WorldWideScience

Sample records for factor nuclear factor-kappab

  1. Skeletal changes in osteoprotegerin and receptor activator of nuclear factor-kappab ligand mRNA levels in primary hyperparathyroidism: effect of parathyroidectomy and association with bone metabolism

    DEFF Research Database (Denmark)

    Stilgren, L S; Rettmer, E; Eriksen, E F;

    2004-01-01

    (PHPT), hypersecretion of PTH leads to enhanced bone resorption and formation with increased risk of fracture. Decreasing PTH levels by surgery normalizes bone metabolism, but the effects on skeletal OPG and RANKL production are unknown. In this study, 24 patients referred to our clinic for evaluation...

  2. Crocodylian nuclear factor kappa B.

    Science.gov (United States)

    Merchant, Mark; Morkotinis, Vasileios; Hale, Amber; White, Mary; Moran, Chris

    2017-11-01

    We deduced the amino acid (aa) sequence of the nuclear factor kappa B (NFκB) protein from genomic data for the American alligator (Alligator mississippiensis), the estuarine crocodile (Crocodylus porosus), and the Indian gharial (Gavialis gangeticus). A 105kDa protein, NFκB1 exhibits complex post-translational processing, multiple mechanisms of activation, and acts as precursor for a p50, a Rel homology transcription factor which influences the expression of key genes for developmental processes, apoptosis, and immune function. The aa sequences of the crocodylian proteins share very high identity with each other (97.2±0.7%), birds (81.0±1.1%, n=6), mammals (75.3±1.6%, n=4), reptiles (80.3±5.1%, n=2), and less identity with fish (55.5±5.5%, n=4) and one amphibian (66.1±0.8%). The crocodylian protein has a well-conserved Rel homology domain, a nuclear localization signal, and a glycine-rich region which facilitates proteasome-mediated generation of p50. The Rel homology domain contains sequences responsible for dimerization, DNA-binding, and nuclear translocation. In addition, seven ankyrin repeats were located, which putatively allow for inhibition of transcriptional regulation by mediating interaction with Inhibitor kappa B. Other features include a death domain, and conserved serine residues, near the C-terminal end, which act as potential phosphorylation sites for activation of the proteolytic generation of p50. Western blot analysis showed both the 105kDa precursor and the 50kDa mature NFκB were expressed in the alligator liver. Nuclear factor κB exhibited diffuse cytoplasmic distribution in alligator hepatocytes, and almost no cytoplasmic localization in infected animals. In addition, nuclear NFκB exhibited specific binding to the consensus NFκB promoter element. Published by Elsevier Inc.

  3. Human Factors Research and Nuclear Safety.

    Science.gov (United States)

    Moray, Neville P., Ed.; Huey, Beverly M., Ed.

    The Panel on Human Factors Research Needs in Nuclear Regulatory Research was formed by the National Research Council in response to a request from the Nuclear Regulatory Commission (NRC). The NRC asked the research council to conduct an 18-month study of human factors research needs for the safe operation of nuclear power plants. This report…

  4. Factorized molecular wave functions: Analysis of the nuclear factor

    Energy Technology Data Exchange (ETDEWEB)

    Lefebvre, R., E-mail: roland.lefebvre@u-psud.fr [Institut des Sciences Moléculaires d’ Orsay, Bâtiment 350, UMR8214, CNRS- Université. Paris-Sud, 91405 Orsay, France and Sorbonne Universités, UPMC Univ Paris 06, UFR925, F-75005 Paris (France)

    2015-06-07

    The exact factorization of molecular wave functions leads to nuclear factors which should be nodeless functions. We reconsider the case of vibrational perturbations in a diatomic species, a situation usually treated by combining Born-Oppenheimer products. It was shown [R. Lefebvre, J. Chem. Phys. 142, 074106 (2015)] that it is possible to derive, from the solutions of coupled equations, the form of the factorized function. By increasing artificially the interstate coupling in the usual approach, the adiabatic regime can be reached, whereby the wave function can be reduced to a single product. The nuclear factor of this product is determined by the lowest of the two potentials obtained by diagonalization of the potential matrix. By comparison with the nuclear wave function of the factorized scheme, it is shown that by a simple rectification, an agreement is obtained between the modified nodeless function and that of the adiabatic scheme.

  5. Review of EPRI Nuclear Human Factors Program

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, L.F.; O`Brien, J.F. [Electric Power Research Institute, Palo Alto, CA (United States)

    1996-03-01

    The Electric Power Research Institute (EPRI) Human Factors Program, which is part of the EPRI Nuclear Power Group, was established in 1975. Over the years, the Program has changed emphasis based on the shifting priorities and needs of the commercial nuclear power industry. The Program has produced many important products that provide significant safety and economic benefits for EPRI member utilities. This presentation will provide a brief history of the Program and products. Current projects and products that have been released recently will be mentioned.

  6. g factor of hydrogenlike ions with nonzero nuclear spin

    Science.gov (United States)

    Moskovkin, D. L.; Oreshkina, N. S.; Shabaev, V. M.; Beier, T.; Plunien, G.; Quint, W.; Soff, G.

    2004-09-01

    The fully relativistic theory of the g factor of hydrogenlike ions with nonzero nuclear spin is considered. The hyperfine-interaction correction to the atomic g factor is calculated for both point and extended charge-distribution models for nuclei. Both the magnetic dipole and the electric quadrupole interactions are taken into account. This correction is combined with corrections resulting from QED, nuclear recoil, and nuclear size, to obtain theoretical high-precision values for the g factor of hydrogenlike ions with nonzero nuclear spin. The results can be used for a precise determination of nuclear magnetic moments from g factor experiments.

  7. Nuclear reprogramming by nuclear transplantation and defined transcription factors

    Institute of Scientific and Technical Information of China (English)

    WANG YiXuan; LIU Sheng; LAI LiangXue; GAO ShaoRong

    2009-01-01

    In the past ten years,great breakthroughs have been achieved in the nuclear reprogramming area.It has been demonstrated that highly differentiated somatic cell genome could be reprogrammed to a pluripotent state,which indicates that differentiated cell fate is not irreversible.Nuclear transplantation and induced pluripotent stem (iPS) cell generation are the two major approaches to inducing repro-gramming of differentiated somatic cell genome.In the present review,we will summarize the recent progress of nuclear reprogramming and further discuss the potential to generate patient specific pluripotent stem cells from differentiated somatic cells for therapeutic purpose.

  8. Human and organizational factors in nuclear safety; Factores humanos y organizativos en la seguridad nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Barrientos, M.; Gil, B.

    2015-07-01

    Nuclear installations are socio technical systems where human and organizational factors, in both utilities and regulators, have a significant impact on safety. Three Mile Island (TMI) accident, original of several initiatives in the human factors field, nevertheless became a lost opportunity to timely acquire lessons related to the upper tiers of the system. Nowadays, Spanish nuclear installations have integrated in their processes specialists and activities in human and organizational factors, promoted by the licensees After many years of hard work, Spanish installations have achieved a better position to face new challenges, such as those posed by Fukushima. With this experience, only technology-centered action plan would not be acceptable, turning this accident in yet another lost opportunity. (Author)

  9. Human Factors in Nuclear Power Engineering in Polish Conditions

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarek-Kacprzak

    2014-09-01

    Full Text Available The paper “Human factors in nuclear power engineering in Polish conditions” focuses on analysis of dynamics of preparing Polish society to build fi rst nuclear power plant in XXI century in Poland. Authors compare experience from constructing nuclear power plant Sizewell B (Great Britain and Sizewell C, which is in preparation phase with polish nuclear power program. Paper includes aspects e.g. of creating nuclear safety culture and social opinion about investment. Human factors in nuclear power engineering are as well important as relevant economical and technical factors, but very often negligible. In Poland where history about Czarnobyl is still alive, and social opinion is created on emotions after accident in Fukushima, human factors are crucial and should be under comprehensive consideration.

  10. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

  11. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-12-31

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

  12. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors

    Science.gov (United States)

    Zhao, Hang; Wu, Di; Kong, Fanying; Lin, Ke; Zhang, Haishen; Li, Gang

    2017-01-01

    Nuclear factor Y (NF-Y) is an evolutionarily conserved trimeric transcription factor complex present in nearly all eukaryotes. The heterotrimeric NF-Y complex consists of three subunits, NF-YA, NF-YB, and NF-YC, and binds to the CCAAT box in the promoter regions of its target genes to regulate their expression. Yeast and mammal genomes generally have single genes with multiple splicing isoforms that encode each NF-Y subunit. By contrast, plant genomes generally have multi-gene families encoding each subunit and these genes are differentially expressed in various tissues or stages. Therefore, different subunit combinations can lead to a wide variety of NF-Y complexes in various tissues, stages, and growth conditions, indicating the potentially diverse functions of this complex in plants. Indeed, many recent studies have proved that the NF-Y complex plays multiple essential roles in plant growth, development, and stress responses. In this review, we highlight recent progress on NF-Y in Arabidopsis thaliana, including NF-Y protein structure, heterotrimeric complex formation, and the molecular mechanism by which NF-Y regulates downstream target gene expression. We then focus on its biological functions and underlying molecular mechanisms. Finally, possible directions for future research on NF-Y are also presented.

  13. Octet baryon electromagnetic form factors in nuclear medium

    CERN Document Server

    Ramalho, G; Thomas, A W

    2012-01-01

    We study the octet baryon electromagnetic form factors in nuclear matter using the covariant spectator quark model extended to the nuclear matter regime. The parameters of the model in vacuum are fixed by the study of the octet baryon electromagnetic form factors. In nuclear matter the changes in hadron properties are calculated by including the relevant hadron masses and the modification of the pion-baryon coupling constants calculated in the quark-meson coupling model. In nuclear matter the magnetic form factors of the octet baryons are enhanced in the low $Q^2$ region, while the electric form factors show a more rapid variation with $Q^2$. The results are compared with the modification of the bound proton electromagnetic form factors observed at Jefferson Lab. In addition, the corresponding changes for the bound neutron are predicted.

  14. Nuclear transport factors: global regulation of mitosis.

    Science.gov (United States)

    Forbes, Douglass J; Travesa, Anna; Nord, Matthew S; Bernis, Cyril

    2015-08-01

    The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator - the γ-TuRC complex - and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic.

  15. Human factors aspects of advanced instrumentation in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.J.

    1989-01-01

    An important consideration in regards to the use of advanced instrumentation in the nuclear industry is the interface between the instrumentation system and the human. A survey, oriented towards identifying the human factors aspects of digital instrumentation, was conducted at a number of United States (US) and Canadian nuclear vendors and utilities. Human factors issues, subsumed under the categories of computer-generated displays, controls, organizational support, training, and related topics were identified. 20 refs., 2 tabs.

  16. QCD Factorization Approach to Cold Nuclear Matter Effects

    Science.gov (United States)

    Qiu, Jianwe

    2016-09-01

    Cold nuclear matter effects exist in all high energy collisions involving identified nucleus (or nuclei). They have been manifested in very significant ways in e-A and p-A, as well as A-A collisions, where the cold nuclear effect is a part of the initial condition which plays a critical role in determining the outcome of heavy ion collisions. In this talk, I will discuss if it is possible to consistently calculate or extract the cold nuclear effect, the advantage and limitation of QCD factorization approach, and the predictive power or the testability of the QCD calculations.

  17. Human factor engineering applied to nuclear power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, A. [TECNATOM SA, BWR General Electric Business Manager, Madrid (Spain); Valdivia, J.C. [TECNATOM SA, Operation Engineering Project Manager, Madrid (Spain); Jimenez, A. [TECNATOM SA, Operation Engineering Div. Manager, Madrid (Spain)

    2001-07-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  18. Transfer factors for nuclear emergency preparedness

    Energy Technology Data Exchange (ETDEWEB)

    Kostiainen, E.; Haenninen, R. [Radiation and Nuclear Safety Authority (STUK) (Finland); Rosen, K.; Haak, E.; Eriksson, Aa. [Swedish Univ. of Agricultural Science (Sweden); Nielsen, S.P.; Keith-Roach, M. [Risoe National Lab. (Denmark); Salbu, B. [Agricultural Univ. of Norway (Norway)

    2002-12-01

    This report by the NKS/BOK-1.4 project subgroup describes transfer factors for radiocaesium and radiostrontium for the fallout year and the years after the fallout. The intention has been to collect information on tools to assess the order of magnitude of radioactive contamination of agricultural products in an emergency situation in Nordic environment. The report describes transfer paths from fallout to plant, from soil to plant and to animal products. The transfer factors of radionuclides (Sr, Cs, I) given in the report are intended to be used for making rough estimates of the contamination of agricultural products soon after the heaviness and composition of the deposition (Bq m{sup -2}) is known. (au)

  19. Economic Conditions and Factors Affecting New Nuclear Power Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J [ORNL

    2014-10-01

    This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examine the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic

  20. Nuclear Modification Factor Using Tsallis Non-extensive Statistics

    CERN Document Server

    Tripathy, Sushanta; Garg, Prakhar; Kumar, Prateek; Sahoo, Raghunath; Cleymans, Jean

    2016-01-01

    The nuclear modification factor is derived using Tsallis non-extensive statistics in relaxation time approximation. The variation of nuclear modification factor with transverse momentum for different values of non-extensive parameter, $q$, is also observed. The experimental data from RHIC and LHC are analysed in the framework of Tsallis non-extensive statistics in a relaxation time approximation. It is shown that the proposed approach explains the $R_{AA}$ of all particles over a wide range of transverse momenta but doesn't seem to describe the rise in $R_{AA}$ at very high transverse momenta.

  1. Nuclear modification factor using Tsallis non-extensive statistics

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sushanta; Garg, Prakhar; Kumar, Prateek; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Simrol (India); Bhattacharyya, Trambak; Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)

    2016-09-15

    The nuclear modification factor is derived using Tsallis non-extensive statistics in relaxation time approximation. The variation of the nuclear modification factor with transverse momentum for different values of the non-extensive parameter, q, is also observed. The experimental data from RHIC and LHC are analysed in the framework of Tsallis non-extensive statistics in a relaxation time approximation. It is shown that the proposed approach explains the R{sub AA} of all particles over a wide range of transverse momentum but does not seem to describe the rise in R{sub AA} at very high transverse momenta. (orig.)

  2. Human factors engineering plan for reviewing nuclear plant modernization programs

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, John; Higgins, James [Brookhaven National Laboratory, Upton, NY (United States)

    2004-12-01

    The Swedish Nuclear Power Inspectorate reviews the human factors engineering (HFE) aspects of nuclear power plants (NPPs) involved in the modernization of the plant systems and control rooms. The purpose of a HFE review is to help ensure personnel and public safety by verifying that accepted HFE practices and guidelines are incorporated into the program and nuclear power plant design. Such a review helps to ensure the HFE aspects of an NPP are developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The review addresses eleven HFE elements: HFE Program Management, Operating Experience Review, Functional Requirements Analysis and Allocation, Task Analysis, Staffing, Human Reliability Analysis, Human-System Interface Design, Procedure Development, Training Program Development, Human Factors Verification and Validation, and Design Implementation.

  3. Personality Factors and Nuclear Power Plant Operators: Initial License Success

    Science.gov (United States)

    DeVita-Cochrane, Cynthia

    Commercial nuclear power utilities are under pressure to effectively recruit and retain licensed reactor operators in light of poor candidate training completion rates and recent candidate failures on the Nuclear Regulatory Commission (NRC) license exam. One candidate failure can cost a utility over $400,000, making the successful licensing of new operators a critical path to operational excellence. This study was designed to discover if the NEO-PI-3, a 5-factor measure of personality, could improve selection in nuclear utilities by identifying personality factors that predict license candidate success. Two large U.S. commercial nuclear power corporations provided potential participant contact information and candidate results on the 2014 NRC exam from their nuclear power units nation-wide. License candidates who participated (n = 75) completed the NEO-PI-3 personality test and results were compared to 3 outcomes on the NRC exam: written exam, simulated operating exam, and overall exam result. Significant correlations were found between several personality factors and both written and operating exam outcomes on the NRC exam. Further, a regression analysis indicated that personality factors, particularly Conscientiousness, predicted simulated operating exam scores. The results of this study may be used to support the use of the NEO-PI-3 to improve operator selection as an addition to the current selection protocol. Positive social change implications from this study include support for the use of a personality measure by utilities to improve their return-on-investment in candidates and by individual candidates to avoid career failures. The results of this study may also positively impact the public by supporting the safe and reliable operation of commercial nuclear power utilities in the United States.

  4. Electronic and Nuclear Factors in Charge and Excitation Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  5. Key Response Planning Factors for the Aftermath of Nuclear Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Buddemeier, B R; Dillon, M B

    2009-01-21

    Despite hundreds of above-ground nuclear tests and data gathered from Hiroshima and Nagasaki, the effects of a ground-level, low-yield nuclear detonation in a modern urban environment are still the subject of considerable scientific debate. Extensive review of nuclear weapon effects studies and discussions with nuclear weapon effects experts from various federal agencies, national laboratories, and technical organizations have identified key issues and bounded some of the unknowns required to support response planning for a low-yield, ground-level nuclear detonation in a modern U.S. city. This study, which is focused primarily upon the hazards posed by radioactive fallout, used detailed fallout predictions from the advanced suite of three-dimensional (3-D) meteorology and plume/fallout models developed at Lawrence Livermore National Laboratory (LLNL), including extensive global Key Response Planning Factors for the Aftermath of Nuclear Terrorism geographical and real-time meteorological databases to support model calculations. This 3-D modeling system provides detailed simulations that account for complex meteorology and terrain effects. The results of initial modeling and analysis were presented to federal, state, and local working groups to obtain critical, broad-based review and feedback on strategy and messaging. This effort involved a diverse set of communities, including New York City, National Capitol Regions, Charlotte, Houston, Portland, and Los Angeles. The largest potential for reducing casualties during the post-detonation response phase comes from reducing exposure to fallout radiation. This can be accomplished through early, adequate sheltering followed by informed, delayed evacuation.B The response challenges to a nuclear detonation must be solved through multiple approaches of public education, planning, and rapid response actions. Because the successful response will require extensive coordination of a large number of organizations, supplemented by

  6. Nuclear Translocation of Nuclear Factor Kappa B in First Trimester Deciduas and Chorionic Villi in Early Spontaneous Miscarriage Women

    Directory of Open Access Journals (Sweden)

    Chun-fang Yan

    2010-02-01

    Full Text Available The nuclear factor kappa B is widely expressed in the distinct subpopulations of chorionic villi and deciduas of first-trimester pregnancies. We examined the cellular distribution and expression of nuclear factor kappa B in the human first-trimester chorionic villi and deciduas of women with early spontaneous miscarriage and viable pregnancy by confocal laser scanning microscope and immunohistochemistry. There is a greater nuclear translocation of nuclear factor kappa B is restricted to villous stromal cells, decidual stromal cells, glandular epithelial cells and vessel endothelial cells in early spontaneous miscarriage than in viable pregnancies. Collectively these observations suggest that over-activation of nuclear factor kappa B has a relationship with early spontaneous miscarriages.

  7. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant

  8. Arenavirus nucleoproteins prevent activation of nuclear factor kappa B.

    Science.gov (United States)

    Rodrigo, W W Shanaka I; Ortiz-Riaño, Emilio; Pythoud, Christelle; Kunz, Stefan; de la Torre, Juan C; Martínez-Sobrido, Luis

    2012-08-01

    Arenaviruses include several causative agents of hemorrhagic fever (HF) disease in humans that are associated with high morbidity and significant mortality. Morbidity and lethality associated with HF arenaviruses are believed to involve the dysregulation of the host innate immune and inflammatory responses that leads to impaired development of protective and efficient immunity. The molecular mechanisms underlying this dysregulation are not completely understood, but it is suggested that viral infection leads to disruption of early host defenses and contributes to arenavirus pathogenesis in humans. We demonstrate in the accompanying paper that the prototype member in the family, lymphocytic choriomeningitis virus (LCMV), disables the host innate defense by interfering with type I interferon (IFN-I) production through inhibition of the interferon regulatory factor 3 (IRF3) activation pathway and that the viral nucleoprotein (NP) alone is responsible for this inhibitory effect (C. Pythoud, W. W. Rodrigo, G. Pasqual, S. Rothenberger, L. Martínez-Sobrido, J. C. de la Torre, and S. Kunz, J. Virol. 86:7728-7738, 2012). In this report, we show that LCMV-NP, as well as NPs encoded by representative members of both Old World (OW) and New World (NW) arenaviruses, also inhibits the nuclear translocation and transcriptional activity of the nuclear factor kappa B (NF-κB). Similar to the situation previously reported for IRF3, Tacaribe virus NP (TCRV-NP) does not inhibit NF-κB nuclear translocation and transcriptional activity to levels comparable to those seen with other members in the family. Altogether, our findings demonstrate that arenavirus infection inhibits NF-κB-dependent innate immune and inflammatory responses, possibly playing a key role in the pathogenesis and virulence of arenavirus.

  9. Expression of nuclear factor-κB in traumatic cataract

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To study the differences in expression of nuclear factor-κB (NF-κB) between human traumatic cataract and normal lenticular epithelial cells.Methods: Total RNA of anterior capsule specimens was taken under the microscope from normal cadaveric eyes donors and those suffering from traumatic cataract to make semi-quantitative RT-PCR and conduct analysis of differences in expression of NF-κB between them.Results: As compared with the mcan of 0. 8337 in normal control group, the expression equivalent of NF-κB was 0.9074 for the lenticular epithelial cells in traumatic cataract sufferers, and the differences are of noticeable significance (t = 2. 447, P < 0.05) accordingly.Conclusions: NF-κB is likely a kind of transcription factor necessary to maintain metabolism of normal lenticular epithelial cells. Higher NF-κ B available in the traumatic cataract sufferer's lenticular epithelial cells means NF-κB is of possible relevance to occurrence and development of traumatic cataract.

  10. Bim nuclear translocation and inactivation by viral interferon regulatory factor.

    Directory of Open Access Journals (Sweden)

    Young Bong Choi

    Full Text Available Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of the host cell. Human herpesvirus 8 (HHV-8 uses several strategies to block the host's innate antiviral defenses via interference with interferon and apoptotic signaling. Contributors include the four viral interferon regulatory factors (vIRFs 1-4, which function in dominant negative fashion to block cellular IRF activities in addition to targeting IRF signaling-induced proteins such as p53 and inhibiting other inducers of apoptosis such as TGFbeta receptor-activated Smad transcription factors. Here we identify direct targeting by vIRF-1 of BH3-only pro-apoptotic Bcl-2 family member Bim, a key negative regulator of HHV-8 replication, to effect its inactivation via nuclear translocation. vIRF-1-mediated relocalization of Bim was identified in transfected cells, by both immunofluorescence assay and western analysis of fractionated cell extracts. Also, co-localization of vIRF-1 and Bim was detected in nuclei of lytically infected endothelial cells. In vitro co-precipitation assays using purified vIRF-1 and Bim revealed direct interaction between the proteins, and Bim-binding residues of vIRF-1 were mapped by deletion and point mutagenesis. Generation and experimental utilization of Bim-refractory vIRF-1 variants revealed the importance of vIRF-1:Bim interaction, specifically, in pro-replication and anti-apoptotic activity of vIRF-1. Furthermore, blocking of the interaction with cell-permeable peptide corresponding to the Bim-binding region of vIRF-1 confirmed the relevance of vIRF-1:Bim association to vIRF-1 pro-replication activity. To our knowledge, this is the first report of an IRF protein that interacts with a Bcl-2 family member and of nuclear sequestration of Bim or any other member of the family as a means of inactivation. The data presented reveal a novel mechanism utilized by a virus to control

  11. A binding site for the transcription factor Grainyhead/Nuclear transcription factor-1 contributes to regulation of the Drosophila proliferating cell nuclear antigen gene promoter.

    Science.gov (United States)

    Hayashi, Y; Yamagishi, M; Nishimoto, Y; Taguchi, O; Matsukage, A; Yamaguchi, M

    1999-12-03

    The Drosophila proliferating cell nuclear antigen promoter contains multiple transcriptional regulatory elements, including upstream regulatory element (URE), DNA replication-related element, E2F recognition sites, and three common regulatory factor for DNA replication and DNA replication-related element-binding factor genes recognition sites. In nuclear extracts of Drosophila embryos, we detected a protein factor, the URE-binding factor (UREF), that recognizes the nucleotide sequence 5'-AAACCAGTTGGCA located within URE. Analyses in Drosophila Kc cells and transgenic flies revealed that the UREF-binding site plays an important role in promoter activity both in cultured cells and in living flies. A yeast one-hybrid screen using URE as a bait allowed isolation of a cDNA encoding a transcription factor, Grainyhead/nuclear transcription factor-1 (GRH/NTF-1). The nucleotide sequence required for binding to GRH was indistinguishable from that for UREF detected in embryo nuclear extracts. Furthermore, a specific antibody to GRH reacted with UREF in embryo nuclear extracts. From these results we conclude that GRH is identical to UREF. Although GRH has been thought to be involved in regulation of differentiation-related genes, this study demonstrates, for the first time, involvement of a GRH-binding site in regulation of the DNA replication-related proliferating cell nuclear antigen gene.

  12. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity.

    Science.gov (United States)

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun; Wang, Wei; Liu, Jing; Liu, Wei; Pan, Shaokun; Xie, Youhua

    2016-09-16

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt -85 to -11 in eBHBV1 Cp was critical for the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt -64 to -50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt -58 to -54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt -21 to -17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses.

  13. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions

    OpenAIRE

    Nefiodov, A. V.; Plunien, G.; Soff, G.

    2002-01-01

    The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.

  14. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    Science.gov (United States)

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  15. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions

    OpenAIRE

    Nefiodov, A.V.; Plunien, G.; Soff, G.

    2002-01-01

    The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.

  16. Normative Factors in U.S. Nuclear Policy

    Science.gov (United States)

    2016-09-01

    148 While the neutron bomb was a nuclear weapon, it was unique in that it specialized in taking human life through radiation poisoning , without...other hand, the way that radiation poisoning killed the enemy was considered morally reprehensible, and it was often compared to the immorality of...indiscriminate nature, radiation effects, and so on,”25 which prevented policymakers from choosing nuclear arms over conventional weapons. This theory

  17. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-06-18

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed.

  18. Imaging analysis of nuclear antiviral factors through direct detection of incoming adenovirus genome complexes

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Tetsuro [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, Université de Bordeaux, Bordeaux 33076 (France); Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575 (Japan); Will, Hans [Department of Tumor Biology, University Hospital Hamburg-Eppendorf, 20246 Hamburg (Germany); Nagata, Kyosuke [Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575 (Japan); Wodrich, Harald, E-mail: harald.wodrich@u-bordeaux.fr [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, Université de Bordeaux, Bordeaux 33076 (France)

    2016-04-22

    Recent studies involving several viral systems have highlighted the importance of cellular intrinsic defense mechanisms through nuclear antiviral proteins that restrict viral propagation. These factors include among others components of PML nuclear bodies, the nuclear DNA sensor IFI16, and a potential restriction factor PHF13/SPOC1. For several nuclear replicating DNA viruses, it was shown that these factors sense and target viral genomes immediately upon nuclear import. In contrast to the anticipated view, we recently found that incoming adenoviral genomes are not targeted by PML nuclear bodies. Here we further explored cellular responses against adenoviral infection by focusing on specific conditions as well as additional nuclear antiviral factors. In line with our previous findings, we show that neither interferon treatment nor the use of specific isoforms of PML nuclear body components results in co-localization between incoming adenoviral genomes and the subnuclear domains. Furthermore, our imaging analyses indicated that neither IFI16 nor PHF13/SPOC1 are likely to target incoming adenoviral genomes. Thus our findings suggest that incoming adenoviral genomes may be able to escape from a large repertoire of nuclear antiviral mechanisms, providing a rationale for the efficient initiation of lytic replication cycle. - Highlights: • Host nuclear antiviral factors were analyzed upon adenovirus genome delivery. • Interferon treatments fail to permit PML nuclear bodies to target adenoviral genomes. • Neither Sp100A nor B targets adenoviral genomes despite potentially opposite roles. • The nuclear DNA sensor IFI16 does not target incoming adenoviral genomes. • PHF13/SPOC1 targets neither incoming adenoviral genomes nor genome-bound protein VII.

  19. Imaging analysis of nuclear antiviral factors through direct detection of incoming adenovirus genome complexes.

    Science.gov (United States)

    Komatsu, Tetsuro; Will, Hans; Nagata, Kyosuke; Wodrich, Harald

    2016-04-22

    Recent studies involving several viral systems have highlighted the importance of cellular intrinsic defense mechanisms through nuclear antiviral proteins that restrict viral propagation. These factors include among others components of PML nuclear bodies, the nuclear DNA sensor IFI16, and a potential restriction factor PHF13/SPOC1. For several nuclear replicating DNA viruses, it was shown that these factors sense and target viral genomes immediately upon nuclear import. In contrast to the anticipated view, we recently found that incoming adenoviral genomes are not targeted by PML nuclear bodies. Here we further explored cellular responses against adenoviral infection by focusing on specific conditions as well as additional nuclear antiviral factors. In line with our previous findings, we show that neither interferon treatment nor the use of specific isoforms of PML nuclear body components results in co-localization between incoming adenoviral genomes and the subnuclear domains. Furthermore, our imaging analyses indicated that neither IFI16 nor PHF13/SPOC1 are likely to target incoming adenoviral genomes. Thus our findings suggest that incoming adenoviral genomes may be able to escape from a large repertoire of nuclear antiviral mechanisms, providing a rationale for the efficient initiation of lytic replication cycle.

  20. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha

    Science.gov (United States)

    Davison, James M.; Lickwar, Colin R.; Song, Lingyun; Breton, Ghislain; Crawford, Gregory E.; Rawls, John F.

    2017-01-01

    Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota. PMID:28385711

  1. Changes in the Factors Influencing Public Acceptance of Nuclear Power Generation in Japan Since the 2011 Fukushima Daiichi Nuclear Disaster.

    Science.gov (United States)

    Tsujikawa, Norifumi; Tsuchida, Shoji; Shiotani, Takamasa

    2016-01-01

    Public support for nuclear power generation has decreased in Japan since the Fukushima Daiichi nuclear accident in March 2011. This study examines how the factors influencing public acceptance of nuclear power changed after this event. The influence factors examined are perceived benefit, perceived risk, trust in the managing bodies, and pro-environmental orientation (i.e., new ecological paradigm). This study is based on cross-sectional data collected from two online nationwide surveys: one conducted in November 2009, before the nuclear accident, and the other in October 2011, after the accident. This study's target respondents were residents of Aomori, Miyagi, and Fukushima prefectures in the Tohoku region of Japan, as these areas were the epicenters of the Great East Japan Earthquake and the locations of nuclear power stations. After the accident, trust in the managing bodies was found to have a stronger influence on perceived risk, and pro-environmental orientation was found to have a stronger influence on trust in the managing bodies; however, perceived benefit had a weaker positive influence on public acceptance. We also discuss the theoretical and practical implications of these findings.

  2. Activation of nuclear factor-kappa B via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons

    NARCIS (Netherlands)

    Fernyhough, P; Smith, DR; Schapansky, J; Van Der Ploeg, R; Gardiner, NJ; Tweed, CW; Kontos, A; Freeman, L; Purves-Tyson, TD; Glazner, GW

    2005-01-01

    Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo, and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-kappaB(NF-kappaB) for survival. In contrast, adult DRG neurons survive permane

  3. Activation of nuclear factor-kappa B via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons

    NARCIS (Netherlands)

    Fernyhough, P; Smith, DR; Schapansky, J; Van Der Ploeg, R; Gardiner, NJ; Tweed, CW; Kontos, A; Freeman, L; Purves-Tyson, TD; Glazner, GW

    2005-01-01

    Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo, and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-kappaB(NF-kappaB) for survival. In contrast, adult DRG neurons survive

  4. Experimental wrap-up: p ( d ) A — particle production and nuclear modification factors

    CERN Document Server

    Morsch, Andreas

    2014-01-01

    The 6th International Conference on Hard and Electromagnetic Probes in High-Energy Nuclear Collisions was held in November 2013 in Cape Town, South Africa. This contribution is a summary of the results presented on particle production and nuclear modification factors in p–A like collisions.

  5. GATA transcription factors associate with a novel class of nuclear bodies in erythroblasts and megakaryocytes.

    NARCIS (Netherlands)

    A.G. Elefanty (Andrew); M. Antoniou (Michael); N. Custodio; M. Carmo-Fonseca; F.G. Grosveld (Frank)

    1996-01-01

    textabstractThe nuclear distribution of GATA transcription factors in murine haemopoietic cells was examined by indirect immunofluorescence. Specific bright foci of GATA-1 fluorescence were observed in erythroleukaemia cells and primary murine erythroblasts and megakaryocytes, in addition to diffuse

  6. The adiabatic limit of the exact factorization of the electron-nuclear wave function

    CERN Document Server

    Eich, Florian G

    2016-01-01

    We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its dependence on the mass ratio is tested numerically on a model proton- coupled electron transfer in different non-adiabatic regimes.

  7. Shuanghuanglian injection downregulates nuclear factor-kappa B expression in mice with viral encephalitis

    Institute of Scientific and Technical Information of China (English)

    Naibing Gu; Ye Tian; Zhengli Di; Caiping Han; Hui Lei; Gejuan Zhang

    2012-01-01

    A mouse model of viral encephalitis was induced by intracranial injection of a Coxsackie virus B3 suspension.Quantitative real-time reverse transcription-PCR and western blot assay were applied to detect mRNA and protein expression of intelectin-2 and nuclear factor-kappa B in the viral encephalitis and control groups.Nuclear factor-kappa B and intelectin-2 mRNA and protein expression were significantly increased in mice with viral encephalitis.After intraperitoneal injection of Shuanghuanglian at a dose of 1.5 mg/kg for 5 successive days,intelectin-2 and nuclear factor-kappa B protein and mRNA expression were significantly decreased.To elucidate the relationship between intelectin-2 and nuclear factor-kappa B,mice with viral encephalitis were administered an intracerebral injection of 107 pfu recombinant lentivirus expressing intelectin shRNA.Both protein and mRNA levels of intelectin and nuclear factor-kappa B in brain tissue of mice were significantly decreased.Experimental findings suggest that Shuanghuanglian injection may downregulate nuclear factor-kappa B production via suppression of intelectin production,thus inhibiting inflammation associated with viral encephalitis.

  8. Reconstruction of adenovirus replication origins with a human nuclear factor I binding site.

    Science.gov (United States)

    Adhya, S; Shneidman, P S; Hurwitz, J

    1986-03-05

    Nuclear factor I is a host-coded DNA-binding protein that stimulates initiation of adenovirus DNA replication. To understand the mechanism of action of nuclear factor I, we have constructed, by recombinant DNA techniques, origins of replication in which the adenovirus type 5 nuclear factor I binding site (FIB site) has been replaced by a FIB site isolated from human genomic DNA (Gronostajski, R. M., Nagata, K., and Hurwitz, J. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4013-4017). Assays of such recombinants for initiation and elongation in vitro showed that nuclear factor I was active only when the FIB site was relatively close to the DNA terminus, i.e. the FIB site was centered at nucleotides 30-36 from the end of the DNA. Nuclear factor I was active in either orientation within this distance range. The presence of one or two additional FIB sites in the downstream region had no effect. The implications of these results for the mechanism of nuclear factor I action are discussed.

  9. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization

    NARCIS (Netherlands)

    Kuznetsova, T.; Wang, S.Y.; Rao, N.A.; Mandoli, A.; Martens, J.H.; Rother, N; Aartse, A.; Groh, L.; Janssen-Megens, E.M.; Li, G.; Ruan, Y.; Logie, C.; Stunnenberg, H.G.

    2015-01-01

    BACKGROUND: The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by activ

  10. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization

    NARCIS (Netherlands)

    Kuznetsova, T.; Wang, S.Y.; Rao, N.A.; Mandoli, A.; Martens, J.H.; Rother, N; Aartse, A.; Groh, L.; Janssen-Megens, E.M.; Li, G.; Ruan, Y.; Logie, C.; Stunnenberg, H.G.

    2015-01-01

    BACKGROUND: The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by

  11. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim, E-mail: ykpak@khu.ac.kr

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  12. Lipopolysaccharide and tumor necrosis factor regulate Parkin expression via nuclear factor-kappa B.

    Directory of Open Access Journals (Sweden)

    Thi A Tran

    Full Text Available Inflammation and oxidative stress have been implicated in the pathophysiology of Parkinson's disease (PD and inhibition of microglial activation attenuates degeneration of dopaminergic (DA neurons in animal models of PD. Loss-of-function mutations in the parkin gene, which encodes an E3 ubiquitin ligase, cause autosomal recessive parkinsonism. While most studies on Parkin have focused on its function in neurons, here we demonstrate that Parkin mRNA and protein is detectable in brain-resident microglia and peripheral macrophages. Using pharmacologic and genetic approaches, we found that Parkin levels are regulated by inflammatory signaling. Specifically, exposure to LPS or Tumor Necrosis Factor (TNF induced a transient and dose-dependent decrease in Parkin mRNA and protein in microglia, macrophages and neuronal cells blockable by inhibitors of Nuclear Factor-Kappa B (NF-κB signaling and not observed in MyD88-null cells. Moreover, using luciferase reporter assays, we identified an NF-κB response element in the mouse parkin promoter responsible for mediating the transcriptional repression, which was abrogated when the consensus sequence was mutated. Functionally, activated macrophages from Parkin-null mice displayed increased levels of TNF, IL-1β, and iNOS mRNA compared to wild type macrophages but no difference in levels of Nrf2, HO-1, or NQO1. One implication of our findings is that chronic inflammatory conditions may reduce Parkin levels and phenocopy parkin loss-of-function mutations, thereby increasing the vulnerability for degeneration of the nigrostriatal pathway and development of PD.

  13. Towards high precision measurements of nuclear g-factors for the Be isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Takamine, A., E-mail: icot@riken.jp [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wada, M. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Okada, K. [Department of Physics, Sophia University, Chiyoda Ward, Tokyo (Japan); Ito, Y. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Schury, P.; Arai, F. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Katayama, I. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Imamura, K. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Department of Physics, Meiji University, Kawasaki City, Kanagawa (Japan); Ichikawa, Y.; Ueno, H. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wollnik, H. [Department of Chemistry and BioChemistry, New Mexico State University, Las Cruces, NM (United States); Schuessler, H.A. [Department of Physics, Texas A& M University, College Station, TX (United States)

    2016-06-01

    We describe the present status of future high-precision measurements of nuclear g-factors utilizing laser-microwave double and laser-microwave-rf triple resonance methods for online-trapped, laser-cooled radioactive beryllium isotope ions. These methods have applicability to other suitably chosen isotopes and for beryllium show promise in deducing the hyperfine anomaly of {sup 11}Be with a sufficiently high precision to study the nuclear magnetization distribution of this one-neutron halo nucleus in a nuclear-model-independent manner.

  14. Human factors design review guidelines for advanced nuclear control room technologies

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.; Brown, W. (Brookhaven National Lab., Upton, NY (United States)); Granda, T.; Baker, C. (Carlow Associates, Inc., Fairfax, VA (United States))

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig.

  15. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  16. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    Science.gov (United States)

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  17. Bohmian mechanics in the exact factorization of electron-nuclear wave functions

    Science.gov (United States)

    Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2016-09-01

    The exact factorization of an electron-nuclear wave function [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010), 10.1103/PhysRevLett.105.123002] allows us to define the rigorous nuclear time-dependent Schrödinger equation (TDSE) with a time-dependent potential-energy surface (TDPES) that fully accounts for the coupling to the electronic motion and drives the nuclear wave-packet dynamics. Here, we study whether the propagation of multiple classical trajectories can reproduce the quantum nuclear motion in strong-field processes when their motions are governed by the quantum Hamilton-Jacobi equation derived by applying Bohmian mechanics to this exact nuclear TDSE. We demonstrate that multiple classical trajectories propagated by the force from the gradient of the exact TDPES plus the Bohmian quantum potential can reproduce the strong-field dissociation dynamics of a one-dimensional model of the H2 + molecule. Our results show that the force from the Bohmian quantum potential plays a non-negligible role in yielding quantum nuclear dynamics in the strong-field process studied here, where ionization and/or splitting of nuclear probability density occurs.

  18. Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In co-operation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on ''Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies'' in the period August 27-August 31, 2001. The Summer School was intended for scientists, engineers and technicians working for nuclear installations, engineering companies, industry and members of universities and research institutes, who wanted to broaden their nuclear background by getting acquainted with Man-Technology-Organisation-related subjects and issues. The Summer School should also serve to transfer knowledge to the ''young generation'' in the nuclear field. The following presentations were given: (1) Overview of the Nuclear Community and Current issues, (2) The Elements of Safety Culture; Evaluation of Events, (3) Quality Management (QM), (4) Probabilistic Risk Assessment (PSA), (5) Human Behaviour from the Viewpoint of Industrial Psychology, (6) Technical tour of the Halden Project Experimental Facilities, (7) Human Factors in Control Room Design, (8) Computerised Operator Support Systems (COSSs) and (9) Artificial Intelligence; a new Approach. Most of the contributions are overhead figures from spoken lectures.

  19. Melatonin downregulates nuclear erythroid 2-related factor 2 and nuclear factor-kappaB during prevention of oxidative liver injury in a dimethylnitrosamine model.

    Science.gov (United States)

    Jung, Kyung Hee; Hong, Sang-Won; Zheng, Hong-Mei; Lee, Don-Haeng; Hong, Soon-Sun

    2009-09-01

    Melatonin has potent hepatoprotective effects as an antioxidant. However, the signaling pathway of melatonin in the induction of antioxidant enzymes against acute liver injury is not fully understood. The study aimed to determine whether melatonin could prevent dimethylnitrosamine (DMN)-induced liver injury through nuclear erythroid 2-related factor 2 (Nrf2) and inflammation. Liver injury was induced in rats by a single injection of DMN (30 mg/kg, i.p.). Melatonin treatment (50 mg/kg/daily, i.p.) was initiated 24 hr after DMN injection for 14 days, after which the rats were killed and samples were collected. Serum and antioxidant enzyme activities improved in melatonin-treated rats, compared with DMN-induced liver injury group (P nuclear binding of nuclear factor-kappa B (NF-kappaB) in the DMN-induced liver injury group was inhibited by melatonin. Our results show that melatonin increases antioxidant enzymes and Nrf2 expression in parallel with the decrease of inflammatory mediators in DMN-induced liver injury, suggesting that melatonin may play a role of antioxidant defense via the Nrf2 pathway, by reducing inflammation by NF-kappaB inhibition.

  20. Bound Nucleon Form Factors, Quark-Hadron Duality, and Nuclear EMC Effect

    CERN Document Server

    Tsushima, K; Melnitchouk, W; Saitô, K; Thomas, A W

    2003-01-01

    We discuss the electromagnetic form factors, axial form factors, and structure functions of a bound nucleon in the quark-meson coupling (QMC) model. Free space nucleon form factors are calculated using the improved cloudy bag model (ICBM). After describing finite nuclei and nuclear matter in the quark-based QMC model, we compute the in-medium modification of the bound nucleon form factors in the same framework. Finally, limits on the medium modification of the bound nucleon $F_2$ structure function are obtained using the calculated in-medium electromagnetic form factors and local quark-hadron duality.

  1. Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles.

    Science.gov (United States)

    Read, Jolene; Ingram, Alistair; Al Saleh, Hassan A; Platko, Khrystyna; Gabriel, Kathleen; Kapoor, Anil; Pinthus, Jehonathan; Majeed, Fadwa; Qureshi, Talha; Al-Nedawi, Khalid

    2017-01-01

    Epidermal growth factor receptor (EGFR) plays a central role in the progression of several human malignancies. Although EGFR is a membrane receptor, it undergoes nuclear translocation, where it has a distinct signalling pathway. Herein, we report a novel mechanism by which cancer cells can directly transport EGFR to the nucleus of other cells via extracellular vesicles (EVs). The transported receptor is active and stimulates the nuclear EGFR pathways. Interestingly, the translocation of EGFR via EVs occurs independently of the nuclear localisation sequence that is required for nuclear translocation of endogenous EGFR. Also, we found that the mutant receptor EGFRvIII could be transported to the nucleus of other cells via EVs. To assess the role of EVs in the regulation of an actual nuclear receptor, we studied the regulation of androgen receptor (AR). We found that full-length AR and mutant variant ARv7 are secreted in EVs derived from prostate cancer cell lines and could be transported to the nucleus of AR-null cells. The EV-derived AR was able to bind the androgen-responsive promoter region of prostate specific antigen, and recruit RNA Pol II, an indication of active transcription. The nuclear-translocated AR via EVs enhanced the proliferation of acceptor cells in the absence of androgen. Finally, we provide evidence that nuclear localisation of AR could occur in vivo via orthotopically-injected EVs in male SCID mice prostate glands. To our knowledge, this is the first study showing the nuclear translocation of nuclear receptors via EVs, which significantly extends the role of EVs as paracrine transcriptional regulators.

  2. DMPD: Nuclear factor-kappaB: activation and regulation during toll-like receptorsignaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17349209 Nuclear factor-kappaB: activation and regulation during toll-like receptor...signaling. Carmody RJ, Chen YH. Cell Mol Immunol. 2007 Feb;4(1):31-41. (.png) (.svg) (.html) (.csml) Show Nuclear fact...or-kappaB: activation and regulation during toll-like receptorsignaling. PubmedID 17349209 Title Nuclear fact

  3. A Study on the Allowable Safety Factor of Cut-Slopes for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Soo; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    In this study, the issues of allowable safety factor design criteria for cut-slopes in nuclear facilities is derived through case analysis, a proposed construction work slope design criteria that provides relatively detailed conditions can be applied in case of the dry season and some unclear parts of slope design criteria be modified in case of the rainy season. This safety factor can be further subdivided into two; normal and earthquake factors, a factor of 1.5 is applied for normal conditions and a factor of 1.2 is applied for seismic conditions. This safety factor takes into consideration the effect of ground water and rainfall conditions. However, no criteria for the case of cut-slope in nuclear facilities and its response to seismic conditions is clearly defined, this can cause uncertainty in design. Therefore, this paper investigates the allowable safety factor for cut-slopes in nuclear facilities, reviews conditions of both local and international cut-slope models and finally suggests an alternative method of analysis. It is expected that the new design criteria adequately ensures the stability of the cut-slope to reflect clear conditions for both the supervising and design engineers.

  4. Risk factors for nuclear and cortical cataracts: A hospital based study

    Directory of Open Access Journals (Sweden)

    Bangera Sheshappa Mamatha

    2015-01-01

    Conclusion: Higher dietary intake of carotenoids is associated with a lower risk of cataracts. Nuclear and cortical cataracts are associated with various risk factors such as diabetes, hypertension, cigarette smoking and tobacco, similar to studies conducted in other Asian and European populations, irrespective of ethnic origin.

  5. Hepatocyte Nuclear Factor 1beta-Associated Kidney Disease: More than Renal Cysts and Diabetes

    NARCIS (Netherlands)

    Verhave, J.C.; Bech, A.P.; Wetzels, J.F.; Nijenhuis, T.

    2016-01-01

    Hepatocyte nuclear factor 1beta (HNF1beta)-associated disease is a recently recognized clinical entity with a variable multisystem phenotype. Early reports described an association between HNF1B mutations and maturity-onset diabetes of the young. These patients often presented with renal cysts and

  6. Apple, Cherry, and Blackcurrant Increases Nuclear Factor Kappa B Activation in Liver of Transgenic Mice

    DEFF Research Database (Denmark)

    Balstad, Trude; Paur, Ingvild; Poulsen, Morten

    2010-01-01

    Nuclear factor kappa B (NF-B) is essential in normal physiology, and several human disorders involve inappropriate regulation of NF-B. Diets dominated by plant-based foods protect against chronic diseases, and several food derived compounds have been identified as promising NF-B modulators. We...

  7. Orphan nuclear receptor TR4 and fibroblast growth factor 1 in metabolism

    NARCIS (Netherlands)

    Liu, Weilin

    2016-01-01

    Metabolic homeostasis is achieved, in part, through the coordinated activities of members of the Nuclear Receptor (NR) family, a superfamily of ligand-modulated transcription factors (TFs) that mediate responses to a wide range of lipophilic signaling molecules including lipids, steroids, retinoids,

  8. Unexpected discovery of 2 cases of hepatocyte nuclear factor 1α-mutated infracentimetric adenomatosis

    Institute of Scientific and Technical Information of China (English)

    Hervé Laumonier; Anne Rullier; Jean Saric; Chades Balabaud; Paulette Bioulac-Sage

    2008-01-01

    We present 2 cases of hepatocyte nuclear factor 1α(HNF1α)-mutated adenomatosis,discovered for reasons unrelated to this disease,and identified using immunohistochemical methods.These new tools may further our understanding of the link between adenomas/adenornatosis subtypes and their complications,and their association with other abnormalities.

  9. Role of apoptosis-inducing factor (AIF in programmed nuclear death during conjugation in Tetrahymena thermophila

    Directory of Open Access Journals (Sweden)

    Endoh Hiroshi

    2010-02-01

    Full Text Available Abstract Background Programmed nuclear death (PND, which is also referred to as nuclear apoptosis, is a remarkable process that occurs in ciliates during sexual reproduction (conjugation. In Tetrahymena thermophila, when the new macronucleus differentiates, the parental macronucleus is selectively eliminated from the cytoplasm of the progeny, concomitant with apoptotic nuclear events. However, the molecular mechanisms underlying these events are not well understood. The parental macronucleus is engulfed by a large autophagosome, which contains numerous mitochondria that have lost their membrane potential. In animals, mitochondrial depolarization precedes apoptotic cell death, which involves DNA fragmentation and subsequent nuclear degradation. Results We focused on the role of mitochondrial apoptosis-inducing factor (AIF during PND in Tetrahymena. The disruption of AIF delays the normal progression of PND, specifically, nuclear condensation and kilobase-size DNA fragmentation. AIF is localized in Tetrahymena mitochondria and is released into the macronucleus prior to nuclear condensation. In addition, AIF associates and co-operates with the mitochondrial DNase to facilitate the degradation of kilobase-size DNA, which is followed by oligonucleosome-size DNA laddering. Conclusions Our results suggest that Tetrahymena AIF plays an important role in the degradation of DNA at an early stage of PND, which supports the notion that the mitochondrion-initiated apoptotic DNA degradation pathway is widely conserved among eukaryotes.

  10. Coefficient of variation of nuclear diameters as a prognostic factor in papillary thyroid carcinoma.

    Science.gov (United States)

    Chang, T C; Kuo, S H; How, S W

    1991-12-01

    To determine whether the coefficient of variation (CV) of nuclear diameters can be used as a prognostic factor in papillary thyroid carcinoma, we reviewed fine needle aspiration smears with Riu's stain from 55 operated-on and pathologically verified cases with a median follow-up of 6.5 years. For each case we measured the nuclear diameters of 100 cancer cells by ocular micrometry and calculated the CV of the nuclear diameters. Then we correlated the CV with the clinical stage, recurrence and death. There was a positive correlation between the CV of the nuclear diameters and the clinical stage (r = .59, P less than .0001). Recurrent cases (n = 10) had a higher CV than did those without recurrence (n = 45) (18.04 +/- 4.1% [mean +/- SD] versus 13.2 +/- 2.7%, P less than .0005). All recurrent cases had a CV greater than 13%. The cases in which death occurred (n = 5) had a higher CV than did those with survival (n = 50) (20.1 +/- 4.9% versus 13.5 +/- 2.7%, P less than .0005). All cases in which death occurred had a CV greater than 15%. The extent of variation of nuclear diameters was one of the factors influencing prognosis in papillary thyroid carcinoma. It offers a prognostic adjunct to standard clinical and histologic analysis.

  11. Nuclear monopole charge form factor calculation for relativistic models including center-of-mass corrections

    Energy Technology Data Exchange (ETDEWEB)

    Avancini, S.S.; Marinelli, J.R. [Universidade Federal de Santa Catarina Florianopolis, Depto de Fisica - CFM, Florianopolis (Brazil); Carlson, B.V. [Instituto Tecnologico de Aeronautica, Sao Jose dos Campos (Brazil)

    2013-06-15

    Relativistic models for finite nuclei contain spurious center-of-mass motion in most applications for the nuclear many-body problem, where the nuclear wave function is taken as a single Slater determinant within a space-fixed frame description. We use the Peierls-Yoccoz projection method, previously developed for relativistic approaches together with a reparametrization of the coupling constants that fits binding energies and charge radius and apply our results to calculate elastic electron scattering monopole charge form factors for light nuclei. (orig.)

  12. Inhibition of the TEF/TEAD transcription factor activity by nuclear calcium and distinct kinase pathways.

    Science.gov (United States)

    Thompson, M; Andrade, V A; Andrade, S J; Pusl, T; Ortega, J M; Goes, A M; Leite, M F

    2003-02-07

    Transcription enhancer factor (TEF/TEAD) is a family of four transcription factors that share a common TEA-DNA binding domain and are involved in similar cellular functions, such as cell differentiation and proliferation. All adult tissues express at least one of the four TEAD genes, so this family of transcription factors may be of widespread importance, yet little is known about their regulation. Here we examine the factors that regulate TEAD activity in CHO cells. RT-PCR indicated the presence of TEAD-1, TEAD-3, and both isoforms of TEAD-4, but not TEAD-2. Quantitative measurements showed that TEAD-4 is most abundant, followed by TEAD-3, then TEAD-1. We examined the relative effects of nuclear and cytosolic Ca(2+) on TEAD activity, since TEAD proteins are localized to the nucleus and since free Ca(2+) within the nucleus selectively regulates transcription in some systems. Chelation of nuclear but not cytosolic Ca(2+) increased TEAD activity two times above control. Inhibition of mitogen-activated protein kinase (MAPK) also increased TEAD activity, while cAMP decreased TEAD activity, and protein kinase C had no effect. Together, these results show that nuclear Ca(2+), MAPK, and cAMP each negatively regulate the activity of the TEAD transcription factor.

  13. A Nonradioactive Method for Detecting DNA-binding Activity of Nuclear Transcription Factors

    Institute of Scientific and Technical Information of China (English)

    张宁; 徐永健; 张珍祥; 熊维宁

    2003-01-01

    To determine the feasibility of a nonradioactive electrophoresis mobility shift assay fordetecting nuclear transcription factor, double-stranded oligonucleotides encoding the consensus tar-get sequence of NF-κB were labled with DIG by terminal transferase. After nuclear protein stimula-ted with phorbol 12-myristate 13-acetate (PMA) or PMA and pyrrolidine dithiocarbamate (PDT C)electrophoresed on 8 % nondenaturing poliacrylamide gel together with oligeonucleotide probe, theywere electro-blotted nylon membrane positively charged. Anti-DIG-AP antibody catalyzed chemilu-minescent substrate CSPD to image on X-film. The results showed that nuclear proteins binded spe-cifically to the NF-κB consensus sequence in the EMSA by chemiluminescent technique method andthe activity of NF-κB in PMA group was more than that in PMA+PDTC group. It is suggestedthat detection of NF-κB by EMSA with chemiluminescent technique is feasible and simple, whichcan be performed in ordinary laboratories.

  14. INVESTIGATION OF FACTORS INFLUENCING ON RADIATION SITUATION FORMING DURING UTILIZATION OF NUCLEAR OBJECTS OF MARINE EQUIPMENT

    Directory of Open Access Journals (Sweden)

    A. V. Ivanchenko

    2013-01-01

    Full Text Available The article contains the results of the radiation situation investigation during fulfilling operations of utilization of nuclear objects of marine equipment in the facilities of nuclear shipbuilding and ship repair of Murmansk and Archangelsk regions. The results of research had reviled main radiation indices, which determine the facilities staff working conditions. During the cutting of constructions of nuclear objects of marine equipment the levels of radioactive contamination of the surfaces and aerosols volumetric activity in a whole do not exceed permissible levels set in RSS-99/2009 and depend on the types of operations fulfilling in the utilized object. The determining radiation factor for classifying of working conditions in the facilities is the equivalent dose rate of gamma-exposure the values of which are in the range of 0.5 – 8700.0 μSv/h.

  15. Engineering factors influencing Corbicula fouling in nuclear-service water systems

    Energy Technology Data Exchange (ETDEWEB)

    Henager, C.H.; Johnson, K.I.; Page, T.L.

    1983-06-01

    Corbicula fouling is a continuing problem in nuclear-service water systems. More knowledge of biological and engineering factors is needed to develop effective detection and control methods. A data base on Corbicula fouling was compiled from nuclear and non-nuclear power stations and industries using raw water. This data base was used in an analysis to identify systems and components which are conducive to fouling by Corbicula. Bounds on several engineering parameters such as velocity and temperature which support Corbicula growth are given. Service water systems found in BWR and PWR reactors are listed and those that show fouling are identified. Possible safety implications of Corbicula fouling are discussed for specific service water systems. Several effective control methods in current use include backflushing with heated water, centrifugal strainers, and continuous chlorination during spawning seasons.

  16. Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent.

    Science.gov (United States)

    Kren, Nancy P; Zagon, Ian S; McLaughlin, Patricia J

    2016-02-01

    Opioid growth factor receptor (OGFr) facilitates growth inhibition in the presence of its specific ligand opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin. The function of the OGF-OGFr axis requires the receptor to translocate to the nucleus. However, the mechanism of nuclear export of OGFr is unknown. In this study, endogenous OGFr, as well as exogenously expressed OGFr-EGFP, demonstrated significant nuclear accumulation in response to leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export, suggesting that OGFr is exported in a CRM1-dependent manner. One consensus sequence for a nuclear export signal (NES) was identified. Mutation of the associated leucines, L217 L220 L223 and L225, to alanine resulted in decreased nuclear accumulation. NES-EGFP responded to LMB, indicating that this sequence is capable of functioning as an export signal in isolation. To determine why the sequence functions differently in isolation than as a full length protein, the localization of subNES was evaluated in the presence and absence of MG132, a potent inhibitor of proteosomal degradation. MG132 had no effect of subNES localization. The role of tandem repeats located at the C-terminus of OGFr was examined for their role in nuclear trafficking. Six of seven tandem repeats were removed to form deltaTR. DeltaTR localized exclusively to the nucleus indicating that the tandem repeats may contribute to the localization of the receptor. Similar to the loss of cellular proliferation activity (i.e. inhibition) recorded with subNES, deltaTR also demonstrated a significant loss of inhibitory activity indicating that the repeats may be integral to receptor function. These experiments reveal that OGFr contains one functional NES, L217 L220 L223 and L225 and can be exported from the nucleus in a CRM1-dependent manner.

  17. Factors affecting mito-nuclear codon usage interactions in the OXPHOS system of Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Codon usage bias varies considerably among genomes and even within the genes of the same genome.In eukaryotic organisms,energy production in the form of oxidative phosphorylation(OXPHOS)is the only process under control of both nuclear and mitochondrial genomes.Although factors affecting codon usage in a single genome have been studied,this has not occurred when both interactional genomes are involved.Consequently, we investigated whether or not other factors influence codon usage of coevolved genes.We used Drosophila melanogaster as a model organism.Our χ2 test on the number of codons of nuclear and mitochondrial genes involved in the OXPHOS system was significantly different (χ2=7945.16,P<0.01).A plot of effective number of codons against GC3s content of nuclear genes showed that few genes lie on the expected curve,indicating that codon usage was random.Correspondence analysis indicated a significant correlation between axis 1 and codon adaptation index(R=0.947,P<0.01)in every nuclear gene sequence.Thus,codon usage bias of nuclear genes appeared to be affected by translational selection.Correlation between axis 1 coordinates and GC content(R=0.814.P<0.01)indicated that the codon usage of nuclear genes was also affected by GC composition.Analysis of mitochondrial genes did not reveal a significant correlation between axis 1 and any parameter.Statistical analyses indicated that codon usages of both nDNA and mtDNA were subjected to context-dependent mutations.

  18. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins.

    Science.gov (United States)

    Takeda, Akiko; Sarma, Nayan J; Abdul-Nabi, Anmaar M; Yaseen, Nabeel R

    2010-05-21

    NUP98 is a nucleoporin that plays complex roles in the nucleocytoplasmic trafficking of macromolecules. Rearrangements of the NUP98 gene in human leukemia result in the expression of numerous fusion oncoproteins whose effect on nucleocytoplasmic trafficking is poorly understood. The present study was undertaken to determine the effects of leukemogenic NUP98 fusion proteins on CRM1-mediated nuclear export. NUP98-HOXA9, a prototypic NUP98 fusion, inhibited the nuclear export of two known CRM1 substrates: mutated cytoplasmic nucleophosmin and HIV-1 Rev. In vitro binding assays revealed that NUP98-HOXA9 binds CRM1 through the FG repeat motif in a Ran-GTP-dependent manner similar to but stronger than the interaction between CRM1 and its export substrates. Two NUP98 fusions, NUP98-HOXA9 and NUP98-DDX10, whose fusion partners are structurally and functionally unrelated, interacted with endogenous CRM1 in myeloid cells as shown by co-immunoprecipitation. These leukemogenic NUP98 fusion proteins interacted with CRM1, Ran, and the nucleoporin NUP214 in a manner fundamentally different from that of wild-type NUP98. NUP98-HOXA9 and NUP98-DDX10 formed characteristic aggregates within the nuclei of a myeloid cell line and primary human CD34+ cells and caused aberrant localization of CRM1 to these aggregates. These NUP98 fusions caused nuclear accumulation of two transcription factors, NFAT and NFkappaB, that are regulated by CRM1-mediated export. The nuclear entrapment of NFAT and NFkappaB correlated with enhanced transcription from promoters responsive to these transcription factors. Taken together, the results suggest a new mechanism by which NUP98 fusions dysregulate transcription and cause leukemia, namely, inhibition of CRM1-mediated nuclear export with aberrant nuclear retention of transcriptional regulators.

  19. An improvement of the applicability of human factors guidelines for coping with human factors issues in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Lee, J. Y. [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    Human factors have been well known as one of the key factors to the system effectiveness as well as the efficiency and safety of nuclear power plants(NPPs). Human factors engineering(HFE) are included in periodic safety review(PSR) on the existing NPPs and the formal safety assessment for the new ones. However, HFE for NPPs is still neither popular in practice nor concrete in methodology. Especially, the human factors guidelines, which are the most frequent form of human factors engineering in practice, reveal the limitations in their applications. We discuss the limitations and their casual factors found in human factors guidelines in order to lesson the workload of HFE practitioners and to improve the applicability of human factors guidelines. According to the purposes and the phases of HFE for NPPs, more selective items and specified criteria should be prepared carefully in the human factors guidelines for the each HFE applications in practice. These finding on the human factors guidelines can be transferred to the other HFE application field, such as military, aviation, telecommunication, HCI, and product safety.

  20. Bohmian mechanics in the exact factorization of electron-nuclear wavefunction

    CERN Document Server

    Suzuki, Yasumitsu

    2016-01-01

    The exact factorization of an electron-nuclear wavefunction [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010)] allows us to define the rigorous nuclear time-dependent Schr\\"{o}dinger equation (TDSE) with a time-dependent potential-energy surface (TDPES) that fully accounts for the coupling to the electronic motion and drives the nuclear wavepacket dynamics. Here, we study whether the propagation of multiple classical trajectories can reproduce the quantum nuclear motion in strong-field processes when their motions are governed by the quantum Hamilton-Jacobi equation derived by applying Bohmian mechanics to this exact nuclear TDSE. We demonstrate that multiple classical trajectories propagated by the force from the gradient of the exact TDPES plus the Bohmian quantum potential can reproduce the strong-field dissociation dynamics of a one-dimensional model of the H$_2^+$ molecule. Our results show that the force from the Bohmian quantum potential plays a non-negligible role in yie...

  1. Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland.

    Science.gov (United States)

    Cecon, Erika; Fernandes, Pedro A; Pinato, Luciana; Ferreira, Zulma S; Markus, Regina P

    2010-01-01

    In mammals, the production of melatonin by the pineal gland is mainly controlled by the suprachiasmatic nuclei (SCN), the master clock of the circadian system. We have previously shown that agents involved in inflammatory responses, such as cytokines and corticosterone, modulate pineal melatonin synthesis. The nuclear transcription factor NFKB, detected by our group in the rat pineal gland, modulates this effect. Here, we evaluated a putative constitutive role for the pineal gland NFKB pathway. Male rats were kept under 12 h:12 h light-dark (LD) cycle or under constant darkness (DD) condition. Nuclear NFKB was quantified by electrophoretic mobility shift assay on pineal glands obtained from animals killed throughout the day at different times. Nuclear content of NFKB presented a daily rhythm only in LD-entrained animals. During the light phase, the amount of NFKB increased continuously, and a sharp drop occurred when lights were turned off. Animals maintained in a constant light environment until ZT 18 showed diurnal levels of nuclear NFKB at ZT15 and ZT18. Propranolol (20 mg/kg, i.p., ZT 11) treatment, which inhibits nocturnal sympathetic input, impaired nocturnal decrease of NFKB only at ZT18. A similar effect was observed in free-running animals, which secreted less nocturnal melatonin. Because melatonin reduces constitutive NFKB activation in cultured pineal glands, we propose that this indolamine regulates this transcription factor pathway in the rat pineal gland, but not at the LD transition. The controversial results regarding the inhibition of pineal function by constant light or blocking sympathetic neurotransmission are discussed according to the hypothesis that the prompt effect of lights-off is not mediated by noradrenaline, which otherwise contributes to maintaining low levels of nuclear NFKB at night. In summary, we report here a novel transcription factor in the pineal gland, which exhibits a constitutive rhythm dependent on environmental photic

  2. Risk Factors for Nuclear and Cortical Cataracts: A Hospital Based Study.

    Science.gov (United States)

    Mamatha, Bangera Sheshappa; Nidhi, Bhatiwada; Padmaprabhu, Chamrajnagar Anantharajiah; Pallavi, Prabhu; Vallikannan, Baskaran

    2015-01-01

    To evaluate risk factors associated with nuclear and cortical cataracts among a hospital based sample of subjects in Southern India. In this hospital-based study, 3,549 subjects including 2,090 male and 1,459 female individuals aged 45 years and over were randomly screened for nuclear and cortical cataracts. Lens opacity was graded and classified after pupil dilation using the lens opacities classification system (LOCS) III at the slit lamp. Furthermore, participants were interviewed for lifestyle variables and dietary intake of carotenoids using a structured food frequency questionnaire. Demographic risk factors for cataracts included older age and lower socioeconomic status. Nuclear cataracts were associated with diabetes (OR = 6.34; 95% CI: 2.34-8.92%), tobacco chewing (moderate, OR = 3.04; heavy, OR = 4.62), cigarette smoking (moderate, OR = 1.58; heavy, OR = 1.87) and hypertension (OR = 1.56; 95% CI: 1.25-2.78%). Cortical cataracts were associated with diabetes (OR = 15.03; 95% CI: 7.72-29.2%), tobacco chewing (moderate, OR = 2.16; heavy, OR = 2.32) and cigarette smoking (moderate, OR = 2.20; heavy, OR = 2.97). Higher dietary intake of lutein/zeaxanthin (L/Z) and β-carotene was associated (P < 0.001) with a lower risk of nuclear and cortical cataracts. Higher dietary intake of carotenoids is associated with a lower risk of cataracts. Nuclear and cortical cataracts are associated with various risk factors such as diabetes, hypertension, cigarette smoking and tobacco, similar to studies conducted in other Asian and European populations, irrespective of ethnic origin.

  3. A HUMAN FACTORS META MODEL FOR U.S. NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey C.

    2017-03-01

    Over the last several years, the United States (U.S.) Department of Energy (DOE) has sponsored human factors research and development (R&D) and human factors engineering (HFE) activities through its Light Water Reactor Sustainability (LWRS) program to modernize the main control rooms (MCR) of commercial nuclear power plants (NPP). Idaho National Laboratory (INL), in partnership with numerous commercial nuclear utilities, has conducted some of this R&D to enable the life extension of NPPs (i.e., provide the technical basis for the long-term reliability, productivity, safety, and security of U.S. NPPs). From these activities performed to date, a human factors meta model for U.S. NPP control room modernization can now be formulated. This paper discusses this emergent HFE meta model for NPP control room modernization, with the goal of providing an integrated high level roadmap and guidance on how to perform human factors R&D and HFE for those in the U.S. nuclear industry that are engaging in the process of upgrading their MCRs.

  4. Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles.

