α mRNA by specific siRNA significantly attenuated hallmark features of preeclampsia induced by angiotensin II type I receptor agonistic autoantibody in pregnant mice, including hypertension, proteinuria, kidney damage, impaired placental vasculature, and elevated maternal circulating soluble fms-like tyrosine kinase-1 levels. Next, we discovered that Hif-1α mRNA levels and HIF-1α protein levels were induced in an independent preeclampsia model with infusion of the inflammatory cytokine tumor necrosis factor superfamily member 14 (LIGHT). SiRNA knockdown experiments also demonstrated that elevated HIF-1α contributed to LIGHT-induced preeclampsia features. Translational studies with human placentas showed that angiotensin II type I receptor agonistic autoantibody or LIGHT is capable of inducing HIF-1α in a hypoxia-independent manner. Moreover, increased HIF-1α was found to be responsible for angiotensin II type I receptor agonistic autoantibody or LIGHT-induced elevation of Flt-1 gene expression and production of soluble fms-like tyrosine kinase-1 in human villous explants. Overall, we demonstrated that hypoxia-independent stimulation of HIF-1α gene expression in the placenta is a common pathogenic mechanism promoting disease progression. Our findings reveal new insight to preeclampsia and highlight

  15. Epithelium-specific ets transcription factor 2 upregulates cytokeratin 18 expression in pulmonary epithelial cells through an interaction with cytokeratin 18 intron 1

    Institute of Scientific and Technical Information of China (English)

    Deanna YANIW; Jim HU

    2005-01-01

    The role of Ese-2, an Ets family transcription factor, in gene regulation is not known. In this study, the interaction between Ese-2 and cytokeratin 18 (K18) intron 1 was characterized in lung epithelial cells. Reporter gene assays showed Ese-2 was able to upregulate K18 intron 1 enhanced reporter gene expression by approximately 2-fold. We found that full length Ese-2 did not bind DNA strongly, therefore truncated versions of the protein, containing the ETS domain or Pointed domain, were created and tested in electrophoresis mobility shift assays. Multiple interactions between the ETS domain and putative DNA binding sites within K18 intron 1 were observed, which led to the determination of a possible Ese-2 DNA binding consensus sequence. These experiments suggest that Ese-2 could play a role in the regulation of K18 expression in lung epithelial cells.

  16. Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo.

    Science.gov (United States)

    Limjeerajarus, Chalida Nakalekha; Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Pavasant, Prasit

    2014-07-01

    Prostacyclin (PGI2) is a biomolecule capable of enhancing angiogenesis and cellular proliferation. We investigated the influence of a PGI2 analogue (iloprost) on dental pulp revascularization in vitro and in vivo by using human dental pulp cells (HDPCs) and a rat tooth injury model, respectively. Iloprost stimulated the human dental pulp cell mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor (PDGF) in a significant dose-dependent manner. This mRNA up-regulation was significantly inhibited by pretreatment with a PGI2 receptor antagonist and forskolin (a protein kinase A activator). In contrast, a protein kinase A inhibitor significantly enhanced the iloprost-induced mRNA expression of VEGF, FGF-2, and PDGF. Pretreatment with a fibroblast growth factor receptor inhibitor attenuated the VEGF, FGF-2, and PDGF mRNA expression, indicating opposing regulatory mechanisms. The effect of iloprost on the dental pulp was investigated in vivo by using a rat molar pulp injury model. The iloprost-treated group exhibited a significant increase in pulpal blood flow at 72 hours compared with control. The present study indicates that iloprost may be a candidate agent to promote neovascularization in dental pulp tissue, suggesting the potential clinical use of iloprost in vital pulp therapy. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Lactoferrin up-regulates intestinal gene expression of brain-derived neurotrophic factors BDNF, UCHL1 and alkaline phosphatase activity to alleviate early weaning diarrhea in postnatal piglets.

    Science.gov (United States)

    Yang, Changwei; Zhu, Xi; Liu, Ni; Chen, Yue; Gan, Hexia; Troy, Frederic A; Wang, Bing

    2014-08-01

    The molecular mechanisms underlying how dietary lactoferrin (Lf) impacts gut development and maturation and protects against early weaning diarrhea are not well understood. In this study, we supplemented postnatal piglets with an Lf at a dose level of 155 and 285 mg/kg/day from 3 to 38 days following birth. Our findings show that the high dose of Lf up-regulated messenger RNA expression levels of genes encoding brain-derived neurotrophic factor (BDNF) and ubiquitin carboxy-terminal hydrolase L1 (ubiquitin thiolesterase (UCHL1) and, to a lesser extent, glial cell line-derived neurotrophic factor, in the duodenum (Pintestinal alkaline phosphatase activity (Pbrain-microbe axis that has not been previously reported.

  18. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-ling; WEN Liang; CHEN Yan-jiong; ZHU Yi

    2009-01-01

    Background The vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.Methods Bovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).Results Western blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.Conclusion ROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.

  19. Pregnane X Receptor Not Nuclear Factor-kappa B Up-regulates P-glycoprotein Expression in the Brain of Chronic Epileptic Rats Induced by Kainic Acid.

    Science.gov (United States)

    Yu, Nian; Zhang, Yan-Fang; Zhang, Kang; Cheng, Yong-Fei; Ma, Hai-Yan; Di, Qing

    2017-03-16

    Drug-resistance epilepsy (DRE) is attributed to the brain P-glycoprotein (P-gp) overexpression. We previously reported that nuclear factor-kappa B (NF-κB) played a critical role in regulating P-gp expression at the brain of the acute seizure rats. This study was extended further to investigate the interaction effect of NF-κB and pregnane X receptor (PXR) on P-gp expression at the brain of chronic epileptic rats treated with carbamazepine (CBZ). The chronic epileptic models were induced by the micro-injection of kainic acid (KA) into rats' hippocampus. Subsequently, the successful models were treated with different intervention agents of CBZ; PMA(a non-specific PXR activity inhibitor) or PDTC(a specific NF-κB activity inhibitor) respectively. The expression levels of P-gp and its encoded gene mdr1a/b were significantly up-regulated on the brain of KA-induced chronic epilepsy rats or the epilepsy rats treated with CBZ for 1 week, meanwhile with a high expression of PXR. The treatment of PMA dramatically reduced both PXR and P-gp expressions at the protein and mRNA levels in the chronic epilepsy brain. By compared to the epilepsy model group, the P-gp expression was not markedly attenuated by the inhibition of NF-κB activity with PDTC treatment, nevertheless with a decrease of NF-κB expression in this intervention group. Higher levels of proinflammatory cytokines(IL-1β, IL-6, TNF-α) were found both in the brain tissue and the serum in the epilepsy rats of each group. There was a declined trend of the pro-inflammatory cytokines expression of the PDTC treatment group but with no statistical significance. This study demonstrates for the first time that P-gp up-regulation is due to increase PXR expression in the chronic phase of epilepsy, differently from that NF-κB signaling may induce the P-gp expression in the acute seizure phase. Our results offer insights into the mechanism underlying the development of DRE using or not using CBZ treatment.

  20. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    Directory of Open Access Journals (Sweden)

    Tanaka Y

    2016-08-01

    Full Text Available Yohei Tanaka,1,2 Jun Nakayama2 1Department of Plastic Surgery, Clinica Tanaka Plastic, Reconstructive Surgery and Anti-aging Center, 2Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan Background and objective: Humans are increasingly exposed to near-infrared (NIR radiation from both natural (eg, solar and artificial (eg, electrical appliances sources. Although the biological effects of sun and ultraviolet (UV exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues.Materials and methods: DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C. The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths.Results: A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05.Conclusion: We found that NIR irradiation induced the

  1. Up-regulation of Cartilage Oligomeric Matrix Protein Gene Expression by Insulin-like Growth Factor-I Revealed by Real Time Reverse Transcription-Polymerase Chain Reaction

    Institute of Scientific and Technical Information of China (English)

    Hua TIAN; Ioannis STOGIANNIDIS

    2006-01-01

    Cartilage oligomeric matrix protein (COMP) strengthens cartilage by binding to type Ⅱ and typeⅨ collagen-forming bridges between collagen fibrils. It was hypothesized that perhaps one or more anabolic growth factors such as insulin-like growth factor-I (IGF-I), fibroblast growth factor-1 (FGF-1) or platelet derived growth factor-BB (PDGF-BB) increase COMP gene expression. Their effects on primary human chondrocytes and the chondrogenic cell line ATDC5 were studied using real time reverse transcript-polymerase chain reaction (RT-PCR) for quantification. IGF-I, but not the FGF-1 or PDGF-BB, up-regulated COMP gene expression by approximate 5-fold in human adult chondrocytes in a dose- and time-dependent manner. IGF-I exerted similar effects on ATDC5 cells. Results from these real time RT-PCR experiments were confirmed by transfecting into ATDC5 cells a full-length mouse COMP promoter cloned upstream of a luciferase reporter gene. On stimulation with IGF-I, the luciferase reporter activity increased by about eight times. In conclusion, IGF-I seems to be an important positive regulator of COMP, which may play an important role in an attempted repair of either traumatized or degenerated cartilage.

  2. Hepatitis B virus X protein up-regulates tumor necrosis factor-αexpression in cultured mesangial cells via ERKs and NF-κB pathways

    Institute of Scientific and Technical Information of China (English)

    Hong-Zhu Lu; Jian-Hua Zhou

    2013-01-01

    Objective: To investigate the effects of hepatitis B virus (HBV) X protein (HBx) on the expression of tumor necrosis factor-α (TNF-α) in glomerular mesangial cells (GMCs) and the underlying intracellular signal pathways. Methods: The plasmid pCI-neo-X that carries the X gene of hepatitis B virus was transfected into cultured GMCs. HBx expression in the transfected GMCs was assessed by Western-blot. TNF-α protein and mRNA were assessed by ELISA and semi-quantitative RT-PCR, respectively. Three kinase inhibitors-U0126, an inhibitor of extracellular signal-regulated kinases (ERKs);lactacystin, an inhibitor of nuclear factor-κB (NF-κB);and SB203580, a selective inhibitor of p38 MAP kinase (p38 MAPK) were used to determine which intracellular signal pathways may underlie the action of HBx on TNF-αexpression in transfected GMCs. Results:A significant increase in HBx expression in pCI-neo-X transfected GMCs was detected at 36 h and 48 h, which was not affected by any of those kinase inhibitors mentioned above. A similar increase in the expression of both TNF-αprotein and mRNA was also observed at 36 h and 48 h, which was significantly decreased in the presence of U0126 or lactacytin, but not SB203580. Conclusions:HBx upregulates TNF-αexpression in cultured GMCs, possibly through ERKs and NF-κB pathway, but not p38 MAPK pathway.

  3. Chronic stress induces upregulation of brain-derived neurotrophic factor (BDNF) mRNA and integrin alpha5 expression in the rat pineal gland.

    Science.gov (United States)

    Dagnino-Subiabre, Alexies; Zepeda-Carreño, Rodrigo; Díaz-Véliz, Gabriela; Mora, Sergio; Aboitiz, Francisco

    2006-05-01

    Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. Moreover, stress induces deleterious actions on the epithalamic pineal organ, a gland involved in a wide range of physiological functions. The aim of this study was to investigate whether the stress effects on the pineal gland are related with changes in the expression of neurotrophic factors and cell adhesion molecules. Using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, we analyzed the effect of chronic immobilization stress on the BDNF mRNA and integrin alpha5 expression in the rat pineal gland. We found that BDNF is produced in situ in the pineal gland. Chronic immobilization stress induced upregulation of BDNF mRNA and integrin alpha5 expression in the rat pineal gland but did not produce changes in beta-actin mRNA or in GAPDH expression. Stressed animals also evidenced an increase in anxiety-like behavior and acute gastric lesions. These results suggest that BDNF and integrin alpha5 may have a counteracting effect to the deleterious actions of immobilization stress on functionally stimulated pinealocytes. Furthermore, this study proposes that the pineal gland may be a target of glucocorticoid damage during stress.

  4. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Young-Whan [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Oh, Sangtaek [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1

  5. Upregulated gene expression of local brain-derived neurotrophic factor and nerve growth factor after intracisternal administration of marrow stromal cells in rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹; 毛颖; 吴雪海

    2005-01-01

    Objective: To examine the effects of rat marrow stromal cells (rMSCs) on gene expression of local brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) after injection of rMSCs into Cistern Magnum of adult rats subjected to traumatic brain injury(TBI).Results: Group cell transplantation had higher BDNF and NGF gene expressions than Group saline control during a period of less than 3 weeks (P<0.05).Conclusions: rMSCs transplantation via Cistern Magnum in rats subjected to traumatic brain injury can enhance expressions of local brain NGF and BDNF to a certain extent.

  6. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19) by ...... of inflammatory ocular diseases such as uveitis and age-related macular degeneration. --------------------------------------------------------------------------------...

  7. CCL21/CCR7 up-regulate vascular endothelial growth factor-D expression via ERK pathway in human non-small cell lung cancer cells.

    Science.gov (United States)

    Sun, Limei; Zhang, Qingfu; Li, Yang; Tang, Na; Qiu, Xueshan

    2015-01-01

    Lymphangiogenesis has received considerable attention and become a new research hotspot of tumor metastasis. Recently, C-C chemokine receptor 7 (CCR7) is known to promote metastasis of non-small cell lung cancer (NSCLC) cells into lymph nodes. In this study, we investigated the relationship between CCL21/CCR7 and the lymphangiogenic factor vascular endothelial growth factor (VEGF)-D in human lung cancer cells and its impact on patients' prognosis. We found that CCL21/CCR7 increase the expression of VEGF-D in NSCLC Cell Lines through induced ERK1/2 and Akt phosphorylation. In addition, our study found that the expression levels of CCR7 and CCL21 were correlated with VEGF-D, lymphatic vessels density (LVD), clinical stages, lymph node metastasis, and patient Survival in 90 human non-small cell lung cancer (NSCLC) specimens. Taken together, our results provide evidence that CCL21/CCR7 induce VEGF-D up-regulation and promote lymphangiogenesis via ERK/Akt pathway in lung cancer.

  8. Expressions of vascular endothelial growth factor and nitric oxide synthase III in the thyroid gland of ovariectomized rats are upregulated by estrogen and selective estrogen receptor modulators.

    Science.gov (United States)

    de Araujo, Luiz Felipe Bittencourt; Grozovsky, Renata; dos Santos Pereira, Mário José; de Carvalho, Jorge José; Vaisman, Mário; Carvalho, Denise P

    2010-01-01

    Estrogen promotes the growth of thyroid cells. Therefore, we analyzed the influence of estrogen and selective estrogen receptor modulators (SERMs) on the expression of vascular endothelial growth factor (VEGF) and nitric oxide synthase III (NOS III) in the thyroid gland of ovariectomized (Ovx) rats. Wistar rats were divided into five groups, and bilateral ovariectomies were performed, except on the Sham-operated controls (Sham). Rats were grouped as follows: Sham; Ovx; and Ovx rats treated with daily subcutaneous injections of estradiol benzoate 3.5 microg/kg, tamoxifen 2.5 mg/kg, or raloxifene 2.5 mg/kg for 50 consecutive days. Control animals received vehicle (propyleneglycol), and at the end of the treatment, rats were sacrificed. The thyroid glands were excised, weighed, and processed for analysis of the expression of VEGF or NOS III by immunohistochemistry. The mean vascular areas were evaluated by immunodetection of alpha-smooth muscle actin. Thyroid weight and mean vascular area were lower in Ovx as compared with Sham, Ovx + estradiol benzoate, Ovx + Tam, or Ovx + Ral (p estrogen and SERMs regulate the thyroid gland vascularization and that tamoxifen and raloxifene behave like estrogen does. Estrogen and SERMs upregulate VEGF and NOS III in such a way as to reverse the effects detected on the thyroid microvasculature of the Ovx rats.

  9. Photobiomodulation rescues the cochlea from noise-induced hearing loss via upregulating nuclear factor κB expression in rats.

    Science.gov (United States)

    Tamura, Atsushi; Matsunobu, Takeshi; Tamura, Risa; Kawauchi, Satoko; Sato, Shunichi; Shiotani, Akihiro

    2016-09-01

    Photobiomodulation (PBM) is a noninvasive treatment that can be neuroprotective, although the underlying mechanisms remain unclear. In the present study, we assessed the mechanism of PBM as a novel treatment for noise-induced hearing loss, focusing on the nuclear factor (NF)-κB signaling pathway. Sprague-Dawley rats were exposed to 1-octave band noise centered at 4kHz for 5h (121dB). After noise exposure, their right ears were irradiated with an 808nm diode laser beam at an output power density of 165mW/cm(2) for 30min a day for 5 consecutive days. Measurement of the auditory brainstem response revealed an accelerated recovery of auditory function in the groups treated with PBM compared with the non-treatment group at 4, 7, and 14 days after noise exposure. Immunofluorescent image analysis for inducible nitric oxide synthase and cleaved caspase-3 showed lesser immunoreactivities in outer hair cells in the PBM group compared with the non-treatment group. However, immunofluorescent image analysis for NF-κB, an upstream protein of inducible nitric oxide synthase, revealed greater activation in the PBM group compared with the naïve and non-treatment groups. Western blot analysis for NF-κB also showed stronger activation in the cochlear tissues in the PBM group compared with the naïve and non-treatment groups (p<0.01, each). These data suggest that PBM activates NF-κB to induce protection against inducible nitric oxide synthase-triggered oxidative stress and caspase-3-mediated apoptosis that occur following noise-induced hearing loss.

  10. Upregulation of cystathionine beta-synthetase expression by nuclear factor-kappa B activation contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation

    Directory of Open Access Journals (Sweden)

    Li Lin

    2012-12-01

    Full Text Available Abstract Background Irritable bowel syndrome (IBS is characterized by chronic visceral hyperalgesia (CVH that manifested with persistent or recurrent abdominal pain and altered bowel movement. However, the pathogenesis of the CVH remains unknown. The aim of this study was to investigate roles of endogenous hydrogen sulfide (H2S producing enzyme cystathionine beta-synthetase (CBS and p65 nuclear factor-kappa B subunits in CVH. Results CVH was induced by neonatal maternal deprivation (NMD in male rats on postnatal days 2–15 and behavioral experiments were conducted at the age of 7–15 weeks. NMD significantly increased expression of CBS in colon-innervating DRGs from the 7th to 12th week. This change in CBS express is well correlated with the time course of enhanced visceromoter responses to colorectal distention (CRD, an indicator of visceral pain. Administration of AOAA, an inhibitor of CBS, produced a dose-dependent antinociceptive effect on NMD rats while it had no effect on age-matched healthy control rats. AOAA also reversed the enhanced neuronal excitability seen in colon-innervating DRGs. Application of NaHS, a donor of H2S, increased excitability of colon-innervating DRG neurons acutely dissociated from healthy control rats. Intrathecal injection of NaHS produced an acute visceral hyperalgesia. In addition, the content of p65 in nucleus was remarkably higher in NMD rats than that in age-matched controls. Intrathecal administration of PDTC, an inhibitor of p65, markedly reduced expression of CBS and attenuated nociceptive responses to CRD. Conclusion The present results suggested that upregulation of CBS expression, which is mediated by activation of p65, contributes to NMD-induced CVH. This pathway might be a potential target for relieving CVH in patients with IBS.

  11. Transforming growth factor-β stimulates human ovarian cancer cell migration by up-regulating connexin43 expression via Smad2/3 signaling.

    Science.gov (United States)

    Qiu, Xin; Cheng, Jung-Chien; Zhao, Jianfang; Chang, Hsun-Ming; Leung, Peter C K

    2015-10-01

    Reduced connexin43 (Cx43) expression is frequently detected in different types of human cancer. Cx43 has been shown to regulate cancer cell migration in a cell-type dependent manner. In both primary and recurrent human ovarian cancer, overexpression of TGF-β ligand and its receptors have been detected. TGF-β can regulate Cx43 expression in other cell types and stimulate human ovarian cancer cell migration. However, whether Cx43 can be regulated by TGF-β and is involved in TGF-β-stimulated cell migration in human ovarian cancer cells remain unknown. In this study, we demonstrate that TGF-β up-regulates Cx43 in two human ovarian cancer cell lines, SKOV3 and OVCAR4. The stimulatory effect of TGF-β on Cx43 expression is blocked by inhibition of TGF-β receptor. Treatment with TGF-β activates Smad2 and Smad3 signaling pathways in both ovarian cancer cell lines. In addition, siRNA-mediated knockdown of Smad2 or Smd3 abolishes TGF-β-induced up-regulation of Cx43 expression. Moreover, knockdown of Cx43 attenuates TGF-β-stimulated cell migration. This study demonstrates an important role for Cx43 in mediating the effects of TGF-β on human ovarian cancer cell migration.

  12. EP1 Prostanoid Receptor Coupling to Gi/o Up-Regulates the Expression of Hypoxia-Inducible Factor-1α through Activation of a Phosphoinositide-3 Kinase Signaling Pathway

    Science.gov (United States)

    Ji, Ruyue; Chou, Chih-Ling; Xu, Wei; Chen, Xiao-Bo; Woodward, David F.

    2010-01-01

    The EP1 prostanoid receptor is one of four subtypes whose cognate physiological ligand is prostaglandin-E2 (PGE2). It is in the family of G-protein-coupled receptors and is known to activate Ca2+ signaling, although relatively little is known about other aspects of E-type prostanoid receptor (EP) 1 receptor signaling. In human embryonic kidney (HEK) cells expressing human EP1 receptors, we now show that PGE2 stimulation of the EP1 receptor up-regulates the expression of hypoxia-inducible factor-1α (HIF-1α), which can be completely blocked by pertussis toxin, indicating coupling to Gi/o. This up-regulation of HIF-1α occurs under normoxic conditions and could be inhibited with wortmannin, Akt inhibitor, and rapamycin, consistent with the activation of a phosphoinositide-3 kinase/Akt/mammalian target of rapamycin (mTOR) signaling pathway, respectively. In contrast to the hypoxia-induced up-regulation of HIF-1α, which involves decreased protein degradation, the up-regulation of HIF-1α by the EP1 receptor was associated with the phosphorylation of ribosomal protein S6 (rpS6), suggesting activation of the ribosomal S6 kinases and increased translation. Stimulation of endogenous EP1 receptors in human HepG2 hepatocellular carcinoma cells recapitulated the normoxic up-regulation of HIF-1α observed in HEK cells, was sensitive to pertussis toxin, and involved the activation of mTOR signaling and phosphorylation of rpS6. In addition, treatment of HepG2 cells with sulprostone, an EP1-selective agonist, up-regulated the mRNA expression of vascular endothelial growth factor-C, a HIF-regulated gene. HIF-1α is known to promote tumor growth and metastasis and is often up-regulated in cancer. Our findings provide a potential mechanism by which increased PGE2 biosynthesis could up-regulate the expression of HIF-1α and promote tumorigenesis. PMID:20335389

  13. Adenovirus-mediated gene transfer of placental growth factor to perivascular tissue induces angiogenesis via upregulation of the expression of endogenous vascular endothelial growth factor-A

    NARCIS (Netherlands)

    Roy, H; Bhardwaj, S; Babu, M; Jauhiainen, S; Herzig, KH; Bellu, AR; Haisma, HJ; Carmeliet, P; Alitalo, K; Yla-Herttuala, S

    2005-01-01

    Placental growth factor (PIGF) is a member of the vascular endothelial growth factor (VEGF) family that binds specifically to VEGF receptor (VEGFR)-1. However, the mechanism of PIGF- and VEGFR-1-mediated angiogenesis has remained unclear and some in vitro studies suggest that VEGF-A/VEGFR-2

  14. Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1, which modulates the expression and localization of the immediate early protein ICP0

    Directory of Open Access Journals (Sweden)

    Kimura Hiroshi

    2011-05-01

    Full Text Available Abstract Background Herpes simplex viruses (HSVs rapidly shut off macromolecular synthesis in host cells. In contrast, global microarray analyses have shown that HSV infection markedly up-regulates a number of host cell genes that may play important roles in HSV-host cell interactions. To understand the regulatory mechanisms involved, we initiated studies focusing on the zinc finger transcription factor insulinoma-associated 1 (INSM1, a host cell protein markedly up-regulated by HSV infection. Results INSM1 gene expression in HSV-1-infected normal human epidermal keratinocytes increased at least 400-fold 9 h after infection; INSM1 promoter activity was also markedly stimulated. Expression and subcellular localization of the immediate early HSV protein ICP0 was affected by INSM1 expression, and chromatin immunoprecipitation (ChIP assays revealed binding of INSM1 to the ICP0 promoter. Moreover, the role of INSM1 in HSV-1 infection was further clarified by inhibition of HSV-1 replication by INSM1-specific siRNA. Conclusions The results suggest that INSM1 up-regulation plays a positive role in HSV-1 replication, probably by binding to the ICP0 promoter.

  15. 15-deoxy-Delta12,14-prostaglandin J2 up-regulates death receptor 5 gene expression in HCT116 cells: involvement of reactive oxygen species and C/EBP homologous transcription factor gene transcription.

    Science.gov (United States)

    Su, Rong-Ying; Chi, Kwan-Hwa; Huang, Duen-Yi; Tai, Ming-Hui; Lin, Wan-Wan

    2008-10-01

    Although 15-deoxy-Delta(12,14)-prostaglandin J(2) (15dPGJ(2)) was reported to up-regulate death receptor 5 (DR5) protein expression and sensitize TRAIL-induced cytotoxicity, its action mechanism remains unclear. Using HCT116 colon cancer cells, we found that sensitization of TRAIL-induced cytotoxicity by 15dPGJ(2) resulted from up-regulation of DR5 via gene transcription but was not associated with PPAR-gamma activation. Moreover, 15dPGJ(2) induced GRP78, XBP1, and C/EBP homologous transcription factor (CHOP) expression in HCT116 cells, confirming that 15dPGJ(2) is an endoplasmic reticulum stress inducer. Knockdown of the CHOP gene by siRNA attenuated DR5 up-regulation and the sensitized cytotoxicity in colon cancer HCT116 and SW480. With deletion plasmids of DR5 promoters, we found that the CHOP-binding site was involved in activating the DR5 gene by 15dPGJ(2). A mechanistic study showed the contributions of reactive oxygen species (ROS) and intracellular calcium in CHOP and DR5 gene up-regulation. 15dPGJ(2) was also found to induce DR5 in two prostate cancer cell lines, LNCaP and PC3. Although in LNCaP DR5 up-regulation was accompanied by CHOP expression by 15dPGJ(2), no significant increase in CHOP expression or DR5 promoter activity was observed in PC3 cells. Intriguingly, 15dPGJ(2) induced ROS and calcium production in PC3 cells. This inability to induce CHOP was not due to the p53-null in PC3 cells, as similar extents of increase in CHOP protein were found due to 15dPGJ(2) in both wild-type and p53-null HCT116 cells. In summary, the effect of up-regulation of DR5 by 15dPGJ(2) in colon cancer cells is independent of PPAR-gamma and p53 but relies on CHOP induction through gene transcription involving ROS and calcium.

  16. Hepatitis B Virus X Protein Up-Regulates AKR1C1 Expression Through Nuclear Factor-Y in Human Hepatocarcinoma Cells.

    Science.gov (United States)

    Li, Kai; Ding, Shijia; Chen, Ke; Qin, Dongdong; Qu, Jialin; Wang, Sen; Sheng, Yanrui; Zou, Chengcheng; Chen, Limin; Tang, Hua

    2013-01-01

    The hepatitis B virus X (HBx) protein has long been recognized as an important transcriptional transactivator of several genes. Human aldo-keto reductase family 1, member C1 (AKR1C1), a member of the family of AKR1CS, is significantly increased in HBx-expressed cells. This study aimed to investigate the possible mechanism of HBx in regulating AKR1C1 expression in HepG2.2.15 cells and the role of AKR1C1 for HBV-induced HCC. RT-PCR was performed to detect AKR1C1 expression on mRNA level in HepG2 and HepG2.2.15 cell. The promoter activity of AKR1C1 was assayed by transient transfection and Dual-luciferase reporter assay system. The AKR1C1 promoter sequence was screened using the TFSEARCH database and the ALIBABA 2.0 software. The potential transcription factors binding sites were identified using 5' functional deletion analysis and site-directed mutagenesis. In this study, we found that HBx promoted AKR1C1 expression in HepG2.2.15 cells. Knockdown of HBx inhibited AKR1C1 activation. The role of HBx expression in regulating the promoter activity of human AKR1C1 gene was analyzed. The 5'functional deletion analysis identified that the region between -128 and -88 was the minimal promoter region of HBx to activate AKR1C1 gene expression. Site-directed mutagenesis studies suggested that nuclear factor-Y (NF-Y) plays an important role in this HBx-induced AKR1C1 activation. In HepG2.2.1.5 cell, HBx can promote AKR1C1 promoter activity and thus activates the basal transcription of AKR1C1 gene. This process is mediated by the transcription factor NF-Y. This study explored the mechanism for the regulation of HBV on AKR1C1 expression and has provided a new understanding of HBV-induced HCC.

  17. Tumor necrosis factor-alpha upregulates 11beta-hydroxysteroid dehydrogenase type 1 expression by CCAAT/enhancer binding protein-beta in HepG2 cells.

    Science.gov (United States)

    Ignatova, Irena D; Kostadinova, Radina M; Goldring, Christopher E; Nawrocki, Andrea R; Frey, Felix J; Frey, Brigitte M

    2009-02-01

    The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the conversion of inactive to active glucocorticoids. 11beta-HSD1 plays a crucial role in the pathogenesis of obesity and controls glucocorticoid actions in inflammation. Several studies have demonstrated that TNF-alpha increases 11beta-HSD1 mRNA and activity in various cell models. Here, we demonstrate that mRNA and activity of 11beta-HSD1 is increased in liver tissue from transgenic mice overexpressing TNF-alpha, indicating that this effect also occurs in vivo. To dissect the molecular mechanism of this increase, we investigated basal and TNF-alpha-induced transcription of the 11beta-HSD1 gene (HSD11B1) in HepG2 cells. We found that TNF-alpha acts via p38 MAPK pathway. Transient transfections with variable lengths of human HSD11B1 promoter revealed highest activity with or without TNF-alpha in the proximal promoter region (-180 to +74). Cotransfection with human CCAAT/enhancer binding protein-alpha (C/EBPalpha) and C/EBPbeta-LAP expression vectors activated the HSD11B1 promoter with the strongest effect within the same region. Gel shift and RNA interference assays revealed the involvement of mainly C/EBPalpha, but also C/EBPbeta, in basal and only of C/EBPbeta in the TNF-alpha-induced HSD11B1 expression. Chromatin immunoprecipitation assay confirmed in vivo the increased abundance of C/EBPbeta on the proximal HSD11B1 promoter upon TNF-alpha treatment. In conclusion, C/EBPalpha and C/EBPbeta control basal transcription, and TNF-alpha upregulates 11beta-HSD1, most likely by p38 MAPK-mediated increased binding of C/EBPbeta to the human HSD11B1 promoter. To our knowledge, this is the first study showing involvement of p38 MAPK in the TNF-alpha-mediated 11beta-HSD1 regulation, and that TNF-alpha stimulates enzyme activity in vivo.

  18. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression.

    Science.gov (United States)

    Zhou, Chenguang; Li, Chenghao

    2016-01-01

    We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106-a R2R3-MYB transcription factor-upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis.

  19. Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration

    DEFF Research Database (Denmark)

    Hjortoe, Gertrud M; Petersen, Lars C; Albrektsen, Tatjana

    2004-01-01

    in these processes. To elucidate the potential mechanisms by which TF contributes to tumor invasion and metastasis, we investigated the effect of FVIIa on IL-8 expression and cell migration in a breast carcinoma cell line, MDA-MB-231, a cell line that constitutively expresses abundant TF. Expression of IL-8 m......RNA in MDA-MB-231 cells was markedly up-regulated by plasma concentrations of FVII or an equivalent concentration of FVIIa (10 nM). Neither thrombin nor other proteases involved in hemostasis were effective in stimulating IL-8 in these cells. Increased transcriptional activation of the IL-8 gene...

  20. Transcriptional factor HBP1 targets P16(INK4A), upregulating its expression and consequently is involved in Ras-induced premature senescence.

    Science.gov (United States)

    Li, H; Wang, W; Liu, X; Paulson, K E; Yee, A S; Zhang, X

    2010-09-09

    Oncogene-mediated premature senescence has emerged as a potential tumor-suppressive mechanism in early cancer transitions. Many studies showed that Ras and p38 mitogen-activated protein kinase (MAPK) participate in premature senescence. Our previous work indicated that the HMG box-containing protein 1 (HBP1) transcription factor is involved in Ras- and p38 MAPK-induced premature senescence, but the mechanism of which has not yet been identified. Here, we showed that the p16(INK4A) cyclin-dependent kinase inhibitor is a novel target of HBP1 participating in Ras-induced premature senescence. The promoter of the p16(INK4A) gene contains an HBP1-binding site at position -426 to -433 bp from the transcriptional start site. HBP1 regulates the expression of the endogenous p16(INK4A) gene through direct sequence-specific binding. With HBP1 expression and the subsequent increase of p16(INK4A) gene expression, Ras induces premature senescence in primary cells. The data suggest a model in which Ras and p38 MAPK signaling engage HBP1 and p16(INK4A) to trigger premature senescence. In addition, we report that HBP1 knockdown is also required for Ras-induced transformation. All the data indicate that the mechanism of HBP1-mediated transcriptional regulation is important for not only premature senescence but also tumorigenesis.

  1. microRNA-142 is upregulated by tumor necrosis factor-alpha and triggers apoptosis in human gingival epithelial cells by repressing BACH2 expression

    Science.gov (United States)

    Li, Song; Song, Zhongchen; Dong, Jiachen; Shu, Rong

    2017-01-01

    Tumor necrosis factor-alpha (TNF-α) has been shown to cause apoptosis of gingival epithelial cells (GECs) in periodontitis. However, the underlying molecular mechanism is still unclear. In this study, we showed that miR-142 expression was significantly elevated in human GECs after exposure to TNF-α. Such induction was in a time- and concentration-dependent manner. Serum miR-142 levels were positively correlated with serum TNF-α levels in patients with chronic periodontitis (r = 0.314, P = 0.0152). Depletion of miR-142 was found to attenuate TNF-α-induced apoptosis, as determined by TUNEL staining and caspase-3 activity assays. In contrast, overexpression of miR-142 significantly reduced viability and induced apoptosis in GECs. Basic leucine zipper transcription factor 2 (BACH2) was identified to be a functional target of miR-142. Overexpression of miR-142 caused a 3-fold reduction of BACH2 protein in primary GECs. Overexpression of BACH2 significantly reversed miR-142- or TNF-α-induced apoptosis of GECs. Similar to the findings with miR-142 mimic, depletion of BACH2 significantly promoted apoptosis in GECs, which was accompanied by decreased expression of Bcl-2 and Bcl-xL and increased expression of Bax and Bim. Overall, miR-142 mediates TNF-α-induced apoptosis in gingival epithelial cells by targeting BACH2 and may represent a potential therapeutic target for periodontitis. PMID:28123644

  2. beta-Tryptase up-regulates vascular endothelial growth factor expression via proteinase-activated receptor-2 and mitogen-activated protein kinase pathways in bone marrow stromal cells in acute myeloid leukemia.

    Science.gov (United States)

    Yang, Xiu-Peng; Li, Yan; Wang, Yazhu; Wang, Yue; Wang, Pingping

    2010-08-01

    Tryptases are predominantly mast cell-specific serine proteases with pleiotropic biological activities. Recently, significant amounts of tryptases have been shown to be produced by myeloblasts in certain patients with acute myeloid leukemia (AML), but the function of secreted tryptases in pathological circumstances remains unknown. In this study, we investigated whether beta-tryptase affects the expression of vascular endothelial growth factor (VEGF) in bone marrow stromal cells (BMSCs) in AML. We detected the expression of proteinase-activated receptor-2 (PAR-2) on AML BMSCs and found that beta-tryptase significantly up-regulated VEGF mRNA and protein expression in a dose-dependent manner by real-time PCR, Western blot, and ELISA. Furthermore, beta-tryptase increased ERK1/2 and p38MAPK phosphorylation, and pretreatment with FLLSY-NH(2), PD98059, and SB230580 (PAR-2, ERK1/2, and p38MAPK inhibitors, respectively) inhibited the beta-tryptase-induced production of VEGF. These results suggest that beta-tryptase up-regulates VEGF production in AML BMSCs via the PAR-2, ERK1/2, and p38MAPK signaling pathways.

  3. Tissue inhibitor of metalloproteinase-3 is up-regulated by transforming growth factor-beta1 in vitro and expressed in fibroblastic foci in vivo in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    García-Alvarez, Jorge; Ramirez, Remedios; Checa, Marco; Nuttall, Robert K; Sampieri, Clara L; Edwards, Dylan R; Selman, Moisés; Pardo, Annie

    2006-05-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by fibroblast expansion and extracellular matrix accumulation. However, the mechanisms involved in matrix remodeling have not been elucidated. In this study, the authors aimed to evaluate the expression of the tissue inhibitors of matrix metalloproteinases (TIMPs) in human fibroblasts and whole tissues from IPF and normal lungs. They also determined the role of mitogen-activated protein kinase (MAPK) in TIMP3 expression. TIMP1, TIMP2, and TIMP3 were highly expressed in lung fibroblasts. Transforming growth factor (TGF)-beta1, a profibrotic mediator, induced strong up-regulation of TIMP3 at the mRNA and protein levels. The authors examined whether the MAPK pathway was involved in TGF-beta1-induced TIMP3 expression. TGF-beta1 induced the phosphorylation of p38 and extracellular signal-regulated kinase (ERK)1/2. Biochemical blockade of p38 by SB203580, but not of the ERK MAPK pathway, inhibited the effect of this factor. The effect was also blocked by the tyrosine kinase inhibitor genistein and by antagonizing TGF-beta1 receptor type I (activin-linked kinase [ALK5]). In IPF tissues TIMP3 gene expression was significantly increased and the protein was localized to fibroblastic foci and extracellular matrix. Our findings suggest that TGF-beta1-induced TIMP3 may be an important mediator in lung fibrogenesis.

  4. Heparanase expression upregulates platelet adhesion activity and thrombogenicity

    Science.gov (United States)

    Österholm, Cecilia; Zhang, Xiao; Hedin, Ulf; Vlodavsky, Israel; Li, Jin-Ping

    2016-01-01

    Heparanase is an endo-glucuronidase that specifically cleaves heparan sulfate (HS) and heparin polysaccharides. The enzyme is expressed at low levels in normal tissues, but is often upregulated under pathological conditions such as cancer and inflammation. Normal human platelets express exceptionally high levels of heparanase, but the functional consequences of this feature remain unknown. We investigated functional roles of heparanase by comparing the properties of platelets expressing high (Hpa-tg) or low (Ctr) levels of heparanase. Upon activation, Hpa-tg platelets exhibited a much stronger adhesion activity as compared to Ctr platelets, likely contributing to a higher thrombotic activity in a carotid thrombosis model. Furthermore, we found concomitant upregulated expression of both heparanase and CD62P (P-selectin) upon activation of mouse and human platelets. As platelets play important roles in tumor metastasis, these findings indicate contribution of the platelet heparanase to hyper-thrombotic conditions often seen in patients with metastatic cancer. PMID:27129145

  5. Oct-2 transcription factor binding activity and expression up-regulation in rat cerebral ischaemia is associated with a diminution of neuronal damage in vitro.

    Science.gov (United States)

    Camós, Susanna; Gubern, Carme; Sobrado, Mónica; Rodríguez, Rocío; Romera, Víctor G; Moro, María Ángeles; Lizasoain, Ignacio; Serena, Joaquín; Mallolas, Judith; Castellanos, Mar

    2014-06-01

    Brain plasticity provides a mechanism to compensate for lesions produced as a result of stroke. The present study aims to identify new transcription factors (TFs) following focal cerebral ischaemia in rat as potential therapeutic targets. A transient focal cerebral ischaemia model was used for TF-binding activity and TF-TF interaction profile analysis. A permanent focal cerebral ischaemia model was used for the transcript gene analysis and for the protein study. The identification of TF variants, mRNA analysis, and protein study was performed using conventional polymerase chain reaction (PCR), qPCR, and Western blot and immunofluorescence, respectively. Rat cortical neurons were transfected with small interfering RNA against the TF in order to study its role. The TF-binding analysis revealed a differential binding activity of the octamer family in ischaemic brain in comparison with the control brain samples both in acute and late phases. In this study, we focused on Oct-2 TF. Five of the six putative Oct-2 transcript variants are expressed in both control and ischaemic rat brain, showing a significant increase in the late phase of ischaemia. Oct-2 protein showed neuronal localisation both in control and ischaemic rat brain cortical slices. Functional studies revealed that Oct-2 interacts with TFs involved in important brain processes (neuronal and vascular development) and basic cellular functions and that Oct-2 knockdown promotes neuronal injury. The present study shows that Oct-2 expression and binding activity increase in the late phase of cerebral ischaemia and finds Oct-2 to be involved in reducing ischaemic-mediated neuronal injury.

  6. Progesterone Upregulates Gene Expression in Normal Human Thyroid Follicular Cells

    Directory of Open Access Journals (Sweden)

    Ana Paula Santin Bertoni

    2015-01-01

    Full Text Available Thyroid cancer and thyroid nodules are more prevalent in women than men, so female sex hormones may have an etiological role in these conditions. There are no data about direct effects of progesterone on thyroid cells, so the aim of the present study was to evaluate progesterone effects in the sodium-iodide symporter NIS, thyroglobulin TG, thyroperoxidase TPO, and KI-67 genes expression, in normal thyroid follicular cells, derived from human tissue. NIS, TG, TPO, and KI-67 mRNA expression increased significantly after TSH 20 μUI/mL, respectively: 2.08 times, P<0.0001; 2.39 times, P=0.01; 1.58 times, P=0.0003; and 1.87 times, P<0.0001. In thyroid cells treated with 20 μUI/mL TSH plus 10 nM progesterone, RNA expression of NIS, TG, and KI-67 genes increased, respectively: 1.78 times, P<0.0001; 1.75 times, P=0.037; and 1.95 times, P<0.0001, and TPO mRNA expression also increased, though not significantly (1.77 times, P=0.069. These effects were abolished by mifepristone, an antagonist of progesterone receptor, suggesting that genes involved in thyroid cell function and proliferation are upregulated by progesterone. This work provides evidence that progesterone has a direct effect on thyroid cells, upregulating genes involved in thyroid function and growth.

  7. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    Science.gov (United States)

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1.

  8. MDP Up-Regulates the Gene Expression of Type I Interferons in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xiumei Xie

    2012-03-01

    Full Text Available Muramyldipeptide (MDP, the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2. Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  9. MDP up-regulates the gene expression of type I interferons in human aortic endothelial cells.

    Science.gov (United States)

    Lv, Qingshan; Yang, Mei; Liu, Xueting; Zhou, Lina; Xiao, Zhilin; Chen, Xiaobin; Chen, Meifang; Xie, Xiumei; Hu, Jinyue

    2012-03-23

    Muramyldipeptide (MDP), the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2). Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs) with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF) 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  10. Ezrin Inhibition Up-regulates Stress Response Gene Expression*

    Science.gov (United States)

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T.; Minas, Tsion Z.; Conn, Erin J.; Hong, Sung-Hyeok; Pauly, Gary T.; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A.; Toretsky, Jeffrey A.; Üren, Aykut

    2016-01-01

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  11. Upregulation of IGF-1R expression during neoadjuvant therapy predicts poor outcome in breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Sandra Heskamp

    Full Text Available The insulin-like growth factor 1 receptor (IGF-1R may be involved in the development of resistance against conventional cancer treatment. The aim of this study was to assess whether IGF-1R expression of breast tumors changes during neoadjuvant therapy and to study whether these changes were associated with survival.Paraffin embedded tumor tissue was collected from pretreatment biopsies and surgical resections of 62 breast cancer patients who were treated with neoadjuvant chemotherapy or endocrine therapy. IGF-1R expression was determined immunohistochemically and compared before and after treatment.High membranous IGF-1R expression at diagnosis correlated significantly with ER positivity, low tumor stage (stage I/II and longer overall survival (p < 0.05. After neoadjuvant treatment, membranous IGF-1R expression remained the same in 41 (65% tumors, was upregulated in 11 (18% tumors and downregulated in 11 (18% tumors. Changes in membranous IGF-1R expression were associated with overall survival (log-rank test: p = 0.013, multivariate cox-regression: p = 0.086. Mean overall survival time for upregulation, no change, and downregulation in IGF-1R expression was 3.0 ± 0.5 years, 7.3 ± 1.0 years and 15.0 ± 1.8 years, respectively. Changes in other parameters were not significantly associated with survival.Neoadjuvant therapy can induce changes in IGF-1R expression. Upregulation of IGF-1R expression after neoadjuvant treatment is a poor prognostic factor in breast cancer patients, providing a rationale for incorporating anti-IGF-1R drugs in the management of these patients.

  12. Osteopontin Upregulates the Expression of Glucose Transporters in Osteosarcoma Cells

    Science.gov (United States)

    Hsieh, I-Shan; Yang, Rong-Sen; Fu, Wen-Mei

    2014-01-01

    Osteosarcoma is the most common primary malignancy of bone. Even after the traditional standard surgical therapy, metastasis still occurs in a high percentage of patients. Glucose is an important source of metabolic energy for tumor proliferation and survival. Tumors usually overexpress glucose transporters, especially hypoxia-responsive glucose transporter 1 and glucose transporter 3. Osteopontin, hypoxia-responsive glucose transporter 1, and glucose transporter 3 are overexpressed in many types of tumors and have been linked to tumorigenesis and metastasis. In this study, we investigated the regulation of glucose transporters by osteopontin in osteosarcoma. We observed that both glucose transporters and osteopontin were upregulated in hypoxic human osteosarcoma cells. Endogenously released osteopontin regulated the expression of glucose transporter 1 and glucose transporter 3 in osteosarcoma and enhanced glucose uptake into cells via the αvβ3 integrin. Knockdown of osteopontin induced cell death in 20% of osteosarcoma cells. Phloretin, a glucose transporter inhibitor, also caused cell death by treatment alone. The phloretin-induced cell death was significantly enhanced in osteopontin knockdown osteosarcoma cells. Combination of a low dose of phloretin and chemotherapeutic drugs, such as daunomycin, 5-Fu, etoposide, and methotrexate, exhibited synergistic cytotoxic effects in three osteosarcoma cell lines. Inhibition of glucose transporters markedly potentiated the apoptotic sensitivity of chemotherapeutic drugs in osteosarcoma. These results indicate that the combination of a low dose of a glucose transporter inhibitor with cytotoxic drugs may be beneficial for treating osteosarcoma patients. PMID:25310823

  13. Helicobacter pylori upregulates the expression of p16(INK4) in gastric cancer cells.

    Science.gov (United States)

    Wang, Ping; Mei, Juan; Zhang, Ning; Tao, Jing; Tian, Hua; Fu, Guo-Hui

    2011-01-01

    Previous studies have suggested that p16(INK4) protein is over expressed in gastric cancer. However, whether H. pylori infection induces p16(INK4) in human gastric epithelial cells remains to be determined. The aim of this study was to analyze the molecular mechanism of H. pylori-induced p16(INK4) expression. Expression of p16(INK4) mRNA and Sp1 mRNA were assessed by reverse transcription-PCR. Expression of p16(INK4) protein was assessed by Western blot and immunocytochemistry. A luciferase assay was used to monitor activation of the p16(INK4) gene promoter and to explore the binding of transcription factors to this promoter. H. pylori upregulates the expression of p16(INK4) in gastric cancer SGC7901 cells. p16 promoter is highly actived in SGC7901 cells by H. pylori. Sp1 activates the expression of p16(INK4)-Luc and promotes the protein level of p16(INK4). H. pylori upregulates the expression of p16(INK4) in gastric cancer SGC7901 cells via the p16(INK4) promoter, and Sp1 is involved in the activation of p16(INK4) promoter by H. pylori.

  14. Helicobacter pylori upregulates prion protein expression in gastric mucosa: A possible link to prion disease

    Institute of Scientific and Technical Information of China (English)

    Peter C Konturek; Karolina Bazela; Vitaliy Kukharskyy; Michael Bauer; Eckhart G Hahn; Detlef Schuppan

    2005-01-01

    AIM: Pathological prion protein (PrPSC) is responsible for the development of transmissible spongiform encephalopathies (TSE). While PrPc enters the organism via the oral route, less data is available to know about its uptake and the role of gastrointestinal inflammation on the expression of prion precursor PrPc, which is constitutively expressed in the gastric mucosa.METHODS: We studied PrPc expression in the gastric mucosa of 10 Helicobacter pylori-positive patients before and after successful H pylori eradication compared to non-infected controls using RT-PCR and Western blotting.The effect of central mediators of gastric inflammation,i.e., gastrin, prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) on PrPc expression was analyzed in gastric cell lines.RESULTS: PrPc expression was increased in H pyloriinfection compared with non-infected controls and decreased to normal after successful eradication. Gastrin,PGE2, and IL-1β dose-dependently upregulated PrPc in gastric cells, while TNF-α had no effect.CONCLUSION: H pylori infection leads to the upregulation of gastric PrPc expression. This can be linked to H pylori induced hypergastrinemia and increased mucosal PGE2 and IL-1β synthesis.H pylori creates a milieu for enhanced propagation of prions in the gastrointestinal tract.

  15. Promoter hypomethylation and upregulation of trefoil factors in prostate cancer

    DEFF Research Database (Denmark)

    Vestergaard, Else Marie; Nexø, Ebba; Tørring, Niels;

    2010-01-01

    . In clinical samples, methylation of the promoter/enhancer regions of TFF1 and TFF3 was significantly lower in PC compared to benign prostatic hyperplasia. The present study shows an inverse relation between promoter methylation and expression of trefoil factors. Preliminary analysis on clinical samples...... cell lines with significant TFF expression as compared to benign immortalized prostate cell lines and PC cell lines not expressing trefoil factor. The most striking difference was observed for CpG sites located close to the AUG start codon overlapping several putative binding sites for cellular......Trefoil factors, mucin-associated peptides, are overexpressed in prostate cancer (PC). We hypothesized that promoter methylation contributes to the regulation of trefoil factors (TFF1, TFF2 and TFF3) in human prostate cells. Here we show hypomethylation of promoter regions of TFF1 and TFF3 in PC...

  16. Human Papillomavirus 16 E6 Upregulates APOBEC3B via the TEAD Transcription Factor.

    Science.gov (United States)

    Mori, Seiichiro; Takeuchi, Takamasa; Ishii, Yoshiyuki; Yugawa, Takashi; Kiyono, Tohru; Nishina, Hiroshi; Kukimoto, Iwao

    2017-03-15

    The cytidine deaminase APOBEC3B (A3B) underlies the genetic heterogeneity of several human cancers, including cervical cancer, which is caused by human papillomavirus (HPV) infection. We previously identified a region within the A3B promoter that is activated by the viral protein HPV16 E6 in human keratinocytes. Here, we discovered three sites recognized by the TEAD family of transcription factors within this region of the A3B promoter. Reporter assays in HEK293 cells showed that exogenously expressed TEAD4 induced A3B promoter activation through binding to these sites. Normal immortalized human keratinocytes expressing E6 (NIKS-E6) displayed increased levels of TEAD1/4 protein compared to parental NIKS. A series of E6 mutants revealed that E6-mediated degradation of p53 was important for increasing TEAD4 levels. Knockdown of TEADs in NIKS-E6 significantly reduced A3B mRNA levels, whereas ectopic expression of TEAD4 in NIKS increased A3B mRNA levels. Finally, chromatin immunoprecipitation assays demonstrated increased levels of TEAD4 binding to the A3B promoter in NIKS-E6 compared to NIKS. Collectively, these results indicate that E6 induces upregulation of A3B through increased levels of TEADs, highlighting the importance of the TEAD-A3B axis in carcinogenesis.IMPORTANCE The expression of APOBEC3B (A3B), a cellular DNA cytidine deaminase, is upregulated in various human cancers and leaves characteristic, signature mutations in cancer genomes, suggesting that it plays a prominent role in carcinogenesis. Viral oncoproteins encoded by human papillomavirus (HPV) and polyomavirus have been reported to induce A3B expression, implying the involvement of A3B upregulation in virus-associated carcinogenesis. However, the molecular mechanisms causing A3B upregulation remain unclear. Here, we demonstrate that exogenous expression of the cellular transcription factor TEAD activates the A3B promoter. Further, the HPV oncoprotein E6 increases the levels of endogenous TEAD1

  17. γ-Tocotrienol upregulates aryl hydrocarbon receptor expression and enhances the anticancer effect of baicalein

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Shuya; Baba, Kiwako; Makio, Akiko; Kumazoe, Motofumi; Huang, Yuhui; Lin, I-Chian; Bae, Jaehoon; Murata, Motoki; Yamada, Shuhei; Tachibana, Hirofumi, E-mail: tatibana@agr.kyushu-u.ac.jp

    2016-05-13

    Previous studies have identified biomolecules that mediate the physiological actions of food factors, such as amino acids, vitamins, fatty acids, minerals, plant polyphenols, and lactobacilli, suggesting that our bodies are equipped with an innate system that senses which food factors are required to maintain our health. However, the effects of environmental factors on food factor sensing (FFS) remains largely unknown. Tocotorienols (T3s), which belongs to the vitamin E family, possess several physiological functions, including cholesterol lowering and neuroprotective effects. Here, we investigated the effects of naturally abundant γ-T3 on FFS-related gene expressions in melanoma using a DNA chip. Our results showed that γ-T3 increased the expression level of aryl hydrocarbon receptor (AhR), a sensing molecule to plant polyphenol baicalein. The co-treatment with γ-T3 and baicalein enhanced the anti-proliferative activity of baicalein, accompanied by the downstream events of AhR-activation induced by baicalein. These data suggest that γ-T3 upregulates AhR expression and enhances its sensitivity to baicalein. - Highlights: • γ-T3 upregulated the expression of AhR in mouse melanoma. • Promotion of the binding activity of Sp1 is associated with the increasing effect of γ-T3 on AhR expression. • γ-T3 enhanced the anti-proliferative activity of baicalein that has an AhR ligand activity. • γ-T3 enhanced the inducing activity of baicalein on the expression of AhR target genes.

  18. Upregulation of neurokinin-1 receptor expression in the lungs of patients with sarcoidosis.

    LENUS (Irish Health Repository)

    O'Connor, Terence M

    2012-02-03

    Substance P (SP) is a proinflammatory neuropeptide that is secreted by sensory nerves and inflammatory cells. Increased levels of SP are found in sarcoid bronchoalveolar lavage fluid. SP acts by binding to the neurokinin-1 receptor and increases secretion of tumor necrosis factor-alpha in many cell types. We sought to determine neurokinin-1 receptor expression in patients with sarcoidosis compared with normal controls. Neurokinin-1 receptor messenger RNA and protein expression were below the limits of detection by reverse transcriptase-polymerase chain reaction and immunohistochemistry in peripheral blood mononuclear cells of healthy volunteers (n = 9) or patients with stage 1 or 2 pulmonary sarcoidosis (n = 10), but were detected in 1\\/9 bronchoalveolar lavage cells of controls compared with 8\\/10 patients with sarcoidosis (p = 0.012) and 2\\/9 biopsies of controls compared with 9\\/10 patients with sarcoidosis (p = 0.013). Immunohistochemistry localized upregulated neurokinin-1 receptor expression to bronchial and alveolar epithelial cells, macrophages, lymphocytes, and sarcoid granulomas. The patient in whom neurokinin-1 receptor was not detected was taking corticosteroids. Incubation of the type II alveolar and bronchial epithelial cell lines A549 and SK-LU 1 with dexamethasone downregulated neurokinin-1 receptor expression. Upregulated neurokinin-1 receptor expression in patients with sarcoidosis may potentiate substance P-induced proinflammatory cytokine production in patients with sarcoidosis.

  19. Functional upregulation of system xc- by fibroblast growth factor-2.

    Science.gov (United States)

    Liu, Xiaoqian; Resch, Jon; Rush, Travis; Lobner, Doug

    2012-02-01

    The cystine/glutamate antiporter (system xc-) is a Na(+)-independent amino acid transport system. Disruption of this system may lead to multiple effects in the CNS including decreased cellular glutathione. Since multiple neurological diseases involve glutathione depletion, and disruption of growth factor signaling has also been implicated in these diseases, it is possible that some growth factors effects are mediated by regulation of system xc-. We tested the growth factors fibroblast growth factor-2 (FGF-2), insulin-like growth factor-1 (IGF-1), neuregulin-1 (NRG), neurotrophin-4 (NT-4), and brain derived neurotrophic factor (BDNF) on system xc- mediated 14C-cystine uptake in mixed neuronal and glial cortical cultures. Only FGF-2 significantly increased cystine uptake. The effect was observed in astrocyte-enriched cultures, but not in cultures of neurons or microglia. The increase was blocked by the system xc- inhibitor (s)-4-carboxyphenylglycine, required at least 12 h FGF-2 treatment, and was prevented by the protein synthesis inhibitor cycloheximide. Kinetic analysis indicated FGF-2 treatment increased the V(max) for cystine uptake while the K(m) remained the same. Quantitative PCR showed an increase in mRNA for xCT, the functional subunit of system xc-, beginning at 3 h of FGF-2 treatment, with a dramatic increase after 12 h. Blocking FGFR1 with PD 166866 blocked the FGF-2 effect. Treatment with a PI3-kinase inhibitor (LY-294002) or a MEK/ERK inhibitor (U0126) for 1 h prior to and during the FGF-2 treatment, each partially blocked the increased cystine uptake. The upregulation of system xc- by FGF-2 may be responsible for some of the known physiological actions of FGF-2. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  20. DNA demethylation upregulated Nrf2 expression in Alzheimer's disease cellular model

    Directory of Open Access Journals (Sweden)

    Huimin eCao

    2016-01-01

    Full Text Available Nuclear factor erythroid 2-related factor 2 (Nrf2 is an important transcription factor in the defense against oxidative stress. Cumulative evidence has shown that oxidative stress plays a key role in the pathogenesis of Alzheimer's disease (AD. Previous animal and clinical studies had observed decreased expression of Nrf2 in AD. However, the underlying regulation mechanisms of Nrf2 in AD remain unclear. Here, we used the DNA methyltransferases (Dnmts inhibitor 5-aza-2′-deoxycytidine (5-Aza to test whether Nrf2 expression was regulated by methylation in N2a cells characterizing by expressing human Swedish mutant amyloid precursor protein (N2a/APPswe. We found 5-Aza treatment increased Nrf2 at both mRNA and protein levels via down-regulating the expression of Dnmts and DNA demethylation. In addition, 5-Aza mediated upregulation of Nrf2 expression was concomitant with increased nuclear translocation of Nrf2 and higher expression of Nrf2 downstream target gene NAD(PH:quinone oxidoreductas (NQO1. Our study showed that DNA demethylation promoted the Nrf2 cell signaling pathway, which may enhance the antioxidant system against AD development.

  1. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Zheng, Lemin [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing 100191 (China); Zhou, Boda [The Department of Cardiology, Peking University Third Hospital, Beijing 100191 (China); Zhang, Wei; Lv, He [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Yuan, Yun, E-mail: yuanyun2002@sohu.com [Department of Neurology, Peking University First Hospital, Beijing 100034 (China)

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.

  2. Acute leptin exposure reduces megalin expression and upregulates TGFβ1 in cultured renal proximal tubule cells.

    Science.gov (United States)

    Briffa, Jessica F; Grinfeld, Esther; Mathai, Michael L; Poronnik, Phillip; McAinch, Andrew J; Hryciw, Deanne H

    2015-02-05

    Increased leptin concentrations observed in obesity can lead to proteinuria, suggesting that leptin may play a role in obesity-related kidney disease. Obesity reduces activation of AMP-activated protein kinase (AMPK) and increases transforming growth factor-β1 (TGF-β1) expression in the kidney, leading to albuminuria. Thus we investigated if elevated leptin altered AMPK and TGF-β1 signaling in proximal tubule cells (PTCs). In opossum kidney (OK) PTCs Western blot analysis demonstrated that leptin upregulates TGF-β1 secretion (0.50 µg/ml) and phosphorylated AMPKα (at 0.25, and 0.50 µg/ml), and downregulates megalin expression at all concentrations (0.05-0.50 µg/ml). Using the AMPK inhibitor, Compound C, leptin exposure regulated TGF-β1 expression and secretion in PTCs via an AMPK mediated pathway. In addition, elevated leptin exposure (0.50 µg/ml) reduced albumin handling in OK cells independently of megalin expression. This study demonstrates that leptin upregulates TGF-β1, reduces megalin, and reduces albumin handling in PTCs by an AMPK mediated pathway.

  3. HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling.

    Science.gov (United States)

    Huang, Qingsong; Niu, Zhiguo; Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang

    2017-08-01

    Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target.

  4. WISP-1 overexpression upregulates cell proliferation in human salivary gland carcinomas via regulating MMP-2 expression

    Science.gov (United States)

    Li, Fu-Jun; Wang, Xin-Juan; Zhou, Xiao-Li

    2016-01-01

    Background WISP-1 is a member of the CCN family of growth factors and has been reported to play an important role in tumorigenesis by triggering downstream events via integrin signaling. However, little is known about the role of WISP-1 in proliferation of salivary gland carcinoma (SGC) cells. Methods In this study, we investigated the WISP-1 expression in SGC tissues via immunohistochemical staining, Western blotting assay, and real-time quantitative polymerase chain reaction method, and then evaluated the regulatory role of WISP-1 in the growth of SGC A-253 cells. In addition, the role of MMP-2 in the WISP-1-mediated growth regulation was also investigated. Results It was demonstrated that the WISP-1 expression was upregulated at both mRNA and protein levels in 15 of 21 SGC tumor tissues, compared to the non-tumor tissues (five of 21), associated with the lymph node dissection and bone invasion. The in vitro CCK-8 assay and colony-forming assay demonstrated that the exogenous WISP-1 treatment or the WISP-1 overexpression promoted the growth of A-253 cells. In addition, we confirmed that the WISP-1 overexpression upregulated the MMP-2 expression in A-253 cells with the gain-of-function and loss-of-function strategies, and that the MMP-2 knockdown attenuated the WISP-1-mediated growth promotion of A-253 cells. Conclusion We found that WISP-1 was overexpressed in the human SGCs, and the WISP-1 overexpression promoted the salivary gland cell proliferation via upregulating MMP-2 expression. Our study recognized the oncogenic role of WISP-1 in human SGCs, which could serve as a potential target for anticancer therapy. PMID:27799801

  5. Upregulation of epidermal growth factor receptor 4 in ora leukoplakia

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Kobayashi; Kenichi Kumagai; Akito Gotoh; Takanori Eguchi; Hiroyuki Yamada; Yoshiki Hamada; Satsuki Suzuki; Ryuji Suzuki

    2013-01-01

    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ ErbB 1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP), The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP.

  6. Dermatofibroma: upregulation of syndecan-1 expression in mesenchymal tissue.

    Science.gov (United States)

    Sellheyer, Klaus; Smoller, Bruce R

    2003-10-01

    Cell surface proteoglycans play a prominent role in tissue remodeling and homeostasis. Syndecans, their most prominent members, act by binding to growth factors and interstitial matrix molecules. They, thereby, modulate the effect of the primary ligand-receptor interaction at the cell membrane by increasing the affinity of cell-ligand interactions. Additionally, they influence the strength of cell-cell and cell-matrix interactions. Syndecan-1 is the prototypical member of this family of proteins. Under physiological conditions, its expression is restricted to the epidermis, the outer root sheath of the anagen hair follicle, and the sweat gland epithelium. The dermal compartment-with the exception of the follicular papilla of the anagen hair follicle-physiologically does not express syndecan-1. Dermatofibromas are mesenchymal lesions, which often exhibit hyperplastic changes in the overlying epidermis. In analogy to the hair follicle, they, thereby, can be used as a model for studying epithelial-mesenchymal interactions. In the current study, we examined dermatofibromas immunohistochemically for syndecan-1 expression. We report immunoreactivity for syndecan-1 in dermatofibromas, which correlates mainly with the deposition of intercellular matrix material. Syndecan-1 is also noted in the stroma surrounding areas of basaloid hyperplasia overlying dermatofibromas and may be important in the pathogenesis of this inductive phenomenon. In analogy to the follicular papilla of the anagen hair follicle, the staining pattern for syndecan-1 in dermatofibromas indicates that this cell surface protein is produced by stromal cells and most likely serves an essential function in the growth of these common mesenchymal cutaneous lesions.

  7. Leptin upregulates beta3-integrin expression and interleukin-1beta, upregulates leptin and leptin receptor expression in human endometrial epithelial cell cultures.

    Science.gov (United States)

    Gonzalez, R R; Leavis, P

    2001-10-01

    Human endometrium and endometrial epithelial cells (EECs) either cultured alone or cocultured with human embryos express leptin and leptin receptor. This study compares the effect of leptin with that of interleukin-1beta (IL-1beta) on the expression of beta3-EEC integrin, a marker of endometrial receptivity. Both cytokines increased the expression of beta3-EEC at concentrations in the range of 0.06-3 nM; however, leptin exhibited a significantly greater effect than IL-1beta. We also determined the regulatory effects of IL-1beta on leptin secretion and on the expression of leptin and leptin receptor at the protein level in both EEC and endometrial stromal cell (ESC) cultures. In EEC cultures, IL-1beta upregulated secretion of leptin and expression of both leptin and leptin receptors. No effect of IL-1beta was found in the ESC cultures. However, leptin exhibited marginal upregulation of leptin receptor. The upregulation of beta3-integrin and leptin/leptin receptor expression by IL-1beta in EEC cultures indicates that both cytokines may be implicated in embryonic-maternal cross-talk during the early phase of human implantation. Our present data also raise the possibility that leptin is an endometrial molecular effector of IL-1beta action on beta3-integrin upregulation. Thus, a new role for leptin in human reproduction as an autocrine/paracrine regulator of endometrial receptivity is proposed.

