#### Sample records for factor analysis cluster

1. Factor Analysis for Clustered Observations.

Science.gov (United States)

Longford, N. T.; Muthen, B. O.

1992-01-01

A two-level model for factor analysis is defined, and formulas for a scoring algorithm for this model are derived. A simple noniterative method based on decomposition of total sums of the squares and cross-products is discussed and illustrated with simulated data and data from the Second International Mathematics Study. (SLD)

2. Common Factor Analysis Versus Principal Component Analysis: Choice for Symptom Cluster Research

Directory of Open Access Journals (Sweden)

Hee-Ju Kim, PhD, RN

2008-03-01

Conclusion: If the study purpose is to explain correlations among variables and to examine the structure of the data (this is usual for most cases in symptom cluster research, CFA provides a more accurate result. If the purpose of a study is to summarize data with a smaller number of variables, PCA is the choice. PCA can also be used as an initial step in CFA because it provides information regarding the maximum number and nature of factors. In using factor analysis for symptom cluster research, several issues need to be considered, including subjectivity of solution, sample size, symptom selection, and level of measure.

3. Clustering analysis

International Nuclear Information System (INIS)

Romli

1997-01-01

Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K -mean method ' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

4. Cluster analysis

CERN Document Server

Everitt, Brian S; Leese, Morven; Stahl, Daniel

2011-01-01

Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

5. Factor-cluster analysis and enrichment study of Mangrove sediments - An example from Mengkabong, Sabah

International Nuclear Information System (INIS)

Praveena, S.M.; Ahmed, A.; Radojevic, M.; Mohd Harun Abdullah; Aris, A.Z.

2007-01-01

This paper examines the tidal effects in the sediment of Mengkabong mangrove forest, Sabah. Generally, all the studied parameters showed high value at high tide compared to low tide. Factor-cluster analyses were adopted to allow the identification of controlling factors at high and low tides. Factor analysis extracted six controlling factors at high tide and seven controlling factors at low tide. Cluster analysis extracted two district clusters at high and low tides. The study showed that factor-cluster analysis application is a useful tool to single out the controlling factors at high and low tides. this will provide a basis for describing the tidal effects in the mangrove sediment. The salinity and electrical conductivity clusters as well as component loadings at high and low tide explained the tidal process where there is high contribution of seawater to mangrove sediments that controls the sediment chemistry. The geo accumulation index (T geo ) values suggest the mangrove sediments are having background concentrations for Al, Cu, Fe and Zn and unpolluted for Pb. (author)

6. Cluster analysis

OpenAIRE

Mucha, Hans-Joachim; Sofyan, Hizir

2000-01-01

As an explorative technique, duster analysis provides a description or a reduction in the dimension of the data. It classifies a set of observations into two or more mutually exclusive unknown groups based on combinations of many variables. Its aim is to construct groups in such a way that the profiles of objects in the same groups are relatively homogenous whereas the profiles of objects in different groups are relatively heterogeneous. Clustering is distinct from classification techniques, ...

7. Genetic analysis of cardiovascular risk factor clustering in spontaneous hypertension

Czech Academy of Sciences Publication Activity Database

Pravenec, Michal; Zídek, Václav; Landa, Vladimír; Kostka, Vlastimil; Musilová, Alena; Kazdová, L.; Fučíková, A.; Křenová, D.; Bílá, V.; Křen, Vladimír

2000-01-01

Roč. 46, - (2000), s. 233-240 ISSN 0015-5497 R&D Projects: GA MŠk LN00A079; GA ČR GA305/00/1646; GA ČR GA301/00/1636; GA MZd NB4904 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.667, year: 2000

8. Analysis of risk factors for cluster behavior of dental implant failures.

Science.gov (United States)

Chrcanovic, Bruno Ramos; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

2017-08-01

Some studies indicated that implant failures are commonly concentrated in few patients. To identify and analyze cluster behavior of dental implant failures among subjects of a retrospective study. This retrospective study included patients receiving at least three implants only. Patients presenting at least three implant failures were classified as presenting a cluster behavior. Univariate and multivariate logistic regression models and generalized estimating equations analysis evaluated the effect of explanatory variables on the cluster behavior. There were 1406 patients with three or more implants (8337 implants, 592 failures). Sixty-seven (4.77%) patients presented cluster behavior, with 56.8% of all implant failures. The intake of antidepressants and bruxism were identified as potential negative factors exerting a statistically significant influence on a cluster behavior at the patient-level. The negative factors at the implant-level were turned implants, short implants, poor bone quality, age of the patient, the intake of medicaments to reduce the acid gastric production, smoking, and bruxism. A cluster pattern among patients with implant failure is highly probable. Factors of interest as predictors for implant failures could be a number of systemic and local factors, although a direct causal relationship cannot be ascertained. © 2017 Wiley Periodicals, Inc.

9. Cardiometabolic risk clustering in spinal cord injury: results of exploratory factor analysis.

Science.gov (United States)

Libin, Alexander; Tinsley, Emily A; Nash, Mark S; Mendez, Armando J; Burns, Patricia; Elrod, Matt; Hamm, Larry F; Groah, Suzanne L

2013-01-01

Evidence suggests an elevated prevalence of cardiometabolic risks among persons with spinal cord injury (SCI); however, the unique clustering of risk factors in this population has not been fully explored. The purpose of this study was to describe unique clustering of cardiometabolic risk factors differentiated by level of injury. One hundred twenty-one subjects (mean 37 ± 12 years; range, 18-73) with chronic C5 to T12 motor complete SCI were studied. Assessments included medical histories, anthropometrics and blood pressure, and fasting serum lipids, glucose, insulin, and hemoglobin A1c (HbA1c). The most common cardiometabolic risk factors were overweight/obesity, high levels of low-density lipoprotein (LDL-C), and low levels of high-density lipoprotein (HDL-C). Risk clustering was found in 76.9% of the population. Exploratory principal component factor analysis using varimax rotation revealed a 3-factor model in persons with paraplegia (65.4% variance) and a 4-factor solution in persons with tetraplegia (73.3% variance). The differences between groups were emphasized by the varied composition of the extracted factors: Lipid Profile A (total cholesterol [TC] and LDL-C), Body Mass-Hypertension Profile (body mass index [BMI], systolic blood pressure [SBP], and fasting insulin [FI]); Glycemic Profile (fasting glucose and HbA1c), and Lipid Profile B (TG and HDL-C). BMI and SBP formed a separate factor only in persons with tetraplegia. Although the majority of the population with SCI has risk clustering, the composition of the risk clusters may be dependent on level of injury, based on a factor analysis group comparison. This is clinically plausible and relevant as tetraplegics tend to be hypo- to normotensive and more sedentary, resulting in lower HDL-C and a greater propensity toward impaired carbohydrate metabolism.

10. Psychological Factors Predict Local and Referred Experimental Muscle Pain: A Cluster Analysis in Healthy Adults

Science.gov (United States)

Lee, Jennifer E.; Watson, David; Frey-Law, Laura A.

2012-01-01

Background Recent studies suggest an underlying three- or four-factor structure explains the conceptual overlap and distinctiveness of several negative emotionality and pain-related constructs. However, the validity of these latent factors for predicting pain has not been examined. Methods A cohort of 189 (99F; 90M) healthy volunteers completed eight self-report negative emotionality and pain-related measures (Eysenck Personality Questionnaire-Revised; Positive and Negative Affect Schedule; State-Trait Anxiety Inventory; Pain Catastrophizing Scale; Fear of Pain Questionnaire; Somatosensory Amplification Scale; Anxiety Sensitivity Index; Whiteley Index). Using principal axis factoring, three primary latent factors were extracted: General Distress; Catastrophic Thinking; and Pain-Related Fear. Using these factors, individuals clustered into three subgroups of high, moderate, and low negative emotionality responses. Experimental pain was induced via intramuscular acidic infusion into the anterior tibialis muscle, producing local (infusion site) and/or referred (anterior ankle) pain and hyperalgesia. Results Pain outcomes differed between clusters (multivariate analysis of variance and multinomial regression), with individuals in the highest negative emotionality cluster reporting the greatest local pain (p = 0.05), mechanical hyperalgesia (pressure pain thresholds; p = 0.009) and greater odds (2.21 OR) of experiencing referred pain compared to the lowest negative emotionality cluster. Conclusion Our results provide support for three latent psychological factors explaining the majority of the variance between several pain-related psychological measures, and that individuals in the high negative emotionality subgroup are at increased risk for (1) acute local muscle pain; (2) local hyperalgesia; and (3) referred pain using a standardized nociceptive input. PMID:23165778

11. Recurrent-neural-network-based Boolean factor analysis and its application to word clustering.

Science.gov (United States)

Frolov, Alexander A; Husek, Dusan; Polyakov, Pavel Yu

2009-07-01

The objective of this paper is to introduce a neural-network-based algorithm for word clustering as an extension of the neural-network-based Boolean factor analysis algorithm (Frolov , 2007). It is shown that this extended algorithm supports even the more complex model of signals that are supposed to be related to textual documents. It is hypothesized that every topic in textual data is characterized by a set of words which coherently appear in documents dedicated to a given topic. The appearance of each word in a document is coded by the activity of a particular neuron. In accordance with the Hebbian learning rule implemented in the network, sets of coherently appearing words (treated as factors) create tightly connected groups of neurons, hence, revealing them as attractors of the network dynamics. The found factors are eliminated from the network memory by the Hebbian unlearning rule facilitating the search of other factors. Topics related to the found sets of words can be identified based on the words' semantics. To make the method complete, a special technique based on a Bayesian procedure has been developed for the following purposes: first, to provide a complete description of factors in terms of component probability, and second, to enhance the accuracy of classification of signals to determine whether it contains the factor. Since it is assumed that every word may possibly contribute to several topics, the proposed method might be related to the method of fuzzy clustering. In this paper, we show that the results of Boolean factor analysis and fuzzy clustering are not contradictory, but complementary. To demonstrate the capabilities of this attempt, the method is applied to two types of textual data on neural networks in two different languages. The obtained topics and corresponding words are at a good level of agreement despite the fact that identical topics in Russian and English conferences contain different sets of keywords.

12. WHY DO SOME NATIONS SUCCEED AND OTHERS FAIL IN INTERNATIONAL COMPETITION? FACTOR ANALYSIS AND CLUSTER ANALYSIS AT EUROPEAN LEVEL

Directory of Open Access Journals (Sweden)

Popa Ion

2015-07-01

Full Text Available As stated by Michael Porter (1998: 57, 'this is perhaps the most frequently asked economic question of our times.' However, a widely accepted answer is still missing. The aim of this paper is not to provide the BIG answer for such a BIG question, but rather to provide a different perspective on the competitiveness at the national level. In this respect, we followed a two step procedure, called “tandem analysis”. (OECD, 2008. First we employed a Factor Analysis in order to reveal the underlying factors of the initial dataset followed by a Cluster Analysis which aims classifying the 35 countries according to the main characteristics of competitiveness resulting from Factor Analysis. The findings revealed that clustering the 35 states after the first two factors: Smart Growth and Market Development, which recovers almost 76% of common variability of the twelve original variables, are highlighted four clusters as well as a series of useful information in order to analyze the characteristics of the four clusters and discussions on them.

13. Cluster analysis for applications

CERN Document Server

Anderberg, Michael R

1973-01-01

Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

14. Clustering of metabolic and cardiovascular risk factors in the polycystic ovary syndrome: a principal component analysis.

Science.gov (United States)

Stuckey, Bronwyn G A; Opie, Nicole; Cussons, Andrea J; Watts, Gerald F; Burke, Valerie

2014-08-01

Polycystic ovary syndrome (PCOS) is a prevalent condition with heterogeneity of clinical features and cardiovascular risk factors that implies multiple aetiological factors and possible outcomes. To reduce a set of correlated variables to a smaller number of uncorrelated and interpretable factors that may delineate subgroups within PCOS or suggest pathogenetic mechanisms. We used principal component analysis (PCA) to examine the endocrine and cardiometabolic variables associated with PCOS defined by the National Institutes of Health (NIH) criteria. Data were retrieved from the database of a single clinical endocrinologist. We included women with PCOS (N = 378) who were not taking the oral contraceptive pill or other sex hormones, lipid lowering medication, metformin or other medication that could influence the variables of interest. PCA was performed retaining those factors with eigenvalues of at least 1.0. Varimax rotation was used to produce interpretable factors. We identified three principal components. In component 1, the dominant variables were homeostatic model assessment (HOMA) index, body mass index (BMI), high density lipoprotein (HDL) cholesterol and sex hormone binding globulin (SHBG); in component 2, systolic blood pressure, low density lipoprotein (LDL) cholesterol and triglycerides; in component 3, total testosterone and LH/FSH ratio. These components explained 37%, 13% and 11% of the variance in the PCOS cohort respectively. Multiple correlated variables from patients with PCOS can be reduced to three uncorrelated components characterised by insulin resistance, dyslipidaemia/hypertension or hyperandrogenaemia. Clustering of risk factors is consistent with different pathogenetic pathways within PCOS and/or differing cardiometabolic outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

15. Marketing research cluster analysis

Directory of Open Access Journals (Sweden)

Marić Nebojša

2002-01-01

Full Text Available One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

16. Marketing research cluster analysis

OpenAIRE

Marić Nebojša

2002-01-01

One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

17. Comparing 3 dietary pattern methods--cluster analysis, factor analysis, and index analysis--With colorectal cancer risk: The NIH-AARP Diet and Health Study.

Science.gov (United States)

Reedy, Jill; Wirfält, Elisabet; Flood, Andrew; Mitrou, Panagiota N; Krebs-Smith, Susan M; Kipnis, Victor; Midthune, Douglas; Leitzmann, Michael; Hollenbeck, Albert; Schatzkin, Arthur; Subar, Amy F

2010-02-15

The authors compared dietary pattern methods-cluster analysis, factor analysis, and index analysis-with colorectal cancer risk in the National Institutes of Health (NIH)-AARP Diet and Health Study (n = 492,306). Data from a 124-item food frequency questionnaire (1995-1996) were used to identify 4 clusters for men (3 clusters for women), 3 factors, and 4 indexes. Comparisons were made with adjusted relative risks and 95% confidence intervals, distributions of individuals in clusters by quintile of factor and index scores, and health behavior characteristics. During 5 years of follow-up through 2000, 3,110 colorectal cancer cases were ascertained. In men, the vegetables and fruits cluster, the fruits and vegetables factor, the fat-reduced/diet foods factor, and all indexes were associated with reduced risk; the meat and potatoes factor was associated with increased risk. In women, reduced risk was found with the Healthy Eating Index-2005 and increased risk with the meat and potatoes factor. For men, beneficial health characteristics were seen with all fruit/vegetable patterns, diet foods patterns, and indexes, while poorer health characteristics were found with meat patterns. For women, findings were similar except that poorer health characteristics were seen with diet foods patterns. Similarities were found across methods, suggesting basic qualities of healthy diets. Nonetheless, findings vary because each method answers a different question.

18. Cluster analysis of cardiovascular and metabolic risk factors in women of reproductive age.

Science.gov (United States)

Tzeng, Chii-Ruey; Chang, Yuan-chin Ivan; Chang, Yu-chia; Wang, Chia-Woei; Chen, Chi-Huang; Hsu, Ming-I

2014-05-01

To study the association between endocrine disturbances and metabolic complications in women seeking gynecologic care. Retrospective study, cluster analysis. Outpatient clinic, university medical center. 573 women, including 384 at low risk and 189 at high risk of cardiometabolic disease. None. Cardiovascular and metabolic parameters and clinical and biochemical characteristics. Risk factors for metabolic disease are associated with a low age of menarche, high levels of high-sensitivity C-reactive protein and liver enzymes, and low levels of sex hormone-binding globulin. Overweight/obese status, polycystic ovary syndrome, oligo/amenorrhea, and hyperandrogenism were found to increase the risk of cardiometabolic disease. However, hyperprolactinemia and premature ovarian failure were not associated with the risk of cardiometabolic disease. In terms of androgens, the serum total testosterone level and free androgen index but not androstenedione or dehydroepiandrosterone sulfate (DHEAS) were associated with cardiometabolic risk. Although polycystic ovary syndrome is associated with metabolic risk, obesity was the major determinant of cardiometabolic disturbances in reproductive-aged women. Hyperprolactinemia and premature ovarian failure were not associated with the risk of cardiovascular and metabolic diseases. NCT01826357. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

19. Research on the relationship between the elements and pharmacological activities in velvet antler using factor analysis and cluster analysis

Science.gov (United States)

Zhou, Libing

2017-04-01

Velvet antler has certain effect on improving the body's immune cells and the regulation of immune system function, nervous system, anti-stress, anti-aging and osteoporosis. It has medicinal applications to treat a wide range of diseases such as tissue wound healing, anti-tumor, cardiovascular disease, et al. Therefore, the research on the relationship between pharmacological activities and elements in velvet antler is of great significance. The objective of this study was to comprehensively evaluate 15 kinds of elements in different varieties of velvet antlers and study on the relationship between the elements and traditional Chinese medicine efficacy for the human. The factor analysis and the factor cluster analysis methods were used to analyze the data of elements in the sika velvet antler, cervus elaphus linnaeus, flower horse hybrid velvet antler, apiti (elk) velvet antler, male reindeer velvet antler and find out the relationship between 15 kinds of elements including Ca, P, Mg, Na, K, Fe, Cu, Mn, Al, Ba, Co, Sr, Cr, Zn and Ni. Combining with MATLAB2010 and SPSS software, the chemometrics methods were made on the relationship between the elements in velvet antler and the pharmacological activities. The first commonality factor F1 had greater load on the indexes of Ca, P, Mg, Co, Sr and Ni, and the second commonality factor F2 had greater load on the indexes of K, Mn, Zn and Cr, and the third commonality factor F3 had greater load on the indexes of Na, Cu and Ba, and the fourth commonality factor F4 had greater load on the indexes of Fe and Al. 15 kinds of elements in velvet antler in the order were elk velvet antler>flower horse hybrid velvet antler>cervus elaphus linnaeus>sika velvet antler>male reindeer velvet antler. Based on the factor analysis and the factor cluster analysis, a model for evaluating traditional Chinese medicine quality was constructed. These studies provide the scientific base and theoretical foundation for the future large-scale rational

20. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression

DEFF Research Database (Denmark)

Calles-Enríquez, Marina; Hjort, Benjamin Benn; Andersen, Pia Skov

2010-01-01

to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended...... with the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible...... acquisition through a horizontal transfer mechanism. Transcriptional analysis of the hdc cluster revealed the existence of a polycistronic mRNA covering the three genes. The histidine-decarboxylating gene (hdcA) of S. thermophilus demonstrated maximum expression during the stationary growth phase, with high...