    Science.gov (United States)

    de Longevialle, Andéol Falcon; Small, Ian D; Lurin, Claire

    2010-07-01

    Plant organelles arose from two independent endosymbiosis events. Throughout evolutionary history, tight control of chloroplasts and mitochondria has been gained by the nucleus, which regulates most steps of organelle genome expression and metabolism. In particular, RNA maturation, including RNA splicing, is highly dependent on nuclearly encoded splicing factors. Most introns in organelles are group II introns, whose catalytic mechanism closely resembles that of the nuclear spliceosome. Plant group II introns have lost the ability to self-splice in vivo and require nuclearly encoded proteins as cofactors. Since the first splicing factor was identified in chloroplasts more than 10 years ago, many other proteins have been shown to be involved in splicing of one or more introns in chloroplasts or mitochondria. These new proteins belong to a variety of different families of RNA binding proteins and provide new insights into ribonucleo-protein complexes and RNA splicing machineries in organelles. In this review, we describe how splicing factors, encoded by the nucleus and targeted to the organelles, take part in post-transcriptional steps in higher plant organelle gene expression. We go on to discuss the potential for these factors to regulate organelle gene expression.

  5. Establishing a value chain for human factors in nuclear power plantcontrol room modernization

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey Clark [Idaho National Laboratory; Thomas, Kenneth David [Idaho National Laboratory; Boring, Ronald Laurids [Idaho National Laboratory

    2015-07-01

    Commercial nuclear power plants in the United States (U.S.) have operated reliably and efficiently for decades. With the life extensions of plants now being planned for operation beyond their original operating licenses, there are opportunities to achieve even greater efficiencies, while maintaining high operational reliabilities, with strategic, risk- and economically-informed, upgrades to plant systems and infrastructure. The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program supports the commercial nuclear industry’s modernization efforts through research and development (R&D) activities across many areas to help establish the technical and economic bases for modernization activities. The Advanced Instrumentation, Information, and Control Systems Technologies pathway is one R&D focus area for the LWRS program, and has researchers at Idaho National Laboratory working with select utility partners to use human factors and instrumentation and controls R&D to help modernize the plant’s main control room. However, some in the nuclear industry have not been as enthusiastic about using human factors R&D to inform life extension decision making. Part of the reason for this may stem from uncertainty decision-makers have regarding how human factors fits into the value chain for nuclear power plant control room modernization. This paper reviews past work that has attempted to demonstrate the value of human factors, and then describes the value chain concept, how it applies to control room modernization, and then makes a case for how and why human factors is an essential link in the modernization value chain.

  6. Nuclear localization of the mitochondrial factor HIGD1A during metabolic stress.

    Directory of Open Access Journals (Sweden)

    Kurosh Ameri

    Full Text Available Cellular stress responses are frequently governed by the subcellular localization of critical effector proteins. Apoptosis-inducing Factor (AIF or Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH, for example, can translocate from mitochondria to the nucleus, where they modulate apoptotic death pathways. Hypoxia-inducible gene domain 1A (HIGD1A is a mitochondrial protein regulated by Hypoxia-inducible Factor-1α (HIF1α. Here we show that while HIGD1A resides in mitochondria during physiological hypoxia, severe metabolic stress, such as glucose starvation coupled with hypoxia, in addition to DNA damage induced by etoposide, triggers its nuclear accumulation. We show that nuclear localization of HIGD1A overlaps with that of AIF, and is dependent on the presence of BAX and BAK. Furthermore, we show that AIF and HIGD1A physically interact. Additionally, we demonstrate that nuclear HIGD1A is a potential marker of metabolic stress in vivo, frequently observed in diverse pathological states such as myocardial infarction, hypoxic-ischemic encephalopathy (HIE, and different types of cancer. In summary, we demonstrate a novel nuclear localization of HIGD1A that is commonly observed in human disease processes in vivo.

  7. Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

    CERN Document Server

    Quiroga-Arias, Paloma; Wiedemann, Urs Achim

    2011-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program a...

  8. Inhibitors of nuclear factor kappa B cause apoptosis in cultured macrophages

    Directory of Open Access Journals (Sweden)

    E. E. Mannick

    1997-01-01

    Full Text Available The precise role of the transcription factor nuclear factor kappa B (NF- κB in the regulation of cell survival and cell death is still unresolved and may depend on cell type and position in the cell cycle. The aim of this study was to determine if three pharmacologic inhibitors of NF-κB, pyrrolidine dithiocarbamate, N-tosyl-L-lysl chloromethyl ketone and calpain I inhibitor, induce apoptosis in a murine macrophage cell line (RAW 264.7 at doses similar to those required for NF-κB inhibition. We found that each of the three inhibitors resulted in a dose- and time-dependent increase in morphologic indices of apoptosis in unstimulated, LPS-stimulated and TNF-stimulated cells. Lethal doses were consistent with those required for NF- κB inhibition. We conclude that nuclear NF-κB activation may represent an important survival mechanism in macrophages.

  9. Nuclear factor E2-related factor 2 dependent overexpression of sulfiredoxin and peroxiredoxin III in human lung cancer.

    Science.gov (United States)

    Kim, Young Sun; Lee, Hye Lim; Lee, Ki Bum; Park, Joo Hun; Chung, Wou Young; Lee, Keu Sung; Sheen, Seung Soo; Park, Kwang Joo; Hwang, Sung Chul

    2011-09-01

    Oxidative stress results in protein oxidation and is implicated in carcinogenesis. Sulfiredoxin (Srx) is responsible for the enzymatic reversal of inactivated peroxiredoxin (Prx). Nuclear factor E2-related factor 2 (Nrf2) binds to antioxidant responsive elements and upregulates the expression of Srx and Prx during oxidative stress. We aimed to elucidate the biological functions and potential roles of Srx in lung cancer. To study the roles of Srx and Prx III in lung cancer, we compared the protein levels of Nrf2, Prxs, thioredoxin, and Srx in 40 surgically resected human lung cancer tissues using immunoblot and immunohistochemical analyses. Transforming growth factor-β(1), tumor necrosis factor-α, and camptothecin treatment were used to examine Prx III inactivation in Mv1Lu mink lung epithelial cells and A549 lung cancer cells. Prx I and Prx III proteins were markedly overexpressed in lung cancer tissues. A significant increase in the oxidized form of a cysteine sulfhydryl at the catalytic site of Prxs was found in carcinogenic lung tissue compared to normal lung tissue. Densitometric analyses of immunoblot data revealed significant Srx expression, which was higher in squamous cell carcinoma tissue (60%, 12/20) than in adenocarcinoma (20%, 4/20). Also, Nrf2 was present in the nuclear compartment of cancer cells. Srx and Prx III proteins were markedly overexpressed in human squamous cell carcinoma, suggesting that these proteins may play a protective role against oxidative injury and compensate for the high rate of mitochondrial metabolism in lung cancer.

  10. Activation of the Nuclear Factor E2-Related Factor 2/Antioxidant Response Element Pathway Is Neuroprotective after Spinal Cord Injury

    Science.gov (United States)

    Wang, Xiaoliang; de Rivero Vaccari, Juan Pablo; Wang, Handong; Diaz, Paulo; German, Ramon; Marcillo, Alex E.

    2012-01-01

    Abstract The activation of oxidative damage, neuroinflammation, and mitochondrial dysfunction has been implicated in secondary pathomechanisms following spinal cord injury (SCI). These pathophysiological processes lead to cell death and are tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. Here, we investigated whether activation of Nrf2/ARE is neuroprotective following SCI. Female Fischer rats were subjected to mild thoracic SCI (T8) using the New York University injury device. As early as 30 min after SCI, levels of Nrf2 transcription factor were increased in both nuclear and cytoplasmic fractions of neurons and astrocytes at the lesion site and remained elevated for 3 days. Treatment of injured rats with sulforaphane, an activator of Nrf2/ARE signaling, significantly increased levels of Nrf2 and glutamate-cysteine ligase (GCL), a rate-limiting enzyme for synthesis of glutathione, and decreased levels of inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) thus leading to a reduction in contusion volume and improvement in coordination. These results show that activation of the Nrf2/ARE pathway following SCI is neuroprotective and that sulforaphane is a viable compound for neurotherapeutic intervention in blocking pathomechanisms following SCI. PMID:21806470

  11. Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury.

    Science.gov (United States)

    Wang, Xiaoliang; de Rivero Vaccari, Juan Pablo; Wang, Handong; Diaz, Paulo; German, Ramon; Marcillo, Alex E; Keane, Robert W

    2012-03-20

    The activation of oxidative damage, neuroinflammation, and mitochondrial dysfunction has been implicated in secondary pathomechanisms following spinal cord injury (SCI). These pathophysiological processes lead to cell death and are tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. Here, we investigated whether activation of Nrf2/ARE is neuroprotective following SCI. Female Fischer rats were subjected to mild thoracic SCI (T8) using the New York University injury device. As early as 30 min after SCI, levels of Nrf2 transcription factor were increased in both nuclear and cytoplasmic fractions of neurons and astrocytes at the lesion site and remained elevated for 3 days. Treatment of injured rats with sulforaphane, an activator of Nrf2/ARE signaling, significantly increased levels of Nrf2 and glutamate-cysteine ligase (GCL), a rate-limiting enzyme for synthesis of glutathione, and decreased levels of inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) thus leading to a reduction in contusion volume and improvement in coordination. These results show that activation of the Nrf2/ARE pathway following SCI is neuroprotective and that sulforaphane is a viable compound for neurotherapeutic intervention in blocking pathomechanisms following SCI.

  12. Stress-induced Nuclear Bodies Are Sites of Accumulation of Pre-mRNA Processing Factors

    Science.gov (United States)

    Denegri, Marco; Chiodi, Ilaria; Corioni, Margherita; Cobianchi, Fabio; Riva, Silvano; Biamonti, Giuseppe

    2001-01-01

    Heterogeneous nuclear ribonucleoprotein (hnRNP) HAP (hnRNP A1 interacting protein) is a multifunctional protein with roles in RNA metabolism, transcription, and nuclear structure. After stress treatments, HAP is recruited to a small number of nuclear bodies, usually adjacent to the nucleoli, which consist of clusters of perichromatin granules and are depots of transcripts synthesized before stress. In this article we show that HAP bodies are sites of accumulation for a subset of RNA processing factors and are related to Sam68 nuclear bodies (SNBs) detectable in unstressed cells. Indeed, HAP and Sam68 are both present in SNBs and in HAP bodies, that we rename “stress-induced SNBs.” The determinants required for the redistribution of HAP lie between residue 580 and 788. Different portions of this region direct the recruitment of the green fluorescent protein to stress-induced SNBs, suggesting an interaction of HAP with different components of the bodies. With the use of the 580–725 region as bait in a two-hybrid screening, we have selected SRp30c and 9G8, two members of the SR family of splicing factors. Splicing factors are differentially affected by heat shock: SRp30c and SF2/ASF are efficiently recruited to stress-induced SNBs, whereas the distribution of SC35 is not perturbed. We propose that the differential sequestration of splicing factors could affect processing of specific transcripts. Accordingly, the formation of stress-induced SNBs is accompanied by a change in the splicing pattern of the adenovirus E1A transcripts. PMID:11694584

  13. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  14. Ischemic preconditioning reduces ischemic brain injury by suppressing nuclear factor kappa B expression and neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Songsheng Shi; Weizhong Yang; Xiankun Tu; Chunmei Chen; Chunhua Wang

    2013-01-01

    Ischemic stroke induces a series of complex pathophysiological events including blood-brain barrier disruption, inflammatory response and neuronal apoptosis. Previous studies demonstrate that ischemic preconditioning attenuates ischemic brain damage via inhibiting blood-brain barrier disruption and the inflammatory response. Rats underwent transient (15 minutes) occlusion of the bilateral common carotid artery with 48 hours of reperfusion, and were subjected to permanent middle cerebral artery occlusion. This study explored whether ischemic preconditioning could reduce ischemic brain injury and relevant molecular mechanisms by inhibiting neuronal apoptosis. Results found that at 72 hours following cerebral ischemia, myeloperoxidase activity was enhanced, malondialdehyde levels increased, and neurological function was obviously damaged. Simultaneously, neuronal apoptosis increased, and nuclear factor-κB and cleaved caspase-3 expression was significantly increased in ischemic brain tissues. Ischemic preconditioning reduced the cerebral ischemia-induced inflammatory response, lipid peroxidation, and neurological function injury. In addition, ischemic preconditioning decreased nuclear factor-κB p65 and cleaved caspase-3 expression. These results suggested that ischemic preconditioning plays a protective effect against ischemic brain injury by suppressing the inflammatory response, reducing lipid peroxidation, and neuronal apoptosis via inhibition of nuclear factor-κB and cleaved caspase-3 expression.

  15. Quenching Factor for Low Energy Nuclear Recoils in a Plastic Scintillator

    CERN Document Server

    Reichhart, L; Araujo, H M; Barnes, E J; Belov, V A; Burenkov, A A; Chepel, V; Currie, A; DeViveiros, L; Edwards, B; Francis, V; Ghag, C; Hollingsworth, A; Horn, M; Kalmus, G E; Kobyakin, A S; Kovalenko, A G; Lebedenko, V N; Lindote, A; Lopes, M I; Luscher, R; Majewski, P; Murphy, A St J; Neves, F; Paling, S M; da Cunha, J Pinto; Preece, R; Quenby, J J; Scovell, P R; Silva, C; Solovov, V N; Smith, N J T; Smith, P F; Stekhanov, V N; Sumner, T J; Thorne, C; Walker, R J

    2011-01-01

    Plastic scintillators are widely used in industry, medicine and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 keV and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterise the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semi-empirical formulation of Birks and a kB factor of (0.014+/-0.002) g/MeVcm^2 has been determined. Below that energy the measured quenching factor falls more steeply than predicted by the Birks for...

  16. Antioxidants for Healthy Skin: The Emerging Role of Aryl Hydrocarbon Receptors and Nuclear Factor-Erythroid 2-Related Factor-2.

    Science.gov (United States)

    Furue, Masutaka; Uchi, Hiroshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Chiba, Takahito; Ito, Takamichi; Nakahara, Takeshi; Tsuji, Gaku

    2017-03-03

    Skin is the outermost part of the body and is, thus, inevitably exposed to UV rays and environmental pollutants. Oxidative stress by these hazardous factors accelerates skin aging and induces skin inflammation and carcinogenesis. Aryl hydrocarbon receptors (AHRs) are chemical sensors that are abundantly expressed in epidermal keratinocytes and mediate the production of reactive oxygen species. To neutralize or minimize oxidative stress, the keratinocytes also express nuclear factor-erythroid 2-related factor-2 (NRF2), which is a master switch for antioxidant signaling. Notably, there is fine-tuned crosstalk between AHR and NRF2, which mutually increase or decrease their activation states. Many NRF2-mediated antioxidant phytochemicals are capable of up- and downmodulating AHR signaling. The precise mechanisms by which these phytochemicals differentially affect the AHR and NRF2 system remain largely unknown and warrant future investigation.

  17. Antioxidants for Healthy Skin: The Emerging Role of Aryl Hydrocarbon Receptors and Nuclear Factor-Erythroid 2-Related Factor-2

    Science.gov (United States)

    Furue, Masutaka; Uchi, Hiroshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Chiba, Takahito; Ito, Takamichi; Nakahara, Takeshi; Tsuji, Gaku

    2017-01-01

    Skin is the outermost part of the body and is, thus, inevitably exposed to UV rays and environmental pollutants. Oxidative stress by these hazardous factors accelerates skin aging and induces skin inflammation and carcinogenesis. Aryl hydrocarbon receptors (AHRs) are chemical sensors that are abundantly expressed in epidermal keratinocytes and mediate the production of reactive oxygen species. To neutralize or minimize oxidative stress, the keratinocytes also express nuclear factor-erythroid 2-related factor-2 (NRF2), which is a master switch for antioxidant signaling. Notably, there is fine-tuned crosstalk between AHR and NRF2, which mutually increase or decrease their activation states. Many NRF2-mediated antioxidant phytochemicals are capable of up- and downmodulating AHR signaling. The precise mechanisms by which these phytochemicals differentially affect the AHR and NRF2 system remain largely unknown and warrant future investigation. PMID:28273792

  18. Calmodulin-dependent nuclear import of HMG-box family nuclear factors: importance of the role of SRY in sex reversal.

    Science.gov (United States)

    Kaur, Gurpreet; Delluc-Clavieres, Aurelie; Poon, Ivan K H; Forwood, Jade K; Glover, Dominic J; Jans, David A

    2010-08-15

    The HMG (high-mobility group)-box-containing chromatin-remodelling factor SRY (sex-determining region on the Y chromosome) plays a key role in sex determination. Its role in the nucleus is critically dependent on two NLSs (nuclear localization signals) that flank its HMG domain: the C-terminally located 'beta-NLS' that mediates nuclear transport through Impbeta1 (importin beta1) and the N-terminally located 'CaM-NLS' which is known to recognize the calcium-binding protein CaM (calmodulin). In the present study, we examined a number of missense mutations in the SRY CaM-NLS from human XY sex-reversed females for the first time, showing that they result in significantly reduced nuclear localization of GFP (green fluorescent protein)-SRY fusion proteins in transfected cells compared with wild-type. The CaM antagonist CDZ (calmidazolium chloride) was found to significantly reduce wild-type SRY nuclear accumulation, indicating dependence of SRY nuclear import on CaM. Intriguingly, the CaM-NLS mutants were all resistant to CDZ's effects, implying a loss of interaction with CaM, which was confirmed by direct binding experiments. CaM-binding/resultant nuclear accumulation was the only property of SRY found to be impaired by two of the CaM-NLS mutations, implying that inhibition of CaM-dependent nuclear import is the basis of sex reversal in these cases. Importantly, the CaM-NLS is conserved in other HMG-box-domain-containing proteins such as SOX-2, -9, -10 and HMGN1, all of which were found for the first time to rely on CaM for optimal nuclear localization. CaM-dependent nuclear translocation is thus a common mechanism for this family of important transcription factors.

  19. A Review on the Regulatory Strategy of Human Factors Engineering Consideration in Pakistan Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sohail, Sabir [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Seong Nam [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the legal and regulatory infrastructure available in Pakistan for HFE requirements is assessed, and the methodology for strengthening of legal infrastructure is presented. The regulatory strategy on evaluation of HFE consideration should provide reviewers with guidance on review process. Therefore, the suggested methodology is based on preparation of guidance documents such as checklist, working procedures, S and Gs etc.; incorporation of PRM elements in regulatory system; and finally the development of PRM implementation criteria. Altogether, the scheme provide the enhancement in regulatory infrastructure and also the effective and efficient review process. The Three Mile Island (TMI) accident brought the general consensus among the nuclear community on the integration of human factors engineering (HFE) principles in all phases of nuclear power. This notion has further strengthened after the recent Fukushima nuclear accident. Much effort has been put over to incorporate the lesson learned and continuous technical evolution on HFE to device different standards. The total of 174 ergonomics standards are alone identified by Dul et al. (2004) published by International Organization for Standardization (ISO) and the European Committee for Standardization (CEN) and number of standards and HFE guidelines (S and Gs) are also published by organizations like Institute for Electrical and Electronics Engineering (IEEE), International Electrotechnical Commission (IEC), International Atomic Energy Agency (IAEA), United States Nuclear Regulatory Commission (USNRC), etc. The ambition of effective review on HFE integration in nuclear facility might be accomplished through the development of methodology for systematic implementation of S and Gs. Such kind of methodology would also be beneficial for strengthening the regulatory framework and practices for countries new in the nuclear arena and with small scale nuclear program. The objective of paper is to review the

  20. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor.

    Science.gov (United States)

    Iida, M; Brand, T M; Campbell, D A; Li, C; Wheeler, D L

    2013-02-07

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR antibody that has been approved for use in oncology. Previously we investigated mechanisms of resistance to cetuximab using a model derived from the non-small cell lung cancer line NCI-H226. We demonstrated that cetuximab-resistant clones (Ctx(R)) had increased nuclear localization of the EGFR. This process was mediated by Src family kinases (SFKs), and nuclear EGFR had a role in resistance to cetuximab. To better understand SFK-mediated nuclear translocation of EGFR, we investigated which SFK member(s) controlled this process as well as the EGFR tyrosine residues that are involved. Analyses of mRNA and protein expression indicated upregulation of the SFK members Yes (v-Yes-1 yamaguchi sarcoma viral oncogene) and Lyn (v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog) in all Ctx(R) clones. Further, immunoprecipitation analysis revealed that EGFR interacts with Yes and Lyn in Ctx(R) clones, but not in cetuximab-sensitive (Ctx(S)) parental cells. Using RNAi interference, we found that knockdown of either Yes or Lyn led to loss of EGFR translocation to the nucleus. Conversely, overexpression of Yes or Lyn in low nuclear EGFR-expressing Ctx(S) parental cells led to increased nuclear EGFR. Chromatin immunoprecipitation (ChIP) assays confirmed nuclear EGFR complexes associated with the promoter of the known EGFR target genes B-Myb and iNOS. Further, all Ctx(R) clones exhibited upregulation of B-Myb and iNOS at the mRNA and protein levels. siRNAs directed at Yes or Lyn led to decreased binding of EGFR complexes to the B-Myb and iNOS promoters based on ChIP analyses. SFKs have been shown to phosphorylate EGFR on tyrosines 845 and 1101 (Y845 and Y1101), and mutation of Y1101, but not Y845, impaired nuclear entry of the EGFR. Taken together, our findings demonstrate that Yes and Lyn phosphorylate EGFR at Y1101, which influences EGFR

  1. Germline and developmental roles of the nuclear transport factor importin alpha3 in C. elegans.

    Science.gov (United States)

    Geles, K G; Adam, S A

    2001-05-01

    The importin alpha family of transport factors mediates the nuclear import of classical nuclear localization signal-containing proteins. In order to understand how multiple importin alpha proteins are regulated both in individual cells and in a whole organism, the three importin alpha (ima) genes of Caenorhabditis elegans have been identified and studied. All three IMAs are expressed in the germline; however, only IMA-3 is expressed in the soma. RNA interference (RNAi) experiments demonstrate that IMA-3 is required for the progression of meiotic prophase I during oocyte development. Loss of IMA-3 expression leads also to a disruption of the nuclear pore complex accompanied by the mis-localization of P granules. A range of defects occurring in ima-3(RNAi) F1 progeny further supports a role for IMA-3 during embryonic and larval development. The functional association of IMA-3 with distinct cellular events, its expression pattern and intracellular localization indicate that regulation of the nuclear transport machinery is involved in the control of developmental pathways.

  2. Nuclear medium effect on nuclear modification factor of protons and pions in intermediate-energy heavy ion collisions

    CERN Document Server

    Lv, Ming; Chen, Jin-Hui; Fang, De-Qing; Zhang, Guo-Qiang

    2015-01-01

    Nuclear modification factor ($R_{cp}$) of protons and pions are investigated by simulating Au + Au collisions from 0.8 to 1.8$A$ GeV in a framework of an isospin-dependent quantum molecular dynamics (IQMD) model. $R_{cp}$ of protons rises with the increase of \\pt~ at different beam energies owing to radial flow and Cronin effect. The rate of increase of \\rcp~ is suppressed at higher beam energies. The significant difference of $R_{cp}$ between protons and pions indicates different medium effects between protons and pions. By changing the in-medium nucleon-nucleon cross section, the $R_{cp}$ of protons changes a lot, while the $R_{cp}$ of pions does not. Taking the pion absorption into account, the $R_{cp}$ of pions becomes close to unity without $p_{T}$ dependence after deactivating the reaction $\\pi N \\rightarrow \\Delta$, while there is nearly no change on proton. This suggests that the pion absorption plays a dominant role on pion dynamics and have slight effect for proton dynamics.

  3. Nuclear factor-κB p65 (RelA) transcription factor is constitutively activated in human colorectal carcinoma tissue

    Institute of Scientific and Technical Information of China (English)

    Liang-Liang Yu; Hong-Gang Yu; Jie-Ping Yu; He-Sheng Luo; Xi-Ming Xu; Jun-Hua Li

    2004-01-01

    AIM: Activation of transcription factor nuclear factor-κB (NF-κB) has been shown to play a role in cell proliferation,apoptosis, cytokine production, and oncogenesis. The purpose of this study was to determine whether NF-κB was constitutively activated in human colorectal tumor tissues and, if so, to determine the role of NF-κB in colorectal tumorigenesis, and furthermore, to determine the association of RelA expression with tumor cell apoptosis and the expression of Bcl-2 and Bcl-xL.METHODS: Paraffin sections of normal epithelial, adenomatous and adenocarcinoma tissues were analysed immunohistochemically for expression of RelA, Bcl-2 and Bcl-xL proteins.Electrophoretic mobility shift assay (EMSA) was used to confirm the increased nuclear translocation of RelA in colorectal tumor tissues. The mRNA expressions of Bcl-2 and Bcl-xL were determined by reverse transcription polymerase chain reaction (RT-PCR) analysis. Apoptotic cells were detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate fluorescence nick end labeling (TUNEL) method.RESULTS: The activity of NF-κB was significantly higher in adenocarcinoma tissue in comparison with that in adenomatous and normal epithelial tissues. The apoptotic index (AI)significantly decreased in the transition from adenoma to adenocarcinoma. Meanwhile, the expressions of Bcl-2 and Bcl-xL protein and their mRNAs were significantly higher in adenocarcinoma tissues than that in adenomatous and normal epithelial tissues.CONCLUSION: NF-κB may inhibit apoptosis via enhancing the expression of the apoptosis genes Bcl-2 and BCl-xL. And the increased expression of RelA/nuclear factor-κB plays an important rote in the pathogenesis of colorectal carcinoma.

  4. A Structural Investigation into Oct4 Regulation by Orphan Nuclear Receptors, Germ Cell Nuclear Factor (GCNF) and Liver Receptor Homolog-1 (LRH-1).

    Science.gov (United States)

    Weikum, Emily R; Tuntland, Micheal L; Murphy, Michael N; Ortlund, Eric A

    2016-10-27

    Oct4 is a transcription factor required for maintaining pluripotency and self-renewal in stem cells. Prior to differentiation, Oct4 must be silenced to allow for the development of the three germ layers in the developing embryo. This fine-tuning is controlled by the nuclear receptors, liver receptor homolog-1 and germ cell nuclear factor. Liver receptor homolog-1 is responsible for driving the expression of Oct4 where germ cell nuclear factor represses its expression upon differentiation. Both receptors bind to a DR0 motif located within the Oct4 promoter. Here, we present the first structure of mouse germ cell nuclear factor DNA binding domain in complex with the Oct4 DR0. The overall structure revealed two molecules bound in a head-to-tail fashion on opposite sides of the DNA. Additionally, we solved the structure of the human liver receptor homolog-1 DNA binding domain bound to the same element. We explore the structural elements that govern Oct4 recognition by these two nuclear receptors.

  5. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    CERN Document Server

    Massen, S E; Grypeos, M E

    1995-01-01

    We investigate the effects of fluctuations of the nuclear surface on the harmonic oscillator elastic charge form factor of light nuclei, while simultaneously approximating the short-range correlations through a Jastrow correlation ~factor. Inclusion of surface-fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of ^{16}O and ^{40}Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that the surface-fluctuation correlations produce a drastic change in the asymptotic behavior of the point-proton form factor, which now falls off quite slowly (i.e. as const. \\cdot q^{-4}) at large values of the momentum transfer q.

  6. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang

    2008-01-01

    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  7. Incorporating organizational factors into probabilistic safety assessment of nuclear power plants through canonical probabilistic models

    Energy Technology Data Exchange (ETDEWEB)

    Galan, S.F. [Dpto. de Inteligencia Artificial, E.T.S.I. Informatica (UNED), Juan del Rosal, 16, 28040 Madrid (Spain)]. E-mail: seve@dia.uned.es; Mosleh, A. [2100A Marie Mount Hall, Materials and Nuclear Engineering Department, University of Maryland, College Park, MD 20742 (United States)]. E-mail: mosleh@umd.edu; Izquierdo, J.M. [Area de Modelado y Simulacion, Consejo de Seguridad Nuclear, Justo Dorado, 11, 28040 Madrid (Spain)]. E-mail: jmir@csn.es

    2007-08-15

    The {omega}-factor approach is a method that explicitly incorporates organizational factors into Probabilistic safety assessment of nuclear power plants. Bayesian networks (BNs) are the underlying formalism used in this approach. They have a structural part formed by a graph whose nodes represent organizational variables, and a parametric part that consists of conditional probabilities, each of them quantifying organizational influences between one variable and its parents in the graph. The aim of this paper is twofold. First, we discuss some important limitations of current procedures in the {omega}-factor approach for either assessing conditional probabilities from experts or estimating them from data. We illustrate the discussion with an example that uses data from Licensee Events Reports of nuclear power plants for the estimation task. Second, we introduce significant improvements in the way BNs for the {omega}-factor approach can be constructed, so that parameter acquisition becomes easier and more intuitive. The improvements are based on the use of noisy-OR gates as model of multicausal interaction between each BN node and its parents.

  8. Charged particle nuclear modification factor in PbPb at 5.02 TeV with CMS

    CERN Document Server

    Baty, Austin Alan

    2016-01-01

    In the high-luminosity 5.02 TeV collision-energy per nucleon pair PbPb and pp data provided by LHC in 2015, CMS measured the nuclear modification factor of charged particles from a transverse momentum of 0.7 GeV/c to 400 GeV/c in the central rapidity region. The centrality dependence of the nuclear modification factor is explored in several bins of collision centrality, from the most central 0-5pct to the peripheral 50-70pct centrality range. Comparisons of the measured nuclear modification factor of charged particles at 5.02 TeV are made to theory calculations and to measurements at lower collision energies. The nuclear modification factors are also compared to the measurements at 2.76 TeV with charged particles and fully reconstructed jets.

  9. Nuclear velocity perturbation theory for vibrational circular dichroism: An approach based on the exact factorization of the electron-nuclear wave function

    CERN Document Server

    Scherrer, Arne; Sebastiani, Daniel; Gross, E K U; Vuilleumier, Rodolphe

    2015-01-01

    The nuclear velocity perturbation current-density theory (NVPT) for vibrational circular dichroism (VCD) is derived from the exact factorization of the electron-nuclear wave function. This new formalism offers an exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular wave function, similarly to the complete-adiabatic approximation. The corrections depend on a small parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart from proposing a rigorous basis for the NVPT, we show that the rotational strength, related to the intensity of the VCD signal, contain a new contribution beyond-BO that can be evaluated with the NVPT and that only arises when the exact factorization approach is employed. Numerical results are presented for chiral and non-chiral systems to test the validity of the approach.

  10. Effects of nuclear deformation on the form factor for direct dark matter detection

    Institute of Scientific and Technical Information of China (English)

    CHEN Ya-Zheng; CHEN Jun-Mou; LUO Yan-An; SHEN Hong; LI Xue-Qian

    2012-01-01

    For the detection of direct dark matter,in order to extract useful information about the fundamental interactions from the data,it is crucial to properly determine the nuclear form factor.The form factor for the spin-independent cross section of collisions between dark matter particles and the nucleus has been thoroughly studied by many authors.When the analysis was carried out,the nuclei were always supposed to be spherically symmetric.In this work,we investigate the effects of the deformation of nuclei from a spherical shape to an elliptical one on the form factor.Our results indicate that as long as the ellipticity is not too large,such deformation will not cause any substantial effects.In particular,when the nuclei are randomly orientated in room-temperature circumstances,one can completely neglect them.

  11. Nuclear structure of proton-rich unstable nucleus 28P studied by g-factor measurement*

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yong-Nan; ZHOU Dong-Mei; K. Matsuta; M. Mihara; M. Fukuda; D. Nishimura; J. Komurasaki; D. Ishikawa; R. Matsumiya; T. Nagatomo; T. Izumikawa; S. Takahashi; H. Hirano; T. Ohtsubo; S. Momota; Y. Nojiri; A. Kitagawa; M. Kanazawa; M. Torikoshi; S. Sato; T. Minamisono; J.R. Alonso; G.F. Krebs; T. J. M. Symons; YUAN Da-Qing; ZUO Yi; FAN Ping; T. Suzuki; ZHANG Xi-Zhen; ZHU Sheng-Yun

    2009-01-01

    Nuclear structure of proton-rich unstable nucleus 28P has been studied by measuring its g-factor for the first time. The g-factor of 28P (Iπ =3+, T1/2=270.3 ms) was measured by means of β-NMR technique combined with the new polarization technique for charge exchange reaction product in the intermediate energy heavy ion collisions. The obtained g-factor of g=0.1028(27) is very much quenched from the Schmidt value,but is well reproduced by the shell model (+0.102). In connection with the magnetic moment of the mirror partner and the β-ray transition probability, the orbital angular momenta and intrinsic spins of protons and neutrons have been determined as 〈lp〉 = 0.43(29), 〈ln〉 = 1.85(29), 〈Sp〉 = 0.28(4), and 〈Sn〉 = 0.44(4).

  12. Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents.

    Science.gov (United States)

    Uzzo, Robert G; Leavis, Paul; Hatch, William; Gabai, Vladimir L; Dulin, Nickolai; Zvartau, Nadezhda; Kolenko, Vladimir M

    2002-11-01

    Prostate carcinogenesis involves transformation of zinc-accumulating normal epithelial cells to malignant cells, which do not accumulate zinc. In this study, we demonstrate by immunoblotting and immunohistochemistry that physiological levels of zinc inhibit activation of nuclear factor (NF)-kappa B transcription factor in PC-3 and DU-145 human prostate cancer cells, reduce expression of NF-kappa B-controlled antiapoptotic protein c-IAP2, and activate c-Jun NH(2)-terminal kinases. Preincubation of PC-3 cells with physiological concentrations of zinc sensitized tumor cells to tumor necrosis factor (TNF)-alpha, and paclitaxel mediated cell death as defined by terminal deoxynucleotidyl transferase-mediated nick end labeling assay. These results suggest one possible mechanism for the inhibitory effect of zinc on the development and progression of prostate malignancy and might have important consequences for the prevention and treatment of prostate cancer.

  13. Factoring-based method for the design of a nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Guzman-Arriaga, Rafael; Espinosa-Paredes, Gilberto [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, Mexico 09340, D. F. (Mexico)

    2010-05-15

    In this work a simple method for a fuel lattice design is presented. The method is focused on finding the radial distribution of the fuel rods having different fissile contents to obtain a prescribed neutron multiplication factor k{sub {infinity}} to a certain discharge burnup and to minimize the rod power peaking. This method is based on the factorization of the fissile content of each fuel bar and the performance of this novel method was demonstrated with a fuel design composed of enriched uranium for a typical boiling water reactor (BWR). The results show that the factoring-based method for the design of a nuclear fuel converges to a minimum rod power peaking and a prescribed k{sub {infinity}} in few iterations. A comparative analysis shows that the proposed method is more efficient than existing methods. (author)

  14. Cyclooxygenase-2 inhibitor, celecoxib, inhibits leiomyoma cell proliferation through the nuclear factor κB pathway.

    Science.gov (United States)

    Park, Seung Bin; Jee, Byung Chul; Kim, Seok Hyun; Cho, Yeon Jean; Han, Myoungseok

    2014-09-01

    Our aim was to investigate whether celecoxib, a cyclooxygenase 2 (COX-2) inhibitor, decreases the in vitro proliferation of leiomyoma cells if the inflammatory pathway is blocked. Menstruation is an inflammation of uterus that produces cytokines and prostanoids, but the inflammatory mechanism underlying the growth of leiomyoma remains unexplained. Using in vitro cultures of leiomyoma cells obtained from 5 patients who underwent hysterectomy, cell proliferation, inflammatory signaling, transcription factors, growth factors, and extracellular matrix were examined by (4,5-dimethylthiaxol-2-yi)-2,5-diphenyltetraxolium bromide assay, immunoblotting, and quantitative polymerase chain reaction. Prostaglandin E2 was used to induce menstruation-like condition in the cells. We found that celecoxib inhibited COX-2 through the expression of nuclear factor κB in the cells. Celcoxib also decreased the gene expression of interleukin 6, tumor necrosis factor α, collagen A, fibronectin, platelet-derived growth factor, epidermal growth factor, and transforming growth factor β. In conclusion, the present study indicated that celecoxib could inhibit leiomyoma cell proliferation through blocking the inflammatory pathway that is probably one of the mechanisms underlying its pathogenesis.

  15. Capsaicinoids improve egg production by regulating ovary nuclear transcription factors against heat stress in quail.

    Science.gov (United States)

    Sahin, N; Orhan, C; Tuzcu, M; Juturu, V; Sahin, K

    2016-12-12

    To examine the molecular mechanism of capsaicinoid supplementation from capsicum extract, laying Japanese quail (n = 180, 5 weeks old) were reared either at 22°C for 24 h/d (thermoneutral, TN) or at 34°C for 8 h/d (heat stress, HS) and fed on one of three diets containing 0, 25 or 50 mg of capsaicinoids per kilogram for 12 weeks (2 × 3 factorial arrangement). The results revealed that exposure to HS decreased feed consumption by 10.7% and egg production by 13.6%, increased serum and ovary malondialdehyde (MDA) levels by 66.9% and 88.1%, respectively, and reduced ovary superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities by 28.3%, 48.7% and 43.8%, respectively. There were magnifications in the ovary nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) levels by 42.4% and suppressions in nuclear factor (erythroid-derived 2)-like 2 (Nrf2), protein kinase B (Akt) and haem-oxygenase 1 (HO-1) levels by 29.2%, 38.2% and 30.7%, respectively, in heat-stressed quail. With increasing supplemental capsaicinoids, there were linear increases in egg production, antioxidant enzyme activity, linear decreases in ovary MDA and NF-κB levels and linear increases in ovary Nrf2, Akt and HO-1 levels at a greater extent in quail reared under TN condition than those reared under HS condition. Two-way treatment interactions showed that the degree of restorations in all response variables was more notable under the HS environment than under the TN environment as supplemental capsaicinoid level was increased. In conclusion, capsaicinoid supplementation alleviates oxidative stress through regulating the ovary nuclear transcription factors in heat-stressed quail.

  16. Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Quiroga-Arias, Paloma [Departamento de Fisica de PartIculas and IGFAE, Universidade de Santiago de Compostela 15706 Santiago de Compostela (Spain); Milhano, Jose Guilherme [CENTRA, Departamento de Fisica, Instituto Superior Tecnico (IST), Av. Rovisco Pais 1, P-1049-001 Lisboa (Portugal); Wiedemann, Urs Achim, E-mail: pquiroga@fpaxpl.usc.es [Physics Department, Theory Unit, CERN, CH-1211 Geneve 23 (Switzerland)

    2011-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.

  17. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Ulrich; Ronald Boring; William Phoenix; Emily Dehority; Tim Whiting; Jonathan Morrell; Rhett Backstrom

    2012-08-01

    The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolves around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities

  18. Liver-type fatty acid binding protein interacts with hepatocyte nuclear factor

    OpenAIRE

    McIntosh, Avery L.; Petrescu, Anca D.; Hostetler, Heather A.; Kier, Ann B.; Schroeder, Friedhelm

    2013-01-01

    Hepatocyte nuclear factor 4α (HNF4α) regulates liver type fatty acid binding protein (L-FABP) gene expression. Conversely as shown herein, L-FABP structurally and functionally also interacts with HNF4α. Fluorescence resonance energy transfer (FRET) between Cy3-HNF4α (donor) and Cy5-L-FABP (acceptor) as well as FRET microscopy detected L-FABP in close proximity (~80 Å) to HNF4α, binding with high affinity Kd ~250–300 nM. Circular dichroism (CD) determined that the HNF4α/L-FABP interaction alte...

  19. Statistics of assay validation in high throughput cell imaging of nuclear factor kappaB nuclear translocation.

    Science.gov (United States)

    Morelock, Maurice M; Hunter, Edward A; Moran, Timothy J; Heynen, Susanne; Laris, Casey; Thieleking, Michael; Akong, Michael; Mikic, Ivana; Callaway, Scott; DeLeon, Rodney P; Goodacre, Angela; Zacharias, David; Price, Jeffrey H

    2005-10-01

    This report describes statistical validation methods implemented on assay data for inhibition of subcellular redistribution of nuclear factor kappaB (NF kappaB) in HeLa cells. We quantified cellular inhibition of cytoplasmic-nuclear translocation of NF kappaB in response to a range of concentrations of interleukin-1 (IL-1) receptor antagonist in the presence of IL-1alpha using eight replicate rows in each four 96-well plates scanned five times on each of 2 days. Translocation was measured as the fractional localized intensity of the nucleus (FLIN), an implementation of our more general fractional localized intensity of the compartments (FLIC), which analyzes whole compartments in the context of the entire cell. The NF kappaB antagonist assay (inhibition of IL-1- induced NF kappaB translocation) data were collected on a Q3DM (San Diego, CA) EIDAQtrade mark 100 high throughput microscopy system. [In 2003, Q3DM was purchased by Beckman Coulter Inc. (Fullerton, CA), which released the IC 100 successor to the EIDAQ 100.] The generalized FLIC method is described along with two-point (minimum-maximum) and multiple point titration statistical methods. As a ratio of compartment intensities that tend to change proportionally, FLIN was resistant to photobleaching errors. Two-point minimum-maximum statistical analyses yielded the following: a Z' of 0.174 with the data as n = 320 independent well samples; Z' by row data in a range of 0.393-0.933, with a mean of 0.766; by-plate Z' data of 0.310, 0.443, 0.545, and 0.794; and by-plate means of columns Z' data of 0.879, 0.927, 0.945, and 0.963. The mean 50% inhibitory concentration (IC50) for IL-1 receptor antagonist over all experiments was 213 ng/ml. The combined IC50 coefficients of variation (CVs) were 0.74%, 0.85%, 2.09%, and 2.52% for the four plates. Repeatability IC50 CVs were as follows: day to day 3.0%, row to row 8.0%, plate to plate 2.8%, and day to day 0.6%. The number of cells required for statistically resolvable

  20. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jiyoung [National Research Laboratory, College of Pharmacy, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Cha, Young-Nam [Inha University College of Medicine, Incheon 382-751 (Korea, Republic of); Surh, Young-Joon, E-mail: surh@plaza.snu.ac.kr [National Research Laboratory, College of Pharmacy, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2010-08-07

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor that plays a central role in cellular defense against oxidative and electrophilic insults by timely induction of antioxidative and phase-2 detoxifying enzymes and related stress-response proteins. The 5'-flanking regions of genes encoding these cytoprotective proteins contain a specific consensus sequence termed antioxidant response element (ARE) to which Nrf2 binds. Recent studies have demonstrated that Nrf2-ARE signaling is also involved in attenuating inflammation-associated pathogenesis, such as autoimmune diseases, rheumatoid arthritis, asthma, emphysema, gastritis, colitis and atherosclerosis. Thus, disruption or loss of Nrf2 signaling causes enhanced susceptibility not only to oxidative and electrophilic stresses but also to inflammatory tissue injuries. During the early-phase of inflammation-mediated tissue damage, activation of Nrf2-ARE might inhibit the production or expression of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, cyclooxygenase-2 and inducible nitric oxide synthase. It is likely that the cytoprotective function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the induction of pro-inflammatory genes. This review highlights the protective role of Nrf2 in inflammation-mediated disorders with special focus on the inflammatory signaling modulated by this redox-regulated transcription factor.

  1. Human factors analysis and design methods for nuclear waste retrieval systems: Human factors design methodology and integration plan

    Science.gov (United States)

    Casey, S. M.

    1980-06-01

    The nuclear waste retrieval system intended to be used for the removal of storage canisters (each canister containing a spent fuel rod assembly) located in an underground salt bed depository is discussed. The implementation of human factors engineering principles during the design and construction of the retrieval system facilities and equipment is reported. The methodology is structured around a basic system development effort involving preliminary development, equipment development, personnel subsystem development, and operational test and evaluation. Examples of application of the techniques in the analysis of human tasks, and equipment required in the removal of spent fuel canisters is provided. The framework for integrating human engineering with the rest of the system development effort is documented.

  2. NF-κB和胃癌%Nuclear Factor-kappaB Activity in Gastric Cancer

    Institute of Scientific and Technical Information of China (English)

    张百红

    2012-01-01

    The nuclear factor-kappaB (NF-kB) pathway is one of the most important cellular signal trans-duction pathways involved in both physiologic processes and disease conditions. The aberrant regulation of NF-kB results in the development and progression of gastric cancer,as well as in metastasis,its treatment and chemoprevention. Therefore,targeting of NF-kappaB signaling pathway could be a potent strategy for the prevention and treatment of gastric cancers.%核因子-κB(Nuclear Factor-kappaB,NF-κB)通路是机体最重要的细胞内信号传导通路之一.NF-κB失调涉及胃癌的发生发展、浸润转移、治疗和化学预防等方面.靶向NF-κB信号通路可能是胃癌治疗和预防的一个有效策略.

  3. Investigation of the performance based structural safety factor of elbow pipes in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Park, Chi Yong [Korea Electric Power Reserch Institute, Daejeon (Korea, Republic of); Park, Jai Hak [Chungbuk National University, Cheongju (Korea, Republic of)

    2009-07-01

    The piping systems in nuclear power plant are composed of various typed pipes such as straight pipe, elbow, branch and reducer etc. The elbow is connected from straight pipe to another pipes in order to establish the complicated piping system. Elbow is one of very important components considering management of wall thinning degradation. It is however applied by various loads such as system pressure, earthquake, postulated break loading and many transient loads, which provoke simply the internal pressure, bending and torsional stress. In this study, firstly pipes in the secondary system of the nuclear power plant are investigated in view of the ratio of radius to thickness. Next, a large number of finite element analysis considering the all typed dimensions of commercial pipe has been performed to find out the behavior of TES(Twice Elastic Slope) plastic load of elbows, which is based on evaluation of the structural safety factor. Finally performance based structural safety factor was investigated comparing with maximum allowable load by construction code.

  4. Role of hepatocyte nuclear factor 4α (HNF4α) in cell proliferation and cancer.

    Science.gov (United States)

    Walesky, Chad; Apte, Udayan

    2015-01-01

    Hepatocyte nuclear factor 4α (HNF4α) is an orphan nuclear receptor commonly known as the master regulator of hepatic differentiation, owing to the large number of hepatocyte-specific genes it regulates. Whereas the role of HNF4α in hepatocyte differentiation is well recognized and extensively studied, its role in regulation of cell proliferation is relatively less known. Recent studies have revealed that HNF4α inhibits proliferation not only of hepatocytes but also cells in colon and kidney. Further, a growing number of studies have demonstrated that inhibition or loss of HNF4α promotes tumorigenesis in the liver and colon, and reexpression of HNF4α results in decreased cancer growth. Studies using tissue-specific conditional knockout mice, knock-in studies, and combinatorial bioinformatics of RNA/ChIP-sequencing data indicate that the mechanisms of HNF4α-mediated inhibition of cell proliferation are multifold, involving epigenetic repression of promitogenic genes, significant cross talk with other cell cycle regulators including c-Myc and cyclin D1, and regulation of miRNAs. Furthermore, studies indicate that posttranslational modifications of HNF4α may change its activity and may be at the core of its dual role as a differentiation factor and repressor of proliferation. This review summarizes recent findings on the role of HNF4α in cell proliferation and highlights the newly understood function of this old receptor.

  5. Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.

  6. Statistical analysis on the fluence factor of surveillance test data of Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeong Geun; Kim, Min Chul; Yoon, Ji Hyun; Lee, Bong Sang; Lim, Sang Yeob; Kwon, Jun Hyun [Nuclear Materials Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The transition temperature shift (TTS) of the reactor pressure vessel materials is an important factor that determines the lifetime of a nuclear power plant. The prediction of the TTS at the end of a plant’s lifespan is calculated based on the equation of Regulatory Guide 1.99 revision 2 (RG1.99/2) from the US. The fluence factor in the equation was expressed as a power function, and the exponent value was determined by the early surveillance data in the US. Recently, an advanced approach to estimate the TTS was proposed in various countries for nuclear power plants, and Korea is considering the development of a new TTS model. In this study, the TTS trend of the Korean surveillance test results was analyzed using a nonlinear regression model and a mixed-effect model based on the power function. The nonlinear regression model yielded a similar exponent as the power function in the fluence compared with RG1.99/2. The mixed-effect model had a higher value of the exponent and showed superior goodness of fit compared with the nonlinear regression model. Compared with RG1.99/2 and RG1.99/3, the mixed-effect model provided a more accurate prediction of the TTS.

  7. Genetic factors in familial aggregation of blood pressure of Portuguese nuclear families.

    Science.gov (United States)

    Fermino, Rogério César; Seabra, André; Garganta, Rui; Maia, José António Ribeiro

    2009-03-01

    Despite of the increase in the prevalence of hypertension in Portugal, the importance of genetic factors in blood pressure (BP) has not been studied extensively in our country. To verify the indirect presence of vertical transmission of genetic factors between parents and children in BP values, and to estimate the magnitude of genetic factors contributing for variation in BP values in the population. Sample size comprises 367 individuals (164 parents and 203 children) pertaining the 107 nuclear families participating in 'Familias Activas' project, proceeding from different regions of North Portugal. The BP was measured with Omron model M6 (HEM-7001-E) digital device. SPSS 15.0 was used for data analysis; PEDSTATS was used to verify the structure of each family data. Familial correlations and heritability estimates were computed in FCOR and ASSOC modules of S.A.G.E. version 5.3. For systolic BP (SBP), correlation values were low to moderate (0.21< or = r < or =0.35); for diastolic BP (DBP) values were found to be moderate (0.24< or = r < or =0. 50). Genetic factors explain 43 and 49% of the total variation in SBP and DBP, respectively. A moderate amount of the SBP and the DBP is accounted for by genetic factors.

  8. Heat Shock Factor-1 and Nuclear Factor-kappaB Are Systemically Activated in Human Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Derek A O’Reilly

    2006-03-01

    Full Text Available Context :Nuclear factor-kappa B (NFkappaB is a transcription factor for a wide range of proinflammatory mediators while heat shock factor-1 (HSF-1 transcribes stress proteins that protect against cellular damage. Both are attractive therapeutic targets, undergoing investigation in other acute inflammatory conditions, such as sepsis. Objective :To evaluate the role of the transcription factors NF-kappaB and HSF-1 in human acute pancreatitis and their relationship to cytokine/chemokine production, disease severity and outcome. Patients :Twenty-four patients with acute pancreatitis and 12 healthy controls. Main outcome measures :Peripheral blood mononuclear cells were isolated. NF-kappaB and HSF-1 were measured by electrophoretic mobility shift assay. Soluble tumor necrosis factor (TNF receptor II and interleukin-8 were measured by ELISA. Acute physiology scores (APS, APACHE II scores and final Atlanta designations of severity were also determined. Results: Systemic NF-kappaB activation occurs in acute pancreatitis compared to healthy controls (P=0.004. However, there was no significant difference between those with mild and severe disease (P=0.685. Systemic activation of HSF-1 was observed in acute pancreatitis compared to healthy controls although this did not reach statistical significance (P=0.053. Activation, however, was greatest in those who had a final Atlanta designation of mild pancreatitis compared to those who had a severe attack of acute pancreatitis (P=0.036. Furthermore, HSF-1 was inversely correlated with acute physiology score (APS; r=-0.49, P=0.019 and APACHE II score (r=-0.47, P=0.026. Conclusions: Both NF-kappaB and HSF-1 are systemically activated in human acute pancreatitis. HSF-1 activation may protect against severity of pancreatitis

  9. Nuclear factor E2-related factor 2 knockdown enhances glucose uptake and alters glucose metabolism in AML12 hepatocytes.

    Science.gov (United States)

    Yuan, Xiaoyang; Huang, Huijing; Huang, Yi; Wang, Jinli; Yan, Jinhua; Ding, Ling; Zhang, Cuntai; Zhang, Le

    2017-05-01

    Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to induce the expression of a variety of antioxidant and detoxification genes. Recently, increasing evidence has revealed roles for Nrf2 in glucose, lipid, and energy metabolism; however, the exact functions of Nrf2 in hepatocyte biology are largely unclear. In the current study, the transient knockdown of Nrf2 via siRNA transfection enhanced the glucose uptake of fasting AML12 hepatocytes to 325.3 ± 11.1% ( P glucose metabolism were then examined in AML12 cells under both high-glucose (33 mmol/L) and low-glucose (4.5 mmol/L) conditions. NK lowered the gene and protein expression of the anti-oxidases heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1 and increased p-eukaryotic initiation factor-2α(S51), p-nuclear factor-κB p65(S276), and its downstream proinflammatory factors, including interleukin-1 beta, tumor necrosis factor-α, matrix metalloproteinase 2, and matrix metalloproteinase 9, at the protein level. NK also altered the protein expression of fibroblast growth factor 21, glucose transporter type 4, insulin-like growth factor 1, forkhead box protein O1, p-AKT(S473), and p-GSK3α/β(Y279/Y216), which are involved in glucose uptake, glycogenesis, and gluconeogenesis in AML12 cells. Our results provide a comprehensive understanding of the central role of Nrf2 in the regulation of glucose metabolism in AML12 hepatocytes, in addition to its classical roles in the regulation of redox signaling, endoplasmic reticulum stress and proinflammatory responses, and support the potential of Nrf2 as a therapeutic target for the prevention and treatment of obesity and other associated metabolic syndromes. Impact statement Increasing evidence supports the complexity of Nrf2 functions beyond the antioxidant and detoxification response. Previous in vivo studies employing either Nrf2-knockout or Nrf2-activated mice have achieved a similar endpoint: protection against an obese and

  10. Modulatory effect of silymarin on nuclear factor-erythroid-2-related factor 2 regulated redox status, nuclear factor-κB mediated inflammation and apoptosis in experimental gastric ulcer.

    Science.gov (United States)

    Arafa Keshk, Walaa; Zahran, Samer Mahmoud; Katary, Mohamed Alaa; Abd-Elaziz Ali, Darin

    2017-08-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) consumption has been commonly associated with gastric mucosal lesions including gastric ulcer. Silymarin (SM) is a flavonoid mixture with anti-oxidant and anti-inflammatory activities which explain its protective role against hepatic and renal injuries. However, its impact on gastric ulcer has not yet been elucidated. Thus we went further to investigate the potential protective effects of SM against indomethacin-induced gastric injury in rats. Pretreatment with SM (50 mg/kg orally) attenuated the severity of gastric mucosal damage as evidenced by decreasing ulcer index (UI) and ulcer score, improvement of disturbed histopathologicl features to be insignificant with those induced by the reference anti-ulcer drug. Pretreatment with SM also suppressed gastric inflammation by decreasing myeloperoxidase activity, tumer necrosis factor-α (TNF- α) and interleukin 6 (IL6) levels along with nuclear factor kappa B p65 (NF-κB) expression. Meanwhile, SM prevent gastric oxidative stress via inhibition of lipid peroxides formation, enhancement of glutathione peroxidase, superoxide dismutase activities and up-regulation of nuclear factor-erythroid-2-related factor 2 (Nrf2), the redox-sensitive master regulator of oxidative stress signaling. In conclusion, the results herein revealed that SM has a gastro-protective effect which is mediated via suppression of gastric inflammation, oxidative stress, increased the anti-oxidant and the cyto-protective defense mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins

    Institute of Scientific and Technical Information of China (English)

    LiuWang; AihuaZheng; LingYi; ChongrenXu; MingxiaoDing; HongkuiDeng

    2005-01-01

    Nuclear reprogramming is critical for animal cloning and stem cell creation through nuclear transfer, which requires extensive remodeling of chromosomal architecture involving dramatic changes in chromatin-binding proteins. To understand the mechanism of nuclear reprogramming, it is critical to identify chromatin-binding factors specify the reprogramming process. In this report, we have developed a high-throughput selection method, based on T7 phage display and chromatin immunoprecipitation, to isolate chromatin-binding factors expressed in mouse embryonic stem cells using primary mouse embryonic fibroblast chromatin. Seven chromatin-binding proteins have been isolated by this method. We have also isolated several chromatin-binding proteins involved in hepatocyte differentiation. Our method provides a powerful tool to rapidly and selectively identify chromatin-binding proteins. The method can be used to study epigenetic modification of chromatin during nuclear reprogramming, cell differentiation, and transdifferentiation.

  12. Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival.

    Directory of Open Access Journals (Sweden)

    Kevin Roy

    2014-09-01

    Full Text Available Bromodomain proteins are key regulators of gene expression. How the levels of these factors are regulated in specific environmental conditions is unknown. Previous work has established that expression of yeast Bromodomain factor 2 (BDF2 is limited by spliceosome-mediated decay (SMD. Here we show that BDF2 is subject to an additional layer of post-transcriptional control through RNase III-mediated decay (RMD. We found that the yeast RNase III Rnt1p cleaves a stem-loop structure within the BDF2 mRNA to down-regulate its expression. However, these two nuclear RNA degradation pathways play distinct roles in the regulation of BDF2 expression, as we show that the RMD and SMD pathways of the BDF2 mRNA are differentially activated or repressed in specific environmental conditions. RMD is hyper-activated by salt stress and repressed by hydroxyurea-induced DNA damage while SMD is inactivated by salt stress and predominates during DNA damage. Mutations of cis-acting signals that control SMD and RMD rescue numerous growth defects of cells lacking Bdf1p, and show that SMD plays an important role in the DNA damage response. These results demonstrate that specific environmental conditions modulate nuclear RNA degradation pathways to control BDF2 expression and Bdf2p-mediated gene regulation. Moreover, these results show that precise dosage of Bromodomain factors is essential for cell survival in specific environmental conditions, emphasizing their importance for controlling chromatin structure and gene expression in response to environmental stress.

  13. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection.

    NARCIS (Netherlands)

    Pearson, E.R.; Pruhova, S.; Tack, C.J.J.; Johansen, A.; Castleden, H.A.; Lumb, P.J.; Wierzbicki, A.S.; Clark, P.M.; Lebl, J.; Pedersen, O.; Ellard, S.; Hansen, T.; Hattersley, A.T.

    2005-01-01

    AIMS/HYPOTHESIS: Heterozygous mutations in the gene of the transcription factor hepatocyte nuclear factor 4alpha (HNF-4alpha) are considered a rare cause of MODY with only 14 mutations reported to date. The description of the phenotype is limited to single families. We investigated the genetics and

  14. Activation of nuclear factor kappaB in colonic mucosa from patients with collagenous and ulcerative colitis

    DEFF Research Database (Denmark)

    Jørgensen, V.L.; Perner, A.; Hansen, A.

    2005-01-01

    Expression of inducible nitric oxide synthase (iNOS) is greatly upregulated in the colonic mucosa of patients with collagenous and ulcerative colitis. As the transcription factor nuclear factor kappaB (NFkappaB) is a major inducer of iNOS gene expression, we compared activation and transcriptional...

  15. Cardiovascular disease associated with radiotherapy: activation of nuclear factor kappa-B.

    Science.gov (United States)

    Halle, M; Hall, P; Tornvall, P

    2011-05-01

    There have been several recent reports of an increased risk of cardiovascular disease after radiotherapy. Hence, with an increasing number of cancer survivors, the incidence of cardiovascular disease caused by radiotherapy will increase. The existence of a type of vascular disease, or vasculopathy, induced by radiotherapy has been known for decades. It is important to identify and understand the molecular causes of this vasculopathy to determine preventive strategies. Recently, a chronic inflammation with similarities to atherosclerosis has been observed, with activation of the transcription factor nuclear factor kappa-B (NF-κB) as a possible cause. However, the trigger for NF-κB activation is unclear although it may be that reactive oxygen species or direct DNA damage is involved. To minimize the risk of cardiovascular disease in vulnerable patients, careful selection of patients, radiation dose and fractionation are important, together with the development of new techniques that reduce radiation dose to the blood vessels. In the light of the finding of an interaction between risk factors for cardiovascular disease and radiotherapy, it is reasonable to modify these factors including diabetes mellitus, hyperlipidaemia, hypertension and smoking. We believe that preventive strategies focusing on NF-κB can reduce the risk of future adverse cardiovascular events. © 2011 The Association for the Publication of the Journal of Internal Medicine.

  16. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    Science.gov (United States)

    Hamid, A. H. A.; Rozan, M. Z. A.; Deris, S.; Ibrahim, R.; Abdullah, W. S. W.; Rahman, A. A.; Yunus, M. N. M.

    2016-01-01

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder's tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the "sense making theory" and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation.

  17. Noneconomic factors influencing scrap metal disposition decisions at DOE and NRC-licensed nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ewen, M.D.; Robinson, L.A.

    1997-02-01

    The U.S. Environmental Protection Agency (EPA) is currently developing radiation protection standards for scrap metal, which will establish criteria for the unconditional clearance of scrap from nuclear facilities. In support of this effort, Industrial Economics, Incorporated is assessing the costs and benefits attributable to the rulemaking. The first step in this analysis is to develop an in-depth understanding of the factors influencing scrap disposition decisions, so that one can predict current and future practices under existing requirements and compare them to the potential effects of EPA`s rulemaking. These baseline practices are difficult to predict due to a variety of factors. First, because decommissioning activities are just beginning at many sites, current practices do not necessarily provide an accurate indicator of how these practices may evolve as site managers gain experience with related decisions. Second, a number of different regulations and policies apply to these decisions, and the interactive effects of these requirements can be difficult to predict. Third, factors other than regulatory constraints and costs may have a significant effect on related decisions, such as concerns about public perceptions. In general, research suggests that these factors tend to discourage the unconditional clearance of scrap metal.

  18. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, A. H. A., E-mail: amyhamijah@gmail.com, E-mail: amyhamijah@nm.gov.my [Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia); Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, 16100 Kota Bharu, Kelantan (Malaysia); Rozan, M. Z. A., E-mail: drmohdzaidi@gmail.com; Ibrahim, R. [Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia); Deris, S. [Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, 16100 Kota Bharu, Kelantan (Malaysia); Abdullah, W. S. W.; Yunus, M. N. M. [Malaysian Nuclear Agency (NM), Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, A. A. [Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor (Malaysia)

    2016-01-22

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder’s tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the “sense making theory” and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value <0.05). This paper suggested these human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation.

  19. Regulation of the Drosophila Hypoxia-Inducible Factor α Sima by CRM1-Dependent Nuclear Export ▿

    Science.gov (United States)

    Romero, Nuria M.; Irisarri, Maximiliano; Roth, Peggy; Cauerhff, Ana; Samakovlis, Christos; Wappner, Pablo

    2008-01-01

    Hypoxia-inducible factor α (HIF-α) proteins are regulated by oxygen levels through several different mechanisms that include protein stability, transcriptional coactivator recruitment, and subcellular localization. It was previously reported that these transcription factors are mainly nuclear in hypoxia and cytoplasmic in normoxia, but so far the molecular basis of this regulation is unclear. We show here that the Drosophila melanogaster HIF-α protein Sima shuttles continuously between the nucleus and the cytoplasm. We identified the relevant nuclear localization signal and two functional nuclear export signals (NESs). These NESs are in the Sima basic helix-loop-helix (bHLH) domain and promote CRM1-dependent nuclear export. Site-directed mutagenesis of either NES provoked Sima nuclear retention and increased transcriptional activity, suggesting that nuclear export contributes to Sima regulation. The identified NESs are conserved and probably functional in the bHLH domains of several bHLH-PAS proteins. We propose that rapid nuclear export of Sima regulates the duration of cellular responses to hypoxia. PMID:18332128

  20. Nuclear modification factor of charged particles and light-flavour hadrons in p--Pb collisions measured by ALICE

    CERN Document Server

    INSPIRE-00360943

    2016-01-01

    The hot and dense strongly interacting Quark-Gluon Plasma (sQGP) created in ultra-relativistic heavy-ion collisions can be probed by studying high-$p_{\\rm T}$ particle production and parton energy loss. Similar measurements performed in p-Pb collisions may help in determining whether initial or final state nuclear effects play a role in the observed suppression of hadron production at high-$p_{\\rm T}$ in Pb--Pb collisions. By examining the nuclear modification factors through the comparison of identified hadron yields in different collision systems one can gain insight into particle production mechanisms and nuclear effects.

  1. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Science.gov (United States)

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  2. Organizational factors in design and implementation of technological and organizational solutions in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, L.; Reiman, T.; Savioja, P. (VTT Technical Research Centre of Finland (Finland)); Kahlbom, U. (Risk Pilot AB, Stockholm (Sweden)); Rollenhagen, C. (Vattenfall (Sweden))

    2012-03-15

    Design is often found as one of the contributing factors in accident in the nuclear industry. The design of new technological systems and organisational structures has to take into account and be driven by the future users' needs and has to consider how their role and work practices within the organisation will be affected. The SADE project explores to which extend the concepts of safety culture and resilience engineering can contribute to the prevention of design errors when no hindsight data are available. In 2011, the SADE project focused on gathering experience and clarifying the current issues and challenges related to the design process. During 2011 seventeen interviews have been conducted in Finland and Sweden to identify some of the major challenges the nuclear industry is currently facing. At the same time a literature review has been conducted to establish a sound common theoretical ground. This progress report presents some of the relevant theoretical findings and preliminary results from the interviews. (Author)

  3. Updating Human Factors Engineering Guidelines for Conducting Safety Reviews of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    O, J.M.; Higgins, J.; Stephen Fleger - NRC

    2011-09-19

    The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodic update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. This paper describes the role of HFE guidelines in the safety review process and the content of the key HFE guidelines used. Then we will present the methodology used to develop HFE guidance and update these documents, and describe the current status of the update program.

  4. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2007-02-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program.

  5. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Directory of Open Access Journals (Sweden)

    Wang Ying-Nai

    2012-04-01

    Full Text Available Abstract Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application.

  6. HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling.

    Science.gov (United States)

    Huang, Qingsong; Niu, Zhiguo; Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang

    2017-08-01

    Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target.

  7. The rapidity and centrality dependence of nuclear modification factors at RHIC - what does bulk particle production tell us about the nuclear medium?

    CERN Document Server

    Samset, B H; Bearden, I G; Beavis, D; Besliu, C; Budick, B; Bøggild, H; Chasman, C; Christensen, C H; Christiansen, P; Cibor, J; Debbe, R; Enger, E; Gaardhøje, J J; Germinario, M; Hagel, K; Ito, H; Jipa, A; Jundt, F; Jordre, J I; Jorgensen, C E; Karabowicz, R; Kim, E J; Kozik, T; Larsen, T M; Lee, J H; Lee, Y K; Lindal, S; Løvhøiden, G; Majka, Z; Makeev, A; McBreen, B; Mikelsen, M; Murray, M; Natowitz, J B; Neumann, B; Nielsen, B S; Norris, J; Ouerdane, D; Planeta, R; Rami, F; Ristea, C; Ristea, O; Röhrich, D; Sandberg, D; Sanders, S J; Scheetz, R A; Staszel, P; Tveter, T S; Videbaek, F; Wada, R; Yin, Z; Zgura, I S

    2004-01-01

    The BRAHMS experiment at RHIC has measured the production of charged hadrons as a function of pseudorapidity and transverse momentum in Au+Au, d+Au and p+p collisions at a common energy of sqrt(s_NN)=200GeV, and from these spectra we construct the nuclear modification factors for both ``hot'' and ``cold'' nuclear matter. In this contribution I will show how these factors evolve with pseudorapidity and collision centrality. We see a Cronin-like enhancement in d+Au collisions at midrapidity, going to a strong suppression at eta >= 2. In central Au+Au collisions we find a suppression both at mid- and forward rapidities that vanishes for peripheral collisions. We interpret this as signs of several different medium related effects modifying bulk particle production in Au+Au and d+Au collisions at RHIC energies.

  8. Nuclear import of transcription factor BR-C is mediated by its interaction with RACK1.

    Directory of Open Access Journals (Sweden)

    Daojun Cheng

    Full Text Available The transcription factor Broad Complex (BR-C is an early ecdysone response gene in insects and contains two types of domains: two zinc finger domains for the activation of gene transcription and a Bric-a-brac/Tramtrack/Broad complex (BTB domain for protein-protein interaction. Although the mechanism of zinc finger-mediated gene transcription is well studied, the partners interacting with the BTB domain of BR-C has not been elucidated until now. Here, we performed a yeast two-hybrid screen using the BTB domain of silkworm BR-C as bait and identified the receptor for activated C-kinase 1 (RACK1, a scaffolding/anchoring protein, as the novel partner capable of interacting with BR-C. The interaction between BR-C and RACK1 was further confirmed by far-western blotting and pull-down assays. Importantly, the disruption of this interaction, via RNAi against the endogenous RACK1 gene or deletion of the BTB domain, abolished the nuclear import of BR-C in BmN4 cells. In addition, RNAi against the endogenous PKC gene as well as phosphorylation-deficient mutation of the predicted PKC phosphorylation sites at either Ser373 or Thr406 in BR-C phenocopied RACK1 RNAi and altered the nuclear localization of BR-C. However, when BTB domain was deleted, phosphorylation mimics of either Ser373 or Thr406 had no effect on the nuclear import of BR-C. Moreover, mutating the PKC phosphorylation sites at Ser373 and Thr406 or deleting the BTB domain significantly decreased the transcriptional activation of a BR-C target gene. Given that RACK1 is necessary for recruiting PKC to close and phosphorylate target proteins, we suggest that the PKC-mediated phosphorylation and nuclear import of BR-C is determined by its interaction with RACK1. This novel finding will be helpful for further deciphering the mechanism underlying the role of BR-C proteins during insect development.