  8. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Elisabetta Mattei

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  9. Functional endothelin receptors are selectively expressed in isolectin B4-negative sensory neurons and are upregulated in isolectin B4-positive neurons by neurturin and glia-derived neurotropic factor.

    Science.gov (United States)

    Vellani, Vittorio; Prandini, Massimiliano; Giacomoni, Chiara; Pavesi, Giorgia; Ravegnani, Laura; Magherini, Pier Cosimo

    2011-03-24

    Activation of endothelin receptors expressed in DRG neurons is functionally coupled to translocation of PKCε from cytoplasm to the plasma membrane. Using immunocytochemistry we show that in DRG cultured neurons PKCε translocation induced by endothelin-1 was prominently seen in a peptidergic subpopulation of cultured DRG neurons largely negative for isolectin B4 staining, indicating that in basal conditions functional expression of endothelin receptors does not occur in non-peptidergic, RET-expressing nociceptors. Translocation was blocked by the specific ETA-R antagonist BQ-123 while it was unaffected by the ETB-R antagonist BQ-788. No calcium response in response to endothelin-1 was observed in sensory neurons, while large and long-lasting responses were observed in the majority of non-neuronal cells present in DRG cultures, which are ensheathing Schwann cells and satellite cells, identified with the glial marker S-100. Calcium responses in non-neuronal cells were abolished by BQ-788. The fraction of peptidergic PKCε-translocated neurons was significantly increased by nerve growth factor, while in the presence of neurturin or glia-derived neurotropic factor (GDNF), an IB4-positive subpopulation of small- and medium-sized neurons showed PKCε translocation induced by endothelin-1 which could be blocked by BQ-123 but not by BQ-788. Our in vitro results show that the level of expression of functional endothelin receptors coupled to PKCε is different in peptidergic and non-peptidergic nociceptors and is modulated with different mechanisms in distinct neuronal subpopulations.

  10. Prostaglandin E2 upregulates β1 integrin expression via the E prostanoid 1 receptor/nuclear factor κ-light-chain-enhancer of activated B cells pathway in non-small-cell lung cancer cells.

    Science.gov (United States)

    Bai, Xiaoming; Yang, Qinyi; Shu, Wei; Wang, Jie; Zhang, Li; Ma, Juan; Xia, Shukai; Zhang, Min; Cheng, Shanyu; Wang, Yipin; Leng, Jing

    2014-05-01

    The prostaglandin E2 (PGE2) E prostanoid (EP)1 receptor shown to be associated with lung cancer cell invasion. However, the mechanism of EP1 receptor-mediated cell migration remains to be elucidated. β1 integrin is an essential regulator of the tumorigenic properties of non-small-cell lung carcinoma (NSCLC) cells. To date, little is known regarding the association between the EP1 receptor and β1 integrin expression. The present study investigated the effect of EP1 receptor activation on β1 integrin expression and cell migration in NSCLC cells. A total of 34 patients with clinical diagnosis of NSCLC and 10 patients with benign disease were recruited for the present study. The expression levels of the EP1 receptor and β1 integrin expression were studied in resected lung tissue using immunohistochemistry. A statistical analysis was performed using Stata se12.0 software. The effects of PGE2, EP1 agonist 17-phenyl trinor-PGE2 (17-PT-PGE2) and the nuclear factor κ-B (NF-κB) inhibitor on β1 integrin expression were investigated on A549 cells. The expression of β1 integrin and the phosphorylation of NF-κB‑p65 Ser536 was investigated by western blot analysis. Cell migration was assessed by a transwell assay. The results demonstrated that β1 integrin and EP1 receptor expression exhibited a positive correlation of evident significance in the 44 samples. The in vitro migration assay revealed that cell migration was increased by 30% when the cells were treated with 5 µM 17-PT-PGE2 and that the pre-treatment of β1 integrin monoclonal antibody inhibited 17-PT-PGE2‑mediated cell migration completely. PGE2 and 17-PT-PGE2 treatment increased β1 integrin expression. RNA interference against the EP1 receptor blocked the PGE2-mediated β1 integrin expression in A549 cells. Treatment with 17-PT-PGE2 induced NF-κB activation, and the selective NF-κB inhibitor pyrrolidinedithiocarbamate inhibited 17-PT-PGE2-mediated β1 integrin expression. In conclusion, the present

  11. Up-Regulated Expression of Matrix Metalloproteinases in Endothelial Cells Mediates Platelet Microvesicle-Induced Angiogenesis

    Directory of Open Access Journals (Sweden)

    Cheng Sun

    2017-04-01

    Full Text Available Background/Aims: Platelet microvesicles (PMVs contribute to angiogenesis and vasculogenesis, but the mechanisms underlying these contributions have not been fully elucidated. In the present study, we investigated whether PMVs regulate the angiogenic properties of endothelial cells (ECs via mechanisms extending beyond the transport of angiogenic regulators from platelets. Methods: In vitro Matrigel tube formation assay and in vivo Matrigel plug assay were used to evaluate the pro-angiogenic activity of PMVs. The effects of PMVs on the migration of human umbilical vein endothelial cells (HUVECs were detected by transwell assay and wound-healing assay. Real-time PCR and western blot were conducted to examine mRNA and protein expression of pro-angiogenic factors in HUVECs. Matrix metalloproteinase (MMP activity was assayed by gelatin zymography. Moreover, the effects of specific MMP inhibitors were tested. Results: PMVs promoted HUVEC capillary-like network formation in a dose-dependent manner. Meanwhile, PMVs dose-dependently facilitated HUVEC migration. Levels of MMP-2 and MMP-9 expression and activity were up-regulated in HUVECs stimulated with PMVs. Inhibition of MMPs decreased their pro-angiogenic and pro-migratory effects on HUVECs. Moreover, we confirmed the pro-angiogenic activity of PMVs in vivo in mice with subcutaneous implantation of Matrigel, and demonstrated that blockade of MMPs attenuated PMV-induced angiogenesis. Conclusion: The findings of our study indicate that PMVs promote angiogenesis by up-regulating MMP expression in ECs via mechanism extending beyond the direct delivery of angiogenic factors.

  12. Substance P stimulates differentiation of mice osteoblast through up-regulating Osterix expression

    Institute of Scientific and Technical Information of China (English)

    SUN Hai-biao; CHEN Jun-chang; Qiang; GUO Min-feng; ZHANG Hua-ping

    2010-01-01

    Objective:To investigate the molecular pathway of substance P(SP)to induce osteoblastic differentiation.Methods:Mesenchymal stem cells were isolated and cultured.The cultures were divided into four groups with Group A(control group)cultured without any factors,Group B cultured with SP,Group C cultured with SP and SP receptor neurokinin-1(NK_1)antagonist,and Group D cultured with SP NK_1 antagonist respectively to induce osteoblastic cells differentiation.Osterix gene expression was detected by reverse transcription-polymerase chain reaction(RT-PCR)for three times after 1-2 weeks of cultivation and the results were analyzed by one-way analysis of variance(ANOVA).Results:The log phase of bone marrow stromal cells appeared at 4-6 days.ALP staining revealed that the majority of cells,more than 95%,were positive and small bluepurple granules were found in the cytoplasm.And Group B,treated with SP,showed a higher level of ALP activity than the other three groups.Meanwhile,RT-PCR found that Osterix expression in Group B was obviously up-regulated,compared with other groups.But Osterix expression in Group D had no remarkable differences,compared with the controls.Conclusions:SP can up-regulate Osterix gene expression to stimulate differentiation of mesenchymal stem cells into osteoblastic cells at the final stage.The regulatory effect of SP on Osterix expression was dependant on SP NK_1 receptors.

  13. Upregulated expression of Ezrin and invasive phenotype in malignantly transformed esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Ying Shen; Li-Yan Xu; Ming-Hua Chen; En-Min Li; Jin-Tao Li; Xian-Ying Wu; Yi Zeng

    2003-01-01

    AIM: To investigate the correlation between ezrin expression and invasive phenotype formation in malignantly transformed esophageal epithelial cells. METHODS: The experimental cell line employed in the present study was originated form the progressive induction of a human embryonic esophageal epithelial cell line (SHEE)by the E6E7 genes of human papillomavirus (HPV) type 18.The cells at the 35th passage after induction called SHEEIMM were in a state of immortalized phase and used as the control,while that of the 85th passage denominated as SHEEMT represented the status of cells that were malignantly transformed. The expression changes of ezrin and its mRNA in both cell passages were respectively analyzed by RT-PCR and Western blot. Invasive phenotype was assessed in vivo by inoculating these cells into the severe combined immunodeficient (SCID) mice via subcutaneous and intraperitoneal injection, and in vitro by inoculating them on the surface of the amnion membranes, which then was determined by light microscopy and scanning electron microscopy. RESULTS: Upregulated expression of ezrin protein and its mRNA was observed in SHEEMT compared with that in SHEEIMM cells. The SHEEMT cells inoculated in SCID mice were observed forming tumor masses in both visceral organs and soft tissues in a period of 40 days with a special propensity to invading mesentery and pancreas, but did not exhibit hepatic metastases. Pathologically, these tumor cells harboring larger nucleus, nucleolus and less cytoplasm could infiltrate and destroy adjacent tissues. In the in vitro study,the inoculated SHEEMT cells could grow in cluster on the amniotic epithelial surface and intrude into the amniotic stroma. In contrast, unrestricted growth and invasiveness were not found in SHEEIMM cells in both in vivo and in vitroexperiment. CONCLUSION: The upregulated ezrin expression is one of the important factors that are possibly associated with the invasive phenotype formation in malignantly

  14. Upregulation of leukemia inhibitory factor (LIF during the early stage of optic nerve regeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Ogai

    Full Text Available Fish retinal ganglion cells (RGCs can regenerate their axons after optic nerve injury, whereas mammalian RGCs normally fail to do so. Interleukin 6 (IL-6-type cytokines are involved in cell differentiation, proliferation, survival, and axon regrowth; thus, they may play a role in the regeneration of zebrafish RGCs after injury. In this study, we assessed the expression of IL-6-type cytokines and found that one of them, leukemia inhibitory factor (LIF, is upregulated in zebrafish RGCs at 3 days post-injury (dpi. We then demonstrated the activation of signal transducer and activator of transcription 3 (STAT3, a downstream target of LIF, at 3-5 dpi. To determine the function of LIF, we performed a LIF knockdown experiment using LIF-specific antisense morpholino oligonucleotides (LIF MOs. LIF MOs, which were introduced into zebrafish RGCs via a severed optic nerve, reduced the expression of LIF and abrogated the activation of STAT3 in RGCs after injury. These results suggest that upregulated LIF drives Janus kinase (Jak/STAT3 signaling in zebrafish RGCs after nerve injury. In addition, the LIF knockdown impaired axon sprouting in retinal explant culture in vitro; reduced the expression of a regeneration-associated molecule, growth-associated protein 43 (GAP-43; and delayed functional recovery after optic nerve injury in vivo. In this study, we comprehensively demonstrate the beneficial role of LIF in optic nerve regeneration and functional recovery in adult zebrafish.

  15. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingyi; Zhao, Yu; Li, Leilei; Shen, Yu; Cai, Xiaoli [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong, E-mail: yelihong@nankai.edu.cn [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2013-05-03

    Highlights: •HBXIP is able to upregulate the expression of PDGFB in breast cancer cells. •HBXIP serves as a coactivator of activating transcription factor Sp1. •HBXIP stimulates the PDGFB promoter via activating transcription factor Sp1. •HBXIP promotes the proliferation of breast cancer cell via upregulating PDGFB. -- Abstract: We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB) plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells.

  16. CaMKII inhibition promotes neuronal apoptosis by transcriptionally upregulating Bim expression.

    Science.gov (United States)

    Zhao, Yiwei; Zhu, Lin; Yu, Shaojun; Zhu, Jing; Wang, Chong

    2016-09-28

    The effects of Ca/calmodulin-dependent protein kinase II (CaMKII) on neuronal apoptosis are complex and contradictory, and the underlying mechanisms remain unclear. Bcl-2-interacting mediator of cell death (Bim) is an important proapoptotic protein under many physiological and pathophysiological conditions. However, there is no evidence that CaMKII and Bim are mechanistically linked in neuronal apoptosis. In this study, we showed that CaMKII inhibition by the inhibitors KN-62 and myristoylated autocamtide-2-related inhibitory peptide promoted apoptosis in cerebellar granule neurons in a dose-dependent manner. CaMKII inhibition increased Bim protein and messenger RNA levels. The expression of early growth response factor-1, a transcription factor of Bim, was also induced by CaMKII inhibitors. These data suggested that CaMKII repressed the transcriptional expression of Bim. Moreover, knockdown of Bim using small interfering RNAs attenuated the proapoptotic effects of CaMKII inhibition. Taken together, this is the first report to show that CaMKII inhibition transcriptionally upregulates Bim expression to promote neuronal apoptosis, providing new insights into the proapoptotic mechanism of CaMKII inhibition.

  17. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Directory of Open Access Journals (Sweden)

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  18. Upregulation of hypoxia-inducible factors in normal and psoriatic skin.

    Science.gov (United States)

    Rosenberger, Christian; Solovan, Caius; Rosenberger, Alina D; Jinping, Li; Treudler, Regina; Frei, Ulrich; Eckardt, Kai-Uwe; Brown, Lawrence F

    2007-10-01

    Angiogenesis induced by vascular endothelial growth factor (VEGF) plays an important role in psoriasis. Hypoxic adaptation is conferred through hypoxia-inducible transcription factors (HIFs). VEGF and its receptor Flt-1 are HIF target genes. Growth factors and inflammatory cytokines activate the phosphoinositol-3 kinase pathway, and via activated protein kinase B (phospho-Akt) augment HIF activity. Here, we demonstrate that the major oxygen-dependent HIF isoforms are strongly upregulated in psoriatic skin: HIF-1alpha mainly in the epidermis, in an expression pattern similar to VEGF mRNA; HIF-2alpha in both the epidermis and in capillary endothelial cells of the dermis. In contrast, normal human skin shows low expression of HIF-alpha proteins, with the exception of hair follicles, and glands, which strongly express HIF-1alpha. In normal human skin, phospho-Akt appeared in the basal epidermal layer, in hair follicles, and in dermal glands. In contrast, in psoriasis, phospho-Akt expression was low in the epidermis, but markedly enhanced in the dermal capillaries and in surrounding interstitial/inflammatory cells. Our data suggest that hypoxia initiates a potentially self-perpetuating cycle involving HIF, VEGF, and Akt activation, which could drive physiologic growth of hair follicles and skin glands. Furthermore, such a cycle may exist in psoriasis in dermal capillaries and contribute to disease progression.

  19. Na(+)-K(+)-ATPase expression in alveolar epithelial cells: upregulation of active ion transport by KGF.

    Science.gov (United States)

    Borok, Z; Danto, S I; Dimen, L L; Zhang, X L; Lubman, R L

    1998-01-01

    We evaluated the effects of keratinocyte growth factor (KGF) on alveolar epithelial cell (AEC) active ion transport and on rat epithelial Na channel (rENaC) subunit and Na(+)-K(+)-adenosinetriphosphatase (ATPase) subunit isoform expression using monolayers of AEC grown in primary culture. Rat alveolar type II cells were plated on polycarbonate filters in serum-free medium, and KGF (10 ng/ml) was added to confluent AEC monolayers on day 4 in culture. Exposure of AEC monolayers to KGF on day 4 resulted in dose-dependent increases in short-circuit current (Isc) compared with controls by day 5, with further increases occurring through day 8. Relative Na(+)-K(+)-ATPase alpha 1-subunit mRNA abundance was increased by 41% on days 6 and 8 after exposure to KGF, whereas alpha 2-subunit mRNA remained only marginally detectable in both the absence and presence of KGF. Levels of mRNA for the beta 1-subunit of Na(+)-K(+)-ATPase did not increase, whereas cellular alpha 1- and beta 1-subunit protein increased 70 and 31%, respectively, on day 6. mRNA for alpha-, beta-, and gamma-rENaC all decreased in abundance after treatment with KGF. These results indicate that KGF upregulates active ion transport across AEC monolayers via a KGF-induced increase in Na pumps, primarily due to increased Na(+)-K(+)-ATPase alpha 1-subunit mRNA expression. We conclude that KGF may enhance alveolar fluid clearance after acute lung injury by upregulating Na pump expression and transepithelial Na transport across the alveolar epithelium.

  20. Up-regulated expression of extracellular matrix remodeling genes in phagocytically challenged trabecular meshwork cells.

    Directory of Open Access Journals (Sweden)

    Kristine M Porter

    Full Text Available BACKGROUND: Cells in the trabecular meshwork (TM, the tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic function in TM cells is thought to play an important role in the normal functioning of the outflow pathway. Dysfunction of phagocytosis could lead to abnormalities of outflow resistance and increased intraocular pressure (IOP. However, the molecular mechanisms triggered by phagocytosis in TM cells are completely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression profile analysis of human TM cells phagocytically challenged to E. coli or pigment under physiological and oxidative stress environment were performed using Affymetrix U133 plus 2.0 array and analyzed with Genespring GX. Despite the differential biological response elicited by E. coli and pigment particles, a number of genes, including MMP1, MMP3, TNFSF11, DIO2, KYNU, and KCCN2 showed differential expression with both phagocytic ligands in all conditions. Data was confirmed by qPCR in both human and porcine TM cells. Metacore pathway analysis and the usage of recombinant adenovirus encoding the dominant negative mutant of IkB identified NF-κB as a transcription factor mediating the up-regulation of at least MMP1 and MMP3 in TM cells with phagocytosis. In-gel zymography demonstrated increased collagenolytic and caseinolytic activities in the culture media of TM cells challenge to E. coli. In addition, collagenolytic I activity was further confirmed using the self-quenched fluorescent substrate DQ-Collagen I. CONCLUSIONS/SIGNIFICANCE: Here we report for the first time the differential gene expression profile of TM cells phagocytically challenged with either E. coli or pigment. Our data indicate a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.

  1. Cyclic AMP enhances TGFβ responses of breast cancer cells by upregulating TGFβ receptor I expression.

    Directory of Open Access Journals (Sweden)

    Ilka Oerlecke

    Full Text Available Cellular functions are regulated by complex networks of many different signaling pathways. The TGFβ and cAMP pathways are of particular importance in tumor progression. We analyzed the cross-talk between these pathways in breast cancer cells in 2D and 3D cultures. We found that cAMP potentiated TGFβ-dependent gene expression by enhancing Smad3 phosphorylation. Higher levels of total Smad3, as observed in 3D-cultured cells, blocked this effect. Two Smad3 regulating proteins, YAP (Yes-associated protein and TβRI (TGFβ receptor 1, were responsive to cAMP. While YAP had little effect on TGFβ-dependent expression and Smad3 phosphorylation, a constitutively active form of TβRI mimicked the cAMP effect on TGFβ signaling. In 3D-cultured cells, which show much higher levels of TβRI and cAMP, TβRI was unresponsive to cAMP. Upregulation of TβRI expression by cAMP was dependent on transcription. A proximal TβRI promoter fragment was moderately, but significantly activated by cAMP suggesting that cAMP increases TβRI expression at least partially by activating TβRI transcription. Neither the cAMP-responsive element binding protein (CREB nor the TβRI-regulating transcription factor Six1 was required for the cAMP effect. An inhibitor of histone deacetylases alone or together with cAMP increased TβRI expression by a similar extent as cAMP alone suggesting that cAMP may exert its effect by interfering with histone acetylation. Along with an additive stimulatory effect of cAMP and TGFβ on p21 expression an additive inhibitory effect of these agents on proliferation was observed. Finally, we show that mesenchymal stem cells that interact with breast cancer cells can simultaneously activate the cAMP and TGFβ pathways. In summary, these data suggest that combined effects of cAMP and TGFβ, as e.g. induced by mesenchymal stem cells, involve the upregulation of TβRI expression on the transcriptional level, likely due to changes in histone acetylation

  2. Traumatic brain injury upregulates phosphodiesterase expression in the hippocampus

    Directory of Open Access Journals (Sweden)

    Nicole M Wilson

    2016-02-01

    Full Text Available Traumatic brain injury (TBI results in significant impairments in hippocampal synaptic plasticity. A molecule critically involved in hippocampal synaptic plasticity, 3',5'-cyclic adenosine monophosphate (cAMP, is downregulated in the hippocampus after TBI, but the mechanism that underlies this decrease is unknown. To address this question, we determined whether phosphodiesterase (PDE expression in the hippocampus is altered by TBI. Young adult male Sprague Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. Animals were analyzed by western blotting for changes in PDE expression levels in the hippocampus. We found that PDE1A levels were significantly increased at 30 min, 1 hr and 6 hr after TBI. PDE4B2 and 4D2 were also significantly increased at 1, 6 and 24 hr after TBI. Additionally, phosphorylation of PDE4A was significantly increased at 6 and 24 hr after TBI. No significant changes were observed in levels of PDE1B, 1C, 3A, 8A or 8B between 30 min to 7 days after TBI. To determine the spatial profile of these increases, we used immunohistochemistry and flow cytometry at 24 hr after TBI. PDE1A and phospho-PDE4A localized to neuronal cell bodies. PDE4B2 was expressed in neuronal dendrites, microglia and infiltrating CD11b+ immune cells. PDE4D was predominantly found in microglia and infiltrating CD11b+ immune cells. To determine if inhibition of PDE4 would improve hippocampal synaptic plasticity deficits after TBI, we treated hippocampal slices with rolipram, a pan-PDE4 inhibitor. Rolipram partially rescued the depression in basal synaptic transmission and converted a decaying form of LTP into long-lasting LTP. Overall, these results identify several possible PDE targets for reducing hippocampal synaptic plasticity deficits and improving cognitive dysfunction acutely after TBI.

  3. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G. [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania); Kardassis, Dimitris [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete (Greece); Simionescu, Maya [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania); Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania)

    2015-12-04

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.

  4. Salidroside exhibits anti-dengue virus activity by upregulating host innate immune factors.

    Science.gov (United States)

    Sharma, Navita; Mishra, K P; Ganju, Lilly

    2016-12-01

    Dengue is an arboviral disease with no effective therapy available. Therefore, there is an urgent need to find a potent antiviral agent against dengue virus (DENV). In the present study, salidroside, a main bioactive compound of Rhodiola rosea, was evaluated for its antiviral potential against DENV serotype-2 infection and its effect on host innate immune factors. Antiviral effects of salidroside were examined in DENV-infected cells by western blotting, flow cytometry and real-time PCR. Its underlying mechanism involved in antiviral action was determined by evaluating expression of host innate immune factors including RIG-I, IRF-3, IRF-7, PKR, P-eIF2α and NF-κB. Salidroside potently inhibited DENV infection by decreasing DENV envelope protein expression more than tenfold. Salidroside exerts its antiviral activity by increasing expression of RNA helicases such as RIG-I, thereby initiating a downstream signaling cascade that induces upregulation of IRF-3 and IRF-7. It prevents viral protein synthesis by increasing the expression of PKR and P-eIF2α while decreasing NF-κB expression. It was also found to induce the expression of IFN-α. In addition, the number of NK cells and CD8(+) T cells were also found to be increased by salidroside treatment in human PBMCs, which are important in limiting DENV replication during early stages of infection. The findings presented here suggest that salidroside exhibits antiviral activity against DENV by inhibiting viral protein synthesis and boosting host immunity by increasing the expression of host innate immune factors and hence could be considered for the development of an effective therapeutic agent against DENV infection.

  5. Euglena gracilis paramylon activates human lymphocytes by upregulating pro-inflammatory factors.

    Science.gov (United States)

    Russo, Rossella; Barsanti, Laura; Evangelista, Valter; Frassanito, Anna M; Longo, Vincenzo; Pucci, Laura; Penno, Giuseppe; Gualtieri, Paolo

    2017-03-01

    The aim of this study was to verify the activation details and products of human lymphomonocytes, stimulated by different β-glucans, that is Euglena paramylon, MacroGard(®), and lipopolysaccharide. We investigated the gene expression of inflammation-related cytokines and mediators, transactivation of relevant transcription factors, and phagocytosis role in cell-glucan interactions, by means of RT-PCR, immunocytochemistry, and colorimetric assay. Our results show that sonicated and alkalized paramylon upregulates pro-inflammatory factors (NO, TNF-α, IL-6, and COX-2) in lymphomonocytes. A clear demonstration of this upregulation is the increased transactivation of NF-kB visualized by immunofluorescence microscopy. Phagocytosis assay showed that internalization is not a mandatory step for signaling cascade to be triggered, since immune activity is not present in the lymphomonocytes that have internalized paramylon granules and particulate MacroGard(®). Moreover, the response of Euglena β-glucan-activated lymphomonocytes is much greater than that induced by commercially used β-glucans such as MacroGard(®). Our in vitro results indicate that linear fibrous Euglena β-glucan, obtained by sonication and alkaline treatment can act as safe and effective coadjutant of the innate immune system response.

  6. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors.

    Science.gov (United States)

    Bai, Huai; Forrester, John V; Zhao, Min

    2011-07-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors

    Science.gov (United States)

    Zhang, He-Yu; Jin, Long; Stilling, Gail A.; Ruebel, Katharina H.; Coonse, Kendra; Tanizaki, Yoshinori; Raz, Avraham

    2010-01-01

    Galectin-3 is expressed in a cell-type specific manner in human pituitary tumors and may have a role in pituitary tumor development. In this study, we hypothesized that Galectin-3 is regulated by RUNX proteins in pituitary tumors. Transcription factor prediction programs revealed several putative binding sites in the LGALS3 (Galectin-3 gene) promoter region. A human pituitary cell line HP75 was used as a model to study LGALS3 and RUNX interactions using Chromatin immunoprecipitation assay and electrophoresis mobility shift assay. Two binding sites for RUNX1 and one binding site for RUNX2 were identified in the LGALS3 promoter region. LGALS3 promoter was further cloned into a luciferase reporter, and the experiments showed that both RUNX1 and RUNX2 upregulated LGALS3. Knock-down of either RUNX1 or RUNX2 by siRNA resulted in a significant downregulation of Galectin-3 expression and decreased cell proliferation in the HP 75 cell line. Immunohistochemistry showed a close correlation between Galectin-3 expression and RUNX1/RUNX2 level in pituitary tumors. These results demonstrate a novel binding target for RUNX1 and RUNX2 proteins and suggest that Galectin-3 is regulated by RUNX1 and RUNX2 in human pituitary tumor cells by direct binding to the promoter region of LGALS3 and thus may contribute to pituitary tumor progression. PMID:19020999

  8. Expression and activity of C/EBPbeta and delta are upregulated by dexamethasone in skeletal muscle.

    Science.gov (United States)

    Yang, Hongmei; Mammen, Joshua; Wei, Wei; Menconi, Michael; Evenson, Amy; Fareed, Moin; Petkova, Victoria; Hasselgren, Per-Olof

    2005-07-01

    The influence of glucocorticoids on the expression and activity of the transcription factors CCAAT/enhancer binding protein (C/EBP)beta and delta in skeletal muscle was examined by treating rats or cultured L6 myotubes with dexamethasone. Treatment of rats with 10 mg/kg of dexamethasone resulted in increased C/EBPbeta and delta DNA binding activity in the extensor digitorum longus muscle as determined by electrophoretic mobility shift assay (EMSA) and supershift analysis. A similar response was noticed in dexamethasone-treated myotubes. In other experiments, myocytes were transfected with a plasmid containing a promoter construct consisting of multiple C/EBP binding elements upstream of a luciferase reporter gene. Treatment of these cells with dexamethasone resulted in a fourfold increase in luciferase activity, suggesting that glucocorticoids increase C/EBP-dependent gene activation in muscle cells. In addition, dexamethasone upregulated the protein and gene expression of C/EBPbeta and delta in the myotubes in a time- and dose-dependent fashion as determined by Western blotting and real-time PCR, respectively. The results suggest that glucocorticoids increase C/EBPbeta and delta activity and expression through a direct effect in skeletal muscle. (c) 2004 Wiley-Liss, Inc.

  9. Prostaglandin F2α upregulates Slit/Robo expression in mouse corpus luteum during luteolysis.

    Science.gov (United States)

    Zhang, Xuejing; Li, Jianhua; Liu, Jiali; Luo, Haoshu; Gou, Kemian; Cui, Sheng

    2013-09-01

    Prostaglandin F2 α (PGF2 α) is a key factor in the triggering of the regression of the corpus luteum (CL). Furthermore, it has been reported that Slit/Robo signaling is involved in the regulation of luteolysis. However, the interactions between PGF2 α and Slit/Robo in the progression of luteolysis remain to be established. This study was designed to determine whether luteolysis is regulated by the interactions of PGF2 α and Slit/Robo in the mouse CL. Real-time PCR and immunohistochemistry results showed that Slit2 and its receptor Robo1 are highly and specifically co-expressed in the mouse CL. Functional studies showed that Slit/Robo participates in mouse luteolysis by enhancing cell apoptosis and upregulating caspase3 expression. Both in vitro and in vivo studies showed that PGF2 α significantly increases the expression of Slit2 and Robo1 during luteolysis through protein kinase C-dependent ERK1/2 and P38 MAPK signaling pathways, whereas an inhibitor of Slit/Robo signaling significantly decreases the stimulating effect of PGF2 α on luteolysis. These findings indicate that Slit/Robo signaling plays important roles in PGF2 α-induced luteolysis by mediating the PGF2 α signaling pathway in the CL.

  10. Upregulated IL-21 and IL-21 receptor expression is involved in experimental autoimmune uveitis (EAU).

    Science.gov (United States)

    Liu, Lan; Xu, Yongfeng; Wang, Jianyong; Li, Huiyan

    2009-12-31

    Interleukin (IL)-21 has recently been shown to play a vital role in the development of many autoimmune diseases. Our study is designed to investigate the alteration and possible function of IL-21 in the development of an experimental autoimmune uveitis (EAU) model. EAU was induced in B10.RIII mice by subcutaneous injection of interphotoreceptor retinoid-binding protein (IRBP) 161-180 emulsified with complete Freund's adjuvant (CFA) and evaluated by clinical and histopathologic observation. IL-21 and IL-21R mRNA expressions in cells of draining lymph node (DLN) and spleen in EAU and control mice were determined by reverse transcription-PCR. The frequencies of interleukin-21 receptor positive cells were also examined using flow cytometry. IL-17 levels in the supernatant of the cell culture upon IL-21 stimulation were assayed by enzyme-linked immunosorbent assay. Results showed that EAU was successfully induced by IRBP161-180. Expression of IL-21 mRNA was significantly increased in cells of DLN and spleen in EAU compared with recovery phase mice and normal controls. IL-21R was also found upregulated in DLN and spleen cells of EAU mice by reverse transcription-PCR and flow cytometry. Cells in EAU cultured with IL-21 combined with transforming growth factor-beta induced increased production of IL-17. The findings revealed that increased IL-21 and IL-21R expression may be involved in the development of EAU, possibly by promoting IL-17 secretion.

  11. Upregulation of human heme oxygenase gene expression by Ets-family proteins.

    Science.gov (United States)

    Deramaudt, B M; Remy, P; Abraham, N G

    1999-03-01

    Overexpression of human heme oxygenase-1 has been shown to have the potential to promote EC proliferation and angiogenesis. Since Ets-family proteins have been shown to play an important role in angiogenesis, we investigated the presence of ETS binding sites (EBS), GGAA/T, and ETS protein contributing to human HO-1 gene expression. Several chloramphenicol acetyltransferase constructs were examined in order to analyze the effect of ETS family proteins on the transduction of HO-1 in Xenopus oocytes and in microvessel endothelial cells. Heme oxygenase promoter activity was up-regulated by FLI-1ERGETS-1 protein(s). Chloramphenicol acetyltransferase (CAT) assays demonstrated that the promoter region (-1500 to +19) contains positive and negative control elements and that all three members of the ETS protein family were responsible for the up-regulation of HHO-1. Electrophoretic mobility shift assays (EMSA), performed with nuclear extracts from endothelial cells overexpressing HHO-1 gene, and specific HHO-1 oligonucleotides probes containing putative EBS resulted in a specific and marked bandshift. Synergistic binding was observed in EMSA between AP-1 on the one hand, FLI-1, ERG, and ETS-1 protein on the other. Moreover, 5'-deletion analysis demonstrated the existence of a negative control element of HHO-1 expression located between positions -1500 and -120 on the HHO-1 promoter. The presence of regulatory sequences for transcription factors such as ETS-1, FLI-1, or ERG, whose activity is associated with cell proliferation, endothelial cell differentiation, and matrix metalloproteinase transduction, may be an indication of the important role that HO-1 may play in coronary collateral circulation, tumor growth, angiogenesis, and hemoglobin-induced endothelial cell injuries.

  12. Upregulation of Heme Oxygenase-1 Expression in Areca-quid-chewing-associated Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Shiuan-Shinn Lee

    2008-05-01

    Conclusion: Taken together, these results suggest that HO-1 expression is significantly upregulated in OSCC from areca quid chewers, and arecoline may be responsible for enhanced HO-1 expression in vivo. The compounds of cigarette smoke may act synergistically in the pathogenesis of areca-quid-chewing-associated OSCC. The regulation of HO-1 expression induced by arecoline is critically dependent on intracellular GSH concentration.

  13. Furin mediates brain-derived neurotrophic factor upregulation in cultured rat astrocytes exposed to oxygen-glucose deprivation.

    Science.gov (United States)

    Chen, Yan; Zhang, Junjian; Deng, Min

    2015-01-01

    This study investigated the changes in brain-derived neurotrophic factor (BDNF) expression and the role of furin in BDNF maturation in reactive astrocytes from rats exposed to oxygen-glucose deprivation (OGD). Furin, a proprotein convertase, is upregulated and cleaves certain substrates during hypoxia in cancer cells. In addition, during hypoxia in the central nervous system, astrocytes become reactive and release BDNF to protect neurons. Maturation of BDNF in astrocytes requires furin-mediated endoproteolytic processing of the precursor protein pro-BDNF to BDNF. To expand our knowledge about the role of furin in BDNF maturation in astrocytes, these cells were exposed to OGD, and expression of furin and BDNF was detected by Western blot analysis. Changes in BDNF expression were observed when furin activity was inhibited by furin prosegment. We found that protein expression of BDNF and furin was upregulated, and this upregulation correlated with OGD stimulation. Furin inhibition reduced BDNF maturation and secretion. These results indicate that furin mediates the upregulation of BDNF in reactive astrocytes exposed to OGD and that furin may impact the biological effect of reactive astrocytes.

  14. Hematopoietic transcription factor GATA-2 promotes upregulation of alpha globin and cell death in FL5.12 cells.

    Science.gov (United States)

    Brecht, K; Simonen, M; Kamke, M; Heim, J

    2005-10-01

    Recently we showed that alpha globin is a novel pro-apoptotic factor in programmed cell death in the pro-B cell line, FL5.12. Alpha globin was also upregulated in various other cell lines after different apoptotic stimuli. Under withdrawal of IL-3, overexpression of alpha globin accelerated apoptosis in FL5.12. Here, we have studied how transcription of alpha globin is placed in the broader context of apoptosis. We used Affymetrix chip technology and RT QPCR to compare expression patterns of FL5.12 cells growing with or without IL-3 to search for transcription factors which were concomitantly upregulated with alpha globin. The erythroid-specific transcription factor GATA-2 was the earliest and most prominently upregulated candidate. GATA-1 was expressed at low levels and was weakly induced while GATA-3 was completely absent. To evaluate the influence of GATA-2 on alpha globin expression and cell viability we overexpressed GATA-2 in FL5.12 cells. Interestingly, high expression of GATA-2 resulted in cell death and elevated alpha globin levels in FL5.12 cells. Transduction of antisense GATA-2 prevented both increase of GATA-2 and alpha globin under apoptotic conditions and delayed cell death. We suggest a role of GATA-2 in apoptosis besides its function in maintenance and proliferation of immature hematopoietic progenitors.

  15. Upregulation of glutathione peroxidase-1 expression and activity by glial cell line-derived neurotrophic factor promotes high-level protection of PC12 cells against 6-hydroxydopamine and hydrogen peroxide toxicities.

    Science.gov (United States)

    Gharib, Ehsan; Gardaneh, Mossa; Shojaei, Sahar

    2013-06-01

    We examined the impact of strong co-presence and function of glutathione peroxidase-1 (GPX-1) and glial cell line-derived neurotrophic factor (GDNF) on protecting the rat dopaminergic pheochromocytoma cell line PC12 against 6-hydroxydopamine (6-OHDA) and hydrogen peroxide (H₂O₂) toxicities. Primarily, GPX-1 over-expression by PC12 cells infected with pLV-GPX1 lentivirus vectors significantly increased cell survival against 6-OHDA toxicity (pcells with astro-CM of GDNF-over-secreting astrocytes (Test astro-CM) significantly induced GPX-1 expression, peroxidase enzymatic activity, and intra-cellular glutathione (GSH) levels. These changes paralleled with protection of 90% of GDNF⁺/GPX1⁺ PC12 cells against toxicity, a rate that was 37% up from their un-infected un-treated (GDNF⁻/GPX1⁻) controls (pcells that received only Control astro-CM (GPX⁺/GDNF⁻) (pcell groups, increased cell survival against either compound was further confirmed by increased live cell counts measured by double staining. Following depletion of intra-cellular GSH, only 46% of pLV-GPX1 cells survived 6-OHDA toxicity, whereas over 70% of them were saved upon GDNF treatment (pcells and maximized by addition of GDNF. Comparison analyses established correlations between GPX-1-GDNF co-presence and both enhanced cell protection and diminished levels of activated caspase-3. Our data collectively indicate that GDNF is capable of inducing anti-oxidant activities of intra-cellular GPX-1 and that growth-promoting potential of GDNF and anti-oxidant properties of GPX-1 can, in concert, maximize survival of dopaminergic neurons.

  16. Upregulated TRIO expression correlates with a malignant phenotype in human hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Bin; Fang, JiaQing; Qu, Lei; Cao, Zhongwei; Zhou, JianGuo; Deng, Biao

    2015-09-01

    Triple functional domain protein (TRIO) is an evolutionarily conserved Dbl family guanine nucleotide exchange factors (GEFs) involved in cell proliferation and progression of some types of cancer. However, the expression and prognostic role of TRIO in hepatocellular carcinoma (HCC) have not yet been determined. Therefore, we attempted to determine the impact of TRIO on the clinical outcome of HCC patients to further identify its role in HCC. TRIO expression was examined using quantitative real-time PCR (qRT-PCR) and Western blotting in nonmalignant liver cells, HCC cells, and 93 paired of HCC tissues and adjacent noncancerous tissues. Statistical analyses were used to assess associations between TRIO expression and clinicopathological and prognostic factors. Small interfering RNA (siRNA)-mediated TRIO inhibition was performed in Hep3B and Huh7 cells to elucidate its roles in HCC. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to measure cell proliferation, and apoptosis assay was analyzed by flow cytometry, respectively. Adhesion and transwell invasion assay were performed to determine the invasion ability of HCC cells in vitro. TRIO was significantly upregulated in the HCC cell lines and tissues compared with the nonmalignant liver cells and adjacent noncancerous liver tissues. In addition, high TRIO expression level associated with lymph node metastasis (P = 0.0183), clinical tumor node metastasis (TNM) stage (P = 0.0.0106), and decrease in overall survival (OS) (P = 0.017). Knockdown of TRIO on Hep3B and Huh7 cell lines suppressed cell proliferation and migration and induced apoptosis. Furthermore, silencing TRIO expression led to decrease of ras-related C3 botulinum toxin substrate 1 (Rac1), p-P38, B cell lymphoma 2 (BCL-2), and matrix metallopeptidase 9 (MMP-9). Our results demonstrated that TRIO protein expression is elevated and associated with a worse over survival rates in patients with HCC. Aberrant

  17. Upregulated expression of CAP1 is associated with tumor migration and metastasis in hepatocellular carcinoma.

    Science.gov (United States)

    Liu, Yanhua; Cui, Xiaopeng; Hu, Baoying; Lu, Cuihua; Huang, Xiaodong; Cai, Jing; He, Song; Lv, Liting; Cong, Xia; Liu, Guoliang; Zhang, Yixin; Ni, Runzhou

    2014-03-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers that exhibits high incidences of intrahepatic metastasis and tumor recurrence. Adenylate cyclase-associated protein 1 (CAP1), a protein involved in the regulation of actin filaments, was recently reported to play a role in cell motility and the pathology of pancreatic cancer. In this study, we examined a potential role of CAP1 in HCC progression, and found that CAP1 was overexpressed in HCC specimens compared with adjacent noncancerous liver tissues by Western blot analysis and real-time PCR assay. Further, immunohistochemical analysis in 107 HCC specimens revealed that overexpression of CAP1 was closely correlated only with tumor metastasis, but not with other clinicopathologic parameters. Univariate and multivariate survival analyses showed that CAP1 could be an independent prognostic factor for patients' survival. In addition, immunofluorescent assay demonstrated that CAP1 was colocalized with actin in the leading edge of lamellipodium in HCC cells. Importantly, knocking-down the expression of CAP1 using small interfering RNA (siRNA) targeting CAP1 led to impaired migration of HCC cells. Collectively, our results indicated that upregulated expression of CAP1 might contribute heavily to the metastasis of HCC.

  18. Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression.

    Directory of Open Access Journals (Sweden)

    Rowan P Orme

    Full Text Available During development a tightly controlled signaling cascade dictates the differentiation, maturation and survival of developing neurons. Understanding this signaling mechanism is important for developing therapies for neurodegenerative illnesses. In previous work we have sought to understand the complex signaling pathways responsible for the development of midbrain dopamine neurons using a proteomic approach. One protein we have identified as being expressed in developing midbrain tissue is the vitamin D receptor. Therefore we investigated the effect of the biologically active vitamin D3 metabolite, calcitriol, on primary fetal ventral mesencephalic cultures of dopamine neurons. We observed a dose responsive increase in numbers of rat primary dopamine neurons when calcitriol was added to culture media. Western blot data showed that calcitriol upregulated the expression of glial derived neurotrophic factor (GDNF. Blocking GDNF signaling could prevent calcitriol's ability to increase numbers of dopamine neurons. An apoptosis assay and cell birth dating experiment revealed that calcitriol increases the number of dopamine neurons through neuroprotection and not increased differentiation. This could have implications for future neuroprotective PD therapies.

  19. Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression.

    Science.gov (United States)

    Orme, Rowan P; Bhangal, Manminder S; Fricker, Rosemary A

    2013-01-01

    During development a tightly controlled signaling cascade dictates the differentiation, maturation and survival of developing neurons. Understanding this signaling mechanism is important for developing therapies for neurodegenerative illnesses. In previous work we have sought to understand the complex signaling pathways responsible for the development of midbrain dopamine neurons using a proteomic approach. One protein we have identified as being expressed in developing midbrain tissue is the vitamin D receptor. Therefore we investigated the effect of the biologically active vitamin D3 metabolite, calcitriol, on primary fetal ventral mesencephalic cultures of dopamine neurons. We observed a dose responsive increase in numbers of rat primary dopamine neurons when calcitriol was added to culture media. Western blot data showed that calcitriol upregulated the expression of glial derived neurotrophic factor (GDNF). Blocking GDNF signaling could prevent calcitriol's ability to increase numbers of dopamine neurons. An apoptosis assay and cell birth dating experiment revealed that calcitriol increases the number of dopamine neurons through neuroprotection and not increased differentiation. This could have implications for future neuroprotective PD therapies.

  20. Calcitriol Imparts Neuroprotection In Vitro to Midbrain Dopaminergic Neurons by Upregulating GDNF Expression

    Science.gov (United States)

    Orme, Rowan P.; Bhangal, Manminder S.; Fricker, Rosemary A.

    2013-01-01

    During development a tightly controlled signaling cascade dictates the differentiation, maturation and survival of developing neurons. Understanding this signaling mechanism is important for developing therapies for neurodegenerative illnesses. In previous work we have sought to understand the complex signaling pathways responsible for the development of midbrain dopamine neurons using a proteomic approach. One protein we have identified as being expressed in developing midbrain tissue is the vitamin D receptor. Therefore we investigated the effect of the biologically active vitamin D3 metabolite, calcitriol, on primary fetal ventral mesencephalic cultures of dopamine neurons. We observed a dose responsive increase in numbers of rat primary dopamine neurons when calcitriol was added to culture media. Western blot data showed that calcitriol upregulated the expression of glial derived neurotrophic factor (GDNF). Blocking GDNF signaling could prevent calcitriol’s ability to increase numbers of dopamine neurons. An apoptosis assay and cell birth dating experiment revealed that calcitriol increases the number of dopamine neurons through neuroprotection and not increased differentiation. This could have implications for future neuroprotective PD therapies. PMID:23626767

  1. 3,4-methylenedioxyamphetamine upregulates p75 neurotrophin receptor protein expression in the rat brain

    Institute of Scientific and Technical Information of China (English)

    Chaomin Wang; Zugui Peng; Weihong Kuang; Hanyu Zheng; Jiang Long; Xue Wang

    2012-01-01

    The p75 neurotrophin receptor, which is a member of the tumor necrosis factor receptor superfamily, facilitates apoptosis during development and following central nervous system injury. Previous stu-dies have shown that programmed cell death is likely involved in the neurotoxic effects of 3, 4-methylenedioxy-N-methylamphetamine (MDMA), because MDMA induces apoptosis of immor-talized neurons through regulation of proteins belonging to the Bcl-2 family. In the present study, intraperitoneal injection of different doses of MDMA (20, 50, and 100 mg/kg) induced significant behavioral changes, such as increased excitability, increased activity, and irritability in rats. Moreover, changes exhibited dose-dependent adaptation. Following MDMA injection in rat brain tissue, the number of apoptotic cells dose-dependently increased and p75 neurotrophin receptor expression significantly increased in the prefrontal cortex, cerebellum, and hippocampus. These findings confirmed that MDMA induced neuronal apoptosis, and results suggested that this effect was related by upregulated protein expression of the p75 neurotrophin receptor.

  2. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

    2014-01-01

    Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

  3. TGEV infection up-regulates FcRn expression via activation of NF-κB signaling.

    Science.gov (United States)

    Guo, Jinyue; Li, Fei; Qian, Shaoju; Bi, Dingren; He, Qigai; Jin, Hui; Luo, Rui; Li, Shaowen; Meng, Xianrong; Li, Zili

    2016-08-24

    It has been well characterized that the neonatal Fc receptor (FcRn) transports maternal IgG to a fetus or newborn and protects IgG from degradation. We previously reported that FcRn is expressed in a model of normal porcine intestinal epithelial cells (IPEC-J2). Transmissible gastroenteritis is an acute enteric disease of swine that is caused by transmissible gastroenteritis virus (TGEV). How porcine FcRn (pFcRn) expression is regulated by pathogenic infection remains unknown. Our research shows that IPEC-J2 cells infected with TGEV had up-regulated pFcRn expression. In addition, the NF-κB signaling pathway was activated in IPEC-J2 cells by TGEV infection. Furthermore, treatment of TGEV-infected IPEC-J2 cells with the NF-κB-specific inhibitor BAY 11-7082 resulted in down-regulation of pFcRn expression. Transient transfection of pFcRn promoter luciferase report plasmids with overexpression of NF-κB p65 transcription factor enhanced the activation of the luciferase report plasmids. We identified four NF-κB transcription factor binding sites in the promoter region of this gene using luciferase reporter system, chromatin immunoprecipitation, electromobility shift assay, and supershift analysis. Together, the data provide the first evidence that TGEV infection up-regulates pFcRn expression via activation of NF-κB signaling.

  4. MicroRNAs upregulated during HIV infection target peroxisome biogenesis factors: Implications for virus biology, disease mechanisms and neuropathology.

    Directory of Open Access Journals (Sweden)

    Zaikun Xu

    2017-06-01

    Full Text Available HIV-associated neurocognitive disorders (HAND represent a spectrum neurological syndrome that affects up to 25% of patients with HIV/AIDS. Multiple pathogenic mechanisms contribute to the development of HAND symptoms including chronic neuroinflammation and neurodegeneration. Among the factors linked to development of HAND is altered expression of host cell microRNAs (miRNAs in brain. Here, we examined brain miRNA profiles among HIV/AIDS patients with and without HAND. Our analyses revealed differential expression of 17 miRNAs in brain tissue from HAND patients. A subset of the upregulated miRNAs (miR-500a-5p, miR-34c-3p, miR-93-3p and miR-381-3p, are predicted to target peroxisome biogenesis factors (PEX2, PEX7, PEX11B and PEX13. Expression of these miRNAs in transfected cells significantly decreased levels of peroxisomal proteins and concomitantly decreased peroxisome numbers or affected their morphology. The levels of miR-500a-5p, miR-34c-3p, miR-93-3p and miR-381-3p were not only elevated in the brains of HAND patients, but were also upregulated during HIV infection of primary macrophages. Moreover, concomitant loss of peroxisomal proteins was observed in HIV-infected macrophages as well as in brain tissue from HIV-infected patients. HIV-induced loss of peroxisomes was abrogated by blocking the functions of the upregulated miRNAs. Overall, these findings point to previously unrecognized miRNA expression patterns in the brains of HIV patients. Targeting peroxisomes by up-regulating miRNAs that repress peroxisome biogenesis factors may represent a novel mechanism by which HIV-1 subverts innate immune responses and/or causes neurocognitive dysfunction.

  5. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    Science.gov (United States)

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function.

  6. Hepatitis B Virus X Upregulates HuR Protein Level to Stabilize HER2 Expression in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chao-Ming Hung

    2014-01-01

    Full Text Available Hepatitis B virus- (HBV- associated hepatocellular carcinoma (HCC is the most common type of liver cancer. However, the underlying mechanism of HCC tumorigenesis is very complicated and HBV-encoded X protein (HBx has been reported to play the most important role in this process. Activation of downstream signal pathways of epidermal growth factor receptor (EGFR family is known to mediate HBx-dependent HCC tumor progression. Interestingly, HER2 (also known as ErbB2/Neu/EGFR2 is frequently overexpressed in HBx-expressing HCC patients and is associated with their poor prognosis. However, it remains unclear whether and how HBx regulates HER2 expression. In this study, our data showed that HBx expression increased HER2 protein level via enhancing its mRNA stability. The induction of RNA-binding protein HuR expression by HBx mediated the HER2 mRNA stabilization. Finally, the upregulated HER2 expression promoted the migration ability of HBx-expressing HCC cells. These findings deciphered the molecular mechanism of HBx-mediated HER2 upregulation in HBV-associated HCC.

  7. Intestinal mucosal changes and upregulated calcium transporter and FGF-23 expression during lactation: Contribution of lactogenic hormone prolactin.

    Science.gov (United States)

    Wongdee, Kannikar; Teerapornpuntakit, Jarinthorn; Sripong, Chanakarn; Longkunan, Asma; Chankamngoen, Wasutorn; Keadsai, Chutiya; Kraidith, Kamonshanok; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2016-01-15

    As the principal lactogenic hormone, prolactin (PRL) not only induces lactogenesis but also enhances intestinal calcium absorption to supply calcium for milk production. How the intestinal epithelium res-ponses to PRL is poorly understood, but it is hypothesized to increase mucosal absorptive surface area and calcium transporter expression. Herein, lactating rats were found to have greater duodenal, jejunal and ileal villous heights as well as cecal crypt depths than age-matched nulliparous rats. Morphometric analyses in the duodenum and cecum showed that their mucosal adaptations were diminished by bromocriptine, an inhibitor of pituitary PRL release. PRL also upregulated calcium transporter expression (e.g., TRPV6 and PMCA1b) in the duodenum of lactating rats. Since excessive calcium absorption could be detrimental to lactating rats, local negative regulator of calcium absorption, e.g., fibroblast growth factor (FGF)-23, should be increased. Immunohistochemistry confirmed the upregulation of FGF-23 protein expression in the duodenal and cecal mucosae of lactating rats, consistent with the enhanced FGF-23 mRNA expression in Caco-2 cells. Bromocriptine abolished this lactation-induced FGF-23 expression. Additionally, FGF-23 could negate PRL-stimulated calcium transport across Caco-2 monolayer. In conclusion, PRL was responsible for the lactation-induced mucosal adaptations, which were associated with compensatory increase in FGF-23 expression probably to prevent calcium hyperabsorption.

  8. SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells.

    Science.gov (United States)

    Lee, Hyun Joon; Wu, Junfang; Chung, Jumi; Wrathall, Jean R

    2013-02-01

    The upregulation of genes normally associated with development may occur in the adult after spinal cord injury (SCI). To test this, we performed real-time RT-PCR array analysis of mouse spinal cord mRNAs comparing embryonic day (E)14.5 spinal cord with intact adult and adult cord 1 week after a clinically relevant standardized contusion SCI. We found significantly increased expression of a large number of neural development- and stem cell-associated genes after SCI. These included Sox2 (sex determining region Y-box 2), a transcription factor that regulates self-renewal and potency of embryonic neural stem cells and is one of only a few key factors needed to induce pluripotency. In adult spinal cord of Sox2-EGFP mice, Sox2-EGFP was found mainly in the ependymal cells of the central canal. After SCI, both mRNA and protein levels of Sox2 were significantly increased at and near the injury site. By 1 day, Sox2 was upregulated in NG2(+) oligodendrocyte progenitor cells (OPC) in the spared white matter. By 3 days, Sox2-EGFP ependymal cells had increased proliferation and begun to form multiple layers and clusters of cells in the central lesion zone of the cord. Expression of Sox2 by NG2(+) cells had declined by 1 week, but increased numbers of other Sox2-expressing cells persisted for at least 4 weeks after SCI in both mouse and rat models. Thus, SCI upregulates many genes associated with development and neural stem cells, including the key transcription factor Sox2, which is expressed in a pool of cells that persists for weeks after SCI.

  9. Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1.

    Science.gov (United States)

    Guo, Yunxue; Chen, Yaosheng; Zhang, Yun; Zhang, Yue; Chen, Luxi; Mo, Delin

    2012-01-01

    Generally, most miRNAs that were up-regulated during differentiation promoted adipogenesis, but our research indicated that up-regulation of miR-145 in porcine preadipocytes did not promote but inhibit adipogenesis. In this study, miR-145 was significantly up-regulated during porcine dedifferentiated fat (DFAT) cells differentiation. In miR-145 overexpressed DFAT cells, adipogenesis was inhibited and triglycerides accumulation was decreased after hormone stimulation (P<0.05). Furthermore, up-regulation of miR-145 expression repressed induction of mRNA levels of adipogenic markers, such as CCAAT/enhancer-binding protein α (C/EBPα), and peroxisome proliferator-activated receptor γ2 (PPARγ2). These effects caused by miR-145 overexpression were mediated by Insulin receptor substrate 1 (IRS1) as a mechanism. These data suggested that induced miR-145 expression during differentiation could inhibit adipogenesis by targeting IRS1, and miR-145 may be novel agent for adipose tissue engineering.

  10. Cryoprotectants up-regulate expression of mouse oocyte AQP7, which facilitates water diffusion during cryopreservation.

    Science.gov (United States)

    Tan, Ya-Jing; Xiong, Yun; Ding, Guo-Lian; Zhang, Dan; Meng, Ye; Huang, He-Feng; Sheng, Jian-Zhong

    2013-04-01

    To investigate the effects of cryoprotectants on the expression of AQP7 in oocytes. Experimental animal study. University-based research laboratory. Adult female C57BL/6J mice. In metaphase II (MII) oocytes obtained from adult female C57BL/6J mice and from donations by fertile women, the mouse oocytes were treated with human tubal fluid medium containing 8% ethylene glycol (EG), 9.5% dimethylsulfoxide (DMSO), and 0.5 M sucrose, respectively; 293T cells transfected with GFP-hAQP7 expression vector were treated with the same solutions. AQP7 expression in oocytes examined by reverse-transcriptase-nested polymerase chain reaction and immunofluorescence, changes in the volume of mouse oocytes treated with different solutions calculated to determine their permeability to water, and survival rates of vitrified oocytes. AQP7 is expressed in human and mouse oocytes. Cryoprotectants, including EG, DMSO, and sucrose, up-regulated AQP7 expression in mouse oocytes and 293T cells transfected with GFP-hAQP7 expression vector. Compared with other cryoprotectants, DMSO stimulated higher expression of AQP7, and this was associated with faster cell volume recovery and lower survival rates of vitrified oocytes. DMSO up-regulates AQP7 expression in mouse oocytes more than EG. This may facilitate water diffusion and reduce the time for oocytes to reach osmotic balance with the cryoprotectant solution during cryopreservation. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Nitric oxide drives embryonic myogenesis in chicken through the upregulation of myogenic differentiation factors.

    Science.gov (United States)

    Cazzato, Denise; Assi, Emma; Moscheni, Claudia; Brunelli, Silvia; De Palma, Clara; Cervia, Davide; Perrotta, Cristiana; Clementi, Emilio

    2014-01-15

    The muscle-specific variant of neuronal nitric oxide (NO) synthase (NOS-I), is developmentally regulated in mouse suggesting a role of NO during myogenesis. In chick embryo, a good model of development, we found that the expression of NOS-I is up-regulated, but only in the early phase of development. Through a pharmacological intervention in ovo we found that NO signalling plays a relevant role during embryonic development. The inhibition of NOS-I decreased the growth of embryo, in particular of muscle tissue, while the restoring of physiological NO levels, via administration of a NO donor, reversed this effect. We found a selective action of NO, produced by NOS-I, on regulatory factors involved in myogenic differentiation in the early phase of chick embryo development: inhibition of NO generation leads to a decreased expression of the Myocyte enhancer factor 2a (Mef2a), Mef2c, Myogenin and Myosin, which was reversed by the administration of a NO donor. NO had no effects on Myf5 and MyoD, the myogenic regulatory factors necessary for myogenic determination. The action of NO on the myogenic regulatory factors was mediated via generation of cyclic GMP (cGMP) and activation of the cGMP-dependent protein kinase G (PKG). Finally we found in myoblasts in vitro that the activation of Mef2c was the key event mediating the NO-induced modulation of myogenesis. Our results identify NO produced by NOS-I as a key messenger in the early phase of embryonic development of chicken, acting as a critical determinant of myogenesis through its physiological cGMP/PKG pathway.

  12. Glycer-AGEs-RAGE signaling enhances the angiogenic potential of hepatocellular carcinoma by upregulating VEGF expression

    Institute of Scientific and Technical Information of China (English)

    Junichi Takino; Shoichi Yamagishi; Masayoshi Takeuchi

    2012-01-01

    AIM:To investigate the effect of glyceraldehyde-derived advanced glycation end-products (Glycer-AGEs)on hepatocellular carcinoma (HCC) cells.METHODS:Two HCC cell lines (Hep3B and HepG2cells) and human umbilical vein endothelial cells (HUVEC) were used.Cell viability was determined using the WST-8 assay.Western blotting,enzyme linked immunosorbent assay,and real-time reverse transcriptionpolymerase chain reactions were used to detect protein and mRNA.Angiogenesis was evaluated by assessing the proliferation,migration,and tube formation of HUVEC.RESULTS:The receptor for AGEs (RAGE) protein was detected in Hep3B and HepG2 cells.HepG2 cells were not affected by the addition of Glycer-AGEs.GlycerAGEs markedly increased vascular endothelial growth factor (VEGF) mRNA and protein expression,which is one of the most potent angiogenic factors.Compared with the control unglycated bovine serum albumin (BSA)treatment,VEGF mRNA expression levels induced by the Glycer-AGEs treatment were 1.00 ± 0.10 vs 1.92± 0.09 (P < 0.01).Similarly,protein expression levels induced by the Glycer-AGEs treatment were 1.63 ± 0.04ng/mL vs 2.28 ± 0.17 ng/mL for the 24 h treatment and 3.36 ± 0.10 ng/mL vs 4.79 ± 0.31 ng/mL for the 48 h treatment,respectively (P < 0.01).Furthermore,compared with the effect of the control unglycated BSA-treated conditioned medium,the Glycer-AGEstreated conditioned medium significantly increased the proliferation,migration,and tube formation of HUVEC,with values of 122.4% ± 9.0% vs 144.5% ± 11.3% for cell viability,4.29 ± 1.53 vs 6.78 ± 1.84 for migration indices,and 71.0 ± 7.5 vs 112.4 ± 8.0 for the number of branching points,respectively (P < 0.01).CONCLUSION:These results suggest that Glycer-AGEs-RAGE signaling enhances the angiogenic potential of HCC cells by upregulating VEGF expression.

  13. High expression of CD40 on B-cell precursor acute lymphoblastic leukemia blasts is an independent risk factor associated with improved survival and enhanced capacity to up-regulate the death receptor CD95

    NARCIS (Netherlands)

    A. Troeger (Anja); L. Glouchkova (Ludmila); B. Ackermann (Birgit); G. Escherich (Gabriele); R. Meisel (Roland); H. Hanenberg (Helmut); M.L. den Boer (Monique); R. Pieters (Rob); G.E. Janka-Schaub (Gritta); U. Goebel (Ulrich); H.J. Laws; D. Dilloo (Dagmar)

    2008-01-01

    textabstractCD40 and CD27, members of the tumor necrosis factor receptor (TNFR) family, are critical regulators of lymphocyte growth and differentiation. In B-cell precursor acute lymphoblastic leukemia (BCP-ALL), we prospectively assessed the impact of CD40 and CD27 on outcome in 121 children treat

  14. Wnt3a upregulates transforming growth factor-β-stimulated VEGF synthesis in osteoblasts.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Matsushima-Nishiwaki, Rie; Kato, Kenji; Yamakawa, Kengo; Otsuka, Takanobu; Kozawa, Osamu

    2011-07-01

    It is recognized that Wnt3a affects bone metabolism via the canonical Wnt/β-catenin signalling pathway. We have previously shown that transforming growth factor-β (TGF-β) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TGF-β-stimulated VEGF synthesis in these cells. Wnt3a, which alone had little effect on the VEGF levels, significantly enhanced the TGF-β-stimulated VEGF release. Lithium chloride and SB216763, inhibitors of glycogen synthase kinase 3β, markedly amplified the TGF-β-stimulated VEGF release. Wnt3a failed to affect the TGF-β-induced phosphorylation of Smad2, p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. Wnt3a and lithium chloride strengthened the VEGF mRNA expression induced by TGF-β. These results strongly suggest that Wnt3a upregulates VEGF synthesis stimulated by TGF-β via activation of the canonical pathway in osteoblasts.

  15. p53 inhibits the upregulation of sirtuin 1 expression induced by c-Myc.

    Science.gov (United States)

    Yuan, Fang; Liu, Lu; Lei, Yonghong; Tang, Peifu

    2017-10-01

    Sirtuin 1 (Sirt1), a conserved NAD(+) dependent deacetylase, is a mediator of life span by calorie restriction. However, Sirt1 may paradoxically increase the risk of cancer. Accordingly, the expression level of Sirt1 is selectively elevated in numerous types of cancer cell; however, the mechanisms underlying the differential regulation remain largely unknown. The present study demonstrated that oncoprotein c-Myc was a direct regulator of Sirt1, which accounts for the upregulation of Sirt1 expression only in the cells without functional p53. In p53 deficient cells, the overexpression of c-Myc increased Sirt1 mRNA and protein expression levels as well as its promoter activity, whereas the inhibitor of c-Myc, 10058-F4, induced decreased Sirt1 basal mRNA and protein expression levels. Deletion/mutation mapping analyses revealed that c-Myc bound to the conserved E-box[-189 to -183 base pair (bp)] of the Sirt1 promoter. In addition, p53 and c-Myc shared at least response element and the presence of p53 may block the binding of c-Myc to the Sirt1 promoter, thus inhibit the c-Myc mediated upregulation of Sirt1 promoter activity. The present study indicated that the expression level of Sirt1 was tightly regulated by oncoprotein c-Myc and tumor suppressor p53, which aids an improved understanding of its expression regulation and tumor promoter role in certain conditions.

  16. Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    BACKGROUND: Hypoxia in solid tumors potentially stimulates angiogenesis by promoting vascular endothelial growth factor (VEGF) production and upregulating VEGF receptor expression. However, it is unknown whether hypoxia can modulate the effect of anti-angiogenic treatment on tumor-derived endothelium. METHODS: Human tumor-derived endothelial cells (HTDEC) were freshly isolated from surgically removed human colorectal tumors by collagenase\\/DNase digestion and Percol gradient sedimentation. Cell proliferation was assessed by measuring BrdU incorporation, and capillary tube formation was measured using Matrigel. Cell apoptosis was assessed by flow cytometry and ELISA, and Bcl-2 expression was detected by Western blot analysis. RESULTS: Under aerobic culture conditions (5% CO2 plus 21% O2) HTDEC expressed less Bcl-2 and were more susceptible to IFN-gamma-induced apoptosis with significant reductions in both cell proliferation and capillary tube formation, when compared with normal human macrovascular and microvascular EC. Following exposure of HTDEC to hypoxia (5% CO2 plus 2% O2), IFN-gamma-induced cell apoptosis, and antiangiogenic activity (i.e. an inhibition in cell proliferation and capillary tube formation) in HTDEC were markedly attenuated. This finding correlated with hypoxia-induced upregulation of Bcl-2 expression in HTDEC. CONCLUSIONS: These results indicate that hypoxia can protect HTDEC against IFN-gamma-mediated cell death and antiangiogenic activity, and suggest that improvement of tumor oxygenation may potentiate the efficacy of anti-cancer therapies specifically targeting the inhibition of tumor angiogenesis.