1. Clustering of modifiable biobehavioral risk factors for chronic disease in US adults: a latent class analysis.

Science.gov (United States)

Leventhal, Adam M; Huh, Jimi; Dunton, Genevieve F

2014-11-01

Examining the co-occurrence patterns of modifiable biobehavioral risk factors for deadly chronic diseases (e.g. cancer, cardiovascular disease, diabetes) can elucidate the etiology of risk factors and guide disease-prevention programming. The aims of this study were to (1) identify latent classes based on the clustering of five key biobehavioral risk factors among US adults who reported at least one risk factor and (2) explore the demographic correlates of the identified latent classes. Participants were respondents of the National Epidemiologic Survey of Alcohol and Related Conditions (2004-2005) with at least one of the following disease risk factors in the past year (N = 22,789), which were also the latent class indicators: (1) alcohol abuse/dependence, (2) drug abuse/dependence, (3) nicotine dependence, (4) obesity, and (5) physical inactivity. Housing sample units were selected to match the US National Census in location and demographic characteristics, with young adults oversampled. Participants were administered surveys by trained interviewers. Five latent classes were yielded: 'obese, active non-substance abusers' (23%); 'nicotine-dependent, active, and non-obese' (19%); 'active, non-obese alcohol abusers' (6%); 'inactive, non-substance abusers' (50%); and 'active, polysubstance abusers' (3.7%). Four classes were characterized by a 100% likelihood of having one risk factor coupled with a low or moderate likelihood of having the other four risk factors. The five classes exhibited unique demographic profiles. Risk factors may cluster together in a non-monotonic fashion, with the majority of the at-risk population of US adults expected to have a high likelihood of endorsing only one of these five risk factors. © Royal Society for Public Health 2013.

2. Exploring syndrome differentiation using non-negative matrix factorization and cluster analysis in patients with atopic dermatitis.

Science.gov (United States)

Yun, Younghee; Jung, Wonmo; Kim, Hyunho; Jang, Bo-Hyoung; Kim, Min-Hee; Noh, Jiseong; Ko, Seong-Gyu; Choi, Inhwa

2017-08-01

Syndrome differentiation (SD) results in a diagnostic conclusion based on a cluster of concurrent symptoms and signs, including pulse form and tongue color. In Korea, there is a strong interest in the standardization of Traditional Medicine (TM). In order to standardize TM treatment, standardization of SD should be given priority. The aim of this study was to explore the SD, or symptom clusters, of patients with atopic dermatitis (AD) using non-negative factorization methods and k-means clustering analysis. We screened 80 patients and enrolled 73 eligible patients. One TM dermatologist evaluated the symptoms/signs using an existing clinical dataset from patients with AD. This dataset was designed to collect 15 dermatologic and 18 systemic symptoms/signs associated with AD. Non-negative matrix factorization was used to decompose the original data into a matrix with three features and a weight matrix. The point of intersection of the three coordinates from each patient was placed in three-dimensional space. With five clusters, the silhouette score reached 0.484, and this was the best silhouette score obtained from two to nine clusters. Patients were clustered according to the varying severity of concurrent symptoms/signs. Through the distribution of the null hypothesis generated by 10,000 permutation tests, we found significant cluster-specific symptoms/signs from the confidence intervals in the upper and lower 2.5% of the distribution. Patients in each cluster showed differences in symptoms/signs and severity. In a clinical situation, SD and treatment are based on the practitioners' observations and clinical experience. SD, identified through informatics, can contribute to development of standardized, objective, and consistent SD for each disease. Copyright © 2017. Published by Elsevier Ltd.

3. EXOTIC PLANTS IN THE CIBODAS BOTANIC GARDENS REMNANT FOREST: INVENTORY AND CLUSTER ANALYSIS OF SEVERAL ENVIRONMENTAL FACTORS

Directory of Open Access Journals (Sweden)

Decky Indrawan Junaedi

2014-01-01

Full Text Available Due to potential impact of invasive alien (exotic species to the natural ecosystems, inventory of exotic species in the Cibodas Botanic Gardens (CBG remnant forest area is an urgent need for CBG. Inventory of exotic species can assist gardens manager to set priorities and plan better responses for possible or existed invasive plants in the CBG remnants forest. The objectives of this study are to do inventory of the exotic species in the CBG remnant forest and to determine whether several environmental variables play role to the existence of exotic species in the CBG remnant forests. There are 26 exotic plant species (23 genera, 14 families found and recorded from all four remnant forests in CBG. Cluster analysis of four environmental variables shows that clustering of environmental factors of exotic species correlates with the abundances of those exotic species. The relation between environmental factor clusters and the abundance of those exotics signify the role of environmental variables on the existence of exotic plant species. The information of exotic plant species in the remnants forest is the base information for gardens manager to manage exotic species in CBG remnants forest. The relation of several environmental factors with exotic species abundance could assist gardens manager to understand better the supportive and or suppressor factors of exotics in the CBG remnants forest. Further study on these species is needed to set priorities to decide which species should be treated first in order to minimize the impact of exotic plant species to native ecosystem of CBG.

4. EXOTIC PLANTS IN THE CIBODAS BOTANIC GARDENS REMNANT FOREST: INVENTORY AND CLUSTER ANALYSIS OF SEVERAL ENVIRONMENTAL FACTORS

Directory of Open Access Journals (Sweden)

Decky Indrawan Junaedi

2014-01-01

Full Text Available Due to potential impact of invasive alien (exotic species to the natural ecosystems, inventory of exotic species in the Cibodas Botanic Gardens (CBG remnant forest area is an urgent need for CBG. Inventory of exotic species can assist gardens manager to set priorities and plan better responses for possible or existed invasive plants in the CBG remnants forest. The objectives of this study are to do inventory of the exotic species in the CBG remnant forest and to determine whether several environmental variables play role to the existence of exotic species in the CBG remnant forests. There are 26 exotic plant species  (23 genera, 14 families found and recorded from all four remnant forests in CBG. Cluster analysis of four environmental variables shows that clustering of environmental factors of exotic species correlates with the abundances of those exotic species. The relation between environmental factor clusters and the abundance of those exotics signify the role of environmental variables on the existence of exotic plant species. The information of exotic plant species in the remnants forest is the base information for gardens manager to manage exotic species in CBG remnants forest. The relation of several environmental factors with exotic species abundance could assist gardens manager to understand better the supportive and or suppressor factors of exotics in the CBG remnants forest. Further study on these species is needed to set priorities to decide which species should be treated first in order to minimize the impact of exotic plant species to native ecosystem of CBG.

5. Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering

Czech Academy of Sciences Publication Activity Database

Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.

2009-01-01

Roč. 20, č. 7 (2009), s. 1073-1086 ISSN 1045-9227 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.889, year: 2009

6. Comprehensive cluster analysis with Transitivity Clustering.

Science.gov (United States)

Wittkop, Tobias; Emig, Dorothea; Truss, Anke; Albrecht, Mario; Böcker, Sebastian; Baumbach, Jan

2011-03-01

Transitivity Clustering is a method for the partitioning of biological data into groups of similar objects, such as genes, for instance. It provides integrated access to various functions addressing each step of a typical cluster analysis. To facilitate this, Transitivity Clustering is accessible online and offers three user-friendly interfaces: a powerful stand-alone version, a web interface, and a collection of Cytoscape plug-ins. In this paper, we describe three major workflows: (i) protein (super)family detection with Cytoscape, (ii) protein homology detection with incomplete gold standards and (iii) clustering of gene expression data. This protocol guides the user through the most important features of Transitivity Clustering and takes ∼1 h to complete.

7. [Cluster analysis in biomedical researches].

Science.gov (United States)

Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

2013-01-01

Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.

8. Subphenotypes of mild-to-moderate COPD by factor and cluster analysis of pulmonary function, CT imaging and breathomics in a population-based survey

NARCIS (Netherlands)

Fens, Niki; van Rossum, Annelot G. J.; Zanen, Pieter; van Ginneken, Bram; van Klaveren, Rob J.; Zwinderman, Aeilko H.; Sterk, Peter J.

2013-01-01

Classification of COPD is currently based on the presence and severity of airways obstruction. However, this may not fully reflect the phenotypic heterogeneity of COPD in the (ex-) smoking community. We hypothesized that factor analysis followed by cluster analysis of functional, clinical,

9. CONSUMER ACCEPTANCE OF GENETICALLY MODIFIED FOODS IN KOREA: FACTOR AND CLUSTER ANALYSIS

OpenAIRE

Onyango, Benjamin M.; Govindasamy, Ramu; Hallman, William K.; Jang, Ho-Min; Puduri, Venkata S.

2004-01-01

The study applies multivariate statistical and econometric tools to estimate the importance of the various factors driving Korean consumer acceptance of GM food products. The evidence thus far on biotechnology is decidedly mixed: public perceptions of food biotechnology are characterized by ongoing tension between opposing forces. The South Korean perceptions about food in general and ranges from excitement about the promise of environmental and economic benefits from GM products to fear and ...

10. Descriptive analysis of factors that influence economical results in the furniture cluster of Bento Gonçalves

Directory of Open Access Journals (Sweden)

Miguel Afonso Sellitto

2014-12-01

Full Text Available The purpose of this article is to analyze factors that can influence the competitiveness of companies in the furniture cluster of Bento Gonçalves, Rio Grande do Sul. By a literature review, we identify four factors that can influence competition in clusters: the region's productivity, innovation, relationship with suppliers, and cooperation between companies. The research method is the single case study. The research techniques are the review of specific bibliographic and documentation of the studied cluster, and interviews with experts of the cluster. The main findings are: the cluster has high productivity, mainly by hi-tech machinery employed by the main companies; innovation is permanent and motivated by the imposition to medium and short companies of business goals by the main companies; the relationship with suppliers is problematic regarding the large-scale vendors by the lack of the practice of collective purchases in the area; and cooperation between enterprises is small, by the culture of the region that don´t appreciate depending on resources available outside the companies. Such factors can contribute to produce hypotheses for further research.

11. Integrative cluster analysis in bioinformatics

CERN Document Server

Abu-Jamous, Basel; Nandi, Asoke K

2015-01-01

Clustering techniques are increasingly being put to use in the analysis of high-throughput biological datasets. Novel computational techniques to analyse high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. This book details the complete pathway of cluster analysis, from the basics of molecular biology to the generation of biological knowledge. The book also presents the latest clustering methods and clustering validation, thereby offering the reader a comprehensive review o

12. Change in cardiovascular risk factors following early diagnosis of type 2 diabetes: a cohort analysis of a cluster-randomised trial

OpenAIRE

Black, James A; Sharp, Stephen J; Wareham, Nicholas J; Sandbæk, Annelli; Rutten, Guy EHM; Lauritzen, Torsten; Khunti, Kamlesh; Davies, Melanie J; Borch-Johnsen, Knut; Griffin, Simon J; Simmons, Rebecca K

2014-01-01

Background There is little evidence to inform the targeted treatment of individuals found early in the diabetes disease trajectory. Aim To describe cardiovascular disease (CVD) risk profiles and treatment of individual CVD risk factors by modelled CVD risk at diagnosis; changes in treatment, modelled CVD risk, and CVD risk factors in the 5 years following diagnosis; and how these are patterned by socioeconomic status. Design and setting Cohort analysis of a cluster-randomised trial (ADDITION-...

13. Cluster analysis of track structure

International Nuclear Information System (INIS)

Michalik, V.

1991-01-01

One of the possibilities of classifying track structures is application of conventional partition techniques of analysis of multidimensional data to the track structure. Using these cluster algorithms this paper attempts to find characteristics of radiation reflecting the spatial distribution of ionizations in the primary particle track. An absolute frequency distribution of clusters of ionizations giving the mean number of clusters produced by radiation per unit of deposited energy can serve as this characteristic. General computation techniques used as well as methods of calculations of distributions of clusters for different radiations are discussed. 8 refs.; 5 figs

14. Mismatch of Posttraumatic Stress Disorder (PTSD) Symptoms and DSM-IV Symptom Clusters in a Cancer Sample: Exploratory Factor Analysis of the PTSD Checklist-Civilian Version

Science.gov (United States)

Shelby, Rebecca A.; Golden-Kreutz, Deanna M.; Andersen, Barbara L.

2007-01-01

The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; American Psychiatric Association, 1994a) conceptualization of posttraumatic stress disorder (PTSD) includes three symptom clusters: reexperiencing, avoidance/numbing, and arousal. The PTSD Checklist-Civilian Version (PCL-C) corresponds to the DSM-IV PTSD symptoms. In the current study, we conducted exploratory factor analysis (EFA) of the PCL-C with two aims: (a) to examine whether the PCL-C evidenced the three-factor solution implied by the DSM-IV symptom clusters, and (b) to identify a factor solution for the PCL-C in a cancer sample. Women (N = 148) with Stage II or III breast cancer completed the PCL-C after completion of cancer treatment. We extracted two-, three-, four-, and five-factor solutions using EFA. Our data did not support the DSM-IV PTSD symptom clusters. Instead, EFA identified a four-factor solution including reexperiencing, avoidance, numbing, and arousal factors. Four symptom items, which may be confounded with illness and cancer treatment-related symptoms, exhibited poor factor loadings. Using these symptom items in cancer samples may lead to overdiagnosis of PTSD and inflated rates of PTSD symptoms. PMID:16281232

15. Are clusters of dietary patterns and cluster membership stable over time? Results of a longitudinal cluster analysis study.

Science.gov (United States)

Walthouwer, Michel Jean Louis; Oenema, Anke; Soetens, Katja; Lechner, Lilian; de Vries, Hein

2014-11-01

Developing nutrition education interventions based on clusters of dietary patterns can only be done adequately when it is clear if distinctive clusters of dietary patterns can be derived and reproduced over time, if cluster membership is stable, and if it is predictable which type of people belong to a certain cluster. Hence, this study aimed to: (1) identify clusters of dietary patterns among Dutch adults, (2) test the reproducibility of these clusters and stability of cluster membership over time, and (3) identify sociodemographic predictors of cluster membership and cluster transition. This study had a longitudinal design with online measurements at baseline (N=483) and 6 months follow-up (N=379). Dietary intake was assessed with a validated food frequency questionnaire. A hierarchical cluster analysis was performed, followed by a K-means cluster analysis. Multinomial logistic regression analyses were conducted to identify the sociodemographic predictors of cluster membership and cluster transition. At baseline and follow-up, a comparable three-cluster solution was derived, distinguishing a healthy, moderately healthy, and unhealthy dietary pattern. Male and lower educated participants were significantly more likely to have a less healthy dietary pattern. Further, 251 (66.2%) participants remained in the same cluster, 45 (11.9%) participants changed to an unhealthier cluster, and 83 (21.9%) participants shifted to a healthier cluster. Men and people living alone were significantly more likely to shift toward a less healthy dietary pattern. Distinctive clusters of dietary patterns can be derived. Yet, cluster membership is unstable and only few sociodemographic factors were associated with cluster membership and cluster transition. These findings imply that clusters based on dietary intake may not be suitable as a basis for nutrition education interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

16. Usage of K-cluster and factor analysis for grouping and evaluation the quality of olive oil in accordance with physico-chemical parameters

Science.gov (United States)

Milev, M.; Nikolova, Kr.; Ivanova, Ir.; Dobreva, M.

2015-11-01

25 olive oils were studied- different in origin and ways of extraction, in accordance with 17 physico-chemical parameters as follows: color parameters - a and b, light, fluorescence peaks, pigments - chlorophyll and β-carotene, fatty-acid content. The goals of the current study were: Conducting correlation analysis to find the inner relation between the studied indices; By applying factor analysis with the help of the method of Principal Components (PCA), to reduce the great number of variables into a few factors, which are of main importance for distinguishing the different types of olive oil;Using K-means cluster to compare and group the tested types olive oils based on their similarity. The inner relation between the studied indices was found by applying correlation analysis. A factor analysis using PCA was applied on the basis of the found correlation matrix. Thus the number of the studied indices was reduced to 4 factors, which explained 79.3% from the entire variation. The first one unified the color parameters, β-carotene and the related with oxidative products fluorescence peak - about 520 nm. The second one was determined mainly by the chlorophyll content and related to it fluorescence peak - about 670 nm. The third and the fourth factors were determined by the fatty-acid content of the samples. The third one unified the fatty-acids, which give us the opportunity to distinguish olive oil from the other plant oils - oleic, linoleic and stearin acids. The fourth factor included fatty-acids with relatively much lower content in the studied samples. It is enquired the number of clusters to be determined preliminary in order to apply the K-Cluster analysis. The variant K = 3 was worked out because the types of the olive oil were three. The first cluster unified all salad and pomace olive oils, the second unified the samples of extra virgin oilstaken as controls from producers, which were bought from the trade network. The third cluster unified samples from

17. Characteristic and factors of competitive maritime industry clusters in Indonesia

Science.gov (United States)

Marlyana, N.; Tontowi, A. E.; Yuniarto, H. A.