  9. Interspecies somatic cell nuclear transfer is dependent on compatible mitochondrial DNA and reprogramming factors.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Interspecies somatic cell nuclear transfer (iSCNT involves the transfer of a nucleus or cell from one species into the cytoplasm of an enucleated oocyte from another. Once activated, reconstructed oocytes can be cultured in vitro to blastocyst, the final stage of preimplantation development. However, they often arrest during the early stages of preimplantation development; fail to reprogramme the somatic nucleus; and eliminate the accompanying donor cell's mitochondrial DNA (mtDNA in favour of the recipient oocyte's genetically more divergent population. This last point has consequences for the production of ATP by the electron transfer chain, which is encoded by nuclear and mtDNA. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility on successful development. Initially, we transferred murine fetal fibroblasts into enucleated porcine oocytes, which resulted in extremely low blastocyst rates (0.48%; and failure to replicate nuclear DNA and express Oct-4, the key marker of reprogramming. Using allele specific-PCR, we detected peak levels of murine mtDNA at 0.14±0.055% of total mtDNA at the 2-cell embryo stage and then at ever-decreasing levels to the blastocyst stage (<0.001%. Furthermore, these embryos had an overall mtDNA profile similar to porcine embryos. We then depleted porcine oocytes of their mtDNA using 10 µM 2',3'-dideoxycytidine and transferred murine somatic cells along with murine embryonic stem cell extract, which expressed key pluripotent genes associated with reprogramming and contained mitochondria, into these oocytes. Blastocyst rates increased significantly (3.38% compared to embryos generated from non-supplemented oocytes (P<0.01. They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout early preimplantation development. At later stages, these embryos possessed 49.99±2.97% murine mtDNA. They

  10. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway.

    Science.gov (United States)

    Zhang, Xiang-An; Zhang, Shuangxi; Yin, Qing; Zhang, Jing

    2015-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as chemopreventers. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis as well as the antioxidant functions. Nuclear factor kappa-B (NF-κB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Inhibitors of NF-κB pathway have shown potential anti-tumor activities. However, it is not fully elucidated in colon cancer. In this study, we demonstrate that quercetin induces apoptosis in human colon cancer CACO-2 and SW-620 cells through inhibiting NF-κB pathway, as well as down-regulation of B-cell lymphoma 2 and up-regulation of Bax, thus providing basis for clinical application of quercetin in colon cancer cases.

  11. Nuclear factor kB as a target for new drug development in myeloid malignancies.

    Science.gov (United States)

    Cilloni, Daniela; Martinelli, Giovanni; Messa, Francesca; Baccarani, Michele; Saglio, Giuseppe

    2007-09-01

    The transcription nuclear factor k B (NF-kB) can intervene in oncogenesis through to its capacity to regulate the expression of a large number of genes that regulate apoptosis, cell proliferation and differentiation as well as inflammation, angiogenesis and tumor migration. Impaired NF-kB activity has been demonstrated not only in solid cancers but also in various types of hematologic malignancies including acute myeloid leukemia, chronic myelogenous leukemia and in a subset of myelodysplastic syndromes. The underlying mechanisms, illustrated in the text and although quite diverse in different diseases, provide the rationale for new therapeutic strategies combining different NF-kB or proteasome inhibitors. It has, therefore, been proposed that inhibition of NF-kB could be an adjuvant therapy for cancer and many phase I/II clinical studies are ongoing with different inhibitors. This review highlights the in vitro and in vivo results of NF-kB inhibition in myeloid malignancies.

  12. Changes of the nucleolus architecture in absence of the nuclear factor CTCF.

    Science.gov (United States)

    Hernández-Hernández, A; Soto-Reyes, E; Ortiz, R; Arriaga-Canon, C; Echeverría-Martinez, O M; Vázquez-Nin, G H; Recillas-Targa, F

    2012-01-01

    CTCF is a multifunctional nuclear factor involved in many cellular processes like gene regulation, chromatin insulation and genomic organization. Recently, CTCF has been shown to be involved in the transcriptional regulation of ribosomal genes and nucleolar organization in Drosophila cells and different murine cell types, including embryonic stem cells. Moreover, it has been suggested that CTCF could be associated to the nucleolus of human erythroleukemic K562 cells. In the present work, we took advantage of efficient small hairpin RNA interference against human CTCF to analyze nucleolar organization in HeLa cells. We have found that key components of the nucleolar architecture are altered. As a consequence of such alterations, an upregulation of ribosomal gene transcription was observed. We propose that CTCF contributes to the structural organization of the nucleolus and, through epigenetic mechanisms, to the regulation of the ribosomal gene expression.

  13. Human factors analysis and design methods for nuclear waste retrieval systems. Human factors design methodology and integration plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, S.M.

    1980-06-01

    The purpose of this document is to provide an overview of the recommended activities and methods to be employed by a team of human factors engineers during the development of a nuclear waste retrieval system. This system, as it is presently conceptualized, is intended to be used for the removal of storage canisters (each canister containing a spent fuel rod assembly) located in an underground salt bed depository. This document, and the others in this series, have been developed for the purpose of implementing human factors engineering principles during the design and construction of the retrieval system facilities and equipment. The methodology presented has been structured around a basic systems development effort involving preliminary development, equipment development, personnel subsystem development, and operational test and evaluation. Within each of these phases, the recommended activities of the human engineering team have been stated, along with descriptions of the human factors engineering design techniques applicable to the specific design issues. Explicit examples of how the techniques might be used in the analysis of human tasks and equipment required in the removal of spent fuel canisters have been provided. Only those techniques having possible relevance to the design of the waste retrieval system have been reviewed. This document is intended to provide the framework for integrating human engineering with the rest of the system development effort. The activities and methodologies reviewed in this document have been discussed in the general order in which they will occur, although the time frame (the total duration of the development program in years and months) in which they should be performed has not been discussed.

  14. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes.

    Science.gov (United States)

    Baudin, Maël; Laloum, Tom; Lepage, Agnès; Rípodas, Carolina; Ariel, Federico; Frances, Lisa; Crespi, Martin; Gamas, Pascal; Blanco, Flavio Antonio; Zanetti, Maria Eugenia; de Carvalho-Niebel, Fernanda; Niebel, Andreas

    2015-12-01

    The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants.

  15. The stress signalling pathway nuclear factor E2-related factor 2 is activated in the liver of sows during lactation

    Directory of Open Access Journals (Sweden)

    Rosenbaum Susann

    2012-10-01

    Full Text Available Abstract Background It has recently been shown that the lactation-induced inflammatory state in the liver of dairy cows is accompanied by activation of the nuclear factor E2-related factor 2 (Nrf2 pathway, which regulates the expression of antioxidant and cytoprotective genes and thereby protects tissues from inflammatory mediators and reactive oxygen species (ROS. The present study aimed to study whether the Nrf2 pathway is activated also in the liver of lactating sows. Findings Transcript levels of known Nrf2 target genes, UGT1A1 (encoding glucuronosyltransferase 1 family, polypeptide A1, HO-1 (encoding heme oxygenase 1, NQO1 (encoding NAD(PH dehydrogenase, quinone 1, GPX1 (encoding glutathione peroxidase, PRDX6 (encoding peroxiredoxin 6, TXNRD1 (encoding thioredoxin reductase 1, and SOD (encoding superoxide dismutase, in the liver are significantly elevated (between 1.7 and 3.1 fold in lactating sows compared to non-lactating sows. The inflammatory state in the liver was evidenced by the finding that transcript levels of genes encoding acute phase proteins, namely haptoglobin (HP, fibrinogen γ (FGG, complement factor B (CFB, C-reactive protein (CRP and lipopolysaccharide-binding protein (LBP, were significantly higher (2 to 8.7 fold in lactating compared to non-lactating sows. Conclusions The results of the present study indicate that the Nrf2 pathway in the liver of sows is activated during lactation. The activation of Nrf2 pathway during lactation in sows might be interpreted as a physiologic means to counteract the inflammatory process and to protect the liver against damage induced by inflammatory signals and ROS.

  16. Activated nuclear factor kappa B and airway inflammation after smoke inhalation and burn injury in sheep.

    Science.gov (United States)

    Cox, Robert A; Burke, Ann S; Jacob, Sam; Oliveras, Gloria; Murakami, Kazunori; Shimoda, Katsumi; Enkhbaatar, Perenlei; Traber, Lillian D; Herndon, David N; Traber, Daniel L; Hawkins, Hal K

    2009-01-01

    In a recent study, we have shown a rapid inflammatory cell influx across the glandular epithelium and strong proinflammatory cytokine expression at 4 hours after inhalation injury. Studies have demonstrated a significant role of nuclear factor kappa B in proinflammatory cytokine gene transcription. This study examines the acute airway inflammatory response and immunohistochemical detection of p65, a marker of nuclear factor kappa B activation, in sheep after smoke inhalation and burn injury. Pulmonary tissue from uninjured sheep and sheep at 4, 8, 12, 24, and 48 hours after inhalation and burn injury was included in the study. Following immunostaining for p65 and myeloperoxidase, the cell types and the percentage of bronchial submucosal gland cells staining for p65 and the extent of myeloperoxidase stained neutrophils in the bronchial submucosa were determined. Results indicate absence of detection of P65 before 12 hours after injury. At 12 hours after injury, strong perinuclear staining for p65 was evident in bronchial gland epithelial cells, macrophages, and endothelial cells. Bronchial submucosal gland cells showed a significant increase in the percentage of cells stained for p65 compared with uninjured animals and earlier times after injury, P macrophages, and endothelial cells. Quantitation of the neutrophil influx into the bronchial submucosa showed a significant increase compared with uninjured tissue at 24 and 48 hours after injury, P < .05. In conclusion, immunohistochemical detection of activated p65 preceded the overall inflammatory response measured in the lamina propria. However, detection of p65 did not correlate with a recent study showing rapid emigration of neutrophils at 4 hours postinjury. Together, these results suggest that p65 immunostaining may identify cells that are activated to produce proinflammatory cytokines after injury; however, the immunoexpression may not adequately reflect the temporal activation of gene transcription that may

  17. Conserved steroid hormone homology converges on nuclear factor κB to modulate inflammation in asthma.

    Science.gov (United States)

    Payne, Asha S; Freishtat, Robert J

    2012-01-01

    Asthma is a complex, multifactorial disease comprising multiple different subtypes, rather than a single disease entity, yet it has a consistent clinical phenotype: recurring episodes of chest tightness, wheezing, and difficulty breathing (Pediatr Pulmonol Suppl. 1997;15:9-12). Despite the complex pathogenesis of asthma, steroid hormones (eg, glucocorticoids) are ubiquitous in the short-term and long-term management of all types of asthma. Overall, steroid hormones are a class of widely relevant, biologically active compounds originating from cholesterol and altered in a stepwise fashion, but maintain a basic 17-carbon, 4-ring structure. Steroids are lipophilic molecules that diffuse readily through cell membranes to directly and/or indirectly affect gene transcription. In addition, they use rapid, nongenomic actions to affect cellular products. Steroid hormones comprise several groups (including glucocorticoids, sex steroid hormones, and secosteroids) with critical divergent biological and physiological functions relevant to health and disease. However, the conserved homology of steroid hormone molecules, receptors, and signaling pathways suggests that each of these is part of a dynamic system of hormone interaction, likely involving an overlap of downstream signaling mechanisms. Therefore, we will review the similarities and differences of these 3 groups of steroid hormones (ie, glucocorticoids, sex steroid hormones, and secosteroids), identifying nuclear factor κB as a common inflammatory mediator. Despite our understanding of the impact of individual steroids (eg, glucocorticoids, sex steroids and secosteroids) on asthma, research has yet to explain the interplay of the dynamic system in which these hormones function. To do so, there needs to be a better understanding of the interplay of classic, nonclassic, and nongenomic steroid hormone functions. However, clues from the conserved homology steroid hormone structure and function and signaling pathways offer

  18. Hepatocyte nuclear factor 4α suppresses the aggravation of colon carcinoma.

    Science.gov (United States)

    Yao, Hou Shan; Wang, Juan; Zhang, Xiao Ping; Wang, Liang Zhe; Wang, Yi; Li, Xin Xing; Jin, Kai Zhou; Hu, Zhi Qian; Wang, Wei Jun

    2016-05-01

    Hepatocyte nuclear factor 4-α (HNF4α), a nuclear receptor, is expressed at lower levels in colon carcinoma tissues than in adjacent normal tissues. However, the relation between HNF4α and colon cancer progression and the underlying molecular mechanisms remain unclear. Here, we investigated the role of HNF4α in the progression of colon carcinoma. We showed that HNF4α mRNA and protein were downregulated in colon carcinoma specimens. HNF4α expression was related to pT classification (P colon carcinoma patients. Patients with low or negative HNF4α expression had worse 3-year progression-free survival (PFS, P = 0.006) and overall survival (OS, P = 0.005) than patients with high HNF4α expression. Low HNF4α expression was an independent prognostic factor for 3-year PFS (hazard ratio 2.94; 95% confidence interval 1.047-8.250; P = 0.041). Ectopic expression of HNF4α inhibited colon carcinoma cell (HT29, LoVo, and SW480) proliferation, migration, and invasion, induced G2/M phase arrest and promoted apoptosis. Ectopic expression of HNF4α upregulated E-cadherin and downregulated vimentin in vitro, and suppressed SW480 xenograft tumor growth and liver metastasis in vivo. Furthermore, HNF4α overexpression downregulated the expression of snail, slug and twist. HNF4α inhibited EMT through its effect on the Wnt/β-catenin signaling pathway, and HNF4α downregulation may be mediated by promoter methylation in cancer tissues. Our results suggest that downregulation of HNF4α plays a critical role in the aggravation of colon carcinoma possibly by promoting EMT via the Wnt/β-catenin signaling pathway and by affecting apoptosis and cell cycle progression.

  19. Applying human factors to the design of control centre and workstation of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A. Luquetti dos; Carvalho, Paulo V.R.; Goncalves, Gabriel de L., E-mail: luquetti@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Souza, Tamara D.M.F.; Falcao, Mariana A. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Desenho Industrial

    2013-07-01

    Human factors is a body of scientific factors about human characteristics, covering biomedical, psychological and psychosocial considerations, including principles and applications in the personnel selection areas, training, job performance aid tools and human performance evaluation. Control Centre is a combination of control rooms, control suites and local control stations which are functionally related and all on the same site. Digital control room includes an arrangement of systems, equipment such as computers and communication terminals and workstations at which control and monitoring functions are conducted by operators. Inadequate integration between control room and operators reduces safety, increases the operation complexity, complicates operator training and increases the likelihood of human errors occurrence. The objective of this paper is to present a specific approach for the conceptual and basic design of the control centre and workstation of a nuclear reactor used to produce radioisotope. The approach is based on human factors standards, guidelines and the participation of a multidisciplinary team in the conceptual and basic phases of the design. Using the information gathered from standards and from the multidisciplinary team, an initial sketch 3D of the control centre and workstation are being developed. (author)

  20. A highly organized structure mediating nuclear localization of a Myb2 transcription factor in the protozoan parasite Trichomonas vaginalis.

    Science.gov (United States)

    Chu, Chien-Hsin; Chang, Lung-Chun; Hsu, Hong-Ming; Wei, Shu-Yi; Liu, Hsing-Wei; Lee, Yu; Kuo, Chung-Chi; Indra, Dharmu; Chen, Chinpan; Ong, Shiou-Jeng; Tai, Jung-Hsiang

    2011-12-01

    Nuclear proteins usually contain specific peptide sequences, referred to as nuclear localization signals (NLSs), for nuclear import. These signals remain unexplored in the protozoan pathogen, Trichomonas vaginalis. The nuclear import of a Myb2 transcription factor was studied here using immunodetection of a hemagglutinin-tagged Myb2 overexpressed in the parasite. The tagged Myb2 was localized to the nucleus as punctate signals. With mutations of its polybasic sequences, 48KKQK51 and 61KR62, Myb2 was localized to the nucleus, but the signal was diffusive. When fused to a C-terminal non-nuclear protein, the Myb2 sequence spanning amino acid (aa) residues 48 to 143, which is embedded within the R2R3 DNA-binding domain (aa 40 to 156), was essential and sufficient for efficient nuclear import of a bacterial tetracycline repressor (TetR), and yet the transport efficiency was reduced with an additional fusion of a firefly luciferase to TetR, while classical NLSs from the simian virus 40 T-antigen had no function in this assay system. Myb2 nuclear import and DNA-binding activity were substantially perturbed with mutation of a conserved isoleucine (I74) in helix 2 to proline that altered secondary structure and ternary folding of the R2R3 domain. Disruption of DNA-binding activity alone by point mutation of a lysine residue, K51, preceding the structural domain had little effect on Myb2 nuclear localization, suggesting that nuclear translocation of Myb2, which requires an ordered structural domain, is independent of its DNA binding activity. These findings provide useful information for testing whether myriad Mybs in the parasite use a common module to regulate nuclear import.

  1. Virtual reality technology as a tool for human factors requirements evaluation in design of the nuclear reactors control desks

    Energy Technology Data Exchange (ETDEWEB)

    Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Mol, Antonio C.A.; Carvalho, Paulo V.R.; Silva, Antonio C.F.; Ferreira, Francisco J.O.; Dutra, Marco A.M. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: grecco@ien.gov.br; luquetti@ien.gov.br; mol@ien.gov.br; paulov@ien.gov.br; tonico@ien.gov.br; fferreira@ien.gov.br; dutra@ien.gov.br

    2007-07-01

    The Virtual Reality (VR) is an advanced computer interface technology that allows the user to internet or to explore a three-dimensional environment through the computer, as was part of the virtual world. This technology presents great applicability in the most diverse areas of the human knowledge. This paper presents a study on the use of the VR as tool for human factors requirements evaluation in design of the nuclear reactors control desks. Moreover, this paper presents a case study: a virtual model of the control desk, developed using virtual reality technology to be used in the human factors requirements evaluation. This case study was developed in the Virtual Reality Laboratory at IEN, and understands the stereo visualization of the Argonauta research nuclear reactor control desk for a static ergonomic evaluation using check-lists, in accordance to the standards and human factors nuclear international guides (IEC 1771, NUREG-0700). (author)

  2. Effects of notoginosides on proliferation and upregulation of GR nuclear transcription factor in hematopoietic cells

    Institute of Scientific and Technical Information of China (English)

    Rui-lan GAO; Xiao-hong CHEN; Xiao-jie LIN; Xu-dai QIAN; Wei-hong XU; Beng Hock CHONC

    2007-01-01

    Aim: To investigate the effects of panax notoginosides (PNS) on the proliferation of human hematopoietic stem/progenitor cells, and to explore the signaling path-way of the nuclear transcription factor of the glucocorticoid receptor (GR-NTF) initiated by PNS related with the proliferation. Methods: The human CD34+ cells and bone marrow nuclear cells were exposed to PNS at a concentration of 0, 10, 25,50, and 100 mg/L, respectively, in semi-solid culture system to observe colony forming unite of all lineages, granulocyte, erythrocyte, and megakaryocyte (CFU-GEMM, CFU-GM, CFU-E, and CFU-MK). Three lineages of human hematopoietic cell lines, including granulocytic HL-60, erythrocytic K562, megakaryocytic CHRF-288, and Meg-01 cells were incubated with PNS at 20 mg/L for 14 d. Meanwhile,dexamethasone (Dex) was used as a positive control. The nuclear protein of the cells was analyzed by Western blotting with monoclonal antibodies against the amino or carboxyl terminus of GR-NTF. Electrophoretic mobility shift assay per-formed by using the 32p-radiolabeled GR-NTF consensus oligonucleotide. Results:PNS promoted the proliferation of CD34+ cells and significantly raised the colony numbers of CFU-GEMM by 34.7%~±16.0% over the non-PNS control (P<0.01).PNS also enhanced the proliferation of CFU-GM, CFU-E, and CFU-MK by 39.3%±5.7%, 33.3%±7.3%, and 26.2%±3.2%, respectively. GR-NTF protein levels of either the amino or carboxyl terminus in K562, CHRF-288, and Meg-01 treated by PNS increased by 2.4- 2.8 fold and 1.3- 3.9 fold over the untreated cells. GR-NTF binding activity, initiated by either PNS or Dex, was apparently elevated to form the complex of GR-NTF with DNA as higher density bands in K562 and CHRF-288 cells, and some activity appeared as a band in HL-60 cells induced by PNS.Conclusion: PNS displayed the action of hematopoietic growth factor-like or syn-ergistic efficacy to promote proliferation of human progenitor cells, may play a role in the upregulation of gene

  3. Interaction domains and nuclear targeting signals in subunits of the U2 small nuclear ribonucleoprotein particle-associated splicing factor SF3a.

    Science.gov (United States)

    Huang, Ching-Jung; Ferfoglia, Fabio; Raleff, Flore; Krämer, Angela

    2011-04-15

    Human splicing factor SF3a is a component of the mature U2 small nuclear ribonucleoprotein particle (snRNP) and its three subunits of 60, 66, and 120 kDa are essential for splicing in vitro and in vivo. The SF3a heterotrimer forms in the cytoplasm and enters the nucleus independently of the U2 snRNP. Here, we have analyzed domains required for in vitro interactions between the SF3a subunits. Our results indicate that the SF3a66-SF3a120 interaction is mediated by a 27-amino acid region in SF3a120 C-terminal to the second suppressor-of-white-apricot and prp21/spp91 domain and amino acids 108-210 of SF3a66. Neither of these sequences contains known structural motifs, suggesting that the interaction domains are novel. Moreover, an ∼100-amino acid region, including the SURP2 domain of SF3a120 but extending into neighboring regions, is sufficient for binding to SF3a60. Analysis of determinants for nuclear import of SF3a demonstrates that SF3a120 provides the major nuclear localization signal and SF3a60 contributes to nuclear import.

  4. Hepatocyte nuclear factor 4 alpha is a key factor related to depression and physiological homeostasis in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Kyosuke Yamanishi

    Full Text Available Major depressive disorder (MDD is a common psychiatric disorder that involves marked disabilities in global functioning, anorexia, and severe medical comorbidities. MDD is associated with not only psychological and sociocultural problems, but also pervasive physical dysfunctions such as metabolic, neurobiological and immunological abnormalities. Nevertheless, the mechanisms underlying the interactions between these factors have yet to be determined in detail. The aim of the present study was to identify the molecular mechanisms responsible for the interactions between MDD and dysregulation of physiological homeostasis, including immunological function as well as lipid metabolism, coagulation, and hormonal activity in the brain. We generated depression-like behavior in mice using chronic mild stress (CMS as a model of depression. We compared the gene expression profiles in the prefrontal cortex (PFC of CMS and control mice using microarrays. We subsequently categorized genes using two web-based bioinformatics applications: Ingenuity Pathway Analysis and The Database for Annotation, Visualization, and Integrated Discovery. We then confirmed significant group-differences by analyzing mRNA and protein expression levels not only in the PFC, but also in the thalamus and hippocampus. These web tools revealed that hepatocyte nuclear factor 4 alpha (Hnf4a may exert direct effects on various genes specifically associated with amine synthesis, such as genes involved in serotonin metabolism and related immunological functions. Moreover, these genes may influence lipid metabolism, coagulation, and hormonal activity. We also confirmed the significant effects of Hnf4a on both mRNA and protein expression levels in the brain. These results suggest that Hnf4a may have a critical influence on physiological homeostasis under depressive states, and may be associated with the mechanisms responsible for the interactions between MDD and the dysregulation of

  5. Nuclear factor-κB mediates placental growth factor induced pro-labour mediators in human placenta.

    Science.gov (United States)

    Lappas, Martha

    2012-07-01

    Prostaglandins, pro-inflammatory cytokines, extracellular matrix remodelling enzymes and nuclear factor-kappa B (NF-κB) are involved in the mechanisms of term and preterm parturition. Recent studies have reported an increase in angiogenesis-related genes during term and preterm labour, including placental growth factor (PLGF). In non-gestational tissues, PLGF induces inflammation via NF-κB. The aim of this study was to determine the effect of PLGF on the gene expression and release of pro-labour mediators in human placenta. Samples were obtained from normal pregnancies at the time of Caesarean section. Human placenta was incubated in the absence (basal control) or presence of a 10 ng/ml PLGF for 24 h. Inflammatory gene expression was analysed by quantitative RT-PCR, concentration of pro-inflammatory cytokines and prostaglandins was quantified by ELISA, and secretory matrix metalloproteinases (MMPs) activity by zymography. NF-κB DNA-binding activity and IκB-α (inhibitor of NF-κB) protein degradation were analysed by ELISA and Western blotting, respectively. PLGF significantly increased interleukin (IL)-6 and IL-8 gene expression and secretion, cyclooxygenase-2 expression and resultant prostaglandin (PG) E(2) and PGF(2α) release, and MMP-9 gene expression and enzyme production. PLGF induced the degradation of IκB-α whilst increasing NF-κB p65 DNA-binding activity. The PLGF-induced pro-labour responses were abrogated by co-treatment with the NF-κB inhibitor BAY 11-7082. In summary, the pro-inflammatory and pro-labour effects of PLGF in human placenta are mediated by NF-κB.

  6. Land and Water Use, CO2 Emissions, and Worker Radiological Exposure Factors for the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brett W Carlsen; Brent W Dixon; Urairisa Pathanapirom; Eric Schneider; Bethany L. Smith; Timothy M. AUlt; Allen G. Croff; Steven L. Krahn

    2013-08-01

    The Department of Energy Office of Nuclear Energy’s Fuel Cycle Technologies program is preparing to evaluate several proposed nuclear fuel cycle options to help guide and prioritize Fuel Cycle Technology research and development. Metrics are being developed to assess performance against nine evaluation criteria that will be used to assess relevant impacts resulting from all phases of the fuel cycle. This report focuses on four specific environmental metrics. • land use • water use • CO2 emissions • radiological Dose to workers Impacts associated with the processes in the front-end of the nuclear fuel cycle, mining through enrichment and deconversion of DUF6 are summarized from FCRD-FCO-2012-000124, Revision 1. Impact estimates are developed within this report for the remaining phases of the nuclear fuel cycle. These phases include fuel fabrication, reactor construction and operations, fuel reprocessing, and storage, transport, and disposal of associated used fuel and radioactive wastes. Impact estimates for each of the phases of the nuclear fuel cycle are given as impact factors normalized per unit process throughput or output. These impact factors can then be re-scaled against the appropriate mass flows to provide estimates for a wide range of potential fuel cycles. A companion report, FCRD-FCO-2013-000213, applies the impact factors to estimate and provide a comparative evaluation of 40 fuel cycles under consideration relative to these four environmental metrics.

  7. Choosing to comply with the U.S.-India civil nuclear agreement. Factors leading to state compliance

    Directory of Open Access Journals (Sweden)

    Octavio González Segovia

    2014-12-01

    Full Text Available State compliance with international commitments is uneven. However, the perception of which countries will and will not comply and to what extent can be biased. Some scholars assume that the U.S. will abide by the India-U.S. 123 civil nuclear agreement, which main objective is to supply India with nuclear fuel. At the same time, some other researchers doubt that India would honor its respective commitments, namely, to maintain safeguard measures in its nuclear facilities. The present study expands the knowledge of the factors affecting compliance within the realm of nuclear trade by analyzing a non-binding instrument negotiated between two asymmetrical actors. Drawing on Peter Haas’ compliance theories, the author analyzes the incidence as well as the relevance of international institutional and ideational factors which, in combination with domestic politics and structures, can influence the actor’s decision to comply. The paper’s findings suggest that India can be expected to more fully comply with the provisions of the treaty than the United States. Depending on whether certain institutional or ideational factor intervenes, Washington is either not capable or is not willing to comply. Its will to comply could be affected, inter alia, by important domestic actors concerned with the application of the Hyde Act, as evidenced during the ratification process. Therefore, contrary to the mainstream view, the 123 Agreement neither enables India to achieve energy security nor ends thirty-four years of nuclear isolation.

  8. Transcriptional Activity of Nuclear Factor κB Family Genes in Patients with Systemic Sclerosis.

    Science.gov (United States)

    Lis-Święty, Anna; Gola, Joanna; Mazurek, Urszula; Brzezińska-Wcisło, Ligia

    2017-05-01

    Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology and unclear pathogenesis. Evaluation of the activation of nuclear factor κB (NF-κB) family genes IκBα, p50, p52, p65, and c-Rel, potentially involved in the regulation of immunity, inflammation, angiogenesis, and tissue remodeling in SSc, was carried out. The study included 19 patients with limited SSc, 11 patients with early SSc, and 10 healthy persons constituting the control group. Real-time QRT-PCR was used to evaluate the mRNAs in peripheral blood samples. The patients with early SSc showed a decrease in transcriptional activity of IκBα inhibitor and c-Rel subunit. Transcriptional activity decrease in the other patients with limited SSc included genes encoding c-Rel and p50, subunits of NF-κB factor. Deregulation of intracellular signal transduction by NF-κB takes place at the beginning of SSc and in its fibrosis stage. Associations between clinical variables and NF-κB related gene expression as well as the activation of NF-κB family members in SSc patients should be addressed in future studies. © 2017 by the Association of Clinical Scientists, Inc.

  9. Genomic Structure and Variation of Nuclear Factor (Erythroid-Derived 2-Like 2

    Directory of Open Access Journals (Sweden)

    Hye-Youn Cho

    2013-01-01

    Full Text Available High-density mapping of mammalian genomes has enabled a wide range of genetic investigations including the mapping of polygenic traits, determination of quantitative trait loci, and phylogenetic comparison. Genome sequencing analysis of inbred mouse strains has identified high-density single nucleotide polymorphisms (SNPs for investigation of complex traits, which has become a useful tool for biomedical research of human disease to alleviate ethical and practical problems of experimentation in humans. Nuclear factor (erythroid-derived 2-like 2 (NRF2 encodes a key host defense transcription factor. This review describes genetic characteristics of human NRF2 and its homologs in other vertebrate species. NRF2 is evolutionally conserved and shares sequence homology among species. Compilation of publically available SNPs and other genetic mutations shows that human NRF2 is highly polymorphic with a mutagenic frequency of 1 per every 72 bp. Functional at-risk alleles and haplotypes have been demonstrated in various human disorders. In addition, other pathogenic alterations including somatic mutations and misregulated epigenetic processes in NRF2 have led to oncogenic cell survival. Comprehensive information from the current review addresses association of NRF2 variation and disease phenotypes and supports the new insights into therapeutic strategies.

  10. 7-Ketocholesterol Induces Cell Apoptosis by Activation of Nuclear Factor kappa B in Mouse Macrophages

    Directory of Open Access Journals (Sweden)

    Huang,Zhenyu

    2010-04-01

    Full Text Available

    We investigated the molecular mechanisms responsible for the induction of apoptosis in mouse monocytic macrophage cell line J774A.1 stimulated by 7-ketocholesterol (7-KC. Cell apoptosis was detected by Annexin V-propidium iodide (PI staining. The DNA-binding activity of nuclear factor kappa B (NF-kappaB was assessed by electrophoretic mobility shift assay (EMSA. Results showed that 7-KC-stimulation in J774A.1 cells activated NF-kappaB, which is involved in cell apoptosis, in a time- and dose-dependent manners. 7-KC was also found to increase the binding activity of NF-kappaB to specific DNA binding sites, a possible mechanism for the induction of the cell apoptosis. Moreover, these effects were partially inhibited by pyrrolidine dithiocarbamate (PDTC, an NF-kappaB inhibitor. Taken together, 7-KC may be an important factor in atherosclerosis due to the ability of 7-KC to induce cell apoptosis, which is at least partially mediated through the activation of NF-kappaB.

  11. Ghrelin Inhibition Restores Glucose Homeostasis in Hepatocyte Nuclear Factor-1α (MODY3)-Deficient Mice.

    Science.gov (United States)

    Brial, François; Lussier, Carine R; Belleville, Karine; Sarret, Philippe; Boudreau, François

    2015-09-01

    Hepatocyte nuclear factor-1α (HNF1α) is a transcription factor expressed in tissues of endoderm origin. Mutations in HNF1A are associated with maturity-onset diabetes of the young 3 (MODY3). Mice deficient for Hnf1α are hyperglycemic, with their pancreatic β-cells being defective in glucose-sensing insulin secretion. The specific mechanisms involved in this defect are unclear. Gut hormones control glucose homeostasis. Our objective was to explore whether changes in these hormones play a role in glucose homeostasis in the absence of Hnf1α. An increase in ghrelin gene transcript and a decrease in glucose-dependent insulinotropic polypeptide (GIP) gene transcripts were observed in the gut of Hnf1α-null mice. These changes correlated with an increase of ghrelin and a decrease of GIP-labeled cells. Ghrelin serological levels were significantly induced in Hnf1α-null mice. Paradoxically, GIP levels were also induced in these mice. Treatment of Hnf1α-null mice with a ghrelin antagonist led to a recovery of the diabetic symptoms. We conclude that upregulation of ghrelin in the absence of Hnf1α impairs insulin secretion and can be reversed by pharmacological inhibition of ghrelin/GHS-R interaction. These observations open up on future strategies to counteract ghrelin action in a program that could become beneficial in controlling non-insulin-dependent diabetes.

  12. Role of Nuclear Factor Kappa B (NF-κB) in Growth Plate Chondrogenesis.

    Science.gov (United States)

    De Luca, Francesco

    2016-06-01

    Abstract Nuclear Factor kappa B (NF-κB) is a group of seven transcription factors. Upon activation by a variety of stimuli, NF-κB translocates to the nucleus and modulates the expression of target genes involved in cell growth, survival, and death. Previous evidence indicates that NF-κB regulates bone growth and development. We have shown that the NF-κB p65 is expressed in the growth plate and facilitates longitudinal bone growth by inducing chondrocyte proliferation and differentiation and by preventing apoptosis. Furthermore, we have demonstrated in rodents that NF-κB expressed in growth plate chondrocytes mediates the promoting effects of GH and IGF-1 on longitudinal bone growth and growth plate chondrogenesis. Lastly, functional studies carried out in two children with growth failure and GH insensitivity, and affected by two different mutations impairing NF-κB activation, indicate that NF-κB also mediates the growth-promoting effects of GH in humans.

  13. Ellagic acid induces apoptosis through inhibition of nuclear factor in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Mouad Edderkaoui; Irina Odinokova; Izumi Ohno; Ilya Gukovsky; Vay Liang W Go; Stephen J Pandol; Anna S Gukovskaya

    2008-01-01

    AIM: To determine the effect of ellagic acid on apoptosis and proliferation in pancreatic cancer cells and to determine the mechanism of the pro-survival effects of ellagic acid.METHODS: The effect of ellagic acid on apoptosis was assessed by measuring Phosphatidylserine externalization, caspase activity, mitochondrial membrane potential and DNA fragmentation; and proliferation by measuring DNA thymidine incorporation. Mitochondrial membrane potential was measured in permeabilized cells, and in isolated mitochondria. Nuclear factor kB (NF-kB) activity was measured by electromobility shift assay (EMSA).RESULTS: We show that ellagic acid, a polyphenolic compound in fruits and berries, at concentrations 10 to 50 mmol/L stimulates apoptosis in human pancreatic adenocarcinoma cells. Further, ellagic acid decreases proliferation by up to 20-fold at 50 mmol/L Ellagic acid stimulates the mitochondrial pathway of apoptosis associated with mitochondrial depolarization, cytochrome C release, and the downstream caspase activation. Ellagic acid does not directly affect mitochondria. Ellagic acid dose-dependently decreased NF-kB binding activity. Furthermore, inhibition of NF-kB activity using IkB wild type plasmid prevented the effect of ellagic acid on apoptosis.CONCLUSION: Our data indicate that ellagic acid stimulates apoptosis through inhibition of the prosurvival transcription factor NF-kB.

  14. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  15. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  16. Improving performance of high risk organizations Spanish nuclear sector from the analysis of organizational culture factors; Mejora del desempeno de las organizaciones de alto riesgo del sector nuclear espanol a partir del analisis de los factores de cultura organizativa

    Energy Technology Data Exchange (ETDEWEB)

    La Salabarnada, E.; German, S.; Silla, I.; Navajas, J.

    2012-07-01

    This paper presents the research project funded by UNESA and conducted by the CISOT-CIEMAT that aims to contribute to improving the operating performance of the Spanish nuclear power plants. This paper aims to identify the factors and key organizational processes to improve efficiency, in order to advance knowledge about the influence of organizational culture on the safety of high reliability organizations.

  17. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1.

    Science.gov (United States)

    Kim, Hee-Jung; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jaeho; Park, A Young; Kang, Wonmo; Lee, Kong-Joo

    2017-08-04

    When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys(132) disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys(132) was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys(132) in hnRNP K is critical for this inhibition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Serine 249 phosphorylation by ATM protein kinase regulates hepatocyte nuclear factor-1α transactivation.

    Science.gov (United States)

    Zhao, Long; Chen, Hui; Zhan, Yi-Qun; Li, Chang-Yan; Ge, Chang-Hui; Zhang, Jian-Hong; Wang, Xiao-Hui; Yu, Miao; Yang, Xiao-Ming

    2014-07-01

    Hepatocyte nuclear factor-1 alpha (HNF1α) exerts important effects on gene expression in multiple tissues. Several studies have directly or indirectly supported the role of phosphorylation processes in the activity of HNF1α. However, the molecular mechanism of this phosphorylation remains largely unknown. Using microcapillary liquid chromatography MS/MS and biochemical assays, we identified a novel phosphorylation site in HNF1α at Ser249. We also found that the ATM protein kinase phosphorylated HNF1α at Ser249 in vitro in an ATM-dependent manner and that ATM inhibitor KU55933 treatment inhibited phosphorylation of HNF1α at Ser249 in vivo. Coimmunoprecipitation assays confirmed the association between HNF1α and ATM. Moreover, ATM enhanced HNF1α transcriptional activity in a dose-dependent manner, whereas the ATM kinase-inactive mutant did not. The use of KU55933 confirmed our observation. Compared with wild-type HNF1α, a mutation in Ser249 resulted in a pronounced decrease in HNF1α transactivation, whereas no dominant-negative effect was observed. The HNF1αSer249 mutant also exhibited normal nuclear localization but decreased DNA-binding activity. Accordingly, the functional studies of HNF1αSer249 mutant revealed a defect in glucose metabolism. Our results suggested that ATM regulates the activity of HNF1α by phosphorylation of serine 249, particularly in glucose metabolism, which provides valuable insights into the undiscovered mechanisms of ATM in the regulation of glucose homeostasis.

  19. Role of nuclear factor-kappaB in interleukin-1-induced collagen degradation by corneal fibroblasts.

    Science.gov (United States)

    Lu, Ying; Fukuda, Ken; Li, Qin; Kumagai, Naoki; Nishida, Teruo

    2006-09-01

    The proinflammatory cytokine interleukin (IL)-1 is implicated in corneal ulceration. The role of nuclear factor (NF)-kappaB in the IL-1-induced degradation of collagen by corneal fibroblasts that underlies corneal ulceration was investigated. Rabbit corneal fibroblasts were cultured in three-dimensional gels of type I collagen with or without IL-1 and sulfasalazine, an inhibitor of NF-kappaB activation. Collagen degradation was assessed from the amount of hydroxyproline generated by acid-heat hydrolysis of culture supernatants. The release of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) into culture supernatants was examined by immunoblot analysis and gelatin zymography, and the cellular abundance of MMP and TIMP mRNAs was determined by reverse transcription and real-time polymerase chain reaction analysis. The phosphorylation and degradation of the NF-kappaB-inhibitory protein IkappaB-alpha were examined by immunoblot analysis. The subcellular localization and DNA binding activity of the p65 subunit of NF-kappaB were evaluated by immunofluorescence analysis and with a colorimetric assay, respectively. The transactivation activity of NF-kappaB was assessed with a reporter gene assay. Sulfasalazine inhibited IL-1-induced collagen degradation by corneal fibroblasts in a concentration-dependent manner. It also inhibited the stimulatory effects of IL-1 on the synthesis or activation of various MMPs in a concentration-dependent manner. IL-1 induced the phosphorylation and degradation of IkappaB-alpha, the nuclear translocation and up-regulation of the DNA binding activity of the p65 subunit of NF-kappaB, and the activation of NF-kappaB in a manner sensitive to sulfasalazine. These results suggest that NF-kappaB contributes to the IL-1-induced degradation of collagen by corneal fibroblasts and is therefore a potential therapeutic target for treatment of corneal ulcers.

  20. Nuclear Factor-kappaB controls the reaggregation of 3D neurosphere cultures in vitro

    Directory of Open Access Journals (Sweden)

    D Widera

    2006-05-01

    Full Text Available The approach of reaggregation involves the regeneration and self-renewal of histotypical 3D spheres from isolated tissue kept in suspension culture. Reaggregated spheres can be used as tumour, genetic, biohybrid and neurosphere models. In addition the functional superiority of 3D aggregates over conventional 2D cultures developed the use of neurospheres for brain engineering of CNS diseases. Thus 3D aggregate cultures created enormous interest in mechanisms that regulate the formation of multicellular aggregates in vitro. Here we analyzed mechanisms guiding the development of 3D neurosphere cultures. Adult neural stem cells can be cultured as self-adherent clusters, called neurospheres. Neurospheres are characterised as heterogeneous clusters containing unequal stem cell sub-types. Tumour necrosis factor-alpha (TNF- alpha is one of the crucial inflammatory cytokines with multiple actions on several cell types. TNF- alpha strongly activates the canonical Nuclear Factor Kappa-B (NF-kappaB pathway. In order to investigate further functions of TNF in neural stem cells (NSCs we tested the hypothesis that TNF is able to modulate the motility and/or migratory behaviour of SVZ derived adult neural stem cells. We observed a significantly faster sphere formation in TNF treated cultures than in untreated controls. The very fast aggregation of isolated NSCs (<2h is a commonly observed phenomenon, though the mechanisms of 3D neurosphere formation remain largely unclear. Here we demonstrate for the first time, increased aggregation and enhanced motility of isolated NSCs in response to the TNF-stimulus. Moreover, this phenomenon is largely dependent on activated transcription factor NF-kappaB. Both, the pharmacological blockade of NF-kappaB pathway by pyrrolidine dithiocarbamate (PDTC or Bay11-7082 and genetic blockade by expression of a transdominant-negative super-repressor IkappaB-AA1 led to decreased aggregation.

  1. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers.

    Science.gov (United States)

    Sahin, K; Orhan, C; Tuzcu, M; Sahin, N; Hayirli, A; Bilgili, S; Kucuk, O

    2016-05-01

    This study was conducted to evaluate the effects of dietary lycopene supplementation on growth performance, antioxidant status, and muscle nuclear transcription factor [Kelch like-ECH-associated protein 1 (Keap1) and (erythroid-derived 2)-like 2 (Nrf2)] expressions in broiler chickens exposed to heat stress (HS). A total of 180 one-day-old male broiler chicks (Ross 308) were assigned randomly to one of 2×3 factorially arranged treatments: two housing temperatures (22°C for 24 h/d; thermoneutral, TN or 34°C for 8 h/d HS) and three dietary lycopene levels (0, 200, or 400 mg/kg). Each treatment consisted of three replicates of 10 birds. Birds were reared to 42 d of age. Heat stress caused reductions in feed intake and weight gain by 12.2 and 20.7% and increased feed efficiency by 10.8% (Plycopene level improved performance in both environments. Birds reared under the HS environment had lower serum and muscle lycopene concentration (0.34 vs. 0.50 μg/mL and 2.80 vs. 2.13 μg/g), activities of superoxide dismutase (151 vs. 126 U/mL and 131 vs. 155 U/mg protein), glutathione peroxidase (184 vs. 154 U/mL and 1.39 vs. 1.74 U/mg protein), and higher malondialdehyde (MDA) concentration (0.53 vs. 0.83 μg/mL and 0.78 vs. 0.45 μg/ mg protein) than birds reared under the TN environment. Changes in levels of lycopene and MDA and activities of enzymes in serum and muscle varied by the environmental temperature as dietary lycopene level increased. Moreover, increasing dietary lycopene level suppressed muscle Keap1 expression and enhanced muscle Nrf2 expression, which had increased by 150% and decreased by 40%, respectively in response to HS. In conclusion, lycopene supplementation alleviates adverse effects of HS on performance through modulating expressions of stress-related nuclear transcription factors.

  2. A novel phenotype of a hepatocyte nuclear factor homeobox A (HNF1A) gene mutation, presenting with neonatal cholestasis

    NARCIS (Netherlands)

    de Vries, Aleida G. M.; Bakker-van Waarde, Willie M.; Dassel, Anne C. M.; Losekoot, Monique; Duiker, Evelien W.; Gouw, Annette S. H.; Bodewes, Frank A. J. A.

    2015-01-01

    We report a novel phenotype of a hepatocyte nuclear factor homeobox A (HNF1A) mutation (heterozygote c.130dup, p.Leu44fs) presenting with transient neonatal cholestasis, subsequently followed by persistent elevation of transaminases, maturity-onset diabetes of the young (MODY) type 3 and hepatocellu

  3. Receptor activator for nuclear factor-κB ligand signaling promotes progesterone-mediated estrogen-induced mammary carcinogenesis

    OpenAIRE

    Boopalan, Thiyagarajan; Arumugam, Arunkumar; Parada, Jacqueline; Saltzstein, Edward; Lakshmanaswamy, Rajkumar

    2015-01-01

    Breast cancer is a leading cause of cancer-related death in women. Prolonged exposure to the ovarian hormones estrogen and progesterone increases the risk of breast cancer. Although estrogen is known as a primary factor in mammary carcinogenesis, very few studies have investigated the role of progesterone. Receptor activator for nuclear factor-κB (NF-κB) ligand (RANKL) plays an important role in progesterone-induced mammary carcinogenesis. However, the molecular mechanism underlying RANKL-ind...

  4. Quenching Factor for Low Energy Nuclear Recoils in a Plastic Scintillator

    OpenAIRE

    Reichhart, L.; Akimov, D. Yu.; Araujo, H. M.; Barnes, E. J.; Belov, V. A.; Burenkov, A. A.; Chepel, V.; Currie, A; DeViveiros, L.; Edwards, B.; Francis, V.; Ghag, C.; Hollingsworth, A.; Horn, M.; Kalmus, G.E.

    2011-01-01

    Plastic scintillators are widely used in industry, medicine and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 keV and 850 keV. Monte Carlo simula...

  5. Pathophysiological processes in multiple sclerosis: focus on nuclear factor erythroid-2-related factor 2 and emerging pathways

    Directory of Open Access Journals (Sweden)

    Arnold P

    2014-02-01

    Full Text Available Philipp Arnold,1,* Deb Mojumder,2,* John DeToledo,2 Ralph Lucius,1 Henrik Wilms2 1Institute of Anatomy, Christian-Albrechts-University Kiel, Kiel, Germany; 2Department of Neurology, Texas Tech University Health Science Center, Lubbock, TX, USA *These authors contributed equally to this work Abstract: Multiple sclerosis (MS is a disease of the central nervous system that is characterized by the demyelination of neuronal axons. Four different patterns of demyelination have been described, showing the heterogeneity in the immunopathologic processes involved in the demyelination. This review will focus on reactive oxygen species (ROS-related inflammation in MS. Special emphasis will be placed on the nuclear factor erythroid-2-related factor 2 (Nrf2 as it regulates the transcription of ROS-protective genes. In the cytosol, Nrf2 binds to Keap1 (Kelch-like ECH-associated protein 1, and together they are degraded by the 26S proteasome after ubiquitination. If challenged by ROS Nrf2, binding to Keap1 is abrogated, and it translocates into the nucleus. Here it binds to the antioxidant response element and to a small protein termed Maf (musculoaponeurotic fibrosarcoma oncogene homolog. This leads to an enhanced transcription of ROS protective genes and represents the physiological answer against ROS challenge. It has been shown that dimethyl fumarate (DMF has the same effect and leads to an enhanced transcription of ROS-protective genes. This response is mediated through a reduced binding of Nrf2 to Keap1, thus resulting in a higher level of free Nrf2 in the cytosol. Consequently, more Nrf2 translocates to the nucleus, promoting transcription of its target genes. DMF has been used for the treatment of psoriasis for many years in Germany without the occurrence of major side effects. In psoriasis, DMF reduces ROS-related inflammation in skin. A DMF analog, BG-12, was recently approved for the treatment of relapsing-remitting MS by the European Union and the

  6. Psychological factors of professional success of nuclear power plant main control room operators

    Directory of Open Access Journals (Sweden)

    Kosenkov A.A.

    2014-12-01

    Full Text Available Aim: to conduct a comparative analysis of the psychological characteristics of the most and least successful main control room operators. Material and Methods. Two NPP staff groups: the most and least successful main control room operators, who worked in routine operating conditions, were surveyed. Expert evaluation method has been applied to identify the groups. The subjects were administered the Minnesota Multiphasic Personality Inventory (MMPI, Cattell's Sixteen Personality Factor Questionnaire (16PF form A and Raven's Progressive Matrices test. Results. Numerous significant psychological differences between the groups of most and least successful control room operators were obtained: the best operators were significantly more introverted and correctly solved more logical tasks with smaller percentage of mistakes under time pressure than worst ones. Conclusions: 1. The psychodiagnostic methods used in the study were adequate to meet research objective 2. Tendency to introversion, as well as developed the ability to solve logic problems undertime pressure, apparently, are important professional qualities for control room operators. These indicators should be considered in the process of psychological selection and professional guidance of nuclear power plant operators.

  7. Multiple post-translational modifications in hepatocyte nuclear factor 4{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Atsushi; Katsura, Shogo; Ito, Ryo; Hashiba, Waka; Sekine, Hiroki; Fujiki, Ryoji [Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kato, Shigeaki, E-mail: uskato@mail.ecc.u-tokyo.ac.jp [Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2011-07-15

    Highlights: {yields} We performed comprehensive PTM analysis for HNF4{alpha} protein. {yields} We identified 8 PTMs in HNF4{alpha} protein including newly identified PTMs. {yields} Among them, we found acetylation at lysine 458 was one of the prime PTMs for HNF4{alpha} function. {yields} Acetylation at lysine 458 was inhibitory for HNF4{alpha} transcription function. {yields} This modification fluctuated in response to extracellular condition. -- Abstract: To investigate the role of post-translational modifications (PTMs) in the hepatocyte nuclear factor 4{alpha} (HNF4{alpha})-mediated transcription, we took a comprehensive survey of PTMs in HNF4{alpha} protein by massspectrometry and identified totally 8 PTM sites including newly identified ubiquitilation and acetylation sites. To assess the impact of identified PTMs in HNF4{alpha}-function, we introduced point mutations at the identified PTM sites and, tested transcriptional activity of the HNF4{alpha}. Among the point-mutations, an acetylation site at lysine 458 was found significant in the HNF4{alpha}-mediated transcriptional control. An acetylation negative mutant at lysine 458 showed an increased transcriptional activity by about 2-fold, while an acetylation mimic mutant had a lowered transcriptional activation. Furthermore, this acetylation appeared to be fluctuated in response to extracellular nutrient conditions. Thus, by applying an comprehensive analysis of PTMs, multiple PTMs were newly identified in HNF4{alpha} and unexpected role of an HNF4{alpha} acetylation could be uncovered.

  8. Role of Nuclear Factor kappaB in Intestine Injury Induced by Hepatic Ischemia Reperfusion

    Institute of Scientific and Technical Information of China (English)

    陈俊华; 王国斌

    2004-01-01

    Summary: The role of nuclear factor kappaB in intestine injury induced by hepatic ischemia reperfusion was investigated. Eighteen male Wistar rats were divided into 3 groups randomly: sham operation group (group A), hepatic ischemia reperfusion group (group B) and hepatic ischemia reperfusion plus pyrrolidine dithiocarbamate (PDTC) group (group C). The rats in group A were only subjected to laparotomy, those in group B underwent partial hepatic ischemia reperfusion (ischemia for 1 h and reperfusion for 2 h) and those in group C underwent the same procedure as that of group B but received PDTC 200 mg/kg i.v. before and after ischemia. After reperfusion, tissues of jejunum and venous blood were obtained for measurement of TNF-α, MDA and MPO. The levels of TNF-α in jejunum and venous blood, the levels of MPO in jejunum in group B were significantly higher than those in group A and group C (P<0.05). There was no significant different in the levels of MDA between group B and group C. The severity of histological intestinal injury in group B and group C was similar. Hepatic ischemia reperfusion caused intestine injury, NF-kappaB may play an important role in this course and the targeting of upstream components of the inflammatory response, such as NF-kappaB, may have important therapeutic applications.

  9. Expression of Nuclear Factor-κB in Mouse Uterus during Peri-implantation

    Institute of Scientific and Technical Information of China (English)

    谢青贞; 辛志敏; 曹路敏; 李万

    2004-01-01

    To investigate the expression of the subunit p65 of NF-κB and inhibitor kappa B alpha (IκBα) in mouse uterus during peri-implantation, thereby investigating whether transient activation of nuclear factor-κB (NF-κB) takes place during embryo implantation in mice. Immunohistochemical technique was used to examine the expression and localization of p65 in endometrium or deciduas,and Western blot analysis was employed to detect the levels of IκBα protein in mouse endometrium or deciduas. P65 protein was detected in stromal cells, epithelial cells of endometrium as well as in myometrium. Staining was predominately seen in the cytoplasm of the cells. Staining intensity for p65 was stronger in the epithelial compartment than the stromal compartment and myometrium.Staining intensity increased slightly during pregnancy, and it reached a high level on pregnancy day 5 and day 8. In contrast to p65, the level of IκBα protein was lowest on pregnancy day 5 in all groups. Our results suggested that NF-κB may regulate embryo implantation by its transient activation in mice.

  10. Tissue factor pathway inhibitor-2 may interact with nuclear protein RASSF1C

    Institute of Scientific and Technical Information of China (English)

    Xudong Chen; Zhenwu Li; Jin Zhang; Zuohua Mao; Duan Ma; Huijun Wang

    2012-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a 32 kDa matrix-associated Kunitz-type serine proteinase inhibitor consisting of a short amino-terminal region,three tandem Kunitz-type domains,and a positively charged carboxyterminal tail.Human TFPI-2 (hTFPI-2) inhibits a broad spectrum of serine proteinases (including trypsin,plasmin,plasma kallikrein,XIa,and chymotrypsin) almost exclusively via its first Kunitz-type domain,and potentially plays an important role in the regulation of extracellular matrix digestion and remodeling [1].Reduced TFPI-2 synthesis has been related to numerous pathophysiological processes such as inflammation,angiogenesis,atherosclerosis [2,3],retinal degeneration,and tumor growth/metastasis [4-6].It has been suggested that TFPI-2 is a tumor suppressor gene in some cancers [7,8].However,the specific physiological functions of hTFPI-2 in humans are unclear,particularly its interactions with other proteins.To better understand the physiological function of hTFPI-2,we used yeast two-hybrid system screening and bioinformatics analysis to identify its interacting proteins and confirm its interactions with nuclear protein RASSF1C using confocal microscopy and co-immunoprecipitation.

  11. Change and significance of nuclear factor-κB in adriamycin induced cardiomyopathy in rats

    Institute of Scientific and Technical Information of China (English)

    LI Hong-li; LIU Bin; ZHOU Ling-wang; YU Wei-han

    2005-01-01

    Background This study aimed at investigating the change and significance of nuclear factor-κB (NF-κB) in cardiomyopathy induced by adriamycin (ADR) in rats.Methods Sixty male Wistar rats were randomly divided into three groups: control, ADR and ADR+pyrrolidine dithiocarbamate (PDTC) groups. After 30-day experiment, myocardial histopathological observation was performed. Location and distribution of NF-κB p50 was examined by immunohistochemical assay. Expression of NF-κB p50 protein was examined by immunobolt assay. Electrophoretic Mobility Shift Assay examined activity of NF-κB; Myocardium p53 gene expression was examined by RT-PCR analysis. Results The myocardial lesions of rats were less pronounced in ADR +PDTC group than in ADR group. Compared with control group, there were many myocardium nucleuses, which expressed NF-κB p50 and distribute under epicardium. Expression of NF-κB p50 protein in nucleus increased significantly in ADR group. The NF-κB binding activity increased significantly in ADR group. Myocardium expressions of p53 mRNA increased in ADR group. Conclusions The NF-κB binding activity increased significantly in cardiomyopathy induced by ADR in rats. Moreover, NF-κB plays an important role in causing degeneration of myocardial tissue and regulating expression of related-apoptosis genes.

  12. Radiation damping and reciprocity in nuclear magnetic resonance: the replacement of the filling factor.

    Science.gov (United States)

    Tropp, James; Van Criekinge, Mark

    2010-09-01

    The basic equation describing radiation damping in nuclear magnetic resonance (NMR) is rewritten by means of the reciprocity principle, to remove the dependence of the damping constant upon filling factor - a parameter which is neither uniquely defined for easily measured. The new equation uses instead the transceive efficiency, i.e. the peak amplitude of the radiofrequency B field in laboratory coordinates, divided by the square root of the resistance of the detection coil, for which a simple and direct means of measurement exists. We use the efficiency to define the intrinsic damping constant, i.e. that which obtains when both probe and preamplifier are perfectly matched to the system impedance. For imperfect matching of the preamp, it is shown that the damping constant varies with electrical distance to the probe, and equations are given and simulations performed, to predict the distance dependence, which (for lossless lines) is periodic modulo a half wavelength. Experimental measurements of the radiation-damped free induction NMR signal of protons in neat water are performed at a static B field strength of 14.1T; and an intrinsic damping constant measured using the variable line method. For a sample of 5mm diameter, in an inverse detection probe we measure an intrinsic damping constant of 204 s(-1), corresponding to a damping linewidth of 65 Hz for small tip angles. The predicted intrinsic linewidth, based upon three separate measurements of the efficiency, is 52.3 Hz, or 80% of the measured value.

  13. Membrane and integrative nuclear fibroblastic growth factor receptor (FGFR) regulation of FGF-23.

    Science.gov (United States)

    Han, Xiaobin; Xiao, Zhousheng; Quarles, L Darryl

    2015-04-17

    Fibroblastic growth factor receptor 1 (FGFR1) signaling pathways are implicated in the regulation of FGF-23 gene transcription, but the molecular pathways remain poorly defined. We used low molecular weight (LMW, 18 kDa) FGF-2 and high molecular weight (HMW) FGF-2 isoforms, which, respectively, activate cell surface FGF receptors and intranuclear FGFR1, to determine the roles of membrane FGFRs and integrative nuclear FGFR1 signaling (INFS) in the regulation of FGF-23 gene transcription in osteoblasts. We found that LMW-FGF-2 induced NFAT and Ets1 binding to conserved cis-elements in the proximal FGF-23 promoter and stimulated FGF-23 promoter activity through PLCγ/calcineurin/NFAT and MAPK pathways in SaOS-2 and MC3T3-E1 osteoblasts. In contrast, HMW-FGF-2 stimulated FGF-23 promoter activity in osteoblasts through a cAMP-dependent binding of FGFR1 and cAMP-response element-binding protein (CREB) to a conserved cAMP response element (CRE) contiguous with the NFAT binding site in the FGF-23 promoter. Mutagenesis of the NFAT and CRE binding sites, respectively, inhibited the effects of LMW-FGF-2 and HMW-FGF-23 to stimulate FGF-23 promoter activity. FGF-2 activation of both membrane FGFRs and INFS-dependent FGFR1 pathways may provide a means to integrate systemic and local regulation of FGF-23 transcription under diverse physiological and pathological conditions.

  14. Expression of germ cell nuclear factor in mouse germ cells and sperm during postnatal period

    Institute of Scientific and Technical Information of China (English)

    ChenXu; Zong-YaoZhou; Qiang-SuGuo; Yi-FeiWang

    2004-01-01

    Aim: To assess the spatial and temporal expression of germ cell nuclear factor (GCNF) in male mouse germ cells during postnatal development and in sperm before and after capacitation. Methods: The indirect immunofluorescence method with anti-GCNF antiserum was used to investigate the GCNF expression in mice at day 8, 10,14, 17, 20, 28, 35, 70, and 420 after birth and in sperm before and after capacitation. Results: With the proceeding of spermatogenesis, GCNF was first detected in the nuclei of spermatogonia and a few early stage primary spermatocytes at day 8, which was increased gradually at day 10 to 14 inclusive. From day 17 to day 20, the GCNF was concentrated in round spermatids, while both spermatogonia and early stage primary spermatocytes became GCNF negative. From day 28 until day 420, strong GCNF expression was shown in round spermatids and pachytene spermatocytes, while spermatogonia, early primary spermatocytes and elongating spermatids were all GCNF negative.In addition, it was also found that GCNF was localized on the acrosomal cap region of spermatozoa and there was a big change in GCNF expression during capacitation, from 98 % GCNF positive before capacitation to about 20 % positive following capacitation. The localization of GCNF in caput and cauda spermatozoa was similar. Conclusion:GCNF may play important roles in spermatogenesis, capacitation and fertilization. (Asian J Androl 2004 Sep; 6: 217-222)

  15. Receptor activator of nuclear factor kappa B (RANK as a determinant of peri-implantitis

    Directory of Open Access Journals (Sweden)

    Rakić Mia

    2013-01-01

    Full Text Available Background/Aim. Peri-implantitis presents inflammatory process that affects soft and hard supporting tissues of osseointegrated implant based on inflammatory osteoclastogenesis. The aim of this study was to investigate whether receptor activator of nuclear factor kappa B (RANK concentrations in peri-implant crevicular fluid could be associated with clinical parameters that reflect inflammatory nature of peri-implantitis. Methods. The study included 67 patients, 22 with diagnosed peri-implantitis, 22 persons with healthy peri-implant tissues and 23 patients with periodontitis. Clinical parameters from each patient were recorded and samples of peri-implant/gingival crevicular fluid were collected for the enzyme-linked immunosorbent assay (ELISA analysis. Results. RANK concentration was significantly increased in samples from the patients with periimplantitis when compared to healthy implants (p < 0.0001, where the average levels were 9 times higher. At the same time RANK concentration was significantly higher in periimplantitis than in periodontitis sites (p < 0.0001. In implant patients pocket depths and bleeding on probing values were positively associated with high RANK concentrations (p < 0.0001. Conclusion. These results revealed association of increased RANK concentration in samples of periimplant/ gingival crevicular fluid with peri-implant inflammation and suggests that RANK could be a pathologic determinant of peri-implantitis, thereby a potential parameter in assessment of peri-implant tissue inflammation and a potential target in designing treatment strategies.

  16. Role of nuclear factor kappa B in central nervous system regeneration

    Institute of Scientific and Technical Information of China (English)

    Christian Engelmann; Falk Weih; Ronny Haenold

    2014-01-01

    Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-speciifc inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro-and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inlfammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-κB in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans-dominant negative mutant of its upstream regulator IκBα, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro-gram in whichκB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-speciifc functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.

  17. Inhibition of nuclear factor kappa B activation reduces Coxsackievirus B3 replication in lymphoid cells.

    Science.gov (United States)

    Sobotta, Katharina; Wilsky, Steffi; Althof, Nadine; Wiesener, Nadine; Wutzler, Peter; Henke, Andreas

    2012-02-01

    Interactions between viral replication machineries and host cell metabolism display interesting information how certain viruses capitalize cellular pathways to support progeny production. Among those pathogens, Coxsackievirus B3 (CVB3) has been identified to manipulate intracellular signaling very comprehensively. Next to others, this human pathogenic virus causes acute and chronic forms of myocarditis, pancreatitis, and meningitis. Here, activation of nuclear factor kappa B (NFκB) signaling appears to be involved in successful infection. Viral replication is not restricted to solid organs but involves susceptible immune cells as well. In the present study, p65 phosphorylation as one aspect of NFκB activation and inhibition via BAY 11-7085 administration was analyzed in the context of CVB3 replication in lymphoid cells. During CVB3 infection, an up-regulation of p65 translation is detectable, which is accompanied by noticeable phosphorylation. Inhibition of NFκB signaling reduces viral replication in a dose- and time-dependent manner. Taken together, these results indicate that during CVB3 replication in human and murine lymphoid cells, NFκB signaling is activated and facilitates viral replication. Therefore, antiviral strategies to target such central cellular signaling pathways may represent potential possibilities for the development of new virostatica. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Altered nuclear factor-kappaB inducing kinase expression in insulin-resistant mice

    Institute of Scientific and Technical Information of China (English)

    SU Lei; XIU Ling-ling; WEI Guo-hong; ZHONG Xing; LIU Yuan-yuan; CAO Xiao-pei; LI Yan-bing; XIAO Hai-peng

    2011-01-01

    Background Insulin resistance is an underlying feature of both type 2 diabetes and metabolic syndrome.Currently,it is unclear whether nuclear factor (NF)-κB inducing kinase (NIK) plays a role in the development of insulin resistance.The present in vivo study investigated the roles of NIK and IKB kinase α (IKKα) in obesity-induced insulin resistance using animal models.Methods NIK expression was evaluated by Westem blotting in male Lepob mice and C57BL/6J mice fed a high-fat diet (HFD) (45% fat).After metformin and sulfasalazine treatment,NIK expression was investigated during the improvement of insulin resistance.Results NIK was increased by about 1-fold in the renal tissues of Lepob mice and C57BL/6J mice fed a HFD for 12 weeks.After 1 and 3 weeks of high-fat feeding,we observed an almost 50% decrease in NIK and IKKα expression in the liver and renal tissues of C57BL/6J mice.NIK expression was significantly lower in the liver and renal tissues of HFD-fed mice that were treated with insulin sensitizers,metformin and sulfasalazine.However,IKKα expression was increased after metformin treatment in both tissues.Conclusion These results suggest a possible role of NIK in the liver and renal tissues of insulin-resistant mice.

  19. Analysis of factors related to man-induced hazard for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Soon; Jung, Jea Hee; Lee, Keun O; Son, Ki Sang; Wang, Sang Chul; Lee, Chang Jin; Ku, Min Ho; Park, Nam Young [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2003-03-15

    This study is to show a guide for installing hazardous facilities adjoined atomic power plant after finding out how much these facilities could impact to the atomic plant. Nuclear power plant is an important facility which is closely connected with public life, industrial activity, and the conduct of public business, so it should not be damaged. Therefore, if there are hazardous and harmful facilities near the plant, then they must be evaluated by the size, the type, and the shape. First of all, any factors that could cause man induced accident must be investigated. And they must be exactly evaluated from how much it will damage the plant facilities. The purpose of this study is to set a technical standard for the installation of these facilities by evaluating the man induced accident. Also, it is to make out the evaluation methods by investigating the hazardous facilities which are placed near the plant. Our country is now using CFR standard : reg. guide and IAEA safety series. However, not only the standard of technology which is related to man induced accident but also the evaluation methods for facilities are not yet layed down. As It was mentioned above, we should evaluate these facilities adequately, and these methods must be made out.

  20. Ghrelin Attenuated Lipotoxicity via Autophagy Induction and Nuclear Factor-κB Inhibition

    Directory of Open Access Journals (Sweden)

    Yuqing Mao

    2015-09-01

    Full Text Available Background/Aims: Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease worldwide. Autophagy is associated with NAFLD. Ghrelin is a gut hormone with various functions including energy metabolism and inflammation inhibition. We investigated the therapeutic effect of ghrelin on NAFLD and its association with autophagy. Methods: C57bl/6 mice were fed a high-fat diet for 8 weeks to induce a model of chronic NAFLD, with ghrelin (10 µg/kg administrated subcutaneously twice weekly from weeks 6 to 8. LO2 cells were pretreated with ghrelin (10-8 M before stimulation with free fatty acid (palmitic and oleic acids; 1 mM. Lipid droplets were identified by hematoxylin and eosin and Red O staining and quantified by triglyceride test kits. LC3I/II, an important biomarker protein of autophagy was detected by western blotting, real-time polymerase chain reaction, immunohistochemistry and immunofluorescence. Tumor necrosis factor (TNF-a and interleukin (IL-6 were detected by ELISA and immunohistochemistry. Nuclear factor (NF-κB p65 was detected by western blotting and immunofluorescence. AMP-activated protein kinase (AMPK and mammalian target of rapamycin (mTOR were detected by western blotting. Results: Ghrelin reduced the triglyceride content in high fat diet (HFD group in vivo and free fatty acid (FFA group in vitro. TNF-a and IL-6 were significantly reduced in the ghrelin-treated mice compared with the control group. Autophagy induction was accompanied with intracellular lipid reduction in ghrelin-treated mice. Ghrelin upregulated autophagy via AMPK/mTOR restoration and inhibited translocation of NF-κB into the nucleus. Conclusions: The results indicate that ghrelin attenuates lipotoxicity by autophagy stimulation and NF-κB inhibition.