  17. Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression

    Directory of Open Access Journals (Sweden)

    Mauricio Schüler Nin

    2011-11-01

    Full Text Available The pharmacological action of SSRI antidepressants may include a normalization of the decreased brain levels of neurosteroids such as that of the progesterone metabolite allopregnanolone and that of the brain-derived neurotrophic factor (BDNF, which are decreased in patients with depression and PTSD. Allopregnanolone and BDNF decrease in these patients is associated with behavioral symptom severity. Antidepressant treatment upregulates both allopregnanolone levels and the expression of BDNF in a manner that significantly correlates with improved symptomatology, which suggests that neurosteroid biosynthesis and BDNF expression may be interrelated. Preclinical studies using the socially isolated mouse as an animal model of behavioral deficits that resemble some of the symptoms observed in PTSD patients have shown that fluoxetine and derivatives improve anxiety-like behavior, fear responses, and aggressive behavior by elevating the corticolimbic levels of allopregnanolone and BDNF mRNA expression. These actions appeared to be independent and more selective from the action of these drugs on 5-HT reuptake inhibition.Hence, this review addresses the hypothesis that in PTSD or depressed patients brain allopregnanolone levels and BDNF expression upregulation may be part of the mechanisms involved in the beneficial actions of antidepressants or other selective brain steroidogenic stimulant (SBSS molecules.

  18. Estrogen receptor-related receptor alpha mediates up-regulation of aromatase expression by prostaglandin E2 in prostate stromal cells.

    Science.gov (United States)

    Miao, Lin; Shi, Jiandang; Wang, Chun-Yu; Zhu, Yan; Du, Xiaoling; Jiao, Hongli; Mo, Zengnan; Klocker, Helmut; Lee, Chung; Zhang, Ju

    2010-06-01

    Estrogen receptor-related receptor alpha (ERRalpha) is an orphan member of the nuclear receptor superfamily of transcription factors. ERRalpha is highly expressed in the prostate, especially in prostate stromal cells. However, little is known about the regulation and function of ERRalpha, which may contribute to the progression of prostatic diseases. We previously found that prostaglandin E2 (PGE2) up-regulated the expression of aromatase in prostate stromal cells. Here we show that PGE2 also up-regulates the expression of ERRalpha, which, as a transcription factor, further mediates the regulatory effects of PGE2 on the expression of aromatase. ERRalpha expression was up-regulated by PGE2 in prostate stromal cell line WPMY-1, which was mediated mainly through the protein kinase A signaling pathway by PGE2 receptor EP2. Suppression of ERRalpha activity by chlordane (an antagonist of ERRalpha) or small interfering RNA knockdown of ERRalpha blocked the increase of expression and promoter activity of aromatase induced by PGE2. Overexpression of ERRalpha significantly increased aromatase expression and promoter activity, which were further augmented by PGE2. Chromatin immunoprecipitation assay demonstrated that ERRalpha directly bound to the aromatase promoter in vivo, and PGE2 enhanced the recruitment of ERRalpha and promoted transcriptional regulatory effects on aromatase expression in WPMY-1. 17Beta-estradiol concentration in WPMY-1 medium was up-regulated by ERRalpha expression, and that was further increased by PGE2. Our results provided evidence that ERRalpha contributed to local estrogen production by up-regulating aromatase expression in response to PGE2 and provided further insights into the potential role of ERRalpha in estrogen-related prostatic diseases.

  19. Early upregulation of myocardial CXCR4 expression is critical for dimethyloxalylglycine-induced cardiac improvement in acute myocardial infarction.

    Science.gov (United States)

    Mayorga, Mari; Kiedrowski, Matthew; Shamhart, Patricia; Forudi, Farhad; Weber, Kristal; Chilian, William M; Penn, Marc S; Dong, Feng

    2016-01-01

    The stromal cell-derived factor-1 (SDF-1):CXCR4 is important in myocardial repair. In this study we tested the hypothesis that early upregulation of cardiomyocyte CXCR4 (CM-CXCR4) at a time of high myocardial SDF-1 expression could be a strategy to engage the SDF-1:CXCR4 axis and improve cardiac repair. The effects of the hypoxia inducible factor (HIF) hydroxylase inhibitor dimethyloxalylglycine (DMOG) on CXCR4 expression was tested on H9c2 cells. In mice a myocardial infarction (MI) was produced in CM-CXCR4 null and wild-type controls. Mice were randomized to receive injection of DMOG (DMOG group) or saline (Saline group) into the border zone after MI. Protein and mRNA expression of CM-CXCR4 were quantified. Echocardiography was used to assess cardiac function. During hypoxia, DMOG treatment increased CXCR4 expression of H9c2 cells by 29 and 42% at 15 and 24 h, respectively. In vivo DMOG treatment increased CM-CXCR4 expression at 15 h post-MI in control mice but not in CM-CXCR4 null mice. DMOG resulted in increased ejection fraction in control mice but not in CM-CXCR4 null mice 21 days after MI. Consistent with greater cardiomyocyte survival with DMOG treatment, we observed a significant increase in cardiac myosin-positive area within the infarct zone after DMOG treatment in control mice, but no increase in CM-CXCR4 null mice. Inhibition of cardiomyocyte death in MI through the stabilization of HIF-1α requires downstream CM-CXCR4 expression. These data suggest that engagement of the SDF-1:CXCR4 axis through the early upregulation of CM-CXCR4 is a strategy for improving cardiac repair after MI.

  20. Acute hypoxia induces upregulation of microRNA-210 expression in glioblastoma spheroids

    DEFF Research Database (Denmark)

    Rosenberg, Tine Agerbo; Thomassen, Mads; Jensen, Stine Skov;

    2015-01-01

    AIM: Tumor hypoxia and presence of tumor stem cells are related to therapeutic resistance and tumorigenicity in glioblastomas. The aim of the present study was therefore to identify microRNAs deregulated in acute hypoxia and to identify possible associated changes in stem cell markers. MATERIALS...... & METHODS: Glioblastoma spheroid cultures were grown in either 2 or 21% oxygen. Subsequently, miRNA profiling was performed and expression of ten stem cell markers was examined. RESULTS: MiRNA-210 was significantly upregulated in hypoxia in patient-derived spheroids. The stem cell markers displayed...... a complex regulatory pattern. CONCLUSION: MiRNA-210 appears to be upregulated in hypoxia in immature glioblastoma cells. This miRNA may represent a therapeutic target although it is not clear from the results whether this miRNA may be related to specific cancer stem cell functions....

  1. Upregulated Expression of Cytotoxicity-Related Genes in IFN-γ Knockout Mice with Schistosoma japonicum Infection

    Directory of Open Access Journals (Sweden)

    Xiaotang Du

    2011-01-01

    Full Text Available It is well accepted that IFN-γ is important to the development of acquired resistance against murine schistosomiasis. However, the in vivo role of this immunoregulatory cytokine in helminth infection needs to be further investigated. In this study, parasite burden and host immune response were observed in IFN-γ knockout mice (IFNg KO infected with Schistosoma japonicum for 6 weeks. The results suggested that deficiency in IFN-γ led to decreased egg burden in mice, with low schistosome-specific IgG antibody response and enhanced activation of T cells during acute infection. Microarray and qRT-PCR data analyses showed significant upregulation of some cytotoxicity-related genes, including those from the granzyme family, tumor necrosis factor, Fas Ligand, and chemokines, in the spleen cells of IFNg KO mice. Furthermore, CD8+ cells instead of NK cells of IFNg KO mice exhibited increased transcription of cytotoxic genes compared with WT mice. Additionally, Schistosoma japonicum-specific egg antigen immunization also could activate CD8+ T cells to upregulate the expression of cytotoxic genes in IFNg KO mice. Our data suggest that IFN-γ is not always a positive regulator of immune responses. In certain situations, the disruption of IFN-γ signaling may up-regulate the cytotoxic T-cell-mediated immune responses to the parasite.

  2. Alteration of TEAD1 expression levels confers apoptotic resistance through the transcriptional up-regulation of Livin.

    Directory of Open Access Journals (Sweden)

    André Landin Malt

    Full Text Available BACKGROUND: TEA domain (TEAD proteins are highly conserved transcription factors involved in embryonic development and differentiation of various tissues. More recently, emerging evidences for a contribution of these proteins towards apoptosis and cell proliferation regulation have also been proposed. These effects appear to be mediated by the interaction between TEAD and its co-activator Yes-Associated Protein (YAP, the downstream effector of the Hippo tumour suppressor pathway. METHODOLOGY/PRINCIPAL FINDINGS: We further investigated the mechanisms underlying TEAD-mediated apoptosis regulation and showed that overexpression or RNAi-mediated silencing of the TEAD1 protein is sufficient to protect mammalian cell lines from induced apoptosis, suggesting a proapoptotic function for TEAD1 and a non physiological cytoprotective effect for overexpressed TEAD1. Moreover we show that the apoptotic resistance conferred by altered TEAD1 expression is mediated by the transcriptional up-regulation of Livin, a member of the Inhibitor of Apoptosis Protein (IAP family. In addition, we show that overexpression of a repressive form of TEAD1 can induce Livin up-regulation, indicating that the effect of TEAD1 on Livin expression is indirect and favoring a model in which TEAD1 activates a repressor of Livin by interacting with a limiting cofactor that gets titrated upon TEAD1 up-regulation. Interestingly, we show that overexpression of a mutated form of TEAD1 (Y421H implicated in Sveinsson's chorioretinal atrophy that strongly reduces its interaction with YAP as well as its activation, can induce Livin expression and protect cells from induced apoptosis, suggesting that YAP is not the cofactor involved in this process. CONCLUSIONS/SIGNIFICANCE: Taken together our data reveal a new, Livin-dependent, apoptotic role for TEAD1 in mammals and provide mechanistic insight downstream of TEAD1 deregulation in cancers.

  3. Loss of p53 expression is accompanied by upregulation of beta-catenin in meningiomas: a concomitant reciprocal expression.

    Science.gov (United States)

    Pećina-Šlaus, Nives; Kafka, Anja; Vladušić, Tomislav; Tomas, Davor; Logara, Monika; Skoko, Josip; Hrašćan, Reno

    2016-04-01

    Crosstalk between Wnt and p53 signalling pathways in cancer has long been suggested. Therefore in this study we have investigated the involvement of these pathways in meningiomas by analysing their main effector molecules, beta-catenin and p53. Cellular expression of p53 and beta-catenin proteins and genetic changes in TP53 were analysed by immunohistochemistry, PCR/RFLP and direct sequencing of TP53 exon 4. All the findings were analysed statistically. Our analysis showed that 47.5% of the 59 meningiomas demonstrated loss of expression of p53 protein. Moderate and strong p53 expression in the nuclei was observed in 8.5% and 6.8% of meningiomas respectively. Gross deletion of TP53 gene was observed in one meningioma, but nucleotide alterations were observed in 35.7% of meningiomas. In contrast, beta-catenin, the main Wnt signalling molecule, was upregulated in 71.2%, while strong expression was observed in 28.8% of meningiomas. The concomitant expressions of p53 and beta-catenin were investigated in the same patients. In the analysed meningiomas, the levels of the two proteins were significantly negatively correlated (P = 0.002). This indicates that meningiomas with lost p53 upregulate beta-catenin and activate Wnt signalling. Besides showing the reciprocal relationship between proteins, we also showed that the expression of p53 was significantly (P = 0.021) associated with higher meningioma grades (II and III), while beta-catenin upregulation was not associated with malignancy grades. Additionally, women exhibited significantly higher values of p53 loss when compared to males (P = 0.005). Our findings provide novel information about p53 involvement in meningeal brain tumours and reveal the complex relationship between Wnt and p53 signalling, they suggest an important role for beta-catenin in these tumours.

  4. ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter

    Directory of Open Access Journals (Sweden)

    Coffin Robert S

    2004-03-01

    Full Text Available Abstract Background Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization. Results Following sciatic nerve injury – transection or transection and reanastomosis – ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells, beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3. Conclusion These findings raise the possibility that ATF3/c-Jun heterodimers may play a role in

  5. Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1.

    Science.gov (United States)

    Ma, Yan; Zhang, Chen; Gao, Xiao-Bo; Luo, Hai-Yan; Chen, Yang; Li, Hui-hua; Ma, Xu; Lu, Cai-Ling

    2015-11-05

    As a nutritional factor, folic acid can prevent cardiac and neural defects during embryo development. Our previous study showed that arsenic impairs embryo development by down-regulating Dvr1/GDF1 expression in zebrafish. Here, we investigated whether folic acid could protect against arsenic-mediated embryo toxicity. We found that folic acid supplementation increases hatching and survival rates, decreases malformation rate and ameliorates abnormal cardiac and neural development of zebrafish embryos exposed to arsenite. Both real-time PCR analysis and whole in-mount hybridization showed that folic acid significantly rescued the decrease in Dvr1 expression caused by arsenite. Subsequently, our data demonstrated that arsenite significantly decreased cell viability and GDF1 mRNA and protein levels in HEK293ET cells, while folic acid reversed these effects. Folic acid attenuated the increase in subcellular reactive oxygen species (ROS) levels and oxidative adaptor p66Shc protein expression in parallel with the changes in GDF1 expression and cell viability. P66Shc knockdown significantly inhibited the production of ROS and the down-regulation of GDF1 induced by arsenite. Our data demonstrated that folic acid supplementation protected against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1/GDF1, and folic acid enhanced the expression of GDF1 by decreasing p66Shc expression and subcellular ROS levels.

  6. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Chih [Department of Research, Taichung Veterans General Hospital, Taichung, Taiwan (China); Hsueh, Chi-Mei [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chen, Chiu-Yuan [Graduate Institute of Natural Healing Sciences, Nanhua University, Chiayi, Taiwan (China); Chen, Tzu-Hsiu, E-mail: hsiu@mail.chna.edu.tw [Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan (China); Hsu, Shih-Lan, E-mail: h2326@vghtc.gov.tw [Department of Research, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan (China)

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.

  7. Claudin-2 expression is upregulated in the ileum of diarrhea predominant irritable bowel syndrome patients

    Science.gov (United States)

    Ishimoto, Haruka; Oshima, Tadayuki; Sei, Hiroo; Yamasaki, Takahisa; Kondo, Takashi; Tozawa, Katsuyuki; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2017-01-01

    Intestinal epithelial barrier function is impaired in irritable bowel syndrome patients. Claudins are highly expressed in cells with tight junctions and are involved in the intestinal epithelial barrier function. The expression pattern of tight junction proteins in diarrhea-predominant irritable bowel syndrome have not been fully elucidated. We therefore recruited 17 diarrhea-predominant irritable bowel syndrome patients and 20 healthy controls. The expression of the tight junction-related proteins was examined in the ileal, cecal, and rectal mucosa of diarrhea-predominant irritable bowel syndrome patients using real-time PCR and immunofluorescence. Claudin-2 expression was high in the ileum of diarrhea-predominant irritable bowel syndrome patients. Claudin-2 expression was the same in cecum and rectal mucosa of control and diarrhea-predominant irritable bowel syndrome patients. Similarly, the expression of clauidn-1, claudin-7, JAM-A, occludin, and ZO-1 in the ileal, cecal, and rectal mucosa did not change between control and diarrhea-predominant irritable bowel syndrome samples. Infiltration of eosinophil and mast cells in the mucosa of ileum, cecum and rectum was evaluated using immunohistochemical staining and was not affected by diarrhea-predominant irritable bowel syndrome. Claudin-2 was expressed on the apical side of villi and crypts of ileal mucosal epithelial cells. Clauidn-2 expression is upregulated in diarrhea-predominant irritable bowel syndrome patients and may contribute to the pathogenesis of this condition. PMID:28366996

  8. Metformin inhibits the prometastatic effect of sorafenib in hepatocellular carcinoma by upregulating the expression of TIP30.

    Science.gov (United States)

    Guo, Zhigui; Cao, Manqing; You, Abin; Gao, Junrong; Zhou, Hongyuan; Li, Huikai; Cui, Yunlong; Fang, Feng; Zhang, Wei; Song, Tianqiang; Li, Qiang; Zhu, Xiaolin; Sun, Huichuan; Zhang, Ti

    2016-04-01

    We previously found that a low dose of sorafenib had a prometastatic effect on hepatocellular carcinoma (HCC), which was caused by downregulation of TIP30 expression. More recently, metformin has been shown to have potential as a preventive and therapeutic agent for different cancers, including HCC. This study evaluated whether the combination of sorafenib and metformin is sufficient to revert the expression of TIP30, thereby simultaneously reducing lung metastasis and improving survival. Our data show that the combination of sorafenib and metformin inhibits proliferation and invasion in vitro, prolongs median survival, and reduces lung metastasis of HCC in vivo. This effect is closely associated with the upregulation of TIP30, partly through activating AMP-activated protein kinase. Thioredoxin, a prometastasis factor, is negatively regulated by TIP30 and plays an essential role during the process of HCC metastasis. Overall, our results suggest that metformin might be a potent enhancer for the treatment of HCC by using sorafenib.

  9. Gene expression profiling identifies a set of transcripts that are up-regulated inhuman testicular seminoma.

    Science.gov (United States)

    Yamada, Shigeyuki; Kohu, Kazuyoshi; Ishii, Tomohiko; Ishidoya, Shigeto; Ishidoya, Shigeru; Hiramatsu, Masayoshi; Kanto, Satoru; Fukuzaki, Atsushi; Adachi, Yutsu; Endoh, Mareyuki; Moriya, Takuya; Sasaki, Hiroki; Satake, Masanobu; Arai, Yoichi

    2004-10-31

    Seminoma constitutes one subtype of human testicular germ cell tumors and is uniformly composed of cells that are morphologically similar to the primordial germ cells and/or the cells in the carcinoma in situ. We performed a genome-wide exploration of the genes that are specifically up-regulated in seminoma by oligonucleotide-based microarray analysis. This revealed 106 genes that are significantly and consistently up-regulated in the seminomas compared to the adjacent normal tissues of the testes. The microarray data were validated by semi-quantitative RT-PCR analysis. Of the 106 genes, 42 mapped to a small number of specific chromosomal regions, namely, 1q21, 2p23, 6p21-22, 7p14-15, 12pll, 12p13, 12q13-14 and 22q12-13. This list of up-regulated genes may be useful in identifying the causative oncogene(s) and/or the origin of seminoma. Furthermore, immunohistochemical analysis revealed that the seminoma cells specifically expressed the six gene products that were selected randomly from the list. These proteins include CCND2 and DNMT3A and may be useful as molecular pathological markers of seminoma.

  10. Delphinidin Prevents Muscle Atrophy and Upregulates miR-23a Expression.

    Science.gov (United States)

    Murata, Motoki; Nonaka, Haruna; Komatsu, Satomi; Goto, Megumi; Morozumi, Mai; Yamada, Shuhei; Lin, I-Chian; Yamashita, Shuya; Tachibana, Hirofumi

    2017-01-11

    Delphinidin, one of the major anthocyanidins, shows protective effects against a variety of pathologies, including cancer, inflammation, and muscle atrophy. The purpose of this study was to determine the preventive mechanism of delphinidin on disuse muscle atrophy. In vitro and in vivo models were used to validate the effects of delphinidin on the expression of MuRF1, miR-23a, and NFATc3. Delphinidin suppressed the upregulation of MuRF1 (1.77 ± 0.05 vs 1.03 ± 0.17, P muscle weight loss was prevented by oral administration of delphinidin. Moreover, delphinidin suppressed MuRF1 (3.35 ± 0.13 vs 2.26 ± 0.3, P muscle atrophy by inducing miR-23a expression and suppressing MuRF1 expression.

  11. Ginsenoside Rb1 ameliorates liver fat accumulation by upregulating perilipin expression in adipose tissue of db/db obese mice

    Directory of Open Access Journals (Sweden)

    Xizhong Yu

    2015-07-01

    Conclusion: G-Rb1 may improve insulin sensitivity in obese and diabetic db/db mice by reducing hepatic fat accumulation and suppressing adipocyte lipolysis; these effects may be mediated via the upregulation of perilipin expression in adipocytes.

  12. Cobalt Chloride Upregulates Impaired HIF-1α Expression to Restore Sevoflurane Post-conditioning-Dependent Myocardial Protection in Diabetic Rats

    Science.gov (United States)

    Wu, Jianjiang; Yang, Long; Xie, Peng; Yu, Jin; Yu, Tian; Wang, Haiying; Maimaitili, Yiliyaer; Wang, Jiang; Ma, Haiping; Yang, Yining; Zheng, Hong

    2017-01-01

    Previous studies from our group have demonstrated that sevoflurane post-conditioning (SPC) protects against myocardial ischemia reperfusion injury via elevating the intranuclear expression of hypoxia inducible factor-1 alpha (HIF-1α). However, diabetic SPC is associated with decreased myocardial protection and disruption of the HIF-1 signaling pathway. Previous studies have demonstrated that cobalt chloride (CoCl2) can upregulate HIF-1α expression under diabetic conditions, but whether myocardial protection by SPC can be restored afterward remains unclear. We established a rat model of type 2 diabetes and a Langendorff isolated heart model of ischemia-reperfusion injury. Prior to reperfusion, 2.4% sevoflurane was used as a post-conditioning treatment. The diabetic rats were treated with CoCl2 24 h before the experiment. At the end of reperfusion, tests were performed to assess myocardial function, infarct size, mitochondrial morphology, nitric oxide (NO), Mitochondrial reactive oxygen species (ROS), mitochondrial respiratory function and enzyme activity, HIF-1α, vascular endothelial growth factor (VEGF) and endothelial NO synthase (eNOS) protein levels. In addition, myocardial protection by SPC was monitored after the blood glucose levels were lowered by insulin. The diabetic state was associated with deficient SPC protection and decreased HIF-1α expression. After treating the diabetic rats with CoCl2, SPC significantly upregulated the expression of HIF-1α, VEGF and eNOS, which markedly improved cardiac function, NO, mitochondrial respiratory function, and enzyme activity and decreased the infarction areas and ROS. In addition, these effects were not influenced by blood glucose levels. This study proved that CoCl2activates the HIF-1α signaling pathway, which restores SPC-dependent myocardial protection under diabetic conditions, and the protective effects of SPC were independent of blood glucose levels. PMID:28659817

  13. Influence of Apoptin on Up-regulation of the Expression of Bad and Bax

    Institute of Scientific and Technical Information of China (English)

    GUO Tai; YANG Qian

    2005-01-01

    The chicken anemia virus protein, apoptin, which manifests selectivity and specificity to tumor cells, induces a p53-independent and Bcl-2-insensitive type of apoptosis in various human tumor cells. In this study, the apoptin gene was cloned from the total DNA of chicken anemia virus, and the recombinant vector was constructed. We used oligonucleotide microarray to study the changes of four genes, including Bcl-2, Bcl-xL, Bad and Bax. The post-transfection with the recombinant was also studied. The pro-apoptotic genes(Bad and Bax) and anti-apoptosis genes(Bcl-2 and Bcl-xL) were up-regulated in contrast to the controls. According to the published data, either Bcl-2 or Bcl-xL can form non-functional heterodimers by Bad and Bax binding together, resulting in blocking partly the release of cytochrome c from mitochondria. However, apoptosis could be inhibited by neither the endogenous Bcl-xL nor Bcl-2 over-expression. The experiments show that the apoptin-induced apoptotic pathway is related to the up-regulation of Bad and Bax. Bad was up-regulated by apoptin; then this up-regulated product of Bad was in favor of displacing Bax from binding to Bcl-xL or Bcl-2. Consequently, Bax exerted a pro-apoptotic dysfunction to mitochondria, thereby inducing the release of cytochrome c. Finally, apoptin induced the apoptosis of HHCC cells. These results indicate that the oligonucleotide microarray can reveal the genes related to the apoptosis induced by apoptin in HHCC cells.

  14. Integrin-linked kinase mediates the hydrogen peroxide-dependent transforming growth factor-β1 up-regulation.

    Science.gov (United States)

    Gonzalez-Ramos, M; de Frutos, S; Griera, M; Luengo, A; Olmos, G; Rodriguez-Puyol, D; Calleros, L; Rodriguez-Puyol, M

    2013-08-01

    Transforming growth factor type-β1 (TGF-β1) has been recognized as a central mediator in many pathological events related to extracellular matrix (ECM) proteins accumulation, where their locally increased expression has been implicated in the fibrosis process of numerous organs, including glomerular fibrosis in the kidney. We and others have reported the TGF-β1 synthesis regulation by reactive oxygen species (ROS), and moreover we also described the implication of integrin-linked kinase (ILK) in the AP-1-dependent TGF-β1 up-regulation. Thus, we propose here that hydrogen peroxide (H2O2)-dependent TGF-β1 regulation may be mediated by ILK activation. First we confirmed the increase in TGF-β1 expression in human mesangial cells (HMC) after treatment with H2O2 or with an alternative H2O2-generating system such as the glucose-oxidase enzyme (GOX). By using immunoblotting, immunofluorescence, and ELISA techniques, we demonstrate that extracellular H2O2 up-regulates TGF-β1 transcription, as well as increases TGF-β1 promoter activity. Furthermore, catalase-decreased intracellular H2O2 abolished TGF-β1 up-regulation. The use of pharmacological inhibitors as well as knockdown of ILK with small interfering RNA (siRNA) demonstrated the implication of a PI3K/ILK/AKT/ERK MAPK signaling pathway axis in the H2O2-induced TGF-β1 overexpression. Finally, we explored the physiological relevance of these findings by treating HMC with angiotensin II, a known stimuli of H2O2 synthesis. Our results confirm the relevance of previous findings after a more physiological stimulus. In summary, our results provide evidence that ILK activity changes may act as a mechanism in response to different stimuli such as H2O2 in the induced TGF-β1 up-regulation in pathological or even physiological conditions.

  15. An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells.

    Science.gov (United States)

    Wang, Y; Liu, L; Moore, D J; Shen, X; Peek, R M; Acra, S A; Li, H; Ren, X; Polk, D B; Yan, F

    2017-03-01

    p40, a Lactobacillus rhamnosus GG (LGG)-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells, leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation, this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting immunoglobulin A (IgA) production. p40 upregulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells, which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfr(fl/fl), but not Egfr(fl/fl)-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells, exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B-cell class switching to IgA(+) cells and IgA production, which was suppressed by APRIL receptor-neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells, fecal IgA levels, IgA(+)B220(+), IgA(+)CD19(+), and IgA(+) plasma cells in lamina propria of Egfr(fl/fl), but not of Egfr(fl/fl)-Vil-Cre, mice. Thus p40 upregulates EGFR-dependent APRIL production in intestinal epithelial cells, which may contribute to promoting IgA production.

  16. Live and heat-killed Lactobacillus rhamnosus GG upregulate gene expression of pro-inflammatory cytokines in 5-fluorouracil-pretreated Caco-2 cells.

    Science.gov (United States)

    Fang, Shiuh-Bin; Shih, Hsin-Yu; Huang, Chih-Hung; Li, Li-Ting; Chen, Chia-Chun; Fang, Hsu-Wei

    2014-06-01

    This study investigates whether post-chemotherapeutic use of live and heat-killed Lactobacillus rhamnosus GG can modulate the expression of three pro-inflammatory cytokines in 5-fluorouracil (5-FU)-induced intestinal mucositis in vitro. Live L. rhamnosus GG and heat-killed L. rhamnosus GG were observed using scanning electron microscopy. To establish the duration required for optimal expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), and interleukin-12 (IL-12), 5 μM of 5-FU was selected to treat 10-day-old Caco-2 cells for 4, 6, 8, and 24 h. Caco-2 cells were treated with 5-FU (5 μM) for 4 h, followed by the administration of live L. rhamnosus GG (multiplicity of infection = 25), and heat-killed L. rhamnosus GG for 2 and 4 h. Finally, total cellular RNA was isolated to quantify mRNA expression of TNF-α, MCP-1, and IL-12 using real-time PCR. The results demonstrated that heat-killed L. rhamnosus GG remained structurally intact with elongation. A biphasic upregulated expression of TNF-α, MCP-1, and IL-12 was observed in 5-FU-treated Caco-2 cells at 4 and 24 h. Compared to non-L. rhamnosus GG controls in 5-FU-pretreated Caco-2 cells, a 2-h treatment of heat-killed L. rhamnosus GG significantly upregulated the MCP-1 expression (p rhamnosus GG treatments lasting 4 h upregulated the TNF-α and MCP-1 expression (p rhamnosus GG upregulated the IL-12 expression (p rhamnosus GG can upregulate the gene expression of 5-FU-induced pro-inflammatory cytokines in Caco-2 cells. Human intestinal epithelium may be vulnerable to the post-chemotherapeutic use of L. rhamnosus GG in 5-FU-induced mucositis that requires further in vivo studies for clarification.

  17. Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression.

    Directory of Open Access Journals (Sweden)

    Wen-Chung Tsai

    Full Text Available Low-level laser therapy (LLLT is commonly used to treat sports-related tendinopathy or tendon injury. Tendon healing requires tenocyte migration to the repair site, followed by proliferation and synthesis of the extracellular matrix. This study was designed to determine the effect of laser on tenocyte migration. Furthermore, the correlation between this effect and expression of dynamin 2, a positive regulator of cell motility, was also investigated. Tenocytes intrinsic to rat Achilles tendon were treated with low-level laser (660 nm with energy density at 1.0, 1.5, and 2.0 J/cm(2. Tenocyte migration was evaluated by an in vitro wound healing model and by transwell filter migration assay. The messenger RNA (mRNA and protein expressions of dynamin 2 were determined by reverse transcription/real-time polymerase chain reaction (real-time PCR and Western blot analysis respectively. Immunofluorescence staining was used to evaluate the dynamin 2 expression in tenocytes. Tenocytes with or without laser irradiation was treated with dynasore, a dynamin competitor and then underwent transwell filter migration assay. In vitro wound model revealed that more tenocytes with laser irradiation migrated across the wound border to the cell-free zone. Transwell filter migration assay confirmed that tenocyte migration was enhanced dose-dependently by laser. Real-time PCR and Western-blot analysis demonstrated that mRNA and protein expressions of dynamin 2 were up-regulated by laser irradiation dose-dependently. Confocal microscopy showed that laser enhanced the expression of dynamin 2 in cytoplasm of tenocytes. The stimulation effect of laser on tenocytes migration was suppressed by dynasore. In conclusion, low-level laser irradiation stimulates tenocyte migration in a process that is mediated by up-regulation of dynamin 2, which can be suppressed by dynasore.

  18. The CCAAT/enhancer-binding protein beta-2 isoform (CEBPβ-2 upregulates galectin-7 expression in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Carole G Campion

    Full Text Available Galectin-7 is considered a gene under the control of p53. However, elevated expression of galectin-7 has been reported in several forms of cancer harboring an inactive p53 pathway. This is especially true for breast cancer where galectin-7 expression is readily expressed in a high proportion in basal-like breast cancer tissues, conferring cancer cells with increased resistance to cell death and metastatic properties. These observations suggest that other transcription factors are capable of inducing galectin-7 expression. In the present work, we have examined the role of CCAAT/enhancer-binding protein beta (C/EBPβ in inducing expression of galectin-7. C/EBP proteins have been shown to contribute to breast cancer by upregulating pro-metastatic genes. We paid particular attention to C/EBPβ-2 (also known as LAP2, the most transcriptionally active of the C/EBPβ isoforms. Our results showed that ectopic expression of C/EBPβ-2 in human breast cancer cells was sufficient to induce expression of galectin-7 at both the mRNA and protein levels. In silico analysis further revealed the presence of an established CEBP element in the galectin-7 promoter. Mutation of this binding site abolished the transcriptional activity of the galectin-7 promoter. Chromatin immunoprecipitation analysis confirmed that C/EBPβ-2 binds to the endogenous galectin-7 promoter. Analysis of galectin-7 protein expression in normal epithelia and in breast carcinoma by immunohistochemistry further showed the expression pattern of C/EBPβ closely micmicked that of galectin-7, most notably in mammary myoepithelial cells and basal-like breast cancer where galectin-7 is preferentially expressed. Taken together, our findings suggest that C/EBPβ is an important mediator of galectin-7 gene activation in breast cancer cells and highlight the different transcriptional mechanisms controlling galectin-7 in cancer cells.

  19. Upregulation of RHOXF2 and ODF4 Expression in Breast Cancer Tissues

    Directory of Open Access Journals (Sweden)

    Golnesa Kazemi-Oula

    2015-10-01

    Full Text Available Objective: During the past decade, the importance of biomarker discovery has been highlighted in many aspects of cancer research. Biomarkers may have a role in early detection of cancer, prognosis and survival evaluation as well as drug response. Cancer-testis antigens (CTAs have gained attention as cancer biomarkers because of their expression in a wide variety of tumors and restricted expression in testis. The aim of this study was to find putative biomarkers for breast cancer. Materials and Methods: In this applied-descriptive study, the expression of 4 CTAs, namely acrosin binding protein (ACRBP, outer dense fiber 4 (ODF4, Rhox homeobox family member 2 (RHOXF2 and spermatogenesis associated 19 (SPATA19 were analyzed at the transcript level in two breast cancer lines (MCF-7 and MDA-MB-231, 40 invasive ductal carcinoma samples and their adjacent normal tissues as well as 10 fibroadenoma samples by means of quantitative real-time reverse transcription polymerase chain reaction (RT-PCR. Results: All four genes were expressed in both cell lines. Expression of ODF4 and RHOXF2 was detected in 62.5% and 60% of breast cancer tissues but in 22.5 and 17.5% of normal tissues examined respectively. The expression of both RHOXF2 and ODF4 was upregulated in cancerous tissues compared with their normal adjacent tissues by 3.31- and 2.96-fold respectively. The expression of both genes was correlated with HER2/neu overexpression. RHOXF2 expression but not ODF4 was correlated with higher stages of tumors. However, no significant association was seen between expression patterns and estrogen and progesterone receptors status. Conclusion: ODF4 and RHOXF2 are proposed as putative breast cancer biomarkers at the transcript level. However, their expression at protein level should be evaluated in future studies.

  20. The upregulation of heat shock protein 47 expression in human buccal fibroblasts stimulated with arecoline.

    Science.gov (United States)

    Yang, Shun-Fa; Tsai, Chung-Hung; Chang, Yu-Chao

    2008-04-01

    Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagen. HSP47 is consistently and dramatically upregulated in a variety of fibrotic diseases. The aim of this study was to compare HSP47 expression in normal human buccal mucosa and oral submucous fibrosis (OSF) specimens and further to explore the potential mechanisms that may lead to induce HSP47 expression. The mRNA levels of HSP47 from fibroblasts cultured from 20 OSF and 10 normal buccal mucosal fibroblasts (BMFs) were evaluated by reverse transcription polymerase chain reaction. The effect of arecoline, the major areca nut alkaloid, was added to explore the potential mechanisms that may lead to induce HSP47 expression. Furthermore, mitogen-activated protein kinase kinase (MEK) inhibitor U0126, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, p38 inhibitor SB203580, cyclo-oxygenase-2 (COX-2) inhibitor NS-398, and glutathione precursor N-acetyl-l-cysteine were added to find the possible mechanisms. OSF demonstrated significantly higher HSP47 mRNA expression than BMFs (P Arecoline was also found to elevate HSP47 mRNA expression in a dose-dependent manner (P arecoline when compared with control (P arecoline-induced HSP47 mRNA expression (P arecoline in fibroblasts may be mediated by MEK, PI3K, and COX-2 signal transduction pathways.

  1. MicroRNA-223 Expression Is Upregulated in Insulin Resistant Human Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Tung-Yueh Chuang

    2015-01-01

    Full Text Available MicroRNAs (miRNAs are short noncoding RNAs involved in posttranscriptional regulation of gene expression and influence many cellular functions including glucose and lipid metabolism. We previously reported that adipose tissue (AT from women with polycystic ovary syndrome (PCOS or controls with insulin resistance (IR revealed a differentially expressed microRNA (miRNA profile, including upregulated miR-93 in PCOS patients and in non-PCOS women with IR. Overexpressed miR-93 directly inhibited glucose transporter isoform 4 (GLUT4 expression, thereby influencing glucose metabolism. We have now studied the role of miR-223, which is also abnormally expressed in the AT of IR subjects. Our data indicates that miR-223 is significantly overexpressed in the AT of IR women, regardless of whether they had PCOS or not. miR-223 expression in AT was positively correlated with HOMA-IR. Unlike what is reported in cardiomyocytes, overexpression of miR-223 in human differentiated adipocytes was associated with a reduction in GLUT4 protein content and insulin-stimulated glucose uptake. In addition, our data suggests miR-223 regulates GLUT4 expression by direct binding to its 3′ untranslated region (3′UTR. In conclusion, in AT miR-223 is an IR-related miRNA that may serve as a potential therapeutic target for the treatment of IR-related disorders.

  2. Pressure therapy upregulates matrix metalloproteinase expression and downregulates collagen expression in hypertrophic scar tissue

    Institute of Scientific and Technical Information of China (English)

    HUANG Dong; SHEN Kuan-hong; WANG Hong-gang

    2013-01-01

    Background Pressure therapy improves hypertrophic scar healing,but the mechanisms for this process are not well understood.We sought to investigate the differential expression of matrix metalloproteinases (Mmps) and collagen in posttraumatic hypertrophic scar tissue with mechanical pressure and delineate the molecular mechanisms of pressure therapy for hypertrophic scars.Methods Fibroblast lines of normal skin and scar tissue were established and a mechanical pressure system was devised to simulate pressure therapy.Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting assays were used to compare differences in the mRNA and protein expression of Mmps and collagen in scar fibroblasts before and after pressure therapy.Results The expression differed between the hypertrophic scar cell line and the normal cell line.RT-PCR assays showed that Collagen I,highly expressed in the hypertrophic scar cell line,decreased significantly after pressure therapy.Mmp2,Mmp9,and Mmp12 expression in the hypertrophic scar tissue increased significantly after pressure therapy (P <0.05).Western blotting assays further revealed that Mmp9 and Mmp12 expression increased significantly in the hypertrophic scar tissue after pressure therapy (P <0.05) but not Mmp2 expression (P >0.05).Conclusion Mechanical pressure induces degradation of Collagen Ⅰ in hypertrophic scar tissue by affecting the expression of Mmp9 and Mmp12.

  3. Peripheral challenge with a viral mimic upregulates expression of the complement genes in the hippocampus.

    Science.gov (United States)

    Michalovicz, Lindsay T; Lally, Brent; Konat, Gregory W

    2015-08-15

    Peripheral challenge with a viral mimetic, polyinosinic-polycytidylic acid (PIC) induces hippocampal hyperexcitability in mice. Here, we characterized this hippocampal response through a whole genome transcriptome analysis. Intraperitoneal injection of PIC resulted in temporal dysregulation of 625 genes in the hippocampus, indicating an extensive genetic reprogramming. The bioinformatics analysis of these genes revealed the complement pathway to be the most significantly activated. The gene encoding complement factor B (CfB) exhibited the highest response, and its upregulation was commensurate with the development of hyperexcitability. Collectively, these results suggest that the induction of hippocampal hyperexcitability may be mediated by the alternative complement cascades.

  4. PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27(Kip1..

    Directory of Open Access Journals (Sweden)

    Courtney Nicholas

    Full Text Available Protein arginine methyltransferase-5 (PRMT5 is a Type II arginine methyltransferase that regulates various cellular functions. We hypothesized that PRMT5 plays a role in regulating the growth of human melanoma cells. Immunohistochemical analysis indicated significant upregulation of PRMT5 in human melanocytic nevi, malignant melanomas and metastatic melanomas as compared to normal epidermis. Furthermore, nuclear PRMT5 was significantly decreased in metastatic melanomas as compared to primary cutaneous melanomas. In human metastatic melanoma cell lines, PRMT5 was predominantly cytoplasmic, and associated with its enzymatic cofactor Mep50, but not STAT3 or cyclin D1. However, histologic examination of tumor xenografts from athymic mice revealed heterogeneous nuclear and cytoplasmic PRMT5 expression. Depletion of PRMT5 via siRNA inhibited proliferation in a subset of melanoma cell lines, while it accelerated growth of others. Loss of PRMT5 also led to reduced expression of MITF (microphthalmia-associated transcription factor, a melanocyte-lineage specific oncogene, and increased expression of the cell cycle regulator p27(Kip1. These results are the first to report elevated PRMT5 expression in human melanoma specimens and indicate this protein may regulate MITF and p27(Kip1 expression in human melanoma cells.

  5. Amphotericin B Increases Transglutaminase 2 Expression Associated with Upregulation of Endocytotic Activity in Mouse Microglial Cell Line BV-2.

    Science.gov (United States)

    Kawabe, Kenji; Takano, Katsura; Moriyama, Mitsuaki; Nakamura, Yoichi

    2017-02-21

    Amphotericin B (AmB), a polyene antibiotic, is reported to cause the microglial activation to induce nitric oxide (NO) production and proinflammatory cytokines expression, and change neurotrophic factors expression in cultured microglia (Motoyoshi et al. in Neurochem Int 52:1290-1296, 2008). On the other hand, tissue-type transglutaminase (TG2) is involved in connection to phagocytes with apoptotic cells. Engulfment of neurons by activated microglia is thought to cause neurodegenerative diseases but detail is unclear, and involvement of TG2 in phagocytosis has been reported in our previous study using lipopolysaccharide-stimulated BV-2 cells (Kawabe et al. in Neuroimmunomodulation 22(4):243-249, 2015). In the present study, we examined the changes of TG2 expression, phagocytosis and pinocytosis in BV-2 cells stimulated by AmB. AmB stimulation increased TG2 expression and TG activity. Phagocytosis of dead cells and pinocytosis of fluorescent microbeads were also up-regulated by AmB stimulation in BV-2 cells. Blockade of TG activity by cystamine, an inhibitor of TGs, suppressed AmB-enhanced TG2 expression, TG activity, NO production, phagocytosis and pinocytosis. Excessive NO production from microglia and/or facilitation of phagocytosis might be involved in neuronal death. To control TG activity might make possible to protect neurons and care for CNS diseases.

  6. Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity.

    Science.gov (United States)

    Panchanathan, Ravichandran; Choubey, Divaker

    2013-01-01

    Systemic lupus erythematosus (SLE) in patients and certain mouse models exhibits a strong sex bias. Additionally, in most patients, increased serum levels of type I interferon (IFN-α) are associated with severity of the disease. Because increased levels of B cell activating factor (BAFF) in SLE patients and mouse models are associated with the development of SLE, we investigated whether the female sex hormone estrogen (E2) and/or IFNs (IFN-α or γ) could regulate the expression of murine BAFF. We found that steady-state levels of BAFF mRNA and protein were measurably higher in immune cells (CD11b(+), CD11c(+), and CD19(+)) isolated from C57BL/6 females than the age-matched male mice. Treatment of immune cells with IFN or E2 significantly increased levels of BAFF mRNA and protein and a deficiency of estrogen receptor-α, IRF5, or STAT1 expression in splenic cells decreased expression of BAFF. Moreover, treatment of RAW264.7 macrophage cells with IFN-α, IFN-γ, or E2 induced expression of BAFF. Interestingly, increased expression of p202, an IFN and estrogen-inducible protein, in RAW264.7 cells significantly increased the expression levels of BAFF and also stimulated the activity of the BAFF-luc-reporter. Accordingly, the increased expression of the p202 protein in lupus-prone B6.Nba2-ABC than non lupus-prone C57BL/6 and B6.Nba2-C female mice was associated with increased expression levels of BAFF. Together, our observations demonstrated that estrogen and IFN-induced increased levels of the p202 protein in immune cells contribute to sex bias in part through up-regulation of BAFF expression.

  7. Epidermal growth factor upregulates serotonin transporter and its association with visceral hypersensitivity in irritable bowel syndrome.

    Science.gov (United States)

    Cui, Xiu-Fang; Zhou, Wei-Mei; Yang, Yan; Zhou, Jun; Li, Xue-Liang; Lin, Lin; Zhang, Hong-Jie

    2014-10-07

    To investigate the role of epidermal growth factor (EGF) in visceral hypersensitivity and its effect on the serotonin transporter (SERT). A rat model for visceral hypersensitivity was established by intra-colonic infusion of 0.5% acetic acid in 10-d-old Sprague-Dawley rats. The visceral sensitivity was assessed by observing the abdominal withdrawal reflex and recording electromyographic activity of the external oblique muscle in response to colorectal distension. An enzyme-linked immunosorbent assay was used to measure the EGF levels in plasma and colonic tissues. SERT mRNA expression was detected by real-time PCR while protein level was determined by Western blot. The correlation between EGF and SERT levels in colon tissues was analyzed by Pearson's correlation analysis. SERT function was examined by tritiated serotonin (5-HT) uptake experiments. Rat intestinal epithelial cells (IEC-6) were used to examine the EGF regulatory effect on SERT expression and function via the EGF receptor (EGFR). EGF levels were significantly lower in the rats with visceral hypersensitivity as measured in plasma (2.639 ± 0.107 ng/mL vs 4.066 ± 0.573 ng/mL, P < 0.01) and in colonic tissue (3.244 ± 0.135 ng/100 mg vs 3.582 ± 0.197 ng/100 mg colon tissue, P < 0.01) compared with controls. Moreover, the EGF levels were positively correlated with SERT levels (r = 0.820, P < 0.01). EGF displayed dose- and time-dependent increased SERT gene expressions in IEC-6 cells. An EGFR kinase inhibitor inhibited the effect of EGF on SERT gene upregulation. SERT activity was enhanced following treatment with EGF (592.908 ± 31.515 fmol/min per milligram vs 316.789 ± 85.652 fmol/min per milligram protein, P < 0.05) and blocked by the EGFR kinase inhibitor in IEC-6 cells (590.274 ± 25.954 fmol/min per milligram vs 367.834 ± 120.307 fmol/min per milligram protein, P < 0.05). A decrease in EGF levels may contribute to the formation of visceral hypersensitivity through downregulation of SERT

  8. 1,25-Dihydroxyvitamin D3 upregulates leptin expression in mouse adipose tissue.

    Science.gov (United States)

    Kong, Juan; Chen, Yunzi; Zhu, Guojun; Zhao, Qun; Li, Yan Chun

    2013-02-01

    Leptin is an adipose tissue-derived hormone that plays a critical role in energy homeostasis. Vitamin D has been shown to regulate energy metabolism, but the relationship between vitamin D and leptin is unclear. Leptin expression and secretion was reduced in vitamin D receptor (VDR)-null mice and increased in transgenic (Tg) mice overexpressing the VDR in adipocytes; however, as leptin is mainly determined by fat mass, it is unclear whether the vitamin D hormone directly regulates leptin expression. To address this question, we determined the effect of vitamin D on leptin expression in vivo and ex vivo. One-week treatment of WT mice with the vitamin D analog RO-27-5646 led to a significant increase in adipose leptin mRNA transcript and serum leptin levels. Moreover, in adipose tissue cultures, 1,25-dihydroxyvitamin D markedly stimulated mRNA expression and secretion of leptin, but not resistin, in adipose tissues obtained from WT mice, but not from VDR-null mice, and leptin upregulation induced by 1,25-dihydroxyvitamin D was more robust in adipose tissues obtained from VDR Tg mice compared with WT mice. These data demonstrate that 1,25-dihydroxyvitamin D stimulates adipose leptin production in a VDR-dependent manner, suggesting that vitamin D may affect energy homeostasis through direct regulation of leptin expression.

  9. Upregulation of parathyroid VDR expression by extracellular calcium is mediated by ERK1/2-MAPK signaling pathway.

    Science.gov (United States)

    Cañadillas, Sagrario; Canalejo, Rocio; Rodriguez-Ortiz, Maria Encarnacion; Martinez-Moreno, Julio Manuel; Estepa, Jose Carlos; Zafra, Rafael; Perez, Jose; Muñoz-Castañeda, Juan Rafael; Canalejo, Antonio; Rodriguez, Mariano; Almaden, Yolanda

    2010-05-01

    We have previously demonstrated that the activation of rat parathyroid calcium-sensing receptor (CaSR) upregulates VDR expression in vivo (Garfia B, Cañadillas S, Luque F, Siendones E, Quesada M, Almadén Y, Aguilera-Tejero E, Rodríguez M. J Am Soc Nephrol 13: 2945-2952, 2002; Rodriguez ME, Almaden Y, Cañadillas S, Canalejo A, Siendones E, Lopez I, Aguilera-Tejero E, Martin D, Rodriguez M. Am J Physiol Renal Physiol 292: F1390-F1395, 2007). The present study was designed to characterize the signaling system that mediates the stimulation of parathyroid VDR gene expression by extracellular calcium. Experiments were performed in vitro by the incubation of rat parathyroid glands and in vivo with normal and uremic (Nx) rats receiving injections of CaCl(2) or EDTA to obtain hypercalcemic or hypocalcemic clamps. A high calcium concentration increased VDR expression. The addition of arachidonic acid (AA) to the low-calcium medium produced an increase in VDR mRNA of the same magnitude as that observed with high calcium. The addition of ionophore to the low-calcium medium also increased VDR mRNA expression. High calcium or the addition of AA to the low-calcium medium induced the activation (phosphorylation) of ERK1/2-MAPK. The specific inhibition of the ERK1/2-MAPK activity prevented the stimulation of VDR expression by high calcium or AA. These results suggest that AA regulates parathyroid VDR gene expression through the activation of the ERK1/2-MAPK. CaSR activation induced the activation of transcription factor Sp1, but not of NF-κB p50 or p65 or activator protein-1. The addition of AA to the low-calcium medium increased specific DNA-binding activity of Sp1 to almost the same level as high calcium, which was prevented by the inhibition of ERK1/2. Furthermore, mithramycin A (a Sp1 inhibitor) prevented the upregulation of VDR mRNA by high calcium. Finally, both sham and Nx hypercalcemic rats showed similar increased levels of VDR mRNA compared with sham and Nx

  10. Up-regulation of intestinal nuclear factor kappa B and intercellular adhesionmolecule-1 following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Hang; Ji-Xin Shi; Jie-Shou Li; Wei-Qin Li; Hong-Xia Yin

    2005-01-01

    AIM: Nuclear factor kappa B (NF-κB) regulates a large number of genes involved in the inflammatory response to critical illnesses, but it is not known if and how NF-κB is activated and intercellular adhesion molecule-1 (ICAM-1)expressed in the gut following traumatic brain injury (TBI).The aim of current study was to investigate the temporal pattern of intestinal NF-κB activation and ICAM-1expression following TBI.METHODS: Male Wistar rats were randomly divided into six groups (6 rats in each group) including controls with sham operation and TBI groups at hours 3, 12, 24, and 72, and on d 7. Parietal brain contusion was adopted using weight-dropping method. All rats were decapitated at corresponding time point and mid-jejunum samples were taken. NF-κB binding activity in jejunal tissue was measured using EMSA. Immunohistochemistry was used for detection of ICAM-1 expression in jejunal samples.RESULTS: There was a very low NF-κB binding activity and little ICAM-1 expression in the gut of control rats after sham surgery. NF-κB binding activity in jejunum significantly increased by 160% at 3 h following TBI (P<0.05 vs control), peaked at 72 h (500% increase)and remained elevated on d 7 post-injury by 390% increase. Compared to controls, ICAM-1 was significantly up-regulated on the endothelia of microvessels in villous interstitium and lamina propria by 24 h following TBI and maximally expressed at 72 h post-injury (P<0.001). The endothelial ICAM-1 immunoreactivity in jejunal mucosa still remained strong on d 7 post-injury. The peak of NF-κB activation and endothelial ICAM-1 expression coincided in time with the period during which secondary mucosal injury of the gut was also at their culmination following TBI.CONCLUSION: TBI could induce an immediate and persistent up-regulation of NF-κB activity and subsequent up-regulation of ICAM-1 expression in the intestine.Inflammatory response mediated by increased NF-κB activation and ICAM-1 expression may play an

  11. Platelet-derived growth factor receptor-β in myocyte was upregulated by angiotensin II

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To observe the regulation of platelet-derived growth factor (PDGF) receptor-βin myocyte stimulated by angiotensin II (AngII) at both integrated and cellular levels and reveal the signal transduction mechanism in cell, two kidneys, one clip (2K1C) renal hypertension were performed by placing a sliver clip around the left renal artery. Blood pressure and the ratio of left ventricular weight to body weight were measured at 4 and 8 weeks after operation. The content of AngII in heart was detected by radioimmunology assay; the protein level of PDGF receptor-βin heart was measured by Western blot analysis. The alteration of PDGF receptor-βstimulated by AngII and several inhibitors was observed on cultured neonatal rat ventricular myocyte (NRVM). The content of AngII in heart of 2K1C renal hypertensive rat at 4 and 8 weeks after operation was increased. Compared with sham group, 4 and 8 weeks after operation, PDGF receptor-βin heart of 2K1C group was upregulated by 100.3% and 127.1% (P < 0.05), respectively. This upregulation could be inhibited by captopril. For cultured myocyte, PDGF receptor-βwas increased by 47.1% after being stimulated by AngII and this upregulation could be inhibited by losartan which was an inhibitor of AT1 receptor. PLC inhibitor (U73122) and MEK inhibitor (PD98059) could partly inhibit PDGF receptor-βupregulation induced by AngII. These results suggested that AngII could upregulate PDGF receptor-βin myocyte by its AT1 receptor and this effect was at least partly dependent on PLC and extracellular signal-regulated kinase (ERK).

  12. Propofol up-regulates Mas receptor expression in dorsal root ganglion neurons.

    Science.gov (United States)

    Cao, Lijun; Xun, Junmei; Jiang, Xinghua; Tan, Rong

    2013-08-01

    Mas is a functional binding site for angiotensin (Ang)-(1-7), a critical component of the renin-angiotensin system that is involved in processing nociceptive information. A recent study reported the localization of Mas in rat dorsal root ganglia (DRG) and demonstrated that Ang-(1-7) produced a dose-dependent peripheral antinociceptive effect in rats through the Mas receptor by an opioid-independent mechanism. In the present study, we for the first time examined the effect of propofol on Mas expression in cultured DRG neurons. We treated rat DRG neurons with propofol at different concentrations (0.1, 0.5, 1, 5 or 10 microM) for different length of time (0.5, 1, 2, 4 or 6 h) with or without transcription inhibitor actinomycin D or different kinase inhibitors. Propofol increased the Mas receptormRNA level in a statistically significant dose- and time-dependent manner within 4 h, which led to dose-dependent up-regulation of the Mas receptor protein level as well as Ang-(1-7) binding on the cell membrane. Actinomycin D (1 mg/ml) and p38 mitogen-activated protein kinase inhibitor PD169316 (25 microM) completely abolished the effect of propofol on Mas receptor expression in DRG neurons. In conclusion, we demonstrate that propofol markedly up-regulates Mas receptor expression at the transcription level in DRG neurons by a p38 MAPK-dependent mechanism. This study provides new insights into the mechanisms of action of propofol in peripheral antinociception, and suggests a new regulatory mechanism on the Ang-(1-7)/Mas axis in the peripheral nervous system.

  13. KAI1/CD82 suppresses hepatocyte growth factor-induced migration of hepatoma cells via upregulation of Sprouty2

    Institute of Scientific and Technical Information of China (English)

    MU ZhenBin; WANG Hua; ZHANG Jing; LI QingFang; WANG LiSheng; GUO XiaoZhong

    2008-01-01

    We conducted a study concerning the suppressive mechanism of KAI1/CD82 on hepatoma cell metas-tasis. Hepatocyte growth factor (HGF) induces the migration of hepatoma cells through activation of cellular sphingosine kinase 1 (SphK1). Adenovirus-mediated gene transfer of KAI1 (Ad-KAI1) down-regulates the SphK1 expression and suppresses the HGF-induced migration of SMMC-7721 human hepatocellcular carcinoma cells. Overexpression of KAI1/CD82 significantly elevates Sprouty2 at the protein level. Ablation of Sprouty2 with RNA interference can block the KAI1/CD82-induced suppres-sion of hepatoma cell migration and downregulation of SphK1 expression. It is demonstrated that KAI1/CD82 suppresses HGF-induced migration of hepatoma cells via upregulation of Sprouty2.

  14. Tenascin C upregulates interleukin-6 expression in human cardiac myofibroblasts via toll-like receptor 4

    Institute of Scientific and Technical Information of China (English)

    Azhar Maqbool; Emma J Spary; Iain W Manfield; Michaela Ruhmann; Lorena Zuliani-Alvarez; Filomena O Gamboa-Esteves; Karen E Porter; Mark J Drinkhill; Kim S Midwood; Neil A Turner

    2016-01-01

    AIM:To investigate the effect of Tenascin C(TNC)on the expression of pro-inflammatory cytokines and matrixmetalloproteinases in human cardiac myofibroblasts(CMF).METHODS:CMF were isolated and cultured from patients undergoing coronary artery bypass grafting.Cultured cells were treated with either TNC(0.1μmol/L,24 h)or a recombinant protein corresponding to different domains of the TNC protein;fibrinogen-like globe(FBG)and fibronectin typeⅢ-like repeats(TNⅢ5-7)(both 1μmol/L,24 h).The expression of the proinflammatory cytokines;interleukin(IL)-6,IL-1β,TNFαand the matrix metalloproteinases;MMPs(MMP1,2,3,9,10,MT1-MMP)was assessed using real time RT-PCR and western blot analysis.RESULTS:TNC increased both IL-6 and MMP3(P<0.01)mR NA levels in cultured human CMF but had no significant effect on the other markers studied.The increase in IL-6 mR NA expression was mirrored by an increase in protein secretion as assessed by enzymelinked immunosorbant assay(P<0.01).Treating CMF with the recombinant protein FBG increased IL-6mR NA and protein(P<0.01)whereas the recombinant protein TNⅢ5-7 had no effect.Neither FBG nor TNⅢ5-7 had any significant effect on MMP3 expression.The expression of toll-like receptor 4(TLR4)in human CMF was confirmed by real time RT-PCR,western blot and immunohistochemistry.Pre-incubation of cells with TLR4neutralising antisera attenuated the effect of both TNC and FBG on IL-6 mR NA and protein expression.CONCLUSION:TNC up-regulates IL-6 expression in human CMF,an effect mediated through the FBG domain of TNC and via the TLR4 receptor.

  15. Upregulation of miR-183 expression and its clinical significance in human brain glioma.

    Science.gov (United States)

    Ye, Zhennan; Zhang, Zihuan; Wu, Lingyun; Liu, Cegang; Chen, Qiang; Liu, Jingpeng; Wang, Xiaoliang; Zhuang, Zong; Li, Wei; Xu, Shanshui; Hang, Chunhua

    2016-08-01

    Glioma is the most common type of primary malignant tumor in the central nervous system (CNS) with a high incidence and a high mortality rate, as well as an extremely low 5-year survival rate. As a class of small non-coding RNAs, microRNAs (miRNAs) may be closely involved in carcinogenesis and might also be connected with glioma diagnosis and prognosis. In this study, we aimed at investigating the expression level of microRNA-183 (miR-183) in 105 cases of glioma tissues of four World Health Organization (WHO) grades and 10 cases of normal brain tissues and its potential predictive and prognostic values in glioma. We found that the expression levels of miR-183 were significantly higher in glioma tissues than that in normal brain tissues, and also higher in high-grade gliomas (WHO grade III and IV) compared with low-grade gliomas (WHO grade I and II). The miR-183 expression level was classified as low or high according to the median value. High expression of miR-183 was found to significantly correlate with larger tumor size, higher WHO grade, and worse Karnofsky performance score (KPS). Kaplan-Meier survival analysis showed that patients with high miR-183 expression had worse overall survival (OS) and progression-free survival (PFS) than patients with low miR-183 expression. Moreover, univariate and multivariate analyses indicated that miR-183 expression level was an independent prognostic parameter of a patient's OS and PFS. In conclusion, our study indicated that miR-183 was upregulated in glioma, and that it may be used as a potential biomarker of poor prognosis in patients with glioma.

  16. L-DOPA neurotoxicity is mediated by up-regulation of DMT1-IRE expression.

    Directory of Open Access Journals (Sweden)

    Fang Du

    Full Text Available BACKGROUND: The mechanisms underlying neurotoxicity caused by L-DOPA are not yet completely known. Based on recent findings, we speculated that the increased expression of divalent metal transporter 1 without iron-response element (DMT1-IRE induced by L-DOPA might play a critical role in the development of L-DOPA neurotoxicity. To test this hypothesis, we investigated the effects of astrocyte-conditioned medium (ACM and siRNA DMT-IRE on L-DOPA neurotoxicity in cortical neurons. METHODS AND FINDINGS: We demonstrated that neurons treated with L-DOPA have a significant dose-dependent decrease in neuronal viability (MTT Assay and increase in iron content (using a graphite furnace atomic absorption spectrophotometer, DMT1-IRE expression (Western blot analysis and ferrous iron (55Fe(II uptake. Neurons incubated in ACM with or without L-DOPA had no significant differences in their morphology, Hoechst-33342 staining or viability. Also, ACM significantly inhibited the effects of L-DOPA on neuronal iron content as well as DMT1-IRE expression. In addition, we demonstrated that infection of neurons with siRNA DMT-IRE led to a significant decrease in DMT1-IRE expression as well as L-DOPA neurotoxicity. CONCLUSION: The up-regulation of DMT1-IRE and the increase in DMT1-IRE-mediated iron influx play a key role in L-DOPA neurotoxicity in cortical neurons.

  17. Schisandra polysaccharide increased glucose consumption by up-regulating the expression of GLUT-4.

    Science.gov (United States)

    Jin, Dun; Zhao, Ting; Feng, Wei-Wei; Mao, Guang-Hua; Zou, Ye; Wang, Wei; Li, Qian; Chen, Yao; Wang, Xin-Tong; Yang, Liu-Qing; Wu, Xiang-Yang

    2016-06-01

    In our previous study, a polysaccharide was extracted from Schisandra Chinensis (Trucz.) Baill and found with anti-diabetic effects. The aim of this study was to investigate the anti-diabetic effects of the low weight molecular polysaccharide (SCPP11) purified from crude Schisandra polysaccharide and illustrate the underlying mechanism in buffalo rat liver cells. The insulin resistance model of BRL cells was established by incubating with insulin solution for 24h. The effects of SCPP11 on regulating related protein and mRNA expression in an insulin and AMPK signal pathway were investigated by western blot and RT-PCR analysis. SCPP11 showed no cytotoxicity to BRL cells and could improve the glucose consumption in BRL cells. SCPP11 increased the protein expression of Akt, p-AMPK and GLUT-4 in BRL cells. Moreover, SCPP11 could enhance the mRNA expression levels of IRS-1, PI3K, Akt, GLUT-4, AMPKα and PPAR-γ in BRL cells at the same time. In conclusion, SCPP11 possessed effects in improving glucose consumption by up-regulating the expression of GLUT-4 which might occur via insulin and AMPK signal pathway and could be a potential functional food to prevent and mitigate the insulin resistance condition.

  18. Gefitinib upregulates death receptor 5 expression to mediate rmhTRAIL-induced apoptosis in Gefitinib-sensitive NSCLC cell line

    Directory of Open Access Journals (Sweden)

    Yan D

    2015-07-01

    TRAIL synergistically interact to inhibit cell proliferation, and apoptosis assessment demonstrated that associations of drug increased the apoptotic index. rmhTRAIL when used alone downregulated DR5 and upregulated BAX, FLIP, and cleaved-caspase3 proteins expressions. However, results obtained in Western blot analyses demonstrated that the combined treatment-induced cell apoptosis was achieved involving upregulated DR5, cleaved-caspase3, and BAX proteins expression and downregulated FLIP protein expression. Moreover, quantitative polymerase chain reaction showed that gefitinib modulated the expression of targets related to rmhTRAIL activity.Conclusion: These results indicate that epidermal growth factor receptor inhibitors enhance rmhTRAIL antitumor activity in the gefitinib-responsive PC9 cell line, and upregulated DR5 expression plays a critical role in activating caspase-signaling apoptotic pathway.Keywords: gefitinib, rmhTRAIL, apoptosis, DR5

  19. Desoxyrhapontigenin up-regulates Nrf2-mediated heme oxygenase-1 expression in macrophages and inflammatory lung injury

    Directory of Open Access Journals (Sweden)

    Ran Joo Choi

    2014-01-01

    Full Text Available Heme oxygenase-1 (HO-1 is an important anti-inflammatory, antioxidative and cytoprotective enzyme that is regulated by the activation of the major transcription factor, nuclear factor (erythroid-derived 2-like 2 (Nrf2. In the present study, six stilbene derivatives isolated from Rheum undulatum L. were assessed for their antioxidative potential. In the tert-butylhydroperoxide (t-BHP-induced RAW 264.7 macrophage cell line, desoxyrhapontigenin was the most potent component that reduced intracellular reactive oxygen species (ROS and peroxynitrite. In response to desoxyrhapontigenin, the mRNA expression levels of antioxidant enzymes were up-regulated. An electrophoretic mobility shift assay (EMSA confirmed that desoxyrhapontigenin promoted the DNA binding of Nrf2 and increased the expression of antioxidant proteins and enzymes regulated by Nrf2. Further investigation utilizing specific inhibitors of Akt, p38, JNK and ERK demonstrated that the phosphatidylinositol 3-kinase (PI3K/Akt pathway mediates HO-1 expression. Moreover, the increase in Nrf2 expression mediated by treatment with desoxyrhapontigenin was reversed by Nrf2 or Akt gene knock-down. In the LPS-induced in vivo lung inflammation model, pretreatment with desoxyrhapontigenin markedly ameliorated LPS-induced lung inflammation and histological changes. Immunohistochemical analysis of Nrf2, HO-1 and p65 was conducted and confirmed that treatment with desoxyrhapontigenin induced Nrf2 and HO-1 expression but reduced p65 expression. These findings suggest that desoxyrhapontigenin may be a potential therapeutic candidate as an antioxidant or an anti-inflammatory agent.