2017-12-01

Indonesia is situated in the strategic position between two oceans therefore is identified as a maritime state. The fact opens big opportunity to build a competitive maritime industry. However, potential factors to boost the competitive maritime industry still need to be explored. The objective of this paper is then to determine the main characteristics and potential factors of competitive maritime industry cluster. Qualitative analysis based on literature review has been carried out in two aspects. First, benchmarking analysis conducted to distinguish the most relevant factors of maritime clusters in several countries in Europe (Norway, Spain, South West of England) and Asia (China, South Korea, Malaysia). Seven key dimensions are used for this benchmarking. Secondly, the competitiveness of maritime clusters in Indonesia was diagnosed through a reconceptualization of Porter’s Diamond model. There were four interlinked of advanced factors in and between companies within clusters, which can be influenced in a proactive way by government.

18. Factored Translation with Unsupervised Word Clusters

DEFF Research Database (Denmark)

Rishøj, Christian; Søgaard, Anders

2011-01-01

Unsupervised word clustering algorithms — which form word clusters based on a measure of distributional similarity — have proven to be useful in providing beneficial features for various natural language processing tasks involving supervised learning. This work explores the utility of such word...... clusters as factors in statistical machine translation. Although some of the language pairs in this work clearly benefit from the factor augmentation, there is no consistent improvement in translation accuracy across the board. For all language pairs, the word clusters clearly improve translation for some...... proportion of the sentences in the test set, but has a weak or even detrimental effect on the rest. It is shown that if one could determine whether or not to use a factor when translating a given sentence, rather substantial improvements in precision could be achieved for all of the language pairs evaluated...

19. FACTOR MODEL ASSESSMENT OF THE COMPETITIVE INNOVATION CLUSTERS ELECTRONICS BASED ON ANALYSIS OF THE STAGES OF THEIR LIFE CYCLE

Directory of Open Access Journals (Sweden)

A. V. Brykin

2013-01-01

Full Text Available The cluster principle development in the world of electronics is one of the most effective examples of high-tech industry. The author considers the possibility of using clusters to modernize the Russian economy.

20. Clustering of leptin and physical activity with components of metabolic syndrome in Iranian population: an exploratory factor analysis.

Science.gov (United States)

Esteghamati, Alireza; Zandieh, Ali; Khalilzadeh, Omid; Morteza, Afsaneh; Meysamie, Alipasha; Nakhjavani, Manouchehr; Gouya, Mohammad Mehdi

2010-10-01

Metabolic syndrome (MetS), manifested by insulin resistance, dyslipidemia, central obesity, and hypertension, is conceived to be associated with hyperleptinemia and physical activity. The aim of this study was to elucidate the factors underlying components of MetS and also to test the suitability of leptin and physical activity as additional components of this syndrome. Data of the individuals without history of diabetes mellitus, aged 25-64 years, from third national surveillance of risk factors of non-communicable diseases (SuRFNCD-2007), were analyzed. Performing factor analysis on waist circumference, homeostasis model assessment of insulin resistance, systolic blood pressure, triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) led to extraction of two factors which explained around 59.0% of the total variance in both genders. When TG and HDL-C were replaced by TG to HDL-C ratio, a single factor was obtained. In contrast to physical activity, addition of leptin was consistent with one-factor structure of MetS and improved the ability of suggested models to identify obesity (BMI≥30 kg/m2, Pphysical activity loaded on the first identified factor. Our study shows that one underlying factor structure of MetS is also plausible and the inclusion of leptin does not interfere with this structure. Further, this study suggests that physical activity influences MetS components via modulation of the main underlying pathophysiologic pathway of this syndrome.

1. Cluster analysis for portfolio optimization

OpenAIRE

Vincenzo Tola; Fabrizio Lillo; Mauro Gallegati; Rosario N. Mantegna

2005-01-01

We consider the problem of the statistical uncertainty of the correlation matrix in the optimization of a financial portfolio. We show that the use of clustering algorithms can improve the reliability of the portfolio in terms of the ratio between predicted and realized risk. Bootstrap analysis indicates that this improvement is obtained in a wide range of the parameters N (number of assets) and T (investment horizon). The predicted and realized risk level and the relative portfolio compositi...

2. Suicide Clusters: A Review of Risk Factors and Mechanisms

Science.gov (United States)

Haw, Camilla; Hawton, Keith; Niedzwiedz, Claire; Platt, Steve

2013-01-01

Suicide clusters, although uncommon, cause great concern in the communities in which they occur. We searched the world literature on suicide clusters and describe the risk factors and proposed psychological mechanisms underlying the spatio-temporal clustering of suicides (point clusters). Potential risk factors include male gender, being an…

3. Factor analysis

CERN Document Server

Gorsuch, Richard L

2013-01-01

Comprehensive and comprehensible, this classic covers the basic and advanced topics essential for using factor analysis as a scientific tool in psychology, education, sociology, and related areas. Emphasizing the usefulness of the techniques, it presents sufficient mathematical background for understanding and sufficient discussion of applications for effective use. This includes not only theory but also the empirical evaluations of the importance of mathematical distinctions for applied scientific analysis.

4. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

Directory of Open Access Journals (Sweden)

Kristopher J. L. Irizarry

2016-01-01

Full Text Available Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1 that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons.

5. Consanguinity and family clustering of male factor infertility in Lebanon.

Science.gov (United States)

Inhorn, Marcia C; Kobeissi, Loulou; Nassar, Zaher; Lakkis, Da'ad; Fakih, Michael H

2009-04-01

To investigate the influence of consanguineous marriage on male factor infertility in Lebanon, where rates of consanguineous marriage remain high (29.6% among Muslims, 16.5% among Christians). Clinic-based, case-control study, using reproductive history, risk factor interview, and laboratory-based semen analysis. Two IVF clinics in Beirut, Lebanon, during an 8-month period (January-August 2003). One hundred twenty infertile male patients and 100 fertile male controls, distinguished by semen analysis and reproductive history. None. Standard clinical semen analysis. The rates of consanguineous marriage were relatively high among the study sample. Patients (46%) were more likely than controls (37%) to report first-degree (parental) and second-degree (grandparental) consanguinity. The study demonstrated a clear pattern of family clustering of male factor infertility, with patients significantly more likely than controls to report infertility among close male relatives (odds ratio = 2.58). Men with azoospermia and severe oligospermia showed high rates of both consanguinity (50%) and family clustering (41%). Consanguineous marriage is a socially supported institution throughout the Muslim world, yet its relationship to infertility is poorly understood. This study demonstrated a significant association between consanguinity and family clustering of male factor infertility cases, suggesting a strong genetic component.

6. Cluster analysis in phenotyping a Portuguese population.

Science.gov (United States)

Loureiro, C C; Sa-Couto, P; Todo-Bom, A; Bousquet, J

2015-09-03

Unbiased cluster analysis using clinical parameters has identified asthma phenotypes. Adding inflammatory biomarkers to this analysis provided a better insight into the disease mechanisms. This approach has not yet been applied to asthmatic Portuguese patients. To identify phenotypes of asthma using cluster analysis in a Portuguese asthmatic population treated in secondary medical care. Consecutive patients with asthma were recruited from the outpatient clinic. Patients were optimally treated according to GINA guidelines and enrolled in the study. Procedures were performed according to a standard evaluation of asthma. Phenotypes were identified by cluster analysis using Ward's clustering method. Of the 72 patients enrolled, 57 had full data and were included for cluster analysis. Distribution was set in 5 clusters described as follows: cluster (C) 1, early onset mild allergic asthma; C2, moderate allergic asthma, with long evolution, female prevalence and mixed inflammation; C3, allergic brittle asthma in young females with early disease onset and no evidence of inflammation; C4, severe asthma in obese females with late disease onset, highly symptomatic despite low Th2 inflammation; C5, severe asthma with chronic airflow obstruction, late disease onset and eosinophilic inflammation. In our study population, the identified clusters were mainly coincident with other larger-scale cluster analysis. Variables such as age at disease onset, obesity, lung function, FeNO (Th2 biomarker) and disease severity were important for cluster distinction. Copyright © 2015. Published by Elsevier España, S.L.U.

7. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.

Science.gov (United States)

He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej

2011-12-01

Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.

8. Cytokines and clustered cardiovascular risk factors in children

DEFF Research Database (Denmark)

Andersen, Lars Bo; Müller, Klaus; Eiberg, Stig

2010-01-01

pronounced in fat and unfit children based on the association with CRP levels. The association between fitness and fatness variables, insulin resistance, and clustered risk could be caused by other mechanisms related to these exposures. The role of IL-6 remains unclear.......The aim was to evaluate the possible role of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), C-reactive protein (CRP), low fitness, and fatness in the early development of clustering of cardiovascular disease (CVD) risk factors and insulin resistance. Subjects for this cross......-sectional study were obtained from 18 schools near Copenhagen, Denmark. Two hundred ten 9-year-old children were selected for cytokine analysis from 434 third-grade children with complete CVD risk profiles. The subgroup was selected according to the CVD risk factor profile (upper and lower quartile of a composite...

9. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

Science.gov (United States)

Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

2013-03-01

Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

10. The clinical factors associated with benefit finding of complementary medicine use in patients with back pain: A cross-sectional study with cluster analysis.

Science.gov (United States)

Kavadar, Gulis; Demircioğlu, Demet Tekdos; Can, Halil; Emre, Tuluhan Yunus; Civelek, Erdinç; Senyigit, Abdulhalim

2017-01-01

Complementary and alternative medicine (CAM) use has been increasing. To identify the factors associated with perceived benefit from CAM methods in back problems. The study was conducted on patients who practiced any CAM methods due to complaints of back pain. Social-demographic properties, details of CAM methods employed were questioned. Severity of pain was measured by visual analog scale (VAS); benefits were evaluated by the Likert scale. Hierarchical cluster analysis was used to discover relationships among variables. In total, 500 patients (265 female, 235 male) were included in the study. Mostly used methods were herbal therapy (32%), balneotherapy (31%), cupping (19.4%) and massage-manipulation (19.2%). Of patients, 355 (71%) were satisfied. The variables associated with benefit finding were female gender, age, chronicity and severity of pain, high educational level, upper middle income status, use as a result of recommendation, dissatisfaction with conventional methods, residence in an urban area, non-herbal method use, being married, and social insurance (p CAM perceived benefits; in particular, women living in urban areas, highly educated, aged more than 40, who suffer from severe chronic back pain, may be more inclined to go to CAM therapists.

11. Robust cluster analysis and variable selection

CERN Document Server

Ritter, Gunter

2014-01-01

Clustering remains a vibrant area of research in statistics. Although there are many books on this topic, there are relatively few that are well founded in the theoretical aspects. In Robust Cluster Analysis and Variable Selection, Gunter Ritter presents an overview of the theory and applications of probabilistic clustering and variable selection, synthesizing the key research results of the last 50 years. The author focuses on the robust clustering methods he found to be the most useful on simulated data and real-time applications. The book provides clear guidance for the varying needs of bot

12. Exact WKB analysis and cluster algebras

International Nuclear Information System (INIS)

Iwaki, Kohei; Nakanishi, Tomoki

2014-01-01

We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

13. On the Equivalence of Nonnegative Matrix Factorization and K-means- Spectral Clustering

Energy Technology Data Exchange (ETDEWEB)

Ding, Chris; He, Xiaofeng; Simon, Horst D.; Jin, Rong

2005-12-04

We provide a systematic analysis of nonnegative matrix factorization (NMF) relating to data clustering. We generalize the usual X = FG{sup T} decomposition to the symmetric W = HH{sup T} and W = HSH{sup T} decompositions. We show that (1) W = HH{sup T} is equivalent to Kernel K-means clustering and the Laplacian-based spectral clustering. (2) X = FG{sup T} is equivalent to simultaneous clustering of rows and columns of a bipartite graph. We emphasizes the importance of orthogonality in NMF and soft clustering nature of NMF. These results are verified with experiments on face images and newsgroups.

14. Cardiovascular Risk Factors in Cluster Headache.

Science.gov (United States)

Lasaosa, S Santos; Diago, E Bellosta; Calzada, J Navarro; Benito, A Velázquez

2017-06-01

Patients with cluster headache tend to have a dysregulation of systemic blood pressure such as increased blood pressure variability and decreased nocturnal dipping. This pattern of nocturnal nondipping is associated with end-organ damage and increased risk of cardiovascular disease.  To determine if cluster headache is associated with a higher risk of cardiovascular disease.  Cross-sectional study of 33 cluster headache patients without evidence of cardiovascular disease and 30 age- and gender-matched healthy controls. Ambulatory blood pressure monitoring was performed in all subjects. We evaluate anthropometric, hematologic, and structural parameters (carotid intima-media thickness and ankle-brachial index).  Of the 33 cluster headache patients, 16 (48.5%) were nondippers, a higher percentage than expected. Most of the cluster headache patients (69.7%) also presented a pathological ankle-brachial index. In terms of the carotid intima-media thickness values, 58.3% of the patients were in the 75th percentile, 25% were in the 90th percentile, and 20% were in the 95th percentile. In the control group, only five of the 30 subjects (16.7%) had a nondipper pattern ( P  =   0.004), with 4.54% in the 90th and 95th percentiles ( P  =   0.012 and 0.015).  Compared with healthy controls, patients with cluster headache presented a high incidence (48.5%) of nondipper pattern, pathological ankle-brachial index (69.7%), and intima-media thickness values above the 75th percentile. These findings support the hypothesis that patients with cluster headache present increased risk of cardiovascular disease. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

15. Steven's orbital reduction factor in ionic clusters

Science.gov (United States)

Gajek, Z.; Mulak, J.

1985-11-01

General expressions for reduction coefficients of matrix elements of angular momentum operator in ionic clusters or molecular systems have been derived. The reduction in this approach results from overlap and covalency effects and plays an important role in the reconciling of magnetic and spectroscopic experimental data. The formulated expressions make possible a phenomenological description of the effect with two independent parameters for typical equidistant clusters. Some detailed calculations also suggest the possibility of a one-parameter description. The results of these calculations for some ionic uranium compounds are presented as an example.

16. Socioeconomic risk factors for cholera in different transmission settings: An analysis of the data of a cluster randomized trial in Bangladesh.

Science.gov (United States)

Saha, Amit; Hayen, Andrew; Ali, Mohammad; Rosewell, Alexander; Clemens, John D; Raina MacIntyre, C; Qadri, Firdausi

2017-09-05

Cholera remains a threat globally, and socioeconomic factors play an important role in transmission of the disease. We assessed socioeconomic risk factors for cholera in vaccinated and non-vaccinated communities to understand whether the socioeconomic risk factors differ by transmission patterns for cholera. We used data from a cluster randomized control trial conducted in Dhaka, Bangladesh. There were 90 geographic clusters; 30 in each of the three arms of the study: vaccine (VAC), vaccine plus behavioural change (VBC), and non-intervention. The data were analysed for the three populations: (1) vaccinees in the vaccinated communities (VAC and VBC arms), (2) non-vaccinated individuals in the vaccinated communities and (3) all individuals in the non-vaccinated communities (non-intervention arm). A generalized estimating equation with logit link function was used to evaluate the risk factors for cholera among these different populations adjusting for household level correlation in the data. A total of 528 cholera and 226 cholera with severe dehydration (CSD) in 268,896 persons were observed during the two-year follow-up. For population 1, the cholera risk was not associated with any socioeconomic factors; however CSD was less likely to occur among individuals living in a household having ≤4 members (aOR=0.55, 95% CI=0.32-0.96). Among population 2, younger participants and individuals reporting diarrhoea during registration were more likely to have cholera. Females and individuals reporting diarrhoea during registration were at increased risk of CSD. Among population 3, individuals living in a household without a concrete floor, in an area with high population density, closer to the study hospital, or not treating drinking water were at significantly higher risk for both cholera and CSD. The profile of socioeconomic factors associated with cholera varies by individuals' vaccination status as well as the transmission setting. In a vaccinated community where

17. Cluster analysis of obesity and asthma phenotypes.

Directory of Open Access Journals (Sweden)

E Rand Sutherland

Full Text Available Asthma is a heterogeneous disease with variability among patients in characteristics such as lung function, symptoms and control, body weight, markers of inflammation, and responsiveness to glucocorticoids (GC. Cluster analysis of well-characterized cohorts can advance understanding of disease subgroups in asthma and point to unsuspected disease mechanisms. We utilized an hypothesis-free cluster analytical approach to define the contribution of obesity and related variables to asthma phenotype.In a cohort of clinical trial participants (n = 250, minimum-variance hierarchical clustering was used to identify clinical and inflammatory biomarkers important in determining disease cluster membership in mild and moderate persistent asthmatics. In a subset of participants, GC sensitivity was assessed via expression of GC receptor alpha (GCRα and induction of MAP kinase phosphatase-1 (MKP-1 expression by dexamethasone. Four asthma clusters were identified, with body mass index (BMI, kg/m(2 and severity of asthma symptoms (AEQ score the most significant determinants of cluster membership (F = 57.1, p<0.0001 and F = 44.8, p<0.0001, respectively. Two clusters were composed of predominantly obese individuals; these two obese asthma clusters differed from one another with regard to age of asthma onset, measures of asthma symptoms (AEQ and control (ACQ, exhaled nitric oxide concentration (F(ENO and airway hyperresponsiveness (methacholine PC(20 but were similar with regard to measures of lung function (FEV(1 (% and FEV(1/FVC, airway eosinophilia, IgE, leptin, adiponectin and C-reactive protein (hsCRP. Members of obese clusters demonstrated evidence of reduced expression of GCRα, a finding which was correlated with a reduced induction of MKP-1 expression by dexamethasoneObesity is an important determinant of asthma phenotype in adults. There is heterogeneity in expression of clinical and inflammatory biomarkers of asthma across obese individuals