  1. Obesity-induced endoplasmic reticulum stress suppresses nuclear factor-Y expression.

    Science.gov (United States)

    Liu, Yulan; Zhang, Yuwei; Zhang, Yanjie; Zhang, Jinlong; Liu, Yin; Feng, Peiqun; Su, Zhiguang

    2017-02-01

    Nuclear transcription factor Y (NF-Y) is an evolutionarily conserved transcription factor composed of three subunits, NF-YA, NF-YB, and NF-YC. NF-Y plays crucial roles in pre-adipocyte maintenance and/or commitment to adipogenesis. NF-YA dysfunction in adipocyte resulted in an age-dependent progressive loss of adipose tissue associated with metabolic complications. Endoplasmic reticulum (ER) stress has emerged as an important mediator in the pathogenesis of obesity. However, it is not known if NF-YA is involved in the ER stress-mediated pathogenesis of obesity. We first examined the effects of ER stress on the NF-YA expression in cultured 3T3-L1 adipocytes; then in ob/ob genetic obesity mice, we tested the effect of chemical chaperones alleviating ER stress on the expression levels of NF-YA. Subsequently, we inhibited the new mRNA synthesis using actinomycin D in 3T3-L1 cells to explore the mechanism modulating NF-YA expression. Finally, we evaluated the involvement of PPARg in the regulation of NF-YA expression by ER stress. We demonstrated that both obesity- and chemical chaperone -induced ER stress suppressed NF-YA expression and alleviation of ER stress by chemical chaperone could recover NF-YA expression in ob/ob mice. Moreover, we showed that ER stress suppressed NF-YA mRNA transcription through the involvement of peroxisome proliferator-activated receptor gamma (PPARg). Activation of PPARg ameliorates the ER stress-induced NF-YA suppression. Our findings may point to a possible role of NF-YA in stress conditions that occur in chronic obesity, ER stress might be involved in the pathogenesis of obesity through NF-YA depletion.

  2. Leak-Path Factor Analysis for the Nuclear Materials Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, C.; Leonard, M.

    1999-06-13

    Leak-path factors (LPFs) were calculated for the Nuclear Materials Storage Facility (NMSF) located in the Plutonium Facility, Building 41 at the Los Alamos National Laboratory Technical Area 55. In the unlikely event of an accidental fire powerful enough to fail a container holding actinides, the subsequent release of oxides, modeled as PuO{sub 2} aerosols, from the facility and into the surrounding environment was predicted. A 1-h nondestructive assay (NDA) laboratory fire accident was simulated with the MELCOR severe accident analysis code. Fire-driven air movement along with wind-driven air infiltration transported a portion of these actinides from the building. This fraction is referred to as the leak-path factor. The potential effect of smoke aerosol on the transport of the actinides was investigated to verify the validity of neglecting the smoke as conservative. The input model for the NMSF consisted of a system of control volumes, flow pathways, and surfaces sufficient to model the thermal-hydraulic conditions within the facility and the aerosol transport data necessary to simulate the transport of PuO{sub 2} particles. The thermal-hydraulic, heat-transfer, and aerosol-transport models are solved simultaneously with data being exchanged between models. A MELCOR input model was designed such that it would reproduce the salient features of the fire per the corresponding CFAST calculation. Air infiltration into and out of the facility would be affected strongly by wind-driven differential pressures across the building. Therefore, differential pressures were applied to each side of the building according to guidance found in the ASHRAE handbook using a standard-velocity head equation with a leading multiplier to account for the orientation of the wind with the building. The model for the transport of aerosols considered all applicable transport processes, but the deposition within the building clearly was dominated by gravitational settling.

  3. Nuclear Factor kappa B is required for the production of infectious human herpesvirus 8 virions

    Directory of Open Access Journals (Sweden)

    Negin N Blattman

    2014-04-01

    Full Text Available Human herpesvirus 8 (HHV8 infection leads to potent activation of nuclear factor kappa B (NFB in primary and transformed cells. We used recombinant HHV8 (rKSHV.219 expressing green fluorescent protein under the constitutive cellular promoter elongation factor 2 and red fluorescent protein under an early HHV8 lytic gene promoter T1.1, to monitor replication during infection of human foreskin fibroblasts (HF, noting changes in NFB activity. In primary HF, NFB levels do not affect HHV8 ability to establish infection or maintain latency. Furthermore, there was no effect on the percent of cells undergoing reactivation from latency, and there were similar numbers of released and cell associated HHV8 viral particles following reactivation in the presence of inhibitors. Reactivation of HHV8 in latently infected HF in the presence of NFB inhibitors resulted in production of viral particles that did not efficiently establish infection, due to deficiencies in binding and/or entry into normally permissive cells. Exogenous expression of glycoprotein M, an envelope protein involved in viral binding and entry was able to partially overcome the deficiency induced by NFB inhibitors. Our data indicate that in primary cells, NFB is not required for infection, establishment of latency, or entry into the lytic cycle, but is required for the expression of virion associated genes involved in the initial steps of virion infectivity. These studies suggest that strategies to inhibit NFB may prevent HHV8 spread and should be considered as a potential therapeutic target for preventing HHV8 associated diseases.

  4. Hepatocyte Nuclear Factor-1β Induces Redifferentiation of Dedifferentiated Tubular Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Mitsugu Omata

    Full Text Available Tubular epithelial cells (TECs can be dedifferentiated by repetitive insults, which activate scar-producing cells generated from interstitial cells such as fibroblasts, leading to the accumulation and deposition of extracellular matrix molecules. The dedifferentiated TECs play a crucial role in the development of renal fibrosis. Therefore, renal fibrosis may be attenuated if dedifferentiated TECs are converted back to their normal state (re-epithelialization. However, the mechanism underlying the re-epithelialization remains to be elucidated. In the present study, TGF-β1, a profibrotic cytokine, induced dedifferentiation of cultured TECs, and the dedifferentiated TECs were re-epithelialized by the removal of TGF-β1 stimulation. In the re-epithelialization process, transcription factor hepatocyte nuclear factor 1, beta (HNF-1β was identified as a candidate molecule involved in inducing re-epithelialization by means of DNA microarray and biological network analysis. In functional validation studies, the re-epithelialization by TGF-β1 removal was abolished by HNF-1β knockdown. Furthermore, the ectopic expression of HNF-1β in the dedifferentiated TECs induced the re-epithelialization without the inhibition of TGF-β/Smad signaling, even in the presence of TGF-β1 stimulation. In mouse renal fibrosis model, unilateral ureteral obstruction model, HNF-1β expression in the TECs of the kidney was suppressed with fibrosis progression. Furthermore, the HNF-1β downregulated TECs resulted in dedifferentiation, which was characterized by expression of nestin. In conclusion, HNF-1β suppression in TECs is a crucial event for the dedifferentiation of TECs, and the upregulation of HNF-1β in TECs has a potential to restore the dedifferentiated TECs into their normal state, leading to the attenuation of renal fibrosis.

  5. Coffee inhibits nuclear factor-kappa B in prostate cancer cells and xenografts.

    Science.gov (United States)

    Kolberg, Marit; Pedersen, Sigrid; Mitake, Maiko; Holm, Kristine Lillebø; Bøhn, Siv Kjølsrud; Blomhoff, Heidi Kiil; Carlsen, Harald; Blomhoff, Rune; Paur, Ingvild

    2016-01-01

    Chronic inflammation contributes to prostate cancer and the transcription factor Nuclear Factor-kappa B (NF-κB) is constitutively active in most such cancers. We examine the effects of coffee on NF-κB and on the regulation of selected genes in human-derived prostate cancer cells (PC3) and in PC3 xenografts in athymic nude mice. PC3 cells stably transduced with an NF-κB-luciferase reporter were used both in vitro and for xenografts. NF-κB activity was measured by reporter assays, DNA binding and in vivo imaging. Gene expression was measured in PC3 cells, xenografts and tumor microenvironment by low-density arrays. Western blotting of activated caspases was used to quantify apoptosis. Coffee inhibited TNFα-induced NF-κB activity and DNA-binding in PC3 cells. Furthermore, coffee increased apoptosis and modulated expression of a number of inflammation- and cancer-related genes in TNFα-treated PC3 cells. In vivo imaging revealed a 31% lower NF-κB-luciferase activation in the xenografts of the mice receiving 5% coffee compared to control mice. Interestingly, we observed major changes in gene expression in the PC3 cells in xenografts as compared to PC3 cells in vitro. In PC3 xenografts, genes related to inflammation, apoptosis and cytoprotection were down-regulated in mice receiving coffee, and coffee also affected the gene expression in the xenograft microenvironment. Our data demonstrate that coffee inhibits NF-κB activity in PC3 cells in vitro and in xenografts. Furthermore, coffee modulates transcription of genes related to prostate cancer and inflammation. Our results are the first to suggest mechanistic links between coffee consumption and prostate cancer in an experimental mouse model.

  6. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation.

    Science.gov (United States)

    Strzalka, Wojciech; Ziemienowicz, Alicja

    2011-05-01

    PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.

  7. The Security of Russia's Nuclear Arsenal: The Human Factor

    Energy Technology Data Exchange (ETDEWEB)

    Ball, D.Y.

    1999-10-12

    Assertions by the Russian military that all of their nuclear weapons are secure against theft and that nuclear units within the military are somehow insulated from the problems plaguing the Russian military should not be accepted uncritically. Accordingly, we should not give unwarranted credence to the pronouncements of military figures like Cal.-Gen. Igor Valynkin, Chief of the Defense Ministry's 12th Main Directorate, which oversees the country's nuclear arsenal. He contends that ''Russian nuclear weapons are under reliable supervision'' and that ''talk about the unreliability of our control over nuclear weapons has only one pragmatic goal--to convince international society that the country is incapable of maintaining nuclear safety and to introduce international oversight over those weapons, as it is done, for example, in Iraq.'' While the comparison to Iraq is preposterous, many analysts might agree with Valynkin's sanguine appraisal of the security of Russia's nuclear weapons. In contrast, I argue that the numerous difficulties confronting the military as a whole should cause concern in the West over the security of the Russian nuclear arsenal.

  8. Public participation processes related to nuclear research installations: what are the driving factors behind participation intention?

    Science.gov (United States)

    Turcanu, Catrinel; Perko, Tanja; Laes, Erik

    2014-04-01

    This article addresses organised public participation processes related to installations for nuclear research. The aim was to determine predictors that could provide an empirical insight into the motivations underlying people's intended level of involvement. The results highlight attitude towards participation and moral norm as the strongest predictors for participation intention. Other significant predictors were time constraints, attitude towards nuclear energy, subjective and descriptive norms, and knowledge. An opposing relationship is noted between participation intention and attitude towards nuclear energy. At the same time, people who are more knowledgeable about the nuclear domain seem more willing to get involved. The analysis also revealed that financial benefits do not influence people's intended involvement in participation processes related to nuclear research installations. The results reported here are based on empirical data from a large-scale public opinion survey (N = 1020) carried out in Belgium during May-June 2011.

  9. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage.

    Science.gov (United States)

    Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle

    2017-09-18

    We have previously shown that the insulin like growth factor 1 receptor (IGF1R) translocates to the cell nucleus, where it binds to enhancer like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF1R (nIGF1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer binding factor 1 (Lef1), histone H3, and Brahma related gene 1 proteins. In the present study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF1R binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA coincubated with the IGF1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF1R targets, and PCNA phosphorylation was followed by mono and poly ubiquitination. Coimmunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT dependent E2/E3 ligases (e.g. RAD18 and SHPRH/HLTF). Absence of IGF1R or mutation of Tyr60, Tyr133, or Tyr250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF1R, externally induced DNA damage in IGF1R negative cells caused G1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF1R in DDT. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  10. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hachem, Ahmed [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Yacoub, Daniel [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1 (Canada); Zaid, Younes [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Mourad, Walid [Universite de Montreal, Department of Medicine, 2900 boul. Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4 (Canada); Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1 (Canada); Merhi, Yahye, E-mail: yahye.merhi@icm-mhi.org [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Universite de Montreal, Department of Medicine, 2900 boul. Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4 (Canada)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Given that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo

  11. Identification of a phosphorylation-dependent nuclear localization motif in interferon regulatory factor 2 binding protein 2.

    Directory of Open Access Journals (Sweden)

    Allen C T Teng

    Full Text Available BACKGROUND: Interferon regulatory factor 2 binding protein 2 (IRF2BP2 is a muscle-enriched transcription factor required to activate vascular endothelial growth factor-A (VEGFA expression in muscle. IRF2BP2 is found in the nucleus of cardiac and skeletal muscle cells. During the process of skeletal muscle differentiation, some IRF2BP2 becomes relocated to the cytoplasm, although the functional significance of this relocation and the mechanisms that control nucleocytoplasmic localization of IRF2BP2 are not yet known. METHODOLOGY/PRINCIPAL FINDINGS: Here, by fusing IRF2BP2 to green fluorescent protein and testing a series of deletion and site-directed mutagenesis constructs, we mapped the nuclear localization signal (NLS to an evolutionarily conserved sequence (354ARKRKPSP(361 in IRF2BP2. This sequence corresponds to a classical nuclear localization motif bearing positively charged arginine and lysine residues. Substitution of arginine and lysine with negatively charged aspartic acid residues blocked nuclear localization. However, these residues were not sufficient because nuclear targeting of IRF2BP2 also required phosphorylation of serine 360 (S360. Many large-scale phosphopeptide proteomic studies had reported previously that serine 360 of IRF2BP2 is phosphorylated in numerous human cell types. Alanine substitution at this site abolished IRF2BP2 nuclear localization in C(2C(12 myoblasts and CV1 cells. In contrast, substituting serine 360 with aspartic acid forced nuclear retention and prevented cytoplasmic redistribution in differentiated C(2C(12 muscle cells. As for the effects of these mutations on VEGFA promoter activity, the S360A mutation interfered with VEGFA activation, as expected. Surprisingly, the S360D mutation also interfered with VEGFA activation, suggesting that this mutation, while enforcing nuclear entry, may disrupt an essential activation function of IRF2BP2. CONCLUSIONS/SIGNIFICANCE: Nuclear localization of IRF2BP2 depends on

  12. A novel nuclear role for the Vav3 nucleotide exchange factor in androgen receptor coactivation in prostate cancer.

    Science.gov (United States)

    Rao, S; Lyons, L S; Fahrenholtz, C D; Wu, F; Farooq, A; Balkan, W; Burnstein, K L

    2012-02-01

    Increased androgen receptor (AR) transcriptional activity mediated by coactivator proteins may drive castration-resistant prostate cancer (CRPC) growth. Vav3, a Rho GTPase guanine nucleotide exchange factor (GEF), is overexpressed in human prostate cancers, particularly in models of CRPC progression. Vav3 coactivates AR in a Vav3 pleckstrin homology (PH) domain-dependent but GEF-independent manner. Ectopic expression of Vav3 in androgen-dependent human prostate cancer cells conferred robust castration-resistant xenograft tumor growth. Vav3 but not a Vav3 PH mutant greatly stimulated interaction between the AR amino and carboxyl termini (N-C interaction), which is required for maximal receptor transcriptional activity. Vav3 was distributed between the cytoplasm and nucleus with nuclear localization-dependent on the Vav3 PH domain. Membrane targeting of Vav3 abolished Vav3 potentiation of AR activity, whereas nuclear targeting of a Vav3 PH mutant rescued AR coactivation, suggesting that nuclear localization is an important function of the Vav3 PH domain. A nuclear role for Vav3 was further demonstrated by sequential chromatin immunoprecipitation assays, which revealed that Vav3 and AR were recruited to the same transcriptional complexes of an AR target gene enhancer. These data demonstrate the importance of Vav3 in CRPC and define a novel nuclear function of Vav3 in regulating AR activity.

  13. Effect of Helicobacterpylori cdrA on interleukin-8 secretions and nuclear factor kappa B activation

    Institute of Scientific and Technical Information of China (English)

    Hiroaki Takeuchi; Mikio Kamioka; Norihito Morimoto; Tetsuro Sugiura; Ya-Nan Zhang; Dawn A Israel; Richard M Peek Jr; Hideo Yanai

    2012-01-01

    AIM: To investigate genetic diversity of Helicobacter pylori (H. pylori) cell division-related gene A (cdrA) and its effect on the host response. METHODS: Inactivation of H. pylori cdrA, which is involved in cell division and morphological elongation, has a role in chronic persistent infections. Genetic property of H. pylori cdrA was evaluated using polymerase chain reaction and sequencing in 128 (77 American and 51 Japanese) clinical isolates obtained from 48 and 51 patients, respectively. Enzyme-linked immunosorbent assay was performed to measure interleukin-8 (IL-8) secretion with gadtric biopsy specimens obtained from American patients colonized with cdrA-positive or -negative strains and AGS cells co-cultured with wild-type HPK5 (cdrA-positive) or its derivative HPKT510 (cdrA-disruptant). Furthermore, the cytotoxin-associated gene A (cagA) status (translocation and phosphorylation) and kinetics of transcription factors [nuclear factor-kappa B (NF-κB) and inhibition kappa B] were investigated in AGS cells co-cultured with HPK5, HPKT510 and its derivative HPK5CA (cagAdisruptant) by western blotting analysis with immunoprecipitation. RESULTS: Genetic diversity of the H. pylori cdrA gene demonstrated that the cdrA status segregated into two categories including four allele types, cdrA-positive (allele types; Ⅰ and Ⅱ) and cdrA-negative (allele types; Ⅲ and Ⅳ) categories, respectively. Almost all Japanese isolates were cdrA -positive (Ⅰ: 7.8% and Ⅱ: 90.2%), whereas 16.9% of American isolates were cdrA -positive (Ⅱ) and 83.1% were cdrA -negative (Ⅲ: 37.7% and Ⅳ: 45.5%), indicating extended diversity of cdrA in individual American isolates. Comparison of each isolate from different regions (antrum and corpus) in the stomach of 29 Americans revealed that cdrA status was identical in both isolates from different regions in 17 cases. However, 12 cases had a different cdrA allele and 6 of them exhibited a different cdrA category between two regions in

  14. A formal design verification and validation on the human factors of a computerized information system in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Park, Jae Chang; Cheon, Se Woo; Jung, Kwang Tae; Baek, Seung Min; Han, Seung; Park, Hee Suk; Son, Ki Chang; Kim, Jung Man; Jung Yung Woo

    1999-11-01

    This report describe a technical transfer under the title of ''A formal design verification and validation on the human factors of a computerized information system in nuclear power plants''. Human factors requirements for the information system designs are extracted from various regulatory and industrial standards and guidelines, and interpreted into a more specific procedures and checklists for verifying the satisfaction of those requirements. A formalized implementation plan is established for human factors verification and validation of a computerized information system in nuclear power plants. Additionally, a Computer support system, named as DIMS-web (design Issue Management System), is developed based upon web internet environment so as to enhance the implementation of the human factors activities. DIMS-Web has three maine functions: supporting requirements review, tracking design issues, and management if issues screening evaluation. DIMS-Web shows its benefits in practice through a trial application to the design review of CFMS for YGN nuclear unit 5 and 6. (author)

  15. Monitoring a Nuclear Factor-κB Signature of Drug Resistance in Multiple Myeloma*

    Science.gov (United States)

    Xiang, Yun; Remily-Wood, Elizabeth R.; Oliveira, Vasco; Yarde, Danielle; He, Lili; Cheng, Jin Q.; Mathews, Linda; Boucher, Kelly; Cubitt, Christopher; Perez, Lia; Gauthier, Ted J.; Eschrich, Steven A.; Shain, Kenneth H.; Dalton, William S.; Hazlehurst, Lori; Koomen, John M.

    2011-01-01

    The emergence of acquired drug resistance results from multiple compensatory mechanisms acting to prevent cell death. Simultaneous monitoring of proteins involved in drug resistance is a major challenge for both elucidation of the underlying biology and development of candidate biomarkers for assessment of personalized cancer therapy. Here, we have utilized an integrated analytical platform based on SDS-PAGE protein fractionation prior to liquid chromatography coupled to multiple reaction monitoring mass spectrometry, a versatile and powerful tool for targeted quantification of proteins in complex matrices, to evaluate a well-characterized model system of melphalan resistance in multiple myeloma (MM). Quantitative assays were developed to measure protein expression related to signaling events and biological processes relevant to melphalan resistance in multiple myeloma, specifically: nuclear factor-κB subunits, members of the Bcl-2 family of apoptosis-regulating proteins, and Fanconi Anemia DNA repair components. SDS-PAGE protein fractionation prior to liquid chromatography coupled to multiple reaction monitoring methods were developed for quantification of these selected target proteins in amounts of material compatible with direct translation to clinical specimens (i.e. less than 50,000 cells). As proof of principle, both relative and absolute quantification were performed on cell line models of MM to compare protein expression before and after drug treatment in naïve cells and in drug resistant cells; these liquid chromatography-multiple reaction monitoring results are compared with existing literature and Western blots. The initial stage of a systems biology platform for examining drug resistance in MM has been implemented in cell line models and has been translated to MM cells isolated from a patient. The ultimate application of this platform could assist in clinical decision-making for individualized patient treatment. Although these specific assays have

  16. Epithelial nuclear factor-κB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes.

    Science.gov (United States)

    Zaynagetdinov, R; Stathopoulos, G T; Sherrill, T P; Cheng, D-S; McLoed, A G; Ausborn, J A; Polosukhin, V V; Connelly, L; Zhou, W; Fingleton, B; Peebles, R S; Prince, L S; Yull, F E; Blackwell, T S

    2012-06-28

    The mechanisms by which chronic inflammatory lung diseases, particularly chronic obstructive pulmonary disease, confer enhanced risk for lung cancer are not well-defined. To investigate whether nuclear factor (NF)-κB, a key mediator of immune and inflammatory responses, provides an interface between persistent lung inflammation and carcinogenesis, we utilized tetracycline-inducible transgenic mice expressing constitutively active IκB kinase β in airway epithelium (IKTA (IKKβ trans-activated) mice). Intraperitoneal injection of ethyl carbamate (urethane), or 3-methylcholanthrene (MCA) and butylated hydroxytoluene (BHT) was used to induce lung tumorigenesis. Doxycycline-treated IKTA mice developed chronic airway inflammation and markedly increased numbers of lung tumors in response to urethane, even when transgene expression (and therefore epithelial NF-κB activation) was begun after exposure to carcinogen. Studies using a separate tumor initiator/promoter model (MCA+BHT) indicated that NF-κB functions as an independent tumor promoter. Enhanced tumor formation in IKTA mice was preceded by increased proliferation and reduced apoptosis of alveolar epithelium, resulting in increased formation of premalignant lesions. Investigation of inflammatory cells in lungs of IKTA mice revealed a substantial increase in macrophages and lymphocytes, including functional CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Importantly, Treg depletion using repetitive injections of anti-CD25 antibodies limited excessive tumor formation in IKTA mice. At 6 weeks following urethane injection, antibody-mediated Treg depletion in IKTA mice reduced the number of premalignant lesions in the lungs in association with an increase in CD8 lymphocytes. Thus, persistent NF-κB signaling in airway epithelium facilitates carcinogenesis by sculpting the immune/inflammatory environment in the lungs.

  17. Sesamin attenuates allergic airway inflammation through the suppression of nuclear factor-kappa B activation.

    Science.gov (United States)

    Li, Liangchang; Piao, Hongmei; Zheng, Mingyu; Jin, Zhewu; Zhao, Liguang; Yan, Guanghai

    2016-12-01

    The aim of the present study is to determine the role of sesamin, the most abundant lignan in sesame seed oil, on the regulation of allergic airway inflammation in a murine asthma model. A BALB/c mouse model with allergic asthma was used to evaluate the effects of sesamin on nuclear factor-kappa B (NF-κB) activation. An enzyme-linked immunosorbent assay was used to determine protein expression in bronchoalveolar lavage (BAL) fluids. Hematoxylin and eosin staining was performed to examine histological changes. Moreover, western blot analysis was used to detect the expression of proteins in tissues. Prior to administering sesamin, the mice developed the following pathophysiological features of asthma: An increase in the number of inflammatory cells, increased levels of interleukin (IL)-4, IL-5 and IL-13, decreased levels of interferon-γ in BAL fluids and lung tissues, increased immunoglobulin E (IgE) levels in the serum and an increased activation of NF-κB in lung tissues. Following treatment with sesamin, the mice had evidently reduced peribronchiolar inflammation and airway inflammatory cell recruitment, inhibited production of several cytokines in BAL fluids and lung tissues, and decreased IgE levels. Following inhalation of ovalbumin, the administration of sesamin also inhibited the activation of NF-κB. In addition, sesamin administration reduced the phosphorylation of p38 mitogen-activated protein kinases (MAPKs). The present study demonstrates that sesamin decreases the activation of NF-κB in order to attenuate allergic airway inflammation in a murine model of asthma, possibly via the regulation of phosphorylation of p38 MAPK. These observations provide an important molecular mechanism for the potential use of sesamin in preventing and/or treating asthma, as well as other airway inflammatory disorders.

  18. Monitoring a nuclear factor-κB signature of drug resistance in multiple myeloma.

    Science.gov (United States)

    Xiang, Yun; Remily-Wood, Elizabeth R; Oliveira, Vasco; Yarde, Danielle; He, Lili; Cheng, Jin Q; Mathews, Linda; Boucher, Kelly; Cubitt, Christopher; Perez, Lia; Gauthier, Ted J; Eschrich, Steven A; Shain, Kenneth H; Dalton, William S; Hazlehurst, Lori; Koomen, John M

    2011-11-01

    The emergence of acquired drug resistance results from multiple compensatory mechanisms acting to prevent cell death. Simultaneous monitoring of proteins involved in drug resistance is a major challenge for both elucidation of the underlying biology and development of candidate biomarkers for assessment of personalized cancer therapy. Here, we have utilized an integrated analytical platform based on SDS-PAGE protein fractionation prior to liquid chromatography coupled to multiple reaction monitoring mass spectrometry, a versatile and powerful tool for targeted quantification of proteins in complex matrices, to evaluate a well-characterized model system of melphalan resistance in multiple myeloma (MM). Quantitative assays were developed to measure protein expression related to signaling events and biological processes relevant to melphalan resistance in multiple myeloma, specifically: nuclear factor-κB subunits, members of the Bcl-2 family of apoptosis-regulating proteins, and Fanconi Anemia DNA repair components. SDS-PAGE protein fractionation prior to liquid chromatography coupled to multiple reaction monitoring methods were developed for quantification of these selected target proteins in amounts of material compatible with direct translation to clinical specimens (i.e. less than 50,000 cells). As proof of principle, both relative and absolute quantification were performed on cell line models of MM to compare protein expression before and after drug treatment in naïve cells and in drug resistant cells; these liquid chromatography-multiple reaction monitoring results are compared with existing literature and Western blots. The initial stage of a systems biology platform for examining drug resistance in MM has been implemented in cell line models and has been translated to MM cells isolated from a patient. The ultimate application of this platform could assist in clinical decision-making for individualized patient treatment. Although these specific assays have

  19. Transfection of influenza A virus nuclear export protein induces the expression of tumor necrosis factor alpha.

    Science.gov (United States)

    Lara-Sampablo, Alejandra; Flores-Alonso, Juan Carlos; De Jesús-Ortega, Nereyda; Santos-López, Gerardo; Vallejo-Ruiz, Verónica; Rosas-Murrieta, Nora; Reyes-Carmona, Sandra; Herrera-Camacho, Irma; Reyes-Leyva, Julio

    2014-06-24

    Influenza A virus genomic segments eight codes for non-structural 1 (NS1) protein that is involved in evasion of innate antiviral response, and nuclear export protein (NEP) that participates in the export of viral ribonucleoprotein (RNP) complexes, transcription and replication. Tumor necrosis factor alpha (TNF-α) is highly expressed during influenza virus infections and is considered an anti-infective cytokine. NS1 and NEP proteins were overexpressed and their role on TNF-α expression was evaluated. Both TNF-α mRNA and protein increased in cells transfected with NEP but not with NS1. We further investigate if NS1 or NEP regulates the activity of TNF-α promoter. In the presence of NEP the activity of TNF-α promoter increased significantly compared with the control (83.5±2.9 vs. 30.9±2.8, respectively; p=0.001). This effect decreased 15-fold when the TNF-α promoter distal region was deleted, suggesting the involvement of mitogen-activated protein kinases (MAPK) and NF-kB response elements. This was corroborated by testing the effect produced on TNF-α promoter by the treatment with Raf/MEK/ERK (U0126), NF-kB (Bay-11-7082) and PI3K (Ly294-002) cell signaling inhibitors. Treatment with U0126 and Bay-117082 reduced the activity of TNF-α promoter mediated by NEP (41.5±3.2, 70% inhibition; and 80.6±7.4, 35% inhibition, respectively) compared to mock-treated control. The results suggest a new role for NEP protein that participates in the transcriptional regulation of human TNF-α expression.

  20. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki, E-mail: sueyoshi@ag.kagawa-u.ac.jp

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  1. Alterations in bile acid synthesis in carriers of hepatocyte nuclear factor 1α mutations.

    Science.gov (United States)

    Ekholm, E; Nilsson, R; Groop, L; Pramfalk, C

    2013-09-01

    Heterozygous mutations in hepatocyte nuclear factor 1α (HNF1α) cause maturity onset diabetes of the young 3 (MODY3), an autosomal dominant form of diabetes. Deficiency of HNF1α in mice results in diabetes, hypercholesterolaemia and increased bile acid (BA) and cholesterol synthesis. Little is known about alterations in lipid metabolism in patients with MODY3. The aim of this study was to investigate whether patients with MODY3 have altered cholesterol and BA synthesis and intestinal cholesterol absorption. A secondary aim was to investigate the effects of HNF1α mutations on the transcriptional regulation of BA metabolism. Plasma biomarkers of BA and cholesterol synthesis and intestinal cholesterol absorption were measured in patients with MODY3 (n = 19) and in matched healthy control subjects (n = 15). Cotransfection experiments were performed with several promoters involved in BA metabolism along with expression vectors carrying the mutations found in these patients. Plasma analysis showed higher levels of BA synthesis in patients with MODY3. No differences were observed in cholesterol synthesis or intestinal cholesterol absorption. Cotransfection experiments showed that one of the mutations (P379A) increased the induction of the cholesterol 7α-hydroxylase promoter compared with HNF1α, without further differences in other studied promoters. By contrast, the other four mutations (L107I, T260M, P291fsinsC and R131Q) reduced the induction of the farnesoid X receptor (FXR) promoter, which was followed by reduced repression of the small heterodimer partner promoter. In addition, these mutations also reduced the induction of the apical sodium-dependent bile salt transporter promoter. BA synthesis is increased in patients with MODY3 compared with control subjects. Mutations in HNF1α affect promoters involved in BA metabolism. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  2. The role and regulation of the nuclear factor kappa B signalling pathway in human labour.

    Science.gov (United States)

    Lappas, M; Rice, G E

    2007-01-01

    Within the discipline of reproductive biology, our understanding of one of the most fundamental biological processes is lacking--the cellular and molecular mechanisms that govern birth. This lack of understanding limits our ability to reduce the incidence of labour complications. The incidence of labour complications including: preterm labour; cervical incompetence; and post-date pregnancies has not diminished in decades. The key to improving the management of human labour and delivery is an understanding of how the multiple processes that are requisite for a successful labour and delivery are coordinated to achieve a timely birth. Processes of human labour include the formation of: contraction associated proteins; inflammatory mediators (e.g. cytokines); uterotonic phospholipid metabolites (e.g. prostaglandins); and the induction of extracellular matrix (ECM) remodelling. Increasingly, it is becoming evident that labour onset and birth are the result of cross-talk between multiple components of an integrated network. This hypothesis is supported by recent data implicating various upstream regulatory pathways in the control of key labour-associated processes, including the activity of enzymes involved in the formation of prostaglandins and extracellular matrix remodelling, and mediators of inflammation. Clearly, the biochemical pathways involved in the formation of these mediators represent potential sites for intervention that may translate to therapeutic interventions to delay or prevent preterm labour and delivery. Available data strongly implicate the nuclear factor-kappaB (NF-kappaB) family as candidate upstream regulators of multiple labour-associated processes. Not only do these data warrant further detailed analysis of the involvement of these pathways in the process of human labour but also promise new insights into the key mechanisms that trigger birth and the identification of new therapeutic interventions that will improve the management of labour.

  3. Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit.

    Science.gov (United States)

    Sarkar, Anshuk; Pech, Markus; Thoms, Matthias; Beckmann, Roland; Hurt, Ed

    2016-12-01

    Nuclear export of preribosomal subunits is a key step during eukaryotic ribosome formation. To efficiently pass through the FG-repeat meshwork of the nuclear pore complex, the large pre-60S subunit requires several export factors. Here we describe the mechanism of recruitment of the Saccharomyces cerevisiae RNA-export receptor Mex67-Mtr2 to the pre-60S subunit at the proper time. Mex67-Mtr2 binds at the premature ribosomal-stalk region, which later during translation serves as a binding platform for translational GTPases on the mature ribosome. The assembly factor Mrt4, a structural homolog of cytoplasmic-stalk protein P0, masks this site, thus preventing untimely recruitment of Mex67-Mtr2 to nuclear pre-60S particles. Subsequently, Yvh1 triggers Mrt4 release in the nucleus, thereby creating a narrow time window for Mex67-Mtr2 association at this site and facilitating nuclear export of the large subunit. Thus, a spatiotemporal mark on the ribosomal stalk controls the recruitment of an RNA-export receptor to the nascent 60S subunit.

  4. Importin-beta is a GDP-to-GTP exchange factor of Ran: implications for the mechanism of nuclear import.

    Science.gov (United States)

    Lonhienne, Thierry G; Forwood, Jade K; Marfori, Mary; Robin, Gautier; Kobe, Bostjan; Carroll, Bernard J

    2009-08-21

    Ran-GTP interacts strongly with importin-beta, and this interaction promotes the release of the importin-alpha-nuclear localization signal cargo from importin-beta. Ran-GDP also interacts with importin-beta, but this interaction is 4 orders of magnitude weaker than the Ran-GTP.importin-beta interaction. Here we use the yeast complement of nuclear import proteins to show that the interaction between Ran-GDP and importin-beta promotes the dissociation of GDP from Ran. The release of GDP from the Ran-GDP-importin-beta complex stabilizes the complex, which cannot be dissociated by importin-alpha. Although Ran has a higher affinity for GDP compared with GTP, Ran in complex with importin-beta has a higher affinity for GTP. This feature is responsible for the generation of Ran-GTP from Ran-GDP by importin-beta. Ran-binding protein-1 (RanBP1) activates this reaction by forming a trimeric complex with Ran-GDP and importin-beta. Importin-alpha inhibits the GDP exchange reaction by sequestering importin-beta, whereas RanBP1 restores the GDP nucleotide exchange by importin-beta by forming a tetrameric complex with importin-beta, Ran, and importin-alpha. The exchange is also inhibited by nuclear-transport factor-2 (NTF2). We suggest a mechanism for nuclear import, additional to the established RCC1 (Ran-guanine exchange factor)-dependent pathway that incorporates these results.

  5. Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction.

    Science.gov (United States)

    Chepelev, Nikolai L; Zhang, Hongqiao; Liu, Honglei; McBride, Skye; Seal, Andrew J; Morgan, Todd E; Finch, Caleb E; Willmore, William G; Davies, Kelvin J A; Forman, Henry Jay

    2013-01-01

    Although the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) regulated expression of multiple antioxidant and cytoprotective genes through the electrophile responsive element (EpRE) is well established, interaction of Nrf2/EpRE with Nrf1, a closely-related transcription factor, is less well understood. Due to either proteolysis or alternative translation, Nrf1 has been found as proteins of varying size, p120, p95, and p65, which have been described as either activators of EpRE or competitive inhibitors of Nrf2. We investigated the effect of Nrf1 on EpRE-regulated gene expression using the catalytic and modifier subunits of glutamate cysteine ligase (GCLC and GCLM) as models and explored the potential role of Nrf1 in altering their expression in aging and upon chronic exposure to airborne nano-sized particulate matter (nPM). Nrf1 knockout resulted in the increased expression of GCLC and GCLM in human bronchial epithelial (HBE1) cells. Overexpression Nrf2 in combination with either p120 or p65 diminished or failed to further increase the GCLC- and GLCM-EpRE luciferase activity. All known forms of Nrf1 protein, remained unchanged in the lungs of mice with age or in response to nPM. Our study shows that Nrf1 could inhibit EpRE activity in vitro, whereas the precise role of Nrf1 in vivo requires further investigations. We conclude that Nrf1 may not be directly responsible for the loss of Nrf2-dependent inducibility of antioxidant and cytoprotective genes observed in aged animals.

  6. Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction

    Directory of Open Access Journals (Sweden)

    Nikolai L. Chepelev

    2013-01-01

    Full Text Available Although the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2 regulated expression of multiple antioxidant and cytoprotective genes through the electrophile responsive element (EpRE is well established, interaction of Nrf2/EpRE with Nrf1, a closely-related transcription factor, is less well understood. Due to either proteolysis or alternative translation, Nrf1 has been found as proteins of varying size, p120, p95, and p65, which have been described as either activators of EpRE or competitive inhibitors of Nrf2. We investigated the effect of Nrf1 on EpRE-regulated gene expression using the catalytic and modifier subunits of glutamate cysteine ligase (GCLC and GCLM as models and explored the potential role of Nrf1 in altering their expression in aging and upon chronic exposure to airborne nano-sized particulate matter (nPM. Nrf1 knockout resulted in the increased expression of GCLC and GCLM in human bronchial epithelial (HBE1 cells. Overexpression Nrf2 in combination with either p120 or p65 diminished or failed to further increase the GCLC- and GLCM-EpRE luciferase activity. All known forms of Nrf1 protein, remained unchanged in the lungs of mice with age or in response to nPM. Our study shows that Nrf1 could inhibit EpRE activity in vitro, whereas the precise role of Nrf1 in vivo requires further investigations. We conclude that Nrf1 may not be directly responsible for the loss of Nrf2-dependent inducibility of antioxidant and cytoprotective genes observed in aged animals.

  7. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha.

    Science.gov (United States)

    Kim, Hyon Jong; Chang, Eun-Ju; Kim, Hyun-Man; Lee, Seung Bok; Kim, Hyun-Duck; Su Kim, Ghi; Kim, Hong-Hee

    2006-05-01

    The relationship between oxidative stress and bone mineral density or osteoporosis has recently been reported. As bone loss occurring in osteoporosis and inflammatory diseases is primarily due to increases in osteoclast number, reactive oxygen species (ROS) may be relevant to osteoclast differentiation, which requires receptor activator of nuclear factor-kappaB ligand (RANKL). Tumor necrosis factor-alpha (TNF-alpha) frequently present in inflammatory conditions has a profound synergy with RANKL in osteoclastogenesis. In this study, we investigated the effects of alpha-lipoic acid (alpha-LA), a strong antioxidant clinically used for some time, on osteoclast differentiation and bone resorption. At concentrations showing no growth inhibition, alpha-LA potently suppressed osteoclastogenesis from bone marrow-derived precursor cells driven either by a high-dose RANKL alone or by a low-dose RANKL plus TNF-alpha (RANKL/TNF-alpha). alpha-LA abolished ROS elevation by RANKL or RANKL/TNF-alpha and inhibited NF-kappaB activation in osteoclast precursor cells. Specifically, alpha-LA reduced DNA binding of NF-kappaB but did not inhibit IKK activation. Furthermore, alpha-LA greatly suppressed in vivo bone loss induced by RANKL or TNF-alpha in a calvarial remodeling model. Therefore, our data provide evidence that ROS plays an important role in osteoclast differentiation through NF-kappaB regulation and the antioxidant alpha-lipoic acid has a therapeutic potential for bone erosive diseases.

  8. Transcriptional regulation of the human Liver X Receptor α gene by Hepatocyte Nuclear Factor

    Energy Technology Data Exchange (ETDEWEB)

    Theofilatos, Dimitris; Anestis, Aristomenis [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, 71003, Crete (Greece); Hashimoto, Koshi [Department of Preemptive Medicine and Metabolism, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-city, Tokyo, 113-8510 (Japan); Kardassis, Dimitris, E-mail: kardasis@imbb.forth.gr [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, 71003, Crete (Greece)

    2016-01-15

    Liver X Receptors (LXRs) are sterol-activated transcription factors that play major roles in cellular cholesterol homeostasis, HDL biogenesis and reverse cholesterol transport. The aim of the present study was to investigate the mechanisms that control the expression of the human LXRα gene in hepatic cells. A series of reporter plasmids containing consecutive 5′ deletions of the hLXRα promoter upstream of the luciferase gene were constructed and the activity of each construct was measured in HepG2 cells. This analysis showed that the activity of the human LXRα promoter was significantly reduced by deleting the −111 to −42 region suggesting the presence of positive regulatory elements in this short proximal fragment. Bioinformatics data including motif search and ChIP-Seq revealed the presence of a potential binding motif for Hepatocyte Nuclear Factor 4 α (HNF-4α) in this area. Overexpression of HNF-4α in HEK 293T cells increased the expression of all LXRα promoter constructs except −42/+384. In line, silencing the expression of endogenous HNF-4α in HepG2 cells was associated with reduced LXRα protein levels and reduced activity of the −111/+384 LXRα promoter but not of the −42/+384 promoter. Using ChiP assays in HepG2 cells combined with DNAP assays we mapped the novel HNF-4α specific binding motif (H4-SBM) in the −50 to −40 region of the human LXRα promoter. A triple mutation in this H4-SBM abolished HNF-4α binding and reduced the activity of the promoter to 65% relative to the wild type. Furthermore, the mutant promoter could not be transactivated by HNF-4α. In conclusion, our data indicate that HNF-4α may have a wider role in cell and plasma cholesterol homeostasis by controlling the expression of LXRα in hepatic cells. - Highlights: • The human LXRα promoter contains a HNF-4α specific binding motif in the proximal −50/−40 region. • Mutations in this motif abolished HNF4α binding and transactivation of the h

  9. Case Study on Influence Factor Trend Analysis of the Accidents and Events of Nuclear Power Plants by applying Nuclear Safety Culture Framework

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. Y.; Park, Y. W.; Park, H.G. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    This study 1) established the standard based on frameworks of safety culture principles that show safety culture promotion goals, 2) analyzed the linkages with the frameworks that were established by analyzing each incident cause and weak point from selected 268 cases(rating over INES grade 1) among 4,088 cases (as of April 1, 2015). The 4,088 cases were selected as a result of database analysis from 702 accidents recorded in accident and rating evaluation reports that were published in the National Nuclear Safety Commission and overseas IRS (International Reporting System for operating Experience), and 3) finally conducted a trend analysis studies with these comprehensive results. From the investigations, followings were concluded. 1) In order to analyze the safety culture, analysis methodology is required. 2) Analytical methodology for building sustainable safety culture promoting a virtuous cycle system was developed 3) Among variety of process input data, 970 domestic and overseas incidents were selected as targets and 502 accidents were classified as safety culture related events by utilizing screen filter of IAEA GS-G-3.5 Appendix I and Framework (Nuclear Safety Culture Base Frame) developed by BEES, Inc. for safety culture analysis method. 4) As a result, complex safety culture influence factors for the one reason which was difficult to separate by conventional methods was able to be analyzed. 5) The cumulative data through the system was results of virtuous trend analysis rather than temporary results. Thus, it could be unique cultural factors of the domestic industry and could derive trend differences for domestic safety culture factors accordingly.

  10. Measurements of charged particle spectra and nuclear modification factor in p+Pb collisions with the ATLAS detector

    CERN Document Server

    Balek, Petr

    2014-01-01

    The ATLAS detector at the LHC obtained the sample of p+Pb data at $\\sqrt{s_{NN}}={}$5.02TeV with integrated luminosity of 25nb${}^{-1}$, which can be compared to the pp data obtained by interpolating pp measurements at $\\sqrt{s}={}$2.76TeV and 7TeV. Due to the excellent capabilities of the ATLAS detector, and its stable operation in heavy ion as well as proton-proton physics runs, the data allow measurements of the nuclear modification factor, ratio of heavy ion charged particle spectra divided by pp reference, in different centrality classes over a wide range of rapidity. The charged particle nuclear modification factor is found to vary significantly as a function of transverse momentum with a stronger dependence in more peripheral collisions.

  11. The Impact of Organizational Factors on Safety. The Perspective of Experts from the Spanish Nuclear Sector; El Impacto de los Factores Organizativos en la Seguridad. La Vision de los Expertos del Sector Nuclear Espanol

    Energy Technology Data Exchange (ETDEWEB)

    German, S.; Silla, I.; Navajas, J.

    2014-07-01

    Previous research supports the importance of organizational factors on safety in high reliability organizations. This study aims to determine the impact of those factors in the Spanish nuclear sector. Particularly, this study focuses on examining the role of performance indicators, organizational culture, organizational factors, and organizational context. With that purpose, an electronic survey addressed to experts from the Spanish nuclear sector was carried out. Results showed that performance indicators are well-known among industry experts and are perceived as useful for improving performance. Behavioural norms that influence safety and some relevant factors that promote problem identification were identified. Additionally, findings suggested that organizational context must be taken into account to better understand the role of organizational culture. Moreover, industry experts pointed out organizational factors to be improved: organizational communication processes within the organization, positive reinforcement, and field supervisors practices. Finally, findings supported the influence of organizational context on safety. It is noteworthy the role of the social impact of international events (e.g., Chernobyl...), the relationship with the regulator and the legislative and governmental framework. (Author)

  12. Effect of resveratrol on activation of nuclear factor kappa-B and inflammatory factors in rat model of acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yong Meng; Qing-Yong Ma; Xiao-Ping Kou; Jun Xu

    2005-01-01

    AIM: To observe the effect of resveratrol on nuclear factor Kappa-B (NF-κB) activation and the inflammatory response in sodium taurocholate-induced pancreatitis in rats.METHODS: Seventy-two male SD rats were randomly divided into three groups: sham operation group (control),severe acute pancreatitis (SAP) group, and severe acute pancreatitis group treated with resveratrol (RES). A SAP model was established by injecting 4% sodium taurocholate 1 mL/kg through puncturing the pancreatic duct. In Res group, Res was given at 30 mg/kg b.m. intraperitoneally after the SAP model was successfully established. Eight animals from each group were sacrificed at 3, 6 and 12 h after modeling. The expression of NF-κB activation of pancreas was detected by immunohistochemical staining, whereas the levels of TNF-α and IL-8 in pancreatic tissues were estimated by radioimmunoassay. The pathological changes of pancreas and lungs were examined microscopically.RESULTS: Much less hyperemia, edema, dust-colored necrotic focus and soaps were noticed in pancreas in RES group than in SAP group. In RES group, hemorrhage,exudates and infiltration of inflammatory cells in pancreas and interstitial edema, destruction of alveolar wall in lung were significantly less than in SAP group. In the SAP group,the activation of NF-κB in pancreatic tissues was enhanced significantly at any measure point compared with control group (64.23±10.72% vs2.56±0.65%, 55.86±11.34% vs 2.32±0.42%, 36.23±2.30% vs 2.40±0.36% ,P <0.01), TNF-α,IL-8 were also increased and reached their peak at 6 h and then declined. The activation of NF-κB and the levels of TNF-α and IL-8 in RES group were significantly lower than those in SAP group (P<0.01): activation (52.63±9.45% vs 64.23±10.72%, 40.52±8.40% vs 55.86±11.34%, 29.83±5.37% vs36.23±2.30%), TN-α (132.76±15.68 pg/mL vs 158.36±12.58 pg/mL, 220.32±23.57 pg/mL vs 247.67± 11.62 pg/mL, 175.68±18.43 pg/mL vs 197.35±12.57 pg/mL) and IL-8 (0.62±0.21

  13. The role of nuclear factor κB in the cellular response to different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Kristina

    2013-04-11

    Radiation is currently one of the most important limiting factors for manned space flight. During such missions, there is a constant exposure to low doses of galactic cosmic radiation and in particular high-energy heavy ions. Together this is associated with an increased cancer risk which currently cannot be sufficiently reduced by shielding. As such, cellular radiation response needs to be further studied in order to improve risk estimation and develop appropriate countermeasures. It has been shown that exposure of human cells to accelerated heavy ions, in fluences that can be reached during long-term missions, leads to activation of the Nuclear Factor κB (NF-κB) pathway. Heavy ions with a linear energy transfer (LET) of 90 to 300 keV/μm were most effective in activating NF-κB. NF-κB as an important modulating factor in the cellular radiation response could improve cellular survival after heavy ion exposure, thereby influencing the cancer risk of astronauts. The NF-κB pathway may be a potential pharmacological target in the mitigation of radiation response during space missions; such as the prevention of massive cell death after high dose irradiation (acute effects), in addition to neoplastic cell transformation during chronic low-dose exposure (late effects). The aim of this work was to examine the role of NF-κB in the cellular response to space-relevant radiation. Firstly, NF-κB activation in human embryonic kidney cells (HEK) after exposure to different radiation qualities and quantities was investigated. Key elements of different NF-κB sub-pathways were chemically inhibited to analyze their role in NF-κB activation induced by low and high LET ionizing radiation. Finally a cell line, stably transfected with a plasmid coding for a short-hairpin RNA (shRNA) for a knockdown of the NF-κB subunit RelA, was established to assess the role of RelA in the cellular response to space-relevant radiation. The knockdown was verified on several levels and the cell

  14. Analysis of factors affecting the implementation of back-end nuclear fuel cycle policy in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yung Myung; Yang, Maeng Ho; Kim, Hyun Joon; Chung, Hwan Sam; Oh, Keun Bae; Lee, Byung OoK; Ko, Han Suk; Song, Ki Dong; Lee, Man Ki; Moon, Ki Hwan; Lee, Han Myung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-01-01

    In this study, the back-end nuclear fuel cycle acceptability is surveyed and analyzed in the following three aspects. To begin with, the future political situation and energy-environmental issues are analyzed as part of the socio-economic aspect. Secondly, the domestic situation of nuclear industries and the fuel cycle policy of foreign countries are surveyed as the technical aspect. Finally, NPT, IAEA safeguards and nuclear export control regimes are analyzed as the institutional aspect. The unification period of South and North Korea also will greatly affect the implementation of back-end fuel cycle policy, and public attitudes will affect the acquisition of site, construction, and operation of nuclear facilities. An effort to release international restrictions on the back-end fuel cycle is also required to accelerate the implementation of the policy. In this regard, the back-end fuel cycle policy should be clear-cut to avoid misunderstanding with respect to nuclear proliferation. Importantly, agreements with foreign countries should be amended at a mutual equivalent level. (Author) 30 refs., 5 figs., 25 tabs.

  15. Nuclear β-catenin expression as a prognostic factor in advanced colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Adam Elzagheid; Abdelbaset Buhmeida; Eija Korkeila; Yrj(o) Collan; Karl Syrj(a)nen; Seppo Pyrh(o)nen

    2008-01-01

    AIM: To investigate the changing pattern of β-catenin expression and its prognostic value in advanced colorectal cancer (CRC).METHODS.Archival tumor samples were analyzed for β-catenin using immunohistochemisry (IHC) in 95 patients with advanced CRC.RESULTS: Membranous β-catenin expression was found in the normal colorectal epithelium.Almost 100% of CRCcases showed membranous and cytoplasmic expression,and 55 (58%) cases showed nuclear expression.In univariate (Kaplan-Meier)survival analysis,only the nuclear index (NI) was a significant predictor of disease free survival (DFS) (P=0.023; n = 35),with a NI above the median associated with longer DFS (34.2 mo) than those with a NI below the median (15.5 mo) (P = 0.045,ANOVA).The other indices were not significant predictors of DFS,and none of the three tested indices (for membranous,cytoplasmic,or nuclear expression) predicted diseasespecific survival (DSS).However,when dichotomized as positive or negative nuclear expression,the former was a significant predictor of more favorable DFS (P =0.041) and DSS (P = 0.046).CONCLUSION: Nuclear β-catenin expression provides additional information in predicting patient outcome in advanced CRC.

  16. Viral factors reveal a role for REF/Aly in nuclear RNA stability.

    Science.gov (United States)

    Stubbs, Sarah H; Hunter, Olga V; Hoover, Ashley; Conrad, Nicholas K

    2012-04-01

    TREX is a conserved multiprotein complex that is necessary for efficient mRNA export to the cytoplasm. In Saccharomyces cerevisiae, the TREX complex is additionally implicated in RNA quality control pathways, but it is unclear whether this function is conserved in mammalian cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds and recruits the TREX component REF/Aly to viral mRNAs. Here, we demonstrate that REF/Aly is recruited to the KSHV noncoding polyadenylated nuclear (PAN) RNA by ORF57. This recruitment correlates with ORF57-mediated stabilization of PAN RNA, suggesting that REF/Aly promotes nuclear RNA stability. Further supporting this idea, tethering REF/Aly to PAN RNA is sufficient to increase the nuclear abundance and half-life of PAN RNA but is not sufficient to promote its export. Interestingly, REF/Aly appears to protect the poly(A) tail from deadenylation, and REF/Aly-stabilized transcripts are further adenylated over time, consistent with previous reports linking poly(A) tail length with nuclear RNA surveillance. These studies show that REF/Aly can stabilize nuclear RNAs independently of their export and support a broader conservation of RNA quality control mechanisms from yeast to humans.

  17. Nuclear trafficking of secreted factors and cell-surface receptors: new pathways to regulate cell proliferation and differentiation, and involvement in cancers

    Directory of Open Access Journals (Sweden)

    Planque Nathalie

    2006-10-01

    Full Text Available Abstract Secreted factors and cell surface receptors can be internalized by endocytosis and translocated to the cytoplasm. Instead of being recycled or proteolysed, they sometimes translocate to the nucleus. Nuclear import generally involves a nuclear localization signal contained either in the secreted factor or its transmembrane receptor, that is recognized by the importins machinery. In the nucleus, these molecules regulate transcription of specific target genes by direct binding to transcription factors or general coregulators. In addition to the transcription regulation, nuclear secreted proteins and receptors seem to be involved in other important processes for cell life and cellular integrity such as DNA replication, DNA repair and RNA metabolism. Nuclear secreted proteins and transmembrane receptors now appear to induce new signaling pathways to regulate cell proliferation and differentiation. Their nuclear localization is often transient, appearing only during certain phases of the cell cycle. Nuclear secreted and transmembrane molecules regulate the proliferation and differentiation of a large panel of cell types during embryogenesis and adulthood and are also potentially involved in wound healing. Secreted factors such as CCN proteins, EGF, FGFs and their receptors are often detected in the nucleus of cancer cells. Nuclear localization of these molecules has been correlated with tumor progression and poor prognosis for patient survival. Nuclear growth factors and receptors may be responsible for resistance to radiotherapy.

  18. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families.

    Science.gov (United States)

    Zhang, Zhongbao; Li, Xianglong; Zhang, Chun; Zou, Huawen; Wu, Zhongyi

    2016-09-16

    NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses.

  19. Effect of Nuclear Factor-κB on Airway Remodeling in Asthmatic Rats

    Institute of Scientific and Technical Information of China (English)

    许淑云; 徐永健; 张珍祥; 倪望; 陈士新

    2004-01-01

    Summary: In order to investigate the effect of nuclear factor-κB (NF-κB) on airway remodeling in asthmatic rats, 18 Wistar rats were divided into three groups: asthmatic group; pyrrolidine dithiocarbamate (PDTC) group, in which rats were injected intraperitoneally with NF-κB specific inhibitor PDTC (100 mg/kg) before ovalbumin (OVA) challenge; control group. The NF-κB activity and the expression of inhibitory protein κBa (I-κBα) in airway were detected by electrophoretic mobility shift assay (EMSA), Western blot and immunohistochemistry respectively. The infiltration of inflammatory cells, the number of Goblet cells, the area of collagen and smooth muscle in airway were measured by means of image analysis system. The results showed that with the up-regulation of airway NF-κB activity in asthmatic group, the number of goblet cells (3.08 ±0.86/100μm basement membrane (BM)), the area of collagen (24.71 ± 4. 24 μm2/μm BM) and smooth muscle (13.81 ± 2.11 μm2/μm BM) in airway were significantly increased (P<0.05) as compared with control group (0.14±0. 05/100μm BM, 14.31 ±3.16 μm2/μm BM and 7.67±2.35 μm2/μm BM respectively) and PDTC group (0. 33±0. 14/100 μm BM, 18. 16±2.85 μm2/μm BM and 8.95±2.16 μm2/μm BM respectively). However, there was no significant difference between PDTC group and control group (P>0.05). It was concluded that the activity of NF-κB is increased in airway of asthmatic rats. Inhibition of NF-κB activation can attenuate constructional changes in asthma airway, suggesting NF-κB may contribute to asthmatic airway remodeling.

  20. Nuclear factor-kappaB activation on the reactive oxygen species in acute necrotizing pancreatitic rats

    Institute of Scientific and Technical Information of China (English)

    Jin Long; Na Song; Xi-Ping Liu; Ke-Jian Guo; Ren-Xuan Guo

    2005-01-01

    AIM: To investigate the potential role of nuclear factor kappa-B (NF-κB) activation on the reactive oxygen species in rat acute necrotizing pancreatitis (ANP) and to assess the effect of pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB).METHODS: Rat ANP model was established by retrograde injection of 5% sodium taurocholate into biliopancreatic duct. Rats were randomly assigned to three groups (10rats each): Control group, ANP group and PDTC group. At the 6th h of the model, the changes of the serum amylase,nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD) and pancreatic morphological damage were observed. The expressions of inducible nitric oxide (iNOS) were observed by SP immunohistochemistry. And the expressions of NF-κB p65 subunit mRNA were observed by hybridization in situ.RESULTS: Serum amylase and NO level decreased significantly in ANP group as compared with PDTC administrated group [(7 170.40±1 308.63) U/L vs(4 074.10±1 719.78) U/L,P<0.05], [(76.95±9.04) μmol/L vs (65.18±9.02) μmol/L,P<0.05] respectively. MDA in both ANP and PDTC group rose significantly over that in control group [(9.88±1.52)nmol/L, (8.60±1.41) nmol/L, vs (6.04±1.78) nmol/L,P<0.05], while there was no significant difference between them. SOD levels in both ANP and PDTC group underwent a significant decrease as compared with that in control [(3 214.59±297.74) NU/mL, (3 260.62±229.44) NU/mL,vs (3 977.80±309.09) NU/mL, P<0.05], but there was no significant difference between them. Though they were still higher than those in Control group, pancreas destruction was slighter in PDTC group, iNOS expression and NF-κB p65 subunit mRNA expression were lower in PDTC group as compared with ANP group.CONCLUSION: We conclude that correlation among NF-κB activation, serum amylase, reactive oxygen species level and tissue damage suggests a key role of NF-κB in the pathogenesis of ANP. Inhibition of NF-κB activation may reverse the pancreatic damage

  1. Factors Affecting the Efficiency of Embryonic Cell Nuclear Transfer in Rabbits

    Institute of Scientific and Technical Information of China (English)

    CUI Kui-qing; LIU Qing-you; XIE Ying; WEI Jing-wei; SHI De-shun

    2005-01-01

    Factors affecting the efficiency of nuclear transfer (NT) in rabbits were examined in the present study. When 100 V mm-1of pulse strength and 15 μs of pulse duration were employed, 3 and 4 electronic pulses resulted in significantly more cytoplasts fused with donor cells compared with 2 electronic pulses (P<0.05), but no significant difference was found in the cleavage rate of reconstructed embryos among the three groups (P> 0.05). When the duration and number of electronic pulse were fixed at 15 μs and 3 times, increase of pulse intensity from 100 V mm-1 to 150 V mm-1 and 200 V mm-1 resulted in a significantly decrease in the cleavage rate of reconstructed embryos (P < 0.05), although the fusion rate did not significantly differ among the three groups (P > 0.05). Significantly more reconstructed embryos cleaved and developed to blastocysts when they were derived from donor embryos at the 8-16-cell stage, in comparison with the reconstructed embryos derived from donor embryos at the compact morula stage (P < 0.05), although the fusion rate was similar (P > 0.05). Activation of cytoplasts prior to fusion increased the cleavage rate (P < 0.05) and blastocyst development (P < 0.05) of reconstructed embryos, but decreased the fusion rate (P < 0.05) compared with cytoplasts activated post fusion. More reconstructed embryos developed to blastocysts when they were cultured in TCM + 3% OCS at the first 48 h and then cultured in TCM199+ 10% FCS, in comparison with the reconstructed embryos cultured in either TCM199+ 10% FCS or TCM199+ 3% OCS (P < 0.05). When 22 NT embryos were transferred into the oviducts of one recipient rabbit, one recipient rabbit delivered a female rabbit at 34 days of gestation. In conclusion, either electrofusion parameter or developmental stage of donor embryos have a significant effect on the efficiency of NT, NT embryos require different concentration of serum at their different development stages.

  2. Inhibition of nuclear factor-kappa B differentially affects thyroid cancer cell growth, apoptosis, and invasion

    Directory of Open Access Journals (Sweden)

    Schweppe Rebecca E

    2010-05-01

    Full Text Available Abstract Background Nuclear factor-κB (NF-κB is constitutively activated in many cancers and plays a key role in promoting cell proliferation, survival, and invasion. Our understanding of NF-κB signaling in thyroid cancer, however, is limited. In this study, we have investigated the role of NF-κB signaling in thyroid cancer cell proliferation, invasion, and apoptosis using selective genetic inhibition of NF-κB in advanced thyroid cancer cell lines. Results Three pharmacologic inhibitors of NF-κB differentially inhibited growth in a panel of advanced thyroid cancer cell lines, suggesting that these NF-κB inhibitors may have off-target effects. We therefore used a selective genetic approach to inhibit NF-κB signaling by overexpression of a dominant-negative IκBα (mIκBα. These studies revealed decreased cell growth in only one of five thyroid cancer cell lines (8505C, which occurred through a block in the S-G2/M transition. Resistance to TNFα-induced apoptosis was observed in all cell lines, likely through an NF-κB-dependent mechanism. Inhibition of NF-κB by mIκBα sensitized a subset of cell lines to TNFα-induced apoptosis. Sensitive cell lines displayed sustained activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK pathway, defining a potential mechanism of response. Finally, NF-κB inhibition by mIκBα expression differentially reduced thyroid cancer cell invasion in these thyroid cancer cell lines. Sensitive cell lines demonstrated approximately a two-fold decrease in invasion, which was associated with differential expression of MMP-13. MMP-9 was reduced by mIκBα expression in all cell lines tested. Conclusions These data indicate that selective inhibition of NF-κB represents an attractive therapeutic target for the treatment of advanced thyroid. However, it is apparent that global regulation of thyroid cancer cell growth and invasion is not achieved by NF-κB signaling alone. Instead, our

  3. Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo

    Directory of Open Access Journals (Sweden)

    Deckard Lindsey A

    2011-04-01

    Full Text Available Abstract Background Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery, whole brain and spine irradiation, and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Methods To test the importance of NFκB to medulloblastoma cell growth, the effects of multiple drugs that inhibit NFκB, pyrrolidine dithiocarbamate, diethyldithiocarbamate, sulfasalazine, curcumin and bortezomib, were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells, xenograft flank tumors, and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB, IκB, was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. Results We report high constitutive activity of the canonical NFκB pathway, as seen by Western analysis of the NFκB subunit p65, in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though, conversely, the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally, expression of a dominant negative form of the endogenous inhibitor of NFκB, dnIκB, resulted in poor xenograft tumor growth, with average tumor volumes

  4. Nickel ion inhibits nuclear factor-kappa B activity in human oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Takashi Shionome

    Full Text Available BACKGROUND: The spontaneous IL-8 secretion observed in OSCC is partially dependent on the disregulated activity of transcription factor NF-κB. Nickel compounds are well established human carcinogens, however, little is known about the influence of nickel on the spontaneous secretion of IL-8 in oral squamous cell carcinoma (OSCC cells. The aim of the present study was to investigate whether Ni(2+ ions can influence on IL-8 secretion by OSCC. METHODS AND RESULTS: The IL-8 secretion was measured by ELISA. The expression of IL-8 mRNA was examined by real-time PCR. The NF-κB activity was measured by luciferase assay. The phosphorylation status and nuclear localization of NF-κB subunits were examined by Western blotting or Transfactor kit and immunofluorescence staining, respectively. The interaction of NF-κB p50 subunit and Ni(2+ ions was examined by Ni(2+-column pull down assay. The site-directed mutagenesis was used to generate a series of p50 mutants. Scratch motility assay was used to monitor the cell mobility. Our results demonstrated that, on the contrary to our expectations, Ni(2+ ions inhibited the spontaneous secretion of IL-8. As IL-8 reduction was observed in a transcriptional level, we performed the luciferase assay and the data indicated that Ni(2+ ions reduced the NF-κB activity. Measurement of p50 subunit in the nucleus and the immunofluorescence staining revealed that the inhibitory effect of Ni(2+ ions was attributed to the prevention of p50 subunit accumulation to the nucleus. By Ni(2+-column pull down assay, Ni(2+ ions were shown to interact directly with His cluster in the N-terminus of p50 subunit. The inhibitory effect of Ni(2+ ions was reverted in the transfectant expressing the His cluster-deleted p50 mutant. Moreover, Ni(2+ ions inhibited the OSCC mobility in a dose dependent fashion. CONCLUSIONS: Taken together, inhibition of NF-κB activity by Ni(2+ ion might be a novel therapeutic strategy for the treatment of oral

  5. Nickel ion inhibits nuclear factor-kappa B activity in human oral squamous cell carcinoma.

    Science.gov (United States)

    Shionome, Takashi; Endo, Shigeki; Omagari, Daisuke; Asano, Masatake; Toyoma, Hitoshi; Ishigami, Tomohiko; Komiyama, Kazuo

    2013-01-01

    The spontaneous IL-8 secretion observed in OSCC is partially dependent on the disregulated activity of transcription factor NF-κB. Nickel compounds are well established human carcinogens, however, little is known about the influence of nickel on the spontaneous secretion of IL-8 in oral squamous cell carcinoma (OSCC) cells. The aim of the present study was to investigate whether Ni(2+) ions can influence on IL-8 secretion by OSCC. The IL-8 secretion was measured by ELISA. The expression of IL-8 mRNA was examined by real-time PCR. The NF-κB activity was measured by luciferase assay. The phosphorylation status and nuclear localization of NF-κB subunits were examined by Western blotting or Transfactor kit and immunofluorescence staining, respectively. The interaction of NF-κB p50 subunit and Ni(2+) ions was examined by Ni(2+)-column pull down assay. The site-directed mutagenesis was used to generate a series of p50 mutants. Scratch motility assay was used to monitor the cell mobility. Our results demonstrated that, on the contrary to our expectations, Ni(2+) ions inhibited the spontaneous secretion of IL-8. As IL-8 reduction was observed in a transcriptional level, we performed the luciferase assay and the data indicated that Ni(2+) ions reduced the NF-κB activity. Measurement of p50 subunit in the nucleus and the immunofluorescence staining revealed that the inhibitory effect of Ni(2+) ions was attributed to the prevention of p50 subunit accumulation to the nucleus. By Ni(2+)-column pull down assay, Ni(2+) ions were shown to interact directly with His cluster in the N-terminus of p50 subunit. The inhibitory effect of Ni(2+) ions was reverted in the transfectant expressing the His cluster-deleted p50 mutant. Moreover, Ni(2+) ions inhibited the OSCC mobility in a dose dependent fashion. Taken together, inhibition of NF-κB activity by Ni(2+) ion might be a novel therapeutic strategy for the treatment of oral cancer.

  6. Natural radiation - a perspective to radiological risk factors of nuclear energy production

    DEFF Research Database (Denmark)

    Mustonen, R.; Christensen, T.; Stranden, E.

    1992-01-01

    Radiation doses from natural radiation and from man-made modifications on natural radiation, and different natural radiological environments in the Nordic countries are summarized and used as a perspective for the radiological consequences of nuclear energy production. The significance of different...... radiation sources can be judged against the total collective effective dose equivalent from natural radiation in the Nordic countries, 92 000 manSv per year. The collective dose from nuclear energy production during normal operation is estimated to 20 manSv per year and from non-nuclear energy production...... to 80 manSv per year. The increase in collective dose due to the conservation of heating energy in Nordic dwellings is estimated to 23 000 manSv per year, from 1973 to 1984. An indirect radiological danger index is defined in order to be able to compare the significance of estimated future releases...

  7. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling.

    Science.gov (United States)

    Zhou, Jie; Wang, Shan; Qi, Qi; Yang, Xiaoyue; Zhu, Endong; Yuan, Hairui; Li, Xuemei; Liu, Ying; Li, Xiaoxia; Wang, Baoli

    2017-01-25

    Nuclear factor I-C (NFIC) has recently been identified as an important player in osteogenesis and bone homeostasis in vivo However, the molecular mechanisms involved have yet to be defined. In the current study, Nfic expression was altered in primary marrow stromal cells and established progenitor lines after adipogenic and osteogenic treatment. Overexpression of Nfic in stromal cells ST2, mesenchymal cells C3H10T1/2, and primary marrow stromal cells inhibited adipogenic differentiation, whereas it promoted osteogenic differentiation. Conversely, silencing of endogenous Nfic in the cell lines enhanced adipogenic differentiation, whereas it blocked osteogenic differentiation. Mechanism investigations revealed that Nfic overexpression promoted nuclear translocation of β-catenin and increased nuclear protein levels of β-catenin and transcription factor 7-like 2 (TCF7L2). Promoter studies and the chromatin immunoprecipitation (ChIP) assay revealed that NFIC directly binds to the promoter of low-density lipoprotein receptor-related protein 5 (Lrp5) and thereafter transactivates the promoter. Finally, inactivation of canonical Wnt signaling in ST2 attenuated the inhibition of adipogenic differentiation and stimulation of osteogenic differentiation by NFIC. Our study suggests that NFIC balances adipogenic and osteogenic differentiation from progenitor cells through controlling canonical Wnt signaling and highlights the potential of NFIC as a target for new therapies to control metabolic disorders like osteoporosis and obesity.-Zhou, J., Wang, S., Qi, Q., Yang, X., Zhu, E., Yuan, H., Li, X., Liu, Y., Li, X., Wang, B. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling.