  20. Maternal obesity is associated with ovarian inflammation and upregulation of early growth response factor 1.

    Science.gov (United States)

    Ruebel, Meghan; Shankar, Kartik; Gaddy, Dana; Lindsey, Forrest; Badger, Thomas; Andres, Aline

    2016-07-01

    Obesity impairs reproductive functions through multiple mechanisms, possibly through disruption of ovarian function. We hypothesized that increased adiposity will lead to a proinflammatory gene signature and upregulation of Egr-1 protein in ovaries from obese (OB; n = 7) compared with lean (LN; n = 10) female Sprague-Dawley rats during the peri-implantation period at 4.5 days postcoitus (dpc). Obesity was induced by overfeeding (40% excess calories for 28 days) via total enteral nutrition prior to mating. OB dams had higher body weight (P ovaries from LN vs. OB dams (±1.3 fold, P ovaries from OB compared with LN (P ovaries. Moreover, Egr-1 was localized to granulosa cells, with the highest expression in cumulus cells of preovulatory follicles. mRNA expression of VCAN, AURKB, and PLAT (P obesity. In summary, maternal obesity led to an upregulation of inflammatory genes and Egr-1 expression in peri-implantation ovarian tissue and a concurrent downregulation of GLUTs and Akt and PI3K protein levels.

  1. Reversal of taxol resistance by cisplatin in nasopharyngeal carcinoma by upregulating thromspondin-1 expression.

    Science.gov (United States)

    Peng, Xiaowei; Li, Wei; Tan, Guolin

    2010-04-01

    Drug resistance often causes failure of chemotherapy in nasopharyngeal carcinoma (NPC). Thus, it is of great importance to overcome drug resistance by developing effective reversal therapies. The purposes of this study were to examine whether cisplatin could reverse the taxol-resistant phenotype of NPC cells, and to evaluate the role of the taxol-resistant gene (TXR1)/thrombospondin (TSP1) pathway in the reversal of taxol resistance. A drug (taxol)-resistant cell line, CNE-1/taxol, was established from a human NPC cell line, CNE-1. The sensitivity of both CNE-1 and CNE-1/taxol to cisplatin or paclitaxel was detected using the colony formation assay. Apoptotic death was measured by flow cytometry. The expression of the TXR1 and TSP1 was determined by RT-PCR and western blot. The growth inhibition rate in CNE-1/taxol cells in response to taxol was significantly increased when they were pre-treated with low-dose cisplatin. CNE-1/taxol cells were more sensitive to cisplatin than CNE-1 cells when exposed to 300-1500 nmol/l of cisplatin. An approximate seven-fold increase in TXR1 mRNA expression and an 8.9-fold decrease in TSP1 mRNA expression were observed in taxol-resistant cells compared with their parental cells. An 8.7-fold increase in TSP1 mRNA expression was observed in CNE-1/taxol cells exposed to 590 nmol/l of cisplatin for 24 h. An increase in TSP1 protein expression was obtained in a dose-dependent manner after CNE-1/taxol cells were exposed to cisplatin. However, there was no change in TXR1 mRNA expression after both CNE-1 and CNE-1/taxol cells were exposed to cisplatin. We conclude that cisplatin reverses drug resistance through the upregulation of TSP1 downstream of TXR1.

  2. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Lu, Su [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Tang, Huamei, E-mail: tanghuamei@gmail.com [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Peng, Zhihai, E-mail: zhihai.peng@hotmail.com [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China)

    2014-06-27

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation.

  3. Exercise combined with low-level GABAA receptor inhibition up-regulates the expression of neurotrophins in the motor cortex.

    Science.gov (United States)

    Takahashi, Kazuma; Maejima, Hiroshi; Ikuta, Gaku; Mani, Hiroki; Asaka, Tadayoshi

    2017-01-01

    Neurotrophins play a crucial role in neuroplasticity, neurogenesis, and neuroprotection in the central nervous system. Aerobic exercise is known to increase the expression of BDNF in the cerebral cortex. Several animal studies have evaluated the tonic inhibition of GABAergic synapses to enhance hippocampal plasticity as well as learning and memory, whereas the effects of GABAergic inhibition on plasticity in the cerebral cortex related to motor learning are not well characterized. The objective of the present study was to examine the interactive effect of low-level GABAA receptor inhibition and exercise on the expression of neurotrophins including BDNF in the murine motor cortex. ICR mice were randomly distributed among 4 groups based on two factors of GABAA receptor inhibition and exercise, i.e. control group, an exercise group, a bicuculline group, and an exercise plus bicuculline group. We administered GABAA receptor antagonist, bicuculline intraperitoneally to the mice (bicuculline and exercise plus bicuculline group) at a non-epileptic dose of 0.25mg/kg, whereas the mice (exercise and exercise plus bicuculline group) were exercised on a treadmill for 1h every day. After two week intervention, the expression of mRNA and protein abundance of neurotrophins in the motor cortex was assayed using Real time PCR and ELISA. BDNF gene expression was significantly increased by approximately 3-fold in the bicuculline group relative to the control, exercise, and bicuculline plus exercise groups. Protein abundance of BDNF expression was significantly increased by approximately 3-fold in the bicuculline plus exercise group relative to other groups. Therefore, the present study revealed that combined GABAA receptor inhibition and moderate aerobic exercise up-regulated BDNF protein expression in the motor cortex without producing side effects on motor or cognitive functions. Alterations in BDNF expression could positively contribute to plasticity by regulating the balance

  4. Effects of notoginosides on proliferation and upregulation of GR nuclear transcription factor in hematopoietic cells

    Institute of Scientific and Technical Information of China (English)

    Rui-lan GAO; Xiao-hong CHEN; Xiao-jie LIN; Xu-dai QIAN; Wei-hong XU; Beng Hock CHONC

    2007-01-01

    Aim: To investigate the effects of panax notoginosides (PNS) on the proliferation of human hematopoietic stem/progenitor cells, and to explore the signaling path-way of the nuclear transcription factor of the glucocorticoid receptor (GR-NTF) initiated by PNS related with the proliferation. Methods: The human CD34+ cells and bone marrow nuclear cells were exposed to PNS at a concentration of 0, 10, 25,50, and 100 mg/L, respectively, in semi-solid culture system to observe colony forming unite of all lineages, granulocyte, erythrocyte, and megakaryocyte (CFU-GEMM, CFU-GM, CFU-E, and CFU-MK). Three lineages of human hematopoietic cell lines, including granulocytic HL-60, erythrocytic K562, megakaryocytic CHRF-288, and Meg-01 cells were incubated with PNS at 20 mg/L for 14 d. Meanwhile,dexamethasone (Dex) was used as a positive control. The nuclear protein of the cells was analyzed by Western blotting with monoclonal antibodies against the amino or carboxyl terminus of GR-NTF. Electrophoretic mobility shift assay per-formed by using the 32p-radiolabeled GR-NTF consensus oligonucleotide. Results:PNS promoted the proliferation of CD34+ cells and significantly raised the colony numbers of CFU-GEMM by 34.7%~±16.0% over the non-PNS control (P<0.01).PNS also enhanced the proliferation of CFU-GM, CFU-E, and CFU-MK by 39.3%±5.7%, 33.3%±7.3%, and 26.2%±3.2%, respectively. GR-NTF protein levels of either the amino or carboxyl terminus in K562, CHRF-288, and Meg-01 treated by PNS increased by 2.4- 2.8 fold and 1.3- 3.9 fold over the untreated cells. GR-NTF binding activity, initiated by either PNS or Dex, was apparently elevated to form the complex of GR-NTF with DNA as higher density bands in K562 and CHRF-288 cells, and some activity appeared as a band in HL-60 cells induced by PNS.Conclusion: PNS displayed the action of hematopoietic growth factor-like or syn-ergistic efficacy to promote proliferation of human progenitor cells, may play a role in the upregulation of gene

  5. 曲古抑菌素A通过上调KLF4表达诱导人子宫内膜癌Ishikawa细胞凋亡%Trichostatin A induces apoptosis of endometrial cancer Ishikawa cells by upregulating expression of Krupell-like factor 4

    Institute of Scientific and Technical Information of China (English)

    赵智凝; 周强; 白久旭; 闫博; 秦炜炜; 王涛; 贾林涛; 杨安钢

    2012-01-01

    Objective; To observe the effect of Trichostatin A (TSA) on the apoptosis of endometrial cancer Ishikawa cells and to study its relationship with Krupell-like-factor 4 (KLF4 ) in this course. Methods; Ishikawa cells were cultured with different concentrations of TSA 0, 50, 100, 200, 300, 500 ng/ml for 24 h or 100 ng/ml TSA for 0, 4, 8, 12, 24 and 48 h. FACS and qRT-PCR were used to detect apoptosis and KLF4 mRNA level, respectively. Results; The apoptosis rate was increased compared to the control in the Ishikawa cells treated with 100 ng/ml TSA for 24 h ( [30. 6 ± 4.5]%?s [7.53 ±0.93]% , P<0.05). The mRNA levels of KLF4 were up-regulated after Ishikawa cells were stimulated with different concentrations of TSA for 24 h or with 100 ng/ml TSA for 4, 8, 12, 24, 48 h (P <0. 05). Those effects were in a dose-dependent or time-dependent manner. The apoptosis rate was increased compared to the control in the Ishikawa cells over-expressed KLF4 ([27.3+2.7]% vs [4.53 ± 1.75]% , P<0.05). Conclusion; TSA induces apoptosis of Ishikawa cells by up-regulating the expression of KLF4.%目的:观察组蛋白乙酰基转移酶(histone deacetylase,HDAC)抑制剂曲古抑菌素A(trichostatin A,TSA)对子宫内膜癌Ishikawa细胞凋亡的影响,并研究其与Krupell样因子4(Krupell-like factor 4,KLF4)的关系.方法:0、50、100、200、300、500ng/ml TSA作用于Ishikawa细胞24h,或100 ng/ml TSA作用于Ishikawa细胞0、4、8、12、24、48 h,流式细胞术检测Ishikawa细胞凋亡情况,qRT-PCR检测Ishikawa细胞中KLF4mRNA的表达情况;将KLF4真核表达载体pcDNA3-KLF4转染Ishikawa细胞,流式细胞术检测Ishikawa细胞凋亡情况.结果:100 ng/ml TSA作用于Ishikawa细胞24 h后,Ishikawa细胞的凋亡率显著高于对照组[(30.6±4.5)%vs(7.53±0.93)%,P<0.05];不同质量浓度TSA处理Ishikawa细胞24h后或100 ng/ml TSA作用Ishikawa细胞不同时间后,KLF4 mRNA表达水平以剂量依赖和时间依赖方式明显增高(P<0.05);pcDNA3

  6. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    Science.gov (United States)

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-04-09

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  7. RNA Sequencing Identifies Upregulated Kyphoscoliosis Peptidase and Phosphatidic Acid Signaling Pathways in Muscle Hypertrophy Generated by Transgenic Expression of Myostatin Propeptide

    Directory of Open Access Journals (Sweden)

    Yuanxin Miao

    2015-04-01

    Full Text Available Myostatin (MSTN, a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph, and zinc metallopeptidase STE24 (Zmpste24. In addition, kyphoscoliosis peptidase (Ky, which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA pathways (Dgki, Dgkz, Plcd4 were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  8. Coxsackievirus B3 induces viral myocarditis by upregulating toll-like receptor 4 expression.

    Science.gov (United States)

    Zhao, Zhao; Cai, Tian-Zhi; Lu, Yan; Liu, Wen-Jun; Cheng, Man-Li; Ji, Yu-Qiang

    2015-04-01

    In the present study, we investigated the potential pathogenesis of coxsackievirus B3 (CVB3)-induced viral myocarditis and the promising protective effect of silencing RNA (small interfering RNA, siRNA). One hundred and twenty mice were included in the study, and 30 mice were intraperitoneally inoculated with CVB3 to establish an acute viral myocarditis model. The survival rate was observed for the CVB3-infected mouse model (MOD), and myocardial injury was examined by HE (hematoxylin and eosin) staining assay. Real-time PCR (RT-PCR) and Western blot assay were selected to detect the toll-like receptor 4 (TLR4) expression in myocardial tissues. The TLR4 gene was silenced for the MOD mice, and the effects of this treatment were observed. The results indicate that the expression of TLR4 mRNA and the protein significantly and persistently increased during the progression of CVB3-induced myocarditis. The activities of cardiac enzymes including CK, LDH, AST, and CK-MB were also enhanced in CVB3-induced myocardial tissues. Interestingly, when the TLR4 gene was silenced, the CVB3-induced TLR4 production was significantly decreased and the severity of myocarditis was significantly lessened. In conclusion, CVB3 may induce viral myocarditis by upregulating toll-like receptor 4 expression. The viral myocarditis can be ameliorated by silencing the TLR4 gene in the CVB3 viral myocarditis model, which may be a feasible therapeutic method for treatment of viral myocarditis.

  9. Upregulated hepatic expression of mitochondrial PEPCK triggers initial gluconeogenic reactions in the HCV-3 patients

    Institute of Scientific and Technical Information of China (English)

    Taimoor Islam Sheikh; Tashfeen Adam; Ishtiaq Qadri

    2015-01-01

    Objective:To identify the differential expression of candidate gluconeogenic genes which may initiate hepatitis C virus (HCV) related metabolic disorder during early stages of disease. Methods:Patients of diverse age and sex, with positive HCV genotype 3 (HCV-3) RNA in serum and with no history of other related infections, co-infections, alcoholism, diabetes or chemotherapeutic treatments were considered for this study. Semi-quantitative reverse transcriptase PCR analysis and quantitative fold change analysis of the fresh liver biopsies of eight chronically infected HCV-3 patients and six healthy individuals were evaluated for three potential biomarkers involved in glucose homeostasis induction, namely mitochondrial phosphoenolpyruvate carboxykinase 2 (PCK2), glucose-6-phosphatase catalytic subunit (G6PC) and associated forkhead box protein 01 (FOXO1).Results:Symptomatic evaluation, clinical history and blood test were conducted according to general disease prognosis procedures and reported here. Significantly upregulated expression ofPCK2 independent of age, sex and viral infectivity levels in all HCV patients was observed, whereas no significant changes in the expression ofG6PC andFOXO1were found.Conclusions:PCK2 triggers initial gluconeogenic reactions which ultimately result in the accumulation of glycogen in the liver hepatocytes. We therefore suggest that the overproduction of PCK2 has important physiological role in the onset of metabolic disorder in the HCV-3 patients.

  10. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Ekhtear [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Ota, Akinobu, E-mail: aota@aichi-med-u.ac.jp [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Karnan, Sivasundaram; Damdindorj, Lkhagvasuren [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Takahashi, Miyuki [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan); Konishi, Yuko; Konishi, Hiroyuki; Hosokawa, Yoshitaka [Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi (Japan)

    2013-12-15

    Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, an anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.

  11. Apigenin suppresses the growth of colorectal cancer xenografts via phosphorylation and up-regulated FADD expression.

    Science.gov (United States)

    Wang, Qi Rui; Yao, Xue Qing; Wen, Ge; Fan, Qin; Li, Ying-Jia; Fu, Xiu Qiong; Li, Chang Ke; Sun, Xue Gang

    2011-01-01

    Apigenin is a flavonoid belonging to the flavone structural class. It has been implicated as a chemopreventive agent against prostate and breast cancers. However, to the best of our knowledge, no published data are available regarding apigenin in colorectal cancer (CRC). The effects and mechanisms of apigenin on CRC may vary significantly. This study aimed to analyze the effects of apigenin on the growth of CRC xenografts in nude mice derived from SW480, as well as to investigate the underlying mechanisms. Whole-body fluorescence imaging is an inexpensive optical system used to visualize gene expression in small mammals using reporter genes, such as eGFP as a reporter. In our study, the expression of eGFP may reflect the size of the tumor. A terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay showed that apigenin promoted the apoptosis of CRC cells. Furthermore, the expression of five genes related to the proliferation and apoptosis of CRC, i.e., cyclin D1, BAG-1, Bcl-2, yrdC and Fas-associated protein with death domain (FADD), was detected by real-time quantitative RT-PCR. Among these genes, the up-regulated expression of FADD was noted in CRC xenograft tumors treated with apigenin. Immunohistochemistry and Western blotting confirmed the results at the protein level. Furthermore, Western blot analysis showed that apigenin induced the phosphorylation of FADD. Our findings suggest that apigenin enhances the expression of FADD and induces its phosphorylation, which may cause apoptosis of CRC cells and inhibition of tumor growth.

  12. IL-1β up-regulates expression of IL-8 in endometrial stromal cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhang Guiyu; Ren Shuwen; Zhang Youzhong; Yang Xingsheng

    2005-01-01

    Objective:To investigate the effects of interleukin-1beta (IL-1β) on expression of IL-8 in endometrial stromal cells (ESC) and evaluate the relationship between IL1 β and IL-8 ,and the significance of IL-1β in the development of endometriosis. Methods:The endometrial stromal cells obtained from patient with and without endometriosis cultured within 3 ~5 passage were exposed to various concentrations of IL-1β. The amount of IL-8 protein was assessed by ELISA. The expression of IL-8 mRNA was determined by RT-PCR. Results: 1. IL-8 protein was detected in culture supernatant of which the cells were not treated with IL-1β. The amount of IL-8 protein secretion increased obviously after stimulation with IL-1β at 1.0ng/ml for 4h and the peak of secretion was at 12h. 2. Expression of IL-8 mRNA was positive in unstimulated endometrial stromal cells. However, after stromal cells were incubated with IL-1β, the intensity of expression of IL-8 mRNA was obviously increased and demonstrated a dose-and timedependent manner. Increase of IL-8 mRNA was observed following stimulation with IL-1β for 4h ,and the peak at 12h. Conclusions:IL-1β induces endometrial stromal cell of endometriosis to express IL-8 not only at transcription level but also at post-transcription level. This up-regulation is dose-and time-dependent. IL-1β may play an important role in the onset of endometriosis.

  13. Ovariectomy upregulated the expression of Peroxiredoxin 1 & 5 in osteoblasts of mice

    Science.gov (United States)

    Du, Juan; Feng, Wei; Sun, Jing; Kang, Cuijie; Amizuka, Norio; Li, Minqi

    2016-01-01

    Peroxiredoxin (PRX), a family of peroxidases, is associated with various biological processes such as the detoxification of oxidants and cell apoptosis. Besides, the anti-apoptosis effect of estrogen results partially from its anti-oxidant function. The purpose of this study was to investigate the expression of PRXs in ovariectomy (OVX) mice and the related anti-oxidative mechanism of estrogen. Eight-week-old mice were subjected to ovariectomy. MC3T3-E1 cells were pretreatment with 17b-estradiol and N-acetyl cysteine followed by oxidative injury induced with H2O2. Western blot and real time-PCR were applied to clarify the expressions of PRX1 and caspase-3, with both wild-type and PRX1 knockout MC3T3-E1 cells generated by CRISPR/Cas9 technology. The results showed PRX1 and PRX5 were upregulated in osteoblasts in the proximal tibial metaphysis of ovariectomy mice. Interestingly, PRX1 and PRX5 showed different distribution patterns, with PRX1 mainly accumulated in cell nuclei and PRX5 in the cytoplasm. Gene expression analysis showed significantly reduced expressions of PRX1 and caspase-3 in the pretreatment groups when compared with cells treated with H2O2 alone. Also, a decrease of caspase-3 expressions was observed in PRX1 knockout MC3T3-E1 cells with or without H2O2 in comparison to wild-type cells. These findings suggested that PRX may play important roles in estrogen-deficient osteoporosis. (200 words). PMID:27786251

  14. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages.

    Science.gov (United States)

    Takano, Tomomi; Hohdatsu, Tsutomu; Toda, Ayako; Tanabe, Maki; Koyama, Hiroyuki

    2007-07-20

    The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.

  15. Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Gaëlle Cane

    Full Text Available BACKGROUND: Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC. METHODOLOGY: VEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors. PRINCIPAL FINDINGS: C1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1 the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55 acting as a bacterial receptor, and (2 the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways. CONCLUSIONS: Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro

  16. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression

    Directory of Open Access Journals (Sweden)

    Yong-lin Zhao

    2016-01-01

    Full Text Available Rosiglitazone up-regulates caveolin-1 levels and has neuroprotective effects in both chronic and acute brain injury. Therefore, we postulated that rosiglitazone may ameliorate diffuse axonal injury via its ability to up-regulate caveolin-1, inhibit expression of amyloid-beta precursor protein, and reduce the loss and abnormal phosphorylation of tau. In the present study, intraperitoneal injection of rosiglitazone significantly reduced the levels of amyloid-beta precursor protein and hyperphosphorylated tau (phosphorylated at Ser 404 (p-tau (S 404 , and it increased the expression of total tau and caveolin-1 in the rat cortex. Our results show that rosiglitazone inhibits the expression of amyloid-beta precursor protein and lowers p-tau (S 404 levels, and it reduces the loss of total tau, possibly by up-regulating caveolin-1. These actions of rosiglitazone may underlie its neuroprotective effects in the treatment of diffuse axonal injury.

  17. Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR

    Directory of Open Access Journals (Sweden)

    Haohan Wang

    2016-03-01

    Full Text Available Abstract As a critical transcription factor, Six1 plays an important role in the regulation of myogenesis and muscle development. However, little is known about its regulatory mechanism associated with muscular protein synthesis. The objective of this study was to investigate the effects of overexpression ofSix1 on the expression of key protein metabolism-related genes in duck myoblasts. Through an experimental model where duck myoblasts were transfected with a pEGFP-duSix1 construct, we found that overexpression of duckSix1 could enhance cell proliferation activity and increase mRNA expression levels of key genes involved in the PI3K/Akt/mTOR signaling pathway, while the expression of FOXO1, MuRF1and MAFbx was not significantly altered, indicating thatSix1 could promote protein synthesis in myoblasts through up-regulating the expression of several related genes. Additionally, in duck myoblasts treated with LY294002 and rapamycin, the specific inhibitors ofPI3K and mTOR, respectively, the overexpression of Six1 could significantly ameliorate inhibitive effects of these inhibitors on protein synthesis. Especially, the mRNA expression levels of mTOR and S6K1 were observed to undergo a visible change, and a significant increase in protein expression of S6K1 was seen. These data suggested that Six1plays an important role in protein synthesis, which may be mainly due to activation of the mTOR signaling pathway.

  18. Rapid Antidepressant Activity of Ethanol Extract of Gardenia jasminoides Ellis Is Associated with Upregulation of BDNF Expression in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Hailou Zhang

    2015-01-01

    Full Text Available Ethanol extract of Yueju pill, a Traditional Chinese Medicine herbal formula widely used to treat mood disorders, demonstrates rapid antidepressant effects similar to ketamine, likely via instant enhancement of brain-derived neurotrophic factor (BDNF expression in the hippocampus. Here we investigated ethanol extracts of the constituent herbs of Yueju responsible for rapid antidepressant effects. Screening with tail suspension test in Kunming mice at 24 hours after a single administration of five individual constituent herbs of Yueju, we found that only Gardenia jasminoides Ellis (GJ showed a significant effect. The antidepressant response started at 2 hours after GJ administration. Similar to Yueju and ketamine, a single administration of GJ significantly reduced the number of escape failures in the learned helplessness test. Furthermore, GJ decreased latency of food consumption in the novelty suppressed-feeding test. Additionally, starting from 2 hours and continuing for over 20 hours after GJ administration, BDNF expression in the hippocampus was upregulated, temporally linked with the antidepressant response. These findings suggest that GJ has rapid antidepressant effects, which are associated with the elevated expression of BDNF in the hippocampus. In Yueju formula, Yue represents GJ, as thus our study demonstrates the primary role of GJ in rapid antidepressant efficacy of Yueju.

  19. Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields.

    Science.gov (United States)

    Clark, Charles C; Wang, Wei; Brighton, Carl T

    2014-07-01

    The objective of the described experiments was to determine the electrical parameters that lead to optimal expression of a number of bone-related genes in cultured human bone cells exposed to a capacitively coupled electric field. Human calvarial osteoblasts were grown in modified plastic Cooper dishes in which the cells could be exposed to various capacitively coupled electric fields. The optimal duration of stimulation and optimal duration of response to the electrical field, and the optimal amplitude, frequency and duty cycle were all determined for each of the genes analyzed. Results indicated that a capacitively coupled electric field of 60 kHz, 20 mV/cm, 50% duty cycle for 2 h duration per day significantly up-regulated mRNA expression of a number of transforming growth factor (TGF)-β family genes (bone morphogenetic proteins (BMP)-2 and -4, TGF-β1, - β2 and -β3) as well as fibroblast growth factor (FGF)-2, osteocalcin (BGP) and alkaline phosphatase (ALP). Protein levels of BMP-2 and -4, and TGF-β1 and - β2 were also elevated. The clinical relevance of these findings in the context of a noninvasive treatment modality for delayed union and nonunion fracture healing is discussed.

  20. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster.

    Science.gov (United States)

    Deng, Xinxian; Hiatt, Joseph B; Nguyen, Di Kim; Ercan, Sevinc; Sturgill, David; Hillier, LaDeana W; Schlesinger, Felix; Davis, Carrie A; Reinke, Valerie J; Gingeras, Thomas R; Shendure, Jay; Waterston, Robert H; Oliver, Brian; Lieb, Jason D; Disteche, Christine M

    2011-10-23

    Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed 'Ohno's hypothesis'). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by microarray-based transcriptome analyses, it was challenged by a recent study using RNA sequencing and proteomics. We obtained new, independent RNA-seq data, measured RNA polymerase distribution and reanalyzed published expression data in mammals, C. elegans and Drosophila. Our analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome.

  1. Angiotensin II upregulates endothelial lipase expression via the NF-kappa B and MAPK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    Full Text Available BACKGROUND: Angiotensin II (AngII participates in endothelial damage and inflammation, and accelerates atherosclerosis. Endothelial lipase (EL is involved in the metabolism and clearance of high density lipoproteins (HDL, the serum levels of which correlate negatively with the onset of cardiovascular diseases including atherosclerosis. However, the relationship between AngII and EL is not yet fully understood. In this study, we investigated the effects of AngII on the expression of EL and the signaling pathways that mediate its effects in human umbilical vein endothelial cells (HUVECs. METHODS AND FINDINGS: HUVECs were cultured in vitro with different treatments as follows: 1 The control group without any treatment; 2 AngII treatment for 0 h, 4 h, 8 h, 12 h and 24 h; 3 NF-κB activation inhibitor pyrrolidine dithiocarbamate (PDTC pretreatment for 1 h before AngII treatment; and 4 mitogen-activated protein kinase (MAPK p38 inhibitor (SB203580 pretreatment for 1 h before AngII treatment. EL levels in each group were detected by immunocytochemical staining and western blotting. HUVECs proliferation was detected by MTT and proliferating cell nuclear antigen (PCNA immunofluorescence staining. NF-kappa B (NF-κB p65, MAPK p38, c-Jun N-terminal kinase (JNK, extracellular signal-regulated kinase (ERK and phosphorylated extracellular signal-regulated kinase (p-ERK expression levels were assayed by western blotting. The results showed that the protein levels of EL, NF-κB p65, MAPK p38, JNK, and p-ERK protein levels, in addition to the proliferation of HUVECs, were increased by AngII. Both the NF-kB inhibitor (PDTC and the MAPK p38 inhibitor (SB203580 partially inhibited the effects of AngII on EL expression. CONCLUSION: AngII may upregulate EL protein expression via the NF-κB and MAPK signaling pathways.

  2. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan, E-mail: quan_haotj@126.com

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  3. Depletion of the xynB2 gene upregulates β-xylosidase expression in C. crescentus.

    Science.gov (United States)

    Corrêa, Juliana Moço; Mingori, Moara Rodrigues; Gandra, Rinaldo Ferreira; Loth, Eduardo Alexandre; Seixas, Flávio Augusto Vicente; Simão, Rita de Cássia Garcia

    2014-01-01

    Caulobacter crescentus is able to express several enzymes involved in the utilization of lignocellulosic biomasses. Five genes, xynB1-5, that encode β-xylosidases are present in the genome of this bacterium. In this study, the xynB2 gene, which encodes β-xylosidase II (CCNA_02442), was cloned under the control of the PxylX promoter to generate the O-xynB2 strain, which overexpresses the enzyme in the presence of xylose. In addition, a null mutant strain, Δ-xynB2, was created by two homologous recombination events where the chromosomal xynB2 gene was replaced by a copy that was disrupted by the spectinomycin-resistant cassette. We demonstrated that C. crescentus cells lacking β-xylosidase II upregulates the xynB genes inducing β-xylosidase activity. Transcriptional analysis revealed that xynB1 (RT-PCR analysis) and xynB2 (lacZ transcription fusion) gene expression was induced in the Δ-xynB2 cells, and high β-xylosidase activity was observed in the presence of different agro-industrial residues in the null mutant strain, a characteristic that can be explored and applied in biotechnological processes. In contrast, overexpression of the xynB2 gene caused downregulation of the expression and activity of the β-xylosidase. For example, the β-xylosidase activity that was obtained in the presence of sugarcane bagasse was 7-fold and 16-fold higher than the activity measured in the C. crescentus parental and O-xynB2 cells, respectively. Our results suggest that β-xylosidase II may have a role in controlling the expression of the xynB1 and xynB2 genes in C. crescentus.

  4. Teratogenic factors affect transcription factor expression.

    Science.gov (United States)

    Kojima, Takuya; Asano, Shinya; Takahashi, Naoki

    2013-01-01

    Chemical compounds are produced every day, many with adverse effects on human health, and hence it is vital to predict the risks to humans simply, rapidly, and accurately. Teratogens have a serious impact on fetal development. This has been studied mainly by phenotypic analysis of experimental animals. However, since phenotypes can vary within different species, we established a new evaluation system based on our recent finding that teratogens influence Hox gene expression in mice. Similarly to the Hox gene expression changes, the expression patterns of several transcription factors involved in development, including the Dlx, Irx, Sall, and T-box families, were altered after 6 h of exposure to retinoic acid (RA) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The expression changes in Dlx4, Dlx6, Irx5, Sall2, Sall3, Sall4, Tbx10, and Tbx22 were linked to teratogen-induced phenotypes, and our results indicate that expression changes in developmental transcription factors can help to predict teratogenic risk.

  5. Th2 cytokines enhance TrkA expression, upregulate proliferation, and downregulate differentiation of keratinocytes.

    Science.gov (United States)

    Matsumura, Sayaka; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2015-06-01

    Nerve growth factor (NGF), a neurotrophin that plays a critical role in developmental neurobiology, is released by proliferating keratinocytes and induces proliferation. The aim of this study was to investigate the role of tyrosine kinase receptor A (TrkA), a high-affinity receptor of NGF, in human keratinocytes. Expression of TrkA and NGF in skin diseases was investigated by immunohistochemistry. Expression of TrkA in cells was examined by Western blotting and RT-PCR. Cell proliferation was assessed by BrdU assay. We first determined the expression of TrkA and NGF in skin samples from patients with atopic dermatitis, prurigo nodularis, psoriasis vulgaris, and seborrheic keratosis. TrkA was only expressed in proliferating basal cells, and its expression was enhanced in atopic dermatitis samples. NGF expression was enhanced in atopic dermatitis and prurigo nodularis samples and in some samples from seborrheic keratosis patients. Investigation of the role of TrkA in vitro using normal human epidermal keratinocytes (NHEK) revealed that TrkA was significantly enhanced by the T helper type 2 (Th2) cytokines interleukin (IL)-4 and IL-13 but not by other inflammatory cytokines, such as IL-1β, tumor necrosis factor α, interferon γ, or epidermal growth factor. On the other hand, expression of NGF was not altered by Th2 cytokines. Notably, inhibition of TrkA significantly reversed the effects of IL-4 on proliferation and differentiation. Furthermore, overexpression of TrkA enhanced proliferation of NHEK. These results indicate that IL-4-induced TrkA expression in keratinocytes modulates proliferation and differentiation of these cells. Increased TrkA expression in keratinocytes in atopic dermatitis may contribute to the observed epidermal hyperproliferation in these patients. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Relationship between cyclooxygenase-2 and human epidermal growth factor receptor 2 in vascular endothelial growth factor C up-regulation and lymphangiogenesis in human breast cancer.

    Science.gov (United States)

    Bhattacharjee, Rabindra N; Timoshenko, Alexander V; Cai, Jing; Lala, Peeyush K

    2010-09-01

    Both cyclooxygenase (COX)-2 and human epidermal growth factor receptor (HER)-2 promote breast cancer progression; however, the relationship between the two molecules remains unclear. We utilized human breast cancer tissues and cell lines to examine whether COX-2 and HER-2 played independent or interdependent roles in vascular endothelial growth factor (VEGF)-C up-regulation and lymphangiogenesis. A paired correlation of immunodetectable levels of COX-2, VEGF-C, and HER-2 proteins and lymphovascular density (LVD; D2-40-immunolabeled) in 55 breast cancer specimens revealed a positive correlation between COX-2 and HER-2 irrespective of clinicopathological status. However COX-2 alone positively correlated with LVD. In 10 independent specimens, mRNA levels showed a positive correlation between HER-2 and COX-2 or VEGF-C but not LYVE-1 (lymphovascular endothelial marker). These findings implicate COX-2, but not HER-2, in breast cancer-associated lymphangiogenesis. Manipulation of the COX-2 or HER-2 genes in breast cancer cell lines varying widely in COX-2 and HER-2 expression revealed a direct role of COX-2 and an indirect COX-2 dependent role of HER-2 in VEGF-C up-regulation: (i) high VEGF-C expression in high COX-2/low HER-2 expressing MDA-MB-231 cells was reduced by siRNA-mediated down-regulation of COX-2, but not HER-2; (ii) integration of HER-2 in these cells simultaneously up-regulated COX-2 protein as well as VEGF-C secretion; and (iii) low VEGF-C secretion by high HER-2/low COX-2 expressing SK-BR-3 cells was stimulated by COX-2 overexpression. These findings of the primary role of COX-2 and the COX-2-dependent role of HER-2, if any, in VEGF-C up-regulation and lymphangiogenesis suggest that COX-2 inhibitors may abrogate lymphatic metastasis in breast cancer irrespective of HER-2 status. © 2010 Japanese Cancer Association.

  7. Sulforaphane Attenuation of Type 2 Diabetes-Induced Aortic Damage Was Associated with the Upregulation of Nrf2 Expression and Function

    Directory of Open Access Journals (Sweden)

    Yonggang Wang

    2014-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM significantly increases risk for vascular complications. Diabetes-induced aorta pathological changes are predominantly attributed to oxidative stress. Nuclear factor E2-related factor-2 (Nrf2 is a transcription factor orchestrating antioxidant and cytoprotective responses to oxidative stress. Sulforaphane protects against oxidative damage by increasing Nrf2 expression and its downstream target genes. Here we explored the protective effect of sulforaphane on T2DM-induced aortic pathogenic changes in C57BL/6J mice which were fed with high-fat diet for 3 months, followed by a treatment with streptozotocin at 100 mg/kg body weight. Diabetic and nondiabetic mice were randomly divided into groups with and without 4-month sulforaphane treatment. Aorta of T2DM mice exhibited significant increases in the wall thickness and structural derangement, along with significant increases in fibrosis (connective tissue growth factor and transforming growth factor, inflammation (tumor necrosis factor-α and vascular cell adhesion molecule 1, oxidative/nitrative stress (3-nitrotyrosine and 4-hydroxy-2-nonenal, apoptosis, and cell proliferation. However, these pathological changes were significantly attenuated by sulforaphane treatment that was associated with a significant upregulation of Nrf2 expression and function. These results suggest that sulforaphane is able to upregulate aortic Nrf2 expression and function and to protect the aorta from T2DM-induced pathological changes.

  8. Salidroside Reduces High-Glucose-Induced Podocyte Apoptosis and Oxidative Stress via Upregulating Heme Oxygenase-1 (HO-1) Expression.

    Science.gov (United States)

    Lu, Hua; Li, Ying; Zhang, Tao; Liu, Maodong; Chi, Yanqing; Liu, Shuxia; Shi, Yonghong

    2017-08-23

    BACKGROUND Hyperglycemia is one of the most dangerous factors causing diabetic nephropathy. Salidroside is considered to have the effects of reducing oxidative stress damage and improving cell viability. This study was performed to investigate whether and how salidroside reduces high-glucose (HG)-induced apoptosis in mouse podocytes. MATERIAL AND METHODS We examined whether salidroside could decrease HG-induced podocyte oxidative stress and podocyte apoptosis in vitro. The potential signaling pathways were also investigated. Podocytes (immortalized mouse epithelial cells) were treated with normal glucose (5.5 mM) as control or HG (30 mM), and then exposed to salidroside treatment. RESULTS HG enhanced the generation of intracellular reactive oxygen species (ROS) and apoptosis in podocytes. Salidroside reduced HG-induced apoptosis-related consequences via promoting HO-1 expression. Salidroside increased the expression level of phosphorylated Akt (p-Akt) and phosphorylated ILK (p-ILK), p-JNK, and p-ERK and localization of Nrf-2. JNK inhibitor and ILK inhibitor decreased HO-1 expression to different degrees. Moreover, specific siRNAs of ILK, Nrf-2, and HO-1, and inhibitors of HO-1 and ILK significantly increased ROS generation and Caspase9/3 expression in the presence of salidroside and HG. CONCLUSIONS The results suggest that salidroside reduces HG-induced ROS generation and apoptosis and improves podocytes viability by upregulating HO-1 expression. ILK/Akt, JNK, ERK1/2, p38 MAPK, and Nrf-2 are involved in salidroside-decreased podocyte apoptosis in HG condition.

  9. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Zequn Jiang; Shasha Li; Yunyi Liu; Pengyi Deng; Jianguo Huang; Guangyuan He

    2011-01-01

    In this study,we confirmed that sesamin,an active lignan isolated from sesame seed and oil,is a novel skin-tanning compound.The melanin content and tyrosinase activity were increased by sesamin in a dose-dependent manner in B16 melanoma cells.The mRNA and protein levels of tyrosinase were also enhanced after the treatment with sesamin.Western blot analysis revealed that sesamin induced and sustained up-regulation of microphthalmiaassociated transcription factor (MITF).Sesamin could activate cAMP response element (CRE) binding protein (CREB),but it had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK) or Akt.Moreover,sesamin activated protein kinase A (PKA) via a cAMP-dependent pathway.Consistent with these results,sesamin-mediated increase of melanin synthesis was reduced significantly by H-89,a PKA inhibitor,but not by SB203580,a p38 MAPK inhibitor or by LY294002,a phosphatidylinositol-3-kinase (PI3K) inhibitor.Sesamin-mediated phosphorylation of CREB and induction of MITF and tyrosinase expression were also inhibited by H-89.These findings indicated that sesamin could stimulate melanogenesis in B16 cells via the up-regulation of MITF and tyrosinase,which was,in turn,due to the activation of cAMP signaling.

  10. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway.

    Science.gov (United States)

    Jiang, Zequn; Li, Shasha; Liu, Yunyi; Deng, Pengyi; Huang, Jianguo; He, Guangyuan

    2011-10-01

    In this study, we confirmed that sesamin, an active lignan isolated from sesame seed and oil, is a novel skin-tanning compound. The melanin content and tyrosinase activity were increased by sesamin in a dose-dependent manner in B16 melanoma cells. The mRNA and protein levels of tyrosinase were also enhanced after the treatment with sesamin. Western blot analysis revealed that sesamin induced and sustained up-regulation of microphthalmia-associated transcription factor (MITF). Sesamin could activate cAMP response element (CRE) binding protein (CREB), but it had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK) or Akt. Moreover, sesamin activated protein kinase A (PKA) via a cAMP-dependent pathway. Consistent with these results, sesamin-mediated increase of melanin synthesis was reduced significantly by H-89, a PKA inhibitor, but not by SB203580, a p38 MAPK inhibitor or by LY294002, a phosphatidylinositol-3-kinase (PI3K) inhibitor. Sesamin-mediated phosphorylation of CREB and induction of MITF and tyrosinase expression were also inhibited by H-89. These findings indicated that sesamin could stimulate melanogenesis in B16 cells via the up-regulation of MITF and tyrosinase, which was, in turn, due to the activation of cAMP signaling.

  11. Hepatitis C Virus Increases Occludin Expression via the Upregulation of Adipose Differentiation-Related Protein.

    Directory of Open Access Journals (Sweden)

    Emilie Branche

    Full Text Available The hepatitis C virus (HCV life cycle is closely associated with lipid metabolism. In particular, HCV assembly initiates at the surface of lipid droplets. To further understand the role of lipid droplets in HCV life cycle, we assessed the relationship between HCV and the adipose differentiation-related protein (ADRP, a lipid droplet-associated protein. Different steps of HCV life cycle were assessed in HCV-infected human Huh-7 hepatoma cells overexpressing ADRP upon transduction with a lentiviral vector. HCV infection increased ADRP mRNA and protein expression levels by 2- and 1.5-fold, respectively. The overexpression of ADRP led to an increase of (i the surface of lipid droplets, (ii the total cellular neutral lipid content (2.5- and 5-fold increase of triglycerides and cholesterol esters, respectively, (iii the cellular free cholesterol level (5-fold and (iv the HCV particle production and infectivity (by 2- and 3.5-fold, respectively. The investigation of different steps of the HCV life cycle indicated that the ADRP overexpression, while not affecting the viral replication, promoted both virion egress and entry (~12-fold, the latter possibly via an increase of its receptor occludin. Moreover, HCV infection induces an increase of both ADRP and occludin expression. In HCV infected cells, the occludin upregulation was fully prevented by the ADRP silencing, suggesting a specific, ADRP-dependent mechanism. Finally, in HCV-infected human livers, occludin and ADRP mRNA expression levels correlated with each other. Alltogether, these findings show that HCV induces ADRP, which in turns appears to confer a favorable environment to viral spread.

  12. Up-regulation of insulin-like growth factor 2 by ketamine requires glycogen synthase kinase-3 inhibition.

    Science.gov (United States)

    Grieco, Steven F; Cheng, Yuyan; Eldar-Finkelman, Hagit; Jope, Richard S; Beurel, Eléonore

    2017-01-04

    An antidepressant dose of the rapidly-acting ketamine inhibits glycogen synthase kinase-3 (GSK3) in mouse hippocampus, and this inhibition is required for the antidepressant effect of ketamine in learned helplessness depression-like behavior. Here we report that treatment with an antidepressant dose of ketamine (10mg/kg) increased expression of insulin-like growth factor 2 (IGF2) in mouse hippocampus, an effect that required ketamine-induced inhibition of GSK3. Ketamine also inhibited hippocampal GSK3 and increased expression of hippocampal IGF2 in mice when administered after the induction of learned helplessness. Treatment with the specific GSK3 inhibitor L803-mts was sufficient to up-regulate hippocampal IGF2 expression. Administration of IGF2 siRNA reduced ketamine's antidepressant effect in the learned helplessness paradigm. Mice subjected to the learned helplessness paradigm were separated into two groups, those that were resilient (non-depressed) and those that were susceptible (depressed). Non-depressed resilient mice displayed higher expression of IGF2 than susceptible mice. These results indicate that IGF2 contributes to ketamine's antidepressant effect and that IGF2 may confer resilience to depression-like behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Melanie C., E-mail: melanie.mann@viro.med.uni-erlangen.de; Strobel, Sarah, E-mail: sarah.strobel@viro.med.uni-erlangen.de; Fleckenstein, Bernhard, E-mail: bernhard.fleckenstein@viro.med.uni-erlangen.de; Kress, Andrea K., E-mail: andrea.kress@viro.med.uni-erlangen.de

    2014-09-15

    The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Tax and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation. - Highlights: • ELL2, a transcription elongation factor, is upregulated in HTLV-1-positive T-cells. • Tax transactivates the ELL2 promoter. • Tax and ELL2 synergistically activate the HTLV-1 promoter. • Tax and ELL2 interact in vivo.

  14. AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression

    DEFF Research Database (Denmark)

    Namsolleck, Pawel; Boato, Francesco; Schwengel, Katja;

    2013-01-01

    outgrowth was absent in neurons derived from AT2R-KO mice. In primary neurons, treatment with C21 further induced RNA expression of anti-apoptotic Bcl-2 (+75.7%), brain-derived neurotrophic factor (BDNF) (+53.7%), the neurotrophin receptors TrkA (+57.4%) and TrkB (+67.9%) and a marker for neurite growth...

  15. Interaction of apoptotic cells with macrophages upregulates COX-2/PGE2 and HGF expression via a positive feedback loop.

    Science.gov (United States)

    Byun, Ji Yeon; Youn, Young-So; Lee, Ye-Ji; Choi, Youn-Hee; Woo, So-Yeon; Kang, Jihee Lee

    2014-01-01

    Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF) play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2 expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cells in vitro and in vivo orchestrate the interaction between COX-2/PGE2 and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2 production. Both NS-398 and COX-2-siRNA, as well as the PGE2 receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2 induction. The in vivo relevance of the interaction between the COX-2/PGE2 and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages following in vivo exposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2 and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.

  16. Interaction of Apoptotic Cells with Macrophages Upregulates COX-2/PGE2 and HGF Expression via a Positive Feedback Loop

    Directory of Open Access Journals (Sweden)

    Ji Yeon Byun

    2014-01-01

    Full Text Available Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2/prostaglandin E2 (PGE2 and hepatocyte growth factor (HGF play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2 expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cells in vitro and in vivo orchestrate the interaction between COX-2/PGE2 and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2 production. Both NS-398 and COX-2-siRNA, as well as the PGE2 receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2 induction. The in vivo relevance of the interaction between the COX-2/PGE2 and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages following in vivo exposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2 and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.

  17. Up-regulation of tumor necrosis factor superfamily genes in early phases of photoreceptor degeneration.

    Directory of Open Access Journals (Sweden)

    Sem Genini

    Full Text Available We used quantitative real-time PCR to examine the expression of 112 genes related to retinal function and/or belonging to known pro-apoptotic, cell survival, and autophagy pathways during photoreceptor degeneration in three early-onset canine models of human photoreceptor degeneration, rod cone dysplasia 1 (rcd1, X-linked progressive retinal atrophy 2 (xlpra2, and early retinal degeneration (erd, caused respectively, by mutations in PDE6B, RPGRORF15, and STK38L. Notably, we found that expression and timing of differentially expressed (DE genes correlated with the cell death kinetics. Gene expression profiles of rcd1 and xlpra2 were similar; however rcd1 was more severe as demonstrated by the results of the TUNEL and ONL thickness analyses, a greater number of genes that were DE, and the identification of altered expression that occurred at earlier time points. Both diseases differed from erd, where a smaller number of genes were DE. Our studies did not highlight the potential involvement of mitochondrial or autophagy pathways, but all three diseases were accompanied by the down-regulation of photoreceptor genes, and up-regulation of several genes that belong to the TNF superfamily, the extrinsic apoptotic pathway, and pro-survival pathways. These proteins were expressed by different retinal cells, including horizontal, amacrine, ON bipolar, and Müller cells, and suggest an interplay between the dying photoreceptors and inner retinal cells. Western blot and immunohistochemistry results supported the transcriptional regulation for selected proteins. This study highlights a potential role for signaling through the extrinsic apoptotic pathway in early cell death events and suggests that retinal cells other than photoreceptors might play a primary or bystander role in the degenerative process.

  18. Ligand-responsive upregulation of 3' CITE-mediated translation in a wheat germ cell-free expression system.

    Science.gov (United States)

    Ogawa, Atsushi; Murashige, Yuta; Tabuchi, Junichiro; Omatsu, Taiki

    2017-01-31

    We have rationally constructed a novel regulation-type of artificial riboswitch that ligand-dose dependently upregulates translation initiation mediated by a 3' cap-independent translation element (3' CITE) with no major hybridization switches in a plant expression system (wheat germ extract).

  19. Upregulation of SET expression by BACE1 and its implications in Down syndrome.

    Science.gov (United States)

    Zhang, Xiaozhu; Wu, Yili; Duan, Xiaoling; Chen, Wei; Zou, Haiyan; Zhang, Mingming; Zhang, Shuting; Cai, Fang; Song, Weihong

    2015-04-01

    Down syndrome (DS) is one of the most common genetic diseases. Patients with DS display growth delay and intellectual disabilities and develop Alzheimer's disease (AD) neuropathology after middle age, including neuritic plaques and neurofibrillary tangles. Beta-site amyloid β precursor protein (APP) cleaving enzyme 1 (BACE1), essential for Aβ production and neuritic plaque formation, is elevated in DS patients. However, its homolog, β-site APP cleaving enzyme 2 (BACE2), functions as θ-secretase and plays a differential role in plaque formation. In this study, by using Two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS-PAGE) and LC-MS/MS proteomic profiling analysis, we found that the SET oncogene protein (SET) expression was associated with BACE1 but not BACE2. SET protein was increased in BACE1 overexpressing cells and was markedly reduced in the BACE1 knockout mice. We found that the overexpression of BACE1 or SET significantly inhibited cell proliferation. Moreover, knockdown of SET in BACE1 overexpression cells significantly rescued BACE1-induced cell growth suppression. Furthermore, both BACE1 and SET protein levels were increased in Down syndrome patients. It suggests that BACE1 overexpression-induced SET upregulation may contribute to growth delay and cognitive impairment in DS patients. Our work provides a new insight that BACE1 overexpression not only promotes neuritic plaque formation but may also potentiate neurodegeneration mediated by SET elevation in Alzheimer-associated dementia in DS.

  20. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, El-Shaimaa A.; Zhu Qianzheng [Department of Radiology, Ohio State University, Columbus, OH 43210 (United States); Shah, Zubair I. [James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH 43210 (United States); Wani, Gulzar; Barakat, Bassant M.; Racoma, Ira [Department of Radiology, Ohio State University, Columbus, OH 43210 (United States); El-Mahdy, Mohamed A., E-mail: Mohamed.el-mahdy@osumc.edu [Department of Radiology, Ohio State University, Columbus, OH 43210 (United States); Wani, Altaf A., E-mail: wani.2@osu.edu [Department of Radiology, Ohio State University, Columbus, OH 43210 (United States); Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210 (United States); James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH 43210 (United States); DNA Research Chair, King Saud University, Riyadh (Saudi Arabia)

    2011-01-10

    The use of innocuous naturally occurring compounds to overcome drug resistance and cancer recalcitrance is now in the forefront of cancer research. Thymoquinone (TQ) is a bioactive constituent of the volatile oil derived from seeds of Nigella sativa Linn. TQ has shown promising anti-carcinogenic and anti-tumor activities through different mechanisms. However, the effect of TQ on cell signaling and survival pathways in resistant cancer cells has not been fully delineated. Here, we report that TQ greatly inhibits doxorubicin-resistant human breast cancer MCF-7/DOX cell proliferation. TQ treatment increased cellular levels of PTEN proteins, resulting in a substantial decrease of phosphorylated Akt, a known regulator of cell survival. The PTEN expression was accompanied with elevation of PTEN mRNA. TQ arrested MCF-7/DOX cells at G2/M phase and increased cellular levels of p53 and p21 proteins. Flow cytometric analysis and agarose gel electrophoresis revealed a significant increase in Sub-G1 cell population and appearance of DNA ladders following TQ treatment, indicating cellular apoptosis. TQ-induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of caspases and PARP cleavage in MCF-7/DOX cells. Moreover, TQ treatment increased Bax/Bcl2 ratio via up-regulating Bax and down-regulating Bcl2 proteins. More importantly, PTEN silencing by target specific siRNA enabled the suppression of TQ-induced apoptosis resulting in increased cell survival. Our results reveal that up-regulation of the key upstream signaling factor, PTEN, in MCF-7/DOX cells inhibited Akt phosphorylation, which ultimately causes increase in their regulatory p53 levels affecting the induction of G2/M cell cycle arrest and apoptosis. Overall results provide mechanistic insights for understanding the molecular basis and utility of the anti-tumor activity of TQ.

  1. MUC5AC EXPRESSION UP-REGULATION GOBLET CELL HYPERPLASIA IN THE AIRWAY OF PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE

    Institute of Scientific and Technical Information of China (English)

    Rui Ma; Ying Wang; Gang Cheng; Hui-zhen Zhang; Huan-ying Wan; Shao-guang Huang

    2005-01-01

    Objective To determine the number of goblet cells, the change of MUC5AC expression in chronic obstructive pul monary disease (COPD) patients and the relationship of smoking with goblet cell, MUC5AC, and lung function. Methods Eighteen patients undergoing lung resections for a solitary peripheral carcinoma were classified by lung function as having COPD. Twenty patients with normal lung function served as the control group. Normal lobe bronchioles far away from the lesion site were taken for paraffin section. Goblet cells were identified by AB/PAS staining and the ex pressionof MUC5AC in the paraffin's section was tested by immunohistochemistry. Results Goblet cell hyperplasia was observed in the COPD group. The positive rate of goblet cell in COPD group (0.20% ± 0.10%) was significantly higher than that in the normal lung function group (0.13% ± 0.06%, P < 0.05). The positive rate of MUC5AC expression in the COPD group (0.27% ± 0.09%) was higher than that in the normal lung function group (0.20% ± 0.10%, P <0.05).The positive rate of goblet cell in smokers (27.93% ± 9.00%) of the COPD group and normal lung function group was higher than that in non-smokers (17.70% ± 9.37%, P < 0.05), while MUC5AC expression had no significant difference between smokers and non-smokers (17.88% ± 6.44% and 10.88% ± 7.10%, respectively). Conclusion For COPD patients with declined lung function, there were goblet cell hyperplasia and increased expres sion of MUC5AC. MUC5AC expression up-regulation may due to goblet cell hyperplasia. Smoking may be an important factor for goblet cell hyperplasia.

  2. Phospholipase C δ-4 overexpression upregulates ErbB1/2 expression, Erk signaling pathway, and proliferation in MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Morris Valerie

    2004-05-01

    Full Text Available Abstract Background The expression of the rodent phosphoinositide-specific phospholipase C δ-4 (PLCδ4 has been found to be elevated upon mitogenic stimulation and expression analysis have linked the upregulation of PLCδ4 expression with rapid proliferation in certain rat transformed cell lines. The human homologue of PLCδ4 has not been extensively characterized. Accordingly, we investigate the effects of overexpression of human PLCδ4 on cell signaling and proliferation in this study. Results The cDNA for human PLCδ4 has been isolated and expressed ectopically in breast cancer MCF-7 cells. Overexpression of PLCδ4 selectively activates protein kinase C-φ and upregulates the expression of epidermal growth factor receptors EGFR/erbB1 and HER2/erbB2, leading to constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2 pathway in MCF-7 cells. MCF-7 cells stably expressing PLCδ4 demonstrates several phenotypes of transformation, such as rapid proliferation in low serum, formation of colonies in soft agar, and capacity to form densely packed spheroids in low-attachment plates. The growth signaling responses induced by PLCδ4 are not reversible by siRNA. Conclusion Overexpression or dysregulated expression of PLCδ4 may initiate oncogenesis in certain tissues through upregulation of ErbB expression and activation of ERK pathway. Since the growth responses induced by PLCδ4 are not reversible, PLCδ4 itself is not a suitable drug target, but enzymes in pathways activated by PLCδ4 are potential therapeutic targets for oncogenic intervention.

  3. Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates ciliary neurotrophic factor in astrocytes and oligodendrocytes

    Science.gov (United States)

    Modi, Khushbu K.; Jana, Malabendu; Mondal, Susanta; Pahan, Kalipada

    2015-01-01

    Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor that plays an important role in multiple sclerosis (MS). However, mechanisms by which CNTF expression could be increased in the brain are poorly understood. Recently we have discovered anti-inflammatory and immunomodulatory activities of sodium benzoate (NaB), a metabolite of cinnamon and a widely-used food additive. Here, we delineate that NaB is also capable of increasing the mRNA and protein expression of CNTF in primary mouse astrocytes and oligodendrocytes and primary human astrocytes. Accordingly, oral administration of NaB and cinnamon led to the upregulation of astroglial and oligodendroglial CNTF in vivo in mouse brain. Induction of experimental allergic encephalomyelitis (EAE), an animal model of MS, reduced the level of CNTF in the brain, which was restored by oral administration of cinnamon. While investigating underlying mechanisms, we observed that NaB induced the activation of protein kinase A (PKA) and H-89, an inhibitor of PKA, abrogated NaB-induced expression of CNTF. The activation of cAMP response element binding (CREB) protein by NaB, the recruitment of CREB and CREB-binding protein to the CNTF promoter by NaB and the abrogation of NaB-induced expression of CNTF in astrocytes by siRNA knockdown of CREB suggest that NaB increases the expression of CNTF via the activation of CREB. These results highlight a novel myelinogenic property of NaB and cinnamon, which may be of benefit for MS and other demyelinating disorders. PMID:26399250

  4. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders.

    Science.gov (United States)

    Jana, Arundhati; Modi, Khushbu K; Roy, Avik; Anderson, John A; van Breemen, Richard B; Pahan, Kalipada

    2013-06-01

    This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA - CREB pathway, which may be of benefit for various neurodegenerative disorders.

  5. IL-34 Upregulated Th17 Production through Increased IL-6 Expression by Rheumatoid Fibroblast-Like Synoviocytes

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2017-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic autoimmune disease which is characterized by synovial inflammation and cartilage damage for which causes articular dysfunction. Activation of fibroblast-like synoviocytes (FLS is a critical step that promotes disease progression. In this study, we aimed to explore the effect of interleukin-34 (IL-34 on RA FLS as a proinflammatory factor and IL-34-stimulated FLS on the production of Th17. We found that serum IL-34 levels were increased compared to those of the healthy controls and had positive correlations with C-reactive protein (CRP, erythrocyte sedimentation rate (ESR, rheumatoid factor (RF, and anticyclic citrullinated peptide (CCP antibody accordingly. CSF-1R was also highly expressed on RA FLS. The interaction of IL-34 and CSF-1R promoted a dramatic production of IL-6 by FLS through JNK/P38/NF-κB signaling pathway. Further, the IL-34-stimulated IL-6 secretion by RA FLS was found to upregulate the number of Th17. The treatment of IL-6R antagonist could attenuate the production of Th17 mediated by IL-34-stimulated RA FLS. Our results suggest that the increased IL-34 levels were closely related to the disease activity of RA. Additionally, the overexpression of IL-6 in the IL-34-stimulated FLS promoted the generation of Th17. Therefore, IL-34 was supposed to be involved in the pathogenesis of RA. The inhibition of IL-34 might provide a novel target for therapies of RA.

  6. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Pawel K., E-mail: olsze005@umn.edu [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Fredriksson, Robert; Eriksson, Jenny D. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Mitra, Anaya [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Radomska, Katarzyna J. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Gosnell, Blake A. [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Solvang, Maria N. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Levine, Allen S. [Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Schioeth, Helgi B. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden)

    2011-05-13

    Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  7. Up-regulation of neurotrophin-related gene expression in mouse hippocampus following low-level toluene exposure.

    Science.gov (United States)

    Win-Shwe, Tin-Tin; Tsukahara, Shinji; Yamamoto, Shoji; Fukushima, Atsushi; Kunugita, Naoki; Arashidani, Keiichi; Fujimaki, Hidekazu

    2010-01-01

    To investigate the role of strain differences in sensitivity to low-level toluene exposure on neurotrophins and their receptor levels in the mouse hippocampus, 8-week-old male C3H/HeN, BALB/c and C57BL/10 mice were exposed to 0, 5, 50, or 500 ppm toluene for 6h per day, 5 days per week for 6 weeks in an inhalation chamber. We examined the expressions of neurotrophin-related genes and receptors in the mouse hippocampus using real-time reverse transcription polymerase chain reaction (RT-PCR). The expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tyrosine kinase (Trk) A, and TrkB mRNAs in the C3H/HeN mice hippocampus was significantly higher in the mice exposed to 500 ppm toluene. Among the three strains of mice, the C3H/HeN mice seemed to be sensitive to toluene exposure. To examine the combined effect of toluene exposure and allergic challenge, the C3H/HeN mice stimulated with ovalbumin were exposed to toluene. The allergy group of C3H/HeN mice showed significantly elevated level of NGF mRNA in the hippocampus following exposure to 50 ppm toluene. Then, we also examined the expression of transcription factor, dopamine markers and oxidative stress marker in the hippocampus of sensitive strain C3H/HeN mice and found that the expression of CREB1 mRNA was significantly increased at 50 ppm toluene. In immunohistochemical analysis, the density of the NGF-immunoreactive signal was significantly stronger in the hippocampal CA3 region of the C3H/HeN mice exposed to 500 ppm toluene in non-allergy group and 50 ppm in allergy group. Our results indicate that low-level toluene exposure may induce up-regulation of neurotrophin-related gene expression in the mouse hippocampus depending on the mouse strain and an allergic stimulation in sensitive strain may decrease the threshold for sensitivity at lower exposure level.

  8. Electroacupuncture Pretreatment Attenuates Cerebral Ischemic Injury via Notch Pathway-Mediated Up-Regulation of Hypoxia Inducible Factor-1α in Rats.

    Science.gov (United States)

    Zhao, Yu; Deng, Bin; Li, Yichong; Zhou, Lihua; Yang, Lei; Gou, Xingchun; Wang, Qiang; Chen, Guozhong; Xu, Hao; Xu, Lixian

    2015-11-01

    We have reported electroacupuncture (EA) pretreatment induced the tolerance against focal cerebral ischemia through activation of canonical Notch pathway. However, the underlying mechanisms have not been fully understood. Evidences suggest that up-regulation of hypoxia inducible factor-1α (HIF-1α) contributes to neuroprotection against ischemia which could interact with Notch signaling pathway in this process. Therefore, the current study is to test that up-regulation of HIF-1α associated with Notch pathway contributes to the neuroprotection of EA pretreatment. Sprague-Dawley rats were treated with EA at the acupoint "Baihui (GV 20)" 30 min per day for successive 5 days before MCAO. HIF-1α levels were measured before and after reperfusion. Then, HIF-1α antagonist 2ME2 and γ-secretase inhibitor MW167 were used. Neurologic deficit scores, infarction volumes, neuronal apoptosis, and Bcl2/Bax were evaluated. HIF-1α and Notch1 intracellular domain (NICD) were assessed. The results showed EA pretreatment enhanced the neuronal expression of HIF-1α, reduced infarct volume, improved neurological outcome, inhibited neuronal apoptosis, up-regulated expression of Bcl-2, and down-regulated expression of Bax after reperfusion in the penumbra, while the beneficial effects were attenuated by 2ME2. Furthermore, intraventricular injection with MW167 efficiently suppressed both up-regulation of NICD and HIF-1α after reperfusion. However, administration with 2ME2 could only decrease the expression of HIF-1α in the penumbra. In conclusion, EA pretreatment exerts neuroprotection against ischemic injury through Notch pathway-mediated up-regulation of HIF-1α.

  9. Ananas comosus L. Leaf Phenols and p-Coumaric Acid Regulate Liver Fat Metabolism by Upregulating CPT-1 Expression

    Directory of Open Access Journals (Sweden)

    Weidong Xie

    2014-01-01

    Full Text Available In this study, we aimed to investigate the effect and action mechanisms of pineapple leaf phenols (PLPs on liver fat metabolism in high-fat diet-fed mice. Results show that PLP significantly reduced abdominal fat and liver lipid accumulation in high-fat diet-fed mice. The effects of PLP were comparable with those of FB. Furthermore, at the protein level, PLP upregulated the expression of carnitine palmitoyltransferase 1 (CPT-1, whereas FB had no effects on CPT-1 compared with the HFD controls. Regarding mRNA expression, PLP mainly promoted the expression of CPT-1, PGC1a, UCP-1, and AMPK in the mitochondria, whereas FB mostly enhanced the expression of Ech1, Acox1, Acaa1, and Ehhadh in peroxisomes. PLP seemed to enhance fat metabolism in the mitochondria, whereas FB mainly exerted the effect in peroxisomes. In addition, p-coumaric acid (CA, one of the main components from PLP, significantly inhibited fat accumulation in oleic acid-induced HepG2 cells. CA also significantly upregulated CPT-1 mRNA and protein expressions in HepG2 cells. We, firstly, found that PLP enhanced liver fat metabolism by upregulating CPT-1 expression in the mitochondria and might be promising in treatment of fatty liver diseases as alternative natural products. CA may be one of the active components of PLP.

  10. Ananas comosus L. Leaf Phenols and p-Coumaric Acid Regulate Liver Fat Metabolism by Upregulating CPT-1 Expression.

    Science.gov (United States)

    Xie, Weidong; Zhang, Shaobo; Lei, Fan; Ouyang, Xiaoxi; Du, Lijun

    2014-01-01

    In this study, we aimed to investigate the effect and action mechanisms of pineapple leaf phenols (PLPs) on liver fat metabolism in high-fat diet-fed mice. Results show that PLP significantly reduced abdominal fat and liver lipid accumulation in high-fat diet-fed mice. The effects of PLP were comparable with those of FB. Furthermore, at the protein level, PLP upregulated the expression of carnitine palmitoyltransferase 1 (CPT-1), whereas FB had no effects on CPT-1 compared with the HFD controls. Regarding mRNA expression, PLP mainly promoted the expression of CPT-1, PGC1a, UCP-1, and AMPK in the mitochondria, whereas FB mostly enhanced the expression of Ech1, Acox1, Acaa1, and Ehhadh in peroxisomes. PLP seemed to enhance fat metabolism in the mitochondria, whereas FB mainly exerted the effect in peroxisomes. In addition, p-coumaric acid (CA), one of the main components from PLP, significantly inhibited fat accumulation in oleic acid-induced HepG2 cells. CA also significantly upregulated CPT-1 mRNA and protein expressions in HepG2 cells. We, firstly, found that PLP enhanced liver fat metabolism by upregulating CPT-1 expression in the mitochondria and might be promising in treatment of fatty liver diseases as alternative natural products. CA may be one of the active components of PLP.