18. Characterizing Suicide in Toronto: An Observational Study and Cluster Analysis

Science.gov (United States)

Sinyor, Mark; Schaffer, Ayal; Streiner, David L

2014-01-01

Objective: To determine whether people who have died from suicide in a large epidemiologic sample form clusters based on demographic, clinical, and psychosocial factors. Method: We conducted a coroner’s chart review for 2886 people who died in Toronto, Ontario, from 1998 to 2010, and whose death was ruled as suicide by the Office of the Chief Coroner of Ontario. A cluster analysis using known suicide risk factors was performed to determine whether suicide deaths separate into distinct groups. Clusters were compared according to person- and suicide-specific factors. Results: Five clusters emerged. Cluster 1 had the highest proportion of females and nonviolent methods, and all had depression and a past suicide attempt. Cluster 2 had the highest proportion of people with a recent stressor and violent suicide methods, and all were married. Cluster 3 had mostly males between the ages of 20 and 64, and all had either experienced recent stressors, suffered from mental illness, or had a history of substance abuse. Cluster 4 had the youngest people and the highest proportion of deaths by jumping from height, few were married, and nearly one-half had bipolar disorder or schizophrenia. Cluster 5 had all unmarried people with no prior suicide attempts, and were the least likely to have an identified mental illness and most likely to leave a suicide note. Conclusions: People who die from suicide assort into different patterns of demographic, clinical, and death-specific characteristics. Identifying and studying subgroups of suicides may advance our understanding of the heterogeneous nature of suicide and help to inform development of more targeted suicide prevention strategies. PMID:24444321

19. Clustering of Mycobacterium tuberculosis Cases in Acapulco: Spoligotyping and Risk Factors

Directory of Open Access Journals (Sweden)

Elizabeth Nava-Aguilera

2011-01-01

Full Text Available Recurrence and reinfection of tuberculosis have quite different implications for prevention. We identified 267 spoligotypes of Mycobacterium tuberculosis from consecutive tuberculosis patients in Acapulco, Mexico, to assess the level of clustering and risk factors for clustered strains. Point cluster analysis examined spatial clustering. Risk analysis relied on the Mantel Haenszel procedure to examine bivariate associations, then to develop risk profiles of combinations of risk factors. Supplementary analysis of the spoligotyping data used SpolTools. Spoligotyping identified 85 types, 50 of them previously unreported. The five most common spoligotypes accounted for 55% of tuberculosis cases. One cluster of 70 patients (26% of the series produced a single spoligotype from the Manila Family (Clade EAI2. The high proportion (78% of patients infected with cluster strains is compatible with recent transmission of TB in Acapulco. Geomatic analysis showed no spatial clustering; clustering was associated with a risk profile of uneducated cases who lived in single-room dwellings. The Manila emerging strain accounted for one in every four cases, confirming that one strain can predominate in a hyperendemic area.

20. Cluster analysis for determining distribution center location

Science.gov (United States)

Lestari Widaningrum, Dyah; Andika, Aditya; Murphiyanto, Richard Dimas Julian

2017-12-01

Determination of distribution facilities is highly important to survive in the high level of competition in today’s business world. Companies can operate multiple distribution centers to mitigate supply chain risk. Thus, new problems arise, namely how many and where the facilities should be provided. This study examines a fast-food restaurant brand, which located in the Greater Jakarta. This brand is included in the category of top 5 fast food restaurant chain based on retail sales. There were three stages in this study, compiling spatial data, cluster analysis, and network analysis. Cluster analysis results are used to consider the location of the additional distribution center. Network analysis results show a more efficient process referring to a shorter distance to the distribution process.

1. Changing cluster composition in cluster randomised controlled trials: design and analysis considerations

Science.gov (United States)

2014-01-01

Background There are many methodological challenges in the conduct and analysis of cluster randomised controlled trials, but one that has received little attention is that of post-randomisation changes to cluster composition. To illustrate this, we focus on the issue of cluster merging, considering the impact on the design, analysis and interpretation of trial outcomes. Methods We explored the effects of merging clusters on study power using standard methods of power calculation. We assessed the potential impacts on study findings of both homogeneous cluster merges (involving clusters randomised to the same arm of a trial) and heterogeneous merges (involving clusters randomised to different arms of a trial) by simulation. To determine the impact on bias and precision of treatment effect estimates, we applied standard methods of analysis to different populations under analysis. Results Cluster merging produced a systematic reduction in study power. This effect depended on the number of merges and was most pronounced when variability in cluster size was at its greatest. Simulations demonstrate that the impact on analysis was minimal when cluster merges were homogeneous, with impact on study power being balanced by a change in observed intracluster correlation coefficient (ICC). We found a decrease in study power when cluster merges were heterogeneous, and the estimate of treatment effect was attenuated. Conclusions Examples of cluster merges found in previously published reports of cluster randomised trials were typically homogeneous rather than heterogeneous. Simulations demonstrated that trial findings in such cases would be unbiased. However, simulations also showed that any heterogeneous cluster merges would introduce bias that would be hard to quantify, as well as having negative impacts on the precision of estimates obtained. Further methodological development is warranted to better determine how to analyse such trials appropriately. Interim recommendations

2. Prevalence and risk factors of seizure clusters in adult patients with epilepsy.

Science.gov (United States)

Chen, Baibing; Choi, Hyunmi; Hirsch, Lawrence J; Katz, Austen; Legge, Alexander; Wong, Rebecca A; Jiang, Alfred; Kato, Kenneth; Buchsbaum, Richard; Detyniecki, Kamil

2017-07-01

In the current study, we explored the prevalence of physician-confirmed seizure clusters. We also investigated potential clinical factors associated with the occurrence of seizure clusters overall and by epilepsy type. We reviewed medical records of 4116 adult (≥16years old) outpatients with epilepsy at our centers for documentation of seizure clusters. Variables including patient demographics, epilepsy details, medical and psychiatric history, AED history, and epilepsy risk factors were then tested against history of seizure clusters. Patients were then divided into focal epilepsy, idiopathic generalized epilepsy (IGE), or symptomatic generalized epilepsy (SGE), and the same analysis was run. Overall, seizure clusters were independently associated with earlier age of seizure onset, symptomatic generalized epilepsy (SGE), central nervous system (CNS) infection, cortical dysplasia, status epilepticus, absence of 1-year seizure freedom, and having failed 2 or more AEDs (Pepilepsy (16.3%) and IGE (7.4%; all Pepilepsy type showed that absence of 1-year seizure freedom since starting treatment at one of our centers was associated with seizure clustering in patients across all 3 epilepsy types. In patients with SGE, clusters were associated with perinatal/congenital brain injury. In patients with focal epilepsy, clusters were associated with younger age of seizure onset, complex partial seizures, cortical dysplasia, status epilepticus, CNS infection, and having failed 2 or more AEDs. In patients with IGE, clusters were associated with presence of an aura. Only 43.5% of patients with seizure clusters were prescribed rescue medications. Patients with intractable epilepsy are at a higher risk of developing seizure clusters. Factors such as having SGE, CNS infection, cortical dysplasia, status epilepticus or an early seizure onset, can also independently increase one's chance of having seizure clusters. Copyright © 2017. Published by Elsevier B.V.

3. Semi-supervised consensus clustering for gene expression data analysis

OpenAIRE

Wang, Yunli; Pan, Youlian

2014-01-01

Background Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustness and quality of clustering results. Incorporating prior knowledge in clustering process (semi-supervised clustering) has been shown to improve the consistency between the data partitioning and do...

4. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms.

Science.gov (United States)

Esplin, M Sean; Manuck, Tracy A; Varner, Michael W; Christensen, Bryce; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Huang, Hao; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M; Ilekis, John

2015-09-01

We sought to use an innovative tool that is based on common biologic pathways to identify specific phenotypes among women with spontaneous preterm birth (SPTB) to enhance investigators' ability to identify and to highlight common mechanisms and underlying genetic factors that are responsible for SPTB. We performed a secondary analysis of a prospective case-control multicenter study of SPTB. All cases delivered a preterm singleton at SPTB ≤34.0 weeks' gestation. Each woman was assessed for the presence of underlying SPTB causes. A hierarchic cluster analysis was used to identify groups of women with homogeneous phenotypic profiles. One of the phenotypic clusters was selected for candidate gene association analysis with the use of VEGAS software. One thousand twenty-eight women with SPTB were assigned phenotypes. Hierarchic clustering of the phenotypes revealed 5 major clusters. Cluster 1 (n = 445) was characterized by maternal stress; cluster 2 (n = 294) was characterized by premature membrane rupture; cluster 3 (n = 120) was characterized by familial factors, and cluster 4 (n = 63) was characterized by maternal comorbidities. Cluster 5 (n = 106) was multifactorial and characterized by infection (INF), decidual hemorrhage (DH), and placental dysfunction (PD). These 3 phenotypes were correlated highly by χ(2) analysis (PD and DH, P cluster 3 of SPTB. We identified 5 major clusters of SPTB based on a phenotype tool and hierarch clustering. There was significant correlation between several of the phenotypes. The INS gene was associated with familial factors that were underlying SPTB. Copyright © 2015 Elsevier Inc. All rights reserved.

5. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks.

Science.gov (United States)

Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

2017-01-01

Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.

6. Factors influencing the quality of life of haemodialysis patients according to symptom cluster.

Science.gov (United States)

Shim, Hye Yeung; Cho, Mi-Kyoung

2018-05-01

To identify the characteristics in each symptom cluster and factors influencing the quality of life of haemodialysis patients in Korea according to cluster. Despite developments in renal replacement therapy, haemodialysis still restricts the activities of daily living due to pain and impairs physical functioning induced by the disease and its complications. Descriptive survey. Two hundred and thirty dialysis patients aged >18 years. They completed self-administered questionnaires of Dialysis Symptom Index and Kidney Disease Quality of Life instrument-Short Form 1.3. To determine the optimal number of clusters, the collected data were analysed using polytomous variable latent class analysis in R software (poLCA) to estimate the latent class models and the latent class regression models for polytomous outcome variables. Differences in characteristics, symptoms and QOL according to the symptom cluster of haemodialysis patients were analysed using the independent t test and chi-square test. The factors influencing the QOL according to symptom cluster were identified using hierarchical multiple regression analysis. Physical and emotional symptoms were significantly more severe, and the QOL was significantly worse in Cluster 1 than in Cluster 2. The factors influencing the QOL were spouse, job, insurance type and physical and emotional symptoms in Cluster 1, with these variables having an explanatory power of 60.9%. Physical and emotional symptoms were the only influencing factors in Cluster 2, and they had an explanatory power of 37.4%. Mitigating the symptoms experienced by haemodialysis patients and improving their QOL require educational and therapeutic symptom management interventions that are tailored according to the characteristics and symptoms in each cluster. The findings of this study are expected to lead to practical guidelines for addressing the symptoms experienced by haemodialysis patients, and they provide basic information for developing nursing

7. Foundations of factor analysis

CERN Document Server

Mulaik, Stanley A

2009-01-01

Introduction Factor Analysis and Structural Theories Brief History of Factor Analysis as a Linear Model Example of Factor AnalysisMathematical Foundations for Factor Analysis Introduction Scalar AlgebraVectorsMatrix AlgebraDeterminants Treatment of Variables as Vectors Maxima and Minima of FunctionsComposite Variables and Linear Transformations Introduction Composite Variables Unweighted Composite VariablesDifferentially Weighted Composites Matrix EquationsMulti

8. MANNER OF STOCKS SORTING USING CLUSTER ANALYSIS METHODS

Directory of Open Access Journals (Sweden)

Jana Halčinová

2014-06-01

Full Text Available The aim of the present article is to show the possibility of using the methods of cluster analysis in classification of stocks of finished products. Cluster analysis creates groups (clusters of finished products according to similarity in demand i.e. customer requirements for each product. Manner stocks sorting of finished products by clusters is described a practical example. The resultants clusters are incorporated into the draft layout of the distribution warehouse.

9. Advanced analysis of forest fire clustering

Science.gov (United States)

Kanevski, Mikhail; Pereira, Mario; Golay, Jean

2017-04-01

Analysis of point pattern clustering is an important topic in spatial statistics and for many applications: biodiversity, epidemiology, natural hazards, geomarketing, etc. There are several fundamental approaches used to quantify spatial data clustering using topological, statistical and fractal measures. In the present research, the recently introduced multi-point Morisita index (mMI) is applied to study the spatial clustering of forest fires in Portugal. The data set consists of more than 30000 fire events covering the time period from 1975 to 2013. The distribution of forest fires is very complex and highly variable in space. mMI is a multi-point extension of the classical two-point Morisita index. In essence, mMI is estimated by covering the region under study by a grid and by computing how many times more likely it is that m points selected at random will be from the same grid cell than it would be in the case of a complete random Poisson process. By changing the number of grid cells (size of the grid cells), mMI characterizes the scaling properties of spatial clustering. From mMI, the data intrinsic dimension (fractal dimension) of the point distribution can be estimated as well. In this study, the mMI of forest fires is compared with the mMI of random patterns (RPs) generated within the validity domain defined as the forest area of Portugal. It turns out that the forest fires are highly clustered inside the validity domain in comparison with the RPs. Moreover, they demonstrate different scaling properties at different spatial scales. The results obtained from the mMI analysis are also compared with those of fractal measures of clustering - box counting and sand box counting approaches. REFERENCES Golay J., Kanevski M., Vega Orozco C., Leuenberger M., 2014: The multipoint Morisita index for the analysis of spatial patterns. Physica A, 406, 191-202. Golay J., Kanevski M. 2015: A new estimator of intrinsic dimension based on the multipoint Morisita index

10. Cluster Analysis in Rapeseed (Brassica Napus L.)

International Nuclear Information System (INIS)

Mahasi, J.M

2002-01-01

With widening edible deficit, Kenya has become increasingly dependent on imported edible oils. Many oilseed crops (e.g. sunflower, soya beans, rapeseed/mustard, sesame, groundnuts etc) can be grown in Kenya. But oilseed rape is preferred because it very high yielding (1.5 tons-4.0 tons/ha) with oil content of 42-46%. Other uses include fitting in various cropping systems as; relay/inter crops, rotational crops, trap crops and fodder. It is soft seeded hence oil extraction is relatively easy. The meal is high in protein and very useful in livestock supplementation. Rapeseed can be straight combined using adjusted wheat combines. The priority is to expand domestic oilseed production, hence the need to introduce improved rapeseed germplasm from other countries. The success of any crop improvement programme depends on the extent of genetic diversity in the material. Hence, it is essential to understand the adaptation of introduced genotypes and the similarities if any among them. Evaluation trials were carried out on 17 rapeseed genotypes (nine Canadian origin and eight of European origin) grown at 4 locations namely Endebess, Njoro, Timau and Mau Narok in three years (1992, 1993 and 1994). Results for 1993 were discarded due to severe drought. An analysis of variance was carried out only on seed yields and the treatments were found to be significantly different. Cluster analysis was then carried out on mean seed yields and based on this analysis; only one major group exists within the material. In 1992, varieties 2,3,8 and 9 didn't fall in the same cluster as the rest. Variety 8 was the only one not classified with the rest of the Canadian varieties. Three European varieties (2,3 and 9) were however not classified with the others. In 1994, varieties 10 and 6 didn't fall in the major cluster. Of these two, variety 10 is of Canadian origin. Varieties were more similar in 1994 than 1992 due to favorable weather. It is evident that, genotypes from different geographical

11. Graph analysis of cell clusters forming vascular networks

Science.gov (United States)

Alves, A. P.; Mesquita, O. N.; Gómez-Gardeñes, J.; Agero, U.

2018-03-01

This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.

12. Tweets clustering using latent semantic analysis

Science.gov (United States)

Rasidi, Norsuhaili Mahamed; Bakar, Sakhinah Abu; Razak, Fatimah Abdul

2017-04-01

Social media are becoming overloaded with information due to the increasing number of information feeds. Unlike other social media, Twitter users are allowed to broadcast a short message called as `tweet". In this study, we extract tweets related to MH370 for certain of time. In this paper, we present overview of our approach for tweets clustering to analyze the users' responses toward tragedy of MH370. The tweets were clustered based on the frequency of terms obtained from the classification process. The method we used for the text classification is Latent Semantic Analysis. As a result, there are two types of tweets that response to MH370 tragedy which is emotional and non-emotional. We show some of our initial results to demonstrate the effectiveness of our approach.

13. Assessment of genetic divergence in tomato through agglomerative hierarchical clustering and principal component analysis

International Nuclear Information System (INIS)

Iqbal, Q.; Saleem, M.Y.; Hameed, A.; Asghar, M.