  8. Factor analysis for the adoption of nuclear technology in diagnosis and treatment of chronic diseases; Analise de fatores para adocao da tecnologia nuclear no diagnostico e tratamento de doencas cronicas

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Renato Cesar, E-mail: rcsato@unifesp.br [Universidade Federal de Sao Paulo - UNIFESP, Sao Paulo (SP), (Brazil); Zouain, Desiree Moraes [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-07-01

    To identify and evaluate latent variables (variables that are not directly observed) for adopting and using nuclear technologies in diagnosis and treatment of chronic diseases. The measurement and management of these latent factors are important for health care due to complexities of the sector. Methods: An exploratory factor analysis study was conducted among 52 physicians practicing in the areas of Cardiology, Neurology and Oncology in the State of Sao Paulo who agreed to participate in the study between 2009 and 2010. Data were collected using an attitude measurement questionnaire, and analyzed according to the principal component method with Varimax rotation. Results: The component matrix after factor rotation showed three elucidative groups arranged according to demand for nuclear technology: clinical factors, structural factors, and technological factors. Clinical factors included questionnaire answers referring to medical history, previous interventions, complexity and chronicity of the disease. Structural factors included patient age, physician's practice area, and payment ability. Technological factors included prospective growth in the use of nuclear technology and availability of services. Conclusions: The clinical factors group dimension identified in the study included patient history, prior interventions, and complexity and chronicity of the disease. This dimension is the main motivating for adopting nuclear technology in diagnosis and treatment of chronic diseases. (author)

  9. Monitoring human factor risk characteristics at nuclear legacy sites in northwest Russia in support of radiation safety regulation.

    Science.gov (United States)

    Scheblanov, V Y; Sneve, M K; Bobrov, A F

    2012-12-01

    This paper describes research aimed at improving regulatory supervision of radiation safety during work associated with the management of spent nuclear fuel and radioactive waste at legacy sites in northwest Russia through timely identification of employees presenting unfavourable human factor risk characteristics. The legacy sites of interest include sites of temporary storage now operated by SevRAO on behalf of Rosatom. The sites were previously operational bases for servicing nuclear powered submarines and are now subject to major remediation activities. These activities include hazardous operations for recovery of spent nuclear fuel and radioactive waste from sub-optimal storage conditions. The paper describes the results of analysis of methods, procedures, techniques and informational issues leading to the development of an expert-diagnostic information system for monitoring of workers involved in carrying out the most hazardous operations. The system serves as a tool for human factor and professional reliability risk monitoring and has been tested in practical working environments and implemented as part of regulatory supervision. The work has been carried out by the Burnasyan Federal Medical Biophysical Center, within the framework of the regulatory cooperation programme between the Federal Medical-Biological Agency of Russia and the Norwegian Radiation Protection Authority.

  10. Nuclear factor-kappa B localization and function within intrauterine tissues from term and preterm labor and cultured fetal membranes

    Directory of Open Access Journals (Sweden)

    Kusanovic Juan P

    2010-01-01

    Full Text Available Abstract Background The objective of this study was to quantify the nuclear localization and DNA binding activity of p65, the major transactivating nuclear factor-kappa B (NF-kappaB subunit, in full-thickness fetal membranes (FM and myometrium in the absence or presence of term or preterm labor. Methods Paired full-thickness FM and myometrial samples were collected from women in the following cohorts: preterm no labor (PNL, N = 22, spontaneous preterm labor (PTL, N = 21, term no labor (TNL, N = 23, and spontaneous term labor (STL, N = 21. NF-kappaB p65 localization was assessed by immunohistochemistry, and DNA binding activity was evaluated using an enzyme-linked immunosorbent assay (ELISA-based method. Results Nuclear p65 labeling was rare in amnion and chorion, irrespective of clinical context. In decidua, nuclear p65 labeling was greater in the STL group relative to the TNL cohort, but there were no differences among the TNL, PTL, and PNL cohorts. In myometrium, diffuse p65 nuclear labeling was significantly associated with both term and preterm labor. There were no significant differences in ELISA-based p65 binding activity in amnion, choriodecidual, and myometrial specimens in the absence or presence of term labor. However, parallel experiments using cultured term fetal membranes demonstrated high levels of p65-like binding even the absence of cytokine stimulation, suggesting that this assay may be of limited value when applied to tissue specimens. Conclusions These results suggest that the decidua is an important site of NF-kappaB regulation in fetal membranes, and that mechanisms other than cytoplasmic sequestration may limit NF-kappaB activation prior to term.

  11. Variation near the hepatocyte nuclear factor (HNF)-4alpha gene associates with type 2 diabetes in the Danish population

    DEFF Research Database (Denmark)

    Hansen, S K; Rose, C S; Glümer, C

    2005-01-01

    The hepatocyte nuclear factor (HNF)-4alpha is an orphan nuclear receptor, which plays crucial roles in regulating hepatic gluconeogenesis and insulin secretion. The gene encoding HNF-4alpha (HNF4A) is located on chromosome 20q12-q13 in a region that in several studies has shown linkage with type 2...... diabetes. Recently, two independent studies identified single nucleotide polymorphisms (SNPs) in a 90-kb region spanning HNF4A, which showed strong association with type 2 diabetes in the Finnish and Ashkenazi Jewish populations. In an attempt to replicate and extend these findings, we selected four SNPs...... in the same HNF4A region, which in the Finnish and Ashkenazi Jewish populations were associated with type 2 diabetes, and examined their relationships with type 2 diabetes and prediabetic phenotypes in the Danish Caucasian population....

  12. B meson nuclear modification factor in PbPb at 5.02 TeV with CMS

    CERN Document Server

    Wang, Ta-Wei

    2016-01-01

    The study of beauty production in heavy-ion collisions is considered one of the key measurement to address the flavour-dependence of in-medium energy loss in PbPb collisions. In pPb collisions, studies of b-quark production can also provide insights into the relevance of cold nuclear matter effects in the heavy-flavour sector. The CMS experiment has excellent capabilities for measuring b-quark production thanks to the excellent performances of its muon and tracker system. In this talk, we will present the measurement of nuclear modification factors for fully reconstructed B mesons in pPb, and for the first time, pp and PbPb collisions at 5.02 TeV, as a function of transverse momentum.

  13. Intra-nuclear mobility and target search mechanisms of transcription factors: a single-molecule perspective on gene expression.

    Science.gov (United States)

    Normanno, Davide; Dahan, Maxime; Darzacq, Xavier

    2012-06-01

    Precise expression of specific genes in time and space is at the basis of cellular viability as well as correct development of organisms. Understanding the mechanisms of gene regulation is fundamental and still one of the great challenges for biology. Gene expression is regulated also by specific transcription factors that recognize and bind to specific DNA sequences. Transcription factors dynamics, and especially the way they sample the nucleoplasmic space during the search for their specific target in the genome, are a key aspect for regulation and it has been puzzling researchers for forty years. The scope of this review is to give a state-of-the-art perspective over the intra-nuclear mobility and the target search mechanisms of specific transcription factors at the molecular level. Going through the seminal biochemical experiments that have raised the first questions about target localization and the theoretical grounds concerning target search processes, we describe the most recent experimental achievements and current challenges in understanding transcription factors dynamics and interactions with DNA using in vitro assays as well as in live prokaryotic and eukaryotic cells. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Hepatocyte Nuclear Factor 4α (HNF4α) Is a Transcription Factor of Vertebrate Fatty Acyl Desaturase Gene as Identified in Marine Teleost Siganus canaliculatus.

    Science.gov (United States)

    Dong, Yewei; Wang, Shuqi; Chen, Junliang; Zhang, Qinghao; Liu, Yang; You, Cuihong; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou

    2016-01-01

    Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understand regulatory mechanisms of transcription of Δ4 Fad, the gene promoter was cloned and characterized in the present study. An upstream sequence of 1859 bp from the initiation codon ATG was cloned as the promoter candidate. On the basis of bioinformatic analysis, several binding sites of transcription factors (TF) including GATA binding protein 2 (GATA-2), CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), nuclear factor Y (NF-Y), hepatocyte nuclear factor 4α (HNF4α) and sterol regulatory element (SRE), were identified in the promoter by site-directed mutation and functional assays. HNF4α and NF-1 were confirmed to interact with the core promoter of Δ4 Fad by gel shift assay and mass spectrometry. Moreover, over-expression of HNF4α increased promoter activity in HEK 293T cells and mRNA level of Δ4 Fad in rabbitfish primary hepatocytes, respectively. The results indicated that HNF4α is a TF of rabbitfish Δ4 Fad. To our knowledge, this is the first report on promoter structure of a Δ4 Fad, and also the first demonstration of HNF4α as a TF of vertebrate Fad gene involved in transcription regulation of LC-PUFA biosynthesis.

  15. Diagnostic utility of hepatocyte nuclear factor 1-beta immunoreactivity in endometrial carcinomas: lack of specificity for endometrial clear cell carcinoma.

    Science.gov (United States)

    Fadare, Oluwole; Liang, Sharon X

    2012-12-01

    Hepatocyte nuclear factor 1-beta (HNF1β) has recently emerged as a relatively sensitive and specific marker for ovarian clear cell carcinoma. The purpose of this study is to assess the diagnostic utility of this marker for endometrial clear cell carcinoma. Immunohistochemical analysis was performed on 75 endometrial tissues using a goat polyclonal antibody raised against a peptide mapping at the C-terminus of human HNF1β protein. The 75 cases included 15 clear cell carcinomas, 20 endometrioid carcinomas, 15 endometrial serous carcinomas/uterine papillary serous carcinomas, 20 cases of normal endometrium, 2 cases of clear cell metaplasia, and 3 cases of Arias Stella reaction. Staining interpretations were based on a semiquantitative scoring system, a 0 to 12+ continuous numerical scale that was derived by multiplying the extent of staining (0 to 4+ scale) by the intensity of staining (0 to 3+ scale) for each case. HNF1β expression was found to be present in a wide spectrum of tissues. Twenty-seven (54%) of the 50 carcinomas displayed at least focal nuclear HNF1β expression, including 11 (73%) of 15, 9 (60%) of 15, and 7 (35%) of 20 clear cell, serous, and endometrioid carcinomas, respectively. The average nuclear staining scores for clear cell carcinomas, endometrioid carcinomas, and serous carcinomas were 5.2, 1.4, and 4.1, respectively. Clear cell carcinomas and endometrioid carcinomas displayed statistically significant differences regarding their nuclear staining scores (P = 0.0027), but clear cell carcinomas and endometrial serous carcinomas did not (P = 0.45). The calculated sensitivity of any nuclear HNF1β expression in classifying a carcinoma as being of the clear cell histotype was 73%, whereas the specificity was 54%. Nineteen of 20 normal endometrium samples displayed at least focal nuclear expression of HNF1β, and this expression was often diffuse. The 5 cases of benign histologic mimics of clear cell carcinomas (Arias Stella reaction and clear

  16. The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Park, Min Ju; Lee, Eun Kyeong; Heo, Hyoung-Sam; Kim, Min-Sun; Sung, Bokyoung; Kim, Mi Kyung; Lee, Jaewon; Kim, Nam Deuk; Anton, Stephen; Choi, Jae Sue; Yu, Byung Pal; Chung, Hae Young

    2009-04-01

    Kaempferol, one of the phytoestrogens, is found in berries and Brassica and Allium species and is known to have antioxidative and anti-inflammatory properties. In the present study, we examined the molecular mechanisms underlying the anti-inflammation effect of kaempferol in an aged animal model. To examine the effect of kaempferol in aged Sprague-Dawley rats, kaempferol was fed at 2 or 4 mg/kg/day for 10 days. The data show that kaempferol exhibited the ability to maintain redox balance. Kaempferol suppressed nuclear factor-kappaB (NF-kappaB) activation and expression of its target genes cyclooxygenase-2, inducible nitric oxide synthase, monocyte chemoattractant protein-1, and regulated upon activation, and normal T-cell expressed and secreted in aged rat kidney and in tert-butylhydroperoxide-induced YPEN-1 cells. Furthermore, kaempferol suppressed the increase of the pro-inflammatory NF-kappaB cascade through modulation of nuclear factor-inducing kinase (NIK)/IkappaB kinase (IKK) and mitogen-activated protein kinases (MAPKs) in aged rat kidney. Based on these results, we concluded that anti-oxidative kaempferol suppressed the activation of inflammatory NF-kappaB transcription factor through NIK/IKK and MAPKs in aged rat kidney.

  17. Effects of ketamine on proinflammatory cytokines and nuclear factor kappaB in polyrnicrobial sepsis rats

    Institute of Scientific and Technical Information of China (English)

    Xue-Min Song; Jian-Guo Li; Yan-Lin Wang; Qing Zhou; Zhao-Hui Du; Bao-Hui Jia; Jian-Juan Ke

    2006-01-01

    AIM: To explore the effects of ketamine on hemodynamics, plasma proinflammatory cytokine (TNF-α and IL-6) levels and nuclear factor kappa B (NF-κB) activation during polymicrobial sepsis.METHODS: Male Sprague-Dawlay rats were subjected to cecal ligation and puncture (CLP) or sham operation.The rats were randomly assigned into four equal groups:sham CLP group, CLP group, ketamine (KT)I groupand KTⅡ group. Thirty minutes before CLP, ketamine (5my/kg per hour and 10 my/kg per hour, respectively) was infused continuously through the left femoral vein cannula in KT I group or KTⅡgroup. Sham CLP group and CLP group received 0.9% saline only (5 mL/kg per hour). The right femoral artery was cannulated to monitor mean arterial pressure (MAP) and heart rates (HR),and draw blood samples. The proinflammatory cytokine (TNF-α and IL-6) levels of plasma were measured using enzyme-linked immunosorbent assays (ELISA). The hepatic NF-κB activation was determined by Western blot and HPIAS 2000 image analysis system.Twenty hours after CLP, the rats were killed by right femoral artery phlebotomization.RESULTS: CLP produced progressive hypotension,and a first increase followed by a decrease in HR. The hypotension was prevented, and the HR was slightly steady in ketamine treated rats. TNF-α levels of plasma reached a peak value at 2 h after CLP. Ketamine (KT I group or KTⅡgroup) caused a significant decrease compared with CLP group at 2, 5 and 9 h time points after CLP (14.3 ± 1.9 vs 4.3 ± 0.9, 9.7 ± 1.4 vs 4.3 ±0.9; 9.3 ± 1.5 vs 4.3 ± 0.9, 8.7 ± 1.4 vs 4.3 ± 0.9; 6.0± 1.5 vs 5.0 ± 1.7, 5.3 ± 0.8 vs 5.0 ± 1.7; P < 0.01,respectively). The IL-6 levels of plasma firstly ascended and then descended in CLP group, and reached a peak value at 9 h after CLP. Ketamine (KT I group or KTⅡ group) caused a significant decrease compared with CLP group at 5, 9 or 20 h after CLP (135.0 ± 52.6 vs 60.0± 16.3, 112.5 ± 52.6 vs 60.0 ± 16.3; 410.0 ± 68.7 vs62.5 ± 12.5, 250.0

  18. Structure activity relationship of phenolic diterpenes from Salvia officinalis as activators of the nuclear factor E2-related factor 2 pathway.

    Science.gov (United States)

    Fischedick, Justin T; Standiford, Miranda; Johnson, Delinda A; Johnson, Jeffrey A

    2013-05-01

    Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to activate cytoprotective genes which may be useful in the treatment of neurodegenerative disease. In order to better understand the structure activity relationship of phenolic diterpenes from Salvia officinalis L., we isolated carnosic acid, carnosol, epirosmanol, rosmanol, 12-methoxy-carnosic acid, sageone, and carnosaldehyde using polyamide column, centrifugal partition chromatography, and semi-preparative high performance liquid chromatography. Isolated compounds were screened in vitro for their ability to active the Nrf2 and general cellular toxicity using mouse primary cortical cultures. All compounds except 12-methoxy-carnosic acid were able to activate the antioxidant response element. Furthermore both carnosol and carnoasldehyde were able to induce Nrf2-dependent gene expression as well as protect mouse primary cortical neuronal cultures from H(2)O(2) induced cell death.

  19. Crisis Stability and Nuclear Exchange Risks on the Subcontinent: Major Trends and the Iran Factor

    Science.gov (United States)

    2013-11-01

    perspective asserted that nuclear proliferation had reduced the threat of con - ventional conflict and major war. The “pessimist” position contended...of a spiral of escalation from a subconventional altercation and a product of unintended conse - quences from the tense security dilemma on the...some point in the future, the Shahab-3, can range both Islamabad and New Delhi as well as Kuwait City, Doha, Dubai , and Riyadh.67 Therefore, it is

  20. Political Aspects of Nuclear Energy Market Development in the Countries of South Asia. NSG Factor in Promoting Nuclear Energy in the Region

    Directory of Open Access Journals (Sweden)

    Boyko Aleksandr Aleksandrovich

    2016-04-01

    Full Text Available South Asian geopolitical face-off of Delhi and Islamabad revealed breaches of the nuclear nonproliferation. This encouraged the greatest nuclear powers to create a mechanism for additional regulation of the nuclear technology and materials export, which is now known as “Nuclear Suppliers’ Group”. This mechanism aims to impose restrictions for the nuclear technology and materials export to the countries that are not members of NPT. These are nuclear programs of India and Pakistan that are pressing challenge on the agenda. India has been a very attractive market for nuclear suppliers, especially the United States, so the restrictions were lifted from Delhi in 2008. However, they remained valid for Pakistan, which wasn’t an appealing market for the American nuclear exporters. As a result, China, which has been a member of NSG since 2004, has initiated building new NPPs in Pakistan getting mixed reaction of the international community. Despite the clearly contradicting Guidelines, the members of NSG haven’t reached common ground on how to restore its supporting role in maintaining the non-proliferation regime. Thus, the Asian nuclear market develops mostly spontaneously, and its future is shaped primarily by the international relations between importers and exporters. Russia isn’t able to influence all the NSG members to change the position, however it can take advantage of the situation for developing nuclear cooperation with the Asian countries to support sustainable development of the South Asian energy market.

  1. A development of the Human Factors Assessment Guide for the Study of Erroneous Human Behaviors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yeon Ju; Lee, Yong Hee; Jang, Tong Il; Kim, Sa Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-08-15

    The aim of this paper is to describe a human factors assessment guide for the study of the erroneous characteristic of operators in nuclear power plants (NPPs). We think there are still remaining the human factors issues such as an uneasy emotion, fatigue and stress, varying mental workload situation by digital environment, and various new type of unsafe response to digital interface for better decisions, although introducing an advanced main control room. These human factors issues may not be resolved through the current human reliability assessment which evaluates the total probability of a human error occurring throughout the completion of a specific task. This paper provides an assessment guide for the human factors issues a set of experimental methodology, and presents an assessment case of measurement and analysis especially from neuro physiology approach. It would be the most objective psycho-physiological research technique on human performance for a qualitative analysis considering the safety aspects. This paper can be trial to experimental assessment of erroneous behaviors and their influencing factors, and it can be used as an index for recognition and a method to apply human factors engineering V and V, which is required as a mandatory element of human factor engineering program plan for a NPP design.

  2. Ghrelin inhibits the development of acute pancreatitis and nuclear factor kappaB activation in pancreas and liver.

    Science.gov (United States)

    Zhou, Xiaolei; Xue, Chengrui

    2009-10-01

    To investigate the influence of ghrelin on the development of severe acute pancreatitis (SAP) and the expression of nuclear factor kappaB (NF-kappaB) p65 in the pancreas and liver. Severe acute pancreatitis was induced in rat by sodium taurocholate injection in the pancreaticobiliary duct. Ghrelin was administrated twice at the dose 10 or 20 nmol/kg per injection, respectively. Then, serum amylase activity; serum tumor necrosis factor alpha, interleukin 1beta, and interleukin 6 concentrations; and morphological signs of pancreatitis and hepatic damage were measured. Meanwhile, determination of pancreatic and hepatic NF-kappaB p65 expression was performed by Western blotting and immunohistochemistry. The serumal parameters increased, and morphological damages were observed in the pancreas and liver in SAP rats. Nuclear factor kappaB p65 expression was significantly higher in the pancreas and liver than sham-operated rats (P pancreas and liver. Ghrelin inhibits the development of acute pancreatitis induced by sodium taurocholate. It exerts the therapeutic effects through inhibiting NF-kappaB expression, thereby blocks the inflammatory signal transduction pathway and reduces the release of inflammatory media and cytokines.

  3. Familial partial lipodystrophy, mandibuloacral dysplasia and restrictive dermopathy feature barrier-to-autointegration factor (BAF) nuclear redistribution.

    Science.gov (United States)

    Capanni, Cristina; Squarzoni, Stefano; Cenni, Vittoria; D'Apice, Maria Rosaria; Gambineri, Alessandra; Novelli, Giuseppe; Wehnert, Manfred; Pasquali, Renato; Maraldi, Nadir M; Lattanzi, Giovanna

    2012-10-01

    Prelamin A processing impairment is a common feature of a restricted group of rare genetic alterations/disorders associated with a wide range of clinical phenotypes. Changes in histone posttranslational modifications, alterations in non-histone chromatin proteins and chromatin disorganization have been specifically linked to impairment of specific, distinct prelamin A processing steps, but the molecular mechanism involved in these processes is not yet understood . In this study, we show that the accumulation of wild-type prelamin A detected in restrictive dermopathy (RD), as well as the accumulation of mutated forms of prelamin A identified in familial partial lipodystrophy (FPLD) and mandibuloacral dysplasia (MADA), affect the nuclear localization of barrier-to-autointegration factor (BAF), a protein able to link lamin A precursor to chromatin remodeling functions. Our findings, in accordance with previously described results, support the hypothesis of a prelamin A involvement in BAF nuclear recruitment and suggest BAF-prelamin A complex as a protein platform usually activated in prelamin A-accumulating diseases. Finally, we demonstrate the involvement of the inner nuclear membrane protein emerin in the proper localization of BAF-prelamin A complex.

  4. [Polyadenylated RNA and mRNA export factors in extrachromosomal nuclear domains of vitellogenic oocytes of the insect Tenebrio molitor].

    Science.gov (United States)

    Bogoliubov, D S; Kiselev, A M; Shabel'nikov, S V; Parfenov, V N

    2012-01-01

    The nucleus ofvitellogenic oocytes of the yellow mealworm, Tenebrio molitor, contains a karyosphere that consists of the condensed chromatin embedded in an extrachromosomal fibrogranular material. Numerous nuclear bodies located freely in the nucleoplasm are also observed. Amongst these bodies, counterparts of nuclear speckles (= interchromatin granule clusters, IGCs) can be identified by the presence of the marker protein SC35. Microinjections of fluorescently tagged methyloligoribonucleotide probes 2'-O-Me(U)22, complementary to poly(A) tails of RNAs, revealed poly(A)+ RNA in the vast majority of IGCs. We found that all T. molitor oocyte IGCs contain heterogeneous ribonucleoprotein (hnRNP) core protein Al that localizes to IGCs in an RNA-dependent manner. The extrachromosomal material of the karyosphere and a part of nucleoplasmic IGCs also contain the adapter protein Aly that is known to provide a link between pre-mRNA splicing and mRNA export. The essential mRNA export factor/receptor NXF1 was observed to colocalize with Aly. In nucleoplasmic IGCs, NXF1 was found to localize in an RNA-dependent manner whereas it is RNA-independently located in the extrachromosomal material of the karyosphere. We believe our data suggest on a role of the nucleoplasmic IGCs in mRNA biogenesis and retention in a road to nuclear export.

  5. Retinoic acid exerts dual regulatory actions on the expression and nuclear localization of interferon regulatory factor-1.

    Science.gov (United States)

    Luo, Xin M; Ross, A Catharine

    2006-05-01

    Interferon regulatory factor-1 (IRF-1), a transcription factor and tumor suppressor involved in cell growth regulation and immune responses, has been shown to be induced by all-trans retinoic acid (ATRA). However, the factors controlling the cellular location and activity of IRF-1 are not well understood. In this study, we examined the expression of IRF-1 and its nuclear localization, DNA-binding activity, and target gene expression in human mammary epithelial MCF10A cells, a model of breast epithelial cell differentiation and carcinogenesis. Following initial treatment with ATRA, IRF-1 mRNA and protein were induced within 2 hrs, reached a peak (>30-fold induction) at 8 hrs, and declined afterwards. IRF-1 protein was predominantly cytoplasmic during this treatment. Although a second dose of ATRA or Am580 (a related retinoid selective for retinoic acid receptor-alpha [RARalpha]), given 16 hrs after the first dose, restimulated IRF-1 mRNA and protein levels to a similar level to that obtained by the first dose, IRF-1 was predominantly concentrated in the nucleus after restimulation. ATRA and Am580 also increased nuclear RARalpha, whereas retinoid X receptor-alpha (RXRalpha)--a dimerization partner for RARalpha, was localized to the nucleus upon second exposure to ATRA. However, ATRA and Am580 did not regulate the expression or activation of signal transducer and activator of transcription-1 (STAT-1), a transcription factor capable of inducing the expression of IRF-1, indicating an STAT-1-independent mechanism of regulation by ATRA and Am580. The increase in nuclear IRF-1 after retinoid restimulation was accompanied by enhanced binding to an IRF-E DNA response element, and elevated expression of an IRF-1 target gene, 2',5'-oligoadenylate synthetase-2. The dual effect of retinoids in increasing IRF-1 mRNA and protein and in augmenting the nuclear localization of IRF-1 protein may be essential for maximizing the tumor suppressor activity and the immunosurveillance

  6. Barrier to Autointegration Factor (BANF1): interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria.

    Science.gov (United States)

    Jamin, Augusta; Wiebe, Matthew S

    2015-06-01

    The Barrier to Autointegration Factor (BAF or BANF1) is an abundant, highly conserved DNA binding protein. BAF is involved in multiple pathways including mitosis, nuclear assembly, viral infection, chromatin and gene regulation and the DNA damage response. BAF is also essential for early development in metazoans and relevant to human physiology; BANF1 mutations cause a progeroid syndrome, placing BAF within the laminopathy disease spectrum. This review summarizes previous knowledge about BAF in the context of recent discoveries about its protein partners, posttranslational regulation, dynamic subcellular localizations and roles in disease, innate immunity, transposable elements and genome integrity.

  7. Monoclonal antibody that recognizes a domain on heterogeneous nuclear ribonucleoprotein K and PTB-associated splicing factor.

    Science.gov (United States)

    Garcia-Jurado, Gema; Llanes, Diego; Moreno, Angela; Soria, Bernat; Tejedo, Juan R

    2011-02-01

    hnRNP K protein is a member of the heterogeneous nuclear protein (hnRNP) complex that, besides its function as a translational regulator of human mRNA, is also considered to be a transcription factor involved in tumorigenesis. PSF is a protein part of the human spliceosome and essential in RNA splicing. Here we report the generation of one monoclonal antibody GG6H9.1C3 that recognized both hnRNP K and PSF proteins using Western blot analysis, flow cytometry, and immunocytochemistry.

  8. Split personality of transcription factors inside and outside the nuclear border.

    Science.gov (United States)

    Naranjo, José R; Mellström, Britt

    2007-01-30

    Growing evidence indicates that transcription factors may have functions entirely distinct from the regulation of gene transcription. Here we describe three transcription factors that, when outside the nucleus, regulate calcium homeostasis by three independent but convergent mechanisms.

  9. Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system.

    Science.gov (United States)

    Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng

    2012-03-30

    Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.

  10. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase.

    Science.gov (United States)

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Yamagishi, Misa; Iida, Megumi; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Satou, Takao; Nishida, Shozo

    2016-05-05

    Mangiferin is a naturally occurring glucosyl xanthone, which induces apoptosis in various cancer cells. However, the molecular mechanism underlying mangiferin-induced apoptosis has not been clarified thus far. Therefore, we examined the molecular mechanism underlying mangiferin-induced apoptosis in multiple myeloma (MM) cell lines. We found that mangiferin decreased the viability of MM cell lines in a concentration-dependent manner. We also observed an increased number of apoptotic cells, caspase-3 activation, and a decrease in the mitochondrial membrane potential. In addition, mangiferin inhibited the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated inhibitor kappa B (IκB) and increased the expression of IκB protein, whereas no changes were observed in the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase 1/2 (JNK1/2), and mammalian target of rapamycin (mTOR). The molecular mechanism responsible for mangiferin-induced inhibition of nuclear translocation of NF-κB was a decrease in the expression of phosphorylated NF-κB-inducing kinase (NIK). Moreover, mangiferin decreased the expression of X-linked inhibitor of apoptosis protein (XIAP), survivin, and Bcl-xL proteins. Knockdown of NIK expression showed results similar to those observed with mangiferin treatment. Our results suggest that mangiferin induces apoptosis through the inhibition of nuclear translocation of NF-κB by suppressing NIK activation in MM cell lines. Our results provide a new insight into the molecular mechanism of mangiferin-induced apoptosis. Importantly, since the number of reported NIK inhibitors is limited, mangiferin, which targets NIK, may be a potential anticancer agent for the treatment of MM.

  11. Nuclear expression of lysyl oxidase enzyme is an independent prognostic factor in rectal cancer patients

    DEFF Research Database (Denmark)

    Liu, Na; Cox, Thomas R; Cui, Weiyingqi;

    2016-01-01

    Emerging evidence has implicated a pivotal role for lysyl oxidase (LOX) in cancer progression and metastasis. Whilst the majority of work has focused on the extracellular matrix cross-linking role of LOX, the exact function of intracellular LOX localisation remains unclear. In this study, we anal...... the nucleus of colon cancer cell lines by confocal microscopy and Western blot. Our results show a powerful link between nuclear LOX expression in tumours and patient survival, and offer a promising prognostic biomarker for rectal cancer patients....

  12. Interleukin-10 inhibits the expression of nuclear factor kappa B in rats with cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Zhihua Wu; Nan Liu; Houwei Du; Ronghua Chen; An Zheng; Huapin Huang

    2006-01-01

    BACKGROUND: Plenty of studies have demonstrated that inflammatory reaction is involved in ischemic cerebral damage, and the expression of inflammatory cytokines can be observed at the initial sites of cerebral damage at early period, including interleukin-6, interleukin-8, etc., which are all the target gene products of nuclear factor kappa B (NF-кB). The process of ischemic damage can be affected by adjusting and controlling NF-кB activity via multi-links.OBJECTIVE: To investigate the inhibitory effect of interleukin-10 on the expression of NF-кB in the ischemic sites of rats with focal cerebral ischemia in rats and its molecular mechanisms.DESIGN: A randomized and controlled animal trial.SETTING: Department of Neurology, the Affiliated Union Hospital of Fujian Medical University.MATERIALS: Thirty-two adult male Sprague-Dawley rats weighing (250±30) g were used. NF-кB p65 (RelA)rabbit anti-rat monoclonal primary antibody was the product of Neomarkers Company; Immunohistochemical kit of the SP two-step method was purchased from Beijing Zhongshan Biotechnology Co., Ltd.METHODS: The experiment was carried out in the Affiliated Union Hospital of Fujian Medical University from August 2005 to April 2006. The rats were randomly assigned into sham-operated group, middle cerebral artery occlusion (MCAO) group, vehicle-treated group and interleukin-10 treated group, 8 rats in each group. Focal cerebral ischemia was induced by occlusion of the middle cerebral artery as previously described. Rats in the MCAO group were anesthetized intraperitoneally, thyroid was bluntly dissected. Right common, external and internal carotid arteries were isolated, the trunk of external carotid artery was ligated and freed, an artery clamp was placed at the internal carotid artery, then a "V" shape incision was made at the free section of external carotid artery, filament was inserted for a depth of (18.5±0.5) mm. The rats in the sham-operated group were given the same treatments with

  13. Technical, environmental, and socioeconomic factors associated with dry-cooled nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    The report includes a review of the current state-of-the-art of dry-cooling technology for industrial and power-generating facilities and an evaluation of its technical potential and cost for large nuclear power plants. Criteria are formulated for coarse screening of the arid regions of the Western United States to select a surrogate site for more detailed site-specific analyses. The screening criteria included seismic considerations, existing transportation facilities, institutional and jurisdictional constraints, waste heat dissipation effects, water requirements, and ecologic and socioeconomic considerations. The Galt site near Las Vegas, Nevada was selected for the surrogate site analysis to assess important issues related to the construction and operation of twelve dry-cooled nuclear power plants at an arid location remote from major load centers. The assessment covers geotechnical, atmospheric and hydrologic considerations, special aspects of transporting large equipment overland to the site from seaports, analyses of potential transmission routes to major load centers, local institutional and taxing provisions, and ecologic and socioeconomic impacts.

  14. NUCLEAR FACTOR Y, Subunit C (NF-YC Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zachary A Myers

    2016-09-01

    Full Text Available Recent reports suggest that NF-Y transcription factors are positive regulators of skotomorphogenesis in Arabidopsis thaliana. Three NF-YC genes (NF-YC3, NF-YC4, and NF-YC9 are known to have overlapping functions in photoperiod dependent flowering and previous studies demonstrated that they interact with basic leucine zipper (bZIP transcription factors. This included ELONGATED HYPOCOTYL 5 (HY5, which has well-demonstrated roles in photomorphogenesis. Similar to hy5 mutants, we report that nf-yc3 nf-yc4 nf-yc9 triple mutants failed to inhibit hypocotyl elongation in all tested light wavelengths. Surprisingly, nf-yc3 nf-yc4 nf-yc9 hy5 mutants had synergistic defects in light perception, suggesting that NF-Ys represent a parallel light signaling pathway. As with other photomorphogenic transcription factors, nf-yc3 nf-yc4 nf-yc9 triple mutants also partially suppressed the short hypocotyl and dwarf rosette phenotypes of CONSTITUTIVE PHOTOMORPHOGENIC 1 (cop1 mutants. Thus, our data strongly suggest that NF-Y transcription factors have important roles as positive regulators of photomorphogenesis, and in conjunction with other recent reports, implies that the NF-Y are multifaceted regulators of early seedling development.

  15. Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity.

    Science.gov (United States)

    Dilshara, Matharage Gayani; Kang, Chang-Hee; Choi, Yung Hyun; Kim, Gi-Young

    2015-10-01

    We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression.

  16. Umbelliferone and daphnetin ameliorate carbon tetrachloride-induced hepatotoxicity in rats via nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1 expression.

    Science.gov (United States)

    Mohamed, Mohamed R; Emam, Manal A; Hassan, Nahla S; Mogadem, Abeer I

    2014-09-01

    Among various phytochemicals, coumarins comprise a very large class of plant phenolic compounds that have good nutritive value, in addition to their antioxidant effects. The purpose of the present study was to investigate the protective effects of two coumarin derivatives, umbelliferone and daphnetin, against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats and elucidate the underlying mechanism. Treatment of rats with either umbelliferone or daphnetin significantly improved the CCl4-induced biochemical alterations. In addition, both compounds alleviated the induced-lipid peroxidation and boosted the antioxidant defense system. Moreover, the investigated compounds attenuated CCl4-induced histopathological alterations of the liver. Finally, umbelliferone and daphnetin induced the nuclear translocation of the nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), thereby inducing the expression and activity of the cytoprotective heme oxygenase-1 (HO-1). These results suggest that umbelliferone and daphnetin ameliorate oxidative stress-related hepatotoxicity via their ability to augment cellular antioxidant defenses by activating Nrf2-mediated HO-1 expression.

  17. CYTOCHROMES P450,NUCLEAR RECEPTORS AND FIBROBLAST GROWTH FACTORS- NEW ENDOCRINE AXES AS POTENCIAL DRUG TARGETS TO TREAT METABOLIC DISORDERS

    Directory of Open Access Journals (Sweden)

    Klementina Fon Tacer

    2009-06-01

    Full Text Available background Coordinate action of endocrine and nervous system enables adaptation of higher organisms to constant changes in the environment. Fibroblast growth factors (FGFs primarily regulate embryonic and organ development, however, FGF19 subfamily members despite the name act in an endocrine fashion. The studies of endocrine FGFs resulted in the discovery of new endocrine axes, composed of small lipophilic molecules and members of three protein families: cytochromes P450, nuclear receptors, and FGFs. Cytochromes P450 are enzymes responsible for metabolism of different lipid molecules. Nuclear receptors bind lipid metabolites and act as metabolic sensors. They become activated and as transcriptional factors turn on expression of endocrine FGFs. eFGFs regulate metabolic pathways in target organs that express specific FGF receptor/coreceptor pair. FGF15/19 is expressed in the small intestine and is involved in the postprandial bile acid negative feedback loop in the liver. FGF21 is liver-borne fasting hormone that induces fat utilization. FGF23 is expressed in bone and acts on kidney to regulate phosphate and vitamin D metabolism.Conclusions We describe herein three new endocrine axes that were probably developed for fine tuning metabolite concentration within narrow physiological limits and prevent their toxicity in excess. They play important role in the pathophysiology underlying diverse metabolic disorders and are expected to be potential targets for therapeutic interventions.

  18. Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation.

    Science.gov (United States)

    Monteghirfo, Stefano; Tosetti, Francesca; Ambrosini, Claudia; Stigliani, Sara; Pozzi, Sarah; Frassoni, Francesco; Fassina, Gianfranco; Soverini, Simona; Albini, Adriana; Ferrari, Nicoletta

    2008-09-01

    The oncogenic Bcr-Abl tyrosine kinase activates various signaling pathways including phosphoinositide 3-kinase/Akt and nuclear factor-kappaB that mediate proliferation, transformation, and apoptosis resistance in Bcr-Abl+ myeloid leukemia cells. The hop flavonoid xanthohumol inhibits tumor growth by targeting the nuclear factor-kappaB and Akt pathways and angiogenesis. Here, we show that xanthohumol has in vitro activity against Bcr-Abl+ cells and clinical samples and retained its cytotoxicity when imatinib mesylate-resistant K562 cells were examined. Xanthohumol inhibition of K562 cell viability was associated with induction of apoptosis, increased p21 and p53 expression, and decreased survivin levels. We show that xanthohumol strongly inhibited Bcr-Abl expression at both mRNA and protein levels and show that xanthohumol caused elevation of intracellular reactive oxygen species and that the antioxidant N-acetylcysteine blunted xanthohumol-induced events. Further, we observed that xanthohumol inhibits leukemia cell invasion, metalloprotease production, and adhesion to endothelial cells, potentially preventing in vivo life-threatening complications of leukostasis and tissue infiltration by leukemic cells. As structural mutations and/or gene amplification in Bcr-Abl can circumvent an otherwise potent anticancer drug such as imatinib, targeting Bcr-Abl expression as well as its kinase activity could be a novel additional therapeutic approach for the treatment of Bcr-Abl+ myeloid leukemia.

  19. Soluble expression and purification of receptor activator of nuclear factor-kappa B ligand using Escherichia coli.

    Science.gov (United States)

    Park, Sol-Ji; Lee, Se-Hoon; Kim, Kwang-Jin; Kim, Sung-Gun; Kim, Hangun; Choe, Han; Lee, Sang Yeol; Yun, Jung-Mi; Cho, Jae Youl; Chun, Jiyeon; Choi, Kap Seong; Son, Young-Jin

    2015-02-01

    Receptor activator of nuclear factor-kappa B ligand (RANKL) is a critical factor in osteoclastogenesis. It makes osteoclasts differentiate and multinucleate in bone remodeling. In the present study, RANKL was expressed as a soluble maltose binding protein (MBP)-fusion protein using the Escherichia coli maltose binding domain tag system (pMAL) expression vector system. The host cell E. coli DH5α was cultured and induced by isopropyl β-D-1- thiogalactopyranoside for rRANKL expression. Cells were disrupted by sonication to collect soluble MBP-fused rRANKL. The MBP-fusion rRANKL was purified with MBP Trap affinity chromatography and treated with Tobacco Etch Virus nuclear inclusion endopeptidase (TEV protease) to remove the MBP fusion protein. Dialysis was then carried out to remove binding maltose from the cleaved rRANKL solution. The cleaved rRANKL was purified with a second MBP Trap affinity chromatography to separate unsevered MBP-fusion rRANKL and cleaved MBP fusion protein. The purified rRANKL was shown to have biological activity by performing in vitro cell tests. In conclusion, biologically active rRANKL was successfully purified by a simple two-step chromatography purification process with one column.

  20. Development of a cell death-based method for the screening of nuclear factor-kappaB inhibitors.

    Science.gov (United States)

    Chopra, Puneet; Bajpai, Malini; Dastidar, Sunanda G; Ray, Abhijit

    2008-06-01

    Nuclear factor kappa B (NF-kappaB) plays a significant role in immunity and inflammation and represents a first choice as pharmacological target for anti-inflammatory therapy. However, research in this field has been hampered by the fact that no convenient assay suitable for large-scale screening procedures is available. The present study provides a cell death-based assay method for screening of nuclear factor-kappaB inhibitors. In this study, we observed that four distinct pharmacologic inhibitors of NF-kappaB, pyrrolidine dithiocarbamate (PDTC), N-tosyl-L-lysyl chloromethyl ketone (TPCK), genistein and BAY11-7082, resulted in the cell death of murine macrophages, J774A.1. DNA-binding experiments showed that lethal doses were consistent with those required for NF-kappaB inhibition. DNA fragmentation analysis showed that cell death is apoptotic in nature. Further studies suggested that NF-kappaB inhibitors induced apoptosis is independent of the involvement of other markers of cell death such as caspases and p38 MAP (Mitogen activated protein) kinase. From this study, we conclude that NF-kappaB activation may represent an important survival mechanism in macrophages. This study also provides a new cell-based screening method, as any compound that will inhibit NF-kappaB activity will result in the death of macrophages.

  1. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, Kathleen A.; Klinge, Carolyn M. [University of Louisville School of Medicine, Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, Louisville, KY (United States)

    2012-04-15

    Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17{beta}-estradiol (E{sub 2}), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E{sub 2}, 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E{sub 2} increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects. (orig.)

  2. Nuclear factor κB and cyclooxygenase-2 immunoexpression in oral dysplasia and oral squamous cell carcinoma.

    Science.gov (United States)

    Pontes, Hélder Antônio Rebelo; Pontes, Flávia Sirotheau Corrêa; Fonseca, Felipe Paiva; de Carvalho, Pedro Luiz; Pereira, Erika Martins; de Abreu, Michelle Carvalho; de Freitas Silva, Brunno Santos; dos Santos Pinto, Décio

    2013-02-01

    Oral leukoplakia is the main potentially malignant oral lesion, and oral squamous cell carcinoma accounts for more than 95% of all malignant neoplasms in the oral cavity. Therefore, the aim of this study was to verify the immunoexpression of nuclear factor κB (NF-κB) and cyclooxygenase-2 (COX-2) proteins in dysplastic oral lesions and oral squamous cell carcinoma. Immunohistochemical reactions were performed on 6 inflammatory fibrous hyperplasia, 28 oral leukoplakia, and 15 oral squamous cell carcinoma paraffin-embedded samples. Immunoperoxidase reaction for NF-κB and COX-2 was applied on the specimens, and the positivity of the reactions was calculated for 1000 epithelial cells. Using the analysis of variance and the Tukey post hoc statistical analyses, a significantly increased immunoexpression for NF-κB was observed when oral squamous cell carcinoma samples were compared with the other groups studied. However, using the Kruskal-Wallis and the Dunn post hoc tests, a statistically significant result for COX-2 expression was obtained only when the moderate dysplasia group was compared with the inflammatory fibrous hyperplasia group. Nuclear factor κB may participate in the malignant phenotype acquisition process of the oral squamous cell carcinoma in its late stages, whereas COX-2 may be involved in the early stages of oral carcinogenesis process.

  3. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    Science.gov (United States)

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.

  4. Nuclear encoding of a plastid sigma factor in rice and its tissue- and light-dependent expression.

    Science.gov (United States)

    Tozawa, Y; Tanaka, K; Takahashi, H; Wakasa, K

    1998-01-15

    A full-length cDNA encoding a putative sigma factor for a plastid RNA polymerase was isolated from the higher plant Oryza sativa . The nucleotide sequence of the corresponding nuclear gene, named Os-sigA ( O.sativa sigma A), predicts a polypeptide of 519 amino acids that contains a putative plastid-targeting sequence in its N-terminal region. The predicted mature protein shows extensive sequence homology to bacterial sigma factors, encompassing the conserved regions 1.2, 2.1, 2.2, 2.3, 2.4, 3, 4.1 and 4.2 implicated in binding to -10 promoter elements, promoter melting and interaction with the core RNA polymerase enzyme. RNA blot analysis revealed that the abundance of Os-sigA transcripts was markedly greater in green shoots than in roots or in dark-grown etiolated shoots of rice seedlings. Furthermore, exposure of dark-grown etiolated seedlings to light resulted in a rapid increase in the amount of Os-sigA mRNA in the shoot. These observations suggest that regulation of expression of the nuclear gene for this putative plastid RNA polymerase sigmafactor by light contributes to light-dependent transcriptional regulation of plastid genes.

  5. Predictions of Elliptic flow and nuclear modification factor from 200 GeV U+U collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Masui, Hiroshi; Mohanty, Bedangadas; Xu, Nu

    2010-07-07

    Predictions of elliptic flow (v{sub 2}) and nuclear modification factor (R{sub AA}) are provided as a function of centrality in U + U collisions at {radical}s{sub NN} = 200 GeV. Since the {sup 238}U nucleus is naturally deformed, one could adjust the properties of the fireball, density and duration of the hot and dense system, for example, in high energy nuclear collisions by carefully selecting the colliding geometry. Within our Monte Carlo Glauber based approach, the v{sub 2} with respect to the reaction plane v{sub 2}{sup RP} in U + U collisions is consistent with that in Au + Au collisions, while the v{sub 2} with respect to the participant plane v{sub 2}{sup PP} increases {approx}30-60% at top 10% centrality which is attributed to the larger participant eccentricity at most central U + U collisions. The suppression of R{sub AA} increases and reaches {approx}0.1 at most central U + U collisions that is by a factor of 2 more suppression compared to the central Au + Au collisions due to large size and deformation of Uranium nucleus.

  6. Statistical factor analysis technique for characterizing basalt through interpreting nuclear and electrical well logging data (case study from Southern Syria).

    Science.gov (United States)

    Asfahani, Jamal

    2014-02-01

    Factor analysis technique is proposed in this research for interpreting the combination of nuclear well logging, including natural gamma ray, density and neutron-porosity, and the electrical well logging of long and short normal, in order to characterize the large extended basaltic areas in southern Syria. Kodana well logging data are used for testing and applying the proposed technique. The four resulting score logs enable to establish the lithological score cross-section of the studied well. The established cross-section clearly shows the distribution and the identification of four kinds of basalt which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The factor analysis technique is successfully applied on the Kodana well logging data in southern Syria, and can be used efficiently when several wells and huge well logging data with high number of variables are required to be interpreted.

  7. Mycalamide A Shows Cytotoxic Properties and Prevents EGF-Induced Neoplastic Transformation through Inhibition of Nuclear Factors

    Science.gov (United States)

    Dyshlovoy, Sergey A.; Fedorov, Sergey N.; Kalinovsky, Anatoly I.; Shubina, Larisa K.; Bokemeyer, Carsten; Stonik, Valentin A.; Honecker, Friedemann

    2012-01-01

    Mycalamide A, a marine natural compound previously isolated from sponges, is known as a protein synthesis inhibitor with potent antitumor activity. However, the ability of this compound to prevent malignant transformation of cells has never been examined before. Here, for the first time, we report the isolation of mycalamide A from ascidian Polysincraton sp. as well as investigation of its cancer preventive properties. In murine JB6 Cl41 P+ cells, mycalamide A inhibited epidermal growth factor (EGF)-induced neoplastic transformation, and induced apoptosis at subnanomolar or nanomolar concentrations. The compound inhibited transcriptional activity of the oncogenic nuclear factors AP-1 and NF-κB, a potential mechanism of its cancer preventive properties. Induction of phosphorylation of the kinases MAPK p38, JNK, and ERK was also observed at high concentrations of mycalamide A. The drug shows promising potential for both cancer-prevention and cytotoxic therapy and should be further developed. PMID:22822368

  8. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Myeung Su [Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Oh, Jaemin, E-mail: jmoh@wku.ac.kr [Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Ju-Young, E-mail: kimjy1014@gmail.com [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  9. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss

    Directory of Open Access Journals (Sweden)

    Anne-Priscille Trouvin

    2010-11-01

    Full Text Available Anne-Priscille Trouvin, Vincent GoëbDepartment of Rheumatology, Rouen University Hospital, Rouen, FranceAbstract: Bone remodeling requires a precise balance between resorption and formation. It is a complex process that involves numerous factors: hormones, growth factors, vitamins, and cytokines, and notably osteoprotegerin (OPG and receptor activator for nuclear factor-κB (RANK ligand. The signaling pathway OPG/RANK/RANKL is key to regulation for maintaining the balance between the activity of osteoblasts and osteoclasts in order to prevent bone loss and ensure a normal bone turnover. In this review, the RANK/RANKL/OPG pathway is described. The multiple interactions of various factors (hormones, cytokines, growth factors, and vitamins with the OPG/RANK/RANKL pathway are also commented on. Finally, the effects of denosumab, a human monoclonal antibody that binds to RANKL and thereby inhibits the activation of osteoclasts, and of strontium ranelate are also described. Indeed, these two new drugs afford appreciable assistance in daily care practice, helping to prevent bone loss in patients with osteoporosis.Keywords: osteoprotegerin, OPG, RANK, RANKL, denosumab, strontium ranelate, osteoporosis

  10. Prolyl-4-Hydroxylase 2 Potentially Contributes to Hepatocellular Carcinoma-Associated Erythrocytosis by Maintaining Hepatocyte Nuclear Factor-4α Expression

    Directory of Open Access Journals (Sweden)

    Wenwen Sun

    2015-12-01

    Full Text Available Background: Increased red blood cell count (Erythrocytosis is an important paraneoplastic syndrome of hepatocellular carcinoma (HCC and is a significant risk factor for lethal lung artery thromboembolism. HCC-associated erythrocytosis is partially caused by the ability of several HCC cells to produce erythropoietin (EPO. Prolyl-4-hydroxylase 2 (PHD2 is an enzyme encoded by the gene EGLN1. The best-known function of PHD2 is to mediate the oxygen-dependent degradation of the labile α-subunit of hypoxia-inducible factor (HIF. However, there is increasing evidence that PHD2 also regulates HIF-independent pathways by interacting with other substrates. Methods: In the EPO-producing human HCC cell line HepG2, the expression of PHD2 gene was silenced with siRNA. EPO production was estimated using quantitative PCR and ELISA. Results: In HepG2 cells, PHD2 suppresses the activity of TGF-β1 pathway and consequently maintains the expression of hepatocyte nuclear factor-4α (HNF-4α, an important transcription factor promoting the EPO expression in hepatocytes. PHD2 knockdown caused a marked reduction of EPO production. HIF seemed not to be involved in this biology. Conclusion: Our findings show that PHD2 represents a potential contributing factor for HCC-associated erythrocytosis. Selective inhibition of PHD2 in HCC cells might be considered as a new way to manage erythrocytosis in HCC patients.

  11. Human factors review of CFMS displays for Ulchin Nuclear Power Unit 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Baek, Seung Min; Kim, Jung Taek; Park, Jae Chang; Lee, Jung Woon; Oh, In Suk; Lee, Joon Whan; Jung, Kwang Tae; Cha, Hye Young [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-11-01

    This report describes the human factors review of CFMS displays for Ulchin 3 and 4 by the following four subjects; At first, by reviewing issues regarding the design process of present CFMS, human factors engineering program plan (HFEPP) and human factors verification and validation plan Were proposed to accomplish the completeness of design word; Secondly, researches and developments were integrated into the review results at the point of suitability of CFMS design concept and basic function; For the third, availability and suitability were assessed according to human factors evaluation criteria on the CFMS display design, and overall effectiveness was also evaluated in parts; For the fourth, recommendations were made to human factors problems in accordance with their importance and an implementation plan was suggested for the resolution of problems. 54 refs., 34 tabs., 42 figs. (author)

  12. Modulation of nuclear factor-kappaB activation and decreased markers of neurological injury associated with hypothermic therapy in experimental bacterial meningitis.

    Science.gov (United States)

    Irazuzta, Jose E; Pretzlaff, Robert K; Zingarelli, Basilia; Xue, Vivian; Zemlan, Frank

    2002-11-01

    This study was designed to evaluate the use of moderate hypothermia in a model of meningitis-induced brain injury and its effect on the activation of nuclear factor-kappaB, biological markers of neuronal injury, and neurobehavioral performance. Randomized, prospective animal study. University research laboratory. Male Wistar rats. Animals underwent a basilar cistern tap receiving either sterile saline as a placebo or an equivalent volume of a group B streptococcal suspension. Sixteen hours after inoculation, animals were stratified by their clinical severity score, were randomized to either hypothermic (32-34 degrees C) or normothermic (37-39 degrees C) conditions, and received antibiotics. Hypothermic animals were kept under these temperature conditions for 6 hrs before rewarming. Two protocols were used. For the first protocol, changes in nuclear factor-kappaB activation and heat shock protein induction at 24 hrs and 48 hrs after inoculation were evaluated. In the second protocol, serum C-tau concentrations at 5 days and neurobehavioral performances at 3 wks were assessed. Meningitis triggered a >50% increase in cerebral nuclear factor-kappaB activation. The addition of a 6-hr period of hypothermia reduced nuclear factor-kappaB activation by 32% when measured at the end of the hypothermic period. At 48 hrs, this decrease in nuclear factor-kappaB activation was no longer apparent, but there was a significant decrease in the heat shock response. Serum C-tau concentrations at 5 days postinjury, a biomarker of brain injury, were reduced by 69% in hypothermic treated animals. Furthermore, hypothermia reduced the brain water content of infected animals. However, hypothermia did not improve the animals' neurobehavioral performance. The findings from this study suggest that hypothermia produces a transitory attenuation of nuclear factor-kappaB activation in meningitic brain injury and improvement in some biomarkers of neuronal injury. The consequence of intermittent

  13. The Butterfly Effect: Correlations Between Modeling in Nuclear-Particle Physics and Socioeconomic Factors

    CERN Document Server

    Pia, Maria Grazia; Bell, Zane W.; Dressendorfer, Paul V.

    2010-01-01

    A scientometric analysis has been performed on selected physics journals to estimate the presence of simulation and modeling in physics literature in the past fifty years. Correlations between the observed trends and several social and economical factors have been evaluated.

  14. Force Reduction Factors for the Structural Design and Evaluation of Facilities Containing Nuclear and Hazardous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, G.E.

    2001-07-26

    This report examines significant contributions to inelastic behavior of common building systems and develops frequency dependent force reduction factors that may be used with the results from linear elastic analyses models.

  15. Force Reduction Factors for the Structural Design and Evaluation of Facilities Containing Nuclear and Hazardous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, G.E.

    2001-07-26

    This report examines significant contributions to inelastic behavior of common building systems and develops frequency dependent force reduction factors that may be used with the results from linear elastic analyses models.

  16. Divalent lead cations induce cyclooxygenase-2 gene expression by epidermal growth factor receptor/nuclear factor-kappa B signaling in A431carcinoma cells.

    Science.gov (United States)

    Chou, Yii-Her; Woon, Peng-Yeong; Huang, Wan-Chen; Shiurba, Robert; Tsai, Yao-Ting; Wang, Yu-Shiuan; Hsieh, Tusty-Jiuan; Chang, Wen-Chang; Chuang, Hung-Yi; Chang, Wei-Chiao

    2011-06-10

    Divalent lead cations (Pb²+) are toxic metal pollutants that may contribute to inflammatory diseases in people and animals. Human vascular smooth muscle cells in culture respond to low concentrations of Pb²+ ions by activating mediators of inflammation via the plasma membrane epidermal growth factor receptor (EGFR). These include cyclooxygenase-2 (COX-2) and cytosolic phospholipase A₂ as well as the hormone-like lipid compound prostaglandin E₂. To further clarify the mechanism by which Pb²+ induces such mediators of inflammation, we tested human epidermoid carcinoma cell line A431 that expresses high levels of EGFR. Reverse transcription PCR and western blots confirmed A431 cells treated with a low concentration (1 μM) of Pb²+ in the form of lead (II) nitrate increased expression of COX-2 mRNA and its encoded protein in a time-dependent manner. Promoter deletion analysis revealed the transcription factor known as nuclear factor-kappa B (NF-κB) was a necessary component of the COX-2 gene response. NF-κB inhibitor BAY 11-7082 suppressed Pb²+-induced COX-2 mRNA expression, and EGFR inhibitors AG1478 and PD153035 as well as EGFR small interfering RNA reduced the coincident nuclear translocation of NF-κB. Our findings support the hypothesis that low concentrations of Pb²+ ions incite inflammation by inducing COX-2 gene expression via the EGFR/NF-κB signal transduction pathway. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Toll-like receptor 4/nuclear factor-kappa B signaling detected in brain after early subarachnoid hemorrhage

    Institute of Scientific and Technical Information of China (English)

    MA Chun-xiao; YIN Wei-ning; CAI Bo-wen; WU Jian; WANG Jun-yi; HE Min; SUN Hong; DING Jun-li; YOU Chao

    2009-01-01

    Background Inflammation and immunity play a vital role in the pathogenesis of early brain injury after subarachnoid hemorrhage (SAH). Nuclear factor-kappa B (NF-KB) regulates many genes essential for inflammation and immunity and is activated by toll-like receptor (TLR). This study aimed to detect the expression of the toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-KB) signaling in the rat brain after early SAH. Methods The rats were decapitated and their brains were removed at 0, 2, 4, 6, 12, 24 and 48 hours after a single injection of blood into the prechiasmatic cistern, mRNA expression of TLR4 was measured by Taqman real-time RT-PCR, and protein expression by immunohistochemistry and Western blotting. NF-KB activity and concentrations of tumor necrosis factor-alpha (TNF-α), interleukin-lbeta (IL-β) and intedeukin-6 (IL-6) were measured by enzyme-linked immunosorbent assay (ELISA).Results TaqMan real-time RT-PCR and Western blotting identified a biphasic change in TLR4 expression in both mRNA and protein: an initial peak (2-6 hours) and a sustained elevation (12-48 hours). Immunohistochemical staining showed the inducible expression of TLR4-1ike immunoreactions predominantly in glial cells and vascular endothelium. A similar biphasic change in the activation of NF-KB subunit p65 as well as the production of NF-KB-regulated proinflammatory cytokines (TNF-α, IL-1β and IL-6) were detected by ELISA. Conclusions These data suggest that experimental SAH induces significant up-regulation of TLR4 expression and the NF-KB signaling in early brain injury. Activation of the TLR4/NF-KB signaling may regulate the inflammatory responses after SAH.

  18. 核因子κB与重症肺炎%Nuclear factor-kappaB and severe pneumonia

    Institute of Scientific and Technical Information of China (English)

    宫蓓蕾; 陈余清

    2008-01-01

    Nuclear factor-kappaB(NF-kB) is a group of pleiotropic transcription factors. NF-kB proteins play pivotal roles in immune and inflammatory responses. The pathophysiology of severe pneumonia involves complex cytokine and inflammatory mediator networks. NF-kB activation is a central molecular event leading to activation of these net-works and development of severe pneumonia. Importantly,blockade of NF- kB pathway corrects the pathological abnormalities and improves outcome of severe pneumonia. The critical role of NF-kB activation in severe pneumonia pathophysiology and the effectiveness of inhibiting NF-kB activation in correcting severe pneumonia abnormalities indicate that targeting NF-kB is a desired therapeutic strategy for treatment of severe pneumonia.%核因子 κB(nuclear factor-kappaB,NF-κB)是一类多效性的核转录因子,在免疫应答和炎症反应中发挥重要作用.重症肺炎的病理生理学涉及复杂的细胞因子和炎症介质网络,NF-κB是导致网络激活、促进重症肺炎发展的中枢,更重要的是NF-κB途径的阻断可改善其异常的病理生理及预后.因此,将NF-κB作为重症肺炎治疗靶点是一个有价值的治疗策略.

  19. Cytokine-induced proapoptotic gene expression in insulin-producing cells is related to rapid, sustained, and nonoscillatory nuclear factor-kappaB activation

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Cardozo, Alessandra K; Crispim, Daisy

    2006-01-01

    Cytokines, such as IL-1beta and TNF-alpha, contribute to pancreatic beta-cell death in type 1 diabetes mellitus. The transcription factor nuclear factor-kappaB (NF-kappaB) mediates cytokine-induced beta-cell apoptosis. Paradoxically, NF-kappaB has mostly antiapoptotic effects in other cell types....

  20. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton.

    Science.gov (United States)

    Mamon, L A; Ginanova, V R; Kliver, S F; Yakimova, A O; Atsapkina, A A; Golubkova, E V

    2017-04-01

    The mutual relationship between mRNA and the cytoskeleton can be seen from two points of view. On the one hand, the cytoskeleton is necessary for mRNA trafficking and anchoring to subcellular domains. On the other hand, cytoskeletal growth and rearrangement require the translation of mRNAs that are connected to the cytoskeleton. β-actin mRNA localization may influence dynamic changes in the actin cytoskeleton. In the cytoplasm, long-lived mRNAs exist in the form of RNP (ribonucleoprotein) complexes, where they interact with RNA-binding proteins, including NXF (Nuclear eXport Factor). Dm NXF1 is an evolutionarily conserved protein in Drosophila melanogaster that has orthologs in different animals. The universal function of nxf1 genes is the nuclear export of different mRNAs in various organisms. In this mini-review, we briefly discuss the evidence demonstrating that Dm NXF1 fulfils not only universal but also specialized cytoplasmic functions. This protein is detected not only in the nucleus but also in the cytoplasm. It is a component of neuronal granules. Dm NXF1 marks nuclear division spindles during early embryogenesis and the dense body on one side of the elongated spermatid nuclei. The characteristic features of sbr mutants (sbr(10) and sbr(5) ) are impairment of chromosome segregation and spindle formation anomalies during female meiosis. sbr(12) mutant sterile males with immobile spermatozoa exhibit disturbances in the axoneme, mitochondrial derivatives and cytokinesis. These data allow us to propose that the Dm NXF1 proteins transport certain mRNAs in neurites and interact with localized mRNAs that are necessary for dynamic changes of the cytoskeleton. © 2017 Wiley Periodicals, Inc.

  1. The transcriptional activity of hepatocyte nuclear factor 4 alpha is inhibited via phosphorylation by ERK1/2

    Science.gov (United States)

    Bacquet, Caroline; Kiss, Judit; Sipeki, Szabolcs; Martin, Ludovic; Buday, László; Bálint, Bálint L.; Arányi, Tamás

    2017-01-01

    Hepatocyte nuclear factor 4 alpha (HNF4α) nuclear receptor is a master regulator of hepatocyte development, nutrient transport and metabolism. HNF4α is regulated both at the transcriptional and post-transcriptional levels by different mechanisms. Several kinases (PKA, PKC, AMPK) were shown to phosphorylate and decrease the activity of HNF4α. Activation of the ERK1/2 signalling pathway, inducing proliferation and survival, inhibits the expression of HNF4α. However, based on our previous results we hypothesized that HNF4α is also regulated at the post-transcriptional level by ERK1/2. Here we show that ERK1/2 is capable of directly phosphorylating HNF4α in vitro at several phosphorylation sites including residues previously shown to be targeted by other kinases, as well. Furthermore, we also demonstrate that phosphorylation of HNF4α leads to a reduced trans-activational capacity of the nuclear receptor in luciferase reporter gene assay. We confirm the functional relevance of these findings by demonstrating with ChIP-qPCR experiments that 30-minute activation of ERK1/2 leads to reduced chromatin binding of HNF4α. Accordingly, we have observed decreasing but not disappearing binding of HNF4α to the target genes. In addition, 24-hour activation of the pathway further decreased HNF4α chromatin binding to specific loci in ChIP-qPCR experiments, which confirms the previous reports on the decreased expression of the HNF4a gene due to ERK1/2 activation. Our data suggest that the ERK1/2 pathway plays an important role in the regulation of HNF4α-dependent hepatic gene expression. PMID:28196117

  2. Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κB) Signaling.

    Science.gov (United States)

    Tomás, Anna; Lery, Leticia; Regueiro, Verónica; Pérez-Gutiérrez, Camino; Martínez, Verónica; Moranta, David; Llobet, Enrique; González-Nicolau, Mar; Insua, Jose L; Tomas, Juan M; Sansonetti, Philippe J; Tournebize, Régis; Bengoechea, José A

    2015-07-03

    Klebsiella pneumoniae is an etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group has shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule polysaccharide (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-of-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening: metabolism and transport genes (32% of the mutants) and envelope-related genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression, which in turn underlined the NF-κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of the immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS O-polysaccharide and T2SS mutant-induced responses were dependent on TLR2-TLR4-MyD88 activation suggested that LPS O-polysaccharide and PulA perturbed Toll-like receptor (TLR)-dependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS O-polysaccharide and PulA T2SS could be new targets for the design of new antimicrobials. Increasing TLR-governed defense responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.

  3. Sequence and expression characteristics of a nuclear-encoded chloroplast sigma factor from mustard (Sinapis alba).

    Science.gov (United States)

    Kestermann, M; Neukirchen, S; Kloppstech, K; Link, G

    1998-06-01

    Plant chloroplasts contain transcription factors that functionally resemble bacterial sigma factors. We have cloned the full-length cDNA from mustard (Sinapis alba) for a 53 kDa derived polypeptide that contains similarity to regions 1.2-4.2 of sigma70-type factors. The amino acid sequence at the N-terminus has characteristics of a chloroplast transit peptide. An in vitro synthesized polypeptide containing this region was shown to be imported into the chloroplast and processed. The recombinant factor lacking the N-terminal extension was expressed in Escherichia coli and purified. It confers the ability on E.coli core RNA polymerase to bind specifically to a DNA fragment that contains the chloroplast psbA promoter. Transcription of the psbA template by E.coli core enzyme in the presence of recombinant SIG1 results in enhanced formation of transcripts of the size expected for correct initiation at the in vivo start site. Together, these data suggest that the mature protein acts as one of the chloroplast transcription factors in mustard. RNA gel blot hybridization reveals a transcript at approximately 1.8 kb, which is more abundant in light-grown than in dark-grown mustard seedlings.

  4. Indoxyl Sulfate Downregulates Mas Receptor via Aryl Hydrocarbon Receptor/Nuclear Factor-kappa B, and Induces Cell Proliferation and Tissue Factor Expression in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Ng, Hwee-Yeong; Bolati, Wulaer; Lee, Chien-Te; Chien, Yu-Shu; Yisireyili, Maimaiti; Saito, Shinichi; Pei, Sung-Nan; Nishijima, Fuyuhiko; Niwa, Toshimitsu

    2016-01-01

    Angiotensin converting enzyme-related carboxypeptidase 2/angiotensin (Ang)-(1-7)/Mas receptor axis is protective in the development of chronic kidney disease and cardiovascular disease. This study is aimed at investigating whether indoxyl sulfate (IS) affects Mas receptor expression, cell proliferation and tissue factor expression in vascular smooth muscle cells, and if Ang-(1-7), an activator of Mas receptor, counteracts the IS-induced effects. IS was administered to normotensive and hypertensive rats. Human aortic smooth muscle cells (HASMCs) were cultured with IS. IS reduced the expression of Mas receptor in the aorta of normotensive and hypertensive rats. IS downregulated the Mas receptor expression in a time- and dose-dependent manner in HASMCs. Knockdown of aryl hydrocarbon receptor (AhR) and nuclear factor-kappa B (NF-x03BA;B) inhibited IS-induced downregulation of Mas receptor. Further, IS stimulated cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) attenuated IS-induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) suppressed phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and NF-x03BA;B in HASMCs. IS downregulated the expression of Mas receptor via AhR/NF-x03BA;B, and induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) inhibited IS-induced cell proliferation and tissue factor expression by suppressing the phosphorylation of ERK1/2 and NF-x03BA;B p65. © 2016 S. Karger AG, Basel.