  11. Restoration of p53 Expression in Human Cancer Cell Lines Upregulates the Expression of Notch1: Implications for Cancer Cell Fate Determination after Genotoxic Stress

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-05-01

    Full Text Available Following genotoxic stress, transcriptional activation of target genes by p53 tumor suppressor is critical in cell fate determination. Here we report that the restoration of p53 function in human cancer cell lines that are deficient in p53 function upregulated the expression of Notch1. Interestingly, the expression of wild-type p53 in human prostate and breast cancer cell lines correlated well with increased expression of Notch1. Furthermore, knockdown of p53 expression in cancer cells that express wild-type p53 resulted in reduced expression of Notch1. Importantly, genotoxic stress to cancer cells that resulted in activation of p53 also upregulated the expression of Notch1. Moreover, p53mediated induction of Notch1 expression was associated with stimulation of the activity of Notch-responsive reporters. Notably, p53 differentially regulated the expression of Notch family members: expression of Notch2 and Notch4 was not induced by p53. Significantly, treatment of cells with gamma secretase inhibitor, an inhibitor of Notch signaling, increased susceptibility to apoptosis in response to genotoxic stress. Together, our observations suggest that p53mediated upregulation of Notch1 expression in human cancer cell lines contributes to cell fate determination after genotoxic stress.

  12. Restoration of p53 Expression in Human Cancer Cell Lines Upregulates the Expression of Notch1: Implications for Cancer Cell Fate Determination after Genotoxic Stress1

    Science.gov (United States)

    Alimirah, Fatouma; Panchanathan, Ravichandran; Davis, Francesca J; Chen, Jianming; Choubey, Divaker

    2007-01-01

    Following genotoxic stress, transcriptional activation of target genes by p53 tumor suppressor is critical in cell fate determination. Here we report that the restoration of p53 function in human cancer cell lines that are deficient in p53 function upregulated the expression of Notch1. Interestingly, the expression of wild-type p53 in human prostate and breast cancer cell lines correlated well with increased expression of Notch1. Furthermore, knockdown of p53 expression in cancer cells that express wild-type p53 resulted in reduced expression of Notch1. Importantly, genotoxic stress to cancer cells that resulted in activation of p53 also upregulated the expression of Notch1. Moreover, p53-mediated induction of Notch1 expression was associated with stimulation of the activity of Notch-responsive reporters. Notably, p53 differentially regulated the expression of Notch family members: expression of Notch2 and Notch4 was not induced by p53. Significantly, treatment of cells with gamma secretase inhibitor, an inhibitor of Notch signaling, increased susceptibility to apoptosis in response to genotoxic stress. Together, our observations suggest that p53-mediated upregulation of Notch1 expression in human cancer cell lines contributes to cell fate determination after genotoxic stress. PMID:17534448

  13. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation.

    Science.gov (United States)

    Wang, Haibo; Han, Xiaokun; Wittchen, Erika S; Hartnett, M Elizabeth

    2016-01-01

    -catenin transcriptional inhibitors, XAV939 or JW67, or transfection with p22phox siRNA and compared to appropriate controls. Compared to the non-lasered control, TNF-α and VEGF protein were increased in the RPE/choroids in a murine laser-induced CNV model (p<0.05). An intravitreal neutralizing antibody to mouse TNF-α reduced CNV volume, and VEGF protein in the RPE/choroids (p<0.01) and oxidized phospholipids within CNV compared to IgG control (p<0.05). In cultured RPE cells and compared to controls, TNF-α induced ROS generation and increased activation of NOX4, an isoform of NADPH oxidase; both were prevented by pretreatment with the apocynin or VAS2870 or knockdown of p22phox, a subunit of NADPH oxidase. TNF-α treatment increased VEGF expression (p<0.001) and the formation of a transcriptional complex of β-catenin and T-cell transcriptional factor; both were prevented by pretreatment with apocynin or knockdown of p22phox. Inhibition of β-catenin by XAV939, but not the nuclear factor kappa B inhibitor, Bay 11-7082, prevented TNF-α-induced VEGF upregulation. Our results support the thinking that TNF-α contributes to CNV by upregulating VEGF production in RPE cells through ROS-dependent activation of β-catenin signaling. These results provide mechanisms of crosstalk between inflammatory mediator, TNF-α, and ROS in RPE cells.

  14. Type I pityriasis rubra pilaris: upregulation of tumor necrosis factor alpha and response to adalimumab therapy.

    Science.gov (United States)

    Zhang, Yao-Hua; Zhou, Youwen; Ball, Nigel; Su, Ming-Wan; Xu, Jin-Hua; Zheng, Zhi-Zhong

    2010-01-01

    pityriasis rubra pilaris (PRP) has unknown etiology and is often refractory to conventional therapies. to document a PRP patient's response to adalimumab therapy and to highlight the potential role of tumor necrosis factor (TNF) in the development of PRP skin lesions. a patient received adalimumab therapy at standard dosing intervals. In addition, the messenger ribonucleic acid (mRNA) of TNF in the lesional and perilesional normal skin was quantified in two patients with PRP. the patient responded to adalimumab therapy and achieved clinical remission by 4 months. There was a significant elevation of TNF mRNA in the lesional skin of PRP. TNF upregulation is detected in PRP lesional skin, consistent with the observed clinical efficacy of TNF blockade for the treatment of PRP.

  15. Sonic Hedgehog Promotes Neurite Outgrowth of Primary Cortical Neurons Through Up-Regulating BDNF Expression.

    Science.gov (United States)

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao

    2016-04-01

    Sonic hedgehog (Shh), a secreted glycoprotein factor, can activate the Shh pathway, which has been implicated in neuronal polarization involving neurite outgrowth. However, little evidence is available about the effect of Shh on neurite outgrowth in primary cortical neurons and its potential mechanism. Here, we revealed that Shh increased neurite outgrowth in primary cortical neurons, while the Shh pathway inhibitor (cyclopamine, CPM) partially suppressed Shh-induced neurite outgrowth. Similar results were found for the expressions of Shh and Patched genes in Shh-induced primary cortical neurons. Moreover, Shh increased the levels of brain-derived neurotrophic factor (BDNF) not only in lysates and in culture medium but also in the longest neurites of primary cortical neurons, which was partially blocked by CPM. In addition, blocking of BDNF action suppressed Shh-mediated neurite elongation in primary cortical neurons. In conclusion, these findings suggest that Shh promotes neurite outgrowth in primary cortical neurons at least partially through modulating BDNF expression.

  16. HBXIP up-regulates ACSL1 through activating transcriptional factor Sp1 in breast cancer.

    Science.gov (United States)

    Wang, Yue; Cai, Xiaoli; Zhang, Shuqin; Cui, Ming; Liu, Fabao; Sun, Baodi; Zhang, Weiying; Zhang, Xiaodong; Ye, Lihong

    2017-03-11

    The oncoprotein hepatitis B X-interacting protein (HBXIP) results in the dysregulation of lipid metabolism to enhance the development of breast cancer. Acyl-CoA synthetase long-chain family member 1 (ACSL1) is required for thioesterification of long-chain fatty acids into their acyl-CoA derivatives. In this study, we present a hypothesis that HBXIP might be involved in the regulation of ACSL1 in breast cancer. Interestingly, we found that the overexpression of HBXIP was able to up-regulate ACSL1 at the levels of mRNA and protein in a dose-dependent manner in breast cancer cells. Conversely, silencing of HBXIP led to the opposite results. Mechanistically, HBXIP as a coactivator interacted with transcriptional factor Sp1 through binding to the promoter of ACSL1 by ChIP assays analysis, leading to the transcription of ACSL1 in breast cancer cells. Immunohistochemistry staining revealed that the positive rate of ACSL1 was 71.4% (35/49) in clinical breast cancer tissues, HBXIP 79.6% (39/49), in which the positive rate of ACSL1 was 76.9% (30/39) in the HBXIP-positive specimens. But, few positive rate of ACSL1 10% (1/10) was observed in normal breast tissues. The mRNA levels of ACSL1 were significantly higher in clinical breast cancer tissues than those in their corresponding peritumor tissues. The mRNA levels of ACSL1 were positively associated with those of HBXIP in clinical breast cancer tissues. Thus, we conclude that the oncoprotein HBXIP is able to up-regulate ACSL1 through activating the transcriptional factor Sp1 in breast cancer.

  17. Olfactory Discrimination Training Up-Regulates and Reorganizes Expression of MicroRNAs in Adult Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    2010-01-01

    Full Text Available Adult male mice (strain C57Bl/6J were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: Olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour or pseudo-training (exposed to two odours with reward not contingent upon response. These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct responses in 20 trials, occurring after three sessions (a total of ~40 min of training. The hippocampus was dissected bilaterally from each mouse (N=7 in each group and profiling of 585 miRNAs (microRNAs was carried out using multiplex RT–PCR (reverse transcription–PCR plates. A significant global up-regulation of miRNA expression was observed in the discrimination training versus pseudo-training comparison; when tested individually, 29 miRNAs achieved significance at P=0.05. miR-10a showed a 2.7-fold increase with training, and is predicted to target several learning-related mRNAs including BDNF (brain-derived neurotrophic factor, CAMK2b (calcium/calmodulin-dependent protein kinase IIβ, CREB1 (cAMP-response-element-binding protein 1 and ELAVL2 [ELAV (embryonic lethal, abnormal vision, Drosophila-like; Hu B]. Analysis of miRNA pairwise correlations revealed the existence of several miRNA co-expression modules that were specific to the training group. These in vivo results indicate that significant, dynamic and co-ordinated changes in miRNA expression accompany early stages of learning.

  18. Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma

    Directory of Open Access Journals (Sweden)

    Halaban Ruth

    2010-02-01

    Full Text Available Abstract Background Abberant DNA methylation at CpG dinucleotides represents a common mechanism of transcriptional silencing in cancer. Since CpG methylation is a reversible event, tumor supressor genes that have undergone silencing through this mechanism represent promising targets for epigenetically active anti-cancer therapy. The cytosine analog 5-aza-2'-deoxycytidine (decitabine induces genomic hypomethylation by inhibiting DNA methyltransferase, and is an example of an epigenetic agent that is thought to act by up-regulating silenced genes. Methods It is unclear why decitabine causes some silenced loci to re-express, while others remain inactive. By applying data-mining techniques to large-scale datasets, we attempted to elucidate the qualities of promoter regions that define susceptibility to the drug's action. Our experimental data, derived from melanoma cell strains, consist of genome-wide gene expression data before and after treatment with decitabine, as well as genome-wide data on un-treated promoter methylation status, and validation of specific genes by bisulfite sequencing. Results We show that the combination of promoter CpG content and methylation level informs the ability of decitabine treatment to up-regulate gene expression. Promoters with high methylation levels and intermediate CpG content appear most susceptible to up-regulation by decitabine, whereas few of those highly methylated promoters with high CpG content are up-regulated. For promoters with low methylation levels, those with high CpG content are more likely to be up-regulated, whereas those with low CpG content are underrepresented among up-regulated genes. Conclusions Clinically, elucidating the patterns of action of decitabine could aid in predicting the likelihood of up-regulating epigenetically silenced tumor suppressor genes and others from pathways involved with tumor biology. As a first step toward an eventual translational application, we build a classifier

  19. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    Science.gov (United States)

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  20. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Kyoung-jin Min

    2017-08-01

    Full Text Available Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose polymerase (PARP, which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5 expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  1. Up-regulated manganese superoxide dismutase expression increases apoptosis resistance in human esophageal squamous cell carcinomas

    Institute of Scientific and Technical Information of China (English)

    HU Hai; WANG Ming-rong; LUO Man-li; DU Xiao-li; FENG Yan-bin; ZHANG Yu; SHEN Xiao-ming; XU Xin; CAI Yan; HAN Ya-ling

    2007-01-01

    Background Esophageal cancer is one of the most common malignancies in the world.In order to identify the proteins associated with esophageal squamous cell carcinomas(ESCC),we analyzed the protein profiles of ESCC cases with tumor and matched adjacent normal tissues.Methods Two-dimensional electrophoresis(2-DE)was carried out to analyze the protein profiles.Dysregulated protein spots were identified by Matrix-Assisted Laser Desorption Ionization Time-of-Flight(MALDI-TOF)and verified by liquid chromatography/electrospray ionization ion trap-mass spectrometry/mass spectrometry(LC-ESI-IT MS).RT-PCR and immunohistochemistry on tissue microarray were performed to confirm the gene dysregulation in esophageal cancerous tissues.RNA interference (RNAi)was used to knock down the gene expression in ESCC cell lines.Apoptosis assay with annexin V-FITC/PI staining was conducted and cells were analyzed by flow cytometry.Results 2-DE showed that two protein spots with approximate molecular weights and different pl were elevated in 12 out of 18 ESCCs as compared to the corresponding normal tissues.Both the two spots were identified as MnSOD by MALDI-TOF and were verified by LC-ESI-IT MS.MnSOD overexpression was detected in 14 tumors out of 24 cases by RT-PCR and 52 tumors out of 116 cases by immunohistochemistry comparing to normal epithelia.siRNA-mediated silencing of MnSOD in KYSE450 and KYSE150 cell lines revealed that MnSOD protected ESCC cells from apoptosis induced by ultraviolet(UV)and doxorubicin(DOX).Conclusions These findings suggest that there existed two isoforms of MnSOD protein in normal and tumor esophageal tissues.MnSOD was overexpressed in ESCC and its up-regulation in esophageal cancer cells was associated with apoptosis resistance.

  2. SH2-B beta upregulates the expression of interleukin-1 beta in lung and visceral primary afferent neurons in asthmatic mice

    Institute of Scientific and Technical Information of China (English)

    Jinping Qi; Xiaojie Wang; Yun Jin

    2011-01-01

    A previous study by our research group showed that nerve growth factor is involved in the onset of asthma through regulating SH2-Bβ expression in the lung and visceral primary afferent neurons of asthmatic mice. This study sought to assess the expression level of interleukin-1β in primary afferent neurons in C7-T5 spinal ganglia, spinal cord and lung in asthmatic mice after blockage of SH2-Bβ. The levels of interleukin-1β protein in primary afferent neurons in the C7-T5 spinal ganglia and lung were decreased, and interleukin-1β mRNA expression also down-regulated in the spinal cord, medulla oblongata and lung tissue after blockage of SH2-Bβ. Our findings indicate that SH2-Bβ can upregulate the expression of interleukin-1β in C7-T5 spinal ganglia, spinal cord and lung of asthmatic mice.

  3. CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to VCAM-1

    Science.gov (United States)

    Gower, R. Michael; Wu, Huaizhu; Foster, Greg A.; Devaraj, Sridevi; Jialal, Ishwarlal; Ballantyne, Christie M.; Knowlton, Anne A.; Simon, Scott I.

    2010-01-01

    Objective Atherosclerosis is associated with monocyte adhesion to the arterial wall that involves integrin activation and emigration across inflamed endothelium. Involvement of β2-integrin CD11c/CD18 in atherogenesis was recently shown in dyslipidemic mice, which motivates our study of its inflammatory function during hypertriglyceridemia in humans. Methods and Results Flow cytometry of blood from healthy subjects fed a standardized high fat meal revealed that at 3.5 hours postprandial, monocyte CD11c surface expression was elevated and the extent of upregulation correlated with blood triglycerides. Monocytes from postprandial blood exhibited an increased light scatter profile, which correlated with elevated CD11c expression and uptake of lipid particles. Purified monocytes internalized triglyceride-rich lipoproteins isolated from postprandial blood through LRP-1, and this also elicited CD11c upregulation. Lab-on-a-chip analysis of whole blood showed that monocyte arrest on a VCAM-1 substrate under shear flow was elevated at 3.5 hours and correlated with blood triglyceride and CD11c expression. At 7 hours postprandial, blood triglycerides decreased and monocyte CD11c expression and arrest on VCAM-1 returned to fasting levels. Conclusions During hypertriglyceridemia, monocytes internalize lipid, upregulate CD11c, and increase adhesion to VCAM-1. These data suggest that analysis of monocyte inflammation may provide additional framework for evaluating individual susceptibility to cardiovascular disease. PMID:21030716

  4. Zebularine upregulates expression of CYP genes through inhibition of DNMT1 and PKR in HepG2 cells

    Science.gov (United States)

    Nakamura, Kazuaki; Aizawa, Kazuko; Aung, Kyaw Htet; Yamauchi, Junji; Tanoue, Akito

    2017-01-01

    Drug-induced hepatotoxicity is one of the major reasons cited for drug withdrawal. Therefore, it is of extreme importance to detect human hepatotoxic candidates as early as possible during the drug development process. In this study, we aimed to enhance hepatocyte functions such as CYP gene expression in HepG2 cells, one of the most extensively used cell lines in evaluating hepatotoxicity of chemicals and drugs. We found that zebularine, a potent inhibitor of DNA methylation, remarkably upregulates the expression of CYP genes in HepG2 cells. In addition, we revealed that the upregulation of CYP gene expression by zebularine was mediated through the inhibition of both DNA methyltransferase 1 (DNMT1) and double-stranded RNA-dependent protein kinase (PKR). Furthermore, HepG2 cells treated with zebularine were more sensitive than control cells to drug toxicity. Taken together, our results show that zebularine may make HepG2 cells high-functioning and thus could be useful for evaluating the hepatotoxicity of chemicals and drugs speedily and accurately in in-vitro systems. The finding that zebularine upregulates CYP gene expression through DNMT1 and PKR modulation sheds light on the mechanisms controlling hepatocyte function and thus may aid in the development of new in-vitro systems using high-functioning hepatocytes. PMID:28112215

  5. Delta12-前列腺素J2纳米粒上调骨生长因子表达及其对骨再生的影响%Delta12-prostaglandinJ2-nano capsule up-regulates growth factor expression and enhances bone regeneration in rats

    Institute of Scientific and Technical Information of China (English)

    陈莉丽; 魏芬; 孙伟莲; 丁佩惠; 陈晓涛; 吴燕岷

    2015-01-01

    level of BMP-6,PDGF-B increased significantly(P<0.05,P< 0.001).The protein expression of BMP-6,Ephrin-B2 also was up-regulated.Histomorphometry revealed that new bone formation increased at the same dose of 100 mg/L.But the unloaded nanoparticles did not have the same effect(P>0.05).Conclusions A stable△ 12-PGJ2 loaded nanoparticle was successfully prepared.△ 12-PGJ2-NC may upregulate the expression of BMP-6,PDGF-B and Ephrin-B2,and promote new bone formation in bone defect area.%目的 探讨delta12-前列腺素J2(△12-prostaglandin J2,△12-PGJ2)以聚乳酸-羟基乙酸共聚物为载体的纳米粒[△12-PGJ2-loaded poly(lactic-co-glycolic acid),△12-PGJ2-NC]对骨生长因子表达及骨再生的影响,为其应用于牙周病治疗提供依据.方法 用乳化溶剂蒸发法制备△12-PGJ2-NC,通过粒径分析、透射电镜观察、包封率测定及体外释放试验评价△12-PGJ2-NC的理化性质;将48只Wistar雄性大鼠按随机数字表法随机分为4组,在大鼠双后肢股骨中段制备5.0 mm×1.5 mm骨皮质缺损,以可吸收性胶原海绵为载体分别将30μl生理盐水(S组)、空白聚乳酸-羟基乙酸共聚物[poly (lactic-coglycolic acid),PLGA]纳米粒(K组)、△12-PGJ2(F组)和△12-PGJ2-NC(N组)分别作用于骨缺损区,每组12只.建模结束后3、7、14、28 d收集左侧缺损区骨组织(每个时间点3只),提取mRNA和蛋白质,通过实时定量PCR法检测各组骨形成蛋白6(bone morphogenetic protein-6,BMP-6)、血小板源性生长因子B(platelet-derived growth factor-B,PDGF-B)mRNA表达量;用蛋白质印迹法检测BMP-6、Ephrin-B2的蛋白表达量;收集右侧缺损区骨组织并行HE染色,半定量分析术后14、28 d的新生骨量.结果 △12-PGJ2-NC呈乳光白色的均质悬浮液,测得粒径为(135.24±0.85)nm,透射电镜下呈圆形,分布较均匀,无大量聚集现象,载药率高达92%.在0.5、1、2、4及6h时,△12-PGJ2-NC的平均累计释放量分别为30%、52%、77

  6. Green Tea Polyphenol Epigallocatechin-3-gallate Suppresses Toll-like Receptor 4 Expression via Up-regulation of E3 Ubiquitin-protein Ligase RNF216.

    Science.gov (United States)

    Kumazoe, Motofumi; Nakamura, Yuki; Yamashita, Mai; Suzuki, Takashi; Takamatsu, Kanako; Huang, Yuhui; Bae, Jaehoon; Yamashita, Shuya; Murata, Motoki; Yamada, Shuhei; Shinoda, Yuki; Yamaguchi, Wataru; Toyoda, Yui; Tachibana, Hirofumi

    2017-03-10

    Toll-like receptor 4 (TLR4) plays an essential role in innate immunity through inflammatory cytokine induction. Recent studies demonstrated that the abnormal activation of TLR4 has a pivotal role in obesity-induced inflammation, which is associated with several diseases, including hyperinsulinemia, hypertriglyceridemia, and cardiovascular disease. Here we demonstrate that (-)-epigallocatechin-3-O-gallate, a natural agonist of the 67-kDa laminin receptor (67LR), suppressed TLR4 expression through E3 ubiquitin-protein ring finger protein 216 (RNF216) up-regulation. Our data indicate cyclic GMP mediates 67LR agonist-dependent RNF216 up-regulation. Moreover, we show that the highly absorbent 67LR agonist (-)-epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3″Me) significantly attenuated TLR4 expression in the adipose tissue. EGCG3″Me completely inhibited the high-fat/high-sucrose (HF/HS)-induced up-regulation of tumor necrosis factor α in adipose tissue and serum monocyte chemoattractant protein-1 increase. Furthermore, this agonist intake prevented HF/HS-induced hyperinsulinemia and hypertriglyceridemia. Taken together, 67LR presents an attractive target for the relief of obesity-induced inflammation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Telmisartan prevents proliferation and promotes apoptosis of human ovarian cancer cells through upregulating PPARγ and downregulating MMP‑9 expression.

    Science.gov (United States)

    Pu, Zhichen; Zhu, Min; Kong, Fandou

    2016-01-01

    The mortality rate of ovarian cancer is the highest of all gynecological malignancies. Telmisartan is a commonly used clinical angiotensin receptor blocker, which has antihypertensive, anti‑inflammatory and antithrombotic effects. In the present study, it was investigated whether telmisartan could exert anticancer effects on ovarian cancer cells through upregulating peroxisome proliferator‑activated receptor γ (PPARγ) and downregulating matrix metalloproteinase‑9 (MMP‑9) expression. A 3.3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was conducted to analyze the proliferation of HEY cells. A Caspase‑3 Activity Assay kit and an Annexin V‑fluorescein isothiocyanate/propidium iodide kit were used to analyze the apoptosis of HEY cells. In addition, a gelatin zymography assay and reverse trancription‑quantitative polymerase chain reaction were included to analyze the expression of PPARγ and MMP‑9 in HEY cells. The data showed that telmisartan could significantly decrease cell viability and induce the apoptosis of HEY cells in a time‑ and dose‑dependent manner. Furthermore, telmisartan could also dose‑dependently increase the expression of PPARγ and decrease the expression of MMP‑9 in HEY cells. In addition, downregulation of the expression of PPARγ by small interfering (si)RNA could reduce the effect of telmisartan on ovarian cancer cells and increase the expression of MMP‑9. In conclusion, the results indicated that telmisartan prevents proliferation and promotes apoptosis of human ovarian cancer cells by upregulating PPARγ and downregulating MMP‑9 expression.

  8. Up-regulation of thromboxane A2 receptor expression by lipid soluble smoking particles through post-transcriptional mechanisms

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2008-01-01

    . The present study was designed to test if lipid soluble smoking particles (DSP) enhance TxA(2) receptor (TP) expression in rat mesenteric arteries, and if intracellular mitogen-activated protein kinase (MAPK) pathways play a role. Organ culture of rat mesenteric arteries in the presence of DSP (0.2 microl...... actinomycin D, but was almost completely abolished by cycloheximide, a general translational inhibitor. Dexamethasone, a glucocorticoid, manifested a potent inhibitory effect as well. These results suggest that the up-regulation of TP receptor occurs via post-transcriptional events, and mainly translation...... are responsible for the up-regulation of TP receptor by DSP, in which enhanced translation is the major cause of the elevated protein expression and the enhanced contraction....

  9. Stimulatory effects of propylthiouracil on pregnenolone production through upregulation of steroidogenic acute regulatory protein expression in rat granulosa cells.

    Science.gov (United States)

    Chen, Mei-Chih; Wang, Shyi-Wu; Kan, Shu-Fen; Tsai, Shiow-Chwen; Wu, Yu-Ching; Wang, Paulus S

    2010-12-01

    Propylthiouracil (PTU) is a common and effective clinical medicine for the treatment of hyperthyroidism. Our previous study demonstrated that short-term treatment with PTU inhibits progesterone production in rat granulosa cells. However, our present results indicate that a 16-h treatment with PTU was able to stimulate pregnenolone production in rat granulosa cells, although progesterone production was diminished by PTU through inhibition of 3β-hydroxysteroid dehydrogenase. Notably, we found that PTU treatment enhanced the conversion of cholesterol into pregnenolone, whereas the protein level of the cytochrome P450 side-chain cleavage enzyme (P450scc, which is the enzyme responding to this conversion) was not affected. Interestingly, the levels of steroidogenic acute regulatory protein (StAR) in both total cell lysate and the mitochondrial fraction were significantly increased by PTU treatment. Furthermore, the binding of steroidogenic factor-1 (SF-1) to the StAR promoter region was also enhanced by PTU treatment, which suggests that PTU could upregulate StAR gene expression. In addition to SF-1 regulation, we found that mitogen-activated protein (MAP) kinase kinase activation is an important regulator of PTU-stimulated StAR protein expression, based on the effects of the MEK inhibitor PD98059. In conclusion, these results indicate that PTU plays opposite roles in the production of progesterone and its precursor, pregnenolone. The regulation of negative feedback on speeding the cholesterol transportation and pregnenolone conversion after a 16-h PTU treatment may be the mechanism explaining PTU's inhibition of progesterone production in rat granulosa cells.

  10. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors

    Science.gov (United States)

    Chakrabarty, Anindita; Sánchez, Violeta; Kuba, María G.; Rinehart, Cammie; Arteaga, Carlos L.

    2012-01-01

    We examined the effects of an inhibitor of PI3K, XL147, against human breast cancer cell lines with constitutive PI3K activation. Treatment with XL147 resulted in dose-dependent inhibition of cell growth and levels of pAKT and pS6, signal transducers in the PI3K/AKT/TOR pathway. In HER2-overexpressing cells, inhibition of PI3K was followed by up-regulation of expression and phosphorylation of multiple receptor tyrosine kinases, including HER3. Knockdown of FoxO1 and FoxO3a transcription factors suppressed the induction of HER3, InsR, IGF1R, and FGFR2 mRNAs upon inhibition of PI3K. In HER2+ cells, knockdown of HER3 with siRNA or cotreatment with the HER2 inhibitors trastuzumab or lapatinib enhanced XL147-induced cell death and inhibition of pAKT and pS6. Trastuzumab and lapatinib each synergized with XL147 for inhibition of pAKT and growth of established BT474 xenografts. These data suggest that PI3K antagonists will inhibit AKT and relieve suppression of receptor tyrosine kinase expression and their activity. Relief of this feedback limits the sustained inhibition of the PI3K/AKT pathway and attenuates the response to these agents. As a result, PI3K pathway inhibitors may have limited clinical activity overall if used as single agents. In patients with HER2-overexpressing breast cancer, PI3K inhibitors should be used in combination with HER2/HER3 antagonists. PMID:21368164

  11. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+)LAT2 transporter.

    Science.gov (United States)

    Zielińska, Magdalena; Milewski, Krzysztof; Skowrońska, Marta; Gajos, Anna; Ziemińska, Elżbieta; Beręsewicz, Andrzej; Albrecht, Jan

    2015-12-01

    involving activation (nuclear translocation) of the transcription factor nuclear factor-Nuclear factor-κB (Nf-κB-p65). Up-regulation of y(+)LAT2 transporter is coupled with increased inducible nitric oxide synthase (iNOS) expression, which leads to increase nitric oxide (NO) synthesis and protein nitration.

  12. Fibroblast growth factor expression in the postnatal growth plate.

    Science.gov (United States)

    Lazarus, Jacob E; Hegde, Anita; Andrade, Anenisia C; Nilsson, Ola; Baron, Jeffrey

    2007-03-01

    Fibroblast growth factor (FGF) signaling is essential for endochondral bone formation. Mutations cause skeletal dysplasias including achondroplasia, the most common human skeletal dysplasia. Most previous work in this area has focused on embryonic chondrogenesis. To explore the role of FGF signaling in the postnatal growth plate, we quantitated expression of FGFs and FGF receptors (FGFRs) and examined both their spatial and temporal regulation. Toward this aim, rat proximal tibial growth plates and surrounding tissues were microdissected, and specific mRNAs were quantitated by real-time RT-PCR. To assess the FGF system without bias, we first screened for expression of all known FGFs and major FGFR isoforms. Perichondrium expressed FGFs 1, 2, 6, 7, 9, and 18 and, at lower levels, FGFs 21 and 22. Growth plate expressed FGFs 2, 7, 18, and 22. Perichondrial expression was generally greater than growth plate expression, supporting the concept that perichondrial FGFs regulate growth plate chondrogenesis. Nevertheless, FGFs synthesized by growth plate chondrocytes may be physiologically important because of their proximity to target receptors. In growth plate, we found expression of FGFRs 1, 2, and 3, primarily, but not exclusively, the c isoforms. FGFRs 1 and 3, thought to negatively regulate chondrogenesis, were expressed at greater levels and at later stages of chondrocyte differentiation, with FGFR1 upregulated in the hypertrophic zone and FGFR3 upregulated in both proliferative and hypertrophic zones. In contrast, FGFRs 2 and 4, putative positive regulators, were expressed at earlier stages of differentiation, with FGFR2 upregulated in the resting zone and FGFR4 in the resting and proliferative zones. FGFRL1, a presumed decoy receptor, was expressed in the resting zone. With increasing age and decreasing growth velocity, FGFR2 and 4 expression was downregulated in proliferative zone. Perichondrial FGF1, FGF7, FGF18, and FGF22 were upregulated. In summary, we have

  13. Transcriptional coactivator CBP upregulates hTERT expression and tumor growth and predicts poor prognosis in human lung cancers.

    Science.gov (United States)

    Guo, Wei; Lu, Jianjun; Dai, Meng; Wu, Taihua; Yu, Zhenlong; Wang, Jingshu; Chen, Wangbing; Shi, Dingbo; Yu, Wendan; Xiao, Yao; Yi, Canhui; Tang, Zhipeng; Xu, Tingting; Xiao, Xiangsheng; Yuan, Yuhui; Liu, Quentin; Du, Guangwei; Deng, Wuguo

    2014-10-15

    Upregulated expression and activation of human telomerase reverse transcriptase (hTERT) is a hallmarker of lung tumorigenesis. However, the mechanism underlying the aberrant hTERT activity in lung cancer cells remains poorly understood. In this study, we found the transcriptional co-activator CBP as a new hTERT promoter-binding protein that regulated hTERT expression and tumor growth in lung adenocarcinoma cells using a biotin-streptavidin-bead pulldown technique. Chromatin immunoprecipitation assay verified the immortalized cell and tumor cell-specific binding of CBP on hTERT promoter. Overexpression of exogenous CBP upregulated the expression of the hTERT promoter-driven luciferase and endogenous hTERT protein in lung cancer cells. Conversely, inhibition of CBP by CBP-specific siRNA or its chemical inhibitor repressed the expression of hTERT promoter-driven luciferase and endogenous hTERT protein as well as telomerase activity. Moreover, inhibition of CBP expression or activity also significantly reduced the proliferation of lung cancer cells in vitro and tumor growth in an xenograft mouse model in vivo. Immunohistochemical analysis of tissue microarrays of lung cancers revealed a positive correlation between CBP and hTERT. Importantly, the patients with high CBP and hTERT expression had a significantly shorter overall survival. Furthermore, CBP was found to interact with and acetylate transactivator Sp1 in lung cancer cells. Inhibition of CBP by CBP-specific siRNA or its chemical inhibitor significantly inhibited Sp1 acetylation and its binding to the hTERT promoter. Collectively, our results indicate that CBP contributes to the upregulation of hTERT expression and tumor growth, and overexpression of CBP predicts poor prognosis in human lung cancers.

  14. Upregulated functional expression of Toll like receptor 4 in mesenchymal stem cells induced by lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    SHI Liang; WANG Ji-shi; LIU Xing-mei; HU Xiao-yan; FANG Qin

    2007-01-01

    Background The coordinated change of haematopoietic supporting microenvironment in bone marrow (BM) is crucial for innate immunity and inflammation. As the precursors of marrow stroma, BM derived mesenchymal stem cells (MSCs)promote haematopoietic function, but their roles in innate immunity or inflammation have not been investigated. Here we investigated the expression of Toll like receptor 4 (TLR-4) and the effect of lipopolysaccharide (LPS) on its expression in BM MSCs in vitro.Methods MSCs were harvested from adult rat's BM cells by density gradient centrifugation and adhesive culture. The purity of MSCs were identified with the cell morphological feature and osteogenic capacity, the phenotypes were tested by flow cytometry. Cultured MSCs were treated by LPS (1 μg/ml, 10 μg/ml or 100 μg/ml) for 24 hours. The relative expression levels of TLR-4 mRNA were detected by semiquantitative reverse transcription polymerase chain reaction and costimulatory molecules (CD80, CD86 and MHC-Ⅱ) expressed on MSCs were analyzed by flow cytometry. The levels of tumor necrosis factor-α (TNF-α) in supernatants were determined by enzyme linked immunosorbent assay.Results After incubation with LPS, MSCs expressed the higher levels of TLR-4 mRNA, costimulatory molecules and TNF-α than the untreated group: LPS 10 μg/ml was the most effective (P<0.01); the levels of TLR-4 mRNA, costimulatory molecules and TNF-α decreased when MSCs were exposed to 100 μg/ml LPS. Except for MHC-Ⅱ and TNF-α (P>0.05),the levels of CD80, CD86 and TLR-4 mRNA were significantly lower than that in the treated group of 10 μg/ml (P<0.01).Conclusion MSCs expressed TLR-4 mRNA. LPS activated the functional expression levels of TLR-4 in MSCs although the activity may depend on the concentration of LPS.

  15. Proline-hydroxylated hypoxia-inducible factor 1α (HIF-1α upregulation in human tumours.

    Directory of Open Access Journals (Sweden)

    Cameron E Snell

    Full Text Available The stabilisation of HIF-α is central to the transcriptional response of animals to hypoxia, regulating the expression of hundreds of genes including those involved in angiogenesis, metabolism and metastasis. HIF-α is degraded under normoxic conditions by proline hydroxylation, which allows for recognition and ubiquitination by the von-Hippel-Lindau (VHL E3 ligase complex. The aim of our study was to investigate the posttranslational modification of HIF-1α in tumours, to assess whether there are additional mechanisms besides reduced hydroxylation leading to stability. To this end we optimised antibodies against the proline-hydroxylated forms of HIF-1α for use in formalin fixed paraffin embedded (FFPE immunohistochemistry to assess effects in tumour cells in vivo. We found that HIF-1α proline-hydroxylated at both VHL binding sites (Pro402 and Pro564, was present in hypoxic regions of a wide range of tumours, tumour xenografts and in moderately hypoxic cells in vitro. Staining for hydroxylated HIF-1α can identify a subset of breast cancer patients with poorer prognosis and may be a better marker than total HIF-1α levels. The expression of unhydroxylated HIF-1α positively correlates with VHL in breast cancer suggesting that VHL may be rate-limiting for HIF degradation. Our conclusions are that the degradation of proline-hydroxylated HIF-1α may be rate-limited in tumours and therefore provides new insights into mechanisms of HIF upregulation. Persistence of proline-hydroxylated HIF-1α in perinecrotic areas suggests there is adequate oxygen to support prolyl hydroxylase domain (PHD activity and proline-hydroxylated HIF-1α may be the predominant form associated with the poorer prognosis that higher levels of HIF-1α confer.

  16. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Feng [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Yu, Hong-Wei [Department of Cardiology, Jinzhou Central Hospital, Jinzhou 121001 (China); Sun, Li-Li [Department of Ophthalmology, The Third Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); You, Lu; Tao, Gui-Zhou [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Qu, Bao-Ze, E-mail: qubaoze1971@hotmail.com [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China)

    2015-12-25

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involved in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased Egr-1

  17. Disruption of Nrf2 Enhances Upregulation of Nuclear Factor-κB Activity, Proinflammatory Cytokines, and Intercellular Adhesion Molecule-1 in the Brain after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2008-01-01

    Full Text Available Inflammatory response plays an important role in the pathogenesis of secondary brain injury after traumatic brain injury (TBI. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that plays a crucial role in cytoprotection against inflammation. The present study investigated the role of Nrf2 in the cerebral upregulation of NF-κB activity, proinflammatory cytokine, and ICAM-1 after TBI. Wild-type Nrf2 (+/+ and Nrf2 (−/−-deficient mice were subjected to a moderately severe weight-drop impact head injury. Electrophoretic mobility shift assays (EMSAs were performed to analyze the activation of nuclear factor kappa B (NF-κB. Enzyme-linked immunosorbent assays were performed to quantify the production of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and interleukin-6 (IL-6. Immunohistochemistry staining experiments were performed to detect the expression of intercellular adhesion molecule-1 (ICAM-1. Nrf2 (−/− mice were shown to have more NF-κB activation, inflammatory cytokines TNF-α, IL-1β and IL-6 production, and ICAM-1 expression in brain after TBI compared with their wild-type Nrf2 (+/+ counterparts. The results suggest that Nrf2 plays an important protective role in limiting the cerebral upregulation of NF-κB activity, proinflammatory cytokine, and ICAM-1 after TBI.

  18. Fat-reducing effects of dehydroepiandrosterone involve upregulation of ATGL and HSL expression, and stimulation of lipolysis in adipose tissue.

    Science.gov (United States)

    Karbowska, Joanna; Kochan, Zdzislaw

    2012-11-01

    Dehydroepiandrosterone (DHEA) reduces body fat in rodents and humans, and increases glycerol release from isolated rat epididymal adipocytes and human visceral adipose tissue explants. It suggests that DHEA stimulates triglyceride hydrolysis in adipose tissue; however, the mechanisms underlying this action are still unclear. We examined the effects of DHEA on the expression of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), the key enzymes of lipolysis, in rat epididymal white adipose tissue (eWAT). Male Wistar rats were fed a diet containing 0.6% DHEA for 2 weeks and eWAT was analyzed for mRNA and protein expression of ATGL and HSL, as well as mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ2) and its downstream target fatty acid translocase (FAT). Glycerol release from eWAT explants and serum free fatty acids (FFA) were also measured. Rats that received DHEA gained less weight, had 23% lower eWAT mass and 31% higher serum FFA levels than controls. Cultured explants of eWAT from DHEA-treated rats released 81% more glycerol than those from control rats. DHEA administration upregulated ATGL mRNA (1.62-fold, Padipose tissue by increasing the expression and activity of ATGL and HSL. The effects of DHEA appear to be mediated, at least in part, via PPARγ2 activation, which in turn upregulates ATGL and HSL gene expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. IL-1 and Tumor Necrosis Factor-Alpha Each Up-Regulate Both the Expression of IFN-Gamma Receptors and Enhance IFN-Gamma-Induced HLA-DR expression on Human Monocytes and a Human Monocytic Cell Line (THP-1),

    Science.gov (United States)

    1993-02-01

    Demoi stration and partial characterization DR antigen expression in ,itro bi, lymphokines and recoin of the interferon gamma receptor on human...independent pathwkay tit Ma’- class 1f induction in human islet cells by interferon - gamma rophage activation, defined in the SCID mouse. lmnnun~ol

  20. Aggrecan expression is substantially and abnormally upregulated in Hutchinson-Gilford Progeria Syndrome dermal fibroblasts.

    Science.gov (United States)

    Lemire, Joan M; Patis, Carrie; Gordon, Leslie B; Sandy, John D; Toole, Bryan P; Weiss, Anthony S

    2006-08-01

    Hutchinson-Gilford Progeria syndrome (HGPS) is a rare genetic disorder that displays features of segmental aging. It is manifested predominantly in connective tissue, with most prominent histological changes occurring in the skin, cartilage, bone and cardiovascular tissues. Detailed quantitative real time reverse-transcription polymerase chain reaction studies confirmed the previous observation that platelet-derived growth factor A-chain transcripts are consistently elevated 11+/-2- to 13+/-2-fold in two HGPS dermal fibroblast lines compared with age-matched controls. Furthermore, we identified two additional genes with substantially altered transcript levels. Nucleotide pyrophosphatase transcription was virtually shut down with decreased expression of 13+/-3- to 59+/-3-fold in HGPS, whereas aggrecan mRNA was elevated to 24+/-5 times to 41+/-4 times that of chronologically age-matched controls. Aggrecan, normally a component of cartilage and not always detectable in normal fibroblasts cultures, was secreted by HGPS fibroblast lines and was produced as a proteoglycan. This demonstrates that elevated aggrecan expression and its secretion are aberrant features of HGPS. We conclude that HGPS cells can display massively altered transcript levels leading to the secretion of inappropriate protein species.

  1. Targeted Upregulation of FMRP Expression as an Approach to the Treatment of Fragile X Syndrome

    Science.gov (United States)

    2016-10-01

    those and other (mouse) neuronal cell models, we proposed to perform transcriptional , morphological, and functional characterization of human iPSC...derived NPCs and transdifferentiated neuronal cells using single cell analyses of transcriptional and protein markers, microscopic fluorescence video...cis-elements for translational up-regulation within the FMR1 mRNA non-coding regions. Objective: The objective of this task was to capitalize on

  2. Preferential binding to Elk-1 by SLE-associated IL10 risk allele upregulates IL10 expression.

    Directory of Open Access Journals (Sweden)

    Daisuke Sakurai

    Full Text Available Immunoregulatory cytokine interleukin-10 (IL-10 is elevated in sera from patients with systemic lupus erythematosus (SLE correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA (P = 2.7×10⁻⁸, OR = 1.30, but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively, and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1 detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele

  3. Preferential binding to Elk-1 by SLE-associated IL10 risk allele upregulates IL10 expression.

    Directory of Open Access Journals (Sweden)

    Daisuke Sakurai

    Full Text Available Immunoregulatory cytokine interleukin-10 (IL-10 is elevated in sera from patients with systemic lupus erythematosus (SLE correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA (P = 2.7×10⁻⁸, OR = 1.30, but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively, and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1 detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele

  4. Differential expression of Prx I and II in mouse testis and their up-regulation by radiation.

    Science.gov (United States)

    Lee, Keesook; Park, Ji-Sun; Kim, Yun-Jeong; Soo Lee, Yong Soo; Sook Hwang, Tae Sook; Kim, Dae-Joong; Park, Eun-Mi; Park, Young-Mee

    2002-08-16

    Testis is one of the most sensitive organs to ionizing radiation. The present study was designed to unravel the possible role of antioxidant proteins, peroxiredoxin I and II (Prx I and II) in the testis. Our results show that Prx I and II are constitutively expressed in the testis and their expression levels are decreased to some extent as the testis develops. Interestingly, immunohistochemical analysis revealed a preferential expression of Prx I and II in Leydig and Sertoli cells, respectively. Neither Prx I nor Prx II expression was obvious in the testicular germ cells including spermatogonia and spermatocytes. Ionizing radiation exerted oxidative stress on the testis and induced apoptosis primarily in the germ cells. When the irradiated testis was examined, the Prx system was found to be transiently up-regulated. Taken together, we suggest that the relative radiation-resistance of Leydig and Sertoli cells could be attributed in part to the antioxidant function of the Prx system in these cells.

  5. Wedelolactone Regulates Lipid Metabolism and Improves Hepatic Steatosis Partly by AMPK Activation and Up-Regulation of Expression of PPARα/LPL and LDLR.

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    Full Text Available Hyperlipidemia is considered one of the greatest risk factors of cardiovascular diseases. We investigated the anti-hyperlipidemic effect and the underlying mechanism of wedelolactone, a plant-derived coumestan, in HepG2 cells and high-fat diet (HFD-induced hyperlipidemic hamsters. We showed that in cultured HepG2 cells, wedelolactone up-regulated protein levels of adenosine monophosphate activated protein kinase (AMPK and peroxisome proliferator-activated receptor-alpha (PPARα as well as the gene expression of AMPK, PPARα, lipoprotein lipase (LPL, and the low-density lipoprotein receptor (LDLR. Meanwhile, administration of wedelolactone for 4 weeks decreased the lipid profiles of plasma and liver in HFD-induced hyperlipidemic hamsters, including total cholesterol (TC, triglycerides (TG, and low-density lipoprotein-cholesterol (LDL-C. The activation of AMPK and up-regulation of PPARα was also observed with wedelolactone treatment. Furthermore, wedelolactone also increased the activities of superoxidase dismutase (SOD and glutathione peroxidase (GSH-Px and decreased the level of the lipid peroxidation product malondialdehyde (MDA in the liver, therefore decreasing the activity of alanine aminotransferase (ALT. In conclusion, we provide novel experimental evidence that wedelolactone possesses lipid-lowering and steatosis-improving effects, and the underlying mechanism is, at least in part, mediated by the activation of AMPK and the up-regulation of PPARα/LPL and LDLR.

  6. Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors.

    Science.gov (United States)

    Kim, Ji-Hun; Kim, Yu Chul; Park, Byoungduck

    2016-02-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent anticancer agent possessing the ability to induce apoptosis in various cancer cells but not in non‑malignant cells. However, certain type of cancer cells are resistant to TRAIL‑induced apoptosis and some acquire resistance after the first treatment. So development of an agent that can reduce or avoid resistance in TRAIL‑induced apoptosis has garnered significant attention. The present study evaluated the anticancer potential of hispolon in TRAIL‑induced apoptosis and indicated hispolon can sensitize cancer cells to TRAIL. As the mechanism of action was examined, hispolon was found to activate caspase‑3, caspase‑8 and caspase‑9, while downregulating the expression of cell survival proteins such as cFLIP, Bcl‑2 and Bcl‑xL and upregulating the expression of Bax and truncated Bid. We also found hispolon induced death receptors in a non‑cell type‑specific manner. Upregulation of death receptors by hispolon was found to be p53-independent but linked to the induction of CAAT enhancer binding protein homologous protein (CHOP). Overall, hispolon was demonstrated to potentiate the apoptotic effects of TRAIL through downregulation of anti‑apoptotic proteins and upregulation of death receptors linked with CHOP and pERK elevation.

  7. The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax.

    Science.gov (United States)

    Mann, Melanie C; Strobel, Sarah; Fleckenstein, Bernhard; Kress, Andrea K

    2014-09-01

    The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Tax and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation.

  8. Downregulation of VEGF and upregulation of TL1A expression induce HUVEC apoptosis in response to high glucose stimuli.

    Science.gov (United States)

    Yu, Miao; Lu, Guihua; Zhu, Xun; Huang, Zhibin; Feng, Chong; Fang, Rong; Wang, Yesong; Gao, Xiuren

    2016-04-01

    High glucose‑induced endothelial cell apoptosis is considered to be the initiator of diabetes‑associated vascular complications. Experiments in vivo and in vitro have demonstrated that high glucose levels contribute to the apoptosis of endothelial cells by mediating cellular dysfunction and metabolic disorder via the production of various cytokines. As the most important endogenous vascular regulators, the balance between pro‑proliferative effector vascular endothelial growth factor (VEGF) and anti‑proliferative effector tumor necrosis factor‑like cytokine 1A (TL1A) is important in the modulation of endothelial cell survival and proliferation, and neovascularization. The present study aimed to explore whether the imbalance between VEGF and TL1A affected the apoptosis of human umbilical vein endothelial cells (HUVECs) exposed to high glucose conditions and then further investigated the potential mechanism. The results showed that the downregulation of VEGF in combination with the upregulation of TL1A in response to high glucose levels led to enhanced HUVEC apoptosis. Further experiments revealed that silencing high glucose‑induced TL1A expression using TL1A small interfering (si)RNA or the overexpression of VEGF by transfection with VEGF DNA resulted in a reduced HUVEC apoptosis rate compared with the controls. The effects occurred by attenuating and activating the phosphoinositide 3‑kinase/Akt/endothelial nitric oxide synthase pathway, respectively. In addition, VEGF and TL1A inhibited each other in hyperglycemia. In conclusion, these findings provide theoretical support for the further investigation of novel therapeutic strategies designed to maintain the balance between VEGF and TL1A and, thus, to prevent the onset and progression of endothelial cell apoptosis in response to high glucose stimuli.

  9. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2016-08-05

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba{sup 2+}-sensitive inward rectifier K{sup +} current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca{sup 2+} imaging study revealed that the hypoxic stress enhanced store-operated Ca{sup 2+} (SOC) entry, which was significantly reduced in the presence of 100 μM Ba{sup 2+}. On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba{sup 2+}. We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca{sup 2+} entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca{sup 2+} (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC

  10. Herbal composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra prevents atherosclerosis by upregulating p27 (Kip1) expression.

    Science.gov (United States)

    Lee, Jung-Jin; Lee, Ji-Hye; Cho, Won-Kyung; Han, Joo-Hui; Ma, Jin Yeul

    2016-07-28

    Kiom-18 is a novel composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra. Curcuma longa and Glycyrrhiza glabra, which are traditional medicines in Asia, have been reported to demonstrate preventive effects against atherosclerosis; however, they have not yet been developed into functional atherosclerosis treatments. We therefore studied the anti-atherosclerotic effects and possible molecular mechanisms of Kiom-18 using vascular smooth muscle cells (VSMCs). To assess the anti-proliferative effect of Kiom-18 in vitro, we performed thymidine incorporation, cell cycle progression, immunoblotting and immunofluorescence assays in VSMCs stimulated by platelet derived-growth factor (PDGF)-BB. In addition, we used LDLr knockout mice to identify the effects of Kiom-18 as a preliminary result in an atherosclerosis animal model. Kiom-18 inhibited platelet-derived growth factor (PDGF)-BB-stimulated-VSMC proliferation and DNA synthesis. Additionally, Kiom-18 arrested the cell cycle transition of G0/G1 stimulated by PDGF-BB and its cell cycle-related proteins. Correspondingly, the level of p27(kip1) expression was upregulated in the presence of the Kiom-18 extract. Moreover, in an atherosclerosis animal model of LDLr knockout mice, Kiom-18 extract showed a preventive effect for the formation of atherosclerotic plaque and suppressed body weight, fat weight, food treatment efficiency, neutrophil count, and triglyceride level. These results indicate that Kiom-18 exerts anti-atherosclerotic effects by inhibiting VSMC proliferation via G0/G1 arrest, which upregulates p27(Kip1) expression.

  11. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-09-01

    Full Text Available To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc., a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo.

  12. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression

    Science.gov (United States)

    Wang, Yue; Zhang, Xia-nan; Xie, Wen-hua; Zheng, Yi-xiong; Cao, Jin-ping; Cao, Pei-rang; Chen, Qing-jun; Li, Xian; Sun, Chong-de

    2016-01-01

    To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo. PMID:27690088

  13. Tetrandrine Inhibits the Intracellular Calcium Ion Level and Upregulates the Expression of Brg1 and AHNAK in Hep-2 Cells.

    Science.gov (United States)

    Cui, Xiangyan; Zhu, Wei; Wang, Ping; Wang, Xin

    2015-01-01

    Tetrandrine has been found to inhibit the growth of various types of tumor cells, but the underlying molecular mechanism remains to be determined. We aimed to investigate the effects of tetrandrine on human laryngeal carcinoma Hep-2 cells. Cell viability was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell cycle was analyzed using flow cytometric analysis. The intracellular Ca2+ concentration was monitored using the membrane-permeable Ca(2+)-sensitive fluorescent probe fluo-3 acetoxymethyl ester-AM (Fluo3-AM). The mRNA and protein expression of Brgl and AHNAK were evaluated by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunocytochemistry, respectively. Tetrandrine significantly inhibited the proliferation of Hep-2 cells as indicated by an IC50 value of 13.28 μg/mL. Tetrandrine induced cell cycle arrest at the G1 phase and decreased the intracellular concentration of Ca2+ in a concentration dependent manner. Intriguingly, tetrandrine upregulated Brg1 expression in a dose-and time-dependent pattern and elevated the expression of AHNAK in Hep-2 cells. Our results suggest that tetrandrine may inhibit the growth of Hep-2 cells by decreasing the intracellular concentration of Ca2+ and upregulating the expressions of Brg1 and AHNAK.

  14. Acute cold- and chronic heat-exposure upregulate hepatic leptin and muscle uncoupling protein (UCP) gene expression in broiler chickens.

    Science.gov (United States)

    Dridi, Sami; Temim, Soraya; Derouet, Michel; Tesseraud, Sophie; Taouis, Mohammed

    2008-08-01

    Emerging evidence showed that variations in environmental temperature affect both leptin and uncoupling protein (UCP) gene expression in mammals, whereas a little is known about such interactions in birds. Thus, we conducted the present study to investigate the influence of acute (2 hours) cold (4 degrees C) and chronic (10 days) heat (32 degrees C) exposure on hepatic leptin and muscle UCP gene expression in 5-wk-old broiler chickens. Both cold- and heat-exposure significantly (P < 0.05 to P < 0.001) upregulated hepatic leptin (by 35 and 46%, respectively) and muscle UCP mRNA levels (by 71 and 71%, respectively) compared to the thermoneutrality (22 degrees C). This result suggests that leptin and UCP may be involved in the thermoregulation response of chickens to extreme climate (cold and hot temperatures). The upregulation of hepatic leptin gene expression was accompanied by an increase in plasma leptin levels, indicating that leptin may be regulated at transcriptional level. The increase of leptin and UCP mRNA abundance, and leptinemia we report here were not related to plasma glucose or insulin levels. In conclusion, the exposure of broiler chickens to extreme ambient temperatures (cold and heat) increases hepatic leptin and muscle UCP gene expression.

  15. 5-Azacytidine suppresses EC9706 cell proliferation and metastasis by upregulating the expression of SOX17 and CDH1.

    Science.gov (United States)

    Li, Wenli; Wu, Dan; Niu, Ziyu; Jiang, Dalei; Ma, Huan; He, Heming; Zuo, Xiuli; Xie, Xiangjun; He, Yuanlong

    2016-10-01

    5-Azacytidine is a well-known anticancer drug that is clinically used in the treatment of breast cancer, melanoma and colon cancer. It has been reported that 5-azacytidine suppresses the biological behavior of esophageal cancer cells. However, corresponding mechanisms remain unclear. In this study, using Transwell invasion and cell proliferation assays, we demonstrated that 5-azacytidine significantly inhibited the metastasis and proliferation of EC9706 cells, and upregulated the expression of cadherin 1 (CDH1) and SRY-box containing gene 17 (SOX17). Moreover, the inhibition of the metastasis of the 5-azacytidine-treated EC9706 cells was impaired following transfection with siRNA targeting CDH1 (CDH1 siRNA), and the inhibition of cell proliferation was attenuated following the downregulation of SOX17 by siRNA targeting SOX17 (SOX17 siRNA). Furthermore, 5-azacytidine remarkably reduced the CDH1 and SOX17 promoter methylation levels, suggesting that 5-azacytidine upregulates the expression of SOX17 and CDH1 by inhibiting the methylation of the SOX17 and CDH1 promoter. The findings of our study confirm that 5-azacytidine suppresses the proliferation and metastasis of EC9706 esophageal cancer cells by upregulating the expression of CDH1 and SOX17. The expression levels of CDH1 and SOX17 negatively correlate with the promoter methylation levels. CDH1 and SOX17 are potential indicators of the clinical application of 5-azacytidine.

  16. Upregulation of RNA Processing Factors in Poorly Differentiated Lung Cancer Cells.

    Science.gov (United States)

    Geles, Kenneth G; Zhong, Wenyan; O'Brien, Siobhan K; Baxter, Michelle; Loreth, Christine; Pallares, Diego; Damelin, Marc

    2016-04-01

    Intratumoral heterogeneity in non-small cell lung cancer (NSCLC) has been appreciated at the histological and cellular levels, but the association of less differentiated pathology with poor clinical outcome is not understood at the molecular level. Gene expression profiling of intact human tumors fails to reveal the molecular nature of functionally distinct epithelial cell subpopulations, in particular the tumor cells that fuel tumor growth, metastasis, and disease relapse. We generated primary serum-free cultures of NSCLC and then exposed them to conditions known to promote differentiation: the air-liquid interface (ALI) and serum. The transcriptional network of the primary cultures was associated with stem cells, indicating a poorly differentiated state, and worse overall survival of NSCLC patients. Strikingly, the overexpression of RNA splicing and processing factors was a prominent feature of the poorly differentiated cells and was also observed in clinical datasets. A genome-wide analysis of splice isoform expression revealed many alternative splicing events that were specific to the differentiation state of the cells, including an unexpectedly high frequency of events on chromosome 19. The poorly differentiated cells exhibited alternative splicing in many genes associated with tumor progression, as exemplified by the preferential expression of the short isoform of telomeric repeat-binding factor 1 (TERF1), also known as Pin2. Our findings demonstrate the utility of the ALI method for probing the molecular mechanisms that underlie NSCLC pathogenesis and provide novel insight into posttranscriptional mechanisms in poorly differentiated lung cancer cells.

  17. Upregulation of RNA Processing Factors in Poorly Differentiated Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kenneth G. Geles

    2016-04-01

    Full Text Available Intratumoral heterogeneity in non–small cell lung cancer (NSCLC has been appreciated at the histological and cellular levels, but the association of less differentiated pathology with poor clinical outcome is not understood at the molecular level. Gene expression profiling of intact human tumors fails to reveal the molecular nature of functionally distinct epithelial cell subpopulations, in particular the tumor cells that fuel tumor growth, metastasis, and disease relapse. We generated primary serum-free cultures of NSCLC and then exposed them to conditions known to promote differentiation: the air-liquid interface (ALI and serum. The transcriptional network of the primary cultures was associated with stem cells, indicating a poorly differentiated state, and worse overall survival of NSCLC patients. Strikingly, the overexpression of RNA splicing and processing factors was a prominent feature of the poorly differentiated cells and was also observed in clinical datasets. A genome-wide analysis of splice isoform expression revealed many alternative splicing events that were specific to the differentiation state of the cells, including an unexpectedly high frequency of events on chromosome 19. The poorly differentiated cells exhibited alternative splicing in many genes associated with tumor progression, as exemplified by the preferential expression of the short isoform of telomeric repeat-binding factor 1 (TERF1, also known as Pin2. Our findings demonstrate the utility of the ALI method for probing the molecular mechanisms that underlie NSCLC pathogenesis and provide novel insight into posttranscriptional mechanisms in poorly differentiated lung cancer cells.

  18. Up-regulation of hepatoma-derived growth factor facilitates tumor progression in malignant melanoma [corrected].

    Directory of Open Access Journals (Sweden)

    Han-En Tsai

    Full Text Available Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200 showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16-F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.

  19. Acquisition of anoikis resistance up-regulates syndecan-4 expression in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Bruna Ribeiro Carneiro

    Full Text Available Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonization of distant organs. Cell adhesion plays an important role in neoplastic transformation. Tumors produce several molecules that facilitate their proliferation, invasion and maintenance, especially proteoglycans. The syndecan-4, a heparan sulfate proteoglycan, can act as a co-receptor of growth factors and proteins of the extracellular matrix by increasing the affinity of adhesion molecules to their specific receptors. It participates together with integrins in cell adhesion at focal contacts connecting the extracellular matrix to the cytoskeleton. Changes in the expression of syndecan-4 have been observed in tumor cells, indicating its involvement in cancer. This study investigates the role of syndecan-4 in the process of anoikis and cell transformation. Endothelial cells were submitted to sequential cycles of forced anchorage impediment and distinct lineages were obtained. Anoikis-resistant endothelial cells display morphological alterations, high rate of proliferation, poor adhesion to fibronectin, laminin and collagen IV and deregulation of the cell cycle, becoming less serum-dependent. Furthermore, anoikis-resistant cell lines display a high invasive potential and a low rate of apoptosis. This is accompanied by an increase in the levels of heparan sulfate and chondroitin sulfate as well as by changes in the expression of syndecan-4 and heparanase. These results indicate that syndecan-4 plays a important role in acquisition of anoikis resistance and that the conferral of anoikis resistance may suffice to transform endothelial cells.

  20. Expression of iron-related proteins in the duodenum is up-regulated in patients with chronic inflammatory disorders

    Directory of Open Access Journals (Sweden)

    Molly Jacob

    2015-01-01

    Full Text Available Mechanisms responsible for derangements in iron homeostasis in chronic inflammatory conditions are not entirely clear. The aim of this study was to test the hypothesis that inflammation affects expression of iron-related proteins in the duodenum and monocytes in patients with chronic inflammatory disorders, thus contributing to dysregulated iron homeostasis. Duodenal mucosal samples and peripheral blood monocytes obtained from patients with chronic inflammatory disorders, viz. ulcerative colitis (UC, Crohn’s disease (CD and rheumatoid arthritis (RA, were used for gene and protein expression studies. Haemoglobin levels were significantly lower and serum C-reactive protein (CRP levels significantly higher in those in the disease groups. Gene expression of several iron-related proteins in the duodenum was significantly up-regulated in patients with UC and CD. In those with UC, it was found that protein expression of divalent metal transporter (DMT1 and ferroportin, which are involved in absorption of dietary non-heme iron, was also significantly higher in the duodenal mucosa. Gene expression of the duodenal proteins of interest correlated positively with one another and negatively with haemoglobin. Gene expression of iron-related proteins in monocytes was studied in patients with UC and found to be unaffected. In a separate group of patients with UC, serum hepcidin levels were found to be significantly lower than in control subjects. In conclusion, expression of iron related proteins was up-regulated in the duodenum of patients with chronic inflammatory conditions in this study. The effects appeared to be secondary to anemia and the consequent erythropoietic drive.

  1. Fibronectin upregulates cGMP-dependent protein kinase type Iβ through C/EBP transcription factor activation in contractile cells.

    Science.gov (United States)

    Chamorro-Jorganes, Aranzazu; Calleros, Laura; Griera, Mercedes; Saura, Marta; Luengo, Alicia; Rodriguez-Puyol, D; Rodriguez-Puyol, M

    2011-03-01

    The nitric oxide (NO)-soluble guanylate cyclase (sGC) pathway exerts most of its cellular actions through the activation of the cGMP-dependent protein kinase (PKG). Accumulation of extracellular matrix is one of the main structural changes in pathological conditions characterized by a decreased activity of this pathway, such as hypertension, diabetes, or aging, and it is a well-known fact that extracellular matrix proteins modulate cell phenotype through the interaction with membrane receptors such as integrins. The objectives of this study were 1) to evaluate whether extracellular matrix proteins, particularly fibronectin (FN), modulate PKG expression in contractile cells, 2) to analyze the mechanisms involved, and 3) to evaluate the functional consequences. FN increased type I PKG (PKG-I) protein content in human mesangial cells, an effect dependent on the interaction with β(1)-integrin. The FN upregulation of PKG-I protein content was due to increased mRNA expression, determined by augmented transcriptional activity of the PKG-I promoter region. Akt and the transcription factor CCAAT enhancer-binding protein (C/EBP) mediated the genesis of these changes. FN also increased PKG-I in another type of contractile cell, rat vascular smooth muscle cells (RVSMC). Tirofiban, a pharmacological analog of FN, increased PKG-I protein content in RVSMC and rat aortic walls and magnified the hypotensive effect of dibutyryl cGMP in conscious Wistar rats. The present results provide evidence of a mechanism able to increase PKG-I protein content in contractile cells. Elucidation of this novel mechanism provides a rationale for future pharmacotherapy in certain vascular diseases.

  2. Upregulated Expression of microRNA-16 Correlates with Th17/Treg Cell Imbalance in Patients with Rheumatoid Arthritis.

    Science.gov (United States)

    Wu, Yuan-Hao; Liu, Wei; Xue, Bin; Zhang, Lei; Liu, Xiao-Ya; Liu, Bin; Wang, Yi; Cai, Yue; Duan, Ran

    2016-12-01

    To explore the correlation between miR-16 expression in T cells of peripheral blood mononuclear cells (PBMCs) and Th17/Treg imbalance in rheumatoid arthritis (RA) patients. Forty RA patients were recruited as the case group and further grouped as active RA and inactive RA groups; 21 healthy individuals were selected as the control group. Th17 and Treg were measured by flow cytometry, and their related cytokines were measured by FlowCytomix. RORγt, FoxP3 mRNA, and miR-16 expression in T cells was determined by real-time quantitative polymerase chain reaction. Western blotting was performed to measure RORγt and FoxP3 protein expression. RA patients showed upregulated Th17 and RORγt mRNA and protein expression compared with the controls (all p Treg and FoxP3 mRNA and protein expression compared with inactive RA patients and controls (all p Treg-related cytokines were lower in active RA patients than in controls (all p Treg cells of PBMCs (both p Treg cells was positively related with FoxP3 mRNA expression (both p Treg cells of PBMCs in RA patients was closely associated with the expression of RORγt and FoxP3. MiR-16 may be involved in Th17/Treg imbalance of RA patients by affecting the expression of RORγt and FoxP3.