2014-01-01

For the improvement of qualitative and quantitative traits, existence of variability has prime importance in plant breeding. Data on different morphological and reproductive traits of 47 tomato genotypes were analyzed for correlation,agglomerative hierarchical clustering and principal component analysis (PCA) to select genotypes and traits for future breeding program. Correlation analysis revealed significant positive association between yield and yield components like fruit diameter, single fruit weight and number of fruits plant-1. Principal component (PC) analysis depicted first three PCs with Eigen-value higher than 1 contributing 81.72% of total variability for different traits. The PC-I showed positive factor loadings for all the traits except number of fruits plant-1. The contribution of single fruit weight and fruit diameter was highest in PC-1. Cluster analysis grouped all genotypes into five divergent clusters. The genotypes in cluster-II and cluster-V exhibited uniform maturity and higher yield. The D2 statistics confirmed highest distance between cluster- III and cluster-V while maximum similarity was observed in cluster-II and cluster-III. It is therefore suggested that crosses between genotypes of cluster-II and cluster-V with those of cluster-I and cluster-III may exhibit heterosis in F1 for hybrid breeding and for selection of superior genotypes in succeeding generations for cross breeding programme. (author)

14. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010.

Science.gov (United States)

Lim, Stephen S; Vos, Theo; Flaxman, Abraham D; Danaei, Goodarz; Shibuya, Kenji; Adair-Rohani, Heather; Amann, Markus; Anderson, H Ross; Andrews, Kathryn G; Aryee, Martin; Atkinson, Charles; Bacchus, Loraine J; Bahalim, Adil N; Balakrishnan, Kalpana; Balmes, John; Barker-Collo, Suzanne; Baxter, Amanda; Bell, Michelle L; Blore, Jed D; Blyth, Fiona; Bonner, Carissa; Borges, Guilherme; Bourne, Rupert; Boussinesq, Michel; Brauer, Michael; Brooks, Peter; Bruce, Nigel G; Brunekreef, Bert; Bryan-Hancock, Claire; Bucello, Chiara; Buchbinder, Rachelle; Bull, Fiona; Burnett, Richard T; Byers, Tim E; Calabria, Bianca; Carapetis, Jonathan; Carnahan, Emily; Chafe, Zoe; Charlson, Fiona; Chen, Honglei; Chen, Jian Shen; Cheng, Andrew Tai-Ann; Child, Jennifer Christine; Cohen, Aaron; Colson, K Ellicott; Cowie, Benjamin C; Darby, Sarah; Darling, Susan; Davis, Adrian; Degenhardt, Louisa; Dentener, Frank; Des Jarlais, Don C; Devries, Karen; Dherani, Mukesh; Ding, Eric L; Dorsey, E Ray; Driscoll, Tim; Edmond, Karen; Ali, Suad Eltahir; Engell, Rebecca E; Erwin, Patricia J; Fahimi, Saman; Falder, Gail; Farzadfar, Farshad; Ferrari, Alize; Finucane, Mariel M; Flaxman, Seth; Fowkes, Francis Gerry R; Freedman, Greg; Freeman, Michael K; Gakidou, Emmanuela; Ghosh, Santu; Giovannucci, Edward; Gmel, Gerhard; Graham, Kathryn; Grainger, Rebecca; Grant, Bridget; Gunnell, David; Gutierrez, Hialy R; Hall, Wayne; Hoek, Hans W; Hogan, Anthony; Hosgood, H Dean; Hoy, Damian; Hu, Howard; Hubbell, Bryan J; Hutchings, Sally J; Ibeanusi, Sydney E; Jacklyn, Gemma L; Jasrasaria, Rashmi; Jonas, Jost B; Kan, Haidong; Kanis, John A; Kassebaum, Nicholas; Kawakami, Norito; Khang, Young-Ho; Khatibzadeh, Shahab; Khoo, Jon-Paul; Kok, Cindy; Laden, Francine; Lalloo, Ratilal; Lan, Qing; Lathlean, Tim; Leasher, Janet L; Leigh, James; Li, Yang; Lin, John Kent; Lipshultz, Steven E; London, Stephanie; Lozano, Rafael; Lu, Yuan; Mak, Joelle; Malekzadeh, Reza; Mallinger, Leslie; Marcenes, Wagner; March, Lyn; Marks, Robin; Martin, Randall; McGale, Paul; McGrath, John; Mehta, Sumi; Mensah, George A; Merriman, Tony R; Micha, Renata; Michaud, Catherine; Mishra, Vinod; Mohd Hanafiah, Khayriyyah; Mokdad, Ali A; Morawska, Lidia; Mozaffarian, Dariush; Murphy, Tasha; Naghavi, Mohsen; Neal, Bruce; Nelson, Paul K; Nolla, Joan Miquel; Norman, Rosana; Olives, Casey; Omer, Saad B; Orchard, Jessica; Osborne, Richard; Ostro, Bart; Page, Andrew; Pandey, Kiran D; Parry, Charles D H; Passmore, Erin; Patra, Jayadeep; Pearce, Neil; Pelizzari, Pamela M; Petzold, Max; Phillips, Michael R; Pope, Dan; Pope, C Arden; Powles, John; Rao, Mayuree; Razavi, Homie; Rehfuess, Eva A; Rehm, Jürgen T; Ritz, Beate; Rivara, Frederick P; Roberts, Thomas; Robinson, Carolyn; Rodriguez-Portales, Jose A; Romieu, Isabelle; Room, Robin; Rosenfeld, Lisa C; Roy, Ananya; Rushton, Lesley; Salomon, Joshua A; Sampson, Uchechukwu; Sanchez-Riera, Lidia; Sanman, Ella; Sapkota, Amir; Seedat, Soraya; Shi, Peilin; Shield, Kevin; Shivakoti, Rupak; Singh, Gitanjali M; Sleet, David A; Smith, Emma; Smith, Kirk R; Stapelberg, Nicolas J C; Steenland, Kyle; Stöckl, Heidi; Stovner, Lars Jacob; Straif, Kurt; Straney, Lahn; Thurston, George D; Tran, Jimmy H; Van Dingenen, Rita; van Donkelaar, Aaron; Veerman, J Lennert; Vijayakumar, Lakshmi; Weintraub, Robert; Weissman, Myrna M; White, Richard A; Whiteford, Harvey; Wiersma, Steven T; Wilkinson, James D; Williams, Hywel C; Williams, Warwick; Wilson, Nicholas; Woolf, Anthony D; Yip, Paul; Zielinski, Jan M; Lopez, Alan D; Murray, Christopher J L; Ezzati, Majid; AlMazroa, Mohammad A; Memish, Ziad A

2012-12-15

Quantification of the disease burden caused by different risks informs prevention by providing an account of health loss different to that provided by a disease-by-disease analysis. No complete revision of global disease burden caused by risk factors has been done since a comparative risk assessment in 2000, and no previous analysis has assessed changes in burden attributable to risk factors over time. We estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010. We estimated exposure distributions for each year, region, sex, and age group, and relative risks per unit of exposure by systematically reviewing and synthesising published and unpublished data. We used these estimates, together with estimates of cause-specific deaths and DALYs from the Global Burden of Disease Study 2010, to calculate the burden attributable to each risk factor exposure compared with the theoretical-minimum-risk exposure. We incorporated uncertainty in disease burden, relative risks, and exposures into our estimates of attributable burden. In 2010, the three leading risk factors for global disease burden were high blood pressure (7·0% [95% uncertainty interval 6·2-7·7] of global DALYs), tobacco smoking including second-hand smoke (6·3% [5·5-7·0]), and alcohol use (5·5% [5·0-5·9]). In 1990, the leading risks were childhood underweight (7·9% [6·8-9·4]), household air pollution from solid fuels (HAP; 7·0% [5·6-8·3]), and tobacco smoking including second-hand smoke (6·1% [5·4-6·8]). Dietary risk factors and physical inactivity collectively accounted for 10·0% (95% UI 9·2-10·8) of global DALYs in 2010, with the most prominent dietary risks being diets low in fruits and those high in sodium. Several risks that primarily affect childhood communicable diseases, including unimproved

15. Mortality in Danish Swine herds: Spatio-temporal clusters and risk factors

DEFF Research Database (Denmark)

Lopes Antunes, Ana Carolina; Ersbøll, Annette Kjær; Bihrmann, Kristine

2017-01-01

-temporal analysis included data description for spatial, temporal, and spatio-temporal cluster analysis for three age groups: weaners (up to 30 kg), sows and finishers. Logistic regression models were used to assess the potential factors associated with finisher and weaner herds being included within multiple...

16. Analyzing the factors affecting network lifetime cluster-based wireless sensor network

International Nuclear Information System (INIS)

Malik, A.S.; Qureshi, A.

2010-01-01

Cluster-based wireless sensor networks enable the efficient utilization of the limited energy resources of the deployed sensor nodes and hence prolong the node as well as network lifetime. Low Energy Adaptive Clustering Hierarchy (Leach) is one of the most promising clustering protocol proposed for wireless sensor networks. This paper provides the energy utilization and lifetime analysis for cluster-based wireless sensor networks based upon LEACH protocol. Simulation results identify some important factors that induce unbalanced energy utilization between the sensor nodes and hence affect the network lifetime in these types of networks. These results highlight the need for a standardized, adaptive and distributed clustering technique that can increase the network lifetime by further balancing the energy utilization among sensor nodes. (author)

17. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.

Science.gov (United States)

Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin

2017-08-31

Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.

18. Multisource Images Analysis Using Collaborative Clustering

Directory of Open Access Journals (Sweden)

Pierre Gançarski

2008-04-01

Full Text Available The development of very high-resolution (VHR satellite imagery has produced a huge amount of data. The multiplication of satellites which embed different types of sensors provides a lot of heterogeneous images. Consequently, the image analyst has often many different images available, representing the same area of the Earth surface. These images can be from different dates, produced by different sensors, or even at different resolutions. The lack of machine learning tools using all these representations in an overall process constraints to a sequential analysis of these various images. In order to use all the information available simultaneously, we propose a framework where different algorithms can use different views of the scene. Each one works on a different remotely sensed image and, thus, produces different and useful information. These algorithms work together in a collaborative way through an automatic and mutual refinement of their results, so that all the results have almost the same number of clusters, which are statistically similar. Finally, a unique result is produced, representing a consensus among the information obtained by each clustering method on its own image. The unified result and the complementarity of the single results (i.e., the agreement between the clustering methods as well as the disagreement lead to a better understanding of the scene. The experiments carried out on multispectral remote sensing images have shown that this method is efficient to extract relevant information and to improve the scene understanding.

19. Constructing storyboards based on hierarchical clustering analysis

Science.gov (United States)

Hasebe, Satoshi; Sami, Mustafa M.; Muramatsu, Shogo; Kikuchi, Hisakazu

2005-07-01

There are growing needs for quick preview of video contents for the purpose of improving accessibility of video archives as well as reducing network traffics. In this paper, a storyboard that contains a user-specified number of keyframes is produced from a given video sequence. It is based on hierarchical cluster analysis of feature vectors that are derived from wavelet coefficients of video frames. Consistent use of extracted feature vectors is the key to avoid a repetition of computationally-intensive parsing of the same video sequence. Experimental results suggest that a significant reduction in computational time is gained by this strategy.

20. Prevalence and risk factors for intimate partner violence among Grade 8 learners in urban South Africa: baseline analysis from the Skhokho Supporting Success cluster randomised controlled trial.

Science.gov (United States)

Shamu, Simukai; Gevers, Anik; Mahlangu, B Pinky; Jama Shai, P Nwabisa; Chirwa, Esnat D; Jewkes, Rachel K

2016-01-01

Intimate partner violence (IPV) is a serious public health problem among adolescents. This study investigated the prevalence of and factors associated with Grade 8 girls' experience and boys' perpetration of IPV in South Africa. Participants were interviewed using interviewer-administered questionnaires about IPV, childhood violence, bullying, gender attitudes, alcohol use and risky sexual behaviours. Multiple logistic regression analysis was conducted to assess factors associated with girls' experience and boys' perpetration of IPV. Structural equation modelling (SEM) was conducted to assess the pathways to IPV experience and perpetration. Results show dating relationships are common among girls (52.5%) and boys (70.7%) and high prevalence of sexual or physical IPV experience by girls (30.9%; 95% CI: 28.2-33.7) and perpetration by boys (39.5%; 95% CI: 36.6-42.3). The logistic regression model showed factors associated with girls' experience of IPV include childhood experience of violence, individual gender inequitable attitudes, corporal punishment at home and in school, alcohol use, wider communication with one's partner and being more negative about school. We found three pathways from childhood trauma to IPV experience and perpetration in both models and these are through inequitable gender attitudes and risky sex, bullying and alcohol use. Prevention of IPV in children needs to encompass prevention of exposure to trauma in childhood and addressing gender attitudes and social norms to encourage positive disciplining approaches. : The trial is registered on ClinicalTrials.gov as NCT02349321. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

1. A cluster analysis on road traffic accidents using genetic algorithms

Science.gov (United States)

Saharan, Sabariah; Baragona, Roberto

2017-04-01

The analysis of traffic road accidents is increasingly important because of the accidents cost and public road safety. The availability or large data sets makes the study of factors that affect the frequency and severity accidents are viable. However, the data are often highly unbalanced and overlapped. We deal with the data set of the road traffic accidents recorded in Christchurch, New Zealand, from 2000-2009 with a total of 26440 accidents. The data is in a binary set and there are 50 factors road traffic accidents with four level of severity. We used genetic algorithm for the analysis because we are in the presence of a large unbalanced data set and standard clustering like k-means algorithm may not be suitable for the task. The genetic algorithm based on clustering for unknown K, (GCUK) has been used to identify the factors associated with accidents of different levels of severity. The results provided us with an interesting insight into the relationship between factors and accidents severity level and suggest that the two main factors that contributes to fatal accidents are "Speed greater than 60 km h" and "Did not see other people until it was too late". A comparison with the k-means algorithm and the independent component analysis is performed to validate the results.

2. Mobility in Europe: Recent Trends from a Cluster Analysis

Directory of Open Access Journals (Sweden)

Ioana Manafi

2017-08-01

Full Text Available During the past decade, Europe was confronted with major changes and events offering large opportunities for mobility. The EU enlargement process, the EU policies regarding youth, the economic crisis affecting national economies on different levels, political instabilities in some European countries, high rates of unemployment or the increasing number of refugees are only a few of the factors influencing net migration in Europe. Based on a set of socio-economic indicators for EU/EFTA countries and cluster analysis, the paper provides an overview of regional differences across European countries, related to migration magnitude in the identified clusters. The obtained clusters are in accordance with previous studies in migration, and appear stable during the period of 2005-2013, with only some exceptions. The analysis revealed three country clusters: EU/EFTA center-receiving countries, EU/EFTA periphery-sending countries and EU/EFTA outlier countries, the names suggesting not only the geographical position within Europe, but the trends in net migration flows during the years. Therewith, the results provide evidence for the persistence of a movement from periphery to center countries, which is correlated with recent flows of mobility in Europe.

3. Latent cluster analysis of ALS phenotypes identifies prognostically differing groups.

Directory of Open Access Journals (Sweden)

Jeban Ganesalingam

2009-09-01

Full Text Available Amyotrophic lateral sclerosis (ALS is a degenerative disease predominantly affecting motor neurons and manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased way to improve phenotyping for clinical and research purposes.Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method.The best model generated five distinct phenotypic classes that strongly predicted survival (p<0.0001. Eight variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two variables: site of first symptoms (bulbar or limb and time from symptom onset to diagnosis (p<0.00001.The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and risk factor research.

4. Cluster Analysis of Maize Inbred Lines

Directory of Open Access Journals (Sweden)

Jiban Shrestha

2016-12-01

Full Text Available The determination of diversity among inbred lines is important for heterosis breeding. Sixty maize inbred lines were evaluated for their eight agro morphological traits during winter season of 2011 to analyze their genetic diversity. Clustering was done by average linkage method. The inbred lines were grouped into six clusters. Inbred lines grouped into Clusters II had taller plants with maximum number of leaves. The cluster III was characterized with shorter plants with minimum number of leaves. The inbred lines categorized into cluster V had early flowering whereas the group into cluster VI had late flowering time. The inbred lines grouped into the cluster III were characterized by higher value of anthesis silking interval (ASI and those of cluster VI had lower value of ASI. These results showed that the inbred lines having widely divergent clusters can be utilized in hybrid breeding programme.

5. Clustering of risk factors for noncommunicable diseases in Brazilian adolescents: prevalence and correlates.

Science.gov (United States)

Cureau, Felipe Vogt; Duarte, Paola; dos Santos, Daniela Lopes; Reichert, Felipe Fossati

2014-07-01

Few studies have investigated the prevalence and correlates of risk factors for noncommunicable diseases among Brazilian adolescents. We evaluated the clustering of risk factors and their associations with sociodemographic variables. We used a cross-sectional study carried out in 2011 comprising 1132 students aged 14-19 years from Santa Maria, Brazil. The cluster index was created as the sum of the risk factors. For the correlates analysis, a multinomial logistic regression was used. Furthermore, the observed/expected ratio was calculated. Prevalence of individual risk factors studied was as follows: 85.8% unhealthy diets, 53.5% physical inactivity, 31.3% elevated blood pressure, 23.9% overweight, 22.3% excessive drinking alcohol, and 8.6% smoking. Only 2.8% of the adolescents did not present any risk factor, while 21.7%, 40.9%, 23.1%, and 11.5% presented 1, 2, 3, and 4 or more risk factors, respectively. The most prevalent combination was between unhealthy diets and physical inactivity (observed/expected ratio =1.32; 95% CI: 1.16-1.49). Clustering of risk factors was directly associated with age and inversely associated with socioeconomic status. Clustering of risk factors for noncommunicable diseases is high in Brazilian adolescents. Preventive strategies are more likely to be successful if focusing on multiple risk factors, instead of a single one.