  5. Yeast silencing factor Sir4 and a subset of nucleoporins form a complex distinct from nuclear pore complexes.

    Science.gov (United States)

    Lapetina, Diego L; Ptak, Christopher; Roesner, Ulyss K; Wozniak, Richard W

    2017-09-07

    Interactions occurring at the nuclear envelope (NE)-chromatin interface influence both NE structure and chromatin organization. Insights into the functions of NE-chromatin interactions have come from the study of yeast subtelomeric chromatin and its association with the NE, including the identification of various proteins necessary for tethering subtelomeric chromatin to the NE and the silencing of resident genes. Here we show that four of these proteins-the silencing factor Sir4, NE-associated Esc1, the SUMO E3 ligase Siz2, and the nuclear pore complex (NPC) protein Nup170-physically and functionally interact with one another and a subset of NPC components (nucleoporins or Nups). Importantly, this group of Nups is largely restricted to members of the inner and outer NPC rings, but it lacks numerous others including cytoplasmically and nucleoplasmically positioned Nups. We propose that this Sir4-associated Nup complex is distinct from holo-NPCs and that it plays a role in subtelomeric chromatin organization and NE tethering. © 2017 Lapetina et al.

  6. Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors.

    Science.gov (United States)

    Johannesson, Bjarki; Sagi, Ido; Gore, Athurva; Paull, Daniel; Yamada, Mitsutoshi; Golan-Lev, Tamar; Li, Zhe; LeDuc, Charles; Shen, Yufeng; Stern, Samantha; Xu, Nanfang; Ma, Hong; Kang, Eunju; Mitalipov, Shoukhrat; Sauer, Mark V; Zhang, Kun; Benvenisty, Nissim; Egli, Dieter

    2014-11-06

    The recent finding that reprogrammed human pluripotent stem cells can be derived by nuclear transfer into human oocytes as well as by induced expression of defined factors has revitalized the debate on whether one approach might be advantageous over the other. Here we compare the genetic and epigenetic integrity of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal, and adult origin. The two cell types showed similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs had comparable numbers of de novo coding mutations, but significantly more than parthenogenetic ESCs. As iPSCs, NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of derivation approach.

  7. Crystallization of hepatocyte nuclear factor 4α (HNF4α) in complex with the HNF1α promoter element

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Peng; Liu, Jianguo; Melikishvili, Manana; Fried, Michael G.; Chi, Young-In, E-mail: ychi@uky.edu [Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 (United States)

    2008-04-01

    Sample preparation, characterization, crystallization and preliminary X-ray analysis are reported for the HNF4α–DNA binary complex. Hepatocyte nuclear factor 4α (HNF4α) is a member of the nuclear receptor superfamily that plays a central role in organ development and metabolic functions. Mutations on HNF4α cause maturity-onset diabetes of the young (MODY), a dominant monogenic cause of diabetes. In order to understand the molecular mechanism of promoter recognition and the molecular basis of disease-causing mutations, the recombinant HNF4α DNA-binding domain was prepared and used in a study of its binding properties and in crystallization with a 21-mer DNA fragment that contains the promoter element of another MODY gene, HNF1α. The HNF4α protein displays a cooperative and specific DNA-binding activity towards its target gene-recognition elements. Crystals of the complex diffract to 2.0 Å using a synchrotron-radiation source under cryogenic (100 K) conditions and belong to space group C2, with unit-cell parameters a = 121.63, b = 35.43, c = 70.99 Å, β = 119.36°. A molecular-replacement solution has been obtained and structure refinement is in progress. This structure and the binding studies will provide the groundwork for detailed functional and biochemical studies of the MODY mutants.

  8. Naringin lauroyl ester inhibits lipopolysaccharide-induced activation of nuclear factor κB signaling in macrophages.

    Science.gov (United States)

    Hattori, Hiromi; Tsutsuki, Hiroyasu; Nakazawa, Masami; Ueda, Mitsuhiro; Ihara, Hideshi; Sakamoto, Tatsuji

    2016-07-01

    Naringin (Nar) has antioxidant and anti-inflammatory properties. It was recently reported that enzymatic modification of Nar enhanced its functions. Here, we acylated Nar with fatty acids of different sizes (C2-C18) using immobilized lipase from Rhizomucor miehei and investigated the anti-inflammatory effects of these molecules. Treatment of murine macrophage RAW264.7 cells with Nar alkyl esters inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with Nar lauroyl ester (Nar-C12) showing the strongest effect. Furthermore, Nar-C12 suppressed the LPS-induced expression of inducible NO synthase by blocking the phosphorylation of inhibitor of nuclear factor (NF)-κB-α as well as the nuclear translocation of NF-κB subunit p65 in macrophage cells. Analysis of Nar-C12 uptake in macrophage cells revealed that Nar-C12 ester bond was partially degraded in the cell membrane and free Nar was translocated to the cytosol. These results indicate that Nar released from Nar-C12 exerts anti-inflammatory effects by suppressing NF-κB signaling pathway.

  9. Expression of Nuclear Factor-Kappa-B in Mouse Enometrium Treated with Different Levels of Estridiol or Progesterone

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To investigate the effect of estridiol and progesterone at different levels on nuclear factor-kappa-B (NF-κB) expression in mouse endometrium Methods Ovarioectmized mice were randomly divided into 9 groups, i.e. groups of sham operation, of estridiol only, of progesterone only and of progesterone combined with estridiol. Mice in the experimental groups accepted subcutaneous injections of estridiol or progesterone at different levels for one week. Their uteri were collected to detect the expression of NF-κB by immunohistochemical assay.Results Estridiol at a daily dose of 30tg/kg and 1 00 μg/kg could significantly stimulate the expression of NF-κB in mouse endometrium(P<0. 01), but not in an obvious dose-dependent fashion (P>0. 05). Progesterone alone could inhibit the expression of NF-κB in cytoplasma (P<0.01). Combination of estridiol and progesterone could increase NF-κB expression both in cytoplasma and nuclear (P<0.01).Conclusion Eestridiol can up-regulate the expression of NF-κB in mouse endometrium,while progesterone exhibits down-regulation effect. This finding suggests that estridiol and progesterone might modulate the endometrium receptivity by affecting NF-κB pathway.

  10. Suppression of the Nuclear Factor Eny2 Increases Insulin Secretion in Poorly Functioning INS-1E Insulinoma Cells

    Directory of Open Access Journals (Sweden)

    P. Dames

    2012-01-01

    Full Text Available Eny2, the mammalian ortholog of yeast Sus1 and drosophila E(y2, is a nuclear factor that participates in several steps of gene transcription and in mRNA export. We had previously found that Eny2 expression changes in mouse pancreatic islets during the metabolic adaptation to pregnancy. We therefore hypothesized that the protein contributes to the regulation of islet endocrine cell function and tested this hypothesis in rat INS-1E insulinoma cells. Overexpression of Eny2 had no effect but siRNA-mediated knockdown of Eny2 resulted in markedly increased glucose and exendin-4-induced insulin secretion from otherwise poorly glucose-responsive INS-1E cells. Insulin content, cellular viability, and the expression levels of several key components of glucose sensing remained unchanged; however glucose-dependent cellular metabolism was higher after Eny2 knockdown. Suppression of Eny2 enhanced the intracellular incretin signal downstream of cAMP. The use of specific cAMP analogues and pathway inhibitors primarily implicated the PKA and to a lesser extent the EPAC pathway. In summary, we identified a potential link between the nuclear protein Eny2 and insulin secretion. Suppression of Eny2 resulted in increased glucose and incretin-induced insulin release from a poorly glucose-responsive INS-1E subline. Whether these findings extend to other experimental conditions or to in vivo physiology needs to be determined in further studies.

  11. Nuclear Factor-κB: Activation and Regulation during Toll-like Receptor Signaling

    Institute of Scientific and Technical Information of China (English)

    Ruaidhrí J. Carmody; Youhai H. Chen

    2007-01-01

    Toll-like receptors (TLRs) recognize distinct microbial components to initiate the innate and adaptive immune responses. TLR activation culminates in the expression of appropriate pro-inflammatory and immunomodulatory factors to meet pathogenic challenges. The transcription factor NF-κB is the master regulator of all TLR-induced responses and its activation is the pivotal event in TLR-mediated activation of the innate immune response. Many of the key molecular events required for TLR-induced NF-κB activation have been elucidated. However, much remain to be learned about the ability of TLRs to generate pathogen-specific responses using a limited number of transcription factors. This review will focus on our current understanding of NF-κB activation by TLRs and potential mechanisms for achieving a signal-specific response through NF-κB.

  12. Nuclear tests for the strange charge from factor of the nucleon

    Science.gov (United States)

    Bernabéu, J.; Bilenky, S. M.; Segura, J.; Singh, S. K.

    1992-05-01

    It is shown that the measurements of elastic and inelastic scattering of neutrinos and parity-violating asymmetry of longitudinally polarized electrons on spin-isospin zero nuclei would yield model independent information about the strangeness charge form factor. Nunerical estimates of the contribution of this form factor are presented for 4He, 12C and 16O nuclei in impulse approximation using strangeness vector from factors of the nucleon recently suggested in the literature. A general relation between the P-odd asymmetry in electron scattering and the cross sections of neutrino and unpolarized electron scattering on spin zero nuclei is obtained. On leave of academic pursuit from Aligarh Muslim University, Aligarh 202 001, India.

  13. Conditions for the successful integration of Human and Organizational Factors (HOF) in the nuclear safety analysis.

    Science.gov (United States)

    Tosello, Michèle; Lévêque, Françoise; Dutillieu, Stéphanie; Hernandez, Guillaume; Vautier, Jean-François

    2012-01-01

    This communication presents some elements which come from the experience feedback at CEA about the conditions for the successful integration of HOF in the nuclear safety analysis. To point out some of these conditions, one of the concepts proposed by Edgar Morin to describe the functioning of "complex" systems: the dialogical principle has been used. The idea is to look for some dialogical pairs. The elements of this kind of pair are both complementary and antagonist to one another. Three dialogical pairs are presented in this communication. The first two pairs are related to the organization of the HOF network and the last one is related to the methods which are used to analyse the working situations. The three pairs are: specialist - non-specialist actors of the network, centralized - distributed human resources in the network and microscopic - macroscopic levels of HOF methods to analyse the working situations. To continuously improve these three dialogical pairs, it is important to keep the differences which exist between the two elements of a pair and to find and maintain a balance between the two elements of the pairs.

  14. Synthesis and physicochemical characterization of novel phenotypic probes targeting the nuclear factor-kappa B signaling pathway

    Directory of Open Access Journals (Sweden)

    Paul M. Hershberger

    2013-05-01

    Full Text Available Activation of nuclear factor-kappa B (NF-κB and related upstream signal transduction pathways have long been associated with the pathogenesis of a variety of inflammatory diseases and has recently been implicated in the onset of cancer. This report provides a synthetic and compound-based property summary of five pathway-related small-molecule chemical probes identified and optimized within the National Institutes of Health-Molecular Libraries Probe Center Network (NIH-MLPCN initiative. The chemical probes discussed herein represent first-in-class, non-kinase-based modulators of the NF-κB signaling pathway, which were identified and optimized through either cellular phenotypic or specific protein-target-based screening strategies. Accordingly, the resulting new chemical probes may allow for better fundamental understanding of this highly complex biochemical signaling network and could advance future therapeutic translation toward the clinical setting.

  15. Nuclear factor-κB is involved in the phenotype loss of parvalbumin-interneurons in vitro.

    Science.gov (United States)

    Wang, Xian; Zhou, Zhiqiang; Yang, Chun; Xu, Jianguo; Yang, Jianjun

    2011-04-20

    The phenotype loss of parvalbumin-containing interneurons, characterized by decreased parvalbumin expression, has been observed in schizophrenic patients. Overproduction of intraneuronal reactive oxygen species leads to such a phenotype loss. Nuclear factor-κB (NF-κB) activation is both a target and a regulator of intracellular oxidative stress response, suggesting its involvement in the parvalbumin regulation. This study was carried out to investigate the role of the NF-κB activation in the ketamine-induced phenotype loss of parvalbumin-interneurons in vitro. Ketamine was applied to primary neuronal cultures to successfully evoke the production of increased reactive oxygen species and decreased parvalbumin expression in parvalbumin-interneurons, which was invalid in the presence of a NF-κB inhibitor, SN50 or Bay11-7082. These results suggest potential links among NF-κB activation, oxidative stress, and parvalbumin-interneurons in vitro.

  16. Human factors design, verification, and validation for two types of control room upgrades at a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Laurids Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    This paper describes the NUREG-0711 based human factors engineering (HFE) phases and associated elements required to support design, verification and validation (V&V), and implementation of a new plant process computer (PPC) and turbine control system (TCS) at a representative nuclear power plant. This paper reviews ways to take a human-system interface (HSI) specification and use it when migrating legacy PPC displays or designing displays with new functionality. These displays undergo iterative usability testing during the design phase and then undergo an integrated system validation (ISV) in a full scope control room training simulator. Following the successful demonstration of operator performance with the systems during the ISV, the new system is implemented at the plant, first in the training simulator and then in the main control room.

  17. Crystallographic Identification and Functional Characterization of Phospholipids as Ligands for the Orphan Nuclear Receptor Steroidogenic Factor-1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong; Choi, Mihwa; Cavey, Greg; Daugherty, Jennifer; Suino, Kelly; Kovach, Amanda; Bingham, Nathan C.; Kliewer, Steven A.; Xu, H.Eric (Van Andel); (U. of Texas-SMED)

    2010-11-10

    The orphan nuclear receptor steroidogenic factor 1 (SF-1) regulates the differentiation and function of endocrine glands. Although SF-1 is constitutively active in cell-based assays, it is not known whether this transcriptional activity is modulated by ligands. Here, we describe the 1.5 {angstrom} crystal structure of the SF-1 ligand binding domain in complex with an LXXLL motif from a coregulator protein. The structure reveals the presence of a phospholipid ligand in a surprisingly large pocket ({approx}1600 {angstrom}{sup 3}), with the receptor adopting the canonical active conformation. The bound phospholipid is readily exchanged and modulates SF-1 interactions with coactivators. Mutations designed to reduce the size of the SF-1 pocket or to disrupt hydrogen bonds with the phospholipid abolish SF-1/coactivator interactions and significantly reduce SF-1 transcriptional activity. These findings provide evidence that SF-1 is regulated by endogenous ligands and suggest an unexpected relationship between phospholipids and endocrine development and function.

  18. Mutations in the Hepatocyte Nuclear Factor-1β Gene Are Associated with Familial Hypoplastic Glomerulocystic Kidney Disease

    Science.gov (United States)

    Bingham, Coralie; Bulman, Michael P.; Ellard, Sian; Allen, Lisa I. S.; Lipkin, Graham W.; Hoff, William G. van't; Woolf, Adrian S.; Rizzoni, Gianfranco; Novelli, Giuseppe; Nicholls, Anthony J.; Hattersley, Andrew T.

    2001-01-01

    Familial glomerulocystic kidney disease (GCKD) is a dominantly inherited condition characterized by glomerular cysts and variable renal size and function; the molecular genetic etiology is unknown. Mutations in the gene encoding hepatocyte nuclear factor (HNF)–1β have been associated with early-onset diabetes and nondiabetic renal disease—particularly renal cystic disease. We investigated a possible role for the HNF-1β gene in four unrelated GCKD families and identified mutations in two families: a nonsense mutation in exon 1 (E101X) and a frameshift mutation in exon 2 (P159fsdelT). The family members with HNF-1β gene mutations had hypoplastic GCKD and early-onset diabetes or impaired glucose tolerance. We conclude that there is genetic heterogeneity in familial GCKD and that the hypoplastic subtype is a part of the clinical spectrum of the renal cysts and diabetes syndrome that is associated with HNF-1β mutations. PMID:11085914

  19. D-meson nuclear modification factor and v$_2$ in Pb-Pb collisions at the LHC

    CERN Document Server

    Bruna, Elena

    2014-01-01

    We present the ALICE results on open heavy flavour, focusing on the exclusive reconstruction of charmed mesons via displaced decay topologies. These measurements benefit from the large Pb-Pb statistics collected in 2011. The results on the nuclear modification factor Raa for D mesons indicate a suppression of their yield in central collisions relative to binary-scaled pp collisions in a large momentum range. The comparison to the Raa of non-prompt J/psi (measured with CMS) indicates a difference in the suppression of charm and beauty, as expected according to the predicted mass hierarchy in energy loss models. The measurement of the azimuthal anisotropy of charmed mesons is also discussed. The observed positive second Fourier harmonic v2 for transverse momentum 2

  20. Human factors perspective on the reliability of NDT in nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Bertovic, Marija; Mueller, Christina [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Fahlbruch, Babette [TUEV NORD SysTec GmbH und Co. KG, Berlin (Germany)

    2013-04-01

    A series of research studies have been conducted over the course of five years venturing into the fields of in-service inspections (ISI) in nuclear power plants (NPPs) and inspection of manufactured components to be used for permanent nuclear waste disposal. This paper will provide an overview of four research studies, present selected experimental results and suggest ways for optimization of the NDT process, procedures, and training. The experimental results have shown that time pressure and mental workload negatively influence the quality of the manual inspection performance. Noticeable were influences of the organization of the working schedule, communication, procedures, supervision, and demonstration task. Customized Failure Mode and Effects Analysis (FMEA) was used to identify potential human risks, arising during acquisition and evaluation of NDT data. Several preventive measures were suggested and furthermore discussed, with respect to problems that could arise from their application. Experimental results show that implementing human redundancy in critical tasks, such as defect identification, as well as using an automated aid (software) to help operators in decision making about the existence and size of defects, could lead to other kinds of problems, namely social loafing and automation bias that might affect the reliability of NDT in an undesired manner. Shifting focus from the operator, as the main source of errors, to the organization, as the underlying source, is a recommended approach to ensure safety. (orig.) [German] Der Artikel beschreibt eine arbeitspsychologische Analyse des Einflusses der menschlichen Faktoren auf die Zuverlaessigkeit zerstoerungsfreier Pruefungen (ZfP). Im Zeitraum von 5 Jahren wurde eine Serie von Untersuchungen zur wiederkehrenden Pruefung in Kernkraftwerken sowie zur Pruefung von Komponenten fuer die Endlagerung von radioaktivem Abfall durchgefuehrt. Dieser Beitrag gibt einen Ueberblick ueber vier Studien, diskutiert

  1. Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein.

    Science.gov (United States)

    He, Xiaoqing; Ma, Qiang

    2012-11-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor activated by a range of oxidants and electrophiles. The transcriptional response to endogenous oxidative cues by Nrf2 plays an important role in mammalian redox physiology and oxidative pathology. Hyperglycemia induces oxidative stress in the heart where it leads to apoptosis and ultimately cardiomyopathy. Here we investigated the mechanism by which Nrf2 suppresses oxidative stress in diabetic mouse heart. Knockout (KO) of Nrf2 induced oxidative stress and apoptosis in KO heart; diabetes further increased oxidative damage. A pathway-focused gene array revealed that Nrf2 controls the expression of 24 genes in the heart, including the gene encoding thioredoxin-interacting protein (TXNIP). Nrf2 suppressed the basal expression of Txnip in the heart and blocked induction of Txnip by high glucose by binding to an antioxidant response element (ARE) (-1286 to -1276) of the Txnip promoter. Binding of Nrf2 to ARE also suppressed the binding of MondoA to the carbohydrate response element with or without high glucose. TXNIP promoted reactive oxygen species production and apoptosis by inhibiting thioredoxin. On the other hand, Nrf2 boosted thioredoxin activity by inhibiting Txnip. The findings revealed, for the first time, that Nrf2 is a key gatekeeper of Txnip transcription, suppressing both its basal expression and MondoA-driven induction to control the thioredoxin redox signaling in diabetes.

  2. Association of Nuclear Factor-Erythroid 2-Related Factor 2, Thioredoxin Interacting Protein, and Heme Oxygenase-1 Gene Polymorphisms with Diabetes and Obesity in Mexican Patients.

    Science.gov (United States)

    Jiménez-Osorio, Angélica Saraí; González-Reyes, Susana; García-Niño, Wylly Ramsés; Moreno-Macías, Hortensia; Rodríguez-Arellano, Martha Eunice; Vargas-Alarcón, Gilberto; Zúñiga, Joaquín; Barquera, Rodrigo; Pedraza-Chaverri, José

    2016-01-01

    The nuclear factor-erythroid 2- (NF-E2-) related factor 2 (Nrf2) is abated and its ability to reduce oxidative stress is impaired in type 2 diabetes and obesity. Thus, the aim of this study was to explore if polymorphisms in Nrf2 and target genes are associated with diabetes and obesity in Mexican mestizo subjects. The rs1800566 of quinone oxidoreductase 1 (NQO1) gene, rs7211 of thioredoxin interacting protein (TXNIP) gene, rs2071749 of heme oxygenase-1 (HMOX1) gene, and the rs6721961 and the rs2364723 from Nrf2 gene were genotyped in 627 diabetic subjects and 1020 controls. The results showed that the rs7211 polymorphism is a protective factor against obesity in nondiabetic subjects (CC + CT versus TT, OR = 0.40, P = 0.005) and in women (CC versus CT + TT, OR = 0.7, P = 0.016). TT carriers had lower high-density lipoprotein cholesterol levels and lower body mass index. The rs2071749 was positively associated with obesity (AA versus AG + GG, OR = 1.25, P = 0.026). Finally, the rs6721961 was negatively associated with diabetes in men (CC versus CA + AA, OR = 0.62, P = 0.003). AA carriers showed lower glucose concentrations. No association was found for rs1800566 and rs2364723 polymorphisms. In conclusion, the presence of Nrf2 and related genes polymorphisms are associated with diabetes and obesity in Mexican patients.

  3. Association of Nuclear Factor-Erythroid 2-Related Factor 2, Thioredoxin Interacting Protein, and Heme Oxygenase-1 Gene Polymorphisms with Diabetes and Obesity in Mexican Patients

    Directory of Open Access Journals (Sweden)

    Angélica Saraí Jiménez-Osorio

    2016-01-01

    Full Text Available The nuclear factor-erythroid 2- (NF-E2- related factor 2 (Nrf2 is abated and its ability to reduce oxidative stress is impaired in type 2 diabetes and obesity. Thus, the aim of this study was to explore if polymorphisms in Nrf2 and target genes are associated with diabetes and obesity in Mexican mestizo subjects. The rs1800566 of NAD(PH:quinone oxidoreductase 1 (NQO1 gene, rs7211 of thioredoxin interacting protein (TXNIP gene, rs2071749 of heme oxygenase-1 (HMOX1 gene, and the rs6721961 and the rs2364723 from Nrf2 gene were genotyped in 627 diabetic subjects and 1020 controls. The results showed that the rs7211 polymorphism is a protective factor against obesity in nondiabetic subjects (CC + CT versus TT, OR = 0.40, P=0.005 and in women (CC versus CT + TT, OR = 0.7, P=0.016. TT carriers had lower high-density lipoprotein cholesterol levels and lower body mass index. The rs2071749 was positively associated with obesity (AA versus AG + GG, OR = 1.25, P=0.026. Finally, the rs6721961 was negatively associated with diabetes in men (CC versus CA + AA, OR = 0.62, P=0.003. AA carriers showed lower glucose concentrations. No association was found for rs1800566 and rs2364723 polymorphisms. In conclusion, the presence of Nrf2 and related genes polymorphisms are associated with diabetes and obesity in Mexican patients.

  4. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y., E-mail: jchan@uci.edu

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.

  5. Cannabinoid receptor-2 selective antagonist negatively regulates receptor activator of nuclear factor kappa B ligand mediated osteoclastogenesis

    Institute of Scientific and Technical Information of China (English)

    GENG De-chun; XU Yao-zeng; YANG Hui-lin; ZHU Guang-ming; WANG Xian-bin; ZHU Xue-song

    2011-01-01

    Background The cannabinoid receptor-2 (CB2) is important for bone remodeling. In this study, we investigated the effects of CB2 selective antagonist (AM630) on receptor activator of nuclear factor kappa B (RANK) ligand (RANKL)induced osteoclast differentiation and the underlying signaling pathway using a monocyte-macrophage cell line-RAW264.7.Methods RAW264.7 was cultured with RANKL for 6 days and then treated with AM630 for 24 hours. Mature osteoclasts were measured by tartrate-resistant acid phosphatase (TRAP) staining using a commercial kit. Total ribonucleic acid (RNA)was isolated and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was done to examine the expression of RANK, cathepsin K (CPK) and nuclear factor kappa B (NF-κB). The extracellular signal-regulated kinase (ERK),phosphorylation of ERK (P-ERK) and NF-κB production were tested by Western blotting. The effect of AM630 on RAW264.7 viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay.Results AM630 did not affect the viability of RAW264.7. However, this CB2 selective antagonist markedly inhibited osteoclast formation and the inhibition rate was dose-dependent. The dose of >100 nmol/L could reduce TRAP positive cells to the levels that were significantly lower than the control. AM630 suppressed the expression of genes associated with osteoclast differentiation and activation, such as RANK and CPK. An analysis of a signaling pathway showed that AM630 inhibited the RANKL-induced activation of ERK, but not NF-κB.Conclusion AM630 could inhibit the osteoclastogenesis from RAW264.7 induced with RANKL.

  6. Pyrrolidine dithiocarbamate attenuates surgery-induced neuroinflammation and cognitive dysfunction possibly via inhibition of nuclear factor κB.

    Science.gov (United States)

    Zhang, J; Jiang, W; Zuo, Z

    2014-03-07

    Surgery induces learning and memory impairment. Neuroinflammation may contribute to this impairment. Nuclear factor κB (NF-κB) is an important transcription factor to regulate the expression of inflammatory cytokines. We hypothesize that inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC) reduces neuroinflammation and the impairment of learning and memory. To test this hypothesis, four-month-old male Fischer 344 rats were subjected to right carotid exploration under propofol and buprenorphine anesthesia. Some rats received two doses of 50mg/kg PDTC given intraperitoneally 30min before and 6h after the surgery. Rats were tested in the Barnes maze and fear conditioning paradigm begun 6days after the surgery. Expression of various proteins related to inflammation was examined in the hippocampus at 24h or 21days after the surgery. Here, surgery, but not anesthesia alone, had a significant effect on prolonging the time needed to identify the target hole during the training sessions of the Barnes maze. Surgery also increased the time for identifying the target hole in the long-term memory test and decreased context-related learning and memory in fear conditioning test. Also, surgery increased nuclear expression of p65, a NF-κB component, decreased cytoplasmic amount of inhibitor of NF-κB, and increased the expression of interleukin-1β, interleukin-6, ionized calcium binding adaptor molecule 1 and active matrix metalloproteinase 9 (MMP-9). Finally, surgery enhanced IgG extravasation in the hippocampus. These surgical effects were attenuated by PDTC. These results suggest that surgery, but not propofol-based anesthesia, induces neuroinflammation and impairment of learning and memory. PDTC attenuates these effects possibly by inhibiting NF-κB activation and the downstream MMP-9 activity.

  7. Combining oral contraceptives with a natural nuclear factor-kappa B inhibitor for the treatment of endometriosis-related pain

    Directory of Open Access Journals (Sweden)

    Maia H Jr

    2013-12-01

    Full Text Available Hugo Maia Jr,1–3 Clarice Haddad,3 Julio Casoy3 1Department of Gynecology and Obstetrics, School of Medicine, Federal University of Bahia, 2Itaigara Memorial Day Hospital, 3Centro de Pesquisas e Assistência em Reprodução Humana (CEPARH, Salvador, Bahia, Brazil Abstract: Endometriosis is a chronic disease in which a persistent state of heightened inflammation is maintained by nuclear factor-kappa B (NF-κB activation. The progestins present in oral contraceptives are potent inhibitors of NF-κB translocation to cell nuclei, while Pycnogenol® (Pinus pinaster acts by blocking post-translational events. In this study, the effects of Pycnogenol on pain scores were investigated in patients with endometriosis using oral contraceptives containing either gestodene or drospirenone in extended regimens. Pain scores were determined using a visual analog scale before and after 3 months of treatment. Oral contraceptives, used alone (groups 1 and 3 or in association with Pycnogenol (groups 2 and 4, resulted in significant decreases in pain scores after 3 months of treatment; however, this reduction was significantly greater in the groups using oral contraceptives + Pycnogenol (groups 2 and 4 compared with those using oral contraceptives alone (groups 1 and 3. In the groups using oral contraceptives alone, 50% of patients became pain-free by the end of the third month of treatment. These results suggest that Pycnogenol increases the efficacy of oral contraceptives for the treatment of endometriosis-related pain. Keywords: Pycnogenol®, aromatase, endometriosis, nuclear factor-kappa B

  8. Genetic basis for developmental homeostasis of germline stem cell niche number: a network of Tramtrack-Group nuclear BTB factors.

    Directory of Open Access Journals (Sweden)

    Mathieu Bartoletti

    Full Text Available The potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs, each made of 8-10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches.

  9. Genetic basis for developmental homeostasis of germline stem cell niche number: a network of Tramtrack-Group nuclear BTB factors.

    Science.gov (United States)

    Bartoletti, Mathieu; Rubin, Thomas; Chalvet, Fabienne; Netter, Sophie; Dos Santos, Nicolas; Poisot, Emilie; Paces-Fessy, Mélanie; Cumenal, Delphine; Peronnet, Frédérique; Pret, Anne-Marie; Théodore, Laurent

    2012-01-01

    The potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC) niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs), each made of 8-10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab) locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches.

  10. DJ-1 Modulates Nuclear Erythroid 2-Related Factor-2-Mediated Protection in Human Primary Alveolar Type II Cells in Smokers.

    Science.gov (United States)

    Bahmed, Karim; Messier, Elise M; Zhou, Wenbo; Tuder, Rubin M; Freed, Curt R; Chu, Hong Wei; Kelsen, Steven G; Bowler, Russell P; Mason, Robert J; Kosmider, Beata

    2016-09-01

    Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation. We analyzed the cell injury obtained from nonsmokers, moderate smokers, and heavy smokers. DJ-1 protects cells from oxidative stress and induces nuclear erythroid 2-related factor-2 (Nrf2) expression, which activates the antioxidant defense system. In ATII cells isolated from moderate smokers, we found DJ-1 expression by RT-PCR, and Nrf2 and heme oxygenase (HO)-1 translocation by Western blotting and immunocytofluorescence. In ATII cells isolated from heavy smokers, we detected Nrf2 and HO-1 cytoplasmic localization. Moreover, we found high oxidative stress, as detected by 4-hydroxynonenal (4-HNE) (immunoblotting), inflammation by IL-8 and IL-6 levels by ELISA, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in ATII cells obtained from heavy smokers. Furthermore, we detected early DJ-1 and late Nrf2 expression after ATII cell treatment with CS extract. We also overexpressed DJ-1 by adenovirus construct and found that this restored Nrf2 and HO-1 expression and induced nuclear translocation in heavy smokers. Moreover, DJ-1 overexpression also decreased ATII cell apoptosis caused by CS extract in vitro. Our results indicate that DJ-1 activates the Nrf2-mediated antioxidant defense system. Furthermore, DJ-1 overexpression can restore the impaired Nrf2 pathway, leading to ATII cell protection in heavy smokers. This suggests a potential therapeutic strategy for targeting DJ-1 in CS-related lung diseases.

  11. Post-fusion treatment with MG132 increases transcription factor expression in somatic cell nuclear transfer embryos in pigs.

    Science.gov (United States)

    You, Jinyoung; Lee, Joohyeong; Kim, Jinyoung; Park, Junhong; Lee, Eunsong

    2010-02-01

    The objective of this study was to examine the effect of post-fusion treatment of somatic cell nuclear transfer (SCNT) oocytes with the proteasomal inhibitor MG132 on maturation promoting factor (MPF) activity, nuclear remodeling, embryonic development, and gene expression of cloned pig embryos. Immediately after electrofusion, SCNT oocytes were treated with MG132 and/or caffeine for 2 hr, vanadate for 0.5 hr, or vanadate for 0.5 hr followed by MG132 for 1.5 hr. Of the MG132 concentrations tested (0-5 microM), the 1 microM concentration showed a higher rate of blastocyst formation (25.9%) than 0 (14.2%), 0.5 (16.9%), and 5 microM (16.9%). Post-fusion treatment with MG132, caffeine, and both MG132 and caffeine improved blastocyst formation (22.1%, 21.4%, and 24.4%, respectively), whereas vanadate treatment inhibited blastocyst formation (6.5%) compared to the control (11.1%). When examined 2 hr after fusion and 1 hr after activation, MPF activity remained at a higher (P fusion with caffeine and/or MG132, but it was decreased by vanadate. The rate of oocytes showing premature chromosome condensation was not altered by MG132 but was decreased by vanadate treatment. In addition, formation of single pronuclei was increased by MG132 compared to control and vanadate treatment. MG132-treated embryos showed increased expression of POU5F1, DPPA2, DPPA3, DPPA5, and NDP52l1 genes compared to control embryos. Our results demonstrate that post-fusion treatment of SCNT oocytes with MG132 prevents MPF degradation and increases expression of transcription factors in SCNT embryos, which are necessary for normal development of SCNT embryos.

  12. Tyrosol ameliorates lipopolysaccharide-induced ocular inflammation in rats via inhibition of nuclear factor (NF)-κB activation

    Science.gov (United States)

    SATO, Kazuaki; MIHARA, Yuko; KANAI, Kazutaka; YAMASHITA, Yohei; KIMURA, Yuya; ITOH, Naoyuki

    2016-01-01

    We evaluated the anti-inflammatory effect of tyrosol (Tyr) on endotoxin-induced uveitis (EIU) in rats. EIU was induced in male Lewis rats by subcutaneous injection of lipopolysaccharide (LPS). Tyr (10, 50 or 100 mg/kg) was intravenously injected 2 hr before, simultaneously and 2 hr after LPS injection. The aqueous humor (AqH) was collected 24 hr after LPS injection; the infiltrating cell number, protein concentration, and tumor necrosis factor (TNF)-α, prostaglandin (PG)-E2 and nitric oxide (NO) levels were determined. Histopathologic examination and immunohistochemical studies for nuclear factor (NF)-κB, inhibitor of κB (IκB)-α, cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in the iris–ciliary body (ICB) were performed at 3 or 24 hr after LPS injection. To further clarify the anti-inflammatory effects, RAW264.7 macrophages were stimulated with LPS in the presence or absence of Tyr. Tyr reduced, in a dose-dependent manner, the infiltrating cell number, protein concentration, and TNF-α, PGE2 and NO levels in AqH and improved histopathologic scores of EIU. Tyr also inhibited LPS-induced COX-2 and iNOS expression, IκB-α degradation and nuclear translocation of activated NF-κB in ICB. Tyr significantly suppressed inflammatory mediator production in the culture medium and COX-2 and iNOS expression and activated NF-κB translocation in LPS-stimulated RAW264.7 cells. These results suggest that Tyr suppresses ocular inflammation of EIU by inhibiting NF-κB activation and subsequent proinflammatory mediator production. PMID:27238160

  13. Functional interplay of SP family members and nuclear factor Y is essential for transcriptional activation of the human Calreticulin gene.

    Science.gov (United States)

    Schardt, Julian A; Keller, Manuela; Seipel, Katja; Pabst, Thomas

    2015-09-01

    Calreticulin (CALR) is a highly conserved, multifunctional protein involved in a variety of cellular processes including the maintenance of intracellular calcium homeostasis, proper protein folding, differentiation and immunogenic cell death. More recently, a crucial role for CALR in the pathogenesis of certain hematologic malignancies was discovered: in clinical subgroups of acute myeloid leukemia, CALR overexpression mediates a block in differentiation, while somatic mutations have been found in the majority of patients with myeloproliferative neoplasms with nonmutated Janus kinase 2 gene (JAK2) or thrombopoietin receptor gene (MPL). However, the mechanisms underlying CALR promoter activation have insufficiently been investigated so far. By dissecting the core promoter region, we could identify a functional TATA-box relevant for transcriptional activation. In addition, we characterized two evolutionary highly conserved cis-regulatory modules (CRMs) within the proximal promoter each composed of one binding site for the transcription factors SP1 and SP3 as well as for the nuclear transcription factor Y (NFY) and we verified binding of these factors to their cognate sites in vitro and in vivo.

  14. Human factors aspects of non-destructive testing in the nuclear power context. A review of research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J.; Edland, A.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    1999-02-01

    The present report reviews literature relevant to human factors and non-destructive testing. The purpose is to cover research that has been done, and to find out what still needs to be done to improve inspection performance. Methods of non-destructive testing (e.g., ultrasonics, eddy current) are complex diagnostic tools used by operators to inspect materials, e.g., components of a nuclear power plant. In order to maintain the integrity of a plant, recurrent inspections are made while the components are still in service. To control the quality of inspections, operators have to follow a procedure that determines what equipment to use and how to use it. The procedure also guides the operator in assessment of indications. There are a number of factors that can affect the inspection quality (e.g., heat, time pressure, and fear of radiation). In earlier studies, experience, organizational practices, and work conditions have been shown to affect on the quality of inspections. The quality of inspection performance is considered to benefit from adapting equipment and procedure to man`s abilities and limitations. Furthermore, work conditions and feedback are considered determinants of performance quality. However, exactly how performance is affected by these factors, and the combined effect of them, need to be studied further. Further research is needed in decision criteria, procedure, and work conditions, and their effect on the quality of inspection performance

  15. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein.

    Science.gov (United States)

    Nabekura, Tomohiro; Hiroi, Takashi; Kawasaki, Tatsuya; Uwai, Yuichi

    2015-03-01

    Drug efflux transporter P-glycoprotein plays an important role in cancer chemotherapy. The nuclear factor-κB (NF-κB) transcription factors play critical roles in development and progression of cancer. In this study, the effects of natural compounds that can inhibit NF-κB activation on the function of P-glycoprotein were investigated using human MDR1 gene-transfected KB/MDR1 cells. The accumulation of daunorubicin or rhodamine 123, fluorescent substrates of P-glycoprotein, in KB/MDR1 cells increased in the presence of caffeic acid phenetyl ester (CAPE), licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol in a concentration-dependent manner. In contrast, lupeol, zerumbone, thymoquinone, emodin, and anethol had no effects. The ATPase activities of P-glycoprotein were stimulated by CAPE, licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol. Tumor necrosis factor (TNF)-α stimulated NF-κB activation was inhibited by CAPE, licochalcone A, anacardic acid, and xanthohumol. KB/MDR1 cells were sensitized to vinblastine cytotoxicity by CAPE, licochalcone A, anacardic acid, xanthohumol, magnolol, and honokiol, showing that these natural NF-κB inhibitors reverse multidrug resistance. These results suggest that natural compounds, such as CAPE, licochalcone A, and anacardic acid, have dual inhibitory effects on the anticancer drug efflux transporter P-glycoprotein and NF-κB activation, and may become useful to enhance the efficacy of cancer chemotherapy.

  16. Corresponding Factors Inlfuencing Crude Oils Assay Using Low-ifeld Nuclear Magnetic Resonance

    Institute of Scientific and Technical Information of China (English)

    Feng Yunxia; Chu Xiaoli; Xu Yupeng; Tian Songbai

    2014-01-01

    In this study, the main factors inlfuencing the measurements by means of the off-line low-ifeld 1H NMR in the lab were discussed base on a robust calibration model established by the PLS algorithm using 255 crude oil samples. The preheat-ing temperature had a great inlfuence on the viscosity of oil samples and the resolution of spectral analysis. The repeatability of spectral measurements was impacted by the metal and wax content of the oil samples. For the case of high wax content oils, the wax species began to crystallize in the course of determination that could affect the repeatability of spectral measurements. These factors have evidenced why the preheating devices and iflter unit are necessary when low ifeld NMR system is used in the online analysis process. The investigation is very important for the on-line application of the low ifeld NMR.

  17. X-ray absorption, nuclear infrared emission and dust covering factors of AGN: testing Unification Schemes

    CERN Document Server

    Mateos, S; Alonso-Herrero, A; Hernán-Caballero, A; Barcons, X; Ramos, A Asensio; Watson, M G; Blain, A; Caccianiga, A; Ballo, L; Braito, V; Almeida, C Ramos

    2016-01-01

    We present the distributions of geometrical covering factors of active galactic nuclei (AGNs) dusty tori (f2) using an X-ray selected complete sample of 227 AGN drawn from the Bright Ultra-hard XMM-Newton Survey. The AGN have z from 0.05 to 1.7, 2-10 keV luminosities between 10^42 and 10^46 erg/s and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS and the Wide-field Infrared Survey Explorer in a previous work we determined the rest-frame 1-20 microns continuum emission from the torus which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGN are intrinsically different, with type 2 AGN having on average tori with higher f2 than type 1 AGN. Nevertheless, ~20 per cent of type 1 AGN have tori with large covering factors while ~23-28 per cent of type 2 AGN have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGN the effect is certainly small. f2 in...

  18. The nuclear factor-erythroid 2-related factor/heme oxygenase-1 axis is critical for the inflammatory features of type 2 diabetes-associated osteoarthritis.

    Science.gov (United States)

    Vaamonde-Garcia, Carlos; Courties, Alice; Pigenet, Audrey; Laiguillon, Marie-Charlotte; Sautet, Alain; Houard, Xavier; Kerdine-Römer, Saadia; Meijide, Rosa; Berenbaum, Francis; Sellam, Jérémie

    2017-09-01

    Epidemiological findings support the hypothesis that type 2 diabetes mellitus (T2DM) is a risk factor for osteoarthritis (OA). Moreover, OA cartilage from patients with T2DM exhibits a greater response to inflammatory stress, but the molecular mechanism is unclear. To investigate whether the antioxidant defense system participates in this response, we examined here the expression of nuclear factor-erythroid 2-related factor (Nrf-2), a master antioxidant transcription factor, and of heme oxygenase-1 (HO-1), one of its main target genes, in OA cartilage from T2DM and non-T2DM patients as well as in murine chondrocytes exposed to high glucose (HG). Ex vivo experiments indicated that Nrf-2 and HO-1 expression is reduced in T2DM versus non-T2DM OA cartilage (0.57-fold Nrf-2 and 0.34-fold HO-1), and prostaglandin E2 (PGE2) release was increased in samples with low HO-1 expression. HG-exposed, IL-1β-stimulated chondrocytes had lower Nrf-2 levels in vitro, particularly in the nuclear fraction, than chondrocytes exposed to normal glucose (NG). Accordingly, HO-1 levels were also decreased (0.49-fold) in these cells. The HO-1 inducer cobalt protoporphyrin IX more efficiently attenuated PGE2 and IL-6 release in HG+IL-1β-treated cells than in NG+IL-1β-treated cells. Greater reductions in HO-1 expression and increase in PGE2/IL-6 production were observed in HG+IL-1β-stimulated chondrocytes from Nrf-2(-/-) mice than in chondrocytes from wild-type mice. We conclude that the Nrf-2/HO-1 axis is a critical pathway in the hyperglucidic-mediated dysregulation of chondrocytes. Impairments in this antioxidant system may explain the greater inflammatory responsiveness of OA cartilage from T2DM patients and may inform treatments of such patients. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. ETV6-PDGFRB and FIP1L1-PDGFRA stimulate human hematopoietic progenitor cell proliferation and differentiation into eosinophils: the role of nuclear factor-κB

    Science.gov (United States)

    Montano-Almendras, Carmen P.; Essaghir, Ahmed; Schoemans, Hélène; Varis, Inci; Noël, Laura A.; Velghe, Amélie I.; Latinne, Dominique; Knoops, Laurent; Demoulin, Jean-Baptiste

    2012-01-01

    Background ETV6-PDGFRB (also called TEL-PDGFRB) and FIP1L1-PDGFRA are receptor-tyrosine kinase fusion genes that cause chronic myeloid malignancies associated with hypereosinophilia. The aim of this work was to gain insight into the mechanisms whereby fusion genes affect human hematopoietic cells and in particular the eosinophil lineage. Design and Methods We introduced ETV6-PDGFRB and FIP1L1-PDGFRA into human CD34+ hematopoietic progenitor and stem cells isolated from umbilical cord blood. Results Cells transduced with these oncogenes formed hematopoietic colonies even in the absence of cytokines. Both oncogenes also stimulated the proliferation of cells in liquid culture and their differentiation into eosinophils. This model thus recapitulated key features of the myeloid neoplasms induced by ETV6-PDGFRB and FIP1L1-PDGFRA. We next showed that both fusion genes activated the transcription factors STAT1, STAT3, STAT5 and nuclear factor-κB. Phosphatidylinositol-3 kinase inhibition blocked nuclear factor-κB activation in transduced progenitor cells and patients’ cells. Nuclear factor-κB was also activated in the human FIP1L1-PDGFRA-positive leukemia cell line EOL1, the proliferation of which was blocked by borte-zomib and the IκB kinase inhibitor BMS-345541. A mutant IκB that prevents nuclear translocation of nuclear factor-κB inhibited cell growth and the expression of eosinophil markers, such as the interleukin-5 receptor and eosinophil peroxidase, in progenitors transduced with ETV6-PDGFRB. In addition, several potential regulators of this process, including HES6, MYC and FOXO3 were identified using expression microarrays. Conclusions We show that human CD34+ cells expressing PDGFR fusion oncogenes proliferate autonomously and differentiate towards the eosinophil lineage in a process that requires nuclear factor-κB. These results suggest new treatment possibilities for imatinib-resistant myeloid neoplasms associated with PDGFR mutations. PMID:22271894

  20. Reciprocal regulation of nuclear factor kappa B and its inhibitor ZAS3 after peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Madiai Francesca

    2006-01-01

    Full Text Available Abstract Background NF-κB binds to the κB motif to regulate transcription of genes involved in growth, immunity and inflammation, and plays a pivotal role in the production of pro-inflammatory cytokines after nerve injuries. The zinc finger protein ZAS3 also binds to the κB or similar motif. In addition to competition for common DNA sites, in vitro experiments have shown that ZAS3 can inhibit NF-κB via the association with TRAF2 to inhibit the nuclear translocation of NF-κB. However, the physiological significance of the ZAS3-mediated inhibition of NF-κB has not been demonstrated. The purpose of this study is to characterize ZAS3 proteins in nervous tissues and to use spinal nerve ligation, a neuropathic pain model, to demonstrate a functional relationship between ZAS3 and NF-κB. Results Immunohistochemical experiments show that ZAS3 is expressed in specific regions of the central and peripheral nervous system. Abundant ZAS3 expression is found in the trigeminal ganglion, hippocampal formation, dorsal root ganglia, and motoneurons. Low levels of ZAS3 expressions are also found in the cerebral cortex and in the grey matter of the spinal cord. In those nervous tissues, ZAS3 is expressed mainly in the cell bodies of neurons and astrocytes. Together with results of Western blot analyses, the data suggest that ZAS3 protein isoforms with differential cellular distribution are produced in a cell-specific manner. Further, neuropathic pain confirmed by persistent mechanical allodynia was manifested in rats seven days after L5 and L6 lumbar spinal nerve ligation. Changes in gene expression, including a decrease in ZAS3 and an increase in the p65 subunit of NF-κB were observed in dorsal root ganglion ipsilateral to the ligation when compared to the contralateral side. Conclusion ZAS3 is expressed in nervous tissues involved in cognitive function and pain modulation. The down-regulation of ZAS3 after peripheral nerve injury may lead to activation of

  1. Nuclear DNA in the determination of weighing factors to estimate exergy from organisms biomass

    OpenAIRE

    2000-01-01

    The application of ecological exergy as a suitable system-oriented development indicator of ecosystems and the estimation proposals from biomass are revised. DNA contents (C-values) of several groups of organisms are figured, either determined by flow cytometry or taken from literature. The applicability of DNA contents for determination of weighing factors to estimate ecological exergy from the biomass of organisms, as proposed by [Marques, J.C., M.Â. Pardal, S.N. Neilsen, S.E. Jørgensen, 19...

  2. Insertion of a nuclear factor kappa B DNA nuclear-targeting sequence potentiates suicide gene therapy efficacy in lung cancer cell lines

    DEFF Research Database (Denmark)

    Cramer, F; Christensen, C L; Poulsen, T T

    2012-01-01

    Lung cancer currently causes the majority of cancer-related deaths worldwide and new treatments are in high demand. Gene therapy could be a promising treatment but currently lacks sufficient efficiency for clinical use, primarily due to limited cellular and nuclear DNA delivery. In the present...... improve plasmid nuclear delivery and enhance the therapeutic effect of a validated transcriptionally cancer-targeted suicide gene therapy system. A clear correlation between the number of inserted NFκB-binding sites and the therapeutic effect of the suicide system was observed in both small cell lung....... This is to our knowledge the first time a DTS strategy has been implemented for suicide gene therapy....

  3. Influence of Insulin-like Growth Factor 1 on Nuclear Maturation of Germinal Vesicle Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    R mahmoudi

    2014-09-01

    Full Text Available Background & aim: In vitro maturation and fertilization of oocytes play an important role in reproductive biotechnology. The aim of this study is to define the IGF-1 effect on in vitro maturation, fertilization and development of mice immature oocytes to 2-cells in TCM199 medium cultures. Methods: In this study 4 week old NMRI mice were used. Ovaries stimulation carried out using PMSG. GV oocytes with or without cumulus cells were isolated from ovaries and cultured in TCM199 in presence of 100 ng IGF-1 for 24hr.The oocytes (MII were inseminated with sperm in T6 medium for fertilization and development of 2-cells stage and they were investigated under inverted microscope. Data analysis was performed by using Chi- 2 test. Results: In cumulus cell group and in the presence of insulin-like growth factor fertilization of oocytes, forming embryos and the formation of 2-cells compared to the group without cumulus cells significantly increased (p < 0.05. Conclusion: As the results showed oocytes with cumulus cells in the presence of insulin-like growth factor enhances maturation, fertilization and embryonic development in 2-cells oocytes compared to group without cumulus cells TCM199.

  4. Niacin inhibits vascular inflammation via downregulating nuclear transcription factor-κB signaling pathway.

    Science.gov (United States)

    Si, Yanhong; Zhang, Ying; Zhao, Jilong; Guo, Shoudong; Zhai, Lei; Yao, Shutong; Sang, Hui; Yang, Nana; Song, Guohua; Gu, Jue; Qin, Shucun

    2014-01-01

    The study aimed to investigate the effect of niacin on vascular inflammatory lesions in vivo and in vitro as well as its lipid-regulating mechanism. In vivo study revealed that niacin downregulated the levels of inflammatory factors (IL-6 and TNF-α) in plasma, suppressed protein expression of CD68 and NF-κB p65 in arterial wall, and attenuated oxidative stress in guinea pigs that have been fed high fat diet. In vitro study further confirmed that niacin decreased the secretion of IL-6 and TNF-α and inhibited NF-κB p65 and notch1 protein expression in oxLDL-stimulated HUVECs and THP-1 macrophages. Moreover, niacin attenuated oxLDL-induced apoptosis of HUVECs as well. In addition, niacin significantly lessened lipid deposition in arterial wall, increased HDL-C and apoA levels and decreased TG and non-HDL-C levels in plasma, and upregulated the mRNA amount of cholesterol 7 α-hydroxylase A1 in liver of guinea pigs. These data suggest for the first time that niacin inhibits vascular inflammation in vivo and in vitro via downregulating NF-κB signaling pathway. Furthermore, niacin also modulates plasma lipid by upregulating the expression of factors involved in the process of reverse cholesterol transport.

  5. Targeting Nuclear Factor-kappa B to overcome resistance to chemotherapy.

    Directory of Open Access Journals (Sweden)

    Peter eGodwin

    2013-05-01

    Full Text Available Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge to the treatment of cancer patients, especially those with progressive disease. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation and evasion of apoptosis. Preclinical models have demonstrated activation of the NF-κB pathway by several chemotherapy drugs, including platinum based agents, anthracyclines and taxanes. NF-κB is a key transcription factor, playing a role in the development and progression of cancer as well as chemoresistance through the activation of anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anticancer target. Here, we describe the role of NF-κB in the cancer cell and in resistance to chemotherapeutic agents, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signalling by pharmacological intervention will be addressed.

  6. Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-a-induced epithelial-mesenchymal transition of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    R. Dong

    2007-08-01

    Full Text Available The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-a (TNF-a. To evaluate the role of TNF-a in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-a -treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-a treatment. These results showed that TNF-a can promote epithelial-mesenchymal transition (EMT of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB inhibitor aspirin while not affected by the reactive oxygen species (ROS scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBa also blocked the TNF-a-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-a-induced EMT. ROS caused by TNF-a seemed to play a minor role in the TNF-a-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-a - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.

  7. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    Science.gov (United States)

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  8. Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling.

    Science.gov (United States)

    Anderson, Johnathon D; Johansson, Henrik J; Graham, Calvin S; Vesterlund, Mattias; Pham, Missy T; Bramlett, Charles S; Montgomery, Elizabeth N; Mellema, Matt S; Bardini, Renee L; Contreras, Zelenia; Hoon, Madeline; Bauer, Gerhard; Fink, Kyle D; Fury, Brian; Hendrix, Kyle J; Chedin, Frederic; El-Andaloussi, Samir; Hwang, Billie; Mulligan, Michael S; Lehtiö, Janne; Nolta, Jan A

    2016-03-01

    Mesenchymal stem cells (MSC) are known to facilitate healing of ischemic tissue related diseases through proangiogenic secretory proteins. Recent studies further show that MSC derived exosomes function as paracrine effectors of angiogenesis, however, the identity of which components of the exosome proteome responsible for this effect remains elusive. To address this we used high-resolution isoelectric focusing coupled liquid chromatography tandem mass spectrometry, an unbiased high throughput proteomics approach to comprehensively characterize the proteinaceous contents of MSCs and MSC derived exosomes. We probed the proteome of MSCs and MSC derived exosomes from cells cultured under expansion conditions and under ischemic tissue simulated conditions to elucidate key angiogenic paracrine effectors present and potentially differentially expressed in these conditions. In total, 6,342 proteins were identified in MSCs and 1,927 proteins in MSC derived exosomes, representing to our knowledge the first time these proteomes have been probed comprehensively. Multilayered analyses identified several putative paracrine effectors of angiogenesis present in MSC exosomes and increased in expression in MSCs exposed to ischemic tissue-simulated conditions; these include platelet derived growth factor, epidermal growth factor, fibroblast growth factor, and most notably nuclear factor-kappaB (NFkB) signaling pathway proteins. NFkB signaling was identified as a key mediator of MSC exosome induced angiogenesis in endothelial cells by functional in vitro validation using a specific inhibitor. Collectively, the results of our proteomic analysis show that MSC derived exosomes contain a robust profile of angiogenic paracrine effectors, which have potential for the treatment of ischemic tissue-related diseases.

  9. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyan [The First Affiliated Hospital, China Medical University, Shenyang, Liaoning (China); The Hamner Institutes for Health Sciences, Research Triangle Park, NC (United States); Xu, Yuanyuan, E-mail: yyxu@cmu.edu.cn [School of Public Health, China Medical University, Shenyang, Liaoning (China); Zheng, Hongzhi [The First Affiliated Hospital, China Medical University, Shenyang, Liaoning (China); The Hamner Institutes for Health Sciences, Research Triangle Park, NC (United States); Fu, Jingqi; Hou, Yongyong; Wang, Huihui [School of Public Health, China Medical University, Shenyang, Liaoning (China); Zhang, Qiang [Rollins School of Public Health, Emory University, Atlanta, GA (United States); Yamamoto, Masayuki [Graduate School of Medicine, Tohoku University, Sendai (Japan); Pi, Jingbo, E-mail: jbpi@cmu.edu.cn [School of Public Health, China Medical University, Shenyang, Liaoning (China); The Hamner Institutes for Health Sciences, Research Triangle Park, NC (United States)

    2016-09-09

    Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-double knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. - Highlights: • Nrf2/Ucp2 deficiency leads to alteration of glutathione homeostasis. • Nrf2 regulates expression of genes in glutathione generation and utilization. • Ucp2 affects glutathione metabolism by regulating hepatic efflux of glutathione. • Nrf2 deficiency may not aggravate oxidative stress in Ucp2-deficient mice.

  10. Transforming growth factor-β1 suppresses hepatitis B virus replication by the reduction of hepatocyte nuclear factor-4α expression.

    Directory of Open Access Journals (Sweden)

    Ming-Hsiang Hong

    Full Text Available Several studies have demonstrated that cytokine-mediated noncytopathic suppression of hepatitis B virus (HBV replication may provide an alternative therapeutic strategy for the treatment of chronic hepatitis B infection. In our previous study, we showed that transforming growth factor-beta1 (TGF-β1 could effectively suppress HBV replication at physiological concentrations. Here, we provide more evidence that TGF-β1 specifically diminishes HBV core promoter activity, which subsequently results in a reduction in the level of viral pregenomic RNA (pgRNA, core protein (HBc, nucleocapsid, and consequently suppresses HBV replication. The hepatocyte nuclear factor 4alpha (HNF-4α binding element(s within the HBV core promoter region was characterized to be responsive for the inhibitory effect of TGF-β1 on HBV regulation. Furthermore, we found that TGF-β1 treatment significantly repressed HNF-4α expression at both mRNA and protein levels. We demonstrated that RNAi-mediated depletion of HNF-4α was sufficient to reduce HBc synthesis as TGF-β1 did. Prevention of HNF-4α degradation by treating with proteasome inhibitor MG132 also prevented the inhibitory effect of TGF-β1. Finally, we confirmed that HBV replication could be rescued by ectopic expression of HNF-4α in TGF-β1-treated cells. Our data clarify the mechanism by which TGF-β1 suppresses HBV replication, primarily through modulating the expression of HNF-4α gene.

  11. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5

    Directory of Open Access Journals (Sweden)

    Takashi Ashino

    2014-01-01

    Full Text Available Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2–deficient (Nrf2−⧸− mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(PH-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2−⧸− mouse livers were lower than that in wild-type mouse livers. Nrf2−⧸− mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.

  12. Water extract isolated from Chelidonium majus enhances nitric oxide and tumour necrosis factor-alpha production via nuclear factor-kappaB activation in mouse peritoneal macrophages.

    Science.gov (United States)

    Chung, Hwan-Suck; An, Hyo-Jin; Jeong, Hyun-Ja; Won, Jin-Hee; Hong, Seung-Heon; Kim, Hyung-Min

    2004-01-01

    Chelidonium majus is used to treat several inflammatory diseases and tumours. We have examined the effect of C. majus on nitric oxide (NO) production using mouse peritoneal macrophages. When C. majus was used in combination with recombinant interferon-gamma (rIFN-gamma, 10 U mL(-1)), there was a marked cooperative induction of NO production. Treatment of rIFN-gamma plus C. majus (1 mgmL(-1)) in macrophages caused a significant increase in tumour necrosis factor-alpha (TNF-alpha) production. The increased production of NO and TNF-alpha from rIFN-gamma plus C. majus-stimulated cells was almost completely inhibited by nuclear factor-kappaB (NF-kappaB) inhibitor, pyrrolidine dithiocarbamate (100 microM). These findings demonstrated that C. majus increased the production of NO and TNF-alpha by rIFN-gamma-primed macrophages and suggested that NF-kappaB played a critical role in mediating the effects of C. majus.

  13. Nuclear factor I-C (NFIC) regulates dentin sialophosphoprotein (DSPP) and E-cadherin via control of Krüppel-like factor 4 (KLF4) during dentinogenesis.

    Science.gov (United States)

    Lee, Hye-Kyung; Lee, Dong-Seol; Park, Su-Jin; Cho, Kwang-Hee; Bae, Hyun-Sook; Park, Joo-Cheol

    2014-10-10

    Odontoblasts are a type of terminally differentiated matrix-secreting cells. A number of molecular mechanisms are involved in the differentiation of odontoblasts. Several studies demonstrated that Krüppel-like factor 4 (KLF4) promotes odontoblast differentiation via control of dentin sialophosphoprotein (DSPP). Because nuclear factor I-C (NFIC) is also known to control DSPP, we investigated the relationship between NFIC and KLF4 during odontoblast differentiation. Klf4 mRNA expression was significantly decreased in Nfic(-/-) pulp cells compared with wild type cells. In immunohistochemistry assays, dentin matrix protein 1 (Dmp1), and DSP protein expression was barely observed in Nfic(-/-) odontoblasts and dentin matrix. Nfic bound directly to the Klf4 promoter and stimulated Klf4 transcriptional activity, thereby regulating Dmp1 and DSPP expression during odontoblast differentiation. Nfic or Klf4 overexpression promoted mineralized nodule formation in MDPC-23 cells. In addition, Nfic overexpression also decreased Slug luciferase activity but augmented E-cadherin promoter activity via up-regulation of Klf4 in odontoblasts. Our study reveals important signaling pathways during dentinogenesis: the Nfic-Klf4-Dmp1-Dspp and the Nfic-Klf4-E-cadherin pathways in odontoblasts. Our results indicate the important role of NFIC in regulating KLF4 during dentinogenesis.

  14. Role of tumour necrosis factor receptor-1 and nuclear factor-κB in production of TNF-α-induced pro-inflammatory microparticles in endothelial cells.

    Science.gov (United States)

    Lee, S K; Yang, S-H; Kwon, I; Lee, O-H; Heo, J H

    2014-09-02

    Tumour necrosis factor-α (TNF-α) is upregulated in many inflammatory diseases and is also a potent agent for microparticle (MP) generation. Here, we describe an essential role of TNF-α in the production of endothelial cell-derived microparticles (EMPs) in vivo and the function of TNF-α-induced EMPs in endothelial cells. We found that TNF-α rapidly increased blood levels of EMPs in mice. Treatment of human umbilical vein endothelial cells (HUVECs) with TNF-α also induced EMP formation in a time-dependent manner. Silencing of TNF receptor (TNFR)-1 or inhibition of the nuclear factor-κB (NF-κB) in HUVECs impaired the production of TNF-α-induced EMP. Incubation of HUVECs with PKH-67-stained EMPs showed that endothelial cells readily engulfed EMPs, and the engulfed TNF-α-induced EMPs promoted the expression of pro-apoptotic molecules and upregulated intercellular adhesion molecule-1 level on the cell surface, which led to monocyte adhesion. Collectively, our findings indicate that the generation of TNF-α-induced EMPs was mediated by TNFR1 or NF-κB and that EMPs can contribute to apoptosis and inflammation of endothelial cells.

  15. Restoring apoptosis in pancreatic cancer cells by targeting the nuclear factor-kappaB signaling pathway with the anti-epidermal growth factor antibody IMC-C225.

    Science.gov (United States)

    Sclabas, Guido M; Fujioka, Shuichi; Schmidt, Christian; Fan, Zhen; Evans, Douglas B; Chiao, Paul J

    2003-01-01

    We have previously demonstrated that RelA is constitutively activated in the majority of human pancreatic cancers and plays an important role in tumorigenesis and metastasis. The antiapoptotic gene bcl-xl is a downstream target of RelA, and regulation of bcl-xl transcription is mediated directly by the nuclear factor kappaB (NF-kappaB) binding sites present in the upstream promoter element of the bcl-xl gene. In this study we investigated the effects of inhibition of epidermal growth factor receptor (EGFR) signaling pathway with the anti-EGFR monoclonal antibody IMC-C225 on constitutive NF-kappaB activation and regulation of apoptosis-related genes in human pancreatic cancer cells. We found that activation of EGFR can be blocked with the anti-EGFR antibody IMC-C225 in the human pancreatic cancer cell line MDA Panc-28, leading to a marked decrease in constitutive NF-kappaB DNA binding activity. Our data also suggest that downregulation of NF-kappaB DNA binding activity by IMC-C225 leads to a decrease in bcl-xl and bfl-1 expression. Therefore, targeting the NF-kappaB signaling pathway with an anti-EGFR antibody may be one strategy to restore apoptosis in human pancreatic cancer cells, thereby enhancing the effect of chemotherapy and radiation therapy.

  16. Involvement of Nuclear Factor κB, not Pregnane X Receptor, in Inflammation-Mediated Regulation of Hepatic Transporters.

    Science.gov (United States)

    Abualsunun, Walaa A; Piquette-Miller, Micheline

    2017-10-01

    Endotoxin-induced inflammation decreases the hepatic expression of several drug transporters, metabolizing enzymes, and nuclear transcription factors, including pregnane X receptor (PXR). As the nuclear factor κB (NF-κB) is a major mediator of inflammation, and reciprocal repression between NF-κB and PXR signaling has been reported, the objective of this study was to examine whether NF-κB directly regulates the expression of transporters or exerts its effect indirectly via PXR. PXR-deficient (-/-) or wild-type (+/+) male mice were dosed with the selective NF-κB inhibitor PHA408 (40 mg/kg i.p.) or vehicle (n = 5-8/group), followed by endotoxin (5 mg/kg) or saline 30 minutes later. Animals were sacrificed at 6 hours; samples were analyzed using quantitative reverse-transcription polymerase chain reaction and Western blots. Endotoxin induced tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and inducible nitric oxide synthase in PXR (+/+) and (-/-) mice. As compared with saline controls, endotoxin administration imposed 30%-70% significant decreases in the expression of Abcb1a, Abcb11, Abcc2, Abcc3, Abcg2, Slc10a1, Slco2b1, and Slco1a4 in PXR (+/+) and (-/-) mice to a similar extent. Preadministration of PHA408 attenuated endotoxin-mediated changes in both PXR (+/+) and (-/-) mice (P < 0.05). Our findings demonstrate that endotoxin activates NF-κB and imposes a downregulation of numerous ATP-binding cassette and solute carrier transporters through NF-κB in liver and is independent of PXR. Moreover, inhibition of NF-κB attenuates the impact of endotoxin on transporter expression. As NF-κB activation is involved in many acute and chronic disease states, disease-induced changes in transporter function may be an important source of variability in drug response. This information may be useful in predicting potential drug-disease interactions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Nuclear factor-kappa B inhibition can enhance apoptosis of differentiated thyroid cancer cells induced by 131I.

    Directory of Open Access Journals (Sweden)

    Zhaowei Meng

    Full Text Available OBJECTIVE: To evaluate changes of nuclear factor-kappa B (NF-κB during radioiodine 131 ((131I therapy and whether NF-κB inhibition could enhance (131I-induced apoptosis in differentiated thyroid cancer (DTC cells in a synergistic manner. METHODS: Three human DTC cell lines were used. NF-κB inhibition was achieved by using a NF-κB inhibitor (Bay 11-7082 or by p65 siRNA transfection. Methyl-thiazolyl-tetrazolium assay was performed for cell viability assessment. DNA-binding assay, luciferase reporter assay, and Western blot were adopted to determine function and expression changes of NF-κB. Then NF-κB regulated anti-apoptotic factors XIAP, cIAP1, and Bcl-xL were measured. Apoptosis was analyzed by Western blot for caspase 3 and PARP, and by flow cytometry as well. An iodide uptake assay was performed to determine whether NF-κB inhibition could influence radioactive iodide uptake. RESULTS: The methyl-thiazolyl-tetrazolium assay showed significant decrease of viable cells by combination therapy than by mono-therapies. The DNA-binding assay and luciferase reporter assay showed enhanced NF-κB function and reporter gene activities due to (131I, yet significant suppression was achieved by NF-κB inhibition. Western blot proved (131I could increase nuclear NF-κB concentration, while NF-κB inhibition reduced NF-κB concentration. Western blot also demonstrated significant up-regulation of XIAP, cIAP1, and Bcl-xL after (131I therapy. And inhibition of NF-κB could significantly down-regulate these factors. Finally, synergism induced by combined therapy was displayed by significant enhancements of cleaved caspase 3 and PARP from Western blot, and of Annexin V positively staining from flow cytometry. The iodine uptake assay did not show significant changes when NF-κB was inhibited. CONCLUSION: We demonstrated that (131I could induce NF-κB activation, which would attenuate (131I efficacy in DTC cells. NF-κB inhibition by Bay 11-7082 or by p65 si

  18. Polymorphisms of nuclear factor-κB family genes are associated with development of multiple myeloma and treatment outcome in patients receiving bortezomib-based regimens.

    Science.gov (United States)

    Du, Juan; Huo, Jun; Shi, Jun; Yuan, Zhengang; Zhang, Chunyang; Fu, Weijun; Jiang, Hua; Yi, Qing; Hou, Jian

    2011-05-01

    The nuclear factor-κB pathway is an important signaling pathway activated in multiple myeloma cells. Bortezomib inhibits nuclear factor-κB activation and is an important antimyeloma agent. Nevertheless, patients treated with this drug eventually relapse. We hypothesized that the nuclear factor-κB pathway may be associated with multiple myeloma and patients' responses to bortezomib. In this study we analyzed 26 polymorphism sites of nuclear factor-κB family member genes, IKBα, NFKB2, and TRAF3, in 527 unrelated Chinese Han subjects (252 with multiple myeloma and 275 controls) using a Sequenom MassARRAY genotyping assay, and examined the outcome of 83 patients treated with a bortezomib-based regimen. Single nucleotide polymorphisms in the TRAF3 rs12147254 A allele and a specific haplotype 1 of TRAF3 [GAACAG] are associated with a decreased risk of multiple myeloma (odds ratio 0.709, PNuclear factor-κB family member gene polymorphisms play a role in the development of multiple myeloma and in the response to bortezomib therapy.