  3. HBV X Gene Transfection Upregulates IL-1β and IL-6 Gene Expression and Induces Rat Glomerular Mesangial Cell Proliferation

    Institute of Scientific and Technical Information of China (English)

    Hongzhu LU; Jianhua ZHOU

    2008-01-01

    The X gene of HBV encodes a 17-KD protein, termed HBx, which has been shown to function as a transcriptional trans-activator of a variety of viral and cellular promoter/enhancer elements. The aim of this study was to investigate the effect of HBx on gene expression of interleukin (IL)-1β and IL-6, and proliferation of rat mesangial cells in vitro. The X gene of HBV was amplified by PCR assay, and inserted into the eukaryotic expression vector pCI-neo. The structure of recombinant pCI-neo-X plasmid was proved by restrict endonuclease digestion and sequencing analysis. pCI-neo-X was transfected into cultured rat mesangial cell line in vitro via liposome. HBx expression in transfected mesangial cells was detected by Western blot. The IL-1β and IL-6 mRNA expression in those cells was assayed by semiquantitative RT-PCR. Mesangial cell proliferation was tested by MTT. The results showed that HBx was obviously expressed in cultured mesangial cell line at 36th and 48th h after transfection. The expression of IL-1β and IL-6 mRNA was simultaneously increased. The cell proliferation was also obvious at the same time. It was concluded that HBx gene transfection could induce IL-1β and IL-6 gene expression and mesangial cell proliferation. HBx may play a critical role in mesangial cell proliferation through upregulation of the IL-1β and IL-6 gene expression.

  4. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells.

    Science.gov (United States)

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S

    2016-04-15

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca(2+)] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca(2+)-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca(2+) entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca(2+)-dependent up-regulation of AQP5. These important findings reveal that the Ca(2+)-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture.

  5. Impaired upregulation of keratinocyte growth factor in injured lungs induced by Pseudomonas aeruginosa in immunosuppressed rats

    Institute of Scientific and Technical Information of China (English)

    XU Jin-fu; QU Jie-ming; HE Li-xian; OU Zhou-luo

    2006-01-01

    Background The number of immunosupressed patients has increased in the past decades. Among them Pseudomonas aeruginosa (P. aeruginosa) is one of the leading bacteria for pneumonia that are associated with poor prognosis. However, the pathogenesis of P. aeruginosa pneumonia in immunosupressed patients is not understood completely. Previous reports showed keratinocyte growth factor (KGF) is associated with lung injury in immunocompetent hosts. In this study, we investigated the different reactions of lung injury, lung pathology and KGF expressions in P. aeruginosa pneumonia between immunosuppressed and immunocompetent rats.Methods Immunosuppression of male rats was induced by injecting immunosuppressive subcutaneously.Pneumonia was established by instilling P. aeruginous tracheally. The immunocompetent rats were the control group. Survival rate, lung histopathology, pulmonary permeability and oedema, KGF mRNA and protein expressions in lungs of both groups were investigated.Results The survival rate of immunosuppressed group was lower than that of immunocompetent group (33.3%vs 83.3%). After exposure to bacteria, pulmonary permeability and wet/dry ratio in immunosuppressed group were higher than those in immunocompetent group. Pulmonary congestion and haemorrhage were more intensive in immunosuppressed group compared to immunocompetent group. Apoptosis and necrosis were also observed in infected lungs of immunosuppressed rats. Although we detected KGF expressions in lungs of both groups after infection, the expressions of KGF protein and mRNA gene in immunosuppressed group were much lower than in immunocompetent group.Conclusions Compared with immunocompetent group, there was more intensive lung injury in immunosuppressed group. Severe lung injury may contribute to the poor prognosis of pneumonia. KGF expressions of pneumonia in immunosuppressed rats were less than those in immunocompetent ones.

  6. Enriched environment upregulates growthassociated protein 43 expression in the hippocampus and enhances cognitive abilities in prenatally stressed rat offspring

    Institute of Scientific and Technical Information of China (English)

    Zhengyu Zhang; Hua Zhang; Baoling Du; Zhiqiang Chen

    2012-01-01

    In our previous study, we reported that prenatal restraint stress could induce cognitive deficits, which correlated with a change in expression of growth-associated protein 43 in the hippocampus.In this study, we investigated the effects of enriched environment on cognitive abilities in prenatally stressed rat offspring, as well as the underlying mechanisms. Reverse transcription-PCR and western blot assay results revealed that growth-associated protein 43 mRNA and protein levels were upregulated on postnatal day 15 in the prenatal restraint stress group. Growth-associated protein 43 expression was significantly lower in the prenatal restraint stress group compared with the negative control and prenatal restraint stress plus enriched environment groups on postnatal days 30 and 50. Morris water maze test demonstrated that cognitive abilities were noticeably increased in rats from the prenatal restraint stress plus enriched environment group on postnatal day 50. These results indicate that enriched environment can improve the spatial learning and memory ability of prenatally stressed offspring by upregulating growth-associated protein 43 expression.

  7. Carboxypeptidase E protects hippocampal neurons during stress in male mice by up-regulating prosurvival BCL2 protein expression.

    Science.gov (United States)

    Murthy, S R K; Thouennon, E; Li, W-S; Cheng, Y; Bhupatkar, J; Cawley, N X; Lane, M; Merchenthaler, I; Loh, Y P

    2013-09-01

    Prolonged chronic stress causing elevated plasma glucocorticoids leads to neurodegeneration. Adaptation to stress (allostasis) through neuroprotective mechanisms can delay this process. Studies on hippocampal neurons have identified carboxypeptidase E (CPE) as a novel neuroprotective protein that acts extracellularly, independent of its enzymatic activity, although the mechanism of action is unclear. Here, we aim to determine if CPE plays a neuroprotective role in allostasis in mouse hippocampus during chronic restraint stress (CRS), and the molecular mechanisms involved. Quantitative RT-PCR/in situ hybridization and Western blots were used to assay for mRNA and protein. After mild CRS (1 h/d for 7 d), CPE protein and mRNA were significantly elevated in the hippocampal CA3 region, compared to naïve littermates. In addition, luciferase reporter assays identified a functional glucocorticoid regulatory element within the cpe promoter that mediated the up-regulation of CPE expression in primary hippocampal neurons following dexamethasone treatment, suggesting that circulating plasma glucocorticoids could evoke a similar effect on CPE in the hippocampus in vivo. Overexpression of CPE in hippocampal neurons, or CRS in mice, resulted in elevated prosurvival BCL2 protein/mRNA and p-AKT levels in the hippocampus; however, CPE(-/-) mice showed a decrease. Thus, during mild CRS, CPE expression is up-regulated, possibly contributed by glucocorticoids, to mediate neuroprotection of the hippocampus by enhancing BCL2 expression through AKT signaling, and thereby maintaining allostasis.

  8. Iodine deficiency up-regulates monocarboxylate transporter 8 expression of mouse thyroid gland

    Institute of Scientific and Technical Information of China (English)

    Hu Zhimei; Zhuo Xiaohua; Shi Yanan; Liu Xin; Yuan Jihong; Li Lanying; Sun Yina

    2014-01-01

    Background Iodine deficiency is a major factor affecting thyroid auto-regulation,the quantity of iodine may greatly influence the synthesis of thyroid hormones (THs).It has long been believed that TH enters the cell through passive diffusion.Recent studies have suggested that several transporters could facilitate transportation of TH.The monocarboxylate transporter 8 (MCT8) was identified as a very active and specific TH transporter.The purpose of this study was to investigate whether iodine insufficient affected the expression of MCT8 in the thyroid gland.Methods Sixty BALB/c mice were randomly divided into two groups:control group was fed with standard feed (iodine concentration of 300 μg/kg); while low-iodine (LI) group received iodine-insufficient feed (iodine concentration of 20-40 μg/kg).After 3 months,10 mice of each group were sacrificed.The remaining 20 mice of each group were kept till 6 months.From the LI group,we randomly selected 15 mice and injected triiodothyronine (T3,100 μg/kg body weight per day) intraperitoneally for 24,48 or 72 hours (5 mice for each time-point).Then,all the mice were sacrificed.Mouse serum thyroxine (T4),T3,and thyroid-stimulating hormone (TSH) levels were determined by chemiluminescence immunoassay (CIA).The protein content or messenger RNA (mRNA) level of thyroid MCT8 was measured by Western blotting analysis or real time RT-PCR respectively.MCT8 subcellular location in thyroid tissues was probed with immunohistochemistry (IHC) assay.Results We found that mouse serum T3 and T4 levels decreased and TSH level increased by the end of the third month.Consistent with these findings,there was significant goiter and hypothyroidism in the LI group.Meanwhile,the MCT8 mRNA increased to 1.36-fold of the level in the control group at the 3rd month.At 6th month,the serum T4 level in LI mice remained at a lower level,and MCT8 mRNA expression continued rising to nearly 1.60-fold compared with the control group.The protein content was

  9. Temperature shift and host cell contact up-regulate sporozoite expression of Plasmodium falciparum genes involved in hepatocyte infection.

    Directory of Open Access Journals (Sweden)

    Anthony Siau

    Full Text Available Plasmodium sporozoites are deposited in the skin by Anopheles mosquitoes. They then find their way to the liver, where they specifically invade hepatocytes in which they develop to yield merozoites infective to red blood cells. Relatively little is known of the molecular interactions during these initial obligatory phases of the infection. Recent data suggested that many of the inoculated sporozoites invade hepatocytes an hour or more after the infective bite. We hypothesised that this pre-invasive period in the mammalian host prepares sporozoites for successful hepatocyte infection. Therefore, the genes whose expression becomes modified prior to hepatocyte invasion would be those likely to code for proteins implicated in the subsequent events of invasion and development. We have used P. falciparum sporozoites and their natural host cells, primary human hepatocytes, in in vitro co-culture system as a model for the pre-invasive period. We first established that under co-culture conditions, sporozoites maintain infectivity for an hour or more, in contrast to a drastic loss in infectivity when hepatocytes were not included. Thus, a differential transcriptome of salivary gland sporozoites versus sporozoites co-cultured with hepatocytes was established using a pan-genomic P. falciparum microarray. The expression of 532 genes was found to have been up-regulated following co-culture. A fifth of these genes had no orthologues in the genomes of Plasmodium species used in rodent models of malaria. Quantitative RT-PCR analysis of a selection of 21 genes confirmed the reliability of the microarray data. Time-course analysis further indicated two patterns of up-regulation following sporozoite co-culture, one transient and the other sustained, suggesting roles in hepatocyte invasion and liver stage development, respectively. This was supported by functional studies of four hitherto uncharacterized proteins of which two were shown to be sporozoite surface

  10. Testosterone Enhances the Proliferation of Peripheral-Blood-Derived Endothelial Progenitor Cells by up-regulating Vascular Endothelial Growth Factor Expression%睾酮通过上调血管内皮生长因子表达促进外周血内皮祖细胞增殖

    Institute of Scientific and Technical Information of China (English)

    薛亚威; 任国庆; 王芝; 孙文文; 张浩

    2013-01-01

    -time RT-PCR and ELISA assay. Results The proliferation of PB-EPC were increased by testosterone in a dose-dependent manner, however, these effects could be blocked by flutamide. Testosterone can up-regulate VEGF both on mRNA and protein level, however, these effects could be blocked by flutamide. Conclusions Testosterone enhances the proliferation of PB-EPCs by up-regulating VEGF expression via androgen receptor pathway.

  11. Upregulation of Neurotrophic Factors Selectively in Frontal Cortex in Response to Olfactory Discrimination Learning

    Directory of Open Access Journals (Sweden)

    Ari Naimark

    2007-01-01

    Full Text Available We have previously shown that olfactory discrimination learning is accompanied by several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons selectively in the piriform cortex. This study sought to examine whether the previously demonstrated olfactory-learning-task-induced modifications are preceded by suitable changes in the expression of mRNA for neurotrophic factors and in which brain areas this occurs. Rats were trained to discriminate positive cues in pair of odors for a water reward. The relationship between the learning task and local levels of mRNA for brain-derived neurotrophic factor, tyrosine kinase B, nerve growth factor, and neurotrophin-3 in the frontal cortex, hippocampal subregions, and other regions were assessed 24 hours post olfactory learning. The olfactory discrimination learning activated production of endogenous neurotrophic factors and induced their signal transduction in the frontal cortex, but not in other brain areas. These findings suggest that different brain areas may be preferentially involved in different learning/memory tasks.

  12. Upregulation of macrophage migration inhibitory factor and calgizzarin by androgen in TM4 mouse Sertoli cells

    Institute of Scientific and Technical Information of China (English)

    Hiroyuki Kasumi; Shinji Komori; Kazuko Sakata; Naoko Yamamoto; Tomohiko Yamasaki; Yonehiro Kanemura; Koji Koyama

    2006-01-01

    Aim: To identify proteins induced by androgen in Sertoli cells during spermatogenesis. Methods: We analyzed protein profiles in TM4 Sertoli cells treated with dihydrotestosterone (DHT) using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Results: We found increases in the expression of a 5.0-kDa protein at 15 min, an 11.3-kDa protein at 24 h and 4.3 kDa, 5.7 kDa, 5.8 kDa, 9.95 kDa and 9.98 kDa proteins at 48 h after the treatment. In contrast, the expression of 6.3 kDa and 8.6 kDa proteins decreased at 30 min,and 4.9 kDa, 5.0 kDa, 12.4 kDa and 19.8 kDa proteins at 48 h after the treatment. The 11.3-kDa protein was identified as macrophage migration inhibitory factor (MIF) known to having various functions. The 9.98-kDa protein was identified as calgizzarin related to calcium channels. The timing of their expression suggests that MIF and calgizzarin are involved in late regulation of spermatogenesis in Sertoli cells by androgen. Conclusion: MIF and calgizzarin are two important androgen-responsive proteins produced by Sertoli cells and they might play a role in regulating spermatogenesis.

  13. Upregulation of macrophage migration inhibitory factor and calgizzarin by androgen in TM4 mouse Sertoli cells.

    Science.gov (United States)

    Kasumi, Hiroyuki; Komori, Shinji; Sakata, Kazuko; Yamamoto, Naoko; Yamasaki, Tomohiko; Kanemura, Yonehiro; Koyama, Koji

    2006-09-01

    To identify proteins induced by androgen in Sertoli cells during spermatogenesis. We analyzed protein profiles in TM4 Sertoli cells treated with dihydrotestosterone (DHT) using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS). We found increases in the expression of a 5.0-kDa protein at 15 min, an 11.3-kDa protein at 24 h and 4.3 kDa, 5.7 kDa, 5.8 kDa, 9.95 kDa and 9.98 kDa proteins at 48 h after the treatment. In contrast, the expression of 6.3 kDa and 8.6 kDa proteins decreased at 30 min, and 4.9 kDa, 5.0 kDa, 12.4 kDa and 19.8 kDa proteins at 48 h after the treatment. The 11.3-kDa protein was identified as macrophage migration inhibitory factor (MIF) known to having various functions. The 9.98-kDa protein was identified as calgizzarin related to calcium channels. The timing of their expression suggests that MIF and calgizzarin are involved in late regulation of spermatogenesis in Sertoli cells by androgen. MIF and calgizzarin are two important androgen-responsive proteins produced by Sertoli cells and they might play a role in regulating spermatogenesis.

  14. Inducible nitric oxide synthase expression is upregulated in oral submucous fibrosis

    Directory of Open Access Journals (Sweden)

    Rajendran R

    2007-01-01

    Full Text Available Objective: We tested the hypothesis that inducible nitric oxide synthase (iNOS modulates angiogenesis in human models and this information could be extrapolated in elucidating the pathophysiology of oral submucous fibrosis (OSF. A hypothesis which looks inadequate, but is deep rooted in literature is the epithelial alteration ("atrophy" seen in OSF and the events that lead to its causation. This aspect was tried to be addressed and an alternative pathogenetic pathway for the disease is proposed. Materials and Methods: This immunohistochemical study sought to investigate the expression of iNOS in OSF samples (n= 30 a using monospecific antibody (SC- 2050, Santa Cruz Biotechnology, Inc to the protein and also to correlate it with different grades of epithelial dysplasia associated with the disease. Twenty (20 healthy adults acted as controls. Results: iNOS staining was not demonstrated in normal oral epithelium. In oral epithelial dysplasia, staining was seen in all cases (100% in the basal layers of the epithelium and in 30% of cases it extended into the parabasal compartments as well. iNOS staining was uniformly positive in moderate dysplasia with an increase in intensity and distribution noted as the severity of dysplasia progressed. There were highly significant differences in overall positivity for iNOS in epithelium between cases and controls (Mann-Whitney U = 11.000, Wilcoxon W = 221.00, P = 0.000. Significant comparisons were made of mild Vs moderate dysplasia (Mann-Whitney U = 48.000, P = 0.014 Conclusions: This study supports our earlier morphological assessment (image analysis of the nature of vascularity in OSF mucosa. The significant vasodilation noticed in these cases argues against the concept of ischemic atrophy of the epithelium. This observation of vascularity and iNOS expression helped to explain the vasodilation noticed (sinusoids in this disease; NO being a net vasodilator. The mechanism of activation of iNOS in dysplasia is

  15. Epidermal growth factor receptor transactivation by intracellular prostaglandin E2-activated prostaglandin E2 receptors. Role in retinoic acid receptor-β up-regulation.

    Science.gov (United States)

    Fernández-Martínez, Ana B; Lucio Cazaña, Francisco J

    2013-09-01

    The pharmacological modulation of renoprotective factor vascular endothelial growth factor-A (VEGF-A) in the proximal tubule has therapeutic interest. In human proximal tubular HK-2 cells, treatment with all-trans retinoic acid or prostaglandin E2 (PGE2) triggers the production of VEGF-A. The pathway involves an initial increase in intracellular PGE2, followed by activation of EP receptors (PGE2 receptors, most likely an intracellular subset) and increase in retinoic acid receptor-β (RARβ) expression. RARβ then up-regulates transcription factor hypoxia-inducible factor-1α (HIF-1α), which increases the transcription and production of VEGF-A. Here we studied the role in this pathway of epidermal growth factor receptor (EGFR) transactivation by EP receptors. We found that EGFR inhibitor AG1478 prevented the increase in VEGF-A production induced by PGE2- and all-trans retinoic acid. This effect was due to the inhibition of the transcriptional up-regulation of RARβ, which resulted in loss of the RARβ-dependent transcriptional up-regulation of HIF-1α. PGE2 and all-trans retinoic acid also increased EGFR phosphorylation and this effect was sensitive to antagonists of EP receptors. The role of intracellular PGE2 was indicated by two facts; i) PGE2-induced EGFR phosphorylation was substantially prevented by inhibitor of prostaglandin uptake transporter bromocresol green and ii) all-trans retinoic acid treatment, which enhanced intracellular but not extracellular PGE2, had lower effect on EGFR phosphorylation upon pre-treatment with cyclooxygenase inhibitor diclofenac. Thus, EGFR transactivation by intracellular PGE2-activated EP receptors results in the sequential activation of RARβ and HIF-1α leading to increased production of VEGF-A and it may be a target for the therapeutic modulation of HIF-1α/VEGF-A. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Expression of a serine protease gene prC is up-regulated by oxidative stress in the fungus Clonostachys rosea: implications for fungal survival.

    Directory of Open Access Journals (Sweden)

    Cheng-Gang Zou

    Full Text Available BACKGROUND: Soil fungi face a variety of environmental stresses such as UV light, high temperature, and heavy metals. Adaptation of gene expression through transcriptional regulation is a key mechanism in fungal response to environmental stress. In Saccharomyces cerevisiae, the transcription factors Msn2/4 induce stress-mediated gene expression by binding to the stress response element. Previous studies have demonstrated that the expression of extracellular proteases is up-regulated in response to heat shock in fungi. However, the physiological significance of regulation of these extracellular proteases by heat shock remains unclear. The nematophagous fungus Clonostachys rosea can secret an extracellular serine protease PrC during the infection of nematodes. Since the promoter of prC has three copies of the stress response element, we investigated the effect of environmental stress on the expression of prC. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrated that the expression of prC was up-regulated by oxidants (H(2O(2 or menadione and heat shock, most likely through the stress response element. After oxidant treatment or heat shock, the germination of conidia in the wild type strain was significantly higher than that in the prC mutant strain in the presence of nematode cuticle. Interestingly, the addition of nematode cuticle significantly attenuated the production of reactive oxygen species (ROS induced by oxidants and heat shock in the wild type strain, but not in prC mutant strain. Moreover, low molecule weight (<3 kD degradation products of nematode cuticle suppressed the inhibitory effect of conidial germination induced by oxidants and heat shock. CONCLUSIONS/SIGNIFICANCE: These results indicate that PrC plays a protective role in oxidative stress in C. rosea. PrC degrades the nematode cuticle to produce degradation products, which in turn offer a protective effect against oxidative stress by scavenging ROS. Our study reveals a novel

  17. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice.

    Science.gov (United States)

    Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming

    2013-01-23

    The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. 3,5,4′-tri-O-acetylresveratrol Ameliorates Seawater Exposure-Induced Lung Injury by Upregulating Connexin 43 Expression in Lung

    Directory of Open Access Journals (Sweden)

    Lijie Ma

    2013-01-01

    Full Text Available The aim of the present study was to examine the effects of 3,5,4′-tri-O-acetylresveratrol on connexin 43 (Cx43 in acute lung injury (ALI in rats induced by tracheal instillation of artificial seawater. Different doses (50, 150, and 450 mg/kg of 3,5,4′-tri-O-acetylresveratrol were administered orally for 7 days before modeling. Four hours after seawater inhalation, histological changes, contents of TNF-α, IL-1β and IL-10, and the expression of Cx43 in lungs were detected. Besides, the gap junction communication in A549 cells and human umbilical vein endothelial cells (HUVECs challenged by seawater was also evaluated. Histological changes, increased contents of inflammatory factors, upregulation in gene level, and deregulation in protein level of Cx43 in lungs stimulated by seawater were observed. On the other hand, pretreatment with 3,5,4′-tri-O-acetylresveratrol significantly inhibited infiltration of inflammation, development of pulmonary edema, and contents of inflammatory mediators in lungs. Above all, 3,5,4′-tri-O-acetylresveratrol upregulated the expression of Cx43 in both gene and protein levels, and its intermediate metabolite, resveratrol, also enhanced the gap junction communication in the two cell lines. The results of the present study suggested that administration of 3,5,4′-tri-O-acetylresveratrol may be beneficial for treatment of inflammatorycellsin lung.

  19. Omega-3 Polyunsaturated Fatty Acids Upregulate 15-PGDH Expression in Cholangiocarcinoma Cells by Inhibiting miR-26a/b Expression.

    Science.gov (United States)

    Yao, Lu; Han, Chang; Song, Kyoungsub; Zhang, Jinqiang; Lim, Kyu; Wu, Tong

    2015-04-01

    Prostaglandin E2 (PGE2) is a proinflammatory lipid mediator that promotes cancer growth. The 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes oxidation of the 15(S)-hydroxyl group of PGE2, leading to its inactivation. Therefore, 15-PGDH induction may offer a strategy to treat cancers that are driven by PGE2, such as human cholangiocarcinoma. Here, we report that omega-3 polyunsaturated fatty acids (ω-3 PUFA) upregulate 15-PGDH expression by inhibiting miR-26a and miR-26b, thereby contributing to ω-3 PUFA-induced inhibition of human cholangiocarcinoma cell growth. Treatment of human cholangiocarcinoma cells (CCLP1 and TFK-1) with ω-3 PUFA (DHA) or transfection of these cells with the Fat-1 gene (encoding Caenorhabditis elegans desaturase, which converts ω-6 PUFA to ω-3 PUFA) significantly increased 15-PGDH enzymes levels, but with little effect on the activity of the 15-PGDH gene promoter. Mechanistic investigations revealed that this increase in 15-PGDH levels in cells was mediated by a reduction in the expression of miR-26a and miR-26b, which target 15-PGDH mRNA and inhibit 15-PGDH translation. These findings were extended by the demonstration that overexpressing miR-26a or miR-26b decreased 15-PGDH protein levels, reversed ω-3 PUFA-induced accumulation of 15-PGDH protein, and prevented ω-3 PUFA-induced inhibition of cholangiocarcinoma cell growth. We further observed that ω-3 PUFA suppressed miR-26a and miR-26b by inhibiting c-myc, a transcription factor that regulates miR-26a/b. Accordingly, c-myc overexpression enhanced expression of miR-26a/b and ablated the ability of ω-3 PUFA to inhibit cell growth. Taken together, our results reveal a novel mechanism for ω-3 PUFA-induced expression of 15-PGDH in human cholangiocarcinoma and provide a preclinical rationale for the evaluation of ω-3 PUFA in treatment of this malignancy.

  20. Heavy alcohol drinking downregulates ALDH2 gene expression but heavy smoking up-regulates SOD2 gene expression in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Lee, Dong Jin; Lee, Hyung Min; Kim, Jin Hwan; Park, Ii Seok; Rho, Young Soo

    2017-08-25

    This study aims to determine the relationship between expression levels of ALDH2 and SOD2 genes and clinical parameters such as alcohol drinking, tobacco smoking, primary site of HNSCC, and human papilloma virus (HPV) state. Gene expression data were obtained from gene expression omnibus (GEO accession number: GSE65858). Clinical data (N = 270) including survival result, gender, age, TNM stage, primary site of HNSCC, HPV status, alcohol drinking, and tobacco smoking habit were analyzed according to gene expression pattern. ALDH2 gene was expressed in low levels in patients with heavy alcohol consumption. It was expressed in high (p = 0.01) levels in patients with no or light alcohol consumption. ALDH2 gene was also expressed in low levels in patients with oral cavity cancers or hypopharynx cancers. However, ALDH2 gene was expressed in high (p = 0.03) levels in patients with oropharyngeal cancers or laryngeal cancers. HPV-positive patients were found to have high (p = 0.02) expression levels of ALDH2. SOD2 gene was expressed in high (p = 0.005) levels in patients who had greater mean pack-year of tobacco smoking. Based on log rank test, the group of patients with high expression of ALDH2 showed better (p = 0.002) clinical results than those with low expression of ALDH2. Difference of survival results between ALDH2 high-expressed group and ALDH2 low-expressed group was validated in another cohort (GSE39368, N = 138). Heavy alcohol drinking downregulates ALDH2 gene expression level. Heavy smoking up-regulates SOD2 gene expression level in patients with head and neck squamous cell carcinoma. The group of patients with low expression levels of ALDH2 showed significantly poorer survival results compared to those with high expression levels of ALDH2.

  1. MMP9 expression in oesophageal adenocarcinoma is upregulated with visceral obesity and is associated with poor tumour differentiation.

    LENUS (Irish Health Repository)

    Allott, Emma H

    2011-11-28

    Overweight and obesity is linked to increased incidence and mortality of many cancer types. Of all cancers, oesophageal adenocarcinoma (OAC) displays one of the strongest epidemiological links with obesity, accounting for up to 40% of cases, but molecular pathways driving this association remain largely unknown. This study aimed to elucidate mechanisms underpinning the association of obesity and cancer, and to determine if visceral obesity is associated with aggressive tumour biology in OAC. Following co-culture with visceral adipose tissue explants, expression of genes involved in tumour cell invasion and metastasis (matrix metalloproteinase (MMP)2 and MMP9) were upregulated between 10-fold (MMP2) and 5000-fold (MMP9), and expression of tumour suppressor p53 was downregulated 2-fold in OAC cell lines. Western blotting confirmed these results at the protein level, while zymographic analysis detected increased activity of MMPs in OAC cell lines following co-culture with adipose tissue explants. When OAC cell lines were cultured with adipose tissue conditioned media (ACM) from visceral adipose tissue, increased proliferative, migratory and invasive capacity of tumour cells was observed. In OAC patient tumour biopsies, elevated gene expression of MMP9 was associated with visceral obesity, measured by visceral fat area, while increased gene expression of MMP9 and decreased gene expression of tumour suppressor p53 was associated with poor tumour differentiation. These novel data highlight an important role for visceral obesity in upregulation of pro-tumour pathways contributing to aggressive tumour biology, and may ultimately lead to development of stratified treatment for viscerally obese OAC patients. © 2011 Wiley Periodicals, Inc.

  2. β-catenin expression in areca quid chewing-associated oral squamous cell carcinomas and upregulated by arecoline in human oral epithelial cells

    Directory of Open Access Journals (Sweden)

    Shiuan-Shinn Lee

    2012-04-01

    Conclusion: β-catenin expression is significantly upregulated in areca quid chewing-associated OSCC. The localization of β-catenin expression is correlated with the tumor size and clinical stage. In addition, β-catenin expression induced by arecoline is downregulated by PD98059, NAC, herbimycin-A, SB203580, and LY294002.

  3. Zinc mesoporphyrin induces rapid and marked degradation of the transcription factor Bach1 and up-regulates HO-1.

    Science.gov (United States)

    Hou, Weihong; Shan, Ying; Zheng, Jianyu; Lambrecht, Richard W; Donohue, Susan E; Bonkovsky, Herbert L

    2008-03-01

    Heme oxygenase 1 (HO-1) is the first and rate-controlling enzyme in heme degradation. Bach1 is a mammalian transcriptional repressor of HO-1. To understand how zinc mesoporphyrin (ZnMP) induces the expression of HO-1, we investigated the effects of ZnMP on Bach1 mRNA and protein levels in human hepatoma Huh-7 cells by quantitative RT-PCR and Western blots. We found that ZnMP markedly up-regulated HO-1 mRNA and protein levels, and rapidly and significantly decreased Bach1 protein levels by increasing degradation of Bach1 protein [half life (t(1/2)) from 19 h to 45 min], whereas ZnMP did not influence Bach1 mRNA levels. The proteasome inhibitors, epoxomicin and MG132, significantly inhibited degradation of Bach1 by ZnMP in a dose-dependent fashion, indicating that the degradation of Bach1 by ZnMP is proteasome-dependent. Purified Bach1 C-terminal fragment bound heme, but there was no evidence for binding of ZnMP to the heme-binding region of Bach1. In conclusion, ZnMP produces profound post-transcriptional down-regulation of Bach1 protein levels and transcriptional up-regulation of HO-1. Our results indicate that ZnMP up-regulates HO-1 gene expression by markedly increasing Bach1 protein degradation in a proteasome-dependent manner.

  4. Upregulation of vascular endothelial growth factor by hydrogen peroxide in human colon cancer

    Institute of Scientific and Technical Information of China (English)

    Jian-Wei Zhu; Bao-Ming Yu; Yu-Bao Ji; Ming-Hua Zheng; Dong-Hua Li

    2002-01-01

    AIM: To evaluate the effect of reactive oxygen species suchas hydrogen peroxide on the progression of human coloncancer.METHODS: Human colon carcinoma cell lines, LS174T andHCT8, were treated respectively with 10- 5,10- 7 or 10- 9 mol@L- 1 hydrogen peroxide for 24h, and co-cultured with humanendothelial cell line ECV-304. The migration of ECV-304induced by cancer cells was calculated and the expressionlevel of vascular endothelial growth factor in cancer cellswas determined by RT-PCR analysis and ELISA.Dactinomycin of 1.5mg@ L-1 which could block transcriptionof cancer cells was applied to observe the effects of H2O2 ontranscriptional activity and the relative half-life of VEGFmRNA. Finally, to evaluate the effect H2O2 on NF-κB activityin colon cancer cells, NF-κB in cytoplasm and nucleus of thecells were detected with FITC-tagged antibody and itspresence in the nucleus (Fn ) Vs cytoplasm ( Fc ) wasmonitored by measuring the green fluorescence integratedover the nucleus by laser scanning cytometry(LSC).RESULTS: Exogenouse hydrogen peroxide of lowconcentration increased the migration of endothelial cellsinduced by colon cancer cells. When cancer cells weretreated with 10-5 mol@ L-1 H2O2, the migration number ofendothelial cells induced by LS174T cells was 203 ± 70, andthe number induced by HCT8 cells was 145 ± 65. The twovalues were significantly higher than those treated with otherconcentrations of h2O2 ( P < 0.01 ). The expression ofvascular endothelial growth factor in cancer cells, whichcould be blocked by dactinomycin, were increased to acertain degree, while the relative half-life of VEGF mRNAwas not prolonged after treatment with hydrogen peroxide.The activity of NF-κB in colon cells rose after the cells wereexposed to hydrogen peroxide for 24h. The Fn values inHCT8 cells were 91 ± 13 (0 mol@ L- 1 h2O2) and 149 ± 40( 10-5mol@L-1 h2O2) ( P< 0.05), in LS174T cells were 127 ± 35(0mol@L-1 H2O2) and 192± 11(10-5 mol@L-1 h2O2) (P< 0.05).lt is similar

  5. Curcumin upregulates S100 expression and improves regeneration of the sciatic nerve following its complete amputation in mice

    Institute of Scientific and Technical Information of China (English)

    Guo-min Liu; Kun Xu; Juan Li; Yun-gang Luo

    2016-01-01

    The repair of peripheral nerve injury after complete amputation is dififcult, and even with anastomosis, the rapid recovery of nerve function remains challenging. Curcumin, extracted from plants of the genus Curcuma, has been shown to have anti-oxidant and anti-inlfammatory properties and to improve sciatic nerve crush injury in rats. Here, we determined whether curcumin had neuroprotective effects following com-plete peripheral nerve amputation injury. BALB/c mice underwent complete sciatic nerve amputation, followed by an immediate epineurium anastomosis. Mice were intragastrically administered curcumin at doses of 40 (high), 20 (moderate), and 10 mg/kg/d (low) for 1 week. We found that myelin in the mice of the high-and moderate-dose curcumin groups appeared with regular shape, uniform thickness, clear boundary, and little hyperplasia surrounding the myelin. High and moderate doses of curcumin markedly improved both action potential amplitude of the sciatic nerves and the conduction velocity of the corresponding motor neurons, and upregulated mRNA and protein ex-pression of S100, a marker for Schwann cell proliferation, in L4–6 spinal cord segments. These results suggest that curcumin is effective in promoting the repair of complete sciatic nerve amputation injury and that the underlying mechanism may be associated with upregulation of S100 expression.

  6. High-density lipoprotein inhibits ox-LDL-induced adipokine secretion by upregulating SR-BI expression and suppressing ER Stress pathway.

    Science.gov (United States)

    Song, Guohua; Wu, Xia; Zhang, Pu; Yu, Yang; Yang, Mingfeng; Jiao, Peng; Wang, Ni; Song, Haiming; Wu, You; Zhang, Xiangjian; Liu, Huaxia; Qin, Shucun

    2016-07-29

    Endoplasmic reticulum stress (ERS) in adipocytes can modulate adipokines secretion. The aim of this study was to explore the protective effect of high-density lipoprotein (HDL) on oxidized low-density lipoprotein (ox-LDL)-induced ERS-C/EBP homologous protein (CHOP) pathway-mediated adipokine secretion. Our results showed that serum adipokines, including visfatin, resistin and TNF-α, correlated inversely with serum HDL cholesterol level in patients with abdominal obesity. In vitro, like ERS inhibitor 4-phenylbutyric acid (PBA), HDL inhibited ox-LDL- or tunicamycin (TM, an ERS inducer)-induced increase in visfatin and resistin secretion. Moreover, HDL inhibited ox-LDL-induced free cholesterol (FC) accumulation in whole cell lysate and in the endoplasmic reticulum. Additionally, like PBA, HDL inhibited ox-LDL- or TM-induced activation of ERS response as assessed by the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α and reduced nuclear translocation of activating transcription factor 6 as well as the downregulation of Bip and CHOP. Furthermore, HDL increased scavenger receptor class B type I (SR-BI) expression and SR-BI siRNA treatment abolished the inhibitory effects of HDL on ox-LDL-induced FC accumulation and CHOP upregulation. These data indicate that HDL may suppress ox-LDL-induced FC accumulation in adipocytes through upregulation of SR-BI, subsequently preventing ox-LDL-induced ER stress-CHOP pathway-mediated adipocyte inflammation.

  7. Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species.

    Science.gov (United States)

    Goyal, Parag; Weissmann, Norbert; Grimminger, Friedrich; Hegel, Cornelia; Bader, Lucius; Rose, Frank; Fink, Ludger; Ghofrani, Hossein A; Schermuly, Ralph T; Schmidt, Harald H H W; Seeger, Werner; Hänze, Jörg

    2004-05-15

    Hypoxia sensing and related signaling events, including activation of hypoxia-inducible factor 1 (HIF-1), represent key features in cell physiology and lung function. Using cultured A549 cells, we investigated the role of NAD(P)H oxidase 1 (Nox1), suggested to be a subunit of a low-output NAD(P)H oxidase complex, in hypoxia signaling. Nox1 expression was detected on both the mRNA and protein levels. Upregulation of Nox1 mRNA and protein occurred during hypoxia, accompanied by enhanced reactive oxygen species (ROS) generation. A549 cells, which were transfected with a Nox1 expression vector, revealed an increase in ROS generation accompanied by activation of HIF-1-dependent target gene expression (heme oxygenase 1 mRNA, hypoxia-responsive-element reporter gene activity). In A549 cells stably overexpressing Nox1, accumulation of HIF-1alpha in normoxia and an additional increase in hypoxia were noted. Interference with ROS metabolism by the flavoprotein inhibitor diphenylene iodonium (DPI) and catalase inhibited HIF-1 induction. This suggests that H2O2 links Nox1 and HIF-1 activation. We conclude that hypoxic upregulation of Nox1 and subsequently augmented ROS generation may activate HIF-1-dependent pathways.

  8. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival

    Directory of Open Access Journals (Sweden)

    Amanda R. Panfil

    2015-12-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL. This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5 on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  9. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival.

    Science.gov (United States)

    Panfil, Amanda R; Al-Saleem, Jacob; Howard, Cory M; Mates, Jessica M; Kwiek, Jesse J; Baiocchi, Robert A; Green, Patrick L

    2015-12-30

    Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2-3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  10. Upregulation of the Chemokine Receptor CCR7 expression by HIF-1αand HIF-2α in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Yang LI

    2008-10-01

    Full Text Available Background and objective CCR7 is closely related with the lymph node metastasis of non-small cell lung cancer. The objective of this work is to investigate the expressions of chemokine receptor CCR7, hypoxiainducible factor 1α (HIF-1α and hypoxia inducible factor 2α (HIF-2α protein in non small cell lung cancer and the relationships of their expression, and to study the mechanism of CCR7 upregulation in NSCLC. Methods T he levels of expressions of CCR7, HIF-1α and HIF-2α protein were detected in 94 specimens of human primary non small cell lung cancer by immunohistochemical S-P method. Human lung adenocarcinoma cell line A549 cells were transfected by lipofection with HIF-1α siRNA、HIF-2α siRNA, the change of CCR7 was observed by RT-PCR and immunofluorescence staining. Correlations between the expression of CCR7 and HIF-1α, HIF-2α were respectively analyzed. Results Immunohistochemistry showed that CCR7 was distributed in cytoplasm and/or membrane of tumor cells, HIF-1α, HIF-2α was distributed in nucleus and/or cytoplasm of tumor cells. The levels of expressions of CCR7, HIF-1α and HIF-2α protein were found to be 75.53% (71/94, 54.25% (51/ 94 and 70.21% (66/94 in non small celllung cancer, respectively. the levels of expression of CCR7 protein were closely related to the clinical stages (P 0.05. Furthermore, A significant correlation were found among CCR7, Hif-1α and HIF-2α (r =0.272, P <0.01 (r=0.225, P <0.05. In addition, the expression of CCR7 mRNA and protein levels were decreased in the transfected specificHIF-1α, HIF-2αsiRNA group (P <0.05. Conclusion CCR7 expression is significantly associated with non small cell lung cancer invasion and metastasis. The upregulation of CCR7 is regulated by HIF-1α and HIF-2α in non small cell lung cancer.

  11. Up-Regulated Expression of LAMP2 and Autophagy Activity during Neuroendocrine Differentiation of Prostate Cancer LNCaP Cells

    Science.gov (United States)

    Vara-Ciruelos, Diana; Ramos-Torres, Ágata; Altamirano-Dimas, Manuel; Díaz-Laviada, Inés; Rodríguez-Henche, Nieves

    2016-01-01

    Neuroendocrine (NE) prostate cancer (PCa) is a highly aggressive subtype of prostate cancer associated with resistance to androgen ablation therapy. In this study, we used LNCaP prostate cancer cells cultured in a serum-free medium for 6 days as a NE model of prostate cancer. Serum deprivation increased the expression of NE markers such as neuron-specific enolase (NSE) and βIII tubulin (βIII tub) and decreased the expression of the androgen receptor protein in LNCaP cells. Using cDNA microarrays, we compared gene expression profiles of NE cells and non-differentiated LNCaP cells. We identified up-regulation of 155 genes, among them LAMP2, a lysosomal membrane protein involved in lysosomal stability and autophagy. We then confirmed up-regulation of LAMP2 in NE cells by qRT-PCR, Western blot and confocal microscopy assays, showing that mRNA up-regulation correlated with increased levels of LAMP2 protein. Subsequently, we determined autophagy activity in NE cells by assessing the protein levels of SQSTM/p62 and LC3 by Western blot and LC3 and Atg5 mRNAs content by qRT-PCR. The decreased levels of SQSTM/p62 was accompanied by an enhanced expression of LC3 and ATG5, suggesting activation of autophagy in NE cells. Blockage of autophagy with 1μM AKT inhibitor IV, or by silencing Beclin 1 and Atg5, prevented NE cell differentiation, as revealed by decreased levels of the NE markers. In addition, AKT inhibitor IV as well as Beclin1 and Atg5 kwockdown attenuated LAMP2 expression in NE cells. On the other hand, LAMP2 knockdown by siRNA led to a marked blockage of autophagy, prevention of NE differentiation and decrease of cell survival. Taken together, these results suggest that LAMP2 overexpression assists NE differentiation of LNCaP cells induced by serum deprivation and facilitates autophagy activity in order to attain the NE phenotype and cell survival. LAMP2 could thus be a potential biomarker and potential target for NE prostate cancer. PMID:27627761

  12. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Soubrier, Anne-Sophie [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Thouverey, Cyril [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Cortet, Bernard [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Broux, Odile [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Caverzasio, Joseph [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Hardouin, Pierre [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  13. Exogenous Camp upregulates the expression of glnII and glnK-amtB genes in Sinorhizobium meliloti 1021

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhexian; MAO Xianjun; SU Wei; LI Jian; BECKER Anke; WANG Yiping

    2006-01-01

    The existence of multiple adenylate cyclase encoding genes implies the importance of Camp in Sinorhizobium meliloti 1021. In this study, as a pioneer step of understanding Camp roles, microarray analysis on S. Meliloti was carried out for the function of exogenous Camp. To our surprise, the result showed that the transcriptions of glnII and glnK genes were significantly upshifted in the presence of exogenous Camp in S. Meliloti. This phenomenon is further confirmed in S. Meliloti that the expression of either glnII or glnK promoter-lacZ translational fusion is higher in the presence of exogenous Camp.Therefore, for the first time, we have identified genes from S. Meliloti whose expression is activated by Camp. The potential physiological role of upregulation of glnII and glnK by Camp is discussed.

  14. Upregulation of Mark3 and Rpgrip1 mRNA expression by jujuboside A in mouse hippocampus

    Institute of Scientific and Technical Information of China (English)

    Cheng WANG; Zi-li YOU; Qing XIA; Tao XIONG; Yang XIA; De-zhong YAO

    2007-01-01

    Aim: To investigate the effect ofjujuboside A (JuA) on modulating gene expres-sion in the hippocampus. Methods: The spontaneous activity of mice was monitored, and the differential display polymerase chain reaction was adapted to screen differentially-expressed genes modulated by JuA in the mouse hippocampus.Results: JuA significantly decreased the total activity intensity (P<0.01 vs control) at a dosage of 80 mg/kg, and the genes MAP/microtubule affinity-regulating kinase3 (Mark3) and retinitis pigmentosa GTPase regulator interacting proteinl(Rpgripl) were upregulated by JuA in the mouse hippocampus. Conclusion: JuA had an inhibitory effect on the spontaneous activity of the mice, and JuA regu-lated the transcription of Mark3 and Rpgripl in the mouse hippocampus.

  15. Neuroprotective effects of a mitochondrial K+-ATP channel opener (diazoxide) are mediated by Bcl-2 expression upregulation

    Institute of Scientific and Technical Information of China (English)

    Majid Katebi; Mansooreh Soleimani; Mehdi Mehdizadeh

    2011-01-01

    Mitochondrial K+-ATP (mito-KATP) channels play an important role in cellular function and survival following ischemic stress. The present results revealed that intervention with diazoxide, a mito-KATP channel opener, led to an increase in Bcl-2 expression in the cerebral cortex of rats subjected to cerebral ischemia reperfusion injury. In addition, the intervention also led to clear improvements in neuronal mitochondrial morphology and consciousness post-injury. Glibenclamide, a mito-KATP channel blocker, exhibited the converse effects. Both diazoxide and glibenclamide exerted dose-dependent effects (in particular, at 18 mg/kg diazoxide and 25 mg/kg glibenclamide). These findings suggest that diazoxide exerts a neuroprotective effect on cerebral ischemia reperfusion injury by opening mito-KATP channels and upregulating Bcl-2 expression.

  16. Buggy Creek virus (Togaviridae: Alphavirus) upregulates expression of pattern recognition receptors and interferons in House Sparrows (Passer domesticus).

    Science.gov (United States)

    Fassbinder-Orth, Carol A; Barak, Virginia A; Rainwater, Ellecia L; Altrichter, Ashley M

    2014-06-01

    Birds serve as reservoirs for at least 10 arthropod-borne viruses, yet specific immune responses of birds to arboviral infections are relatively unknown. Here, adult House Sparrows were inoculated with an arboviral alphavirus, Buggy Creek virus (BCRV), or saline, and euthanized between 1 and 3 days postinoculation. Virological dynamics and gene expression dynamics were investigated. Birds did not develop viremia postinoculation, but cytopathic virus was found in the skeletal muscle and spleen of birds 1 and 3 days postinoculation (DPI). Viral RNA was detected in the blood of BCRV-infected birds 1 and 2 DPI, in oral swabs 1-3 DPI, and in brain, heart, skeletal muscle, and spleen 1-3 DPI. Multiple genes were significantly upregulated following BCRV infection, including pattern recognition receptors (TLR7, TLR15, RIG-1), type I interferon (IFN-α), and type II interferon (IFN-γ). This is the first study to report avian immunological gene expression profiles following an arboviral infection.

  17. Taurine Chloramine Stimulates Efferocytosis Through Upregulation of Nrf2-Mediated Heme Oxygenase-1 Expression in Murine Macrophages: Possible Involvement of Carbon Monoxide.

    Science.gov (United States)

    Kim, Wonki; Kim, Hoon-Ui; Lee, Ha-Na; Kim, Seung Hyeon; Kim, Chaekyun; Cha, Young-Nam; Joe, Yeonsoo; Chung, Hun Taeg; Jang, Jaebong; Kim, Kyeojin; Suh, Young-Ger; Jin, Hyeon-Ok; Lee, Jin Kyung; Surh, Young-Joon

    2015-07-10

    To examine the pro-resolving effects of taurine chloramine (TauCl). TauCl injected into the peritoneum of mice enhanced the resolution of zymosan A-induced peritonitis. Furthermore, when the macrophages obtained from peritoneal exudates were treated with TauCl, their efferocytic ability was elevated. In the murine macrophage-like RAW264.7 cells exposed to TauCl, the proportion of macrophages engulfing the apoptotic neutrophils was also increased. In these macrophages treated with TauCl, expression of heme oxygenase-1 (HO-1) was elevated along with increased nuclear translocation of the nuclear factor E2-related factor 2 (Nrf2). TauCl binds directly to Kelch-like ECH association protein 1 (Keap1), which appears to retard the Keap1-driven degradation of Nrf2. This results in stabilization and enhanced nuclear translocation of Nrf2 and upregulation of HO-1 expression. TauCl, when treated to peritoneal macrophages isolated from either Nrf2 or HO-1 wild-type mice, stimulated efferocytosis (phagocytic engulfment of apoptotic neutrophils by macrophages), but not in the macrophages from Nrf2 or HO-1 knockout mice. Furthermore, transcriptional expression of some scavenger receptors recognizing the phosphatidylserines exposed on the surface of apoptotic cells was increased in RAW264.7 cells treated with TauCl. Pharmacologic inhibition of HO-1 activity or knockdown of HO-1 gene in RAW264.7 cells abolished the TauCl-induced efferocytosis, whereas both overexpression of HO-1 and treatment with carbon monoxide (CO), the product of HO, potentiated the efferocytic activity of macrophages. This work provides the first evidence that TauCl stimulates efferocytosis by macrophages. The results of this study suggest the therapeutic potential of TauCl in the management of inflammatory disorders. TauCl can facilitate resolution of inflammation by increasing the efferocytic activity of macrophages through Nrf2-mediated HO-1 upregulation and subsequent production of CO.

  18. Selective up-regulation of NMDA-NR1 receptor expression in myenteric plexus after TNBS induced colitis in rats

    Directory of Open Access Journals (Sweden)

    Price Donald D

    2006-01-01

    Full Text Available Abstract Background N-methyl-D-aspartic acid (NMDA spinal cord receptors play an important role in the development of hyperalgesia following inflammation. It is unclear, however, if changes in NMDA subunit receptor gene expression in the colonic myenteric plexus are associated with colonic inflammation. We investigated regulation of NMDA-NR1 receptor gene expression in TNBS induced colitis in rats. Male Sprague-Dawley rats (150 g–250 g were treated with 20 mg trinitrobenzene sulfonic acid (TNBS diluted in 50% ethanol. The agents were delivered with a 24 gauge catheter inserted into the lumen of the colon. The animals were sacrificed at 2, 7, 14, 21, and 28 days after induction of the colitis, their descending colon was retrieved for reverse transcription-polymerase chain reaction; a subset of animals' distal colon was used for two-dimensional (2-D western analysis and immunocytochemistry. Results NR1-exon 5 (N1 and NR1-exon 21 (C1 appeared 14, 21 and 28 days after TNBS treatment. NR1 pan mRNA was up-regulated at 14, 21, and 28 days. The NR1-exon 22 (C2 mRNA did not show significant changes. Using 2-D western analysis, untreated control rats were found to express only NR1001 whereas TNBS treated rats expressed NR1001, NR1011, and NR1111. Immunocytochemistry demonstrated NR1-N1 and NR1-C1 to be present in the myenteric plexus of TNBS treated rats. Conclusion These results suggest a role for colonic myenteric plexus NMDA receptors in the development of neuronal plasticity and visceral hypersensitivity in the colon. Up-regulation of NMDA receptor subunits may reflect part of the basis for chronic visceral hypersensitivity in conditions such as post-infectious irritable bowel syndrome.

  19. Human endogenous retrovirus expression is inversely related with the up-regulation of interferon-inducible genes in the skin of patients with lichen planus.

    Science.gov (United States)

    Nogueira, Marcelle Almeida de Sousa; Gavioli, Camila Fátima Biancardi; Pereira, Nátalli Zanete; de Carvalho, Gabriel Costa; Domingues, Rosana; Aoki, Valéria; Sato, Maria Notomi

    2015-04-01

    Lichen planus (LP) is a common inflammatory skin disease of unknown etiology. Reports of a common transactivation of quiescent human endogenous retroviruses (HERVs) support the connection of viruses to the disease. HERVs are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancer and autoimmune diseases. We explored the transcriptional activity of HERV sequences as well as the antiviral restriction factor and interferon-inducible genes in the skin from LP patients and healthy control (HC) donors. The study included 13 skin biopsies from patients with LP and 12 controls. Real-time PCR assay identified significant decrease in the HERV-K gag and env mRNA expression levels in LP subjects, when compared to control group. The expressions of HERV-K18 and HERV-W env were also inhibited in the skin of LP patients. We observed a strong correlation between HERV-K gag with other HERV sequences, regardless the down-modulation of transcripts levels in LP group. In contrast, a significant up-regulation of the cytidine deaminase APOBEC 3G (apolipoprotein B mRNA-editing), and the GTPase MxA (Myxovirus resistance A) mRNA expression level was identified in the LP skin specimens. Other transcript expressions, such as the master regulator of type I interferon-dependent immune responses, STING (stimulator of interferon genes) and IRF-7 (interferon regulatory factor 7), IFN-β and the inflammassome NALP3, had increased levels in LP, when compared to HC group. Our study suggests that interferon-inducible factors, in addition to their role in innate immunity against exogenous pathogens, contribute to the immune control of HERVs. Evaluation of the balance between HERV and interferon-inducible factor expression could possibly contribute to surveillance of inflammatory/malignant status of skin diseases.

  20. Expression of glutaminase is upregulated in colorectal cancer and of clinical significance

    OpenAIRE

    2014-01-01

    Cancer cells remodel their metabolic programmes to meet the requirements of rapid proliferation. Glutaminase (GLS1) is a mitochondrial enzyme that converts glutamine to glutamate. Our aim was to investigate, for the first time, GLS1 protein expression in colorectal cancer and to evaluate its clinical significance. Immunohistochemical analysis was performed on tissue microarrays containing pairs of cancer and adjacent normal tissues from colorectal cancer patients (n=257). The expression of GL...

  1. Upregulated Expression of a Unique Gene by Hepatitis B x Antigen Promotes Hepatocellular Growth and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhaorui Lian

    2003-05-01

    Full Text Available Hepatitis B x antigen (HBxAg is a trans-activating protein that may be involved in hepatocarcinogenesis, although few natural effectors of HBxAg that participate in this process have been identified. To identify additional effectors, whole cell RNA isolated from HBxAg-positive and HBxAg-negative HepG2 cells were compared by polymerase chain reaction select cDNA subtraction, and one clone, upregulated gene, clone 11 (URG11, was chosen for further characterization. Elevated levels of URG11 mRNA and protein were observed in HBxAg-positive compared to HBxAg-negative HepG2 cells. Costaining was observed in infected liver (P<.01. URG11 stimulated cell growth in culture (P<.01, anchorage-independent growth in soft agar (P<.001, and accelerated tumor formation (P<.01, and yielded larger tumors (P<.02 in SCID mice injected subcutaneously with HepG2 cells. These data suggest that URG11 is a natural effector of HBxAg that may promote the development of hepatocellular carcinoma.

  2. Upregulation of URI/RMP gene expression in cervical cancer by high-throughput tissue microarray analysis.

    Science.gov (United States)

    Gu, Junxia; Li, Xiaoyun; Liang, Yuting; Qiao, Longwei; Ran, Deyuan; Lu, Yaojuan; Li, Xingang; Wei, Wenxiang; Zheng, Qiping

    2013-01-01

    URI, or RMP, is a RNA polymerase II subunit RPB5-associated protein known to play essential roles in ubiquitination and transcription. Recently, we and others have shown that URI/RMP is also important for progression of hepatocellular carcinoma, ovarian, and prostate cancers. To identify the mechanistic basis of URI/RMP during multiple cellular processes, we investigated URI/RMP expression in a tissue microarray (TMA) containing multiple normal human tissues. The results showed that URI/RMP is ubiquitously but differentially expressed in these human tissues which partially explains its multiple cellular functions. To elucidate the role of URI/RMP during oncogenesis of multiple malignancies, especially the tumors of reproductive system, we analyzed URI/RMP expression in a TMA containing multiple reproductive system tumors. We did not observe significant difference of URI/RMP expression between cancerous and adjacent tissues of the prostate, breast, ovarian, and endometrial cancers. However, increased URI/RMP expression was observed in two of the three cases of cervical SCC (squamous cell carcinoma) cells compared to their adjacent epithelial cells. Moreover, we detected significantly upregulated URI/RMP expression not only in cervical cancers but also in pre-cancerous CINs (cervical intra-epithelial neoplasias) in a TMA that covers the whole spectrum of normal cervix, CINs, and cervical cancers. No difference of URI/RMP expression was observed between CINs and cervical cancers. Given the high risk of CINs (especially CIN3) turning into cervical cancer if left untreated, the increased URI/RMP expression in CINs as well as in cervical cancers suggest a clinical relevance of URI/RMP upon cervical cancer tumorigenesis and worth further investigation.

  3. GRANULOCYTE COLONY-STIMULATING FACTOR (G-CSF) UPREGULATES β1 INTEGRIN AND INCREASES MIGRATION OF HUMAN TROPHOBLAST SWAN 71 CELLS VIA PI3K AND MAPK ACTIVATION

    Science.gov (United States)

    Furmento, Verónica A.; Marino, Julieta; Blank, Viviana C.; Cayrol, María Florencia; Cremaschi, Graciela A.; Aguilar, Rubén C.; Roguin, Leonor P.

    2017-01-01

    Multiple cytokines and growth factors expressed at the fetal-maternal interface are involved in the regulation of trophoblast functions and placental growth, but the role of G-CSF has not been completely established. Based on our previous study showing that G-CSF increases the activity of matrix metalloproteinase-2 and the release of vascular endothelial growth factor in Swan 71 human trophoblast cells, in this work we explore the possible contribution of G-CSF to cell migration and the G-CSF-triggered signaling pathway. We found that G-CSF induced morphological changes on actin cytoskeleton consistent with a migratory cell phenotype. G-CSF also up-regulated the expression levels of β1 integrin and promoted Swan 71 cell migration. By using selective pharmacological inhibitors and dominant negative mutants we showed that PI3K, Erk 1/2 and p38 pathways are required for promoting Swan 71 cell motility. It was also demonstrated that PI3K behaved as an upstream regulator of Erk 1/2 and p38 MAPK. In addition, the increase of β1 integrin expression was dependent on PI3K activation. In conclusion, our results indicate that G-CSF stimulates β1 integrin expression and Swan 71 cell migration by activating PI3K and MAPK signaling pathways, suggesting that G-CSF should be considered as an additional regulatory factor that contributes to a successful embryo implantation and to the placenta development. PMID:26992288

  4. Histone deacetylase inhibitors upregulate plakoglobin expression in bladder carcinoma cells and display antineoplastic activity in vitro and in vivo.

    Science.gov (United States)

    Canes, David; Chiang, George J; Billmeyer, Brian R; Austin, Christina A; Kosakowski, Monika; Rieger-Christ, Kimberly M; Libertino, John A; Summerhayes, Ian C

    2005-02-20

    Histone deacetylase inhibitors (HDACis) are emerging as a promising new class of anticancer agents displaying growth-inhibitory activity and low toxicity in vivo. In this study, we examined the effect of sodium butyrate (NaB) and trichostatin A (TSA) on the growth of human bladder carcinoma cell lines in culture and TSA on the growth of EJ and UM-UC-3 human bladder xenografts in nude mice. NaB and TSA suppressed the growth of bladder cell lines at millimolar (1.5-4.3 mM) and micromolar (0.03-0.33 microM) concentrations, respectively, inducing concentration-dependent cell death. Bladder carcinoma cells within the experimental panel displayed the phenotype of late-stage bladder lesions expressing N-cadherin in the absence of E-cadherin accompanied by low levels of plakoglobin expression. Exposure of these cells to HDACis resulted in upregulation of plakoglobin with no change in E-cadherin expression. A 2-hr exposure to TSA was the minimal time required to upregulate plakoglobin in cells with downregulation to baseline levels occurring within 24 hr following drug removal. In mice bearing EJ and UM-UC-3 bladder xenografts, TSA (500 microg/kg/day) caused suppression of tumor growth compared with mice receiving vehicle alone. A > 70% reduction in mean final tumor volume was recorded in both bladder xenograft models with no detectable toxicity. The results suggest that TSA inhibits bladder carcinoma cell growth and may be a useful, relatively nontoxic agent for consideration in the treatment of late-stage bladder tumors. (c) 2004 Wiley-Liss, Inc.

  5. Upregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell line.

    Science.gov (United States)

    Liu, X H; Kirschenbaum, A; Yao, S; Stearns, M E; Holland, J F; Claffey, K; Levine, A C

    1999-01-01

    Upregulation of vascular endothelial growth factor (VEGF) expression induced by hypoxia is crucial event leading to neovascularization. Cyclooxygenase-2, an inducible enzyme that catalyzes the formation of prostaglandins (PGs) from arachidonic acid, has been demonstrated to be induced by hypoxia and play role in angiogenesis and metastasis. To investigate the potential effect of COX-2 on hypoxia-induced VEGF expression in prostate cancer. We examined the relationship between COX-2 expression and VEGF induction in response to cobalt chloride (CoCl2)-simulated hypoxia in three human prostate cancer cell lines with differing biological phenotypes. Northern blotting and ELISA revealed that all three tested cell lines constitutively expressed VEGF mRNA, and secreted VEGF protein to different degrees (LNCaP > PC-3 > PC3ML). However, these cell lines differed in the ability to produce VEGF in the presence of CoCl2-simulated hypoxia. CoCl2 treatment resulted in 40% and 75% increases in VEGF mRNA, and 50% and 95% in protein secretion by LNCaP and PC-3 cell lines, respectively. In contrast, PC-3ML cell line, a PC-3 subline with highly invasive, metastatic phenotype, exhibits a dramatic upregulation of VEGF, 5.6-fold in mRNA and 6.3-fold in protein secretion after treatment with CoCl2. The upregulation of VEGF in PC-3ML cells is accompanied by a persistent induction of COX-2 mRNA (6.5-fold) and protein (5-fold). Whereas COX-2 expression is only transiently induced in PC-3 cells and not affected by CoCl2 in LNCaP cells. Moreover, the increases in VEGF mRNA and protein secretion induced by CoCl2 in PC-3ML cells were significantly suppressed following exposure to NS398, a selective COX-2 inhibitor. Finally, the effect of COX-2 inhibition on CoCl2-induced VEGF production was reversed by the treatment with exogenous PGE2. Our data demonstrate that VEGF induction by cobalt chloride-simulated hypoxia is maintained by a concomitant, persistent induction of COX-2 expression and

  6. TLR4 upregulates CBS expression through NF-κB activation in a rat model of irritable bowel syndrome with chronic visceral hypersensitivity.

    Science.gov (United States)

    Yuan, Bo; Tang, Wei-Hong; Lu, Li-Juan; Zhou, Yuan; Zhu, Hong-Yan; Zhou, You-Lang; Zhang, Hong-Hong; Hu, Chuang-Ying; Xu, Guang-Yin

    2015-07-28

    To investigate the roles of toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB on cystathionine β synthetase (CBS) expression and visceral hypersensitivity in rats. This study used 1-7-wk-old male Sprague-Dawley rats. Western blot analysis was employed to measure the expression of TLR4, NF-κB and the endogenous hydrogen sulfide-producing enzyme CBS in colon dorsal root ganglia (DRG) from control and "irritable bowel syndrome" rats induced by neonatal colonic inflammation (NCI). Colon-specific DRG neurons were labeled with Dil and acutely dissociated to measure excitability with patch-clamp techniques. Immunofluorescence was employed to determine the co-expression of TLR4, NF-κB and CBS in DiI-labeled DRG neurons. NCI significantly upregulated the expression of TLR4 in colon-related DRGs (0.34 ± 0.12 vs 0.72 ± 0.02 for the control and NCI groups, respectively, P colon-specific DRG neurons and reduced the expression of CBS (1.7 ± 0.1 vs 1.1 ± 0.04, P < 0.05) and of the NF-κB subunit p65 (0.8 ± 0.1 vs 0.5 ± 0.1, P < 0.05). Furthermore, the NF-κB-selective inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the upregulation of CBS (1.0 ± 0.1 vs 0.6 ± 0.1, P < 0.05) and attenuated visceral hypersensitivity in the NCI rats. In vitro, incubation of cultured DRG neurons with the TLR4 agonist lipopolysaccharide significantly enhanced the expression of p65 (control vs 8 h: 0.9 ± 0.1 vs 1.3 ± 0.1; control vs 12 h: 0.9 ± 0.1 vs 1.3 ± 0.1, P < 0.05; control vs 24 h: 0.9 ± 0.1 vs 1.6 ± 0.1, P < 0.01) and CBS (control vs 12 h: 1.0 ± 0.1 vs 2.2 ± 0.4; control vs 24 h: 1.0 ± 0.1 vs 2.6 ± 0.1, P < 0.05), whereas the inhibition of p65 via pre-incubation with PDTC significantly reversed the upregulation of CBS expression (1.2 ± 0.1 vs 0.6 ± 0.0, P < 0.01). Our results suggest that the activation of TLR4 by NCI upregulates CBS expression, which is mediated by the NF-κB signaling pathway, thus contributing to visceral hypersensitivity.

  7. TGEV infection up-regulates FcRn expression via activation of NF-?B signaling

    OpenAIRE

    Jinyue Guo; Fei Li; Shaoju Qian; Dingren Bi; Qigai He; Hui Jin; Rui Luo; Shaowen Li; Xianrong Meng; Zili Li

    2016-01-01

    It has been well characterized that the neonatal Fc receptor (FcRn) transports maternal IgG to a fetus or newborn and protects IgG from degradation. We previously reported that FcRn is expressed in a model of normal porcine intestinal epithelial cells (IPEC-J2). Transmissible gastroenteritis is an acute enteric disease of swine that is caused by transmissible gastroenteritis virus (TGEV). How porcine FcRn (pFcRn) expression is regulated by pathogenic infection remains unknown. Our research sh...

  8. Propofol Inhibits the Activation of p38 through Up-Regulating the Expression of Annexin A1 to Exert Its Anti-Inflammation Effect

    Science.gov (United States)

    Tu, Weifeng; Guo, Yuanbo; Zhao, Zhenlong; Xue, Qiong; Lin, Chunshui; Xiao, Jinfang; Sun, Xuegang; Tao, Tao; Gu, Miaoning; Liu, Youtan

    2011-01-01

    Inflammatory response is a kind of nonspecific immune response, with the central link of vascular response, which is mainly manifested by changes in neutrophils and vascular endothelial cells. In recent years, the in vivo and in vitro role of intravenous anesthetic propofol in inhibiting inflammatory response has been attracting more and more attention, but the anti-inflammatory mechanisms of propofol for mononuclear cells still remain undefined. In this study, proteomics analysis was applied to investigate protein expression profile changes in serum mononuclear cells following intervention of rats with endotoxemia using propofol. After two-dimensional electrophoresis and mass spectrometric identification, it has been found that the protein Annexin A1 was up-regulated in the propofol intervention group. Annexin A1 is a glucocorticoid-dependent anti-inflammatory protein. After detection using ELISA and Western blot assays, it has also been found that propofol can not only promote the expression of Annexin A1, but also inhibit the phosphorylation level of p38 and release of inflammatory factors (IL-1β, IL-6 and TNF-α) in rats with endotoxemia. In order to further determine the role of up-regulated expression of Annexin A1 in anti-inflammation of propofol, this gene was silenced in vitro in human THP-1 cells, to detect the phosphorylation status of p38 and release of inflammatory factors. The results show that Annexin A1 can negatively regulate phosphorylation of p38 and release of IL-1β, IL-6 and TNF-α in THP-1 cells following propofol intervention and lipopolysaccharide (LPS) stimulation. Our results clearly indicate that propofol can up-regulate Annexin A1 to inhibit the phosphorylation level of p38 and release of IL-1β, IL-6 and TNF-α, so as to inhibit inflammatory response. Therefore, it can be speculated that Annexin A1 might be the key signaling protein in the in vivo and in vitro anti-inflammatory mechanisms of propofol. PMID:22164217

  9. Propofol inhibits the activation of p38 through up-regulating the expression of annexin A1 to exert its anti-inflammation effect.