6. Diagnostics of subtropical plants functional state by cluster analysis

Directory of Open Access Journals (Sweden)

Oksana Belous

2016-05-01

Full Text Available The article presents an application example of statistical methods for data analysis on diagnosis of the adaptive capacity of subtropical plants varieties. We depicted selection indicators and basic physiological parameters that were defined as diagnostic. We used evaluation on a set of parameters of water regime, there are: determination of water deficit of the leaves, determining the fractional composition of water and detection parameters of the concentration of cell sap (CCS (for tea culture flushes. These settings are characterized by high liability and high responsiveness to the effects of many abiotic factors that determined the particular care in the selection of plant material for analysis and consideration of the impact on sustainability. On the basis of the experimental data calculated the coefficients of pair correlation between climatic factors and used physiological indicators. The result was a selection of physiological and biochemical indicators proposed to assess the adaptability and included in the basis of methodical recommendations on diagnostics of the functional state of the studied cultures. Analysis of complex studies involving a large number of indicators is quite difficult, especially does not allow to quickly identify the similarity of new varieties for their adaptive responses to adverse factors, and, therefore, to set general requirements to conditions of cultivation. Use of cluster analysis suggests that in the analysis of only quantitative data; define a set of variables used to assess varieties (and the more sampling, the more accurate the clustering will happen, be sure to ascertain the measure of similarity (or difference between objects. It is shown that the identification of diagnostic features, which are subjected to statistical processing, impact the accuracy of the varieties classification. Selection in result of the mono-clusters analysis (variety tea Kolhida; hazelnut Lombardsky red; variety kiwi Monty

7. Symptom clusters and related factors in bladder cancer patients three months after radical cystectomy.

Science.gov (United States)

Ren, Hongyan; Tang, Ping; Zhao, Qinghua; Ren, Guosheng

2017-08-23

To identify symptom distress and clusters in patients 3 months after radical cystectomy and to explore their potential predictors. A cross-sectional design was used to investigate 99 bladder cancer patients 3 months after radical cystectomy. Data were collected by demographic and disease characteristic questionnaires, the symptom experience scale of the M.D. Anderson symptom inventory, two additional symptoms specific to radical cystectomy, and the functional assessment of cancer therapy questionnaire. A factor analysis, stepwise regression, and correlation analysis were applied. Three symptom clusters were identified: fatigue-malaise, gastrointestinal, and psycho-urinary. Age, complication severity, albumin post-surgery (negative), orthotropic neobladder reconstruction, adjuvant chemotherapy and American Society of Anesthesiologists (ASA) scores were significant predictors of fatigue-malaise. Adjuvant chemotherapy, orthotropic neobladder reconstruction, female gender, ASA scores and albumin (negative) were significant predictors of gastrointestinal symptoms. Being unmarried, having a higher educational level and complication severity were significant predictors of psycho-urinary symptoms. The correlations between clusters and for each cluster with quality of life were significant, with the highest correlation observed between the psycho-urinary cluster and quality of life. Bladder cancer patients experience concurrent symptoms that appear to cluster and are significantly correlated with quality of life. Moreover, symptom clusters may be predicted by certain demographic and clinical characteristics.

8. Health in police officers: Role of risk factor clusters and police divisions.

Science.gov (United States)

Habersaat, Stephanie A; Geiger, Ashley M; Abdellaoui, Sid; Wolf, Jutta M

2015-10-01

Law enforcement is a stressful occupation associated with significant health problems. To date, most studies have focused on one specific factor or one domain of risk factors (e.g., organizational, personal). However, it is more likely that specific combinations of risk factors are differentially health relevant and further, depend on the area of police work. A self-selected group of officers from the criminal, community, and emergency division (N = 84) of a Swiss state police department answered questionnaires assessing personal and organizational risk factors as well as mental and physical health indicators. In general, few differences were observed across divisions in terms of risk factors or health indicators. Cluster analysis of all risk factors established a high-risk and a low-risk cluster with significant links to all mental health outcomes. Risk cluster-by-division interactions revealed that, in the high-risk cluster, Emergency officers reported fewer physical symptoms, while community officers reported more posttraumatic stress symptoms. Criminal officers in the high-risk cluster tended to perceived more stress. Finally, perceived stress did not mediate the relationship between risk clusters and posttraumatic stress symptoms. In summary, our results support the notion that police officers are a heterogeneous population in terms of processes linking risk factors and health indicators. This heterogeneity thereby appeared to be more dependent on personal factors and individuals' perception of their own work conditions than division-specific work environments. Our findings further suggest that stress-reduction interventions that do not target job-relevant sources of stress may only show limited effectiveness in reducing health risks associated with police work. Copyright © 2015 Elsevier Ltd. All rights reserved.

9. CHOOSING A HEALTH INSTITUTION WITH MULTIPLE CORRESPONDENCE ANALYSIS AND CLUSTER ANALYSIS IN A POPULATION BASED STUDY

Directory of Open Access Journals (Sweden)

ASLI SUNER

2013-06-01

Full Text Available Multiple correspondence analysis is a method making easy to interpret the categorical variables given in contingency tables, showing the similarities, associations as well as divergences among these variables via graphics on a lower dimensional space. Clustering methods are helped to classify the grouped data according to their similarities and to get useful summarized data from them. In this study, interpretations of multiple correspondence analysis are supported by cluster analysis; factors affecting referred health institute such as age, disease group and health insurance are examined and it is aimed to compare results of the methods.

10. Clusters as a factor for sustainable development in rural areas

Directory of Open Access Journals (Sweden)

Justyna Socińska

2012-09-01

Full Text Available Sustainable development is one of the determinants of strategic thinking and current operation of modern companies. Sustainable development is a factor in other words, in which companies come to work. It is an important factor, and having far-reaching repercussions, but it is not the only one. Enterprises should therefore take in its action it into account, adapt to it and benefit from its existence, but that does not mean that this fact can and should be the only determinant of their performance. The determinant of its action should reflect the clusters, especially those operating in rural areas.

11. Cluster analysis of word frequency dynamics

Science.gov (United States)

Maslennikova, Yu S.; Bochkarev, V. V.; Belashova, I. A.

2015-01-01

This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations.

12. Cluster analysis of word frequency dynamics

International Nuclear Information System (INIS)

Maslennikova, Yu S; Bochkarev, V V; Belashova, I A

2015-01-01

This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations

13. From virtual clustering analysis to self-consistent clustering analysis: a mathematical study

Science.gov (United States)

Tang, Shaoqiang; Zhang, Lei; Liu, Wing Kam

2018-03-01

In this paper, we propose a new homogenization algorithm, virtual clustering analysis (VCA), as well as provide a mathematical framework for the recently proposed self-consistent clustering analysis (SCA) (Liu et al. in Comput Methods Appl Mech Eng 306:319-341, 2016). In the mathematical theory, we clarify the key assumptions and ideas of VCA and SCA, and derive the continuous and discrete Lippmann-Schwinger equations. Based on a key postulation of "once response similarly, always response similarly", clustering is performed in an offline stage by machine learning techniques (k-means and SOM), and facilitates substantial reduction of computational complexity in an online predictive stage. The clear mathematical setup allows for the first time a convergence study of clustering refinement in one space dimension. Convergence is proved rigorously, and found to be of second order from numerical investigations. Furthermore, we propose to suitably enlarge the domain in VCA, such that the boundary terms may be neglected in the Lippmann-Schwinger equation, by virtue of the Saint-Venant's principle. In contrast, they were not obtained in the original SCA paper, and we discover these terms may well be responsible for the numerical dependency on the choice of reference material property. Since VCA enhances the accuracy by overcoming the modeling error, and reduce the numerical cost by avoiding an outer loop iteration for attaining the material property consistency in SCA, its efficiency is expected even higher than the recently proposed SCA algorithm.

14. The use of a cluster analysis in across herd genetic evaluation for ...

African Journals Online (AJOL)

To investigate the possibility of a genotype x environment interaction in Bonsmara cattle, a cluster analysis was performed on weaning weight records of 72 811 Bonsmara calves, the progeny of 1 434 sires and 24 186 dams in 35 herds. The following environmental factors were used to classify herds into clusters: solution ...

15. Accident patterns for construction-related workers: a cluster analysis

Science.gov (United States)

Liao, Chia-Wen; Tyan, Yaw-Yauan

2012-01-01

The construction industry has been identified as one of the most hazardous industries. The risk of constructionrelated workers is far greater than that in a manufacturing based industry. However, some steps can be taken to reduce worker risk through effective injury prevention strategies. In this article, k-means clustering methodology is employed in specifying the factors related to different worker types and in identifying the patterns of industrial occupational accidents. Accident reports during the period 1998 to 2008 are extracted from case reports of the Northern Region Inspection Office of the Council of Labor Affairs of Taiwan. The results show that the cluster analysis can indicate some patterns of occupational injuries in the construction industry. Inspection plans should be proposed according to the type of construction-related workers. The findings provide a direction for more effective inspection strategies and injury prevention programs.

16. Cluster analysis in severe emphysema subjects using phenotype and genotype data: an exploratory investigation

Directory of Open Access Journals (Sweden)

Martinez Fernando J

2010-03-01

Full Text Available Abstract Background Numerous studies have demonstrated associations between genetic markers and COPD, but results have been inconsistent. One reason may be heterogeneity in disease definition. Unsupervised learning approaches may assist in understanding disease heterogeneity. Methods We selected 31 phenotypic variables and 12 SNPs from five candidate genes in 308 subjects in the National Emphysema Treatment Trial (NETT Genetics Ancillary Study cohort. We used factor analysis to select a subset of phenotypic variables, and then used cluster analysis to identify subtypes of severe emphysema. We examined the phenotypic and genotypic characteristics of each cluster. Results We identified six factors accounting for 75% of the shared variability among our initial phenotypic variables. We selected four phenotypic variables from these factors for cluster analysis: 1 post-bronchodilator FEV1 percent predicted, 2 percent bronchodilator responsiveness, and quantitative CT measurements of 3 apical emphysema and 4 airway wall thickness. K-means cluster analysis revealed four clusters, though separation between clusters was modest: 1 emphysema predominant, 2 bronchodilator responsive, with higher FEV1; 3 discordant, with a lower FEV1 despite less severe emphysema and lower airway wall thickness, and 4 airway predominant. Of the genotypes examined, membership in cluster 1 (emphysema-predominant was associated with TGFB1 SNP rs1800470. Conclusions Cluster analysis may identify meaningful disease subtypes and/or groups of related phenotypic variables even in a highly selected group of severe emphysema subjects, and may be useful for genetic association studies.

17. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010

NARCIS (Netherlands)

Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; Atkinson, C.; Bacchus, L.J.; Bahalim, A.N.; Balakrishnan, K.; Balmes, J.; Barker-Collo, S.; Baxter, A.; Bell, M.L.; Blore, J.D.; Blyth, F.; Bonner, C.; Borges, G.; Bourne, R.; Boussinesq, M.; Brauer, M.|info:eu-repo/dai/nl/31149157X; Brooks, P.; Bruce, N.G.; Brunekreef, B.|info:eu-repo/dai/nl/067548180; Bryan-Hancock, C.; Bucello, C.; Buchbinder, R.; Bull, F.; Burnett, R.T.; Byers, T.E.; Calabria, B.; Carapetis, J.; Carnahan, E.; Chafe, Z.; Charlson, F.; Chen, H.; Chen, J.S.; Cheng, A.T.; Child, J.C.; Cohen, A.; Colson, K.E.; Cowie, B.C.; Darby, S.; Darling, S.; Davis, A.; Degenhardt, L.; Dentener, F.; Des Jarlais, D.C.; Devries, K.; Dherani, M.; Ding, E.L.; Dorsey, E.R.; Driscoll, T.; Edmond, K.; Ali, S.E.; Engell, R.E.; Erwin, P.J.; Fahimi, S.; Falder, G.; Farzadfar, F.; Ferrari, A.; Finucane, M.M.; Flaxman, S.; Fowkes, F.G.R.; Freedman, G.; Freeman, M.K.; Gakidou, E.; Ghosh, S.; Giovannucci, E.; Gmel, G.; Graham, K.; Grainger, R.; Grant, B.; Gunnell, D.; Gutierrez, H.R.; Hall, W.; Hoek, H.W.; Hogan, A.; Hosgood, H.D.; Hoy, D.; Hu, H.; Hubbell, B.J.; Hutchings, S.J.; Ibeanusi, S.E.; Jacklyn, G.L.; Jasrasaria, R.; Jonas, J.B.; Kan, H.; Kanis, J.A.; Kassebaum, N.; Kawakami, N.; Khang, Y-H.; Khatibzadeh, S.; Khoo, J-P.; de Kok, C.; Laden, F.; Lalloo, R.; Lan, Q.; Lathlean, T.; Leasher, J.L.; Leigh, J.; Li, Y.; Lin, J.K.; Lipshultz, S.E.; London, S.; Lozano, R.; Lu, Y.; Mak, J.; Malekzadeh, R.; Mallinger, L.; Marcenes, W.; March, L.; Marks, R.; Martin, R.; McGale, P.; McGrath, J.; Mehta, S.; Mensah, G.A.; Merriman, T.R.; Micha, R.; Michaud, C.; Mishra, V.; Hanafiah, K.M.; Mokdad, A.A.; Morawska, L.; Mozaffarian, D.; Murphy, T.; Naghavi, M.; Neal, B.; Nelson, P.K.; Nolla, J.M.; Norman, R.; Olives, C.; Omer, S. B; Orchard, J.; Osborne, R.; Ostro, B.; Page, A.; Pandey, K.D.; Parry, C.D.H.; Passmore, E.; Patra, J.; Pearce, N.; Pelizzari, P.M.; Petzold, M.; Phillips, M.R.; Pope, D.; Pope, C.A.; Powles, J.; Rao, M.; Razavi, H.; Rehfuess, E.A.; Rehm, J.T.; Ritz, B.; Rivara, F.P.; Roberts, T.; Robinson, C.; Rodriguez-Portales, J.A.; Romieu, I.; Room, R.; Rosenfeld, L.C.; Roy, A.; Rushton, L.; Salomon, J.A.; Sampson, U.; Sanchez-Riera, L.; Sanman, E.; Sapkota, A.; Seedat, S.; Shi, P.; Shield, K.; Shivakoti, R.; Singh, G.M.; Sleet, D.A.; Smith, E.; Smith, K.R.; Stapelberg, N.J.C.; Steenland, K.; Stöckl, H.; Stovner, L.J.; Straif, K.; Straney, L.; Thurston, G.D.; Tran, J.H.; van Dingenen, R.; van Donkelaar, A.; Veerman, J.L.; Vijayakumar, L.; Weintraub, R.; Weissman, M.M.; White, R.A.; Whiteford, H.; Wiersma, S.T.; Wilkinson, J.D.; Williams, H.C.; Williams, W.; Wilson, N.; Woolf, A.D.; Yip, P.; Zielinski, J.M.; Lopez, A.D.; Murray, C.J.L.; Ezzati, M.

2012-01-01

BACKGROUND Quantification of the disease burden caused by different risks informs prevention by providing an account of health loss different to that provided by a disease-by-disease analysis. No complete revision of global disease burden caused by risk factors has been done since a comparative risk

18. An analysis of hospital brand mark clusters.

Science.gov (United States)

Vollmers, Stacy M; Miller, Darryl W; Kilic, Ozcan

2010-07-01

This study analyzed brand mark clusters (i.e., various types of brand marks displayed in combination) used by hospitals in the United States. The brand marks were assessed against several normative criteria for creating brand marks that are memorable and that elicit positive affect. Overall, results show a reasonably high level of adherence to many of these normative criteria. Many of the clusters exhibited pictorial elements that reflected benefits and that were conceptually consistent with the verbal content of the cluster. Also, many clusters featured icons that were balanced and moderately complex. However, only a few contained interactive imagery or taglines communicating benefits.

19. In Silico Analysis for Transcription Factors With Zn(II2C6 Binuclear Cluster DNA-Binding Domains in Candida albicans

Directory of Open Access Journals (Sweden)

Sergi Maicas

2005-01-01

presence of the CysX2CysX6CysX5-16CysX2CysX6-8Cys motif and a putative nuclear localization signal. Using this approach, 70 putative Zn(II2C6 transcription factors have been found in the genome of C. albicans.