  19. Nuclear factor XIIIa staining (clone AC-1A1 mouse monoclonal) is a sensitive and specific marker to discriminate sebaceous proliferations from other cutaneous clear cell neoplasms.

    Science.gov (United States)

    Uhlenhake, Elizabeth E; Clark, Lindsey N; Smoller, Bruce R; Shalin, Sara C; Gardner, Jerad M

    2016-08-01

    Sebaceous carcinoma is a rare but serious malignancy that may be difficult to diagnose when poorly differentiated. Other epithelial tumors with clear cell change may mimic sebaceous carcinoma. Few useful or specific immunohistochemical markers for sebaceous differentiation are available. Nuclear staining with factor XIIIa (clone AC-1A1) was recently found to be a highly sensitive marker of sebaceous differentiation. We evaluated nuclear factor XIIIa (AC-1A1) staining in sebaceous neoplasms vs. other cutaneous clear cell tumors. We stained 27 sebaceous proliferations: sebaceous hyperplasia (7), sebaceous adenoma (8), sebaceoma (5), sebaceous carcinoma (7). We also stained 67 tumors with clear cell change: basal cell carcinoma (8), squamous cell carcinoma (8), hidradenoma (7), desmoplastic trichilemmoma (2), trichilemmoma (10), trichilemmal carcinoma (3), clear cell acanthoma (9), atypical fibroxanthoma (1), syringoma (8), trichoepithelioma (1), metastatic renal cell carcinoma (2), and nevi with balloon cell change (8). Nuclear factor XIIIa (AC-1A1) staining was present in 100% of sebaceous proliferations; 96% displayed strong staining. Non-sebaceous clear cell tumors were negative or only weakly positive with factor XIIIa (AC-1A1) in 95.5%; only 4.5% showed strong staining. This suggests that strong nuclear factor XIIIa (AC-1A1) staining is a sensitive and specific marker of sebaceous neoplasms vs. other clear cell tumors.

  20. The Impact of Non-nuclear Factors on the Follow-up Nuclear Disarmament Negotiations between the U.S.and Russia

    Institute of Scientific and Technical Information of China (English)

    Mou; Changlin

    2014-01-01

    <正>In April 2010,the United States and Russia officially signed the New START Treaty in Prague,the capital of Czech.According to the Treaty,both the United States and Russia should reduce their deployed strategic nuclear warheads to 1550 and reduce their strategic delivery vehicles to 800(among which the deployed strategic vehicles should be reduced to 700.).

  1. Real-time monitoring of nuclear factor kappaB activity in cultured cells and in animal models.

    Science.gov (United States)

    Badr, Christian E; Niers, Johanna M; Tjon-Kon-Fat, Lee-Ann; Noske, David P; Wurdinger, Thomas; Tannous, Bakhos A

    2009-01-01

    Nuclear factor kappaB (NF-kappaB) is a transcription factor that plays a major role in many human disorders, including immune diseases and cancer. We designed a reporter system based on NF-kappaB responsive promoter elements driving expression of the secreted Gaussia princeps luciferase (Gluc). We show that this bioluminescent reporter is a highly sensitive tool for noninvasive monitoring of the kinetics of NF-kappaB activation and inhibition over time, both in conditioned medium of cultured cells and in the blood and urine of animals. NF-kappaB activation was successfully monitored in real time in endothelial cells in response to tumor angiogenic signaling, as well as in monocytes in response to inflammation. Further, we demonstrated dual blood monitoring of both NF-kappaB activation during tumor development as correlated to tumor formation using the NF-kappaB Gluc reporter, as well as the secreted alkaline phosphatase reporter. This NF-kappaB reporter system provides a powerful tool for monitoring NF-kappaB activity in real time in vitro and in vivo.

  2. Neuroprotective effects of salidroside on focal cerebral ischemia/reperfusion injury involves the nuclear erythroid 2-related factor 2 pathway

    Directory of Open Access Journals (Sweden)

    Jing Han

    2015-01-01

    Full Text Available Salidroside, the main active ingredient extracted from Rhodiola crenulata, has been shown to be neuroprotective in ischemic cerebral injury, but the underlying mechanism for this neuroprotection is poorly understood. In the current study, the neuroprotective effect of salidroside on cerebral ischemia-induced oxidative stress and the role of the nuclear factor erythroid 2-related factor 2 (Nrf2 pathway was investigated in a rat model of middle cerebral artery occlusion. Salidroside (30 mg/kg reduced infarct size, improved neurological function and histological changes, increased activity of superoxide dismutase and glutathione-S-transferase, and reduced malon-dialdehyde levels after cerebral ischemia and reperfusion. Furthermore, salidroside apparently increased Nrf2 and heme oxygenase-1 expression. These results suggest that salidroside exerts its neuroprotective effect against cerebral ischemia through anti-oxidant mechanisms and that activation of the Nrf2 pathway is involved. The Nrf2/antioxidant response element pathway may become a new therapeutic target for the treatment of ischemic stroke.

  3. Pf-Rel, a Rel/Nuclear Factor-κB Homolog Identified from the Pearl Oyster, Pinctada fucata

    Institute of Scientific and Technical Information of China (English)

    Xi WU; Xunhao XIONG; Liping XIE; Rongqing ZHANG

    2007-01-01

    Transcription factor Rel/nuclear factor-kappa B (NF-κB) has been the focus of many studies since its discovery in 1986. Different homologs of Rel/NF-κB have been found in both vertebrate and invertebrate.A cDNA clone encoding a putative Rel/NF-κB homolog (designated Pf-Rel) was isolated from the pearl oyster, Pinctadafucata. The sequence of Pf-Rel consists of the Rel homology domain, IPT NF-κB domain and C-terminal transactivation domain. Sequence analysis of Pf-Rel shows that it shares high similarity with other Rel/NF-κB family proteins, especially within the conserved domains. Reverse transcription-polymerase chain reaction analysis revealed that Pf-Rel mRNA was expressed ubiquitously. Further in situ hybridization analysis showed that Pf-Rel mRNA was expressed mainly at the outer epithelial cells of the middle fold and the inner epithelial cells of the outer fold. The identification and characterization of pearl oyster Pf-Rel help to further investigate the involvement of Rel/NF-κB in oyster immunity and other biological processes.

  4. Nimbolide Inhibits Nuclear Factor-КB Pathway in Intestinal Epithelial Cells and Macrophages and Alleviates Experimental Colitis in Mice.

    Science.gov (United States)

    Seo, Ji Yeon; Lee, Changhyun; Hwang, Sung Wook; Chun, Jaeyoung; Im, Jong Pil; Kim, Joo Sung

    2016-10-01

    Nimbolide is a limonoid extracted from neem tree (Azadirachta indica) that has antiinflammatory properties. The effect of nimbolide on the nuclear factor-kappa B (NF-κB) pathway in intestinal epithelial cells (IECs), macrophages and in murine colitis models was investigated. The IEC COLO 205, the murine macrophage cell line RAW 264.7, and peritoneal macrophages from interleukin-10-deficient (IL-10(-/-) ) mice were preconditioned with nimbolide and then stimulated with tumor necrosis factor-α (TNF-α) or lipopolysaccharide. Dextran sulfate sodium-induced acute colitis model and chronic colitis model in IL-10(-/-) mice were used for in vivo experiments. Nimbolide significantly suppressed the expression of inflammatory cytokines (IL-6, IL-8, IL-12, and TNF-α) and inhibited the phosphorylation of IκBα and the DNA-binding affinity of NF-κB in IECs and macrophages. Nimbolide ameliorated weight loss, colon shortening, disease activity index score, and histologic scores in dextran sulfate sodium colitis. It also improved histopathologic scores in the chronic colitis of IL-10(-/-) mice. Staining for phosphorylated IκBα was significantly decreased in the colon tissue after treatment with nimbolide in both models. Nimbolide inhibits NF-κB signaling in IECs and macrophages and ameliorates experimental colitis in mice. These results suggest nimbolide could be a potentially new treatment for inflammatory bowel disease. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. A novel glucosamine derivative exerts anti-inflammatory actions via inhibition of nuclear factor-kappaB.

    Science.gov (United States)

    Shin, Jin-A; Hwang, Ji-Sun; Kim, Song-Yi; Oh, Sei-Kwan; Nam, Ghilsoo; Han, Inn-Oc

    2013-08-29

    Glucosamine suppresses lipopolysaccharide (LPS)-induced upregulation of pro-inflammatory mediators both in vivo and in culture systems of mouse microglia or macrophage. In the present study, we show that the novel glucosamine derivative, 2-deoxy-2-[(o-methylbenzylidene)]-β-glucopyranoside (NK-4), significantly reduced LPS-induced production of nitric oxide (NO) in BV2 microglia, RAW264.7 macrophage, and primary cultured peritoneal macrophages cells. NK-4 inhibited LPS-induced upregulation of inducible NO synthase (iNOS), cyclooxygenase-2, interleukin-6, tumor necrosis factor-α, and interleukin-1β in RAW264.7 cells in a time- and concentration-dependent manner. Furthermore, administering NK-4 significantly inhibited the induction of inflammatory cytokine mRNAs in the brains of LPS-injected mice. Although NK-4 inhibited LPS-induced nuclear factor-kappaB (NF-κB) activation, IκB-α degradation was not changed. Instead, NK-4 inhibited LPS-induced DNA-binding activity of NF-κB by suppressing p50 and c-Rel binding to NF-κB binding site of the iNOS promoter.

  6. Nuclear factor kappa B in urine sediment: a useful indicator to detect acute kidney injury in Plasmodium falciparum malaria.

    Science.gov (United States)

    Punsawad, Chuchard; Viriyavejakul, Parnpen

    2014-03-07

    Acute kidney injury (AKI) is one of the major complications of Plasmodium falciparum malaria, especially among non-immune adults. It has recently been revealed that activation of transcription factor nuclear factor kappa B (NF-κB) induces pro-inflammatory gene expression involved in the development of progressive renal inflammatory diseases. The aim of this study was to determine whether urinary sediment NF-κB p65 can act as a biomarker for AKI in patients with P. falciparum malaria. Urinary sediments from malaria patients, including Plasmodium vivax malaria, uncomplicated P. falciparum malaria, complicated P. falciparum malaria without AKI (serum creatinine-Cr falciparum malaria with AKI (Cr ≥3 mg/dl) were used to determine NF-κB p65 level by sandwich enzyme-linked immunosorbent assay (ELISA). Urinary sediments obtained from healthy controls were used as a normal baseline. Correlations between levels of urinary sediment NF-κB p65 and pertinent clinical data were analysed. Urinary sediment NF-κB p65 levels were significantly increased on the day of admission (day 0) and on day 7 post-treatment in complicated P. falciparum malaria patients with AKI, compared with those without AKI (p=0.001, p falciparum malaria.

  7. Hind Limb Unloading Model Alters Nuclear Factor kappa B and Activator Protein-1 Signaling in Mouse Brain

    Science.gov (United States)

    Ramesh, Govindarajan; Vani, Vani; Renard, Renard; Vera, Vera; Wilosn, Wilosn; Ramesh, Govindarajan

    Microgravity induces inflammatory response and also modulates immune functions, which may increase oxidative stress. Exposure to the microgravity environment induces adverse neurological effects. However, there is little research exploring the etiology of neurological effects of exposure to this environment. To explore this area we evaluated changes in Nuclear Factor kappa B, Activator Protein 1, MAPP kinase and N terminal c-Jun kinase in mouse brain exposed to a simulated microgravity environment using the hindlimb unloading model. BALB/c male mice were randomly assigned to hindlimb unloading group (n=12) and control group (n=12) to simulate a microgravity environment, for 7 days. Changes observed in NF-κB, AP- 1 DNA binding, MAPKK and N terminal c-Jun kinase were measured using electrophoretic mobility shift assay (EMSA) and western blot analysis and compared to unexposed brain regions. Hindlimb unloading exposed mice showed significant increases in generated NF-κB, AP-1, MAPKK and Kinase in all regions of the brain exposed to hindlimb unloading as compared to the control brain regions. Results suggest that exposure to simulated microgravity can induce expression of certain transcription factors and protein kinases. This work was supported by funding from NASA NCC 9-165. 504b030414000600080000002100828abc13fa0000001c020000130000005b436f6e74656e745f54797065735d2e78

  8. Salvianic acid A inhibits induction of inflammatory mediators by blocking Nuclear Factor-kB activation in macrophages

    Institute of Scientific and Technical Information of China (English)

    YUAN Jun; YAO Ji-hong; ZHOU Qin

    2008-01-01

    Objective To investigate the anti-inflammation effect and possible mechanism of Salvianic acid A (SAA) in mouse peritoneal macrophages. Methods Peritoneal macrophages were obtained from BALB/c mice. LPS induced nitric oxide (NO), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in supernatant, protein expression of inducible nitric oxide synthase (iNOS), matrix metalloproteinase-9 (MMP-9) and activation of nuclear factor-kappa B (NF-kB) in the extract were measured. Results SAA strongly inhibited the excessive production of NO, TNF-α and IL-6 in LPS-induced peritoneal macrophages in a concentration-dependent manner and blocked the expression of iNOS and MMP-9. Treatment with LPS alone increased the translocation of NF-kB (1065) from cytosol to the nucleus, but the SAA inhibited the translocation of NF-kB (p65). Conclusions The results showed that SAA had strong anti-inflammatory effects in LPS-stimulated peritoneal macrophages. The important mechanism is due to its inhibition of NF-kB activation.

  9. Nuclear Factor I-C promotes proliferation and differentiation of apical papilla-derived human stem cells in vitro.

    Science.gov (United States)

    Zhang, Jing; Wang, Zhihua; Jiang, Yong; Niu, Zhongying; Fu, Lei; Luo, Zhirong; Cooper, Paul R; Smith, Anthony J; He, Wenxi

    2015-03-15

    The transcription factor Nuclear Factor I-C (NFIC) has been implicated in the regulation of tooth root development, where it may be anticipated to impact on the behavior of stem cells from the apical papilla (SCAPs) and root odontoblast activity. We hypothesized that NFIC may provide an important target for promoting dentin/root regeneration. In the present study, the effects of NFIC on the proliferation and differentiation of SCAPs were investigated. Over-expression of NFIC increased cell proliferation, mineralization nodule formation and alkaline phosphatase (ALP) activity in SCAPs. Furthermore, NFIC up-regulated the mRNA levels of odontogenic-related markers, ALP, osteocalcin and collagen type I as well as dentin sialoprotein protein levels. In contrast, knockdown of NFIC by si-RNA inhibited the mineralization capacity of SCAPs and down-regulated the expression of odontogenic-related markers. In conclusion, the results indicated that upregulation of NFIC activity in SCAPs may promote osteo/odontoblastic differentiation of SCAPs.

  10. Novel Nuclear Factor-KappaB Targeting Peptide Suppresses β-Amyloid Induced Inflammatory and Apoptotic Responses in Neuronal Cells

    Science.gov (United States)

    Srinivasan, Mythily; Bayon, Baindu; Chopra, Nipun; Lahiri, Debomoy K.

    2016-01-01

    In the central nervous system (CNS), activation of the transcription factor nuclear factor-kappa B (NF-κβ) is associated with both neuronal survival and increased vulnerability to apoptosis. The mechanisms underlying these dichotomous effects are attributed to the composition of NF-κΒ dimers. In Alzheimer’s disease (AD), β-amyloid (Aβ) and other aggregates upregulate activation of p65:p50 dimers in CNS cells and enhance transactivation of pathological mediators that cause neuroinflammation and neurodegeneration. Hence selective targeting of activated p65 is an attractive therapeutic strategy for AD. Here we report the design, structural and functional characterization of peptide analogs of a p65 interacting protein, the glucocorticoid induced leucine zipper (GILZ). By virtue of binding the transactivation domain of p65 exposed after release from the inhibitory IκΒ proteins in activated cells, the GILZ analogs can act as highly selective inhibitors of activated p65 with minimal potential for off-target effects. PMID:27764084

  11. Evaluation of the ability of carprofen and flunixin meglumine to inhibit activation of nuclear factor kappa B.

    Science.gov (United States)

    Bryant, Clare E; Farnfield, Belinda A; Janicke, Heidi J

    2003-02-01

    To determine whether the nonsteroidal anti-inflammatory drugs (NSAIDs) carprofen, flunixin meglumine, and phenylbutazone have cyclooxygenase (COX)-independent effects that specifically inhibit activation of the proinflammatory transcription factor nuclear factor kappa B (NfkappaB). Purified ovine COX-1 and -2 and cultures of RAW 264.7 murine macrophages. The COX-1 and -2 inhibitory effects of the NSAIDs were tested in assays that used purified ovine COX-1 and -2. Prostaglandin production was analyzed by use of a radioimmunoassay. Inhibitory effects of these drugs on lipopolysaccharide (LPS)-induction of inducible nitric oxide synthase (iNOS) and LPS-stimulated translocation of NficB were determined by use of RAW 264.7 murine macrophages. Flunixin meglumine and phenylbutazone were selective inhibitors of COX-1. Carprofen and flunixin meglumine, but not phenylbutazone, inhibited LPS-induction of iNOS. Carprofen and, to a lesser degree, flunixin meglumine had inhibitory effects on NFkappaB activation. The ability of drugs such as carprofen and flunixin meglumine to inhibit activation of NfkappaB-dependent genes such as iNOS, in addition to their effects on COX, suggests an additional mechanism for their anti-inflammatory effects and may explain the ability of flunixin meglumine to be an effective inhibitor of the effects of endotoxin in horses with endotoxemia.

  12. Predictive Value of Nuclear Factor κB Activity and Plasma Cytokine Levels in Patients with Sepsis

    Science.gov (United States)

    Arnalich, Francisco; Garcia-Palomero, Esther; López, Julia; Jiménez, Manuel; Madero, Rosario; Renart, Jaime; Vázquez, Juan José; Montiel, Carmen

    2000-01-01

    The relationship between fluctuating cytokine concentrations in plasma and the outcome of sepsis is complex. We postulated that early measurement of the activation of nuclear factor κB (NF-κB), a transcriptional regulatory protein involved in proinflammatory cytokine expression, may help to predict the outcome of sepsis. We determined NF-κB activation in peripheral blood mononuclear cells of 34 patients with severe sepsis (23 survivors and 11 nonsurvivors) and serial concentrations of inflammatory cytokines (interleukin-6, interleukin-1, and tumor necrosis factor) and various endogenous antagonists in plasma. NF-κB activity was significantly higher in nonsurvivors and correlated strongly with the severity of illness (APACHE II score), although neither was related to the cytokine levels. Apart from NF-κB activity, the interleukin-1 receptor antagonist was the only cytokine tested whose level in plasma was of value in predicting mortality by logistic regression analysis. These results underscore the prognostic value of early measurement of NF-κB activity in patients with severe sepsis. PMID:10722586

  13. Resveratrol mitigates hepatic injury in rats by regulating oxidative stress, nuclear factor-kappa B, and apoptosis

    Directory of Open Access Journals (Sweden)

    Sayed Hassan Seif el.Din

    2016-01-01

    Full Text Available Resveratrol is a naturally occurring polyphenol, possesses several pharmacological activities including anticancer, antioxidant, antidiabetic, antinociceptive, and antiasthmatic activity. Little is known about its hepatoprotective action mechanisms. This study was conceived to explore the possible protective mechanisms of resveratrol compared with the hepatoprotective silymarin in thioacetamide (TAA-induced hepatic injury in rats. Thirty-two rats were equally divided into four groups; normal control (i, TAA (100 mg/kg (ii, TAA + silymarin (50 mg/kg (iii, and TAA + resveratrol (10 mg/kg (iv. Liver function and histopathology, pro-inflammatory cytokines, oxidative stress, and apoptotic markers were examined. Data were analyzed using ANOVA test followed by Tukey post hoc test. Compared to TAA-intoxicated group, resveratrol mitigated liver damage, and inflammation as noted by less inflammatory infiltration, hydropic degeneration with decreased levels of tumor necrosis factor-alpha, interleukin-6, and interferon-gamma by 78.83, 18.12, and 64.49%, respectively. Furthermore, it reduced (P < 0.05 alanine and aspartate aminotransferases by 36.64 and 48.09%, respectively, restored hepatic glutathione content and normalized superoxide dismutase and malondialdehyde levels. While it inhibited nuclear factor-kappa B, cytochrome 2E1, and enhanced apoptosis of necrotic hepatocytes via increasing caspase-3 activity. Our findings indicated that the potential hepatoprotective mechanisms of resveratrol are associated with inhibition of inflammation, enhancing the apoptosis of necrotic hepatocytes, and suppression of oxidative stress.

  14. Progesterone Prevents Traumatic Brain Injury-Induced Intestinal Nuclear Factor kappa B Activation and Proinflammatory Cytokines Expression in Male Rats

    Directory of Open Access Journals (Sweden)

    Chunhua Hang

    2007-08-01

    Full Text Available We have previously shown that traumatic brain injury (TBI can induce an upregulation of nuclear factor kappa B (NF-κB and proinflammatory cytokines in the gut, which play an important role in the pathogenesis of acute gut mucosal injury mediated by inflammation. In this work, we investigated whether progesterone administration modulated intestinal NF-κB activity and proinflammatory cytokines expression after TBI in male rats. As a result, we found that administration of progesterone following TBI could decrease NF-κB binding activity, NF-κB p65 protein expression, and concentrations of interleukin-1β (IL-1β, and tumor necrosis factor-α (TNF-α in the gut. TBI-induced damages of gut structure were ameliorated after progesterone injections. The results of the present study suggest that the therapeutic benefit of post-TBI progesterone injections might be due to its inhibitory effects on intestinal NF-κB activation and proinflammatory cytokines expression.

  15. Nuclear Factor I-C promotes proliferation and differentiation of apical papilla-derived human stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi' an (China); Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei (China); Wang, Zhihua; Jiang, Yong [State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi' an (China); Niu, Zhongying [Treatment center of oral diseases, The 306th Hospital of People' s Liberation Army, Beijing (China); Fu, Lei; Luo, Zhirong [State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi' an (China); Cooper, Paul R.; Smith, Anthony J. [Oral Biology, School of Dentistry, University of Birmingham, B4 6NN (United Kingdom); He, Wenxi, E-mail: hewenxi@fmmu.edu.cn [State Key Laboratory of Military Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi' an (China)

    2015-03-15

    The transcription factor Nuclear Factor I-C (NFIC) has been implicated in the regulation of tooth root development, where it may be anticipated to impact on the behavior of stem cells from the apical papilla (SCAPs) and root odontoblast activity. We hypothesized that NFIC may provide an important target for promoting dentin/root regeneration. In the present study, the effects of NFIC on the proliferation and differentiation of SCAPs were investigated. Over-expression of NFIC increased cell proliferation, mineralization nodule formation and alkaline phosphatase (ALP) activity in SCAPs. Furthermore, NFIC up-regulated the mRNA levels of odontogenic-related markers, ALP, osteocalcin and collagen type I as well as dentin sialoprotein protein levels. In contrast, knockdown of NFIC by si-RNA inhibited the mineralization capacity of SCAPs and down-regulated the expression of odontogenic-related markers. In conclusion, the results indicated that upregulation of NFIC activity in SCAPs may promote osteo/odontoblastic differentiation of SCAPs. - Highlights: • NFIC promotes the proliferation of SCAPs in vitro. • NFIC promotes osteo/odontogenic differentiation of SCAPs in vitro. • Knockdown of NFIC inhibits odontogenic differentiation in SCAPs.

  16. Components of the CCR4-NOT complex function as nuclear hormone receptor coactivators via association with the NRC-interacting Factor NIF-1.

    Science.gov (United States)

    Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H

    2008-03-14

    CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.

  17. [Expression changes of Notch and nuclear factor-κB signaling pathways in the rat heart with myocardial infarction].

    Science.gov (United States)

    Jin, J L; Deng, Z T; Lyu, R G; Liu, X H; Wei, J R

    2017-06-24

    Objective: To observe the expression changes of Notch and nuclear factor-κB (NF-κB) signaling pathways in rat myocardium post myocardial infarction. Methods: Myocardial infarction was established by ligation of the left anterior descending coronary artery(MI group), sham rats (similar surgical procedure without coronary artery ligation) served as control, the rats were sacrificed at first week, 4th and 8th week after operation, the non-infarct myocardial tissue in both groups was obtained to detect the mRNA expression of Notch1, Dll4 and Hes1 by RT-PCR, the protein expression of NICD1 was detected by Western blot, the nuclear protein p65 content was detected to reflect the activation degree of NF-κB signaling in the cardiomyocytes. Results: The myocardial mRNA expression of Notch1 in MI group was significantly higher than in control group (1.68±0.35 vs. 0.47±0.12, P0.05). The mRNA expression of Dll4 and Hes1 was similar between the two groups at the three time points. NICD1 protein level was increased at the first week in MI group as compared with control group (1.31±0.33 vs.0.45±0.11, P0.05). For NF-κB activation study, the nuclear protein p65 content was higher at first week, 4th week and 8th week in MI group as compared with respective control groups (0.286±0.052 vs.0.049±0.016 (Pmyocardial infarction. Notch1 and NF-κB signaling pathways are both activated at the first week after myocardial infarction, NF-κB signaling pathway activation after myocardial infarction continues up to 8 weeks. These two signal transduction pathways may thus serve as new targets for future intervention studies to prevent heart failure.

  18. Signal Transducer and Activator of Transcription (STAT)-3 Activates Nuclear Factor (NF)-κB in Chronic Lymphocytic Leukemia Cells

    Science.gov (United States)

    Liu, Zhiming; Hazan-Halevy, Inbal; Harris, David M.; Li, Ping; Ferrajoli, Alessandra; Faderl, Stefan; Keating, Michael J.; Estrov, Zeev

    2014-01-01

    Nuclear factor (NF)-κB plays a major role in the pathogenesis of B-cell neoplasms. A broad array of mostly extracellular stimuli has been reported to activate NF-κB, to various degrees, in chronic lymphocytic leukemia (CLL) cells. Because CLL cells harbor high levels of unphosphorylated (U) signal transducer and activator of transcription (STAT)-3 protein and U-STAT3 was reported to activate NF-κB, we sought to determine whether U-STAT3 activates NF-κB in CLL. Using the electrophoretic mobility shift assay (EMSA) we studied peripheral blood low-density cells from 15 patients with CLL and found that CLL cell nuclear extracts from all the samples bound to an NF-κB DNA probe, suggesting that NF-κB is constitutively activated in CLL. Immunoprecipitation studies showed that STAT3 bound NF-κB p65, and confocal microscopy studies detected U-STAT3/NF-κB complexes in the nuclei of CLL cells, thereby confirming these findings. Furthermore, infection of CLL cells with retroviral STAT3-shRNA attenuated the binding of NF-κB to DNA, as assessed by EMSA, and downregulated mRNA levels of NF-κB-regulated genes, as assessed by quantitative polymerase chain reaction. Taken together, our data suggest that U-STAT3 binds to the NF-κB p50/p65 dimers and that the U-STAT3/NF-κB complexes bind to DNA and activate NF-κB-regulated genes in CLL cells. PMID:21364020

  19. Nuclear isoforms of fibroblast growth factor 2 are novel inducers of hypophosphatemia via modulation of FGF23 and KLOTHO.

    Science.gov (United States)

    Xiao, Liping; Naganawa, Takahiro; Lorenzo, Joseph; Carpenter, Thomas O; Coffin, J Douglas; Hurley, Marja M

    2010-01-22

    FGF2 transgenic mice were developed in which type I collagen regulatory sequences drive the nuclear high molecular weight FGF2 isoforms in osteoblasts (TgHMW). The phenotype of TgHMW mice included dwarfism, decreased bone mineral density (BMD), osteomalacia, and decreased serum phosphate (P(i)). When TgHMW mice were fed a high P(i) diet, BMD was increased, and dwarfism was partially reversed. The TgHMW phenotype was similar to mice overexpressing FGF23. Serum FGF23 was increased in TgHMW mice. Fgf23 mRNA in bones and fibroblast growth factor receptors 1c and 3c and Klotho mRNAs in kidneys were increased in TgHMW mice, whereas the renal Na(+)/P(i) co-transporter Npt2a mRNA was decreased. Immunohistochemistry and Western blot analyses of TgHMW kidneys showed increased KLOTHO and decreased NPT2a protein. The results suggest that overexpression of HMW FGF2 increases FGF23/FGFR/KLOTHO signaling to down-regulate NPT2a, causing P(i) wasting, osteomalacia, and decreased BMD. We assessed whether HMW FGF2 expression was altered in the Hyp mouse, a mouse homolog of the human disease X-linked hypophosphatemic rickets/osteomalacia. Fgf2 mRNA was increased in bones, and Western blots showed increased FGF2 protein in nuclear fractions from osteoblasts of Hyp mice. In addition, immunohistochemistry demonstrated co-localization of FGF23 and HMW FGF2 protein in osteoblasts and osteocytes from Hyp mice. This study reveals a novel mechanism of regulation of the FGF23-P(i) homeostatic axis.

  20. In silico simulation of inhibitor drug effects on nuclear factor-kappaB pathway dynamics.

    Science.gov (United States)

    Sung, Myong-Hee; Simon, Richard

    2004-07-01

    NF-kappaB is a transcription factor family that activates numerous genes that are related to cell survival, apoptosis, and cell migration. Its persistent activity is associated with tumor formation, growth, metastasis, and drug resistance in many cancer types, including lymphoma, colon cancer, and breast cancer. Current therapeutic efforts for inhibiting this central "switch" include using small molecules to block a selected target in this pathway. Recognizing the regulatory network structure of the NF-kappaB pathway, we examine in silico the effects of inhibitors targeting various network components, using a kinetic model of the pathway. By simulating the corresponding perturbed system dynamics, we show the resulting time course of inhibition has distinct target-specific profiles. In particular, greater oscillatory potential exists for inhibition of upstream events than for direct inhibition of NF-kappaB, at low drug concentrations. This phenomenon is observed also when we examine the dynamic effects of the recently approved proteasome inhibitor, bortezomib (PS-341), and compare it with other inhibitors, taking its pharmacokinetics into consideration. Such kinetic analyses of the "drugged" molecular system will facilitate optimal drug target selection and the development of treatment protocols for a molecularly targeted therapy.

  1. Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection.

    Science.gov (United States)

    Claro, Tânia; Widaa, Amro; McDonnell, Cormac; Foster, Timothy J; O'Brien, Fergal J; Kerrigan, Steven W

    2013-01-01

    Staphylococcus aureus is the major pathogen among the staphylococci and the most common cause of bone infections. These infections are mainly characterized by bone destruction and inflammation, and are often debilitating and very difficult to treat. Previously we demonstrated that S. aureus protein A (SpA) can bind to osteoblasts, which results in inhibition of osteoblast proliferation and mineralization, apoptosis, and activation of osteoclasts. In this study we used small interfering RNA (siRNA) to demonstrate that osteoblast tumour necrosis factor receptor-1 (TNFR-1) is responsible for the recognition of and binding to SpA. TNFR-1 binding to SpA results in the activation of nuclear factor kappa B (NFκB). In turn, NFκB translocates to the nucleus of the osteoblast, which leads to release of interleukin 6 (IL-6). Silencing TNFR-1 in osteoblasts or disruption of the spa gene in S. aureus prevented both NFκB activation and IL-6 release. As well as playing a key role in proinflammatory reactions, IL-6 is also an important osteotropic factor. Release of IL-6 from osteoblasts results in the activation of the bone-resorbing cells, the osteoclasts. Consistent with our results described above, both silencing TNFR-1 in osteoblasts and disruption of spa in S. aureus prevented osteoclast activation. These studies are the first to demonstrate the importance of the TNFR-1-SpA interaction in bone infection, and may help explain the mechanism through which osteoclasts become overactivated, leading to bone destruction. Anti-inflammatory drug therapy could be used either alone or in conjunction with antibiotics to treat osteomyelitis or for prophylaxis in high-risk patients.

  2. Role of nuclear factor erythroid 2-related factor 2 in the oxidative stress-dependent hypertension associated with the depletion of DJ-1.

    Science.gov (United States)

    Cuevas, Santiago; Yang, Yu; Konkalmatt, Prasad; Asico, Laureano D; Feranil, Jun; Jones, John; Villar, Van Anthony; Armando, Ines; Jose, Pedro A

    2015-06-01

    Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure (BP). We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys decreases Nrf2 expression and activity and increases reactive oxygen species production; BP is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1(-/-) mice have decreased renal Nrf2 expression and activity and increased nitro-tyrosine levels and BP. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. An Nrf2 inducer, bardoxolone, normalizes the systolic BP and renal malondialdehyde levels in DJ-1(-/-) mice without affecting them in their wild-type littermates. Because Nrf2 ubiquitination is increased in DJ-1(-/-) mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing Nrf2 degradation. Moreover, renal dopamine 2 receptor and DJ-1 are necessary for normal Nrf2 activity to keep a normal redox balance and BP.

  3. Mutation of isocitrate dehydrogenase 1 induces glioma cell proliferation via nuclear factor-κB activation in a hypoxia-inducible factor 1-α dependent manner.

    Science.gov (United States)

    Wang, Guoliang; Sai, Ke; Gong, Fanghe; Yang, Qunying; Chen, Furong; Lin, Jian

    2014-05-01

    Recently, mutations of the isocitrate dehydrogenase (IDH) 1 gene, which specifically occur in the majority of low-grade and secondary high-grade gliomas, have drawn particular attention of neuro-oncologists. Mutations of the IDH1 gene have been proposed to have significant roles in the tumorigenesis, progression and prognosis of gliomas. However, the molecular mechanism of the role of IDH1 mutants in gliomagenesis remains to be elucidated. The present study, showed that forced expression of an IDH1 mutant, of which the 132th amino acid residue arginine is substituted by histidine (IDH1R132H), promoted cell proliferation in cultured cells, while wild-type IDH1 overexpression had no effect on cell proliferation. Consistent with previous studies, it was also observed that expression of hypoxia-inducible factor 1-α (HIF1-α) was upregulated in IDH1R132H expressing cells with the induction of vascular endothelial growth factor (VEGF) expression. However, knockdown of VEGF via small RNA interference had no significant influence on the cell proliferation induced by overexpression of IDH1R132H, implying that another signaling pathway may be involved. Next, forced expression of IDH1R132H was found to activate nuclear factor-κB (NF-κB), since the inhibitory IκB protein (IκBα) was highly phosphorylated and the NF-κB p65 subunit was translocated into the nucleus. Notably, knockdown of HIF1-α significantly blocked NF-κB activation, which was induced by the overexpression of IDH1 mutants. In addition, expression of IDH1 mutants markedly induced the NF-κB target gene expression, including cyclin D1 and E and c-myc, which were involved in the regulation of cell proliferation. In conclusion, it was demonstrated that the IDH1 mutant activated NF-κB in a HIF1-α‑dependent manner and was involved in the regulation of cell proliferation.

  4. Suppression of nuclear factor-κB activation and inflammation in microglia by physically modified saline.

    Science.gov (United States)

    Khasnavis, Saurabh; Jana, Arundhati; Roy, Avik; Mazumder, Monalisa; Bhushan, Bharat; Wood, Tony; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2012-08-24

    Chronic inflammation involving activated microglia and astroglia is becoming a hallmark of many human diseases, including neurodegenerative disorders. Although NF-κB is a multifunctional transcription factor, it is an important target for controlling inflammation as the transcription of many proinflammatory molecules depends on the activation of NF-κB. Here, we have undertaken a novel approach to attenuate NF-κB activation and associated inflammation in activated glial cells. RNS60 is a 0.9% saline solution containing charge-stabilized nanostructures that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not normal saline, RNS10.3 (TCP-modified saline without excess oxygen), and PNS60 (saline containing excess oxygen without TCP modification) were found to inhibit the production of nitric oxide (NO) and the expression of inducible NO synthase in activated microglia. Similarly, RNS60 also inhibited the expression of inducible NO synthase in activated astroglia. Inhibition of NF-κB activation by RNS60 suggests that RNS60 exerts its anti-inflammatory effect through the inhibition of NF-κB. Interestingly, RNS60 induced the activation of type IA phosphatidylinositol (PI) 3-kinase and Akt and rapidly up-regulated IκBα, a specific endogenous inhibitor of NF-κB. Inhibition of PI 3-kinase and Akt by either chemical inhibitors or dominant-negative mutants abrogated the RNS60-mediated up-regulation of IκBα. Furthermore, we demonstrate that RNS60 induced the activation of cAMP-response element-binding protein (CREB) via the PI 3-kinase-Akt pathway and that RNS60 up-regulated IκBα via CREB. These results describe a novel anti-inflammatory property of RNS60 via type IA PI 3-kinase-Akt-CREB-mediated up-regulation of IκBα, which may be of therapeutic benefit in neurodegenerative disorders.

  5. Suppression of Nuclear Factor-κB Activation and Inflammation in Microglia by Physically Modified Saline*

    Science.gov (United States)

    Khasnavis, Saurabh; Jana, Arundhati; Roy, Avik; Mazumder, Monalisa; Bhushan, Bharat; Wood, Tony; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2012-01-01

    Chronic inflammation involving activated microglia and astroglia is becoming a hallmark of many human diseases, including neurodegenerative disorders. Although NF-κB is a multifunctional transcription factor, it is an important target for controlling inflammation as the transcription of many proinflammatory molecules depends on the activation of NF-κB. Here, we have undertaken a novel approach to attenuate NF-κB activation and associated inflammation in activated glial cells. RNS60 is a 0.9% saline solution containing charge-stabilized nanostructures that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not normal saline, RNS10.3 (TCP-modified saline without excess oxygen), and PNS60 (saline containing excess oxygen without TCP modification) were found to inhibit the production of nitric oxide (NO) and the expression of inducible NO synthase in activated microglia. Similarly, RNS60 also inhibited the expression of inducible NO synthase in activated astroglia. Inhibition of NF-κB activation by RNS60 suggests that RNS60 exerts its anti-inflammatory effect through the inhibition of NF-κB. Interestingly, RNS60 induced the activation of type IA phosphatidylinositol (PI) 3-kinase and Akt and rapidly up-regulated IκBα, a specific endogenous inhibitor of NF-κB. Inhibition of PI 3-kinase and Akt by either chemical inhibitors or dominant-negative mutants abrogated the RNS60-mediated up-regulation of IκBα. Furthermore, we demonstrate that RNS60 induced the activation of cAMP-response element-binding protein (CREB) via the PI 3-kinase-Akt pathway and that RNS60 up-regulated IκBα via CREB. These results describe a novel anti-inflammatory property of RNS60 via type IA PI 3-kinase-Akt-CREB-mediated up-regulation of IκBα, which may be of therapeutic benefit in neurodegenerative disorders. PMID:22753407

  6. Insights antifibrotic mechanism of methyl palmitate: Impact on nuclear factor kappa B and proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Mantawy, Eman M.; Tadros, Mariane G. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); Awad, Azza S. [Department of Pharmacology and Toxicology, Faulty of Pharmacy, Al-Azhar University, Cairo (Egypt); Hassan, Dina A.A. [Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo (Egypt); El-Demerdash, Ebtehal, E-mail: ebtehal_dm@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2012-01-01

    Fibrosis accompanies most chronic liver disorders and is a major factor contributing to hepatic failure. Therefore, the need for an effective treatment is evident. The present study was designed to assess the potential antifibrotic effect of MP and whether MP can attenuate the severity of oxidative stress and inflammatory response in chronic liver injury. Male albino rats were treated with either CCl{sub 4} (1 ml/kg, twice a week) and/or MP (300 mg/kg, three times a week) for six weeks. CCl{sub 4}-intoxication significantly increased liver weight, serum aminotransferases, total cholesterol and triglycerides while decreased albumin level and these effects were prevented by co-treatment with MP. As indicators of oxidative stress, CCl{sub 4}-intoxication caused significant glutathione depletion and lipid peroxidation while MP co-treatment preserved them within normal values. As markers of fibrosis, hydroxyproline content and α-SMA expression increased markedly in the CCl{sub 4} group and MP prevented these alterations. Histopathological examination by both light and electron microscope further confirmed the protective efficacy of MP. To elucidate the antifibrotic mechanisms of MP, the expression of NF-κB, iNOS and COX-2 and the tissue levels of TNF-α and nitric oxide were assessed; CCl{sub 4} increased the expression of NF-κB and all downstream inflammatory cascade while MP co-treatment inhibited them. Collectively these findings indicate that MP possesses a potent antifibrotic effect which may be partly a consequence of its antioxidant and anti-inflammatory properties. -- Highlights: ► Methyl palmitate is free fatty acid methyl ester. ► It possesses a strong antifibrotic effect. ► It inhibits NF-κB and the consequent proinflammatory and oxidative stress response.

  7. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus.

    Science.gov (United States)

    Inada, Noriko; Higaki, Takumi; Hasezawa, Seiichiro

    2016-03-01

    Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1-ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus.

  8. Nuclear factor YY1 activates the mammalian F0F1 ATP synthase alpha-subunit gene.

    Science.gov (United States)

    Breen, G A; Vander Zee, C A; Jordan, E M

    1996-01-01

    Analysis of the promoters of the bovine and human nuclear-encoded mitochondrial F0F1 ATP synthase alpha-subunit genes (ATPA) has identified several positive cis-acting regulatory regions that are important for basal promoter activity in human HeLa cells. We have previously determined that the binding of a protein factor, termed ATPF1, to an E-box sequence (CANNTG) located within one of these cis-acting regions is critical for transcriptional activation of the ATPA gene. In this article, we describe a second positive cis-acting regulatory element of the ATPA gene that is important for expression of the ATPA gene. We show that this cis-acting element also contains a binding site for a protein present in HeLa cells. On the basis of electrophoretic mobility shift patterns, oligonucleotide competition assays, and immunological cross-reactivity, we conclude that this protein factor is Yin-Yang 1 (YY1). Experiments carried out to examine the functional role of YY1 within the context of the ATPA promoter demonstrated that YY1 acts as a positive regulator of the ATPA gene. For example, when the YY1 binding site of the ATPA promoter was placed upstream of a reporter gene it was found to activate transcription in transient transfection assays. In addition, disruption of the YY1 binding site in the ATPA gene resulted in a loss of transcriptional activity. Furthermore, in cotransfection experiments overexpression of YY1 in trans was found to activate transcription of ATPA promoter-CAT constructs. Thus, at least two positive trans-acting regulatory factors, ATPF1 and YY1, are important for expression of the bovine and human F0F1 ATP synthase alpha-subunit genes.

  9. Factors associated with nurses' intention to leave their jobs after the Fukushima Daiichi Nuclear Power plant accident.

    Directory of Open Access Journals (Sweden)

    Yoshinobu Sato

    Full Text Available We conducted a survey among nurses who were working at the Fukushima Medical University Hospital at the time of the Fukushima Daiichi Nuclear Power Plant accident to clarify the factors associated with their intention to leave their jobs during the radiation emergency. We asked 345 nurses (17 men and 328 women about their intention to leave their jobs after the accident. We also asked about relevant factors including the participants' demographic factors, living situation, working status, and knowledge of radiation health effects. We found that living with preschoolers (OR = 1.87, 95%CI: 1.02-3.44, p = 0.042, anxiety about life in Fukushima City after the accident (OR = 5.55, 95%CI: 1.18-26.13, p = 0.030, consideration of evacuation from Fukushima after the accident (OR = 2.42, 95%CI: 1.45-4.06, p = 0.001, consideration of the possible radiation health effects in children (OR = 1.90, 95%CI: 1.02-3.44, p = 0.042, and anxiety about relationships with colleagues in the hospital after the accident (OR = 3.23, p = 0.001 were independently associated with the nurses' intention to leave their jobs after the accident. On the other hand, the percentage of nurses with knowledge on radiation health effects was relatively low among those who had the intention to leave the job and among those who did not have the intention to leave the job after the accident, with no significant differences between the two groups. Our results suggest the need for an education program for nurses regarding radiation health effects.

  10. Factors associated with nurses' intention to leave their jobs after the Fukushima Daiichi Nuclear Power plant accident.

    Science.gov (United States)

    Sato, Yoshinobu; Hayashida, Naomi; Orita, Makiko; Urata, Hideko; Shinkawa, Tetsuko; Fukushima, Yoshiko; Nakashima, Yumiko; Kudo, Takashi; Yamashita, Shunichi; Takamura, Noboru

    2015-01-01

    We conducted a survey among nurses who were working at the Fukushima Medical University Hospital at the time of the Fukushima Daiichi Nuclear Power Plant accident to clarify the factors associated with their intention to leave their jobs during the radiation emergency. We asked 345 nurses (17 men and 328 women) about their intention to leave their jobs after the accident. We also asked about relevant factors including the participants' demographic factors, living situation, working status, and knowledge of radiation health effects. We found that living with preschoolers (OR = 1.87, 95%CI: 1.02-3.44, p = 0.042), anxiety about life in Fukushima City after the accident (OR = 5.55, 95%CI: 1.18-26.13, p = 0.030), consideration of evacuation from Fukushima after the accident (OR = 2.42, 95%CI: 1.45-4.06, p = 0.001), consideration of the possible radiation health effects in children (OR = 1.90, 95%CI: 1.02-3.44, p = 0.042), and anxiety about relationships with colleagues in the hospital after the accident (OR = 3.23, p = 0.001) were independently associated with the nurses' intention to leave their jobs after the accident. On the other hand, the percentage of nurses with knowledge on radiation health effects was relatively low among those who had the intention to leave the job and among those who did not have the intention to leave the job after the accident, with no significant differences between the two groups. Our results suggest the need for an education program for nurses regarding radiation health effects.

  11. Antifibrotic effect of meloxicam in rat liver: role of nuclear factor kappa B, proinflammatory cytokines, and oxidative stress.

    Science.gov (United States)

    Hassan, Memy H; Ghobara, Mohamed M

    2016-09-01

    This study was aimed at investigating the antifibrotic effect of meloxicam in CCl4-induced liver fibrosis and elucidating its underlying mechanism. Forty male rats were equally randomized for 8-week treatment with corn oil (negative control), CCl4 (to induce liver fibrosis), and/or meloxicam. Meloxicam effectively ameliorated the CCl4-induced alterations in liver histology, liver weight to body weight ratio, liver functions, and serum markers for liver fibrosis (hyaluronic acid, laminin, and PCIII). Meloxicam significantly abrogated CCl4-induced elevation of messenger RNA (mRNA) expressions for collagen I and alpha smooth muscle actin (α-SMA) and hepatic contents of hydroxyproline, transforming growth factor beta (TGF-β), and tissue inhibitor of matrix metalloproteases (TIMP-1). Meloxicam mitigated CCl4-induced elevation in hepatic levels of nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α), total nitric oxide (NO), interleukin-l beta (IL 1β), and prostaglandin E2 (PGE2). Meloxicam modulated CCl4-induced disturbance of liver cytochrome P450 subfamily 2E1 (CYP2E1) and glutathione-S-transferase (GST). The attenuation of meloxicam to liver fibrosis was associated with suppression of oxidative stress via reduction of lipid peroxides along with induction of reduced glutathione content and enhancement of superoxide dismutase, glutathione peroxidase, and catalase activities. This study provides an evidence for antifibrotic effect of meloxicam against CCl4-induced liver fibrosis in rat. The antifibrotic mechanism of meloxicam could be through decreasing NF-κB level and subsequent proinflammatory cytokine production (TNF-α, NO, IL-1 beta, and PGE2) and, hence, collagen deposition through inhibition of TIMP-1 and TGF-β. Abrogation of oxidative stress and modulation of liver-metabolizing enzymes (CYP2E1 and GST) were also involved.

  12. Phytochemicals of Aristolochia tagala and Curcuma caesia exert anticancer effect by tumor necrosis factor-α-mediated decrease in nuclear factor kappaB binding activity

    Science.gov (United States)

    Hadem, Khetbadei Lysinia Hynniewta; Sharan, Rajeshwar Nath; Kma, Lakhan

    2015-01-01

    Rationale: The active compounds or metabolites of herbal plants exert a definite physiological action on the human body and thus are widely used in human therapy for various diseases including cancer. Previous studies by our group have reported the anticarcinogenic properties of the two herbal plants extracts (HPE) of Aristolochia tagala (AT) Cham. and Curcuma caesia (CC) Roxb. in diethylnitrosamine-induced mouse liver cancer in vivo. The anticarcinogenic properties of these extracts may be due to the active compounds present in them. Objectives: Our objective was to analyze the phytochemical constituents present in AT and CC, to assay their antioxidant properties and to determine their role in a possible intervention on tumor progression. Materials and Methods: Qualitative and quantitative analysis of constituent with anticancer properties present in the crude methanol extract of the two plants CC and AT was carried out following standard methods. Separation of the phytochemical compounds was done by open column chromatography. The extracts were eluted out with gradients of chloroform-methanol solvents. Ultraviolet-visible spectra of individual fractions were recorded, and the fractions were combined based on their λmax. The free radical scavenging activity of crude extracts and fractions obtained was also determined; the radical scavenging activity was expressed as IC50. High-performance thin layer chromatography (HPTLC) analysis of fractionated compounds was carried out to identify partially the phytochemical compounds. The anti-inflammatory and anticancer activity of AT and CC extracts was studied in DEN induced BALB/c mice by analyzing the tumor necrosis factor-α (TNF-α) levels in serum and the nuclear factor kappaB (NF-κB) binding activity in nuclear extracts of the liver. Results: It was observed that both AT and CC contained compounds such as phenolics, tannins, flavonoids, terpenoids, etc., and both extracts exhibited antioxidant capacity. HPTLC

  13. Nuclear Factor kB and Inhibitor of kB: Acupuncture Protection Against Acute Focal Cerebral Ischemia in Rodents.

    Science.gov (United States)

    Huang, Wei; Zhou, Zhongyu; Wan, Bijiang; Chen, Guang; Li, Jia

    2017-02-27

    Context • Acute, focal, cerebral ischemic stroke is a leading cause of morbidity and mortality worldwide. Acupuncture is an emerging alternative therapy for treatment of acute brain ischemia. Nevertheless, the precise mechanism underlying the neuroprotective effects of acupuncture has not been elucidated. Nuclear factor κB (NF-κB) and nuclear factor of κ light polypeptide gene enhancer in B cell inhibitor alpha (IκB-α) are involved in cerebral inflammation. However, the involvement of NF-κB and IκB-α in the protective effects of acupuncture on ischemic tolerance remains unknown. Objective • The study evaluated the hypothesis that acupuncture can exert a neuroprotective action in a rat model of middle cerebral artery occlusion (MCAO). Design • The rats were randomly divided into a normal group (N), a sham model group (SM), an MCAO model group (M), a sham acupuncture group (SA), and an acupuncture group (A). Setting • All of processes of this study were conducted at Hubei University of Chinese Medicine (Hubei Shang, China). Animals • The animals were 100 Sprague-Dawley rats, aged 3 mo. Intervention • Craniotomy and electrocoagulation of the middle cerebral artery were conducted to generate acute, focal, cerebral ischemic models in 3 groups, excluding the N and SM groups. The SM group received a surgical fenestration similar to the M group, but the procedure did not include the coagulation of the exposed artery. In the A group, acupuncture was administered at the acupoints Baihui (GV-20) and Renzhong (GV-26). In the SA group, sham acupuncture was performed at a depth of 5 mm at a position close to the left side of the GV-20 and GV-26 points. The N, M, and SM groups received neither the acupuncture nor the sham acupuncture treatment. Outcome Measures • The study (1) evaluated neurological function using the modified neurological severity score; (2) examined the ultrastructure; (3) assessed the infarct volume; (4) determined levels of serum

  14. Inhibition of Nuclear Factor-kappa B or Bax Prevents Endoplasmic Reticulum Stress-But Not Nitric Oxide-Mediated Apoptosis in INS-1E Cells

    DEFF Research Database (Denmark)

    Tonnesen, M.F.; Grunnet, L.G.; Friberg, J.;

    2009-01-01

    elicited by NO and ER Ca2+ depletion differ, we here compare the direct effects of NO, in the form of the NO donor S-nitroso-N-acetyl-D, L-penicillamine (SNAP), with the effects of SERCA2 inhibitor thapsigargin (TG) on MAPK, nuclear factor kappa B (NF kappa B), Bcl-2 proteins, ER stress, and apoptosis...

  15. DMPD: Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-signalingcascades during intracellular Toxoplasma gondii infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available nalingcascades during intracellular Toxoplasma gondii infection. Denkers EY, Butcher BA, Del Rio L, Kim L. I...in kinase/nuclear factor-kappaB-signalingcascades during intracellular Toxoplasma...appaB-signalingcascades during intracellular Toxoplasma gondii infection. Authors Denkers EY, Butcher BA, De

  16. Two intestinal specific nuclear factors binding to the lactase-phlorizin hydrolase and sucrase-isomaltase promoters are functionally related oligomeric molecules

    DEFF Research Database (Denmark)

    Troelsen, J T; Mitchelmore, C; Sjöström, H

    1994-01-01

    Lactase-phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) are enterocyte-specific gene products. The identification of regulatory cis-elements in the promoter of these two genes has enabled us to carry out comparative studies of the corresponding intestinal-specific nuclear factors (NF-LPH1...

  17. Vasoactive intestinal peptide induces cyclooxygenase-2 expression through nuclear factor-κB in human prostate cell lines. Differential time-dependent responses in cancer progression

    OpenAIRE

    Fernández-Martínez, Ana B.; Collado, Beatriz; Bajo, Ana M.; Sánchez-Chapado, Manuel; Prieto,Juan C.; Carmena, María J.

    2007-01-01

    Vasoactive intestinal peptide induces cyclooxygenase-2 expression through nuclear factor-?B in human prostate cell lines. Differential time-dependent responses in cancer progression SPAIN (Fernandez-Martinez, Ana B.) SPAIN Received: 2006-09-11 Revised: 2007-01-11 Accepted: 2007-01-11

  18. Biological variation and reference intervals for circulating osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor kappa B ligand and high-sensitivity C-reactive protein

    DEFF Research Database (Denmark)

    Sennels, H P; Jacobsen, Søren; Jensen, T

    2007-01-01

    Objective. Monitoring inflammatory diseases and osteoclastogenesis with osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor kappa B ligand (total sRANKL) and high-sensitivity C-reactive protein (hsCRP) has recently attracted increased interest. The purpose...

  19. A priori calculations of hyperfine interactions in highly ionized atoms: g-factor measurements on aligned pico-second states populated in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Stone, N. J., E-mail: n.stone@physics.ox.ac.uk; Stone, J. R. [University of Oxford (United Kingdom); Jonsson, P. [Malmo University (Sweden)

    2010-04-15

    Calculations of hyperfine interaction strength and life-times of states in highly ionized atoms, using the GRASP atomic structure package, are reported. The calculations aim at providing calibration for Recoil-in-Vacuum nuclear excited state g-factor measurements. The method is outlined and results compared with experiment. Inclusion of decay of higher electronic states is discussed.

  20. The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-kappa B transcriptional activity by a non-specific effect upon the ERK pathway

    NARCIS (Netherlands)

    Birkenkamp, KU; Tuyt, LML; Lummen, C; Wierenga, LTJ; Kruijer, W; Vellenga, E

    2000-01-01

    1 In the present study we investigated a possible role for the p38 mitogen-activated protein (MAP) kinase pathway in mediating nuclear factor-kappa B (NF-kappa B) transcriptional activity in the erythroleukaemic cell line TF-1. 2 TF-1 cells stimulated with the phosphatase inhibitor okadaic acid (OA)

  1. Vanishing electron g factor and long-lived nuclear spin polarization in weakly strained nanohole-filled GaAs/AlGaAs quantum dots

    OpenAIRE

    Ulhaq, A.; Duan, Q; Zallo, E.; Ding, F.; Schmidt, O. G.; Tartakovskii, A. I.; Skolnick, M. S.; Chekhovich, E. A.

    2016-01-01

    GaAs/AlGaAs quantum dots grown by in situ droplet etching and nanohole in-filling offer a combination of strong charge confinement, optical efficiency, and high spatial symmetry advantageous for polarization entanglement and spin-photon interface. Here, we study experimentally electron and nuclear spin properties of such dots. We find nearly vanishing electron g factors (ge

  2. Expression studies and promoter analysis of the nuclear gene for mitochondrial transcription factor 1 (MTF1) in yeast.

    Science.gov (United States)

    Jan, P S; Stein, T; Hehl, S; Lisowsky, T

    1999-08-01

    The basal mitochondrial transcription apparatus of Saccharomyces cerevisiae consists of the core enzyme for mitochondrial RNA polymerase and the specificity factor. The core enzyme is homologous to those of bacteriophages T3, T7 and SP6 whereas the specificity factor shows similarities with bacterial sigma factors. Recently it was shown that the bacteriophage-type core enzyme is widespread among the eukaryotic lineage and a common picture for the mitochondrial transcription apparatus in eukaryotic cells is now emerging. In contrast to the situation for the core enzyme, the gene for the specificity factor has only been identified from S. cerevisiae and more recently from two other yeast species. As the specificity factor is the key component for initiation of transcription at the mitochondrial promoter we wanted to study in more detail gene expression, regulation, and the function of the promoter of the nuclear MTF1 gene. For this purpose the messenger RNA level for scMTF1 was investigated under a large number of different growth conditions and thereby exhibited a very low, but regulated and carbon source-dependent, expression. Deletion experiments identify the minimal promoter for functional complementation in yeast. To evaluate the functional conservation of the promoter elements the homologous MTF1 gene from the closely related yeast Saccharomyces douglasii was isolated and tested in heterologous complementation experiments. In spite of a highly conserved protein sequence these studies demonstrate that at low-copy number sdMTF1 is not able to substitute for scMTF1 in S. cerevisiae. Promoter exchange experiments with MTF1 from S. cerevisiae and S. douglasii demonstrate that differences in gene expression are responsible for the failure in heterologous complementation. This finding prompted us to compare the promoter regions of MTF1 from four different yeast species. For this purpose the sequences of the 5' regions from S. douglasii, S. kluyveri and Kluyveromyces

  3. PWR-UO{sub 2} nuclear fuel criticality study: control rod effects on infinite neutron multiplication factor and spent fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, R.V.; Pereira, C., E-mail: claubia@nuclear.ufmg.br; Silva, C.A.M.; Costa, A.L.; Veloso, M.A.F.; Oliveira, A.H. de

    2013-10-15

    Highlights: • A three-dimensional model of a PWR fuel were simulated. • Results using TRITON/T6-DEPL module in SCALE 6.0 and two libraries (238 and 44 groups) were compared. • Variations in the infinite neutron multiplication factor and the nuclides concentrations, both under control rod insertion effects were analysed. • Results show very good agreement with those published by OECD. -- Abstract: Deterministic and stochastic nuclear codes are software packages used to perform reactor physics calculations, especially in PWRs, the most common type of nuclear reactor currently in operation. The NEA Expert Group on Burn-up Credit Criticality Safety has published a Benchmark with results obtained from simulations of PWR-UO{sub 2} nuclear fuel. The same simulations were performed at DEN/UFMG with SCALE 6.0, a modular nuclear system code developed by Oak Ridge National Laboratory using two different neutron energy libraries (238 and 44 groups). The results obtained using a three-dimensional model with the T6-DEPL sequence of the TRITON module in SCALE 6.0 for spent fuel inventory and infinite neutron multiplication factor calculations show very good agreement with those published by the OECD. The main goal of this work is to validate the methodology at DEN/UFMG for future use in simulations related to Angra I, II and III Nuclear Power Plants.

  4. The Drosophila Mitochondrial Translation Elongation Factor G1 Contains a Nuclear Localization Signal and Inhibits Growth and DPP Signaling

    Science.gov (United States)

    Trivigno, Catherine; Haerry, Theodor E.

    2011-01-01

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low. PMID:21364917

  5. Bridelia ferruginea Produces Antineuroinflammatory Activity through Inhibition of Nuclear Factor-kappa B and p38 MAPK Signalling

    Science.gov (United States)

    Olajide, Olumayokun A.; Aderogba, Mutalib A.; Okorji, Uchechukwu P.; Fiebich, Bernd L.

    2012-01-01

    Bridelia ferruginea is commonly used in traditional African medicine (TAM) for treating various inflammatory conditions. Extracts from the plant have been shown to exhibit anti-inflammatory property in a number of in vivo models. In this study the influence of B. ferruginea (BFE) on the production of PGE2, nitrite, and proinflammatory cytokines from LPS-stimulated BV-2 microglia was investigated. The effects of BFE on cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expressions were evaluated in LPS-activated rat primary microglia. The roles of NF-κB and MAPK signalling in the actions of BFE were also investigated. BFE (25–200 μg) inhibited the production of PGE2, nitrite, tumour necrosis factor-α (TNFα), and interleukin-6 (IL-6) as well as COX-2 and iNOS protein expressions in LPS-activated microglial cells. Further studies to elucidate the mechanism of anti-inflammatory action of BFE revealed interference with nuclear translocation of NF-κBp65 through mechanisms involving inhibition of IκB degradation. BFE prevented phosphorylation of p38, but not p42/44 or JNK MAPK. It is suggested that Bridelia ferruginea produces anti-inflammatory action through mechanisms involving p38 MAPK and NF-κB signalling. PMID:23320030

  6. Comprehensive assessment of host responses to ionizing radiation by nuclear factor-κB bioluminescence imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chung-Ta Chang

    Full Text Available The aim of this study was to analyze the host responses to ionizing radiation by nuclear factor-κB (NF-κB bioluminescence imaging-guided transcriptomic tool. Transgenic mice carrying the NF-κB-driven luciferase gene were exposed to a single dose of 8.5 Gy total-body irradiation. In vivo imaging showed that a maximal NF-κB-dependent bioluminescent intensity was observed at 3 h after irradiation and ex vivo imaging showed that liver, intestine, and brain displayed strong NF-κB activations. Microarray analysis of these organs showed that irradiation altered gene expression signatures in an organ-specific manner and several pathways associated with metabolism and immune system were significantly altered. Additionally, the upregulation of fatty acid binding protein 4, serum amyloid A2, and serum amyloid A3 genes, which participate in both inflammation and lipid metabolism, suggested that irradiation might affect the cross pathways of metabolism and inflammation. Moreover, the alteration of chemokine (CC-motif ligand 5, chemokine (CC-motif ligand 20, and Jagged 1 genes, which are involved in the inflammation and enterocyte proliferation, suggested that these genes might be involved in the radiation enteropathy. In conclusion, this report describes the comprehensive evaluation of host responses to ionizing radiation. Our findings provide the fundamental information about the in vivo NF-κB activity and transcriptomic pattern after irradiation. Moreover, novel targets involved in radiation injury are also suggested.

  7. Measurements of b-jet Nuclear Modification Factors in pPb and PbPb Collisions with CMS

    CERN Document Server

    Jung, Kurt

    2014-01-01

    We present measurements of the nuclear modification factors RAA and RpA(PYTHIA) of b jets in lead-lead and proton-lead collisions, respectively, using the CMS detector. Jets from b-quark fragmentations are found by exploiting the long lifetime of the b-quark through tagging methods using distributions of the secondary vertex displacement. From these, b-jet cross-sections are calculated and compared to the pp cross-section from the 2.76 TeV pp data collected in 2013 and to a PYTHIA simulation at 5.02 TeV, where these center-of-mass energies correspond to those of the PbPb and pPb data. We observe significant suppression for b jets in PbPb, and a RpA(PYTHIA) value consistent with unity for b jets in pPb. Results from both collision species show remarkable correspondence with inclusive-jet suppression measurements, indicating that mass-dependent energy-loss effects are negligible at pT values greater than around 50 GeV/c. We use 150 inverse {\\mu}b of lead-lead data and 35 inverse nb of proton-lead data collected...

  8. Association of A Common Haplotype of Hepatocyte Nuclear Factor 1α With Type 2 Diabetes in Chinese Population

    Institute of Scientific and Technical Information of China (English)

    CONG-RONG WANG; CHENG HU; RONG ZHANG; QI-CHEN FANG; XIAO-JING MA; WEI-PING JIA; KUN-SAN XIANG

    2007-01-01

    Objective To analyze the association of variants of hepatocyte nuclear factor-1α (HNF-1α) gene with type 2 diabetes in Chinese population. Methods In 152 unrelated type 2 diabetes patients and 93 unrelated controls, eleven single nucleotide polymorphisms (SNPs) were identified and genotyped. Statistical analyses were performed to investigate whether these SNPs were associated with diabetes status in our samples. Results In the individual SNP study, no SNP differed significantly in frequency between type 2 diabetes patients and controls. In the haplotype analysis, two haplotype blocks were identified. In haplotype block 1, no evidence was found between common HNF-1α haplotypes and type 2 diabetes. However, in haplotype block 2, a common haplotype GCGC formed by four tagging SNPs (tSNPs) was found to be associated with decreased risk of type 2 diabetes (odds ratio [OR] 0.6011, 95% confidence interval [CI] 0.4138-0.8732,P=0.0073, empirical P=0.0511, permutation test). A similar trend was also observed in the diplotype analysis, indicating that the increasing copy number of the haplotype GCGC was associated with the decreased frequency of diabetes (P=0.0193). Conclusion The results of this study provide evidence that the haplotype of HNF-1α decreases the risk of type 2 diabetes in Chinese individuals.

  9. Calpain-Calcineurin-Nuclear Factor Signaling and the Development of Atrial Fibrillation in Patients with Valvular Heart Disease and Diabetes

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    2016-01-01

    Full Text Available Calpain, calcineurin (CaN, and nuclear factor of activated T cell (NFAT play a key role in the development of atrial fibrillation. Patients with valvular heart disease (VHD are prone to develop atrial fibrillation (AF. Thus, our current study was aimed at investigating whether activation of calpain-CaN-NFAT pathway is associated with the incidence of AF in the patients with VHD and diabetes. The expressions of calpain 2 and alpha- and beta-isoforms of CaN catalytic subunit (CnA as well as NFAT-c3 and NFAT-c4 were quantified by quantitative reverse transcription-polymerase chain reaction in atrial tissues from 77 hospitalized patients with VHD and diabetes. The relevant protein content was measured by Western blot and calpain 2 in human atrium was localized by immunohistochemistry. We found that the expressions of calpain 2, CnA alpha and CnA beta, and NFAT-c3 but not NFAT-c4 were significantly elevated in the samples from patients with AF compared to those with sinus rhythm (SR. Elevated protein levels of calpain 2 and CnA were observed in patients with AF, and so was the enhanced localization of calpain 2. We thereby concluded that CaN together with its upstream molecule, calpain 2, and its downstream effector, NFAT-c3, might contribute to the development of AF in patients with VHD and diabetes.

  10. Protective effects of the nuclear factor kappa B inhibitor pyrrolidine dithiocarbamate on experimental testicular torsion and detorsion injury.

    Science.gov (United States)

    Kabay, Sahin; Ozden, Hilmi; Guven, Gul; Burukoglu, Dilek; Ustuner, Mehmet Cengiz; Topal, Fatma; Gunes, Hasan Veysi; Ustuner, Derya; Ozbayer, Cansu

    2014-08-01

    Testicular torsion results with the damage of the testis and it is a surgical emergency. Pyrrolidine dithiocarbamate (PDTC) is a low-molecular-weight antioxidant and potent inhibitor of nuclear factor kappa B (NF-κB) activation. In this study, we aimed to investigate the effects of PDTC to testicular torsion-detorsion (T/D) injury. Forty adult male Sprague-Dawley rats were separated into four groups. A sham operation was performed in group I. In group II, torsion is performed 2 hours by 720 degree extravaginally testis. In group III, 4 h reperfusion of the testis was performed after 2 h of testicular torsion. In group IV, after performing the same surgical procedures as in group III, PDTC (100 mg/kg, intravenous's) was administered before 30 min of detorsion. The testes tissue malondialdehyde (MDA), superoxide dismutase (SOD) catalase (CAT) level was evaluated. Histological evaluations were performed after hematoxylin and eosin staining. Testicular tissue MDA levels were the highest in the T/D groups compared with treatment group. Administration of PDTC prevented a further increase in MDA levels. Significant decrease occurred in CAT and SOD levels in treatment group compared with the control group. The rats in the treatment group had normal testicular architecture. The results suggest that PDTC can be a potential protective agent for preventing the biochemical and histological changes related to oxidative stress in testicular injury caused by testis torsion.

  11. Inhibition of proteasome activity, nuclear factor-KappaB translocation and cell survival by the antialcoholism drug disulfiram.