    Directory of Open Access Journals (Sweden)

    Jing Tang

    Full Text Available Inflammatory response is a kind of nonspecific immune response, with the central link of vascular response, which is mainly manifested by changes in neutrophils and vascular endothelial cells. In recent years, the in vivo and in vitro role of intravenous anesthetic propofol in inhibiting inflammatory response has been attracting more and more attention, but the anti-inflammatory mechanisms of propofol for mononuclear cells still remain undefined. In this study, proteomics analysis was applied to investigate protein expression profile changes in serum mononuclear cells following intervention of rats with endotoxemia using propofol. After two-dimensional electrophoresis and mass spectrometric identification, it has been found that the protein Annexin A1 was up-regulated in the propofol intervention group. Annexin A1 is a glucocorticoid-dependent anti-inflammatory protein. After detection using ELISA and Western blot assays, it has also been found that propofol can not only promote the expression of Annexin A1, but also inhibit the phosphorylation level of p38 and release of inflammatory factors (IL-1β, IL-6 and TNF-α in rats with endotoxemia. In order to further determine the role of up-regulated expression of Annexin A1 in anti-inflammation of propofol, this gene was silenced in vitro in human THP-1 cells, to detect the phosphorylation status of p38 and release of inflammatory factors. The results show that Annexin A1 can negatively regulate phosphorylation of p38 and release of IL-1β, IL-6 and TNF-α in THP-1 cells following propofol intervention and lipopolysaccharide (LPS stimulation. Our results clearly indicate that propofol can up-regulate Annexin A1 to inhibit the phosphorylation level of p38 and release of IL-1β, IL-6 and TNF-α, so as to inhibit inflammatory response. Therefore, it can be speculated that Annexin A1 might be the key signaling protein in the in vivo and in vitro anti-inflammatory mechanisms of propofol.

  10. Exercise protects against obesity induced semen abnormalities via downregulating stem cell factor, upregulating Ghrelin and normalizing oxidative stress

    Science.gov (United States)

    Alhashem, Fahaid; Alkhateeb, Mahmoud; Sakr, Hussein; Alshahrani, Mesfer; Alsunaidi, Mohammad; Elrefaey, Hesham; Alessa, Riyad; Sarhan, Mohammad; Eleawa, Samy M; Khalil, Mohammad A.

    2014-01-01

    testes, diet induced obesity down regulates SCF expression, upregulates Ghrelin expression, and deteriorate oxidative stress levels, which are collectively detrimental to semen parameters. Exercise, and to a lesser extent Orlistat administration, protected effectively against this detrimental effect. PMID:26417283

  11. Exercise protects against obesity induced semen abnormalities via downregulating stem cell factor, upregulating Ghrelin and normalizing oxidative stress.

    Science.gov (United States)

    Alhashem, Fahaid; Alkhateeb, Mahmoud; Sakr, Hussein; Alshahrani, Mesfer; Alsunaidi, Mohammad; Elrefaey, Hesham; Alessa, Riyad; Sarhan, Mohammad; Eleawa, Samy M; Khalil, Mohammad A

    2014-01-01

    testes, diet induced obesity down regulates SCF expression, upregulates Ghrelin expression, and deteriorate oxidative stress levels, which are collectively detrimental to semen parameters. Exercise, and to a lesser extent Orlistat administration, protected effectively against this detrimental effect.

  12. High Glucose Promotes Tumor Invasion and Increases Metastasis-Associated Protein Expression in Human Lung Epithelial Cells by Upregulating Heme Oxygenase-1 via Reactive Oxygen Species or the TGF-β1/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaowen Kang

    2015-02-01

    Full Text Available Background: Growing evidence indicates that heme oxygenase-1 (HO-1 is up-regulated in malignancies and subsequently alters tumor aggressiveness and various cancer-related factors, such as high glucose (HG levels. HO-1 expression can be induced when glucose concentrations are above 25 mM; however, the role of HO-1 in lung cancer patients with diabetes remains unknown. Therefore, in this study we investigated the promotion of tumor cell invasion and the expression of metastasis-associated proteins by inducing the up-regulation of HO-1 expression by HG treatment in A549 human lung epithelial cells. Methods: The expression of HO-1and metastasis-associated protein expression was explored by western blot analysis. HO-1 enzymatic activity, reactive oxygen species (ROS production and TGF-β1 production were examined by ELISA. Invasiveness was analyzed using a Transwell chamber. Results: HG treatment of A549 cells induced an increase in HO-1 expression, which was mediated by the HG-induced generation of reactive oxygen species (ROS and transforming growth factor-β1 (TGF-β1 in a concentration- and time-dependent manner. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in HG-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC or with phosphatidylinositol 3-kinase (PI3K/Akt inhibitors attenuated the HG-induced increase in HO-1 expression. HG treatment of A549 cells enhanced the invasion potential of these cells, as shown with a Transwell assay, and increased metastasis-associated protein expression. However, HO-1 siRNA transfection significantly decreased these capabilities. Conclusion: this study is the first to demonstrate that HG treatment of A549 human lung epithelial cells promotes tumor cell invasion and increases metastasis-associated protein expression by up-regulating HO-1 expression via ROS or the TGF-β1/PI3K/Akt signaling pathway.

  13. Oncogenic K-ras confers SAHA resistance by up-regulating HDAC6 and c-myc expression.

    Science.gov (United States)

    Wang, Qun; Tan, Rong; Zhu, Xin; Zhang, Yi; Tan, Zhiping; Su, Bing; Li, Yu

    2016-03-01

    Histone deacetylase inhibitors (HDIs) represent a new class of anticancer drugs. Suberoylanilide hydroxamic acid (SAHA), the first HDI approved for the treatment of cutaneous T cell lymphoma (CTCL), is currently being tested in clinical trials for other cancers. However, SAHA has been ineffective against solid tumors in many clinical trials. A better understanding of molecular mechanisms of SAHA resistance may provide the basis for improved patient selection and the enhancement of clinical efficacy. Here we demonstrate that oncogenic K-ras contributes to SAHA resistance by upregulating HDAC6 and c-myc expression. We find that the high levels of HDAC6 expression are associated with activated K-ras mutant in colon cancer patients. And expressions of HDAC6 and c-myc are increased in fibroblasts transformed with activated K-ras. Surprisingly, we find that activated K-ras transformed cells are more resistant to SAHA inhibition on cell growth and anchorage-independent colony formation. We show that a K-ras inhibitor sensitizes K-ras mutated lung cancer cells to SAHA induced growth inhibition. We also find that mutant K-ras induces HDAC6 expression by a MAP kinase dependent pathway. Our study suggests that combined treatment with SAHA and K-ras inhibitors may represent an effective strategy to overcome SAHA resistance.

  14. NANOG upregulates c-Jun oncogene expression through binding the c-Jun promoter.

    Science.gov (United States)

    Lin, Yanli; Xiong, Fuyin; Zhou, Yanrong; Wu, Xiaojie; Liu, Fang; Xue, Shiwei; Chen, Hongxing

    2015-11-01

    NANOG plays important roles in neoplastic processes. However, the molecular mechanism of NANOG in tumorigenesis remains to be elucidated. In this report, we demonstrated that forced expression of NANOG in 293 cells and cancer cells led to increased c-Jun expression, whereas downregulation of endogenous NANOG significantly reduced c-Jun expression in cancer cells. Dual luciferase reporter assays demonstrated that NANOG binds the c-Jun proximal promoter and transactivates the c-Jun gene. An ATTA consensus motif between the -160 and -268 region of the c-Jun promoter was identified as the NANOG-responsive element. Electromobility shift assay and chromatin immunoprecipitation results confirmed the direct binding of NANOG protein to the c-Jun promoter in vitro and in vivo. NANOG directly bound c-Jun protein as shown by GST pulldown and immunoprecipitation assays. Taking these findings together, we conclude that c-Jun is a direct target gene of NANOG and that c-Jun protein may be a novel co-activator of NANOG in cancer cells. We suggest the possibility that NANOG may play a significant role in carcinogenesis via its activation of c-Jun expression.

  15. Insulin promotes sinusoidal endothelial cell proliferation mediated by upregulation of vascular endothelial growth factor in regenerating rat liver after partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Jian-Guo Qiao; Long Wu; Dao-Xiong Lei; Lu Wang

    2005-01-01

    AIM: To determine whether insulin could promote sinusoidal endothelial cell (SEC) proliferation mediated by upregulation of vascular endothelial growth factor (VEGF) in regenerating rat liver after partial hepatectomy (PHx).METHODS: Adult male Sprague-Dawley rats undergoing 70% PHx were injected with insulin (300 MU/kg) or saline via the tail veins every 8 h after surgery for 7 d and killed at 0, 24, 48, 72, 96, 120, 144, and 168 h after surgery.Proliferation of both hepatocytes and SECs was monitored by evaluating the proliferating cell nuclear antigen (PCNA)labeling index (LI). The expression of VEGF protein was evaluated by immunohistochemistry. The mRNA expressions of VEGF and its receptors Fit-1 and Flk-1 were evaluated by semi-quantitative reverse transcription-PCR.RESULTS: Insulin markedly increased the expression of VEGF mRNA between 24 and 120 h after hepatectomy compared to controls. Similarly, insulin significantly increased the expression of Fit-1 between 24 and 96 h.However, insulin had no significant effect on Flk-1.Furthermore, the immunohistochemical staining revealed that expression of VEGF protein increased in the insulin groups. Insulin significantly increased the PCNA LI of hepatocytes and SECs compared to controls.CONCLUSION: Exogenous insulin may promote SEC proliferation with an enhanced expression of VEGF and its receptor Fit-1 in regenerating rat liver after PHx.

  16. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of); Kang, Ho Young [Department of Microbiology, Pusan National University, Busan 609-736 (Korea, Republic of); Kim, Manbok [Department of Medical Science, Dankook University College of Medicine, Cheonan 330-714 (Korea, Republic of); Koh, Sang Seok [Department of Biological Sciences, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of)

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  17. Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol (DHCA) through the AMPK–Nrf2 dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghun; Kim, Sunyoung, E-mail: sunyoung@snu.ac.kr

    2014-11-15

    Oxidative stress is induced by the accumulation of free radicals, resulting in an imbalanced cellular redox state, which has been implicated in a variety of human diseases. Dehydrodiconiferyl alcohol (DHCA), a lignan compound isolated from Cucurbita moschata, has previously been reported to contain anti-adipogenic and anti-lipogenic effects on 3T3-L1 cells and primary MEFs (Abraham and Kappas, 2008). In this study, it was tested whether DHCA could affect the expression of HO-1, using Raw264.7 mouse macrophage cell line. DHCA increased the protein and RNA levels of HO-1 and upregulated its promoter activity. Data from transient transfection assays indicated that ARE located in the E1 region of the HO-1 promoter are important in this DHCA-mediated induction of HO-1 expression. DHCA was also shown to enhance the nuclear translocation and binding of Nrf2 to the respective DNA sequences. The upregulation of HO-1 expression by DHCA was also observed in primary macrophages derived from wild type animals, but not in those from Nrf2 KO mice. Effects of DHCA on HO-1 and Nrf2 were reduced when cells were treated with an AMPK inhibitor, Compound C, but not by PI3K/Akt or MAPK inhibitors. Data from an experiment using a specific siRNA or chemical inhibitor for HO-1 suggested that the DHCA-mediated induction of the HO-1 protein could suppress the LPS-stimulated production of NO. Taken together, our data suggest that DHCA induces the expression of HO-1 by controlling its promoter activity through the AMPK–Nrf2 pathway, eventually leading to the reduction of NO production, and may thus have potential as an effective antioxidant. - Highlights: • Dehydrodiconiferyl alcohol (DHCA) induced the expression of heme oxygenase (HO)-1. • The AMPK–Nrf2 pathway is critically involved in the DHCA-mediated induction of HO-1. • DHCA increased the expression of HO-1, Gclc and Gclm in primary macrophages. • DHCA-mediated induction of HO-1 contributed to the suppression of NO production.

  18. Up-regulation of HIF-1α and VEGF Expression by Elevated Glucose Concentration and Hypoxia in Cultured Human Retinal Pigment Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    XIAO Qing; ZENG Shuiqing; LING Shiqi; LV Mingliang

    2006-01-01

    In order to explore the effect of high glucose concentration and high glucose concentration with hypoxia on the production of hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF), human RPE cells were cultured in 5.56 mmol/L glucose (control group), 5.56 mmol/L glucose with 150 μ mol/L CoCl2 (hypoxic group), 25 mmol/L glucose (high glucose group)and 25 mmol/L glucose with 150 μ mol/L CoCl2 (combination group). RT-PCR was used to detect the expression of HIF-1α and VEGF mRNAs. Western blot analysis was used to measure the levels of HIF-1α and VEGF proteins. Although the small amount of HIF-1α protein was able to be detected in high glucose group but not in control group, there was no significant difference between the expression of HIF-1α mRNA of RPE cells in high glucose group and that of RPE cells in control group.As compared with RPE cells in control group, the mRNA expression and the protein synthesis of VEGF in high glucose group were up-regulated. As compared with RPE cells in hypoxic group, the expression of HIF-1α mRNA of RPE cells in combination group was not different, but the protein synthesis of HIF-1 α, the mRNA expression and the protein synthesis of VEGF were more obviously up-regulated. In conclusion, high concentration glucose mainly influence the protein synthesis of HIF-1α of RPE cell, and HIF-1α protein is able to be accumulated in high concentration glucose.Under hypoxia, the HIF-1α protein induced by high concentration glucose is more stable, and the expression of VEGF is obviously increased. It is suggested that high concentration glucose may play a role in retinal neovascularization, especially at ischemia stage of diabetic retinopathy.

  19. Stimulation of T cells up-regulates expression of Ifi202, an interferon-inducible lupus susceptibility gene, through activation of JNK/c-Jun pathway

    Science.gov (United States)

    Chen, Jianming; Panchanathan, Ravichandran; Choubey, Divaker

    2008-01-01

    Studies have revealed that increased expression of interferon (IFN)-inducible Ifi202 gene (encoding p202 protein) in splenic B and T cells from B6.Nba2 congenic (congenic for Nb2 locus derived from NZB mice) female mice is associated with lupus susceptibility. However, signaling pathways that regulate Ifi202 expression in immune cells remain to be elucidated. Here we report that stimulation of T cells up-regulates the Ifi202 expression. We found that steady-state levels of Ifi202 mRNA and protein were detectable in splenic T cells from NZB mice and stimulation of T cells with anti-CD3 and anti-CD28 up-regulated expression of the Ifi202 gene. Similarly, stimulation of cells of a mouse T-cell hybridoma cell line (2B4.11) also activated transcription of the Ifi202 gene. Significantly, up-regulation of Ifi202 expression in stimulated T cells was inhibited by treatment of cells with SP600125, a specific inhibitor of c-Jun N-terminal kinase (JNK). Conversely, treatment of cells with anisomycin, a potent activator of the JNK and c-Jun, up-regulated Ifi202 expression. Consistent with the activation of JNK/c-Jun pathway by T cell stimulation, forced expression of c-Jun in 2B4 T-cells and in mouse embryonic fibroblasts (MEFs) also up-regulated the Ifi202 expression. Furthermore, we found that stimulation of T cells increased association of the activated c-Jun to the 5′-regulatory region of the Ifi202 gene in chromatin immunoprecipitation assays (ChIPs). Together, our observations demonstrate that stimulation of T cells up-regulates the Ifi202 expression in part through the JNK/c-Jun pathway. PMID:18374989

  20. Estradiol upregulates calcineurin expression via overexpression of estrogen receptor alpha gene in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Hui-Li Lin

    2011-04-01

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disease primarily affecting women (9:1 compared with men. To investigate the influence of female sex hormone estrogen on the development of female-biased lupus, we compared the expression of estrogen receptor alpha (ERα gene and protein levels as well as expression of T-cell activation gene calcineurin in response to estrogen in peripheral blood lymphocytes (PBLs from SLE patients and normal controls. PBLs were isolated from 20 female SLE patients and 6 normal female controls. The amount of ERα protein in PBL was measured by flow cytometry. The expression of ERα and calcineurin messenger RNA was measured by semi-quantitative reverse transcription-polymerase chain reaction. Calcineurin phosphatase activity was measured by calcineurin assay kit. The expression of ERα messenger RNA and ERα protein was significantly increased (p=0.001 and p=0.023, respectively in PBL from SLE patients compared with that from normal controls. In addition, the basal calcineurin in PBL from SLE patients was significantly higher (p=0.000 than that from normal controls, and estrogen-induced expression of calcineurin was increased (p=0.007 in PBL from SLE patients compared with that from normal controls, a 3.15-fold increase. This increase was inhibited by the ERα antagonism ICI 182,780. The effects of ER antagonism were also found in calcineurin activity. These data suggest that overexpression of ERα gene and enhanced activation of calcineurin in response to estrogen in PBL may contribute to the pathogenesis of female dominant in SLE.

  1. Recombinant expression of placental growth factor in baculovirus expression system

    Directory of Open Access Journals (Sweden)

    Narges Arbabi

    2016-12-01

    Full Text Available Background: Angiogenesis or formation of new blood vessels is the most important factor in physiological and pathological conditions. Human Placental growth factor (hPLGF protein in is one of the most important proteins which stimulate angiogenesis. Baculovirus expression system has been used successfully to over express eukaryotic proteins in insect cells. This system uses a very strong viral promoter, AcNPV polyhedrin, for high level of protein expression. Methods: hPLGF gene cloned in pFastBac-HT vector and transformed in DH10Bac.The recombinant bacmid was extracted and used in SF9 insect cells and transfected by cellfectin method. Target protein expression was confirmed with Western blot. Results: Transferring of the recombinant vector into Bacmid was successful and the PLGF gene sequence was confirmed. PLGF and recombinant protein expression by Western blotting was confirmed. Conclusion: Baculovirus protein expression system expresses PLGF strongly and recombinant protein can be used in different tests.

  2. Leptin promotes fetal lung maturity and upregulates SP-A expression in pulmonary alveoli type-II epithelial cells involving TTF-1 activation.

    Directory of Open Access Journals (Sweden)

    Hui Chen

    Full Text Available The placental hormone leptin has important functions in fetal and neonatal growth, and prevents depressed respiration in leptin-deficient mice. The effect of leptin on respiratory distress suffered by low birth weight and premature infants has been studied. However, it is unclear how leptin enhances lung maturity in the fetus and ameliorates neonatal respiratory distress. In the present study, we found that antenatal treatment with leptin for 2 d significantly enhanced the relative alveolus area and improved the maturity of fetal lungs in a rat model of fetal growth restriction (FGR. Mean birth weight and lung wet weight were higher in the leptin-treated group than in the PBS-treated group, indicating promotion of fetal growth. Leptin upregulated the intracellular expression and extracellular secretion of surfactant protein (SP A in type-II alveolar epithelial cells (AECs in vivo and in vitro. Dual positive effects of leptin were found on protein expression and transcriptional activity of thyroid transcription factor-1 (TTF-1, a nuclear transcription essential for branching morphogenesis of the lung and expression of SP-A in type-II AECs. Knockdown of TTF-1 by RNA interference indicated that TTF-1 may play a vital role in leptin-induced SP-A expression. These results suggest that leptin may have great therapeutic potential for the treatment of FGR, and leptin-mediated SP-A induction and lung maturity of the fetus are TTF-1 dependent.

  3. Ligand-activated PPARδ upregulates α-smooth muscle actin expression in human dermal fibroblasts: A potential role for PPARδ in wound healing.

    Science.gov (United States)

    Ham, Sun Ah; Hwang, Jung Seok; Yoo, Taesik; Lee, Won Jin; Paek, Kyung Shin; Oh, Jae-Wook; Park, Chan-Kyu; Kim, Jin-Hoi; Do, Jung Tae; Kim, Jae-Hwan; Seo, Han Geuk

    2015-12-01

    The phenotypic changes that accompany differentiation of resident fibroblasts into myofibroblasts are important aspects of the wound healing process. Recent studies showed that peroxisome proliferator-activated receptor (PPAR) δ plays a critical role in wound healing. To determine whether the nuclear receptor PPARδ can modulate the differentiation of human dermal fibroblasts (HDFs) into myofibroblasts. These studies were undertaken in primary HDFs using Western blot analyses, small interfering (si)RNA-mediated gene silencing, reporter gene assays, chromatin immunoprecipitation (ChIP), migration assays, collagen gel contraction assays, and real-time PCR. Activation of PPARδ by GW501516, a specific ligand of PPARδ, specifically upregulated the myofibroblast marker α-smooth muscle actin (α-SMA) in a time- and concentration-dependent manner. This induction was significantly inhibited by the presence of siRNA against PPARδ, indicating that PPARδ is involved in myofibroblast transdifferentiation of HDFs. Ligand-activated PPARδ increased α-SMA promoter activity in a dual mode by directly binding a direct repeat-1 (DR1) site in the α-SMA promoter, and by inducing expression of transforming growth factor (TGF)-β, whose downstream effector Smad3 interacts with a Smad-binding element (SBE) in another region of the promoter. Mutations in these cis-elements totally abrogated transcriptional activation of the α-SMA gene by the PPARδ ligand; thus both sites represent novel types of PPARδ response elements. GW501516-activated PPARδ also increased the migration and contractile properties of HDFs, as demonstrated by Transwell and collagen lattice contraction assays, respectively. In addition, PPARδ-mediated upregulation of α-SMA was correlated with elevated expression of myofibroblast markers such as collagen I and fibronectin, with a concomitant reduction in expression of the epithelial marker E-cadherin. PPARδ plays pivotal roles in wound healing by promoting

  4. Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response

    Directory of Open Access Journals (Sweden)

    Hofmann Sandra L

    2007-11-01

    Full Text Available Abstract Background The infantile form of neuronal ceroid lipofuscinosis (also known as infantile Batten disease is caused by hereditary deficiency of a lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1, and is characterized by severe cortical degeneration with blindness and cognitive and motor dysfunction. The PPT1-deficient knockout mouse recapitulates the key features of the disorder, including seizures and death by 7–9 months of age. In the current study, we compared gene expression profiles of whole brain from PPT1 knockout and normal mice at 3, 5 and 8 months of age to identify temporal changes in molecular pathways implicated in disease pathogenesis. Results A total of 267 genes were significantly (approximately 2-fold up- or downregulated over the course of the disease. Immediate early genes (Arc, Cyr61, c-fos, jun-b, btg2, NR4A1 were among the first genes upregulated during the presymptomatic period whereas immune response genes dominated at later time points. Chemokine ligands and protease inhibitors were among the most transcriptionally responsive genes. Neuronal survival factors (IGF-1 and CNTF and a negative regulator of neuronal apoptosis (DAP kinase-1 were upregulated late in the course of the disease. Few genes were downregulated; these included the α2 subunit of the GABA-A receptor, a component of cortical and hippocampal neurons, and Hes5, a transcription factor important in neuronal differentiation. Conclusion A molecular description of gene expression changes occurring in the brain throughout the course of neuronal ceroid lipofuscinosis suggests distinct phases of disease progression, provides clues to potential markers of disease activity, and points to new targets for therapy.

  5. Pyrrolidine Dithiocarbamate Inhibits NF-KappaB Activation and Upregulates the Expression of Gpx1, Gpx4, Occludin, and ZO-1 in DSS-Induced Colitis.

    Science.gov (United States)

    Yin, Jie; Wu, Miaomiao; Duan, Jielin; Liu, Gang; Cui, Zhijie; Zheng, Jie; Chen, Shuai; Ren, Wenkai; Deng, Jinping; Tan, Xiangwen; Al-Dhabi, Naif Abdullah; Duraipandiyan, Veeramuthu; Liao, Peng; Li, Tiejun; Yulong, Yin

    2015-12-01

    Inflammatory bowel disease (IBD) correlates with oxidative stress, inflammation, and alteration in several signal pathways, including nuclear transcription factor-kappaB (NF-κB). Pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB, has been widely demonstrated to exhibit an antioxidant and anti-inflammatory function. This study aimed to test the hypothesis that NF-κB inhibitor PDTC confers a beneficial role in a colitis model induced by dextran sodium sulfate (DSS) in mouse. The results showed that DSS decreased daily weight gain, induced colonic inflammation, suppressed the expression of antioxidant enzymes and tight junctions, and activated NF-κB and nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) signaling pathways. PDTC significantly upregulated (P < 0.05) Gpx1, Gpx4, occludin, and ZO-1 expressions in the DSS-induced colitis model. Meanwhile, PDTC reversed (P < 0.05) the activation of NF-κB signal pathway caused by DSS treatment. In conclusion, PDTC could serve as an adjuvant therapy for the patient with IBD.

  6. Up-Regulation of CCR5 and CXCR4 Expression on Human Monocytes by Interferon Gamma

    Institute of Scientific and Technical Information of China (English)

    陆韵; 刘祖强; 陈应华

    2003-01-01

    Chemokine receptors, mainly CCR5 and CXCR4, have been proved to be the important coreceptors in HIV-1 entry.HIV-1 disease progression is, in general, characterized by an initial predominance of CCR5 using macrophage tropic, non-syncytium-inducing (NSI) isolates, switching later to CXCR4 using T-cell tropic, syncytium-inducing (SI) isolates.How this shift occurs and how the shift can be controlled are still unclear.Since patients with rapid decline of T cell counts have constantly high levels of IFN-γ in the sera and lymphoid nodes, we investigated the influence of this cytokine on the expression of the HIV-1 coreceptors CCR5 and CXCR4 on the cell surfaces of human monocytic cell line U937 and promonocyte NB4.IFN-γ could intensively enhance the expression of both, while a low level of CCR5 expression was detected in two cell lines before stimulation.The results of semiquantitative RT-PCR also confirm the up-regulation.As the newly generated X4-strains have been demonstrated to be insensitive to chemokine in some reports, IFN-γ may play an important role in selecting CXCR4-used strains.

  7. Triamcinolone up-regulates GLUT 1 and GLUT 3 expression in cultured human placental endothelial cells.

    Science.gov (United States)

    Kipmen-Korgun, Dijle; Ozmen, Asli; Unek, Gozde; Simsek, Mehmet; Demir, Ramazan; Korgun, Emin Turkay

    2012-01-01

    The placenta is a glucocorticoid target organ, and glucocorticoids (GCs) are essential for the development and maturation of fetal organs. They are widely used for treatment of a variety of diseases during pregnancy. In various tissues, GCs have regulated by glucose transport systems; however, their effects on glucose transporters in the human placental endothelial cells (HPECs) are unknown. In the present study, HPECs were cultured 24 h in the presence or absence of 0.5, 5 and 50 µmol · l(-1) of synthetic GC triamcinolone (TA). The glucose carrier proteins GLUT 1, GLUT 3 and GC receptor (GR) were detected in the HPECs. We showed increased expression of GLUT 1 and GLUT 3 proteins and messenger RNA (mRNA) levels (p GLUT 1 and GLUT 3 expression through GR. Excessive exposure to GCs causes maternal and fetal hypoglycemia and diminished fetal growth. We speculate that to compensate for fetal hypoglycemia and diminished fetal growth, the expression of placental endothelial glucose transporters might be increased.

  8. Buyang Huanwu decoction up-regulates Notch1 gene expression in injured spinal cord.

    Science.gov (United States)

    Guo, Zhan-Peng; Huang, Mi-Na; Liu, An-Qi; Yuan, Ya-Jiang; Zhao, Jian-Bo; Mei, Xi-Fan

    2015-08-01

    Expression of genes in the Notch signaling pathway is altered in the injured spinal cord, which indicates that Notch participates in repair after spinal cord injury. Buyang Huanwu decoction, a traditional Chinese herbal preparation, can promote the growth of nerve cells and nerve fibers; however, it is unclear whether Buyang Huanwu decoction affects the Notch signaling pathway in injured spinal cord. In this study, a rat model was established by injuring the T10 spinal cord. At 2 days after injury, rats were intragastrically administered 2 mL of 0.8 g/mL Buyang Huanwu decoction daily until sacrifice. Real-time reverse transcription polymerase chain reaction analysis demonstrated that at 7, 14 and 28 days after injury, the expression of Notch1 was increased in the Buyang Huanwu decoction group compared with controls. These findings confirm that Buyang Huanwu decoction can promote the expression of Notch1 in rats with incomplete spinal cord injury, and may indicate a mechanism to promote the repair of spinal cord injury.

  9. Upregulated expression of MMP-9 in gingival epithelial cells induced by prolonged stimulation with arecoline.

    Science.gov (United States)

    Uehara, Osamu; Takimoto, Kousuke; Morikawa, Tetsuro; Harada, Fumiya; Takai, Rie; Adhikari, Bhoj Raj; Itatsu, Ryoko; Nakamura, Tomohisa; Yoshida, Koki; Matsuoka, Hirofumi; Nagayasu, Hiroki; Saito, Ichiro; Muthumala, Malsantha; Chiba, Itsuo; Abiko, Yoshihiro

    2017-07-01

    Betel quid chewing is implicated in the high prevalence of oral cancer in Southeast Asian countries. One of the major components of betel quid is arecoline. In the present study, in order to characterize the association between chronic arecoline stimulation and carcinogenesis the expression level of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 mRNA in human gingival epithelial progenitor cells (HGEPs) stimulated with arecoline was assessed. The HGEPs were alternated between 3 days of incubation with arecoline (50 µg/ml), and 3 days without arecoline, for up to 30 days. The expression levels of the MMPs and TIMPs in the cells stimulated with arecoline were evaluated by reverse transcription-quantitative polymerase chain reaction at 18 and 30 days. The expression of MMP-9 mRNA in the experimental group was significantly increased compared with in the control group (Parecoline. Based on the data, it is hypothesized that MMP-9 activity may be involved in the pathological alterations of oral epithelium induced by betel quid chewing, and that the NF-κB/IκB, MAPK, p38 MAPK and STAT3 signaling pathways may be involved in the production of MMP-9 induced by betel quid chewing.

  10. Exposure to static magnetic fields increases insulin secretion in rat INS-1 cells by activating the transcription of the insulin gene and up-regulating the expression of vesicle-secreted proteins.

    Science.gov (United States)

    Mao, Libin; Wang, Huiqin; Ma, Fenghui; Guo, Zhixia; He, Hongpeng; Zhou, Hao; Wang, Nan

    2017-08-01

    To evaluate the effect of static magnetic fields (SMFs) on insulin secretion and explore the mechanisms underlying exposure to SMF-induced insulin secretion in rat insulinoma INS-1 cells. INS-1 cells were exposed to a 400 mT SMF for 72 h, and the proliferation of INS-1 cells was detected by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The secretion of insulin was measured with an enzyme linked immunosorbent assays (ELISA), the expression of genes was detected by real-time PCR, and the expression of proteins was measured by Western blotting. Exposure to an SMF increased the expression and secretion of insulin by INS-1 cells but did not affect cell proliferation. Moreover, SMF exposure up-regulated the expression of several pancreas-specific transcriptional factors. Specifically, the activity of the rat insulin promoter was enhanced in INS-1 cells exposed to an SMF, and the expression levels of synaptosomal-associated protein 25 (SNAP-25) and syntaxin-1A were up-regulated after exposure to an SMF. SMF exposure can promote insulin secretion in rat INS-1 cells by activating the transcription of the insulin gene and up-regulating the expression of vesicle-secreted proteins.

  11. IL-5 Up-regulates the Expression of TGF-β1 in Human Blood Eosinophils in Vitro

    Institute of Scientific and Technical Information of China (English)

    HUANG Yabing; LIU Bin; WANG Lu; LI Rong; ZHU Min; CHEN Dong; CHEN Shi

    2005-01-01

    To investigate the effects of IL-5 on the expression of TGF-β1 in eosinophils in vitro, eosinophils were incubated in the presence of the same concentrations of IL-4, IL-5 and IFNγ, different concentrations of IL-5 in vitro and changes of eosinophil viability were assessed by trypan blue exclusion. Non-cytokine was employed as a negative control. 16 h after the cultivation, supernatants and cells were assayed by using TGF-β1 specific ELISA and RT-PCR. The mRNA expression and protein expresssion of TGF-β1 in eosinophils stimulated with different cytokines was observed.The expression of TGF-β1 protein in eosinophils was increased significantly by IL-4 (433.67±9.86vs 228.9±2.87) and IL-5 (403. 72±7.60 vs 228.9±2.87, P<0.05), while decreased by IFNγ (178.47±2.60 vs 228.9±2.87). At the same time, the results demonstrated that the basal level of TGF expression was enhanced by IL5 in all samples (P<0.05). The expression of TGF β1 mRNA was 1.42, 1. 70, 1. 76-folds higher than that of the non-stimulated controls. It is concluded that IL-5 can up-regulate the expression of TGF-β1 in eosinophils in vitro, which might have effect in eosinophil-associated chronic rejection.

  12. Upregulation of Trefoil Factor 3 (TFF3) After Rectal Cancer Chemoradiotherapy Is an Adverse Prognostic Factor and a Potential Therapeutic Target

    Energy Technology Data Exchange (ETDEWEB)

    Casado, Enrique, E-mail: enrique.casado@salud.madrid.org [Unidad de Oncologia, Hospital Infanta Sofia, Madrid (Spain); Moreno Garcia, Victor [Servicio de Oncologia Medica, Hospital Universitario La Paz, Madrid (Spain); Laboratorio de Oncologia Traslacional, Hospital Universitario La Paz, Madrid (Spain); Sanchez, Jose Javier [Departamento de Bioestadistica, Universidad Autonoma de Madrid, Madrid (Spain); Gomez del Pulgar, Maria Teresa [Unidad de Oncologia Traslacional, Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Feliu, Jaime [Servicio de Oncologia Medica, Hospital Universitario La Paz, Madrid (Spain); Laboratorio de Oncologia Traslacional, Hospital Universitario La Paz, Madrid (Spain); Maurel, Joan [Departamento de Oncologia, Hospital Clinic, Barcelona (Spain); Castelo, Beatriz [Servicio de Oncologia Medica, Hospital Universitario La Paz, Madrid (Spain); Moreno Rubio, Juan; Lopez, Rocio A.B. [Laboratorio de Oncologia Traslacional, Hospital Universitario La Paz, Madrid (Spain); Garcia-Cabezas, Miguel Angel; Burgos, Emilio [Departamento de Anatomia Patologica, Hospital Universitario La Paz, Madrid (Spain); and others

    2012-12-01

    Purpose: Management of locally advanced rectal cancer (RC) consists of neoadjuvant chemoradiotherapy (CRT) with fluoropyrimidines, followed by total mesorectal excision. We sought to evaluate the expression of selected genes, some of which were derived from a previous undirected SAGE (serial analysis of gene expression)-based approach, before and after CRT, to identify mechanisms of resistance. Methods: This retrospective cohort study included 129 consecutive patients. Quantitative polymerase chain reaction of 53 candidate genes was performed on the biopsy specimen before treatment and on the surgical specimen after CRT. A paired-samples t test was performed to determine genes that were significantly changed after CRT. The result was correlated with patients' disease-free survival. Results: Twenty-two genes were significantly upregulated, and two were significantly downregulated. Several of the upregulated genes have roles in cell cycle control; these include CCNB1IP1, RCC1, EEF2, CDKN1, TFF3, and BCL2. The upregulation of TFF3 was associated with worse disease-free survival on multivariate analyses (hazard ratio, 2.64; P=.027). Patients whose surgical specimens immunohistochemically showed secretion of TFF3 into the lumen of the tumoral microglands had a higher risk of relapse (hazard ratio, 2.51; P=.014). In vitro experiments showed that DLD-1 cells stably transfected with TFF3 were significantly less sensitive to 5-fluorouracil and showed upregulation of genes involved in the transcriptional machinery and in resistance to apoptosis. Conclusion: Upregulation of TFF3 after CRT for RC is associated with a higher risk of relapse. The physiological role of TFF3 in restoring the mucosa during CRT could be interfering with treatment efficacy. Our results could reveal not only a novel RC prognostic marker but also a therapeutic target.

  13. Acquisition of docetaxel resistance in breast cancer cells reveals upregulation of ABCB1 expression as a key mediator of resistance accompanied by discrete upregulation of other specific genes and pathways

    DEFF Research Database (Denmark)

    Ninel Hansen, Stine; Westergaard, David; Borg Houlberg Thomsen, Mathilde

    2015-01-01

    to be prominent at higher docetaxel concentrations (second-phase response). Additional resistance mechanisms were indicated by gene expression profiling, including genes in the interferon-inducible protein family in MCF7RES and cancer testis antigen family in MDARES. Also, upregulated expression of various ABC...... resistance and thereby identify key molecular mechanisms and predictive molecular characteristics to docetaxel resistance. Two docetaxel-resistant cell lines, MCF7RES and MDARES, were generated from their respective parental cell lines MCF-7 and MDA-MB-231 by stepwise selection in docetaxel dose increments...... analysis singled out ABCB1, which encodes permeability glycoprotein (Pgp), as the top upregulated gene in both MCF7RES and MDARES. Functional validation revealed Pgp as a key resistance mediator at low docetaxel concentrations (first-phase response), whereas additional resistance mechanisms appeared...

  14. Up-regulated expression of AOS-LOXa and increased eicosanoid synthesis in response to coral wounding.

    Directory of Open Access Journals (Sweden)

    Helike Lõhelaid

    Full Text Available In octocorals, a catalase-like allene oxide synthase (AOS and an 8R-lipoxygenase (LOX gene are fused together encoding for a single AOS-LOX fusion protein. Although the AOS-LOX pathway is central to the arachidonate metabolism in corals, its biological function in coral homeostasis is unclear. Using an acute incision wound model in the soft coral Capnella imbricata, we here test whether LOX pathway, similar to its role in plants, can contribute to the coral damage response and regeneration. Analysis of metabolites formed from exogenous arachidonate before and after fixed time intervals following wounding indicated a significant increase in AOS-LOX activity in response to mechanical injury. Two AOS-LOX isoforms, AOS-LOXa and AOS-LOXb, were cloned and expressed in bacterial expression system as active fusion proteins. Transcription levels of corresponding genes were measured in normal and stressed coral by qPCR. After wounding, AOS-LOXa was markedly up-regulated in both, the tissue adjacent to the incision and distal parts of a coral colony (with the maximum reached at 1 h and 6 h post wounding, respectively, while AOS-LOXb was stable. According to mRNA expression analysis, combined with detection of eicosanoid product formation for the first time, the AOS-LOX was identified as an early stress response gene which is induced by mechanical injury in coral.

  15. Peroxisome proliferator-activated receptor γ enhances adiponectin secretion via up-regulating DsbA-L expression.

    Science.gov (United States)

    Jin, Dan; Sun, Jun; Huang, Jing; Yu, Xiaoling; Yu, An; He, Yiduo; Li, Qiang; Yang, Zaiqing

    2015-08-15

    Disulfide-bond A oxidoreductase like-protein (DsbA-L) was identified as a molecular chaperone facilitating the assembly and secretion of adiponectin, an adipokine with multiple beneficial effects. In obesity the level of DsbA-L is reduced with a concomitant decrease of the circulating adiponectin level, especially of the high molecular weight form (HMW). Both rodent and human studies have shown that the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-γ agonists increase adiponectin levels in serum by activating PPARγ, which up-regulates critical endoplasmic reticulum (ER) chaperones thus facilitating protein folding. As shown in the present study, overexpression of PPARγ in human embryonic kidney (HEK) 293 cells elicited the cellular release of HMW adiponectin. PPARγ enhanced expression of DsbA-L by binding directly to peroxisome proliferator response element (PPRE) site within the DsbA-L promoter. Conversely, in differentiated 3T3-L1 cells, PPARγ knockdown resulted in decreased expression of Adiponectin, DsbA-L and ERp44. DsbA-L expression increased after PPARγ agonist treatment and decreased upon treatment with PPARγ antagonist in 3T3-L1 adipocytes. DsbA-L deficiency in differentiated 3T3-L1 cells impaired the secretion of adiponectin. We therefore propose that DsbA-L plays an important role in facilitating HMW adiponectin formation and release from cells under the regulation of PPARγ. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain.

    Science.gov (United States)

    Saminathan, Aarthi; Sriram, Gopu; Vinoth, Jayasaleen Kumar; Cao, Tong; Meikle, Murray C

    2015-02-01

    To engineer constructs of the periodontal ligament (PDL), human PDL cells were incorporated into a matrix of hyaluronan, gelatin, and type I collagen (COLI) in sample holders (13×1 mm) of six-well Biopress culture plates. The loading dynamics of the PDL were mimicked by applying a cyclic compressive strain of 33.4 kPa (340.6 gm/cm(2)) to the constructs for 1.0 s every 60 s, for 6, 12, and 24 h in a Flexercell FX-4000C Strain Unit. Compression significantly increased the number of nonviable cells and increased the expression of several apoptosis-related genes, including initiator and executioner caspases. Of the 15 extracellular matrix genes screened, most were upregulated at some point after 6-12 h deformation, but all were downregulated at 24 h, except for MMPs1-3 and CTGF. In culture supernatants, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) protein levels were upregulated at 24 h; receptor activator of nuclear kappa factor B (RANKL), osteoprotegerin (OPG) and fibroblast growth factor-2 (FGF-2) were unchanged; and connective tissue growth factor (CTGF) not detected. The low modulus of elasticity of the constructs was a disadvantage-future mechanobiology studies and tissue engineering applications will require constructs with much higher stiffness. Since the major structural protein of the PDL is COLI, a more rational approach would be to permeabilize preformed COLI scaffolds with PDL-populated matrices.

  17. Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells.

    Science.gov (United States)

    Ma, Li-Li; Wang, Da-Wei; Yu, Xu-Dong; Zhou, Yan-Ling

    2016-07-01

    Tangeretin (TANG), present in peel of citrus fruits, has been shown to various medicinal properties such as chemopreventive and neuroprotective. However, the chemopreventive effect of TANG on glioblastoma cells has not been examined. The present study was designed to explore the anticancer potential of TANG in glioblastoma cells and to investigate the related mechanism. Human glioblastoma U-87MG and LN-18 cells were treated with 45μM concentration of TANG and cell growth was measured by MTT assay. The cell cycle distribution and cell death were measured by flow cytometry. The expression of cell cycle and apoptosis related genes were analyzed by quantitative RT-PCR and western blot. The cells treated with TANG were significantly increased cell growth suppression and cell death effects than vehicle treated cells. Further, TANG treatment increases G2/M arrest and apoptosis by modulating PTEN and cell-cycle regulated genes such as cyclin-D and cdc-2 mRNA and protein expressions. Moreover, the ability of TANG to decrease cell growth and to induce cell death was compromised when PTEN was knockdown by siRNA. Taken together, the chemopreventive effect of TANG is associated with regulation of cell-cycle and apoptosis in glioblastoma, thereby attenuating glioblastoma cell growth. Hence, the present findings suggest that TANG may be a therapeutic agent for glioblastoma treatment.

  18. Zinc finger protein 407 overexpression upregulates PPAR target gene expression and improves glucose homeostasis in mice.

    Science.gov (United States)

    Charrier, Alyssa; Wang, Li; Stephenson, Erin J; Ghanta, Siddharth V; Ko, Chih-Wei; Croniger, Colleen M; Bridges, Dave; Buchner, David A

    2016-11-01

    The peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors is central to the pathophysiology and treatment of metabolic disease through the receptors' ability to regulate the expression of genes involved in glucose homeostasis, adipogenesis, and lipid metabolism. However, the mechanism by which PPAR is regulated remains incompletely understood. We generated a transgenic mouse strain (ZFP-TG) that overexpressed Zfp407 primarily in muscle and heart. Transcriptome analysis by RNA-Seq identified 1,300 differentially expressed genes in the muscle of ZFP-TG mice, among which PPAR target genes were significantly enriched. Among the physiologically important PPARγ target genes, Glucose transporter (Glut)-4 mRNA and protein levels were increased in heart and muscle. The increase in Glut4 and other transcriptional effects of Zfp407 overexpression together decreased body weight and lowered plasma glucose, insulin, and HOMA-IR scores relative to control littermates. When placed on high-fat diet, ZFP-TG mice remained more glucose tolerant than their wild-type counterparts. Cell-based assays demonstrated that Zfp407 synergistically increased the transcriptional activity of all PPAR subtypes, PPARα, PPARγ, and PPARδ. The increased PPAR activity was not associated with increased PPAR mRNA or protein levels, suggesting that Zfp407 posttranslationally regulates PPAR activity. Collectively, these results demonstrate that Zfp407 overexpression improved glucose homeostasis. Thus, Zfp407 represents a new drug target for treating metabolic disease. Copyright © 2016 the American Physiological Society.

  19. Cyclooxygenase-2 and epithelial growth factor receptor up-regulation during progression of Barrett's esophagus to adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Yan Li; John M Wo; Mukunda B Ray; Whitney Jones; Ruifeng R Su; Susan Ellis; Robert C G Martin

    2006-01-01

    AIM: To investigate the expression of cyclooxygenase-2(COX-2) and epithelial growth factor receptor (EGFR)throughout the progression of Barrett's esophagus (BE).METHODS: COX-2 and EGFR protein expressions were detected by using immunohistochemical method. A detailed cytomorphological changes were determined.Areas of COX-2 and EGFR expression were quantified by using computer Imaging System.RESULTS: The expressions of both COX-2 and EGFR increased along with the progression from BE to esophagus adenocarcinoma (EAC). A positive correlation was found between COX-2 expression and EGFR expression.CONCLUSION: COX-2 and EGFR may be cooperative in the stepwise progression from BE to EAC, thereby leading to carcinogenesis.

  20. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling.

    Science.gov (United States)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-04-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling.

  1. Tetraspanin 7 (TSPAN7) expression is upregulated in multiple myeloma patients and inhibits myeloma tumour development in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chee Man [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); Chow, Annie W.S. [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); Department of Haematology, SA Pathology, Adelaide 5000, SA (Australia); Fitter, Stephen [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); Hewett, Duncan R. [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); School of Medicine, University of Adelaide, Adelaide 5005, SA (Australia); Martin, Sally K. [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); Department of Haematology, SA Pathology, Adelaide 5000, SA (Australia); School of Medicine, University of Adelaide, Adelaide 5005, SA (Australia); Williams, Sharon A. [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); To, L. Bik [Department of Haematology, SA Pathology, Adelaide 5000, SA (Australia); and others

    2015-03-01

    Background: Increased expression of the tetraspanin TSPAN7 has been observed in a number of cancers; however, it is unclear how TSPAN7 plays a role in cancer progression. Methods: We investigated the expression of TSPAN7 in the haematological malignancy multiple myleoma (MM) and assessed the consequences of TSPAN7 expression in the adhesion, migration and growth of MM plasma cells (PC) in vitro and in bone marrow (BM) homing and tumour growth in vivo. Finally, we characterised the association of TSPAN7 with cell surface partner molecules in vitro. Results: TSPAN7 was found to be highly expressed at the RNA and protein level in CD138{sup +} MM PC from approximately 50% of MM patients. TSPAN7 overexpression in the murine myeloma cell line 5TGM1 significantly reduced tumour burden in 5TGM1/KaLwRij mice 4 weeks after intravenous adminstration of 5TGM1 cells. While TSPAN7 overexpression did not affect cell proliferation in vitro, TSPAN7 increased 5TGM1 cell adhesion to BM stromal cells and transendothelial migration. In addition, TSPAN7 was found to associate with the molecular chaperone calnexin on the cell surface. Conclusion: These results suggest that elevated TSPAN7 may be associated with better outcomes for up to 50% of MM patients. - Highlights: • TSPAN7 expression is upregulated in newly-diagnosed patients with active multiple myeloma. • Overexpression of TSPAN7 inhibits myeloma tumour development in vivo. • TSPAN7 interacts with calnexin at the plasma membrane in a myeloma cell line.

  2. L-selectin Promotes the Maturation of Dendritic Cells via Up-regulation the Expression of TLR4 in vitro.

    Science.gov (United States)

    Ye, Zhishuai; Liu, Jia; Zheng, Jie; Zhang, Jianing; Huang, Rongchong

    2017-08-01

    The relationship between dendritic cells (DCs) and L-selectin in the progress of atherosclerosis is unclear. Here, we used L-selectin co-cultured with DCs to investigate the effect of L-selectin on the maturation of DCs in vitro Monocytes derived DCs were isolated and cultured from human peripheral blood. After being stimulated with L-selectin and/or its antagonist for 24-48 hours, the feather of cells was observed by the electron microscope. The expression of mature antigens CD1a, CD80, CD83, and CD86 were investigated by flow cytometric analysis (FACS). RT-PCR and FACS were used to detect the mRNA and protein expression of Toll-like receptor 4(TLR-4). We found that only the cells of giving L-selectin have the mature special feature for irregular shapes. DCs which were stimulated by L-selectin have a larger number of expressing CD1a, CD80, CD83, and CD86 compared with non-stimulated and cultured with L-selectin antagonist. The transcript levels of TLR4 were significantly higher after L-selectin and lipopolysaccharide (LPS) stimulated. And the antagonist of L-selectin can deeply decrease the expression of CD1a, CD80, CD83, and CD86 on DCs appeared to coincide with the level of TLR4 transcription. The results demonstrate L-selectin can promote the maturation of DCs via up-regulation the expression of TLR4. © 2017 by the Association of Clinical Scientists, Inc.

  3. IL-6 upregulation contributes to the reduction of miR-26a expression in hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yafei [People' s Liberation Army, Department of Oncology, Wuhan General Hospital of Guangzhou Command, Wuhan (China); Third Military Medical University, Department of Gastroenterology, Southwest Hospital, Chongqing (China); Zhang, Bicheng [People' s Liberation Army, Department of Oncology, Wuhan General Hospital of Guangzhou Command, Wuhan (China); Zhang, Anran [Third Military Medical University, Department of Gastroenterology, Southwest Hospital, Chongqing (China); Li, Xiaohua [Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xi' an (China); Liu, Jian; Zhao, Jie; Zhao, Yong; Gao, Jianfei [People' s Liberation Army, Department of Oncology, Wuhan General Hospital of Guangzhou Command, Wuhan (China); Fang, Dianchun [Third Military Medical University, Department of Gastroenterology, Southwest Hospital, Chongqing (China); Rao, Zhiguo [People' s Liberation Army, Department of Oncology, Wuhan General Hospital of Guangzhou Command, Wuhan (China)

    2012-09-28

    A recent study showed that miR-26a is downregulated in hepatocellular carcinoma tissues and that this downregulation is an independent predictor of survival. Interestingly, the same study also reported that miR-26a downregulation causes a concomitant elevation of IL-6 expression. Because miR-26a expression was found to be transcriptionally downregulated by oncogene c-Myc in various cancers, and the expression of c-Myc was increased by IL-6 stimulation, we hypothesized that IL-6 contributes to reduction of miR-26a in hepatocellular carcinoma. Serum IL-6 was measured by ELISA and miR-26a was detected by qRT-PCR. The data of 30 patients with hepatocellular carcinoma who had undergone surgical tumor resection revealed that serum IL-6 could be considered to be a predictor of survival up to 5 years for hepatocellular carcinoma patients (log-rank test, P < 0.05). We observed that the serum IL-6 concentration was inversely correlated with miR-26a expression in cancerous tissues (Pearson correlation test, r = -0.651, P < 0.01). Furthermore, by in vitro experiments with HepG2 cells, we showed that IL-6 stimulation can lead to miR-26a suppression via c-Myc activation, whereas in normal hepatocyte LO2 cells incubation with IL-6 had no significant effect on miR-26a expression. Taken together, these results indicate that miR-26a reduction in hepatocellular carcinoma might be due to IL-6 upregulation.

  4. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  5. UtroUp is a novel six zinc finger artificial transcription factor that recognises 18 base pairs of the utrophin promoter and efficiently drives utrophin upregulation

    Directory of Open Access Journals (Sweden)

    Onori Annalisa

    2013-01-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is the most common X-linked muscle degenerative disease and it is due to the absence of the cytoskeletal protein dystrophin. Currently there is no effective treatment for DMD. Among the different strategies for achieving a functional recovery of the dystrophic muscle, the upregulation of the dystrophin-related gene utrophin is becoming more and more feasible. Results We have previously shown that the zinc finger-based artificial transcriptional factor “Jazz” corrects the dystrophic pathology in mdx mice by upregulating utrophin gene expression. Here we describe a novel artificial transcription factor, named “UtroUp”, engineered to further improve the DNA-binding specificity. UtroUp has been designed to recognise an extended DNA target sequence on both the human and mouse utrophin gene promoters. The UtroUp DNA-binding domain contains six zinc finger motifs in tandem, which is able to recognise an 18-base-pair DNA target sequence that statistically is present only once in the human genome. To achieve a higher transcriptional activation, we coupled the UtroUp DNA-binding domain with the innovative transcriptional activation domain, which was derived from the multivalent adaptor protein Che-1/AATF. We show that the artificial transcription factor UtroUp, due to its six zinc finger tandem motif, possesses a low dissociation constant that is consistent with a strong affinity/specificity toward its DNA-binding site. When expressed in mammalian cell lines, UtroUp promotes utrophin transcription and efficiently accesses active chromatin promoting accumulation of the acetylated form of histone H3 in the utrophin promoter locus. Conclusions This novel artificial molecule may represent an improved platform for the development of future applications in DMD treatment.

  6. Retinoid X receptor alpha controls innate inflammatory responses through the up-regulation of chemokine expression.

    Science.gov (United States)

    Núñez, Vanessa; Alameda, Daniel; Rico, Daniel; Mota, Rubén; Gonzalo, Pilar; Cedenilla, Marta; Fischer, Thierry; Boscá, Lisardo; Glass, Christopher K; Arroyo, Alicia G; Ricote, Mercedes

    2010-06-01

    The retinoid X receptor alpha (RXRalpha) plays a central role in the regulation of many intracellular receptor signaling pathways and can mediate ligand-dependent transcription by forming homodimers or heterodimers with other nuclear receptors. Although several members of the nuclear hormone receptor superfamily have emerged as important regulators of macrophage gene expression, the existence in vivo of an RXR signaling pathway in macrophages has not been established. Here, we provide evidence that RXRalpha regulates the transcription of the chemokines Ccl6 and Ccl9 in macrophages independently of heterodimeric partners. Mice lacking RXRalpha in myeloid cells exhibit reduced levels of CCL6 and CCL9, impaired recruitment of leukocytes to sites of inflammation, and lower susceptibility to sepsis. These studies demonstrate that macrophage RXRalpha plays key roles in the regulation of innate immunity and represents a potential target for immunotherapy of sepsis.

  7. Ibuprofen protects ischemia-induced neuronal injury via up-regulating interleukin-1 receptor antagonist expression.

    Science.gov (United States)

    Park, E-M; Cho, B-P; Volpe, B T; Cruz, M O; Joh, T H; Cho, S

    2005-01-01

    The inflammatory response accompanies and exacerbates the developing injury after cerebral ischemia. Ibuprofen, a non-steroidal anti-inflammatory drug, has been shown to attenuate injuries in animal models of various neurological diseases. In the present study, we investigated ibuprofen's neuroprotective effects in rats exposed to transient forebrain ischemia and in cultures exposed to oxygen glucose deprivation (OGD). Rats treated with ibuprofen after transient forebrain ischemia displayed long-lasting protection of CA1 hippocampal neurons. There were selective increases in interleukin-1 receptor antagonist gene and protein expression in ibuprofen-treated OGD microglia. Furthermore, treatment with ibuprofen in neuron/microglia co-cultures increased the number of surviving HC2S2 neurons against OGD whereas IL-1ra neutralizing antibody reversed the ibuprofen-induced neuroprotection. The data indicate that ibuprofen-induced IL-1ra secretion is involved in neuroprotection against ischemic conditions.

  8. IL7Rα expression and upregulation by IFNβ in dendritic cell subsets is haplotype-dependent.

    Directory of Open Access Journals (Sweden)

    Fiona C McKay

    Full Text Available The IL7Rα gene is unequivocally associated with susceptibility to multiple sclerosis (MS. Haplotype 2 (Hap 2 confers protection from MS, and T cells and dendritic cells (DCs of Hap 2 exhibit reduced splicing of exon 6, resulting in production of relatively less soluble receptor, and potentially more response to ligand. We have previously shown in CD4 T cells that IL7Rα haplotypes 1 and 2, but not 4, respond to interferon beta (IFNβ, the most commonly used immunomodulatory drug in MS, and that haplotype 4 (Hap 4 homozygotes have the highest risk of developing MS. We now show that IL7R expression increases in myeloid cells in response to IFNβ, but that the response is haplotype-dependent, with cells from homozygotes for Hap 4 again showing no response. This was shown using freshly derived monocytes, in vitro cultured immature and mature monocyte-derived dendritic cells, and by comparing homozygotes for the common haplotypes, and relative expression of alleles in heterozygotes (Hap 4 vs not Hap 4. As for T cells, in all myeloid cell subsets examined, Hap 2 homozygotes showed a trend for reduced splicing of exon 6 compared to the other haplotypes, significantly so in most conditions. These data are consistent with increased signaling being protective from MS, constitutively and in response to IFNβ. We also demonstrate significant regulation of immune response, chemokine activity and cytokine biosynthesis pathways by IL7Rα signaling in IFNβ -treated myeloid subsets. IFNβ-responsive genes are over-represented amongst genes associated with MS susceptibility. IL7Rα haplotype may contribute to MS susceptibility through reduced capacity for IL7Rα signalling in myeloid cells, especially in the presence of IFNβ, and is currently under investigation as a predictor of therapeutic response.

  9. Mild caloric restriction up-regulates the expression of prohibitin: A proteome study

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Shoko; Masuda, Junko; Shimagami, Hiroshi [Department of Applied Biological Chemistry, The University of Tokyo, Tokyo (Japan); Ohta, Yutaka; Kanda, Tomomasa [Research Laboratories for Health and Gustatory Science, Asahi Breweries Limited, Ibaraki (Japan); Saito, Kenji [Department of Applied Biological Chemistry, The University of Tokyo, Tokyo (Japan); Corporate Sponsored Research Program ' Food for Life' , The University of Tokyo, Tokyo (Japan); Kato, Hisanori, E-mail: akatoq@mail.ecc.u-tokyo.ac.jp [Department of Applied Biological Chemistry, The University of Tokyo, Tokyo (Japan); Corporate Sponsored Research Program ' Food for Life' , The University of Tokyo, Tokyo (Japan)

    2011-02-18

    Research highlights: {yields} Proteomic analysis was performed to elucidate physiological alterations induced by mild CR. {yields} The results suggest good reproducibility and possibility to grasp the important response of CR. {yields} The increase in prohibitin abundance was observed in CR groups by proteomic analysis. {yields} We hypothesize that prohibitin might be involved in the longevity induced by CR. -- Abstract: Caloric restriction (CR) is well known to expand lifespan in a variety of species and to retard many age-related diseases. The effects of relatively mild CR on the proteome profile in relation to lifespan have not yet been reported, despite the more extensive studies of the stricter CR conditions. Thus, the present study was conducted to elucidate the protein profiles in rat livers after mild CR for a relatively short time. Young growing rats were fed CR diets (10% and 30% CR) for 1 month. We performed the differential proteomic analysis of the rat livers using two-dimensional electrophoresis combined with MALDI-TOF mass spectrometry. The most remarkable protein among the differentially expressed proteins was found to be prohibitin, the abundance of which was increased by 30% CR. Prohibitin is a ubiquitously expressed protein shown to suppress cell proliferation and to be related to longevity. The increase in prohibitin was observed both in 10% and 30% CR by Western blot analysis. Furthermore, induction of AMP-activated kinase (AMPK) protein, related to the actions of prohibitin in promoting longevity, was observed. The increased prohibitin level in response to subtle CR suggests that this increase may be one of the early events leading to the expansion of lifespan in response to CR.

  10. Hypercortisolism and pregnancy upregulate von Willebrand factor through different mechanisms: report on a pregnant patient with Cushing's syndrome.

    Science.gov (United States)

    Casonato, Alessandra; Daidone, Viviana; Pontara, Elena; Albiger, Nora; Cattini, Maria G; Scaroni, Carla

    2010-07-01

    Von Willebrand factor (VWF) is reportedly increased in pregnancy and Cushing's syndrome, inducing a hypercoagulable state. In Cushing's syndrome, VWF gene promoter polymorphisms modulate cortisol-dependent VWF upregulation, haplotype 1 (GCAG) and short GT-repeats (GT)(S) being the susceptible, and haplotype 2 (CTGA) and long GT-repeats (GT)(L) the protective pattern. We report on a Cushing's syndrome patient who became pregnant under hypercortisolism, in whom we monitored the evolution of her hypercoagulable state. During the active phase of Cushing's syndrome, the patient's VWF and factor VIII concentrations were normal, despite high urinary-free cortisol levels consistent with the presence of haplotype 2 and (GT)(L) alleles in the VWF gene promoter. VWF and factor VIII increased significantly and progressively after she became pregnant and peaked just before delivery, returning to normal 5 months later, while her hypercortisolism persisted. Our data indicate that two different mechanisms upregulate VWF under hypercortisolism and pregnancy, the latter being independent of the VWF promoter haplotypes sensitive to cortisol excess.

  11. Upregulation of CD72 expression on CD19(+) CD27(+) memory B cells by CD40L in primary immune thrombocytopenia.

    Science.gov (United States)

    Lyu, Mingen; Hao, Yating; Li, Yang; Lyu, Cuicui; Liu, Wenjie; Li, Huiyuan; Xue, Feng; Liu, Xiaofan; Yang, Renchi

    2017-07-01

    CD72 is a co-receptor of B cells and regulates B cell activation. Although aberrant expression of CD72 has been reported in primary immune thrombocytopenia (ITP), it is uncertain whether this aberrant expression is restricted to specific B cell subsets. Furthermore, the mechanisms that regulate CD72 expression are unknown. In this study, we found higher frequency of CD19(+) B cells, CD19(+) CD27(+) memory B cells and lower frequency of CD19(+) CD27(-) naive B cells in active ITP patients compared with controls and patients in remission. CD72 expression on CD19(+) CD27(+) cells was upregulated in active ITP patients and correlated with platelet count and anti-platelet autoantibodies. In vitro, CD40L could specifically induce CD72 upregulation on CD19(+) CD27(+) B cells. In combination with CD40L, interleukin (IL) 10 and BAFF (also termed TNFSF13B) further enhanced CD72 expression on CD19(+) CD27(+) B cells, whereas IL21 reduced CD72 upregulation. CD72mRNA expression after CD40L stimulation was increased in ITP patients and controls. Significant increase of CD40L on CD4(+) T cells was correlated with CD72 expression on CD19(+) CD27(+) B cells in ITP patients. In conclusion, upregulation of CD72 expression on CD27(+) memory B cells might take part in the pathogenesis of ITP. Elevated CD40L on CD4(+) cells combined with cytokines might contribute to the upregulation of CD72 expression on CD27(+) memory B cells. © 2017 John Wiley & Sons Ltd.

  12. Temporary upregulation of anti-inflammatory cytokine IL-13 expression in the brains of CD14 deficient mice in the early stage of prion infection.

    Science.gov (United States)

    Hasebe, Rie; Suzuki, Akio; Yamasaki, Takeshi; Horiuchi, Motohiro

    2014-11-07

    CD14 deficient (CD14(-/-)) mice survived longer than wild-type (WT) C57BL/6J mice when inoculated with prions intracerebrally, accompanied by increased expression of anti-inflammatory cytokine IL-10 by microglia in the early stage of infection. To assess the immune regulatory effects of CD14 in detail, we compared the gene expression of pro- and anti-inflammatory cytokines in the brains of WT and CD14(-/-) mice infected with the Chandler strain. Gene expression of the anti-inflammatory cytokine IL-13 in prion-infected CD14(-/-) mice was temporarily upregulated at 75dpi, whereas IL-13 gene expression was not upregulated in prion-infected WT mice. Immunofluorescence staining showed that IL-13 was mainly expressed in neurons of the thalamus at 75dpi. These results suggest that CD14 can suppress IL-13 expression in neurons during the early stage of prion infection.

  13. Interferon-alpha (Intron A) upregulates urokinase-type plasminogen activator receptor gene expression.

    Science.gov (United States)

    Wu, Shanshan; Murrell, George A C; Wang, Yao

    2002-07-01

    The regulation of urokinase plasminogen activator receptor (uPAR) gene expression by interferon-alpha (IFN-alpha, or Intron A) and interferon-gamma (IFN-gamma) was studied in a HCT116 colon cancer cell line. uPAR mRNA levels were increased in a dose- and time-dependent manner in cells stimulated with IFN-alpha or IFN-gamma. uPAR protein levels reflected IFN-alpha and IFN-gamma induction of uPAR mRNA production. Cycloheximide, a protein synthesis inhibitor, also induced uPAR mRNA accumulation either alone or in combination with IFN-alpha or IFN-gamma, suggesting that the effect on uPAR mRNA levels activated by IFN-alpha or IFN-gamma does not require de novo protein synthesis. Both sodium butyrate and amiloride inhibited the uPAR mRNA levels induced by IFN-alpha or IFN-gamma. These results may provide useful information for the treatment of patients receiving IFN-alpha or IFN-gamma.