20. Smartness and Italian Cities. A Cluster Analysis

Directory of Open Access Journals (Sweden)

Flavio Boscacci

2014-05-01

Full Text Available Smart cities have been recently recognized as the most pleasing and attractive places to live in; due to this, both scholars and policy-makers pay close attention to this topic. Specifically, urban “smartness” has been identified by plenty of characteristics that can be grouped into six dimensions (Giffinger et al. 2007: smart Economy (competitiveness, smart People (social and human capital, smart Governance (participation, smart Mobility (both ICTs and transport, smart Environment (natural resources, and smart Living (quality of life. According to this analytical framework, in the present paper the relation between urban attractiveness and the “smart” characteristics has been investigated in the 103 Italian NUTS3 province capitals in the year 2011. To this aim, a descriptive statistics has been followed by a regression analysis (OLS, where the dependent variable measuring the urban attractiveness has been proxied by housing market prices. Besides, a Cluster Analysis (CA has been developed in order to find differences and commonalities among the province capitals.The OLS results indicate that living, people and economy are the key drivers for achieving a better urban attractiveness. Environment, instead, keeps on playing a minor role. Besides, the CA groups the province capitals a

1. Fascioliasis risk factors and space-time clusters in domestic ruminants in Bangladesh.

Science.gov (United States)

Rahman, A K M Anisur; Islam, S K Shaheenur; Talukder, Md Hasanuzzaman; Hassan, Md Kumrul; Dhand, Navneet K; Ward, Michael P

2017-05-08

A retrospective observational study was conducted to identify fascioliasis hotspots, clusters, potential risk factors and to map fascioliasis risk in domestic ruminants in Bangladesh. Cases of fascioliasis in cattle, buffalo, sheep and goats from all districts in Bangladesh between 2011 and 2013 were identified via secondary surveillance data from the Department of Livestock Services' Epidemiology Unit. From each case report, date of report, species affected and district data were extracted. The total number of domestic ruminants in each district was used to calculate fascioliasis cases per ten thousand animals at risk per district, and this was used for cluster and hotspot analysis. Clustering was assessed with Moran's spatial autocorrelation statistic, hotspots with the local indicator of spatial association (LISA) statistic and space-time clusters with the scan statistic (Poisson model). The association between district fascioliasis prevalence and climate (temperature, precipitation), elevation, land cover and water bodies was investigated using a spatial regression model. A total of 1,723,971 cases of fascioliasis were reported in the three-year study period in cattle (1,164,560), goats (424,314), buffalo (88,924) and sheep (46,173). A total of nine hotspots were identified; one of these persisted in each of the three years. Only two local clusters were found. Five space-time clusters located within 22 districts were also identified. Annual risk maps of fascioliasis cases correlated with the hotspots and clusters detected. Cultivated and managed (P fascioliasis in Bangladesh, respectively. Results indicate that due to land use characteristics some areas of Bangladesh are at greater risk of fascioliasis. The potential risk factors, hot spots and clusters identified in this study can be used to guide science-based treatment and control decisions for fascioliasis in Bangladesh and in other similar geo-climatic zones throughout the world.

2. Clustering applications in financial and economic analysis of the crop production in the Russian regions

Directory of Open Access Journals (Sweden)

Gromov Vladislav Vladimirovich

2013-08-01

Full Text Available We used the complex mathematical modeling, multivariate statistical-analysis, fuzzy sets to analyze the financial and economic state of the crop production in Russian regions. We developed a system of indicators, detecting the state agricultural sector in the region, based on the results of correlation, factor, cluster analysis and statistics of the Federal State Statistics Service. We performed clustering analyses to divide regions of Russia on selected factors into five groups. A qualitative and quantitative characteristics of each cluster was received.

3. Taxonomical analysis of the Cancer cluster of galaxies

International Nuclear Information System (INIS)

Perea, J.; Olmo, A. del; Moles, M.

1986-01-01

A description is presented of the Cancer cluster of galaxies, based on a taxonomical analysis in (α,delta, Vsub(r)) space. Earlier results by previous authors on the lack of dynamical entity of the cluster are confirmed. The present analysis points out the existence of a binary structure in the most populated region of the complex. (author)

4. Using Cluster Analysis for Data Mining in Educational Technology Research

Science.gov (United States)

Antonenko, Pavlo D.; Toy, Serkan; Niederhauser, Dale S.

2012-01-01

Cluster analysis is a group of statistical methods that has great potential for analyzing the vast amounts of web server-log data to understand student learning from hyperlinked information resources. In this methodological paper we provide an introduction to cluster analysis for educational technology researchers and illustrate its use through…

5. Simultaneous Two-Way Clustering of Multiple Correspondence Analysis

Science.gov (United States)

Hwang, Heungsun; Dillon, William R.

2010-01-01

A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which "k"-means is…

6. Relativistic form factors for clusters with nonrelativistic wave functions

International Nuclear Information System (INIS)

Mitra, A.N.; Kumari, I.

1977-01-01

Using a simple variant of an argument employed by Licht and Pagnamenta (LP) on the effect of Lorentz contraction on the elastic form factors of clusters with nonrelativistic wave functions, it is shown how their result can be generalized to inelastic form factors so as to produce (i) a symmetrical appearance of Lorentz contraction effects in the initial and final states, and (ii) asymptotic behavior in accord with dimensional scaling theories. A comparison of this result with a closely analogous parametric form obtained by Brodsky and Chertok from a propagator chain model leads, with plausible arguments, to the conclusion of an effective mass M for the cluster, with M 2 varying as the number n of the quark constituents, instead of as n 2 . A further generalization of the LP formula is obtained for an arbitrary duality-diagram vertex, again with asymptotic behavior in conformity with dimensional scaling. The practical usefulness of this approach is emphasized as a complementary tool to those of high-energy physics for phenomenological fits to data up to moderate values of q 2

7. Cluster analysis of activity-time series in motor learning

DEFF Research Database (Denmark)

Balslev, Daniela; Nielsen, Finn Å; Futiger, Sally A

2002-01-01

Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel......-time series. The optimal number of clusters was chosen using a cross-validated likelihood method, which highlights the clustering pattern that generalizes best over the subjects. Data were acquired with PET at different time points during practice of a visuomotor task. The results from cluster analysis show...

8. Two-Way Regularized Fuzzy Clustering of Multiple Correspondence Analysis.

Science.gov (United States)

Kim, Sunmee; Choi, Ji Yeh; Hwang, Heungsun

2017-01-01

Multiple correspondence analysis (MCA) is a useful tool for investigating the interrelationships among dummy-coded categorical variables. MCA has been combined with clustering methods to examine whether there exist heterogeneous subclusters of a population, which exhibit cluster-level heterogeneity. These combined approaches aim to classify either observations only (one-way clustering of MCA) or both observations and variable categories (two-way clustering of MCA). The latter approach is favored because its solutions are easier to interpret by providing explicitly which subgroup of observations is associated with which subset of variable categories. Nonetheless, the two-way approach has been built on hard classification that assumes observations and/or variable categories to belong to only one cluster. To relax this assumption, we propose two-way fuzzy clustering of MCA. Specifically, we combine MCA with fuzzy k-means simultaneously to classify a subgroup of observations and a subset of variable categories into a common cluster, while allowing both observations and variable categories to belong partially to multiple clusters. Importantly, we adopt regularized fuzzy k-means, thereby enabling us to decide the degree of fuzziness in cluster memberships automatically. We evaluate the performance of the proposed approach through the analysis of simulated and real data, in comparison with existing two-way clustering approaches.

9. The smart cluster method. Adaptive earthquake cluster identification and analysis in strong seismic regions

Science.gov (United States)

Schaefer, Andreas M.; Daniell, James E.; Wenzel, Friedemann

2017-07-01

Earthquake clustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation for probabilistic seismic hazard assessment. This study introduces the Smart Cluster Method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal cluster identification. It utilises the magnitude-dependent spatio-temporal earthquake density to adjust the search properties, subsequently analyses the identified clusters to determine directional variation and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010-2011 Darfield-Christchurch sequence, a reclassification procedure is applied to disassemble subsequent ruptures using near-field searches, nearest neighbour classification and temporal splitting. The method is capable of identifying and classifying earthquake clusters in space and time. It has been tested and validated using earthquake data from California and New Zealand. A total of more than 1500 clusters have been found in both regions since 1980 with M m i n = 2.0. Utilising the knowledge of cluster classification, the method has been adjusted to provide an earthquake declustering algorithm, which has been compared to existing methods. Its performance is comparable to established methodologies. The analysis of earthquake clustering statistics lead to various new and updated correlation functions, e.g. for ratios between mainshock and strongest aftershock and general aftershock activity metrics.

10. Allergen Sensitization Pattern by Sex: A Cluster Analysis in Korea.

Science.gov (United States)

Ohn, Jungyoon; Paik, Seung Hwan; Doh, Eun Jin; Park, Hyun-Sun; Yoon, Hyun-Sun; Cho, Soyun

2017-12-01

Allergens tend to sensitize simultaneously. Etiology of this phenomenon has been suggested to be allergen cross-reactivity or concurrent exposure. However, little is known about specific allergen sensitization patterns. To investigate the allergen sensitization characteristics according to gender. Multiple allergen simultaneous test (MAST) is widely used as a screening tool for detecting allergen sensitization in dermatologic clinics. We retrospectively reviewed the medical records of patients with MAST results between 2008 and 2014 in our Department of Dermatology. A cluster analysis was performed to elucidate the allergen-specific immunoglobulin (Ig)E cluster pattern. The results of MAST (39 allergen-specific IgEs) from 4,360 cases were analyzed. By cluster analysis, 39items were grouped into 8 clusters. Each cluster had characteristic features. When compared with female, the male group tended to be sensitized more frequently to all tested allergens, except for fungus allergens cluster. The cluster and comparative analysis results demonstrate that the allergen sensitization is clustered, manifesting allergen similarity or co-exposure. Only the fungus cluster allergens tend to sensitize female group more frequently than male group.

11. Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis

Energy Technology Data Exchange (ETDEWEB)

Brozek, Wolfgang, E-mail: wolfgang.brozek@gmx.at; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S. [Department of Pathophysiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

2012-07-26

Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH){sub 2}D{sub 3} and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression.

12. Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis

International Nuclear Information System (INIS)

Brozek, Wolfgang; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S.

2012-01-01

Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH) 2 D 3 and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression

13. Factor analysis and scintigraphy

International Nuclear Information System (INIS)

Di Paola, R.; Penel, C.; Bazin, J.P.; Berche, C.

1976-01-01

The goal of factor analysis is usually to achieve reduction of a large set of data, extracting essential features without previous hypothesis. Due to the development of computerized systems, the use of largest sampling, the possibility of sequential data acquisition and the increase of dynamic studies, the problem of data compression can be encountered now in routine. Thus, results obtained for compression of scintigraphic images were first presented. Then possibilities given by factor analysis for scan processing were discussed. At last, use of this analysis for multidimensional studies and specially dynamic studies were considered for compression and processing [fr

14. Comparison of Skin Moisturizer: Consumer-Based Brand Equity (CBBE Factors in Clusters Based on Consumer Ethnocentrism

Directory of Open Access Journals (Sweden)

Yossy Hanna Garlina

2014-09-01

Full Text Available This research aims to analyze relevant factors contributing to the four dimensions of consumer-based brand equity in skin moisturizer industry. It is then followed by the clustering of female consumers of skin moisturizer based on ethnocentrism and differentiating each cluster’s consumer-based brand equity dimensions towards a domestic skin moisturizer brand Mustika Ratu, skin moisturizer. Research used descriptive survey method analysis. Primary data was obtained through questionnaire distribution to 70 female respondents for factor analysis and 120 female respondents for cluster analysis and one way analysis of variance (ANOVA. This research employed factor analysis to obtain relevant factors contributing to the five dimensions of consumer-based brand equity in skin moisturizer industry. Cluster analysis and one way analysis of variance (ANOVA were to see the difference of consumer-based brand equity between highly ethnocentric consumer and low ethnocentric consumer towards the same skin moisturizer domestic brand, Mustika Ratu skin moisturizer. Research found in all individual dimension analysis, all variable means and individual means show distinct difference between the high ethnocentric consumer and the low ethnocentric consumer. The low ethnocentric consumer cluster tends to be lower in mean score of Brand Loyalty, Perceived Quality, Brand Awareness, Brand Association, and Overall Brand Equity than the high ethnocentric consumer cluster. Research concludes consumer ethnocentrism is positively correlated with preferences towards domestic products and negatively correlated with foreign-made product preference. It is, then, highly ethnocentric consumers have positive perception towards domestic product.

15. Cluster subgroups based on overall pressure pain sensitivity and psychosocial factors in chronic musculoskeletal pain: Differences in clinical outcomes.

Science.gov (United States)

Almeida, Suzana C; George, Steven Z; Leite, Raquel D V; Oliveira, Anamaria S; Chaves, Thais C

2018-05-17

We aimed to empirically derive psychosocial and pain sensitivity subgroups using cluster analysis within a sample of individuals with chronic musculoskeletal pain (CMP) and to investigate derived subgroups for differences in pain and disability outcomes. Eighty female participants with CMP answered psychosocial and disability scales and were assessed for pressure pain sensitivity. A cluster analysis was used to derive subgroups, and analysis of variance (ANOVA) was used to investigate differences between subgroups. Psychosocial factors (kinesiophobia, pain catastrophizing, anxiety, and depression) and overall pressure pain threshold (PPT) were entered into the cluster analysis. Three subgroups were empirically derived: cluster 1 (high pain sensitivity and high psychosocial distress; n = 12) characterized by low overall PPT and high psychosocial scores; cluster 2 (high pain sensitivity and intermediate psychosocial distress; n = 39) characterized by low overall PPT and intermediate psychosocial scores; and cluster 3 (low pain sensitivity and low psychosocial distress; n = 29) characterized by high overall PPT and low psychosocial scores compared to the other subgroups. Cluster 1 showed higher values for mean pain intensity (F (2,77)  = 10.58, p cluster 3, and cluster 1 showed higher values for disability (F (2,77)  = 3.81, p = 0.03) compared with both clusters 2 and 3. Only cluster 1 was distinct from cluster 3 according to both pain and disability outcomes. Pain catastrophizing, depression, and anxiety were the psychosocial variables that best differentiated the subgroups. Overall, these results call attention to the importance of considering pain sensitivity and psychosocial variables to obtain a more comprehensive characterization of CMP patients' subtypes.

16. Sensitization trajectories in childhood revealed by using a cluster analysis

DEFF Research Database (Denmark)

Schoos, Ann-Marie M.; Chawes, Bo L.; Melen, Erik

2017-01-01

Prospective Studies on Asthma in Childhood 2000 (COPSAC2000) birth cohort with specific IgE against 13 common food and inhalant allergens at the ages of ½, 1½, 4, and 6 years. An unsupervised cluster analysis for 3-dimensional data (nonnegative sparse parallel factor analysis) was used to extract latent......BACKGROUND: Assessment of sensitization at a single time point during childhood provides limited clinical information. We hypothesized that sensitization develops as specific patterns with respect to age at debut, development over time, and involved allergens and that such patterns might be more...... biologically and clinically relevant. OBJECTIVE: We sought to explore latent patterns of sensitization during the first 6 years of life and investigate whether such patterns associate with the development of asthma, rhinitis, and eczema. METHODS: We investigated 398 children from the at-risk Copenhagen...

17. Clustering of users of digital libraries through log file analysis

Directory of Open Access Journals (Sweden)

Juan Antonio Martínez-Comeche

2017-09-01

Full Text Available This study analyzes how users perform information retrieval tasks when introducing queries to the Hispanic Digital Library. Clusters of users are differentiated based on their distinct information behavior. The study used the log files collected by the server over a year and different possible clustering algorithms are compared. The k-means algorithm is found to be a suitable clustering method for the analysis of large log files from digital libraries. In the case of the Hispanic Digital Library the results show three clusters of users and the characteristic information behavior of each group is described.

18. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale.

Science.gov (United States)

Emmons, Scott; Kobourov, Stephen; Gallant, Mike; Börner, Katy

2016-01-01

Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms-Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters.

19. Behavioral Health Risk Profiles of Undergraduate University Students in England, Wales, and Northern Ireland: A Cluster Analysis.

Science.gov (United States)

El Ansari, Walid; Ssewanyana, Derrick; Stock, Christiane

2018-01-01

Limited research has explored clustering of lifestyle behavioral risk factors (BRFs) among university students. This study aimed to explore clustering of BRFs, composition of clusters, and the association of the clusters with self-rated health and perceived academic performance. We assessed (BRFs), namely tobacco smoking, physical inactivity, alcohol consumption, illicit drug use, unhealthy nutrition, and inadequate sleep, using a self-administered general Student Health Survey among 3,706 undergraduates at seven UK universities. A two-step cluster analysis generated: Cluster 1 (the high physically active and health conscious) with very high health awareness/consciousness, good nutrition, and physical activity (PA), and relatively low alcohol, tobacco, and other drug (ATOD) use. Cluster 2 (the abstinent) had very low ATOD use, high health awareness, good nutrition, and medium high PA. Cluster 3 (the moderately health conscious) included the highest regard for healthy eating, second highest fruit/vegetable consumption, and moderately high ATOD use. Cluster 4 (the risk taking) showed the highest ATOD use, were the least health conscious, least fruit consuming, and attached the least importance on eating healthy. Compared to the healthy cluster (Cluster 1), students in other clusters had lower self-rated health, and particularly, students in the risk taking cluster (Cluster 4) reported lower academic performance. These associations were stronger for men than for women. Of the four clusters, Cluster 4 had the youngest students. Our results suggested that prevention among university students should address multiple BRFs simultaneously, with particular focus on the younger students.