    Science.gov (United States)

    Lövborg, Henrik; Oberg, Fredrik; Rickardson, Linda; Gullbo, Joachim; Nygren, Peter; Larsson, Rolf

    2006-03-15

    The proteasome pathway is an important target for anticancer drug development. Here, we identify the antialcoholism drug disulfiram and its analogue pyrrolidine dithiocarbamate (PDTC) as inhibitors of the 26S proteasome activity in a cell-based screening assay. As expected for proteasome inhibitors, these compounds also inhibited TNF-alpha-induced nuclear factor-KappaB (NF-KappaB) translocation and were cytotoxic. Disulfiram was more cytotoxic against chronic lymphocytic leukemia cells compared to peripheral blood mononuclear cells (PBMC) at clinically achievable concentrations. Proteasome and NF-KappaB inhibition were achieved with a potency in the same range as that of the clinically used proteasome inhibitor bortezomib. Disulfiram was also able to induce accumulation of p27(Kip1) and to prolong the half-life of c-Myc, both targets for proteasome-dependent degradation. It is concluded that the previously observed antitumoral and NF-KappaB inhibiting activity of disulfiram and PDTC could be attributed to their inhibition of the 26S proteasome.

  12. A molecular targeting against nuclear factor-κB, as a chemotherapeutic approach for human malignant mesothelioma.

    Science.gov (United States)

    Nishikawa, Sho; Tanaka, Akane; Matsuda, Akira; Oida, Kumiko; Jang, Hyosun; Jung, Kyungsook; Amagai, Yosuke; Ahn, Ginae; Okamoto, Noriko; Ishizaka, Saori; Matsuda, Hiroshi

    2014-04-01

    Chronic inflammation due to the absorption of asbestos is an important cause of mesothelioma. Although the increased prevalence of mesothelioma is a serious problem, the development of effective chemotherapeutic agents remains incomplete. As the nuclear factor-κB (NF-κB) pathway contributes to malignant transformation of various types of cells, we explored NF-κB activity in three different pathological types of malignant mesothelioma cells, and evaluated the therapeutic potential of a recently reported NF-κB inhibitor, IMD-0354. NF-κB was constantly activated in MSTO-211H, NCI-H28, and NCI-H2052 cells, and the proliferation of these cell lines was inhibited by IMD-0354. D-type cyclins were effectively suppressed in mixed tissue type MSTO-211H, leading to cell cycle arrest at sub G1 /G1 phase. IMD-0354 reduced cyclin D3 in both epithelial tissue type NCI-H28 and sarcomatoid tissue type NCI-H2052. In a sphere formation assay, IMD-0354 effectively decreased the number and diameter of MSTO-211H spheres. Preincubation of MSTO-211H cells with IMD-0354 delayed tumor formation in transplanted immunodeficient mice. Furthermore, administration of IMD-0354 markedly rescued the survival rate of mice that received intrathoracic injections of MSTO-211H cells. These results indicate that a targeted drug against NF-κB might have therapeutic efficacy in the treatment of human malignant mesothelioma.

  13. Bridelia ferruginea Produces Antineuroinflammatory Activity through Inhibition of Nuclear Factor-kappa B and p38 MAPK Signalling

    Directory of Open Access Journals (Sweden)

    Olumayokun A. Olajide

    2012-01-01

    Full Text Available Bridelia ferruginea is commonly used in traditional African medicine (TAM for treating various inflammatory conditions. Extracts from the plant have been shown to exhibit anti-inflammatory property in a number of in vivo models. In this study the influence of B. ferruginea (BFE on the production of PGE2, nitrite, and proinflammatory cytokines from LPS-stimulated BV-2 microglia was investigated. The effects of BFE on cyclooxygenase-2 (COX-2 and inducible nitric oxide synthase (iNOS protein expressions were evaluated in LPS-activated rat primary microglia. The roles of NF-κB and MAPK signalling in the actions of BFE were also investigated. BFE (25–200 μg inhibited the production of PGE2, nitrite, tumour necrosis factor-α (TNFα, and interleukin-6 (IL-6 as well as COX-2 and iNOS protein expressions in LPS-activated microglial cells. Further studies to elucidate the mechanism of anti-inflammatory action of BFE revealed interference with nuclear translocation of NF-κBp65 through mechanisms involving inhibition of IκB degradation. BFE prevented phosphorylation of p38, but not p42/44 or JNK MAPK. It is suggested that Bridelia ferruginea produces anti-inflammatory action through mechanisms involving p38 MAPK and NF-κB signalling.

  14. Inhibition of p38 mitogen-activated protein kinase attenuates experimental autoimmune hepatitis: Involvement of nuclear factor kappa B

    Institute of Scientific and Technical Information of China (English)

    Xiong Ma; Yi-Tao Jia; De-Kai Qiu

    2007-01-01

    AIM: To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57BI/6 mice. Liver injury was assessed by serum ALT and liver histology.The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition,DNA binding activities of nuclear factor kappa B (NF-κB)were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-γ, IL-12, IL-1β and TNF-α) were observed.RESULTS: The activity of p38 MAPK and NF-κB was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-κB and the expression of proinflammatory cytokines.Moreover, hepatic injuries were improved significantly after SB203580 administration.CONCLUSION: p38 MAPK and NF-κB play an important role in an animal model of autoimmune hepatitis (AIH)induced by autoantigens.

  15. Operational readiness decisions at nuclear power plants. Which factors influence the decisions?; Driftklarhetsbeslut i kaernkraftanlaeggningar. Vilka faktorer paaverkar beslutsfattandet?

    Energy Technology Data Exchange (ETDEWEB)

    Kecklund, Lena; Petterson, Sara (MTO Psykologi, Stockholm (SE))

    2007-11-15

    The purpose of this project has been to propose a model for how operational readiness decisions are made and to identify important factors influencing these decisions. The project has also studied the support from the management system for decision making, and made a comparison to how decisions are made in practice. This is mainly an explorative study, but it also deals with relevant research and theories about decision making. The project consists of several parts. The first part is composed of descriptions of important notations and terms, and a summary of relevant research about decision making and its relation to the management system. The project proposes a model for the decision making process. The second part consists of analyses of reports from SKI about operational readiness decisions. The last part is a case study at a nuclear power plant. The case study describes the support from work method theories at the nuclear power plant to the decision maker. Decision makers with different roles in the safety management system were interviewed to give a description of the decision making process and of factors influencing the decisions made in practice. The case study also consists of an analysis of decisions in some real events at the nuclear power plant, as well as of making interviews in connection with these. To sum up, this report presents a model for the decision process and describes the work method theories that support the different parts in the process, how the different parts are applied in practice and circumstances that influence the decision process. The results of the project give an understanding for decision making in operational readiness decisions and the factors that influence the decision. The results are meant to be used as a basis for further studies in other nuclear power plants. The results indicate that the decision process is facilitated if there are clear criteria and work methods, if the work methods are well established and if the

  16. Hepatocyte nuclear factor 1-alpha mutation in normal glucose-tolerant subjects and early-onset type 2 diabetic patients.

    Science.gov (United States)

    Lim, Dong Mee; Huh, Nam; Park, Keun Yong

    2008-12-01

    The prevalence of diabetes in Korea is reported to be approximately 10%, but cases of maturity-onset diabetes of the young (MODY) are rare in Korea. A diagnostic technique for autosomal dominant MODY is being actively sought. In this regard, we used a DNA chip to investigate the frequency of mutations of the MODY3 gene (hepatocyte nuclear factor-1alpha) in Korean patients with early-onset type 2 diabetes. The genomic DNA of 30 normal individuals [age, 24.9+/-8.6 years] and 25 patients with early-onset type 2 diabetes (age, 27+/-5.9 years) was extracted, and the MODY3 gene was amplified. The amplified DNA was hybridized onto a MODY3 chip, which has oligonucleotides of 15-25 bases, representing wild-type and mutant MODY3 sequences in both forward and reverse orientations, immobilized on its surface. Among the normal subjects, there was no mutation of MODY3. Among those with early-onset type 2 diabetes, there was one case of MODY3 mutation. Our results indicate that MODY3 mutations are not rare in Korean early-onset type 2 diabetes patients in Korea and suggest that MODY3 mutations in patients with early-onset type 2 diabetes need to be further evaluated.

  17. Combining oral contraceptives with a natural nuclear factor-kappa B inhibitor for the treatment of endometriosis-related pain

    Science.gov (United States)

    Maia, Hugo; Haddad, Clarice; Casoy, Julio

    2014-01-01

    Endometriosis is a chronic disease in which a persistent state of heightened inflammation is maintained by nuclear factor-kappa B (NF-κB) activation. The progestins present in oral contraceptives are potent inhibitors of NF-κB translocation to cell nuclei, while Pycnogenol® (Pinus pinaster) acts by blocking post-translational events. In this study, the effects of Pycnogenol on pain scores were investigated in patients with endometriosis using oral contraceptives containing either gestodene or drospirenone in extended regimens. Pain scores were determined using a visual analog scale before and after 3 months of treatment. Oral contraceptives, used alone (groups 1 and 3) or in association with Pycnogenol (groups 2 and 4), resulted in significant decreases in pain scores after 3 months of treatment; however, this reduction was significantly greater in the groups using oral contraceptives + Pycnogenol (groups 2 and 4) compared with those using oral contraceptives alone (groups 1 and 3). In the groups using oral contraceptives alone, 50% of patients became pain-free by the end of the third month of treatment. These results suggest that Pycnogenol increases the efficacy of oral contraceptives for the treatment of endometriosis-related pain. PMID:24379702

  18. Physiologic activation of nuclear factor kappa-B in the endometrium during the menstrual cycle is altered in endometriosis patients.

    Science.gov (United States)

    González-Ramos, Reinaldo; Rocco, Jocelyn; Rojas, Candy; Sovino, Hugo; Poch, Andrea; Kohen, Paulina; Alvarado-Díaz, Carlos; Devoto, Luigi

    2012-03-01

    To evaluate nuclear factor kappaB (NF-κB) activation and NF-κB-p65 subunit activation, immunolocalization, and expression in the endometrium of healthy women and endometriosis patients throughout the menstrual cycle. Prospective observational study. Affiliated hospital and university research laboratory. Twenty-four healthy women and 24 endometriosis patients. Menstrual, proliferative, and secretory endometrial biopsies. Assessment of NF-κB and p65 activation by protein-DNA binding assays and p65 localization and expression by immunohistochemistry. Total NF-κB-DNA binding was constitutive and variable in human endometrium accross the menstrual cycle. Healthy women (physiologic conditions) showed higher p65-DNA binding in proliferative than in menstrual and secretory endometrium. Conversely, in endometriosis patients, p65-DNA binding was higher in proliferative and secretory endometrium than in menstrual endometrium. Endometrial epithelial cells showed higher p65 expression level score than endometrial stromal cells. NF-κB activity is constitutive, physiologic, and variable in human endometrium. The physiologic cyclic p65 activation pattern was altered in endometriosis patients, showing no cyclic variation between the proliferative and secretory phase of the menstrual cycle. The absence of decreased p65 activity in secretory endometrium from endometriosis patients is concurrent with progesterone resistance and could participate in endometrial biologic alterations during the implantation window in endometriosis patients. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Understanding public responses to chemical, biological, radiological and nuclear incidents--driving factors, emerging themes and research gaps.

    Science.gov (United States)

    Krieger, Kristian; Amlôt, Richard; Rogers, M Brooke

    2014-11-01

    This paper discusses the management of public responses to incidents involving chemical, biological, radiological and nuclear materials (CBRN). Given the extraordinary technical and operational challenges of a response to a CBRN release including, but not limited to, hazard detection and identification, casualty decontamination and multi-agency co-ordination, it is not surprising that public psychological and behavioural responses to such incidents have received limited attention by scholars and practitioners alike. As a result, a lack of understanding about the role of the public in effective emergency response constitutes a major gap in research and practice. This limitation must be addressed as a CBRN release has the potential to have wide-reaching psychological and behavioural impacts which, in turn, impact upon public morbidity and mortality rates. This paper addresses a number of key issues: why public responses matter; how responses have been conceptualised by practitioners; what factors have been identified as influencing public responses to a CBRN release and similar extreme events, and what further analysis is needed in order to generate a better understanding of public responses to inform the management of public responses to a CBRN release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Molecular cloning of a novel nuclear factor, TDRP1, in spermatogenic cells of testis and its relationship with spermatogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuanchun [Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040 (China); Jiang, Haowen [Department of Urology, Huashan Hospital, Institute of Urology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040 (China); Zhou, Wenbai; Zhang, Zhaoyun; Yang, Zhihong [Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040 (China); Lu, Yong [Department of Urology, Huashan Hospital, Institute of Urology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040 (China); Lu, Bin [Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040 (China); Wang, Xiang [Department of Urology, Huashan Hospital, Institute of Urology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040 (China); Ding, Qiang, E-mail: dingqiangd@hotmail.com [Department of Urology, Huashan Hospital, Institute of Urology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040 (China); Hu, Renming, E-mail: renminghu@fudan.edu.cn [Department of Endocrinology, Huashan Hospital, Institute of Endocrinology and Diabetology at Fudan University, Shanghai Medical College, Fudan University, Shanghai 200040 (China)

    2010-03-26

    We reported the identification of a novel gene termed TDRP (encoding testis development-related protein) that might be involved in spermatogenesis. The human TDRP gene had two distinct transcripts, TDRP1 and TDRP2, which encoded proteins of 183 aa and 198 aa respectively. Tdrp mRNA was predominantly expressed in testis tissue. We generated rabbit polyclonal antibodies specific against human TDRP1. Immunohistochemistry analysis showed TDRP1 was expressed in spermatogenic cells, especially with high expression in spermatocytes. We provided evidence that TDRP1 distributed in both cytoplasm and nuclei of spermatogenic cells. Expression patterns of Tdrp1 mRNA and its protein were investigated in the rat testis tissues of different developmental stages. Both Tdrp1 mRNA and its protein were barely detected in the testis of neonatal rats, increased remarkably at 3 weeks postpartum, and peaked at 2 months postpartum. We also investigated TDRP1 expressions in testis tissues of azoospermic men with defective spermatogenesis. Western blot analysis showed that TDRP1 expressions were significantly lower in the testis tissues of azoospermic men compared with normal controls. These current data demonstrated that as a nuclear factor, TDRP1 might play an important role in spermatogenesis.

  1. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB–mediated pathogenic pathways

    Science.gov (United States)

    Swarup, Vivek; Phaneuf, Daniel; Dupré, Nicolas; Petri, Susanne; Strong, Michael; Kriz, Jasna

    2011-01-01

    TDP-43 (TAR DNA-binding protein 43) inclusions are a hallmark of amyotrophic lateral sclerosis (ALS). In this study, we report that TDP-43 and nuclear factor κB (NF-κB) p65 messenger RNA and protein expression is higher in spinal cords in ALS patients than healthy individuals. TDP-43 interacts with and colocalizes with p65 in glial and neuronal cells from ALS patients and mice expressing wild-type and mutant TDP-43 transgenes but not in cells from healthy individuals or nontransgenic mice. TDP-43 acted as a co-activator of p65, and glial cells expressing higher amounts of TDP-43 produced more proinflammatory cytokines and neurotoxic mediators after stimulation with lipopolysaccharide or reactive oxygen species. TDP-43 overexpression in neurons also increased their vulnerability to toxic mediators. Treatment of TDP-43 mice with Withaferin A, an inhibitor of NF-κB activity, reduced denervation in the neuromuscular junction and ALS disease symptoms. We propose that TDP-43 deregulation contributes to ALS pathogenesis in part by enhancing NF-κB activation and that NF-κB may constitute a therapeutic target for the disease. PMID:22084410

  2. Nuclear Modification Factor of D0 Meson in Au + Au Collisions at √{sNN} = 200 GeV

    Science.gov (United States)

    Xie, Guannan

    2016-12-01

    Heavy-flavor quarks are dominantly produced in initial hard scattering processes and experience the whole evolution of the system in heavy-ion collisions at RHIC energies. Thus they are suggested to be an excellent probe to the medium properties through their interaction with the medium. In this proceedings, we report our first measurement of D0 production via topological reconstruction using STAR's recently installed Heavy Flavor Tracker (HFT). We also report our new measurement of Nuclear Modification Factor (RAA) of D0 mesons in central Au+Au collisions at √{sNN} = 200 GeV as a function of transverse momentum (pT). New results confirm the strong suppression at high pT with a much improved precision, and show that the RAA at high pT are comparable with light hadrons (π) and with D meson measurements at the LHC. Furthermore, several theoretical calculations are compared to our data, and with charm diffusion coefficient 2 πTDS ∼ 2- 12 can reproduce both the D0RAA and v2 data in Au+Au collisions at RHIC.

  3. Analysis of factors causing signal loss in the measurement of lung tissue water by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Fukuzaki, Minoru [Tokai Univ. Junior Coll., Tokyo (Japan); Shioya, Sumie; Haida, Munetaka

    1997-05-01

    The water content of lung, brain, and muscle tissue was measured by nuclear magnetic resonance (NMR) and compared with gravimetric determinations. The NMR signal intensity of water was measured by a single 90 degree pulse and by a spin-echo sequence. The absolute water content was determined by the difference in the sample`s weight before and after desiccation. The NMR detectable water in each tissue was expressed as a percentage of the signal intensity for an equal weight of distilled water. Using the single pulse measurement, 67% of the gravimetrically-measured water was detected in collapsed lung samples (consisting of about 47% retained air), in contrast to 96% for brain and 98% for muscle. For degassed lung samples, the NMR detectability of water increased to 87% with the single pulse measurement and to 90% with the spin-echo measurement, but the values remained significantly less than those of brain or muscle. Factors that caused the NMR signal loss of 33% in collapsed lung samples were: air-tissue interfaces (20%), microscopic field inhomogeneity (3%), and a water component with an extremely short magnetization decay time constant (10%). (author)

  4. Vimentin-Mediated Steroidogenesis Induced by Phthalate Esters: Involvement of DNA Demethylation and Nuclear Factor κB.

    Science.gov (United States)

    Li, Yuan; Hu, Yanhui; Dong, Congcong; Lu, Hongchao; Zhang, Chang; Hu, Qi; Li, Shifeng; Qin, Heng; Li, Zhong; Wang, Yubang

    2016-01-01

    Di-n-butyl phthalate (DBP) and its active metabolite, monobutyl phthalate (MBP) are the most common endocrine disrupting chemicals. Many studies indicate that high-doses of DBP and/or MBP exhibit toxicity on testicular function, however, little attention have been paid to the effects of low levels of DBP/MBP on steroidogenesis. As we all know, the steroidogenic acute regulatory protein (StAR) is a key regulator involved in the steroidogenesis. Here we found that, in addition to StAR, MBP/DBP increased the steroidogenesis by a cytoskeletal protein, vimentin. Briefly, in murine adrenocortical tumor (Y1) and the mouse Leydig tumor (MLTC-1) cells, vimentin regulated the secretion of progesterone. When these two cells were exposure to MBP, the DNA demethylation in the vimentin promoter was observed. In addition, MBP also induced the activation of nuclear factor kappa B (NF-κB, a transcriptional regulator of vimentin). These two processes improved the transcriptional elevation of vimentin. Knockdown of NF-κB/vimentin signaling blocked the DBP/MBP-induced steroidogenesis. These in vitro results were also confirmed via an in vivo model. By identifying a mechanism whereby DBP/MBP regulates vimentin, our results expand the understanding of the endocrine disrupting potential of phthalate esters.

  5. Elliptic flow and nuclear modification factors of D-mesons at FAIR in a Hybrid-Langevin approach

    CERN Document Server

    Lang, Thomas; Steinheimer, Jan; Bleicher, Marcus

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment at the Facility for Anti-proton and Ion Research (FAIR) will provide new possibilities for charm-quark ($D$-meson) observables in heavy-ion collisions at low collision energies and high baryon densities. To predict the collective flow and nuclear modification factors of charm quarks in this environment, we apply a Langevin approach for the transport of charm quarks in the UrQMD (hydrodynamics + Boltzmann) hybrid model. Due to the inclusion of event-by-event fluctuations and a full (3+1) dimensional hydrodynamical evolution, the UrQMD hybrid approach provides a realistic evolution of the matter produced in heavy-ion collisions. As drag and diffusion coefficients we use a resonance approach for elastic heavy-quark scattering and assume a decoupling temperature of the charm quarks from the hot medium of $130\\, \\MeV$. Hadronization of the charm quarks to $D$-mesons by coalescence is included. Since the initial charm-quark distribution at FAIR is unknown, we utilize ...

  6. E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-κB in AGS cells.

    Science.gov (United States)

    Park, Song Yi; Shin, Jee-Hye; Kee, Sun-Ho

    2017-09-01

    β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. Characteristics of hepatic nuclear-transcription factor-kappa B expression and quantitative analysis in rat hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Wei Wu; Wen-Jing Gu; Deng-Fu Yao; Li-Wei Qiu; Wen-Li Sai; Jun-Jun Shen; Hong-Bo Yu; Xin-Hua Wu; Yue-Ming Li; Yi-Lang Wang

    2009-01-01

    BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. We analyzed the expression of nuclear-transcription factor-kappa B (NF-κB) during hepatocarcinogenesis in order to evaluate its dynamic expression and its clinical value in the development and diagnosis of HCC. METHODS: Hepatoma models were induced by oral administration of 2-acetamidoflurene (2-FAA) to male Sprague-Dawley rats. Morphological changes were observed afterhematoxylinandeosinstaining.Thecellulardistribution of NF-κB expression during different stages of cancer development was investigated by immunohistochemistry, and the level of NF-κB expression in liver tissues was quantitatively analyzed by ELISA. The gene fragments of hepatic NF-κB were amplified by nested-polymerase chain reaction assay. RESULTS: Hepatocytes showed vacuole-like degeneration during the early stages, then had a hyperplastic nodal appearance during the middle stages, and finally progressed to tubercles of cancerous nests with high differentiation. The NF-κB-positive material was buff-colored, fine particles localized in the nucleus, and the incidence of NF-κB-positive cells was 81.8% in degeneration, 83.3% in precancerous lesions, and 100% in cancerous tissues. All of these values were higher than those in controls (P CONCLUSION: The NF-κB signal transduction pathway is activated during the early stages of HCC development, and its abnormal expression may be associated with the occurrence of HCC.

  8. Protective Role of Nuclear Factor E2-Related Factor 2 against Acute Oxidative Stress-Induced Pancreatic β-Cell Damage

    Directory of Open Access Journals (Sweden)

    Jingqi Fu

    2015-01-01

    Full Text Available Oxidative stress is implicated in the pathogenesis of pancreatic β-cell dysfunction that occurs in both type 1 and type 2 diabetes. Nuclear factor E2-related factor 2 (NRF2 is a master regulator in the cellular adaptive response to oxidative stress. The present study found that MIN6 β-cells with stable knockdown of Nrf2 (Nrf2-KD and islets isolated from Nrf2-knockout mice expressed substantially reduced levels of antioxidant enzymes in response to a variety of stressors. In scramble MIN6 cells or wild-type islets, acute exposure to oxidative stressors, including hydrogen peroxide (H2O2 and S-nitroso-N-acetylpenicillamine, resulted in cell damage as determined by decrease in cell viability, reduced ATP content, morphology changes of islets, and/or alterations of apoptotic biomarkers in a concentration- and/or time-dependent manner. In contrast, silencing of Nrf2 sensitized MIN6 cells or islets to the damage. In addition, pretreatment of MIN6 β-cells with NRF2 activators, including CDDO-Im, dimethyl fumarate (DMF, and tert-butylhydroquinone (tBHQ, protected the cells from high levels of H2O2-induced cell damage. Given that reactive oxygen species (ROS are involved in regulating glucose-stimulated insulin secretion (GSIS and persistent activation of NRF2 blunts glucose-triggered ROS signaling and GSIS, the present study highlights the distinct roles that NRF2 may play in pancreatic β-cell dysfunction that occurs in different stages of diabetes.

  9. Tumor necrosis factor alpha induces spermidine/spermine N1-acetyltransferase through nuclear factor kappaB in non-small cell lung cancer cells.

    Science.gov (United States)

    Babbar, Naveen; Hacker, Amy; Huang, Yi; Casero, Robert A

    2006-08-25

    Tumor necrosis factor alpha (TNFalpha) is a potent pleiotropic cytokine produced by many cells in response to inflammatory stress. The molecular mechanisms responsible for the multiple biological activities of TNFalpha are due to its ability to activate multiple signal transduction pathways, including nuclear factor kappaB (NFkappaB), which plays critical roles in cell proliferation and survival. TNFalpha displays both apoptotic and antiapoptotic properties, depending on the nature of the stimulus and the activation status of certain signaling pathways. Here we show that TNFalpha can lead to the induction of NFkappaB signaling with a concomitant increase in spermidine/spermine N(1)-acetyltransferase (SSAT) expression in A549 and H157 non-small cell lung cancer cells. Induction of SSAT, a stress-inducible gene that encodes a rate-limiting polyamine catabolic enzyme, leads to lower intracellular polyamine contents and has been associated with decreased cell growth and increased apoptosis. Stable overexpression of a mutant, dominant negative IkappaBalpha protein led to the suppression of SSAT induction by TNFalpha in these cells, thereby substantiating a role of NFkappaB in the induction of SSAT by TNFalpha. SSAT promoter deletion constructs led to the identification of three potential NFkappaB response elements in the SSAT gene. Electromobility shift assays, chromatin immunoprecipitation experiments and mutational studies confirmed that two of the three NFkappaB response elements play an important role in the regulation of SSAT in response to TNFalpha. The results of these studies indicate that a common mediator of inflammation can lead to the induction of SSAT expression by activating the NFkappaB signaling pathway in non-small cell lung cancer cells.

  10. Nuclear factor E2-related factor 2’s activation in transgenic mice fed with high dosage of fish oil.

    Directory of Open Access Journals (Sweden)

    Elena Mariani

    2016-06-01

    Full Text Available Some fatty acids, such as CLA (conjugated linoleic acid and n-3 fatty acids modulate immune and inflammatory response in ruminants and monogastrics; their supplementation alters fatty acids profile of meat and milk, enhancing their nutritional quality. However, it is still unclear if their addition causes oxidative damage to animals. Nuclear factor E2-related factor 2 (Nrf2 plays an important role in cellular defenses against oxidative stress, indeed it produces a rapid induction of its target genes involved in antioxidant response. The aim of the project is to investigate the activation of Nrf2 in luciferase reporter mice fed different amount of n-3 PUFA in the diet (7,5% lard, 7,5% tuna oil, 20 % lard and 20%tuna oil. Forty-eight reporter mice are divided into three groups: male, intact female and ovariectomized female. Each group is split in four subgroups fed different diets. Oxidative status will be studied monitoring Nrf2’s activation with in vivo bioluminescent imaging. The inflammatory and immune response will be assessed using calprotectin and lactoferrin levels in faecal samples that are non-invasive techniques. The trial is still in progress: on the 62nd day, animals will be sacrificed after a challenge in order to measure the different effects of diets and +/- oestrogen on stress response. Finally, the post mortem analysis will be carried on extract organs. Data obtained will be analysed using statistical procedures and results will improve the knowledge about interaction between omega-3 fatty acids and animals’ oxidative status.

  11. Effects of β-Aescin on the expression of nuclear factor-κB and tumor necrosis factor-α after traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    XIAO Guo-min; WEI Jing

    2005-01-01

    To investigate the inhibiting effect of β-Aescin on nuclear factor-κB (NF-κB) activation and the expression of tumor necrosis factor-α (TNF-α) protein after traumatic brain injury (TBI) in the rat brain, 62 SD rats were subjected to lateral cortical impact injury caused by a free-falling object and divided randomly into four groups: (1) sham operated (Group A); (2) injured (Group B); (3) β-Aescin treatment (Group C); (4) pyrrolidine dithocarbamate (PDTC) treatment (Group D). β-Aescin was administered in Group C and PDTC treated in Group D immediately after injury. A series of brain samples were obtained directly 6h, 24 h and 3 d respectively after trauma in four groups. NF-κB activation was examined by Electrophoretic Mobility Shift Assay (EMSA); the levels of TNF-α protein were measured by radio-immunoassay (RIA); the water content of rat brain was measured and pathomorphological observation was carried out. NF-κB activation, the levels of TNF-α protein and the water content of rat brain were significantly increased (P<0.01) following TBI in rats. Compared with Group B, NF-κB activation (P<0.01), the levels of TNF-α protein (P<0.01) and the water content of brain (P<0.05) began to decrease obviously after injury in Groups C and D.β-Aescin could dramatically inhibit NF-κB activation and the expression of TNF-α protein in the rat brain, alleviate rat brain edema, and that could partially be the molecular mechanism by which β-Aescin attenuates traumatic brain edema.

  12. Effect of Nuclear Factor-kappa B on Vascular Endothelial Growth Factor mRNA Expression of Human Pulmonary Artery Smooth Muscle Cells in Hypoxia

    Institute of Scientific and Technical Information of China (English)

    张焕萍; 徐永健; 张珍祥; 许淑云; 倪望; 陈士新

    2004-01-01

    Summary: In order to investigate the effect of nuclear factor-kappa B (NF-κB) on vascular endothelial growth factor (VEGF) mRNA expression of human pulmonary artery smooth muscle cells (HPASMCs) in hypoxia, the cultured HPASMCs in vitro were stimulated with pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB. The NF-κB p65 nuclei positive expression was detected by immunocytochemical technique. The IκBa protein expression was measured by Western blot.RT-PCR was used to detect the VEGF mRNA expression of HPASMCs. The results showed that no significant change was observed in the NF-κB p65 nuclei positive expression of cultured HPASMCs during 6 h-24 h in normoxia, but the levels of NF-κB p65 nuclei positive expression of cultured HPASMCs were significantly increased in hypoxia groups as compared with those in all normoxia groups (P<0.05). The IκBα protein expression of cultured HPASMCs showed no significant change during 6 h-24 h in normoxia, but significantly decreased in hypoxia as comapred with that in normoxia groups (P<0.05). PDTC (1 to 100 μmol/L) could inhibit the VEGF mRNA expression of HPASMCs in a concentration-dependent manner in hypoxia. In conclusion, NF-κB can be partly translocation activated from cytoplasm into nuclei in the cultured HPASMCs under hypoxia. The inhibition of NF-κB activation can decrease the VEGF mRNA expression. h is suggested that the activation of NF-κB is involved in the VEGFmRNA expression of HPASMCs under hypoxia.

  13. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bei [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110001 (China); Fu, Jingqi; Zheng, Hongzhi; Xue, Peng; Yarborough, Kathy; Woods, Courtney G.; Hou, Yongyong; Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States)

    2012-11-01

    Chronic human exposure to inorganic arsenic (iAs), a potent environmental oxidative stressor, is associated with increased prevalence of type 2 diabetes, where impairment of pancreatic β-cell function is a key pathogenic factor. Nuclear factor E2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. However, persistent activation of Nrf2 in response to chronic oxidative stress, including inorganic arsenite (iAs{sup 3+}) exposure, blunts glucose-triggered reactive oxygen species (ROS) signaling and impairs glucose-stimulated insulin secretion (GSIS). In the current study, we found that MIN6 pancreatic β-cells with stable knockdown of Nrf2 (Nrf2-KD) by lentiviral shRNA and pancreatic islets isolated from Nrf2-knockout (Nrf2−/−) mice exhibited reduced expression of several antioxidant and detoxification enzymes in response to acute iAs{sup 3+} exposure. As a result, Nrf2-KD MIN6 cells and Nrf2−/− islets were more susceptible to iAs{sup 3+} and monomethylarsonous acid (MMA{sup 3+})-induced cell damage, as measured by decreased cell viability, augmented apoptosis and morphological change. Pretreatment of MIN6 cells with Nrf2 activator tert-butylhydroquinone protected the cells from iAs{sup 3+}-induced cell damage in an Nrf2-dependent fashion. In contrast, antioxidant N‐acetyl cysteine protected Nrf2-KD MIN6 cells against acute cytotoxicity of iAs{sup 3+}. The present study demonstrates that Nrf2-mediated antioxidant response is critical in the pancreatic β-cell defense mechanism against acute cytotoxicity by arsenic. The findings here, combined with our previous results on the inhibitory effect of antioxidants on ROS signaling and GSIS, suggest that Nrf2 plays paradoxical roles in pancreatic β-cell dysfunction induced by environmental arsenic exposure. -- Highlights: ► Lack of Nrf2 reduced expression of antioxidant genes induced by iAs{sup 3+} in β-cells. ► Deficiency of Nrf2 in

  14. Effect of Shenfu injection on nuclear factor-kB during myocardial ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ben-jing; WANA Yan-lin; WANG Cheng-yao; KE Jian-juan

    2005-01-01

    Objective: To investigate effects of Shenfu injection on the concentrations of plasma tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), activity of Nuclear Factor kappa B (NF-κB) and heart tissue ultrastructure during myocardial ischemia/reperfusion (I/R) injury in rats and its potential mechanism.Methods: Myocardial ischemia/reperfusion (I/R) was produced by ligation and release of the left anterior descending coronary artery. Ischemia lasted for 30 min and reperfusion for 60 min. Twenty-four healthy male SD rats weighing 230-280 g were randomly divided into three groups (n=8, each): Group I (Sham-operation group); Group II (I/R group); Group III (Shenfu group), in which Shenfu injection (10 ml/kg) was intraperitoneally injected 30 min before ischemia in animals with I/R. The plasma concentrations of IL-6 and TNF-α were measured by ELISA, and the heart was harvested for determination of NF-κB levels by Ecl-western blot analysis. Electron microscopy was used to study its ultrastructure.Results: After reperfusion, NF-κB binding activity in myocardial nuclei and the plasma concentrations of IL-6 and TNF-α were significantly increased in Group II, compared with Group I (P<0.01), and they were markedly reduced in Group III, compared with Group II (P<0.01). In addition, electron microscopic examination showed more serious injury of the myocardium ultrastructure in Group II, while in Group III the myocardial ultrastructure was similar to normal state.Conclusions: Shenfu injection inhibits NF-κB activity in I/R myocardium and leads to down-regulation of proinflammatory cytokine expression, which might be one of the molecular mechanisms of Shenfu injection in cardioprotection.

  15. Nuclear factor of activated T cells regulates neutrophil recruitment, systemic inflammation, and T-cell dysfunction in abdominal sepsis.

    Science.gov (United States)

    Zhang, Su; Luo, Lingtao; Wang, Yongzhi; Gomez, Maria F; Thorlacius, Henrik

    2014-08-01

    The signaling mechanisms regulating neutrophil recruitment, systemic inflammation, and T-cell dysfunction in polymicrobial sepsis are not clear. This study explored the potential involvement of the calcium/calcineurin-dependent transcription factor, nuclear factor of activated T cells (NFAT), in abdominal sepsis. Cecal ligation and puncture (CLP) triggered NFAT-dependent transcriptional activity in the lung, spleen, liver, and aorta in NFAT-luciferase reporter mice. Treatment with the NFAT inhibitor A-285222 prior to CLP completely prevented sepsis-induced NFAT activation in all these organs. Inhibition of NFAT activity reduced sepsis-induced formation of CXCL1, CXCL2, and CXCL5 chemokines and edema as well as neutrophil infiltration in the lung. Notably, NFAT inhibition efficiently reduced the CLP-evoked increases in HMBG1, interleukin 6 (IL-6), and CXCL5 levels in plasma. Moreover, administration of A-285222 restored sepsis-induced T-cell dysfunction, as evidenced by markedly decreased apoptosis and restored proliferative capacity of CD4 T cells. Along these lines, treatment with A-285222 restored gamma interferon (IFN-γ) and IL-4 levels in the spleen, which were markedly reduced in septic mice. CLP-induced formation of regulatory T cells (CD4(+) CD25(+) Foxp3(+)) in the spleen was also abolished in A-285222-treated animals. All together, these novel findings suggest that NFAT is a powerful regulator of pathological inflammation and T-cell immune dysfunction in abdominal sepsis. Thus, our data suggest that NFAT signaling might be a useful target to protect against respiratory failure and immunosuppression in patients with sepsis.

  16. Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition Nuclear Factor-κB signaling.

    Science.gov (United States)

    Liu, Yuan; Su, Chuanfu; Shan, Yuqing; Yang, Shouxiang; Ma, Guifeng

    2016-01-01

    Notch-1, a type-1 transmembrane protein, plays critical roles in the pathogenesis and progression of human malignancies, including breast cancer; however, the precise mechanism by which Notch-1 causes tumor cell invasion and angiogenesis remain unclear. Nuclear factor-κB (NF-κB), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are critically involved in the processes of tumor cell invasion and metastasis, we investigated whether targeting Notch-1 could be mechanistically associated with the down-regulation of NF-κB, IL-8, VEGF, and MMP-9, resulting in the inhibition of invasion and angiogenesis of breast cancer cells. Our data showed that down-regulation of Notch-1 leads to the inactivation of NF-κB activity and inhibits the expression of its target genes, such as IL-8, VEGF and MMP-9. We also found that down-regulation of Notch-1 decreased cell invasion, and vice versa Consistent with these results, we also found that the down-regulation of Notch-1 not only decreased MMP-9 mRNA and its protein expression but also inhibited MMP-9 active form. Moreover, conditioned medium from Notch-1 siRNA-transfected breast cancer cells showed reduced levels of IL-8 and VEGF and, in turn, inhibited the tube formation of HUVECs, suggesting that down-regulation of Notch-1 leads to the inhibition of angiogenesis. Furthermore, conditioned medium from Notch-1 cDNA-transfected breast cancer cells showed increased levels of IL-8 and VEGF and, in turn, promoted the tube formation of HUVECs, suggesting that Notch-1 overexpression leads to the promotion of angiogenesis.We therefore concluded that down-regulation of Notch-1 leads to the inactivation NF-κB and its target genes (IL-8, MMP-9 and VEGF), resulting in the inhibition of invasion and angiogenesis.

  17. Developmental expression of STATs, nuclear factor-κB and inflammatory genes in the jejunum of piglets during weaning.

    Science.gov (United States)

    Yi, Hongbo; Jiang, Denghu; Zhang, Lin; Xiong, Haitao; Han, Feifei; Wang, Yizhen

    2016-07-01

    The signal transducer and activator of transcription (STAT) proteins play essential roles in apoptosis, proliferation and survival. However, the role of STATs in intestinal inflammation during weaning is unclear. This study aimed to investigate developmental expression of STATs, nuclear factor-κB (NF-κB) and inflammatory genes in the jejunum of piglets during weaning. Thirty-two piglets were weaned at 21d and sacrificed at 0, 1, 7, or 14d (n=8) after weaning. Villus height and the villus height/crypt depth ratio were decreased, whereas crypt depth was increased in the jejunum at 7 and 14d after weaning. In addition, the mRNA levels of interferon-γ (IFN-γ), inducible nitric oxide synthase (iNOS), IL-6, IL-8, IL-12 and IL-22 were increased in the jejunum at 7 and 14d after weaning, whereas transforming growth factor-β (TGF-β), suppressor of cytokine signaling 3 (SCOS3) and arginase-1 was decreased. Neutrophil infiltration was increased in the mucosa of the jejunum after weaning. Moreover, phosphorylation of IκB-α, NF-κB, AKT and STAT-3 was increased. However, the phosphorylation of STAT-1 (at 7 and 14d) and STAT-6 (at 1 and 7d) was suppressed in the jejunum after weaning. Treatment of porcine jejunal epithelial (IPEC-J2) cells with the STAT inhibitors fludarabine, niclosamide and teriflunomide, which inhibit the phosphorylation of STAT-1, STAT-3 and STAT-6, respectively, weakened the defense capacity of these cells against bacterial infection. In conclusion, weaning caused severe inflammation associated with activation of the NF-κB and STAT-3 pathways and suppression of STAT-1 and STAT-6 in the jejunum of piglets.

  18. Regulatory mechanism of pyrrolidine dithiocarbamate is mediated by nuclear factor-κB and inhibits neutrophil accumulation in ARDS mice.

    Science.gov (United States)

    Wang, Hongman; Xu, Lisheng; Zhao, Jiping; Wang, Donghui; Guo, Ranran; Wang, Junfei; Gong, Wenbin; Liu, Tian; Zhang, Yuanyuan; Dong, Liang

    2014-08-01

    The aim of the present study was to investigate the regulatory mechanism of nuclear factor (NF)-κB on polymorphonuclear neutrophil (PMN) accumulation and the inflammatory response in lung tissues with acute respiratory distress syndrome (ARDS), as well as the therapeutic effect of pyrrolidine dithiocarbamate (PDTC). Mouse models of ARDS were established by intraperitoneal injection of lipopolysaccharide (LPS). BALB/c mice were divided into control, LPS and PDTC + LPS groups. The expression of PMN adhesion molecules, CD11b/CD18 and intercellular adhesion molecule-1 (ICAM-1), were detected by immunohistochemistry, while the protein expression levels of NF-κB p65 in the lung tissue were analyzed by western blot analysis. In addition, flow cytometry was used to investigate the apoptosis rate of PMNs in the bronchoalveolar fluid, and the expression levels of interleukin (IL)-1β, IL-8 and tumor necrosis factor (TNF)-α and myeloperoxidase (MPO) activity were also determined. Following an intraperitoneal injection of LPS, alveolar septum rupture, pulmonary interstitial hyperemia and PMN infiltration in the alveolar was observed. The protein expression of p65 in the pulmonary cytoplasm decreased, while the expression of p65 in the nucleus increased. The levels of IL-8, IL-1β and TNF-α increased and the high expression status was maintained for 24 h. As the time increased, CD11b/CD18 and ICAM-1 expression increased, as well as MPO activity, while the apoptosis of PMNs was delayed. Compared with the LPS group, the expression of p65 in the pulmonary cytoplasm and the PMN apoptosis rate increased following PDTC intervention, while the expression of p65 in the nucleus decreased, as well as the expression levels of the cytokines and MPO activity. Therefore, PDTC reduced the production of inflammatory cytokines via the NF-κB pathway, which reduced the activation of PMNs in the lung tissue and promoted PMN apoptosis.

  19. Sterol regulation of human fatty acid synthase promoter I requires nuclear factor-Y- and Sp-1-binding sites.

    Science.gov (United States)

    Xiong, S; Chirala, S S; Wakil, S J

    2000-04-11

    To understand cholesterol-mediated regulation of human fatty acid synthase promoter I, we tested various 5'-deletion constructs of promoter I-luciferase reporter gene constructs in HepG2 cells. The reporter gene constructs that contained only the Sp-1-binding site (nucleotides -82 to -74) and the two tandem sterol regulatory elements (SREs; nucleotides -63 to -46) did not respond to cholesterol. Only the reporter gene constructs containing a nuclear factor-Y (NF-Y) sequence, the CCAAT sequence (nucleotides -90 to -86), an Sp-1 sequence, and the two tandem SREs responded to cholesterol. The NF-Y-binding site, therefore, is essential for cholesterol response. Mutating the SREs or the NF-Y site and inserting 4 bp between the Sp-1- and NF-Y-binding sites both resulted in a minimal cholesterol response of the reporter genes. Electrophoretic mobility-shift assays using anti-SRE-binding protein (SREBP) and anti-NF-Ya antibodies confirmed that these SREs and the NF-Y site bind the respective factors. We also identified a second Sp-1 site located between nucleotides -40 and -30 that can substitute for the mutated Sp-1 site located between nucleotides -82 and -74. The reporter gene expression of the wild-type promoter and the Sp-1 site (nucleotides -82 to -74) mutant promoter was similar when SREBP1a [the N-terminal domain of SREBP (amino acids 1-520)] was constitutively overexpressed, suggesting that Sp-1 recruits SREBP to the SREs. Under the same conditions, an NF-Y site mutation resulted in significant loss of reporter gene expression, suggesting that NF-Y is required to activate the cholesterol response.

  20. Geniposide reduces development of streptozotocin-induced diabetic nephropathy via regulating nuclear factor-kappa B signaling pathways.

    Science.gov (United States)

    Hu, Xiaolei; Zhang, Xiaomei; Jin, Guoxi; Shi, Zhaoming; Sun, Weihua; Chen, Fengling

    2017-02-01

    Renal pathology was a commonly seen complication in patients with diabetes. Geniposide (GPO) was previously demonstrated to modulate glucose metabolism in diabetes. This study was to investigate effects of GPO in streptozotocin-induced diabetic rats and its underlying mechanism. Renal function in diabetic rats was evaluated by levels of serum creatinine (Scr), blood urea nitrogen (BUN), and urinary albumin. Renal inflammation was appraised by inflammatory cells infiltration and pro-inflammatory cytokines production. Renal monocytes, T lymphocytes infiltration, and intercellular adhesion molecule-1 (ICAM-1) expression were quantitated by immunohistochemistry. Moreover, renal nuclear factor-kappa B (NF-κB) was assayed by Western blotting. Diabetic rats showed renal dysfunction as evidenced by increased levels of Scr, BUN, urinary albumin, and elevator renal index. Histological examination revealed significant glomerular basement membrane (GBM) thickening. However, GPO notably improved renal function and diabetes-induced GBM changes. Additionally, diabetic rats showed noteworthy renal inflammation,as reflected by enhancement of monocytes and T lymphocytes infiltration, increased expression of ICAM-1, tumor necrosis factor-α, interleukin-1 (IL-1), and IL-6. Interestingly, the level of monocytes infiltration positively correlated with the severity of GBM. Further study indicated diabetic rats displayed increased activation of NF-κB, indicated by increased expression of NF-κB p65, IKKα, and p-IκBα in renal tissue. However, all the changes in renal inflammation and NF-κB pathway were obviously reversed in GPO-treated diabetic rats. Our works indicate GPO ameliorates structural and functional abnormalities of kidney in diabetic rats, which is associated with its suppression of NF-κB-mediated inflammatory response.

  1. Shikonin Promotes Skin Cell Proliferation and Inhibits Nuclear Factor-κB Translocation via Proteasome Inhibition In Vitro

    Institute of Scientific and Technical Information of China (English)

    Yan Yan; Minao Furumura; Takako Gouya; Atsufumi Iwanaga; Kwesi Teye; Sanae Numata; Tadashi Karashima

    2015-01-01

    Background:Shikonin is a major active chemical component extracted from Lithospermi Radix,an effective traditional herb in various types of wound healing.Shikonin can accelerate granulomatous tissue formation by the rat cotton pellet method and induce neovascularization in granulomatous tissue.The purpose of the study was to investigate its mechanism of action in human skin cells.Methods:MTS assay was used to measure cell growth.The collagen type Ⅰ (COL1) mRNA expression and procollagen type Ⅰ C-peptide (PIP) production were detected by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay,respectively.Immunofluorescence and western blot analyses were carried out to investigate nuclear factor-κB (NF-κB) signaling pathway.Cell-based proteasome activity assay was used to determine proteasome activity.Results:In this study,we found that 10 μmol/L shikonin stimulated the growth of normal human keratinocytes and 1 μmol/L shikonin promoted growth of human dermal fibroblasts.However,shikonin did not directly induce COLI mRNA expression and PIP production in dermal fibroblasts in vitro.In addition,1 μmol/L shikonin inhibited translocation of NF-κB p65 from cytoplasm to nucleus induced by tumor necrosis factor-α stimulation in dermal fibroblasts.Furthermore,shikonin inhibited chymotrypsin-like activity of proteasome and was associated with accumulation ofphosphorylated inhibitor κB-α in dermal fibroblasts.Conclusions:These results suggested that shikonin may promote wound healing via its cell growth promoting activity and suppress skin inflammation via inhibitory activity on proteasome.Thus,shikonin may be a potential therapeutic reagent both in wound healing and inflammatory skin diseases.

  2. Osteonecrosis of the jaw induced by receptor activator of nuclear factor-kappa B ligand (Denosumab) - Review

    Science.gov (United States)

    Brizeno, Luiz-André-Cavalcante; de Sousa, Fabrício-Bitu; Mota, Mário-Rogério-Lima; Alves, Ana-Paula-Negreiros-Nunes

    2016-01-01

    Background Denosumab, an anti-resorptive agent, IgG2 monoclonal antibody for human Receptor activator of nuclear factor-kappa B ligand (RANKL), has been related to the occurrence of osteonecrosis of the jaws. Thus, the aim of this study was to review the literature from clinical case reports, regarding the type of patient and the therapeutic approach used for osteonecrosis of the jaws induced by chronic use of Denosumab. Material and Methods For this, a literature review was performed on PubMed, Medline and Cochrane databases, using the keywords “Denosumab” “anti-RANK ligand” and “Osteonecrosis of jaw”. To be included, articles should be a report or a serie of clinical cases, describing patients aged 18 years or over who used denosumab therapy and have received any therapy for ONJ. Results Thirteen complete articles were selected for this review, totaling 17 clinical cases. The majority of ONJ cases, patients receiving Denosumab as treatment for osteoporosis and prostate cancer therapy. In most cases, patients affected by ONJ were women aged 60 or over and posterior mandible area was the main site of involvement. Diabetes pre-treatment with bisphosphonates and exodontia were the most often risk factors related to the occurrence of this condition. It is concluded that the highest number of ONJ cases caused by the use of anti-RANKL agents occurred in female patients, aged 60 years or older, under treatment for osteoporosis and cancer metastasis, and the most affected region was the mandible posterior. Conclusions The results presented in this article are valid tool supporting the non-invasive mapping of facial vascularization. Key words:Denosumab, osteonecrosis, adverse effects, osteoporosis, antineoplastic protocols. PMID:26827069

  3. Osteoprotegerin and soluble receptor activator of nuclear factor-kappa B ligand in exudative age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Amir Ghorbanihaghjo

    2014-04-01

    Full Text Available Calcification and inflammation are among the important cases of exudative age-related macular degeneration (E-ARMD. The aim of the present study was to elucidate if there is any relationship between serum Osteoprotegerin (OPG, soluble receptor activator of nuclear factor-kappa B ligand (RANK-ligand and E-ARMD. In a cross-sectional study, we compared 45 E-ARMD patients with 45 matched controls. Diagnosis was confirmed by fluorescein angiography. Serum samples were analyzed for OPG, RANK-ligand, low density lipoprotein cholesterol (LDL-C, high density lipoprotein cholesterol (HDL-C, total cholesterol (TC, and triglyceride (TG. The levels of OPG and RANK-ligand were measured by ELISA methods. The mean age was 72.0±11.5 years in the E-ARMD group and 68.2±8.9 years in the control group (p=0.09. The level of serum OPG was 132.10±75.49 pg/ml in the E-ARMD group and 94.88±61.65 pg/ml in the control subjects. E-ARMD patients had significantly high levels of OPG (p=0.012, as well as significantly high levels of LDL-C and TC (p=0.001 and p=0.005, respectively. We could not find any significant difference in RANK-ligand, HDL-C, or TG between two study groups (p>0.05. To the best of our knowledge, this is the first study investigating the levels of OPG in E-ARMD patients. The present study showed that E-ARMD patients had high levels of serum OPG. It may act as a protective factor for E-ARMD or only as a secondary phenomenon of different processes of E-ARMD. Further prospective studies would be necessary for prognostic and predictive significance of OPG in patients affected by E-ARMD.

  4. The leukemia associated ETO nuclear repressor gene is regulated by the GATA-1 transcription factor in erythroid/megakaryocytic cells

    Directory of Open Access Journals (Sweden)

    Gullberg Urban

    2010-05-01

    Full Text Available Abstract Background The Eight-Twenty-One (ETO nuclear co-repressor gene belongs to the ETO homologue family also containing Myeloid Translocation Gene on chromosome 16 (MTG16 and myeloid translocation Gene-Related protein 1 (MTGR1. By chromosomal translocations ETO and MTG16 become parts of fusion proteins characteristic of morphological variants of acute myeloid leukemia. Normal functions of ETO homologues have as yet not been examined. The goal of this work was to identify structural and functional promoter elements upstream of the coding sequence of the ETO gene in order to explore lineage-specific hematopoietic expression and get hints to function. Results A putative proximal ETO promoter was identified within 411 bp upstream of the transcription start site. Strong ETO promoter activity was specifically observed upon transfection of a promoter reporter construct into erythroid/megakaryocytic cells, which have endogeneous ETO gene activity. An evolutionary conserved region of 228 bp revealed potential cis-elements involved in transcription of ETO. Disruption of the evolutionary conserved GATA -636 consensus binding site repressed transactivation and disruption of the ETS1 -705 consensus binding site enhanced activity of the ETO promoter. The promoter was stimulated by overexpression of GATA-1 into erythroid/megakaryocytic cells. Electrophoretic mobility shift assay with erythroid/megakaryocytic cells showed specific binding of GATA-1 to the GATA -636 site. Furthermore, results from chromatin immunoprecipitation showed GATA-1 binding in vivo to the conserved region of the ETO promoter containing the -636 site. The results suggest that the GATA -636 site may have a role in activation of the ETO gene activity in cells with erythroid/megakaryocytic potential. Leukemia associated AML1-ETO strongly suppressed an ETO promoter reporter in erythroid/megakaryocytic cells. Conclusions We demonstrate that the GATA-1 transcription factor binds and

  5. Transforming growth factor-β1 signaling represses testicular steroidogenesis through cross-talk with orphan nuclear receptor Nur77.

    Science.gov (United States)

    Park, Eunsook; Song, Chin-Hee; Park, Jae-Il; Ahn, Ryun-Sup; Choi, Hueng-Sik; Ko, CheMyong; Lee, Keesook

    2014-01-01

    Transforming growth factor- β1 (TGF-β1) has been reported to inhibit luteinizing hormone (LH) mediated-steroidogenesis in testicular Leydig cells. However, the mechanism by which TGF-β1 controls the steroidogenesis in Leydig cells is not well understood. Here, we investigated the possibility that TGF-β1 represses steroidogenesis through cross-talk with the orphan nuclear receptor Nur77. Nur77, which is induced by LH/cAMP signaling, is one of major transcription factors that regulate the expression of steroidogenic genes in Leydig cells. TGF-β1 signaling inhibited cAMP-induced testosterone production and the expression of steroidogenic genes such as P450c17, StAR and 3β-HSD in mouse Leydig cells. Further, TGF-β1/ALK5 signaling repressed cAMP-induced and Nur77-activated promoter activity of steroidogenic genes. In addition, TGF-β1/ALK5-activated Smad3 repressed Nur77 transactivation of steroidogenic gene promoters by interfering with Nur77 binding to DNA. In primary Leydig cells isolated from Tgfbr2flox/flox Cyp17iCre mice, TGF-β1-mediated repression of cAMP-induced steroidogenic gene expression was significantly less than that in primary Leydig cells from Tgfbr2flox/flox mice. Taken together, these results suggest that TGF-β1/ALK5/Smad3 signaling represses the expression of steroidogenic genes via the suppression of Nur77 transactivation in testicular Leydig cells. These findings may provide a molecular mechanism involved in the TGF-β1-mediated repression of testicular steroidogenesis.

  6. Chios mastic fractions in experimental colitis: implication of the nuclear factor κB pathway in cultured HT29 cells.

    Science.gov (United States)

    Papalois, Apostolos; Gioxari, Aristea; Kaliora, Andriana C; Lymperopoulou, Aikaterini; Agrogiannis, George; Papada, Efstathia; Andrikopoulos, Nikolaos K

    2012-11-01

    The Pistacia lentiscus tree gives a resinous exudate called Chios mastic (CM) rich in triterpenoids. CM can be fractionated into acidic and neutral fractions (AF and NF, respectively). Oleanolic acid (OA) is a major triterpenic acid in CM with several antioxidant and anti-inflammatory properties. We have recently shown that CM is beneficial in experimental colitis in the form of powder mixture with inulin, as supplied commercially. However, the bioactive fraction or compound of CM is unidentified. Thus, based on the hypothesis that terpenoids exhibit functional activities via distinguishable pathways, we fractionated CM and applied different fractions or individual OA in experimental colitis. Furthermore, we investigated the mechanism underlying this effect in human colon epithelial cells. CM powder mixture (100 mg/kg of body weight) or the respective CM powder mixture components (i.e., inulin, AF, NF, or OA) were individually administered in trinitrobenzene sulfonic acid-treated rats. Colonic damage was assessed microscopically, and levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and intercellular adhesion molecule-1were measured. A model of inflammation in co-cultured human colon epithelial HT29 cells and monocytes/macrophages was established. Lactate dehydrogenase release and levels of TNF-α, IL-8, and nuclear factor-κB (NF-κB) p65 were measured. In vivo, histological amelioration of colitis and significant regulation in inflammation occurred with CM powder mixture, even at the mRNA level. Although no histological improvement was observed, AF and NF reduced levels of inflammatory markers. Inulin was ineffective. In vitro, CM treatment down-regulated IL-8 and NF-κB p65. Neither fractions nor OA was the bioactive component solely. Most probably, the entire CM rather than its individual fractions reduces inflammation via NF-κB regulation.

  7. High expression of nuclear factor 90 (NF90 leads to mitochondrial degradation in skeletal and cardiac muscles.

    Directory of Open Access Journals (Sweden)

    Takuma Higuchi

    Full Text Available While NF90 has been known to participate in transcription, translation and microRNA biogenesis, physiological functions of this protein still remain unclear. To uncover this, we generated transgenic (Tg mice using NF90 cDNA under the control of β-actin promoter. The NF90 Tg mice exhibited a reduction in body weight compared with wild-type mice, and a robust expression of NF90 was detected in skeletal muscle, heart and eye of the Tg mice. To evaluate the NF90 overexpression-induced physiological changes in the tissues, we performed a number of analyses including CT-analysis and hemodynamic test, revealing that the NF90 Tg mice developed skeletal muscular atrophy and heart failure. To explore causes of the abnormalities in the NF90 Tg mice, we performed histological and biochemical analyses for the skeletal and cardiac muscles of the Tg mice. Surprisingly, these analyses demonstrated that mitochondria in those muscular tissues of the Tg mice were degenerated by autophagy. To gain further insight into the cause for the mitochondrial degeneration, we identified NF90-associated factors by peptide mass fingerprinting. Of note, approximately half of the NF90-associated complexes were ribosome-related proteins. Interestingly, protein synthesis rate was significantly suppressed by high-expression of NF90. These observations suggest that NF90 would negatively regulate the function of ribosome via its interaction with the factors involved in the ribosome function. Furthermore, we found that the translations or protein stabilities of PGC-1 and NRF-1, which are critical transcription factors for expression of mitochondrial genes, were significantly depressed in the skeletal muscles of the NF90 Tg mice. Taken together, these findings suggest that the mitochondrial degeneration engaged in the skeletal muscle atrophy and the heart failure in the NF90 Tg mice may be caused by NF90-induced posttranscriptional repression of transcription factors such as PGC-1 and

  8. Regulation of the nuclear gene that encodes the alpha-subunit of the mitochondrial F0F1-ATP synthase complex. Activation by upstream stimulatory factor 2.

    Science.gov (United States)

    Breen, G A; Jordan, E M

    1997-04-18

    We have previously identified several positive cis-acting regulatory regions in the promoters of the bovine and human nuclear-encoded mitochondrial F0F1-ATP synthase alpha-subunit genes (ATPA). One of these cis-acting regions contains the sequence 5'-CACGTG-3' (an E-box), to which a number of transcription factors containing a basic helix-loop-helix motif can bind. This E-box element is required for maximum activity of the ATPA promoter in HeLa cells. The present study identifies the human transcription factor, upstream stimulatory factor 2 (USF2), as a nuclear factor that binds to the ATPA E-box and demonstrates that USF2 plays a critical role in the activation of the ATPA gene in vivo. Evidence includes the following. Antiserum directed against USF2 recognized factors present in HeLa nuclear extracts that interact with the ATPA promoter in mobility shift assays. Wild-type USF2 proteins synthesized from expression vectors trans-activated the ATPA promoter through the E-box, whereas truncated USF2 proteins devoid of the amino-terminal activation domains did not. Importantly, expression of a dominant-negative mutant of USF2 lacking the basic DNA binding domain but able to dimerize with endogenous USF proteins significantly reduced the level of activation of the ATPA promoter caused by ectopically coexpressed USF2, demonstrating the importance of endogenous USF2 in activation of the ATPA gene.

  9. Effect of epidermal growth factor on the labeling of the various RNA species and of nuclear proteins in primary rat astroglial cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Avola, R.; Condorelli, D.F.; Turpeenoja, L.; Ingrao, F.; Reale, S.; Ragusa, N.; Giuffrida Stella, A.M.

    1988-05-01

    This study investigated the effects of epidermal growth factor (EGF) on the labeling of various RNA species and of nuclear proteins in primary rat astroglial cell cultures. After 12 hours of EGF treatment in serum-free medium or chemically defined medium, significant increase in RNA labeling, and also in acid-soluble radioactivity and RNA content, was observed. The ratio RNA/DNA was significantly higher in EGF-treated cultures compared with controls. Ribosomal RNAs (28S and 18S), polyadenylated, and nonpolyadenylated RNAs showed a higher specific radioactivity in EGF-treated cultures. Among the nuclear proteins, the labeling of basic proteins was enhanced by EGF treatment, whereas that of total nuclear acidic protein (NHPs) was less modified, except for some NHPs separated by gel electrophoresis with a molecular weight (MW) approximately 95-83 and 44 kd, which were significantly more labeled in EGF-treated cultures.

  10. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    Energy Technology Data Exchange (ETDEWEB)

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio, E-mail: yyoneda@p.kanazawa-u.ac.jp

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  11. Nuclear factor E2-related factor 2’s activation in transgenic mice fed with dosage of saturated or unsaturated fatty acids using in vivo bioluminescent imaging

    Directory of Open Access Journals (Sweden)

    Elena Mariani

    2017-05-01

    Full Text Available To counteract oxidative stress cells developed several mechanisms, including the transcription factor Nuclear Factor E2-related factor 2 (Nrf2. The aim of the study was to evaluate the activation of Nrf2 in transgenic mice fed saturated or polyunsaturated fatty acids and the anti-inflammatory effect of estrogens on organism. Forty-eight ARE CRE OMO reporter mice were divided into 3 groups, consisting of 16 animals, based on presence/absence of estrogens (ovariectomized or sham female, OVX - SH; male, MA. Each group was further split in 4 subgroups of 4 animals each and fed different diets (7.5% lard, 7.5% tuna oil, 20.0 % lard and 20.0% tuna oil. Two times a week animals were anaesthetized and injected i.p. with 100µL luciferin 15 min before the imaging session. Using the Living Image Software, photon emission was mapped for selected body areas. On day 70, animals were sacrificed after a challenge with Sodium Arsenite. Specific organs were dissected and immediately subjected to ex vivo imaging session. MIXED and GLM procedures of SAS software were used for statistical analysis. Dietary treatments did not affect body weight and feed intake as well as Nrf2 expression in both pre- and post-challenge phases, with the exception of the abdominal region (P=0.031 pre-challenge; in this area, during the pre-challenge phase, OVX showed lower Nrf2 activation (P<0.001. Ex vivo results outlined a significant effect of the challenge on all the considered organs (P<0.001, while OVX subjects had higher Nrf2 expression on urinary bladder and kidney (P<0.05 and high fat diet increased Nrf2 in urinary bladder (P<0.05. The present trial shows how saturated or polyunsaturated fatty acids supplementation in the diet do not exert significant effects on oxidative stress in mice, but confirms the protective role of estrogens under physiological condition.

  12. Epidermal growth factor (EGF)-induced corneal epithelial wound healing through nuclear factor κB subtype-regulated CCCTC binding factor (CTCF) activation.

    Science.gov (United States)

    Wang, Ling; Wu, Xiaolin; Shi, Ting; Lu, Luo

    2013-08-23

    Epidermal growth factor (EGF) plays an important role in corneal epithelial migration and proliferation to improve the wound healing process. This study aimed to understand the role of NFκB in EGF-induced corneal epithelial wound healing through regulation of CTCF activity, which plays important roles in cell motility and migration to promote wound healing. The effect of NFκB p50 on corneal epithelial wound healing was investigated by comparing the eyes of wild-type and p50 knockout mice. We found that there was a significant retardation in corneal epithelial wound healing in the corneas of p50 knockout mice. Wound closure rates were measured in human corneal epithelial cells transfected with an NFκB activation-sensitive CTCF expression construct to demonstrate the effect of human CTCF expression under the control of EGF-induced NFκB activation on wound healing. EGF stimulation activated NFκB, which directly triggered the expression of the exogenous human CTCF in transfected cells and, subsequently, promoted human corneal epithelial cell motility, migration, and wound healing. Overexpression of CTCF in corneal epithelial cells and mouse corneas significantly enhanced the wound healing process. Furthermore, the effect of overexpressing NFκB p50 in corneal epithelial cells on the promotion of wound healing was abolished by knockdown of CTCF with CTCF-specific shRNA. Thus, a direct regulatory relationship between EGF-induced NFκB p50 and CTCF activation affecting corneal epithelial wound healing has been established, indicating that CTCF is, indeed, a NFκB p50-targeted and effective gene product in the core transcriptional network downstream from the growth factor-induced NFκB signaling pathway.

  13. The Nuclear Factor kappaB Pathway: A Link to the Immune System in the Radiation Response

    Science.gov (United States)

    Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther; Chishti, Arif Ali; Koch, Kristina; Manchanda, Kashish

    Understanding the cellular radiation response is an essential prerequisite for the risk assessment of astronauts’ space radiation exposure during long-term space missions and for effective countermeasure development. In addition to the space radiation effects, other environmental factors during space missions such as microgravity have profound effects on the body, e.g. suppression of the innate and acquired immune response. Exposure to ionizing radiation modulates immune responses in a complex dose-dependent pattern, with possible anti-inflammatory effects in the low dose range, expression of pro-inflammatory cytokines at moderate doses and immunosuppression after exposure to higher doses due to precursor cell death together with concomitant exacerbated innate immune responses. A central regulator in the immune system is the transcription factor Nuclear Factor kB (NF-kappaB). In this work, the role of NF-kappaB in the cellular response to space relevant radiation qualities was analyzed. It was shown with a recombinant human NF-kappaB reporter cell line that heavy ions with a linear energy transfer (LET) of 100-300 keV/µm have a nine times higher potential to activate the NF-kappaB pathway compared to X-rays (150 kV). ATM was essential for NF-kappaB activation in response to X-rays and heavy ions. Knockdown of the NF-kappaB subunit RelA (p65) resulted in higher sensitivity towards X-rays. Reverse Transcriptase real-time quantitative PCR (RT-qPCR) experiments showed that after exposure to radiation, NF-kappaB predominantly upregulates genes involved in intercellular communication processes, especially genes coding for chemokines, suggesting an important contribution of NF-kappaB in the molecular profile of the reaction to radiation, which can comprise features of inflammation and wound healing processes. This is process is strictly NF-kappaB dependent as this response is completely absent in RelA knockdown cells. These results show that the role of NF-kappaB in

  14. Nuclear Medicine

    Science.gov (United States)

    ... for Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive ... NIBIB-funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that ...

  15. Maackiapterocarpan B from Sophora tonkinensis Suppresses Inflammatory Mediators via Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways.

    Science.gov (United States)

    Chae, Hee-Sung; Yoo, Hunseung; Choi, Young Hee; Choi, Won Jun; Chin, Young-Won

    2016-01-01

    Maackiapterocarpan B, one of the pterocarpan analogs found in Sophora tonkinensis, is known to display pharmacological activities. However, the anti-inflammatory effects of maackiapterocarpan B and its molecular mechanism have yet to be clearly elucidated. In the present study, the effects of maackiapterocarpan B on macrophage-mediated inflammation in vitro were assessed. Maackiapterocarpan B inhibited the production of nitric oxide, the expression of tumor necrosis factor α, colony stimulating factor 2, interleukin-1β and interleukin-6, and the activation of nuclear factor-κB and mitogen-activated protein kinases in lipopolysaccharide-stimulated macrophages. These observations suggest the potential of maackiapterocarpan B in the treatment of inflammatory diseases.

  16. Helicobacter pylori cytotoxin-associated gene A activates tumor necrosis factor-α and interleukin-6 in gastric epithelial cells through P300/CBP-associated factor-mediated nuclear factor-κB p65 acetylation.

    Science.gov (United States)

    Lin, Qiong; Xu, Hui; Chen, Xintao; Tang, Guorong; Gu, Lan; Wang, Yehong

    2015-10-01

    Helicobacter pylori‑initiated chronic gastritis is characterized by the cytotoxin‑associated gene (Cag) pathogenicity island‑dependent upregulation of pro‑inflammatory cytokines in gastric epithelial cells, which is largely mediated by the activation of nuclear factor (NF)‑κB as a transcription factor. However, the precise regulation of NF‑κB activation, particularly post‑translational modifications in the CagA‑induced inflammatory response, has remained elusive. The present study showed that Helicobacter pylori CagA, an important virulence factor, induced the expression of P300/CBP‑associated factor (PCAF) in gastric epithelial cells. Further study revealed that PCAF was able to physically associate with the NF‑κB p65 sub‑unit and enhance its acetylation. More importantly, PCAF‑induced p65 acetylation was shown to contribute to p65 phosphorylation and further upregulation of tumor necrosis factor (TNF)‑α and interleukin (IL)‑6 in gastric adenocarcinoma cells. In conclusion, the results of the present study indicated that Helicobacter pylori CagA enhanced TNF‑α and IL‑6 in gastric adenocarcinoma cells through PCAF‑mediated NF‑κB p65 sub‑unit acetylation.

  17. Identification of a novel nuclear localization signal and speckle-targeting sequence of tuftelin-interacting prot