  14. Activation of PPAR-γ reduces HPA axis activity in diabetic rats by up-regulating PI3K expression.

    Science.gov (United States)

    Torres, Rafael Carvalho; Magalhães, Nathalia Santos; E Silva, Patrícia M R; Martins, Marco A; Carvalho, Vinicius F

    2016-10-01

    Increased hypothalamus-pituitary-adrenal axis (HPA) activity in diabetes is strongly associated with several morbidities noted in patients with the disease. We previously demonstrated that hyperactivity of HPA axis under diabetic conditions is associated with up-regulation of adrenocorticotrophic hormone (ACTH) receptors (MC2R) in adrenal and down-regulation of glucocorticoid receptors (GR and MR) in pituitary. This study investigates the role of peroxisome proliferator-activated receptor (PPAR)-γ in HPA axis hyperactivity in diabetic rats. Diabetes was induced by intravenous injection of alloxan into fasted rats. The PPAR-γ agonist rosiglitazone and/or PI3K inhibitor wortmannin were administered daily for 18 consecutive days, starting 3days after diabetes induction. Plasma ACTH and corticosterone were evaluated by radioimmunoassay, while intensities of MC2R, proopiomelanocortin (POMC), GR, MR, PI3K p110α and PPAR-γ were assessed using immunohistochemistry. Rosiglitazone treatment inhibited adrenal hypertrophy and hypercorticoidism observed in diabetic rats. Rosiglitazone also significantly reversed the diabetes-induced increase in the MC2R expression in adrenal cortex. We noted that rosiglitazone reduced the number of corticotroph cells and inhibited both anterior pituitary POMC expression and plasma ACTH levels. Furthermore, rosiglitazone treatment was unable to restore the reduced expression of GR and MR in the anterior pituitary of diabetic rats. Rosiglitazone increased the number of PPAR-γ(+) cells and expression of PI3K p110α in both anterior pituitary and adrenal cortex of diabetic rats. In addition, wortmannin blocked the ability of rosiglitazone to restore corticotroph cell numbers, adrenal hypertrophy and plasma corticosterone levels in diabetic rats. In conclusion, our findings revealed that rosiglitazone down-regulates HPA axis hyperactivity in diabetic rats via a mechanism dependent on PI3K activation in pituitary and adrenal glands.

  15. Isolation and characterization of a novel rat factor H-related protein that is up-regulated in glomeruli under complement attack.

    Science.gov (United States)

    Ren, Guohui; Doshi, Mona; Hack, Bradley K; Alexander, Jessy J; Quigg, Richard J

    2002-12-13

    The factor H family in humans is composed of seven distinct proteins, including factor H-related proteins (FHR) 1-5. All members contain tandemly arranged short consensus repeats (SCR) typical of the regulators of complement activation gene family. FHR-5 is unusual for this group of proteins, as it was initially identified as a component of immune deposits in glomerular diseases. During our cloning of the cDNA for rat factor H from glomerular epithelial cells (GEC), we identified an alternative 2729-bp cDNA transcript. The translated sequence encoded a protein containing 11 SCRs, most similar to SCRs 7-15 and 19-20 in native rat factor H, which is the same basic structure of human FHR-5. As such, this rat protein was termed FHR. Recombinant rat FHR produced in a eukaryotic expression system had a molecular mass of 78 kDa. In functional studies, recombinant FHR bound C3b and inhibited the complement alternative pathway in a dose-dependent fashion. Given the prominent expression of FHR-5 in human membranous nephropathy, a disease in which complement activation occurs in the vicinity of GEC, the expression of FHR in a rat model of this disease was evaluated. In both in vitro and in vivo models of complement activation on the GEC, FHR mRNA was up-regulated by a factor of 3-6-fold compared with controls in which complement could not be activated. Thus, we have identified a novel factor H family member in rats. This FHR protein is analogous to human FHR-5, both in structure and in potential involvement in glomerular immune complex diseases.

  16. Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Upregulates Survivin Expression in KSHV-Associated B-Lymphoma Cells and Contributes to Their Proliferation▿

    OpenAIRE

    Lu, Jie; Verma, Subhash C.; Murakami, Masanao; Cai, Qiliang; KUMAR, Pankaj; Xiao, Bingyi; Robertson, Erle S.

    2009-01-01

    Survivin is a master regulator of cell proliferation and cell viability and is highly expressed in most human tumors. The molecular network linked to survivin expression in tumors has not been completely elucidated. In this study, we show that latency-associated nuclear antigen (LANA), a multifunctional protein of Kaposi's sarcoma-associated herpesvirus (KSHV) that is found in Kaposi's sarcoma tumors, upregulates survivin expression and increases the proliferation of KSHV-infected B cells. An...

  17. Interleukin-6 enhances cancer stemness and promotes metastasis of hepatocellular carcinoma via up-regulating osteopontin expression

    Science.gov (United States)

    Wang, Chao-Qun; Sun, Hao-Ting; Gao, Xiao-Mei; Ren, Ning; Sheng, Yuan-Yuan; Wang, Zheng; Zheng, Yan; Wei, Jin-Wang; Zhang, Kai-Li; Yu, Xin-Xin; Zhu, Yin; Luo, Qin; Yang, Lu-Yu; Dong, Qiong-Zhu; Qin, Lun-Xiu

    2016-01-01

    Interleukin-6 (IL-6), one of the most important inflammatory cytokines, plays a pivotal role in metastasis and stemness of solid tumors. However, the underlying mechanisms of IL-6 in HCC metastasis remain unclear. In the present study, we demonstrated that stemness and metastatic potential of HCC cells were significantly enhanced after IL-6 stimulation. IL-6 could induce expression of osteopontin (OPN), along with other stemness-related genes, including HIF1α, BMI1, and HEY1. Block of OPN induction could significantly abrogate the effect of IL-6 on stemness and metastasis of HCC cells. Furthermore, IL-6 level was positively correlated with OPN in HCC. Patients with high plasma IL-6 or OPN level had poorer prognosis. In multivariate analysis, IL-6 and OPN were demonstrated to be independent prognostic indicators for HCC patients, and their combination had a better prognostic performance than IL-6 or OPN alone. Collectively, our findings indicate that IL-6 could enhance stemness and promote metastasis of HCC via up-regulating OPN expression, which can be a potential therapeutic target for combating HCC metastasis, and the combination of IL-6 and OPN serves as a promising prognostic predictor for HCC.

  18. Hemokinin-1(4-11-induced analgesia selectively up-regulates δ-opioid receptor expression in mice.

    Directory of Open Access Journals (Sweden)

    Cai-Yun Fu

    Full Text Available Our previous studies have shown that an active fragment of human tachykinins (hHK-1(4-11 produced an opioid-independent analgesia after intracerebroventricular (i.c.v. injection in mice, which has been markedly enhanced by a δ OR antagonist, naltrindole hydrochloride (NTI. In this study, we have further characterized the in vivo analgesia after i.c.v. injection of hHK-1(4-11 in mouse model. Our qRT-PCR results showed that the mRNA levels of several ligands and receptors (e.g. PPT-A, PPT-C, KOR, PDYN and PENK have not changed significantly. Furthermore, neither transcription nor expression of NK1 receptor, MOR and POMC have changed noticeably. In contrast, both mRNA and protein levels of DOR have been up-regulated significantly, indicating that the enhanced expression of δ opioid receptor negatively modulates the analgesia induced by i.c.v. injection of hHK-1(4-11. Additionally, the combinatorial data from our previous and present experiments strongly suggest that the discriminable distribution sites in the central nervous system between hHK-1(4-11 and r/mHK-1 may be attributed to their discriminable analgesic effects. Altogether, our findings will not only contribute to the understanding of the complicated mechanisms regarding the nociceptive modulation of hemokinin-1 as well as its active fragments at supraspinal level, but may also lead to novel pharmacological interventions.

  19. Farnesoid X receptor up-regulates expression of Lipid transfer inhibitor protein in liver cells and mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China); Liu, Hong [Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Peng, Jiahe; Wang, Yongchao; Zhang, Yan; Dong, Jinyu; Liu, Xiaohua; Guo, Dongmei [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China); Jiang, Yu, E-mail: yujiang61@gmail.com [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China)

    2013-11-29

    Highlights: •FXR up-regulates apoF. •It binds to ER1 element. •It activates apoF gene promoter. -- Abstract: Apolipoprotein F is a component protein mainly secreted by liver and resides on several lipoprotein classes. It can inhibit lipids transfer between different lipoproteins. FXR is a member of the nuclear receptor superfamily which is also highly expressed in the liver. It modulates bile acids synthesis and lipids metabolism by transcriptional regulation. We aimed to determine whether apoF can be regulated by FXR. The FXR agonist Chenodeoxycholic acid (CDCA) and GW4064 both can activate the expression of apoF in liver cell lines and in C57/BL6 mouse liver. This is dependent on the binding of FXR to the FXR element ER1 (−2904 to −2892 bp) in the apoF gene promoter. Taken together, we have identified apoF as likely another target gene of FXR.

  20. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration.

    Science.gov (United States)

    Zaytseva, Yekaterina Y; Harris, Jennifer W; Mitov, Mihail I; Kim, Ji Tae; Butterfield, D Allan; Lee, Eun Y; Weiss, Heidi L; Gao, Tianyan; Evers, B Mark

    2015-08-07

    Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells and orthotopic CRCs. Immunohistochemical evaluation demonstrated increased expression of FASN and p62, a marker of autophagy inhibition, in primary CRCs and liver metastases compared to matched normal colonic mucosa. Our findings indicate that overexpression of FASN plays a crucial role in maintaining energy homeostasis in CRC via increased oxidation of endogenously synthesized lipids. Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key adaptation mechanisms that mediate the effects of FASN on cancer cell survival and metastasis, providing a strong rationale for targeting this pathway in advanced CRC.

  1. Up-regulation of Na + expression in the area postrema of total sleep deprived rats by TOF-SIMS analysis

    Science.gov (United States)

    Mai, Fu-Der; Chen, Bo-Jung; Ling, Yong-Chien; Wu, Un-In; Huang, Yi-Lun; Chang, Hung-Ming

    2008-12-01

    Area postrema (AP) is a circumventricular organ plays an important role in sodium homeostasis and cardiovascular regulation. Since sleep deficiency will cause cardiovascular dysfunction, the present study aims to determine whether sodium level would significantly alter in AP following total sleep deprivation (TSD). Sodium level was investigated in vivo by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Clinical manifestation of cardiovascular function was demonstrated by mean arterial pressure (MAP) values. Results indicated that in normal rats, TOF-SIMS spectrum revealed a major peak of sodium ion counting as 5.61 × 10 5 at m/ z 23. The sodium ions were homogeneous distributed in AP without specific localization. However, following TSD, the sodium intensity was relatively increased (6.73 × 10 5) and the signal for sodium image was strongly expressed throughout AP with definite spatial distribution. MAP of TSD rats is 138 ± 5 mmHg, which is significantly higher than that of normal ones (121 ± 3 mmHg). Regarding AP is an important area for sodium sensation and development of hypernatremic related sympatho-excitation; up-regulation of sodium expression following TSD suggests that high sodium level might over-activate AP, through complex neuronal networks involving in sympathetic regulation, which could lead to the formation of TSD relevant cardiovascular diseases.

  2. Glial cell line-derived neurotrophic factor up-regulates GTP-cyclohydrolase I activity and tetrahydrobiopterin levels in primary dopaminergic neurones

    DEFF Research Database (Denmark)

    Bauer, M; Suppmann, S; Meyer, M;

    2002-01-01

    Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurones against toxic and physical damage. In addition, GDNF promotes differentiation and structural integrity of dopaminergic neurones. Here we show that GDNF can support the function of primary dopaminergic neurones...... by triggering activation of GTP-cyclohydrolase I (GTPCH I), a key enzyme in catecholamine biosynthesis. GDNF stimulation of primary dopaminergic neurones expressing both tyrosine 3-monooxygenase and GTPCH I resulted in a dose-dependent doubling of GTPCH I activity, and a concomitant increase...... in tetrahydrobiopterin levels whereas tyrosine 3-monooxygenase activity was not altered. Actinomycin D, asan inhibitor of de novo biosynthesis, abolished any GDNF-mediated up-regulation of GTPCH I activity. However, GTPCH I mRNA levels in primary dopaminergic neurones were not altered by GDNF treatment, suggesting...

  3. Expression of angiostatic factors in colorectal cancer.

    Science.gov (United States)

    Yoshida, Y; Oshika, Y; Fukushima, Y; Tokunaga, T; Hatanaka, H; Kijima, H; Yamazaki, H; Ueyama, Y; Tamaoki, N; Miura, S; Nakamura, M

    1999-12-01

    Angiogenesis plays an important role in growth and proliferation of cancer. Various angiogenic and angiostatic factors regulate angiogenesis. We examined expression of genes encoding various angiostatic factors: thrombospondin 1 (TSP1), thrombospondin 2 (TSP2), brain-specific angiogenesis inhibitor 1 (BAI1) and angiopoietin 2 (AGP2) in 62 colorectal cancers and 40 samples of extraneoplastic colon mucosa. The expression of the angiostatic factors TSP2 and AGP2 were significantly increased in the cancerous mucosa as compared to these in extraneoplastic mucosa (o2 test; p<0. 0001, and Fisher's exact test; p<0.0001), while the increase in TSP1 expression was not significant. BAI1 expression was slightly decreased in the cancer tissue. These results suggested that specific types of angiostatic factors might have protective roles against cancer cell proliferation via dormancy due to hyponutrition caused by decreased vascularity.

  4. Hepatotropic growth factors protect hepatocytes during inflammation by upregulation of antioxidative systems

    Institute of Scientific and Technical Information of China (English)

    Matthias Glanemann; Daniel Knobeloch; Sabrina Ehnert; Mihaela Culmes; Claudine Seeliger; Daniel Seehofer; Andreas K Nussler

    2011-01-01

    AIM: To investigate effects of hepatotropic growth factors on radical production in rat hepatocytes during sepsis. METHODS: Rat hepatocytes,isolated by collagenase perfusion,were incubated with a lipopolysaccharide (LPS)-containing cytokine mixture of interleukin-1β,tumor necrosis factor-α and interferon-γ to simulate sepsis and either co-incubated or pre-incubated with hepatotropic growth factors,e.g. hepatocyte growth factor,epidermal growth factor and/or transforming growth factor-α. Cells were analyzed for glutathione levels. Culture supernatants were assayed for production of reactive oxygen intermediates (ROIs) as well as NO2-,NO3-and S-nitrosothiols. To determine cellular damage,release of aspartate aminotransferase (AST) into the culture medium was analyzed. Activation of nuclear factor (NF)-κB was measured by electrophoretic mobility shift assay. RESULTS: Rat hepatocytes treated with the LPS-containing cytokine mixture showed a significant increase in ROI and nitrogen oxide intermediate formation. AST leakage was not significantly increased in cells treated with the LPS-containing cytokine mixture,independent of growth-factor co-stimulation. However,pretreatment with growth factors significantly reduced AST leakage and ROI formation while increasing cellular glutathione. Application of growth factors did not result in increased NF-κB activation. Pretreatment with growth factors further increased formation of NO2-,NO3-and S-nitrosothiols in hepatocytes stimulated with LPS-containing cytokine mixture. Thus,we propose that,together with an increase in glutathione increased NO2-,NO3-formation might shift their metabolism towards non-toxic products. CONCLUSION: Our data suggest that hepatotropic growth factors positively influence sepsis-induced hepatocellular injury by reducing cytotoxic ROI formation via induction of the cellular protective antioxidative systems.

  5. Baicalin downregulates Porphyromonas gingivalis lipopolysaccharide-upregulated IL-6 and IL-8 expression in human oral keratinocytes by negative regulation of TLR signaling.

    Directory of Open Access Journals (Sweden)

    Wei Luo

    Full Text Available Periodontal (gum disease is one of the main global oral health burdens and severe periodontal disease (periodontitis is a leading cause of tooth loss in adults globally. It also increases the risk of cardiovascular disease and diabetes mellitus. Porphyromonas gingivalis lipopolysaccharide (LPS is a key virulent attribute that significantly contributes to periodontal pathogenesis. Baicalin is a flavonoid from Scutellaria radix, an herb commonly used in traditional Chinese medicine for treating inflammatory diseases. The present study examined the modulatory effect of baicalin on P. gingivalis LPS-induced expression of IL-6 and IL-8 in human oral keratinocytes (HOKs. Cells were pre-treated with baicalin (0-80 µM for 24 h, and subsequently treated with P. gingivalis LPS at 10 µg/ml with or without baicalin for 3 h. IL-6 and IL-8 transcripts and proteins were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The expression of nuclear factor-κB (NF-κB, p38 mitogen-activated protein kinase (MAPK and c-Jun N-terminal kinase (JNK proteins was analyzed by western blot. A panel of genes related to toll-like receptor (TLR signaling was examined by PCR array. We found that baicalin significantly downregulated P. gingivalis LPS-stimulated expression of IL-6 and IL-8, and inhibited P. gingivalis LPS-activated NF-κB, p38 MAPK and JNK. Furthermore, baicalin markedly downregulated P. gingivalis LPS-induced expression of genes associated with TLR signaling. In conclusion, the present study shows that baicalin may significantly downregulate P. gingivalis LPS-upregulated expression of IL-6 and IL-8 in HOKs via negative regulation of TLR signaling.

  6. MAPKK-dependent growth factor-induced upregulation of P2Y2 receptors in vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Hou, M; Möller, S; Edvinsson, L;

    1999-01-01

    The ATP- and UTP-sensitive P2Y2 receptor which mediates both contractile and mitogenic effects has recently been shown to be upregulated in the synthetic phenotype of the vascular smooth muscle cell (VSMC). Using a competitive RT-PCR we demonstrate that the P2Y2 receptor mRNA is increased by fetal...... calf serum and other growth factors in a MAPKK-dependent way. This was confirmed at the functional level by examining UTP-stimulated release of intracellular Ca2+. Furthermore, the P2Y2 receptor mRNA is positively autoregulated by ATP and the mRNA is rapidly degraded with only 26% remaining after 1 h...... in the presence of actinomycin D. Our results indicate growth factor regulation and rapid turnover of the P2Y2 receptor mRNA, which may be of importance in atherosclerosis and neointima formation after balloon angioplasty....

  7. Interferon-gamma increased epithelial barrier function via upregulating claudin-7 expression in human submandibular gland duct epithelium.

    Science.gov (United States)

    Abe, Ayumi; Takano, Kenichi; Kojima, Takashi; Nomura, Kazuaki; Kakuki, Takuya; Kaneko, Yakuto; Yamamoto, Motohisa; Takahashi, Hiroki; Himi, Tetsuo

    2016-06-01

    Tight junctions (TJs) are necessary for salivary gland function and may serve as indicators of salivary gland epithelial dysfunction. IgG4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition which disrupts the TJ associated epithelial barrier. The salivary glands are one of the most frequently involved organs in IgG4-RD, however, changes of the TJ associated epithelial barrier in salivary gland duct epithelium is poorly understood. Here, we investigated the regulation and function of TJs in human submandibular gland ductal epithelial cells (HSDECs) in normal and IgG4-RD. We examined submandibular gland (SMG) tissue from eight control individuals and 22 patients with IgG4-RD and established an HSDEC culture system. Immunohistochemistry, immunocytochemistry, western blotting, and measurement of transepithelial electrical resistance (TER) were performed. Claudin-4, claudin-7, occludin, and JAM-A were expressed at the apical side of the duct epithelium in submandibular gland (SMG) tissue and at the cell borders in HSDECs of normal and IgG4-RD. The expression and distribution of TJs in SMG tissue were not different in control individuals and patients with IgG4-RD in vivo and in vitro. Although interferon-gamma (IFNγ) generally disrupts the integrity and function of TJs, as manifested by decreased epithelial barrier function, IFNγ markedly increased the epithelial barrier function of HSDECs via upregulation of claudin-7 expression in HSDECs from patients with IgG4-RD. This is the first report showing an IFNγ-dependent increase in epithelial barrier function in the salivary gland duct epithelium. Our results provide insights into the functional significance of TJs in salivary gland duct epithelium in physiological and pathological conditions, including IgG4-RD.

  8. Lipid rafts promote liver cancer cell proliferation and migration by up-regulation of TLR7 expression

    Science.gov (United States)

    Liu, Yuan; Guo, Xiaodong; Wu, Liyuan; Yang, Mei; Li, Zhiwei; Gao, Yinjie; Liu, Shuhong; Zhou, Guangde; Zhao, Jingmin

    2016-01-01

    Hepatocellular carcinoma (HCC) occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Toll-like receptors (TLRs) play an important role in innate immune responses and TLR signaling has been associated with various chronic liver diseases. Lipid rafts provide the necessary microenvironment for certain specialized signaling events to take place, such as the innate immune recognition. The purpose of this study was to determine the pattern of TLR7 expression in HCC, how to recruit TLR7 into lipid rafts responded to ligands and whether targeting TLR7 might have beneficial effects. The study group was comprised of 130 human liver tissues: 23 chronic hepatitis B (CHB), 18 liver cirrhosis (LC), 68 HCC and 21 normal livers. The expression of TLR7 was evaluated using immunohistochemistry, western blotting, and flow cytometry. Proliferation and migration of human HepG2 cells were studied following stimulation of TLR7 using the agonist gardiquimod and inhibition with a specific antagonist 20S-protopanaxadiol (aPPD). The activation of lipid raft-associated TLR7 signaling was measured using western blotting, double immunohistochemistry and immunoprecipitation in liver tissues and HepG2 cells. TLR7 expression was up-regulated in human HCC tissues and hepatoma cell line. Proliferation and migration of HepG2 cells in vitro increased significantly in response to stimulation of TLR7. TLR7 inhibition using aPPD significantly reduced HepG2 cell migration in vitro. The lipid raft protein caveolin-1 and flotillin-1 were involved with enhanced TLR7 signaling in HCC. Conclusions The data suggest that inhibiting TLR7 with antagonists, like aPPD, could potentially be used as a novel therapeutic approach for HCC. PMID:27588480

  9. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.

    Science.gov (United States)

    Hirose, Jun; Ryan, Lawrence M; Masuda, Ikuko

    2002-12-01

    or cartilage extracts. Both CILP and ANK mRNA expression and ePPi elaboration were stimulated by TGFbeta1 and inhibited by IGF-1 in chondrocytes from all sources. CILP and ANK mRNA expression correlates with chondrocyte ePPi accumulation around CPPD and OA chondrocytes, and all respond similarly to growth factor stimulation. These findings suggest that up-regulated CILP and ANK expression contributes to higher ePPi accumulation from CPPD crystal-forming cartilage.

  10. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo [The First Hospital of Jilin University, Changchun 130021 (China); KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States); Xin, Ying, E-mail: xiny@jlu.edu.cn [KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States); Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021 (China); Cai, Lu, E-mail: l0cai001@louisville.edu [The First Hospital of Jilin University, Changchun 130021 (China); KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States)

    2014-09-01

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5 mg/kg daily in five days of each week for 3 months and then kept until 6 months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3 months, and the protective effect could be sustained at 3 months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. - Highlights: • Sulforaphane (SFN) could attenuate diabetes-induced germ cell apoptosis. • SFN could preserve germ cell proliferation under diabetic conditions. • SFN testicular protection was sustained until 3 months after

  11. Bioregulation of lubricin expression by growth factors and cytokines

    Directory of Open Access Journals (Sweden)

    A R C Jones

    2007-03-01

    Full Text Available Lubricin, also commonly referred to as superficial zone protein (SZP and proteoglycan 4 (PRG4, is a multifaceted, cytoprotective glycoprotein that contributes to the boundary lubrication properties facilitating low friction levels at interfacing surfaces of articular cartilage. Biological processes effecting the gain or loss of lubricin function may therefore have important consequences relevant to joint physiology and pathology. Herein, we describe experiments conducted to extend our understanding of the influence of various cytokines and growth factors on lubricin gene expression and protein secretion in synovial tissues. Exposure of synoviocytes, chondrocytes and cartilage explants to proinflammatory cytokines such as interleukin-1 (IL-1 and tumor necrosis factor-alpha (TNF-alpha results in a marked reduction in the expression and/or abundance of secreted lubricin, with corresponding alterations in the amounts of cartilage-associated (boundary lubricin. Conversely, treatment with transforming growth factor-beta (TGF-beta significantly upregulates lubricin synthesis, secretion and cartilage boundary association. Oncostatin M also appears to be capable of modulating lubricin metabolism, with the potential to induce lubricin synthesis by chondrocytes. Collectively, the results of studies on cytokine and growth factor regulation of lubricin biosynthesis and biodistribution may help provide new insights and therapeutic perspectives for promoting joint function.

  12. Salivary agglutinin/DMBT1SAG expression is up-regulated in the presence of salivary gland tumors

    DEFF Research Database (Denmark)

    Bikker, F J; van der Wal, J E; Ligtenberg, A J M

    2004-01-01

    Salivary agglutinin (SAG) is encoded by the gene Deleted in Malignant Brain Tumors 1 (DMBT1) and represents the salivary variant of DMBT1 (DMBT1(SAG)). While SAG is a bona fide anti-caries factor, DMBT1 was proposed as a candidate tumor-suppressor for brain, digestive tract, and lung cancer. Though...... DMBT1(SAG) is expressed in the salivary glands, its expression in salivary gland tumors is unknown. Here we analyzed DMBT1(SAG) expression in 20 salivary gland tumors and 14 tumor-flanking tissues by immunohistochemistry. DMBT1(SAG) in salivary gland tumors resembles the changes of expression levels...... defense, SAG may serve as a potential tumor indicator and/or tumor suppressor in salivary gland tissue....

  13. Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation.

    Science.gov (United States)

    Bodzin, Adam S; Wei, Zhengyu; Hurtt, Reginald; Gu, Tina; Doria, Cataldo

    2012-07-01

    Hepatocellular carcinoma (HCC) is the major form of primary liver cancer which accounts for more than half million deaths annually worldwide. While the incidence of HCC is still on the rise, options of treatment are limited and the overall survival rate is poor. The acquisition of cancer drug resistance remains one of the key hurdles to successful treatment. Clearly, a thorough understanding of the underlying mechanisms is needed for new strategies to design novel treatments and/or to improve the current therapies. In the present study, we examined the expression of cancer stem cell (CSC) marker CD133, the activation of insulin-like growth factor 1 receptor (IGF-1R) signaling, and the nuclear translocation of IGF-1R in HCC Mahlavu cells under the treatment of gefitinib, a cancer drug that inhibits epidermal growth factor receptor (EGFR) pathway. Our results demonstrated that Mahlavu cells exhibited strong gefitinib resistance and the CD133 expression level was dramatically increased (from 3.88% to 32%) after drug treatment. In addition, the gefitinib treated cells displayed increased levels of phosphorylation in IGF-1R and Akt, indicating the intensified activation of this cancer-associated signaling pathway. Moreover, we revealed that IGF-1R underwent nuclear translocation in gefitinib treated cells using confocal microscopy. The IGF-1R nuclear translocation was enhanced under gefitinib treatment and appeared in a dose-dependent manner. Our findings suggest that increased IGF-1R nuclear translocation after gefitinib treatment may contribute to the drug resistance and IGF1-R activation, which might also associate with the upregulation of CD133 expression.

  14. Up-regulation of NKX3.1 Expression and Inhibition of LNCaP Cell Proliferation Induced by an Inhibitory Element Decoy

    Institute of Scientific and Technical Information of China (English)

    An-Li JIANG; Xiao-Yan HU; Peng-Ju ZHANG; Mei-Lan HE; Feng KONG; Zhi-Fang LIU; Hui-Qing YUAN; Jian-Ye ZHANG

    2005-01-01

    NKX3.1 is an androgen-regulated prostate-specific homeobox gene that is thought to play an important role in prostate development and cancerogenesis. NKX3.1 acts as a tumor suppressor gene specifically in the prostate. Up-regulation of NKX3.1 gene offers a promising gene therapy for prostate cancer. The decoy strategy has been developed and is considered a useful tool for regulating gene expression and gene therapy. In our previous studies, we identified a 20 bp inhibitory element upstream of the NKX3.1 promoter.In this study, we focused on using the 20 bp inhibitory element decoy to block negative regulation of the NKX3.1 gene and to up-regulate NKX3.1 expression using synthetic double-stranded oligodeoxynucleotides of the 20 bp inhibitory element. We found in an electrophoretic mobility shift assay experiment that the 20 bp inhibitory decoy presented competitive binding to a specific binding protein of the 20 bp inhibitory element in prostate cancer cell line LNCaP. In luciferase reporter gene assays, we found that the 20 bp inhibitory decoy could enhance NKX3.1 promoter activity, and RT-PCR and Western blot analysis revealed that NKX3.1expression was up-regulated effectively by the transfection with the 20 bp inhibitory decoy. Furthermore,cell proliferation was inhibited by up-regulated NKX3.1 expression induced by the 20 bp inhibitory decoy.

  15. Upregulation of ULK1 expression in PC-3 cells following tumor protein P53 transfection by sonoporation

    Science.gov (United States)

    WANG, YU; CHEN, YI-NI; ZHANG, WEI; YANG, YU; BAI, WEN-KUN; SHEN, E; HU, BING

    2016-01-01

    The aim of the present study was to investigate whether ultrasound combined with microbubbles was able to enhance liposome-mediated transfection of genes into human prostate cancer cells, and to examine the association between autophagy and tumor protein P53 (P53). An MTT assay was used to evaluate cell viability, while flow cytometry and fluorescence microscopy were used to measure gene transfection efficiency. Autophagy was observed using transmission electron microscopy. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were used to assess the expression of autophagy-associated genes. The results of the present study revealed that cell viability was significantly reduced following successfully enhanced transfection of P53 by ultrasound combined with microbubbles. In addition, serine/threonine-protein kinase ULK1 levels were simultaneously upregulated. Castration-resistant prostate cancer is difficult to treat and is investigated in the present study. P53 has a significant role in a number of key biological functions, including DNA repair, apoptosis, cell cycle, autophagy, senescence and angiogenesis. Prior to the present study, to the best of our knowledge, increased transfection efficiency and reduced side effects have been difficult to achieve. Ultrasound is considered to be a ‘gentle’ technique that may be able to achieve increased transfection efficiency and reduced side effects. The results of the present study highlight a potential novel therapeutic strategy for the treatment of prostate cancer. PMID:26870270

  16. miR-17-5p inhibitor enhances chemosensitivity to gemcitabine via upregulating Bim expression in pancreatic cancer cells.

    Science.gov (United States)

    Yan, Hai-Jiao; Liu, Wen-Song; Sun, Wen-Hui; Wu, Jun; Ji, Mei; Wang, Qi; Zheng, Xiao; Jiang, Jing-Ting; Wu, Chang-Ping

    2012-12-01

    miR-17-5p is reported to be overexpressed in pancreatic cancer, and it plays an important role in carcinogenesis and cancer progression. Gemcitabine is the standard first-line chemotherapeutic agent for pancreatic cancer, however the chemoresistance limits the curative effect. In the present study, we investigated whether inhibition of miR-17-5p could enhance chemosensitivity to gemcitabine in pancreatic cancer cells. miR-17-5p inhibitor was transfected to pancreatic cancer cell lines Panc-1 and BxPC3, and then cell proliferation, cell apoptosis, caspase-3 activation, and chemosensitivity to gemcitabine were measured in vitro. Our data showed that Panc-1 and BxPC3 cells transfected with miR-17-5p inhibitor showed growth inhibition, spontaneous apoptosis, higher caspase-3 activation, and increased chemosensitivity to gemcitabine. In addition, miR-17-5p inhibitor upregulated Bim protein expression in a dose-dependent manner without changing the Bim mRNA level, and it increased the activity of a luciferase reporter construct containing the Bim-3' untranslated region. These results prove that miR-17-5p negatively regulates Bim at the posttranscriptional level. We suggest that miR-17-5p inhibitor gene therapy would be a novel approach to chemosensitization for human pancreatic cancer.

  17. Acceleration of lung metastasis by up-regulation of CD44 expression in osteosarcoma-derived cell transplanted mice.

    Science.gov (United States)

    Shiratori, H; Koshino, T; Uesugi, M; Nitto, H; Saito, T

    2001-09-20

    The effect of CD44-phenotypic expression on metastasis to the lung was studied using a spontaneous murine osteosarcoma-derived cell line, POS-1, stimulated with lipopolysaccharide (LPS). POS-1 cells were inoculated into the hind paws of 20 C3H/HeJ mice and produced a visible mass in all mice in 5 weeks, and these transplanted tumors resulted in lung metastasis in all mice. The number of metastatic foci in the lungs was 12.0+/-2.1 (mean+/-SD) with LPS-stimulated cells, which was significantly higher than that of unstimulated cells (5.8+/-1.4; N=10 for each; P<0.05). Hyaluronate (HA), a ligand of CD44, inhibited a number of lung metastases in a dose-dependent manner (0.5% HA, 3.0+/-1.1; 0.005% HA, 5.1+/-1.5; without HA, 8.6+/-1.7; N=10 for each; P<0.05, each group with HA versus the group without HA). Adhesion assay by coculturing POS-1 cells and lung microvascular endothelial cells on culture plate showed that the adhesion was significantly lower in HA treated POS-1 than those without HA (1.18+/-0.12 and 2.74+/-0.17, respectively, P<0.05). These results suggest that lung metastasis was accelerated by up-regulation of CD44.

  18. Up-regulation of brain-derived neurotrophic factor in the dorsal root ganglion of the rat bone cancer pain model

    Directory of Open Access Journals (Sweden)

    Tomotsuka N

    2014-07-01

    Full Text Available Naoto Tomotsuka,1 Ryuji Kaku,1 Norihiko Obata,1 Yoshikazu Matsuoka,1 Hirotaka Kanzaki,2 Arata Taniguchi,1 Noriko Muto,1 Hiroki Omiya,1 Yoshitaro Itano,1 Tadasu Sato,3 Hiroyuki Ichikawa,3 Satoshi Mizobuchi,1 Hiroshi Morimatsu1 1Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; 2Department of Pharmacy, Okayama University Hospital, Okayama, Japan; 3Department of Oral and Craniofacial Anatomy, Tohoku University Graduate School of Dentistry, Sendai, Japan Abstract: Metastatic bone cancer causes severe pain, but current treatments often provide insufficient pain relief. One of the reasons is that mechanisms underlying bone cancer pain are not solved completely. Our previous studies have shown that brain-derived neurotrophic factor (BDNF, known as a member of the neurotrophic family, is an important molecule in the pathological pain state in some pain models. We hypothesized that expression changes of BDNF may be one of the factors related to bone cancer pain; in this study, we investigated changes of BDNF expression in dorsal root ganglia in a rat bone cancer pain model. As we expected, BDNF mRNA (messenger ribonucleic acid and protein were significantly increased in L3 dorsal root ganglia after intra-tibial inoculation of MRMT-1 rat breast cancer cells. Among the eleven splice-variants of BDNF mRNA, exon 1–9 variant increased predominantly. Interestingly, the up-regulation of BDNF is localized in small neurons (mostly nociceptive neurons but not in medium or large neurons (non-nociceptive neurons. Further, expression of nerve growth factor (NGF, which is known as a specific promoter of BDNF exon 1–9 variant, was significantly increased in tibial bone marrow. Our findings suggest that BDNF is a key molecule in bone cancer pain, and NGF-BDNF cascade possibly develops bone cancer pain. Keywords: BDNF, bone cancer pain, chronic pain, nerve growth

  19. Heat shock protein 47 expression in oral squamous cell carcinomas and upregulated by arecoline in human oral epithelial cells.

    Science.gov (United States)

    Lee, Shiuan-Shinn; Tseng, Ling-Hsien; Li, Yi-Ching; Tsai, Chung-Hung; Chang, Yu-Chao

    2011-05-01

    Heat shock protein 47 (HSP47) is a product of CBP2 gene located at chromosome 11q13.5, a region frequently amplified in human cancers. Areca quid chewing is a major risk factor of oral squamous cell carcinoma (OSCC). The aim of this study was to compare HSP47 expression in normal human oral epithelium and OSCC and further to explore the potential mechanisms that may lead to induce HSP47 expression. Thirty-two OSCC specimens and ten normal oral tissue biopsy samples without areca quid chewing were analyzed by immunohistochemistry. The oral epithelial cell line OC2 cells were challenged with arecoline, a major areca nut alkaloid, by using Western blot analysis. Furthermore, glutathione precursor N-acetyl-l-cysteine (NAC), extracellular signal-regulated protein kinase (ERK) inhibitor PD98059, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, cyclooxygenase-2 inhibitor NS-398, and tyrosine kinase inhibitor herbimycin A were added to find the possible regulatory mechanisms. HSP47 expression was significantly higher in OSCC specimens than normal epithelium (P0.05). The lower HSP47 expression was associated with lymph node metastasis (P=0.015). Arecoline was found to elevate HSP47 expression in a dose- and time-dependent manner (Parecoline-induced HSP47 expression (Parecoline-induced HSP47 expression was downregulated by NAC, PD98059, LY294002, NS398, and herbimycin A. © 2010 John Wiley & Sons A/S.

  20. Developmental upregulation of human parathyroid hormone (PTH)/PTH-related peptide receptor gene expression from conserved and human-specific promoters.

    Science.gov (United States)

    Bettoun, J D; Minagawa, M; Hendy, G N; Alpert, L C; Goodyer, C G; Goltzman, D; White, J H

    1998-09-01

    The parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR) functions in skeletal development and mediates an array of other physiological responses modulated by PTH and PTHrP. PTHR gene transcription in mouse is controlled by two promoters: P1, which is highly and selectively active in kidney; and P2, which functions in a variety of tissues. P1 and P2 are conserved in human tissue; however, P1 activity in kidney is weak. We have now identified a third human promoter, P3, which is widely expressed and accounts for approximately 80% of renal PTHR transcripts in the adult. No P3 activity was detected in mouse kidney, indicating that renal PTHR gene expression is controlled by different signals in human and mouse. During development, only P2 is active at midgestation in many human tissues, including calvaria and long bone. This strongly suggests that factors regulating well conserved P2 control PTHR gene expression during skeletal development. Our results indicate that human PTHR gene transcription is upregulated late in development with the induction of both P1 and P3 promoter activities. In addition, P2-specific transcripts are differentially spliced in a number of human cell lines and adult tissues, but not in fetal tissues, giving rise to a shorter and less structured 5' UTR. Thus, our studies show that both human PTHR gene transcription and mRNA splicing are developmentally regulated. Moreover, our data indicate that renal and nonrenal PTHR gene expression are tightly coordinated in humans.

  1. Endothelin-1 induces connective tissue growth factor expression in cardiomyocytes.

    Science.gov (United States)

    Recchia, Anna Grazia; Filice, Elisabetta; Pellegrino, Daniela; Dobrina, Aldo; Cerra, Maria Carmela; Maggiolini, Marcello

    2009-03-01

    Endothelin (ET)-1 is a vasoconstrictor involved in cardiovascular diseases. Connective tissue growth factor/CCN2 (CTGF) is a fibrotic mediator overexpressed in human atherosclerotic lesions, myocardial infarction, and hypertension. In different cell types CTGF regulates cell proliferation/apoptosis, migration, and extracellular matrix (ECM) accumulation and plays important roles in angiogenesis, chondrogenesis, osteogenesis, tissue repair, cancer and fibrosis. In the present study, we investigated the ET-1 signaling which triggers CTGF expression in cultured adult mouse atrial-muscle HL-1 cells used as a model system. ET-1 activated the CTGF promoter and induced CTGF expression at both mRNA and protein levels. Real-time PCR analysis revealed CTGF induction also in isolated rat heart preparations perfused with ET-1. Several intracellular signals elicited by ET-1 via ET receptors and even Epidermal Growth Factor Receptor (EGFR) contributed to the up-regulation of CTGF, including ERK activation and induction of the AP-1 components c-fos and c-jun, as also evaluated by ChIP analysis. Moreover, in cells treated with ET-1 the expression of ECM component decorin was abolished by CTGF silencing, indicating that CTGF is involved in ET-1 induced ECM accumulation not only in a direct manner but also through downstream effectors. Collectively, our data indicate that CTGF could be a mediator of the profibrotic effects of ET-1 in cardiomyocytes. CTGF inhibitors should be considered in setting a comprehensive pharmacological approach towards ET-1 induced cardiovascular diseases.

  2. Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy.

    Science.gov (United States)

    Takashima, Satoru; Fujita, Hiroki; Fujishima, Hiromi; Shimizu, Tatsunori; Sato, Takehiro; Morii, Tsukasa; Tsukiyama, Katsushi; Narita, Takuma; Takahashi, Takamune; Drucker, Daniel J; Seino, Yutaka; Yamada, Yuichiro

    2016-10-01

    The role of stromal cell-derived factor-1 (SDF-1) in the pathogenesis of diabetic nephropathy and its modification by dipeptidyl peptidase-4 (DPP-4) inhibition are uncertain. Therefore, we studied this independent of glucagon-like peptide-1 receptor (GLP-1R) signaling using two Akita diabetic mouse models, the diabetic-resistant C57BL/6-Akita and diabetic-prone KK/Ta-Akita. Increased SDF-1 expression was found in glomerular podocytes and distal nephrons in the diabetic-prone mice, but not in kidneys from diabetic-resistant mice. The DPP-4 inhibitor linagliptin, but not the GLP-1R agonist liraglutide, further augmented renal SDF-1 expression in both Glp1r(+/+) and Glp1r(-/-) diabetic-prone mice. Along with upregulation of renal SDF-1 expression, the progression of albuminuria, glomerulosclerosis, periglomerular fibrosis, podocyte loss, and renal oxidative stress was suppressed in linagliptin-treated Glp1r(+/+) diabetic-prone mice. Linagliptin treatment increased urinary sodium excretion and attenuated the increase in glomerular filtration rate which reflects glomerular hypertension and hyperfiltration. In contrast, selective SDF-1 receptor blockade with AMD3100 reduced urinary sodium excretion and aggravated glomerular hypertension in the Glp1r(+/+) diabetic-prone mice. Thus, DPP-4 inhibition, independent of GLP-1R signaling, contributes to protection of the diabetic kidney through SDF-1-dependent antioxidative and antifibrotic effects and amelioration of adverse renal hemodynamics.

  3. Gasdermin C Is Upregulated by Inactivation of Transforming Growth Factor β Receptor Type II in the Presence of Mutated Apc, Promoting Colorectal Cancer Proliferation.

    Science.gov (United States)

    Miguchi, Masashi; Hinoi, Takao; Shimomura, Manabu; Adachi, Tomohiro; Saito, Yasufumi; Niitsu, Hiroaki; Kochi, Masatoshi; Sada, Haruki; Sotomaru, Yusuke; Ikenoue, Tsuneo; Shigeyasu, Kunitoshi; Tanakaya, Kohji; Kitadai, Yasuhiko; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2016-01-01

    Mutations in TGFBR2, a component of the transforming growth factor (TGF)-β signaling pathway, occur in high-frequency microsatellite instability (MSI-H) colorectal cancer (CRC). In mouse models, Tgfbr2 inactivation in the intestinal epithelium accelerates the development of malignant intestinal tumors in combination with disruption of the Wnt-β-catenin pathway. However, no studies have further identified the genes influenced by TGFBR2 inactivation following disruption of the Wnt-β-catenin pathway. We previously described CDX2P-G19Cre;Apcflox/flox mice, which is stochastically null for Apc in the colon epithelium. In this study, we generated CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice, with simultaneous loss of Apc and Tgfbr2. These mice developed tumors, including adenocarcinoma in the proximal colon. We compared gene expression profiles between tumors of the two types of mice using microarray analysis. Our results showed that the expression of the murine homolog of GSDMC was significantly upregulated by 9.25-fold in tumors of CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice compared with those of CDX2P-G19Cre;Apcflox/flox mice. We then investigated the role of GSDMC in regulating CRC tumorigenesis. The silencing of GSDMC led to a significant reduction in the proliferation and tumorigenesis of CRC cell lines, whereas the overexpression of GSDMC enhanced cell proliferation. These results suggested that GSDMC functioned as an oncogene, promoting cell proliferation in colorectal carcinogenesis. In conclusion, combined inactivation of both Apc and Tgfbr2 in the colon epithelium of a CRC mouse model promoted development of adenocarcinoma in the proximal colon. Moreover, GSDMC was upregulated by TGFBR2 mutation in CRC and promoted tumor cell proliferation in CRC carcinogenesis, suggesting that GSDMC may be a promising therapeutic target.

  4. Enhanced upregulation of CRH mRNA expression in the nucleus accumbens of male rats after a second injection of methamphetamine given thirty days later.

    Directory of Open Access Journals (Sweden)

    Jean Lud Cadet

    Full Text Available Methamphetamine (METH is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg on transcriptional effects of a second METH (2.5 mg/kg injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS or METH-challenged (SM; and METH-pretreated followed by saline-challenged (MS or METH-challenged (MM. Microarray analyses revealed that METH (2.5 mg/kg produced acute changes (1.8-fold; P<0.01 in the expression of 412 (352 upregulated, 60 down-regulated transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh, oxytocin (Oxt, and vasopressin (Avp that were upregulated. Injection of METH (10 mg/kg altered the expression of 503 (338 upregulated, 165 down-regulated transcripts measured one month later (MS group. These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.

  5. Topical application of Acalypha indica accelerates rat cutaneous wound healing by up-regulating the expression of Type I and III collagen.

    Science.gov (United States)

    Ganeshkumar, Moorthy; Ponrasu, Thangavel; Krithika, Rajesh; Iyappan, Kuttalam; Gayathri, Vinaya Subramani; Suguna, Lonchin

    2012-06-26

    Acalypha indica Linn. (Acalypha indica) vernacularly called Kuppaimeni in Tamil, has been used as a folklore medicine since ages for the treatment of wounds by tribal people of Tamil Nadu, Southern India. The present study investigates the biochemical and molecular rationale behind the healing potential of Acalypha indica on dermal wounds in rats. Acalypha indica extract (40 mg/kg body weight) was applied topically once a day on full-thickness excision wounds created on rats. The wound tissue was removed and used for estimation of various biochemical and biophysical analyses and to observe histopathological changes with and with-out extract treatment. The serum levels of pro-inflammatory cytokine tumor necrosis factor (TNF-α) was measured at 12 h, 24 h, 48 h and 72 h post-wounding using ELISA. Reverse transcription-polymerase chain reaction (RT-PCR) analysis was performed to study the expression pattern of transforming growth factor [TGF-β1], collagen 1 α (I) [Col 1 α (I)] and collagen 3 α (I) [Col 3 α (I)]. Likewise, linear incision wounds were created and treated with the extract and used for tensile strength measurements. Wound healing in control rats was characterized by less inflammatory cell infiltration, lack of granulation tissue formation, deficit of collagen and significant decrease in biomechanical strength of wounds. Acalypha indica treatment mitigated the oxidative stress and decreased lipid peroxidation with concomitant increase in ascorbic acid levels. It also improved cellular proliferation, increased TNF-α levels during early stages of wound healing, up-regulated TGF-β1 and elevated collagen synthesis by markedly increasing the expression of Col 1 α (I) and Col 3 α (I). Increased rates of wound contraction, epithelialization, enhanced shrinkage temperature and high tensile strength were observed in the extract treated rats. Acalypha indica extract was shown to augment the process of dermal wound healing by its ability to increase collagen

  6. Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus.

    Science.gov (United States)

    Nicoletti, J N; Shah, S K; McCloskey, D P; Goodman, J H; Elkady, A; Atassi, H; Hylton, D; Rudge, J S; Scharfman, H E; Croll, S D

    2008-01-02

    Vascular endothelial growth factor (VEGF) is a protein factor which has been found to play a significant role in both normal and pathological states. Its role as an angiogenic factor is well-established. More recently, VEGF has been shown to protect neurons from cell death both in vivo and in vitro. While VEGF's potential as a protective factor has been demonstrated in hypoxia-ischemia, in vitro excitotoxicity, and motor neuron degeneration, its role in seizure-induced cell loss has received little attention. A potential role in seizures is suggested by Newton et al.'s [Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E, Duman RS (2003) Gene profile of electroconvulsive seizures: Induction of neurotrophic and angiogenic factors. J Neurosci 23:10841-10851] finding that VEGF mRNA increases in areas of the brain that are susceptible to cell loss after electroconvulsive-shock induced seizures. Because a linear relationship does not always exist between expression of mRNA and protein, we investigated whether VEGF protein expression increased after pilocarpine-induced status epilepticus. In addition, we administered exogenous VEGF in one experiment and blocked endogenous VEGF in another to determine whether VEGF exerts a neuroprotective effect against status epilepticus-induced cell loss in one vulnerable brain region, the rat hippocampus. Our data revealed that VEGF is dramatically up-regulated in neurons and glia in hippocampus, thalamus, amygdala, and neocortex 24 h after status epilepticus. VEGF induced significant preservation of hippocampal neurons, suggesting that VEGF may play a neuroprotective role following status epilepticus.

  7. The neuroprotective effect of miRNA-132 against amyloid β-protein-induced neuronal damage via upregulation of brain-derived neurotrophic factor

    Directory of Open Access Journals (Sweden)

    Lei XIANG

    2016-08-01

    Full Text Available Background Brain-derived neurotrophic factor (BDNF plays a crucial role in the pathogenesis of Alzheimer's disease (AD. MicroRNA (miRNA-132, which is widely expressed in neurons, is involved in BDNF-mediated neural development by regulating the expression of target gene. This study aims to investigate the effect of miRNA-132 on BDNF and its neuroprotective effect.  Methods The hippocampal neurons were transfected by miRNA-132 after 72 h in vitro, then exposed to amyloid β-protein (Aβ on the 7th day to build AD models. The difference of miRNA-132 expression between AD group and control group was detected by real-time fluorescent quantitative polymerase chain reaction (PCR. The alterations of BDNF mRNA were observed in the neurons of different groups. Finally, the cell viability was observed by methyl thiazolyl tetrazolium (MTT assay in AD neurons transfected with miRNA-132 or incubated with BDNF. Results 1 MiRNA-132 was significantly decreased (t = 13.888, P = 0.000, and the expression of BDNF mRNA was also reduced in AD group (t = -12.274, P = 0.000. 2 Green fluorescence was clearly visible by inverted phase-contrast fluorescence microscopy after transfected with miRNA-132. BDNF mRNA was upregulated when miRNA-132 overexpression both in control group (t = 16.135, P = 0.000 and AD group (t = 8.656, P = 0.000. 3 Cell viability was obviously decreased in neurons exposed to Aβ (t = -6.023, P = 0.000, which was improved when transfected with miRNA-132 (t = 3.385, P = 0.007 or incubated with BDNF (t = 3.672, P = 0.004.  Conclusions The expression of miRNA-132 and BDNF was reduced in neuronal AD model. MiRNA-132 played an important role on neuroprotection against A β-induced neuronal damage via upregulation of BDNF. It could be expected to provide new perspective for the diagnosis and treatment of AD. DOI: 10.3969/j.issn.1672-6731.2016.07.009

  8. OxLDL up-regulates Niemann-Pick type C1 expression through ERK1/2/COX-2/ PPARα-signaling pathway in macrophages

    Institute of Scientific and Technical Information of China (English)

    Xiaohua yu; Chaoke Tang; Xiaoxu Li; Guojun Zhao; Ji Xiao; Zhongcheng Mo; Kai Yin; Zhisheng Jiang; Yuchang Fu; Xiaohui Zha

    2012-01-01

    The Niemann-Pick type C1 (NPC1) is located mainly in the membranes of the late endosome/lysosome and controls the intracellular cholesterol trafficking from the late endosome/lysosome to the plasma membrane.It has been reported that oxidized low-density lipoprotein (oxLDL) can up-regulate NPC1 expression.However,the detailed mechanisms are not fully understood.In this study,we investigated the effect of oxLDL stimulation on NPC1 expression in THP-1 macrophages.Our results showed that oxLDL up-regulated NPC1 expression at both mRNA and protein levels in a dose-dependent and time-dependent manner.In addition,oxLDL also induced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2).Treatment with oxLDL significantly increased cyclooxygenase-2 (COX-2)mRNA and protein expression in the macrophages,and these increases were suppressed by the ERK1/2 inhibitor PD98059 or ERK1/2 small interfering RNA (siRNA) treatment.OxLDL up-regulated the expression of peroxisome proliferator-activated receptor α (PPARα) at the mRNA and protein levels,which could be abolished by COX-2 siRNA or COX-2 inhibitor NS398 treatment in these macrophages.OxLDL dramatically elevated cellular cholesterol efflux,which was abrogated by inhibiting ERK1/2 and/or COX-2.In addition,oxLDL-induced NPC1 expression and cellular cholesterol effiux were reversed by PPARα siRNA or GW6471,an antagonist of PPARα.Taken together,these results provide the evidence that oxLDL can up-regulate the expression of the NPC1 through ERK1/2/COX-2/PPARα-signaling pathway in macrophages.

  9. Lipopolysaccharide Promotes Choroidal Neovascularization by Up-Regulation of CXCR4 and CXCR7 Expression in Choroid Endothelial Cell.

    Directory of Open Access Journals (Sweden)

    Yi-fan Feng

    Full Text Available Stromal cell-derived factor-1 (SDF-1 has been confirmed to participate in the formation of choroidal neovascularization (CNV via its two receptors: CXC chemokine receptors 4 (CXCR4 and CXCR7. Previous studies have indicated that the activation of Toll-like receptors (TLRs by lipopolysaccharide (LPS might elevate CXCR4 and/or CXCR7 expression in tumor cells, enhancing the response to SDF-1 to promote invasion and cell dissemination. However, the impact of LPS on the CXCR4 and CXCR7 expression in endothelial cells and subsequent pathological angiogenesis formation remains to be elucidated. The present study shows that LPS enhanced the CXCR4 and CXCR7 expression via activation of the TLR4 pathway in choroid-retinal endothelial (RF/6A cells. In addition, the transcriptional regulation of CXCR4 and CXCR7 by LPS was found to be mediated by phosphorylation of the extracellular signal-related kinase (ERK 1/2 and activation of nuclear factor kappa B (NF-κB signaling pathways, which were blocked by ERK- or NF-κB-specific inhibitors. Furthermore, the increased CXCR4 and CXCR7 expression resulted in increased SDF-1-induced RF/6A cells proliferation, migration and tube formation. In vivo, LPS-treated rat had significantly higher mRNA levels of CXCR4 and CXCR7 expression and lager laser-induced CNV area than vehicle-treated rat. SDF-1 blockade with a neutralizing antibody attenuated the progression of CNV in LPS-treated rat after a single intravitreal injection. Altogether, these results demonstrated that LPS might influence CNV formation by enhancing CXCR7 and CXCR7 expression in endothelial cells, possibly providing a new perspective for the treatment of CNV-associated diseases.

  10. Sulfide exposure results in enhanced sqr transcription through upregulating the expression and activation of HSF1 in echiuran worm Urechis unicinctus.

    Science.gov (United States)

    Liu, Xiaolong; Zhang, Zhifeng; Ma, Xiaoyu; Li, Xueyu; Zhou, Di; Gao, Beibei; Bai, Yajiao

    2016-01-01

    Sulfide is a natural, widely distributed, poisonous substance. Sulfide: quinone oxidoreductase (SQR) is responsible for the initial oxidation of sulfide in mitochondria. To study transcriptional regulation of sqr after sulfide exposure, a 2.6-kb sqr upstream sequence from echiuran worm Urechis unicinctus was cloned by genome walking. Bioinformatics analysis showed 3 heat shock elements (HSEs) in proximal promoter region of the sqr upstream sequence. Moreover, an Hsf1 cDNA in U. unicinctus (UuHsf1) was isolated with a full-length sequence of 2334 bp and its polyclonal antibody was prepared using U. unicinctus HSF1 (UuHSF1) expressed prokaryotically with whole sequence of its open reading frame (ORF). In vivo ChIP and in vitro EMSA assays revealed UuHSF1 could interact with the sqr proximal promoter region. Transient transfection and mutation assays indicated that UuHSF1 bound specifically to HSE (-155bp to -143bp) and enhanced the transcription of sqr. Furthermore, sulfide treatment experiments demonstrated that sulfide could increase the expression of HSF1 protein, and induce trimerization of the protein which binds to HSEs and then activate sqr transcription. Quantitative real-time PCR analysis revealed sqr mRNA level increased significantly after U. unicinctus was exposed to sulfide for 6h, which corresponded to content changes of both trimeric HSF1 and HSF1-HSE complex. We concluded that UuHSF1 is a transcription factor of sqr and sulfide could induce sqr transcription by upregulating the expression and activation of HSF1 in U. unicinctus exposed to sulfide.

  11. Maternal immunization with ovalbumin prevents neonatal allergy development and up-regulates inhibitory receptor FcγRIIB expression on B cells

    Directory of Open Access Journals (Sweden)

    Duarte Alberto JS

    2010-03-01

    Full Text Available Abstract Background Preconception allergen immunization prevents neonatal allergen sensitization in mice by a complex interaction between regulatory cells/factors and antibodies. The present study assessed the influence of maternal immunization with ovalbumin (OVA on the immune response of 3 day-old and 3 week-old offspring immunized or non-immunized with OVA and evaluated the effect of IgG treatment during fetal development or neonatal period. Results Maternal immunization with OVA showed increased levels of FcγRIIb expression in splenic B cells of neonates, which were maintained for up to 3 weeks and not affected by additional postnatal OVA immunization. Maternal immunization also exerted a down-modulatory effect on both IL-4 and IFN-γ-secreting T cells and IL-4 and IL-12- secreting B cells. Furthermore, immunized neonates from immunized mothers showed a marked inhibition of antigen-specifc IgE Ab production and lowered Th2/Th1 cytokine levels, whereas displaying enhanced FcγRIIb expression on B cells. These offspring also showed reduced antigen-specific proliferative response and lowered B cell responsiveness. Moreover, in vitro evaluation revealed an impairment of B cell activation upon engagement of B cell antigen receptor by IgG from OVA-immunized mice. Finally, in vivo IgG transference during pregnancy or breastfeeding revealed that maternal Ab transference was able to increase regulatory cytokines, such as IL-10, in the prenatal stage; yet only the postnatal treatment prevented neonatal sensitization. None of the IgG treatments induced immunological changes in the offspring, as it was observed for those from OVA-immunized mothers. Conclusion Maternal immunization upregulates the inhibitory FcγRIIb expression on offspring B cells, avoiding skewed Th2 response and development of allergy. These findings contribute to the advancement of prophylactic strategies to prevent allergic diseases in early life.

  12. The peroxisome proliferator-activated receptor alpha-selective activator ciprofibrate upregulates expression of genes encoding fatty acid oxidation and ketogenesis enzymes in rat brain.

    Science.gov (United States)

    Cullingford, Tim E; Dolphin, Colin T; Sato, Hitoshi

    2002-04-01

    Activated peroxisome proliferator activated receptor alpha (PPAR alpha) protects against the cellular inflammatory response, and is central to fatty acid-mediated upregulation of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHS). We have previously demonstrated both PPAR alpha and mHS expression in brain, implying that brain-targeted PPAR alpha activators may likewise up-regulate mHS expression in brain. Thus, to attempt pharmacological activation of brain PPAR alpha in vivo, we have administered to rats two drugs with previously defined actions in rat brain, namely the PPAR alpha-selective activator ciprofibrate and the pan-PPAR activator valproate. Using the sensitive and discriminatory RNase protection co-assay, we demonstrate that both ciprofibrate and valproate induce mHS expression in liver, the archetypal PPAR alpha-expressing organ. Furthermore, ciprofibrate potently increases mHS mRNA abundance in rat brain, together with lesser increases in two other PPAR alpha-regulated mRNAs. Thus we demonstrate, for the first time, up-regulation of expression of PPAR alpha-dependent genes including mHS in brain, with implications in the increased elimination of neuro-inflammatory lipids and concomitant increased production of neuro-protective ketone bodies.

  13. Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase

    Science.gov (United States)

    Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP(3)) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP(3). The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP(3) compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP(3) in both wild-type and transgenic cells. However, even with stimulation, InsP(3) levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP(3) signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)), the lipid precursor of InsP(3), was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP(2) metabolism showed that the activity of the PtdInsP(2)-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of (32)P into PtdInsP(2) in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP(2) synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP(2) synthesis as a regulatory step in this system.

  14. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells.

    Science.gov (United States)

    Ruan, Wendong; Wang, Pei; Feng, Shiqing; Xue, Yuan; Li, Yulin

    2016-03-01

    The long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) has a role in cell proliferation and migration. Angiomotin, encoded by the AMOT gene, is a protein that regulates the migration and organization of endothelial cells. SNHG12 and AMOT have been shown to play a role in a variety of human cancers but have yet to be studied in detail in human osteosarcoma. Tissue samples from primary osteosarcoma (n = 20) and adjacent normal tissues (n = 20), the osteosarcoma cell lines, SAOS-2, MG-63, U-2 OS, and the human osteoblast cell line hFOB (OB3) were studied using Western blot for angiomotin, and quantitative real-time polymerase chain reaction for the expression of SNHG12 and AMOT. The expression of SNHG12 was knocked down using RNA interference. Cell migration assays were performed. Cell apoptosis was studied using flow cytometry. SNHG12 and AMOT messenger RNA (mRNA) expression was upregulated in osteosarcoma tissues and cell lines when compared with normal tissues and cells. Upregulation of AMOT mRNA was associated with upregulation of SNHG12. Knockdown of SNHG12 reduced the expression of angiomotin in osteosarcoma cells and suppressed cell proliferation and migration but did not affect cell apoptosis. This preliminary study has shown that the lncRNA SNHG12 promotes cell proliferation and migration by upregulating AMOT gene expression in osteosarcoma cells in vivo and in vitro. Further studies are recommended to investigate the role of SNHG12 and AMOT expression in tumor cell proliferation and migration and angiogenesis in osteosarcoma and a range of malignant mesenchymal tumors.

  15. Human p38{delta} MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Shigeyuki [Oral Health Science Research Center (Japan); Department of Biochemistry and Molecular Biology (Japan); Department of Oral and Maxillofacial Surgery, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka 238-8580 (Japan); Ito, Shin; Kato, Yasumasa [Oral Health Science Research Center (Japan); Department of Biochemistry and Molecular Biology (Japan); Kubota, Eiro [Department of Biochemistry and Molecular Biology (Japan); Department of Oral and Maxillofacial Surgery, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka 238-8580 (Japan); Hata, Ryu-Ichiro, E-mail: ryuhata@gmail.com [Oral Health Science Research Center (Japan); Department of Biochemistry and Molecular Biology (Japan)

    2010-06-11

    The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38{alpha}, {beta}, {gamma} and {delta}. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38{alpha} and {beta}, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38{gamma} and/or {delta} was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38{delta} attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38{delta} with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38{delta} isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38{alpha} and/or {beta} isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.

  16. Cholinergic Abnormalities, Endosomal Alterations and Up-Regulation of Nerve Growth Factor Signaling in Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Cabeza Carolina

    2012-03-01

    Full Text Available Abstract Background Neurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival. Neurotrophin receptors are active in signaling endosomes, which are organelles that propagate neurotrophin signaling along neuronal processes. Defects in the Npc1 gene are associated with the accumulation of cholesterol and lipids in late endosomes and lysosomes, leading to neurodegeneration and Niemann-Pick type C (NPC disease. The aim of this work was to assess whether the endosomal and lysosomal alterations observed in NPC disease disrupt neurotrophin signaling. As models, we used i NPC1-deficient mice to evaluate the central cholinergic septo-hippocampal pathway and its response to nerve growth factor (NGF after axotomy and ii PC12 cells treated with U18666A, a pharmacological cellular model of NPC, stimulated with NGF. Results NPC1-deficient cholinergic cells respond to NGF after axotomy and exhibit increased levels of choline acetyl transferase (ChAT, whose gene is under the control of NGF signaling, compared to wild type cholinergic neurons. This finding was correlated with increased ChAT and phosphorylated Akt in basal forebrain homogenates. In addition, we found that cholinergic neurons from NPC1-deficient mice had disrupted neuronal morphology, suggesting early signs of neurodegeneration. Consistently, PC12 cells treated with U18666A presented a clear NPC cellular phenotype with a prominent endocytic dysfunction that includes an increased size of TrkA-containing endosomes and reduced recycling of the receptor. This result correlates with increased sensitivity to NGF, and, in particular, with up-regulation of the Akt and PLC-γ signaling pathways, increased neurite extension, increased phosphorylation of tau protein and cell death when PC12 cells are differentiated and treated with U18666A. Conclusions Our results suggest that the NPC cellular phenotype causes neuronal

  17. EBV-encoded LMP1 upregulates Igκ 3'enhancer activity and Igκ expression in nasopharyngeal cancer cells by activating the Ets-1 through ERKs signaling.

    Directory of Open Access Journals (Sweden)

    Haidan Liu

    Full Text Available Accumulating evidence indicates that epithelial cancer cells, including nasopharyngeal carcinoma (NPC cells, express immunoglobulins (Igs. We previously found that the expression of the kappa light chain protein in NPC cells can be upregulated by the EBV-encoded latent membrane protein 1 (LMP1. In the present study, we used NPC cell lines as models and found that LMP1-augmented kappa production corresponds with elevations in ERKs phosphorylation. PD98059 attenuates LMP1-induced ERKs phosphorylation resulting in decreased expression of the kappa light chain. ERK-specific small interfering RNA blunts LMP1-induced kappa light chain gene expression. Luciferase reporter assays demonstrate that immunoglobulin κ 3' enhancer (3'E(κ is active in Igκ-expressing NPC cells and LMP1 upregulates the activity of 3'E(κ in NPC cells. Moreover, mutation analysis