20. Cluster Analysis of Acute Care Use Yields Insights for Tailored Pediatric Asthma Interventions.

Science.gov (United States)

Abir, Mahshid; Truchil, Aaron; Wiest, Dawn; Nelson, Daniel B; Goldstick, Jason E; Koegel, Paul; Lozon, Marie M; Choi, Hwajung; Brenner, Jeffrey

2017-09-01

We undertake this study to understand patterns of pediatric asthma-related acute care use to inform interventions aimed at reducing potentially avoidable hospitalizations. Hospital claims data from 3 Camden city facilities for 2010 to 2014 were used to perform cluster analysis classifying patients aged 0 to 17 years according to their asthma-related hospital use. Clusters were based on 2 variables: asthma-related ED visits and hospitalizations. Demographics and a number of sociobehavioral and use characteristics were compared across clusters. Children who met the criteria (3,170) were included in the analysis. An examination of a scree plot showing the decline in within-cluster heterogeneity as the number of clusters increased confirmed that clusters of pediatric asthma patients according to hospital use exist in the data. Five clusters of patients with distinct asthma-related acute care use patterns were observed. Cluster 1 (62% of patients) showed the lowest rates of acute care use. These patients were least likely to have a mental health-related diagnosis, were less likely to have visited multiple facilities, and had no hospitalizations for asthma. Cluster 2 (19% of patients) had a low number of asthma ED visits and onetime hospitalization. Cluster 3 (11% of patients) had a high number of ED visits and low hospitalization rates, and the highest rates of multiple facility use. Cluster 4 (7% of patients) had moderate ED use for both asthma and other illnesses, and high rates of asthma hospitalizations; nearly one quarter received care at all facilities, and 1 in 10 had a mental health diagnosis. Cluster 5 (1% of patients) had extreme rates of acute care use. Differences observed between groups across multiple sociobehavioral factors suggest these clusters may represent children who differ along multiple dimensions, in addition to patterns of service use, with implications for tailored interventions. Copyright © 2017 American College of Emergency Physicians

1. A SURVEY ON DOCUMENT CLUSTERING APPROACH FOR COMPUTER FORENSIC ANALYSIS

OpenAIRE

Monika Raghuvanshi*, Rahul Patel

2016-01-01

In a forensic analysis, large numbers of files are examined. Much of the information comprises of in unstructured format, so it’s quite difficult task for computer forensic to perform such analysis. That’s why to do the forensic analysis of document within a limited period of time require a special approach such as document clustering. This paper review different document clustering algorithms methodologies for example K-mean, K-medoid, single link, complete link, average link in accorandance...

2. Merging Galaxy Clusters: Analysis of Simulated Analogs

Science.gov (United States)

Nguyen, Jayke; Wittman, David; Cornell, Hunter

2018-01-01

The nature of dark matter can be better constrained by observing merging galaxy clusters. However, uncertainty in the viewing angle leads to uncertainty in dynamical quantities such as 3-d velocities, 3-d separations, and time since pericenter. The classic timing argument links these quantities via equations of motion, but neglects effects of nonzero impact parameter (i.e. it assumes velocities are parallel to the separation vector), dynamical friction, substructure, and larger-scale environment. We present a new approach using n-body cosmological simulations that naturally incorporate these effects. By uniformly sampling viewing angles about simulated cluster analogs, we see projected merger parameters in the many possible configurations of a given cluster. We select comparable simulated analogs and evaluate the likelihood of particular merger parameters as a function of viewing angle. We present viewing angle constraints for a sample of observed mergers including the Bullet cluster and El Gordo, and show that the separation vectors are closer to the plane of the sky than previously reported.

3. Analysis of Aspects of Innovation in a Brazilian Cluster

Directory of Open Access Journals (Sweden)

Adriana Valélia Saraceni

2012-09-01

Full Text Available Innovation through clustering has become very important on the increased significance that interaction represents on innovation and learning process concept. This study aims to identify whereas a case analysis on innovation process in a cluster represents on the learning process. Therefore, this study is developed in two stages. First, we used a preliminary case study verifying a cluster innovation analysis and it Innovation Index, for further, exploring a combined body of theory and practice. Further, the second stage is developed by exploring the learning process concept. Both stages allowed us building a theory model for the learning process development in clusters. The main results of the model development come up with a mechanism of improvement implementation on clusters when case studies are applied.

4. A Flocking Based algorithm for Document Clustering Analysis

Energy Technology Data Exchange (ETDEWEB)

Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL

2006-01-01

Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.

5. Reproducibility of Cognitive Profiles in Psychosis Using Cluster Analysis.

Science.gov (United States)

Lewandowski, Kathryn E; Baker, Justin T; McCarthy, Julie M; Norris, Lesley A; Öngür, Dost

2018-04-01

Cognitive dysfunction is a core symptom dimension that cuts across the psychoses. Recent findings support classification of patients along the cognitive dimension using cluster analysis; however, data-derived groupings may be highly determined by sampling characteristics and the measures used to derive the clusters, and so their interpretability must be established. We examined cognitive clusters in a cross-diagnostic sample of patients with psychosis and associations with clinical and functional outcomes. We then compared our findings to a previous report of cognitive clusters in a separate sample using a different cognitive battery. Participants with affective or non-affective psychosis (n=120) and healthy controls (n=31) were administered the MATRICS Consensus Cognitive Battery, and clinical and community functioning assessments. Cluster analyses were performed on cognitive variables, and clusters were compared on demographic, cognitive, and clinical measures. Results were compared to findings from our previous report. A four-cluster solution provided a good fit to the data; profiles included a neuropsychologically normal cluster, a globally impaired cluster, and two clusters of mixed profiles. Cognitive burden was associated with symptom severity and poorer community functioning. The patterns of cognitive performance by cluster were highly consistent with our previous findings. We found evidence of four cognitive subgroups of patients with psychosis, with cognitive profiles that map closely to those produced in our previous work. Clusters were associated with clinical and community variables and a measure of premorbid functioning, suggesting that they reflect meaningful groupings: replicable, and related to clinical presentation and functional outcomes. (JINS, 2018, 24, 382-390).

6. Network Analysis Tools: from biological networks to clusters and pathways.

Science.gov (United States)

Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

2008-01-01

Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

7. Cluster analysis of typhoid cases in Kota Bharu, Kelantan, Malaysia

Directory of Open Access Journals (Sweden)

Nazarudin Safian

2008-09-01

Full Text Available Typhoid fever is still a major public health problem globally as well as in Malaysia. This study was done to identify the spatial epidemiology of typhoid fever in the Kota Bharu District of Malaysia as a first step to developing more advanced analysis of the whole country. The main characteristic of the epidemiological pattern that interested us was whether typhoid cases occurred in clusters or whether they were evenly distributed throughout the area. We also wanted to know at what spatial distances they were clustered. All confirmed typhoid cases that were reported to the Kota Bharu District Health Department from the year 2001 to June of 2005 were taken as the samples. From the home address of the cases, the location of the house was traced and a coordinate was taken using handheld GPS devices. Spatial statistical analysis was done to determine the distribution of typhoid cases, whether clustered, random or dispersed. The spatial statistical analysis was done using CrimeStat III software to determine whether typhoid cases occur in clusters, and later on to determine at what distances it clustered. From 736 cases involved in the study there was significant clustering for cases occurring in the years 2001, 2002, 2003 and 2005. There was no significant clustering in year 2004. Typhoid clustering also occurred strongly for distances up to 6 km. This study shows that typhoid cases occur in clusters, and this method could be applicable to describe spatial epidemiology for a specific area. (Med J Indones 2008; 17: 175-82Keywords: typhoid, clustering, spatial epidemiology, GIS

8. Hessian regularization based non-negative matrix factorization for gene expression data clustering.

Science.gov (United States)

Liu, Xiao; Shi, Jun; Wang, Congzhi

2015-01-01

Since a key step in the analysis of gene expression data is to detect groups of genes that have similar expression patterns, clustering technique is then commonly used to analyze gene expression data. Data representation plays an important role in clustering analysis. The non-negative matrix factorization (NMF) is a widely used data representation method with great success in machine learning. Although the traditional manifold regularization method, Laplacian regularization (LR), can improve the performance of NMF, LR still suffers from the problem of its weak extrapolating power. Hessian regularization (HR) is a newly developed manifold regularization method, whose natural properties make it more extrapolating, especially for small sample data. In this work, we propose the HR-based NMF (HR-NMF) algorithm, and then apply it to represent gene expression data for further clustering task. The clustering experiments are conducted on five commonly used gene datasets, and the results indicate that the proposed HR-NMF outperforms LR-based NMM and original NMF, which suggests the potential application of HR-NMF for gene expression data.

9. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-Means Cluster Analysis

Science.gov (United States)

de Craen, Saskia; Commandeur, Jacques J. F.; Frank, Laurence E.; Heiser, Willem J.

2006-01-01

K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these…

10. Using cluster analysis to organize and explore regional GPS velocities

Science.gov (United States)

Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

2012-01-01

Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

11. Patterns of Brucellosis Infection Symptoms in Azerbaijan: A Latent Class Cluster Analysis

Directory of Open Access Journals (Sweden)

Rita Ismayilova

2014-01-01

Full Text Available Brucellosis infection is a multisystem disease, with a broad spectrum of symptoms. We investigated the existence of clusters of infected patients according to their clinical presentation. Using national surveillance data from the Electronic-Integrated Disease Surveillance System, we applied a latent class cluster (LCC analysis on symptoms to determine clusters of brucellosis cases. A total of 454 cases reported between July 2011 and July 2013 were analyzed. LCC identified a two-cluster model and the Vuong-Lo-Mendell-Rubin likelihood ratio supported the cluster model. Brucellosis cases in the second cluster (19% reported higher percentages of poly-lymphadenopathy, hepatomegaly, arthritis, myositis, and neuritis and changes in liver function tests compared to cases of the first cluster. Patients in the second cluster had a severe brucellosis disease course and were associated with longer delay in seeking medical attention. Moreover, most of them were from Beylagan, a region focused on sheep and goat livestock production in south-central Azerbaijan. Patients in cluster 2 accounted for one-quarter of brucellosis cases and had a more severe clinical presentation. Delay in seeking medical care may explain severe illness. Future work needs to determine the factors that influence brucellosis case seeking and identify brucellosis species, particularly among cases from Beylagan.

12. Cluster models, factors and characteristics for the competitive advantage of Lithuanian Maritime sector

OpenAIRE

Viederytė, Rasa; Didžiokas, Rimantas

2014-01-01

Paper analyses several cluster models on the basis of competitiveness: Nine-factor model, Double diamond model, Funnel model of cluster determinants, Destination Competitiveness and sustainability models, which are related to Porter’s Diamond model and concentrate to the classical one - adopt M. Porter’s Diamond model methodology to the evaluation of Lithuanian Maritime sector’s clustering on the basis of competitiveness. Despite the advances in cluster research, this model remains a complex ...

13. A Novel Divisive Hierarchical Clustering Algorithm for Geospatial Analysis

Directory of Open Access Journals (Sweden)

Shaoning Li

2017-01-01

Full Text Available In the fields of geographic information systems (GIS and remote sensing (RS, the clustering algorithm has been widely used for image segmentation, pattern recognition, and cartographic generalization. Although clustering analysis plays a key role in geospatial modelling, traditional clustering methods are limited due to computational complexity, noise resistant ability and robustness. Furthermore, traditional methods are more focused on the adjacent spatial context, which makes it hard for the clustering methods to be applied to multi-density discrete objects. In this paper, a new method, cell-dividing hierarchical clustering (CDHC, is proposed based on convex hull retraction. The main steps are as follows. First, a convex hull structure is constructed to describe the global spatial context of geospatial objects. Then, the retracting structure of each borderline is established in sequence by setting the initial parameter. The objects are split into two clusters (i.e., “sub-clusters” if the retracting structure intersects with the borderlines. Finally, clusters are repeatedly split and the initial parameter is updated until the terminate condition is satisfied. The experimental results show that CDHC separates the multi-density objects from noise sufficiently and also reduces complexity compared to the traditional agglomerative hierarchical clustering algorithm.

14. A Distributed Flocking Approach for Information Stream Clustering Analysis

Energy Technology Data Exchange (ETDEWEB)

Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

2006-01-01

Intelligence analysts are currently overwhelmed with the amount of information streams generated everyday. There is a lack of comprehensive tool that can real-time analyze the information streams. Document clustering analysis plays an important role in improving the accuracy of information retrieval. However, most clustering technologies can only be applied for analyzing the static document collection because they normally require a large amount of computation resource and long time to get accurate result. It is very difficult to cluster a dynamic changed text information streams on an individual computer. Our early research has resulted in a dynamic reactive flock clustering algorithm which can continually refine the clustering result and quickly react to the change of document contents. This character makes the algorithm suitable for cluster analyzing dynamic changed document information, such as text information stream. Because of the decentralized character of this algorithm, a distributed approach is a very natural way to increase the clustering speed of the algorithm. In this paper, we present a distributed multi-agent flocking approach for the text information stream clustering and discuss the decentralized architectures and communication schemes for load balance and status information synchronization in this approach.

15. Cluster analysis of clinical data identifies fibromyalgia subgroups.

Directory of Open Access Journals (Sweden)

Elisa Docampo

Full Text Available INTRODUCTION: Fibromyalgia (FM is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. MATERIAL AND METHODS: 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. RESULTS: VARIABLES CLUSTERED INTO THREE INDEPENDENT DIMENSIONS: "symptomatology", "comorbidities" and "clinical scales". Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1, high symptomatology and comorbidities (Cluster 2, and high symptomatology but low comorbidities (Cluster 3, showing differences in measures of disease severity. CONCLUSIONS: We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment.

16. Service Quality in Tourist Destination Pipa/Brazil: A Study Based on a Cluster Analysis

Directory of Open Access Journals (Sweden)

Domingos Fernandes Campos

2015-08-01

Full Text Available This study aims to evaluate the Attractiveness and Quality factors at the tourism services provided by Pipa/RN destination. Based on 28 services attributes, the expectations of 760 tourists have been collected. The service has been evaluated by Gap Model, verifying the (disconfirmation of expectations and perceived service. Two questions have been used to evaluate: (a Have the expectations been varied with the social and demographic factors? (b Have the clusters identified by cluster analysis been guided by social and demographic factors? The groups identified were marked by different priorities in relation to the attributes and by different levels of demanding on expected service.

17. Clustering Trajectories by Relevant Parts for Air Traffic Analysis.

Science.gov (United States)

Andrienko, Gennady; Andrienko, Natalia; Fuchs, Georg; Garcia, Jose Manuel Cordero

2018-01-01

Clustering of trajectories of moving objects by similarity is an important technique in movement analysis. Existing distance functions assess the similarity between trajectories based on properties of the trajectory points or segments. The properties may include the spatial positions, times, and thematic attributes. There may be a need to focus the analysis on certain parts of trajectories, i.e., points and segments that have particular properties. According to the analysis focus, the analyst may need to cluster trajectories by similarity of their relevant parts only. Throughout the analysis process, the focus may change, and different parts of trajectories may become relevant. We propose an analytical workflow in which interactive filtering tools are used to attach relevance flags to elements of trajectories, clustering is done using a distance function that ignores irrelevant elements, and the resulting clusters are summarized for further analysis. We demonstrate how this workflow can be useful for different analysis tasks in three case studies with real data from the domain of air traffic. We propose a suite of generic techniques and visualization guidelines to support movement data analysis by means of relevance-aware trajectory clustering.

18. Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei

Science.gov (United States)

Saleh Ahmed, Saad M.

2017-06-01

The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.

19. Cluster analysis of Southeastern U.S. climate stations

Science.gov (United States)

Stooksbury, D. E.; Michaels, P. J.

1991-09-01

A two-step cluster analysis of 449 Southeastern climate stations is used to objectively determine general climate clusters (groups of climate stations) for eight southeastern states. The purpose is objectively to define regions of climatic homogeneity that should perform more robustly in subsequent climatic impact models. This type of analysis has been successfully used in many related climate research problems including the determination of corn/climate districts in Iowa (Ortiz-Valdez, 1985) and the classification of synoptic climate types (Davis, 1988). These general climate clusters may be more appropriate for climate research than the standard climate divisions (CD) groupings of climate stations, which are modifications of the agro-economic United States Department of Agriculture crop reporting districts. Unlike the CD's, these objectively determined climate clusters are not restricted by state borders and thus have reduced multicollinearity which makes them more appropriate for the study of the impact of climate and climatic change.

20. Using BMDP and SPSS for a Q factor analysis.

Science.gov (United States)

Tanner, B A; Koning, S M

1980-12-01

While Euclidean distances and Q factor analysis may sometimes be preferred to correlation coefficients and cluster analysis for developing a typology, commercially available software does not always facilitate their use. Commands are provided for using BMDP and SPSS in a Q factor analysis with Euclidean distances.

1. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

Energy Technology Data Exchange (ETDEWEB)

Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

2008-05-12

The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

2. Development of small scale cluster computer for numerical analysis

Science.gov (United States)

Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.

2017-09-01

In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.

3. Predicting healthcare outcomes in prematurely born infants using cluster analysis.

Science.gov (United States)

MacBean, Victoria; Lunt, Alan; Drysdale, Simon B; Yarzi, Muska N; Rafferty, Gerrard F; Greenough, Anne

2018-05-23

Prematurely born infants are at high risk of respiratory morbidity following neonatal unit discharge, though prediction of outcomes is challenging. We have tested the hypothesis that cluster analysis would identify discrete groups of prematurely born infants with differing respiratory outcomes during infancy. A total of 168 infants (median (IQR) gestational age 33 (31-34) weeks) were recruited in the neonatal period from consecutive births in a tertiary neonatal unit. The baseline characteristics of the infants were used to classify them into hierarchical agglomerative clusters. Rates of viral lower respiratory tract infections (LRTIs) were recorded for 151 infants in the first year after birth. Infants could be classified according to birth weight and duration of neonatal invasive mechanical ventilation (MV) into three clusters. Cluster one (MV ≤5 days) had few LRTIs. Clusters two and three (both MV ≥6 days, but BW ≥or <882 g respectively), had significantly higher LRTI rates. Cluster two had a higher proportion of infants experiencing respiratory syncytial virus LRTIs (P = 0.01) and cluster three a higher proportion of rhinovirus LRTIs (P < 0.001) CONCLUSIONS: Readily available clinical data allowed classification of prematurely born infants into one of three distinct groups with differing subsequent respiratory morbidity in infancy. © 2018 Wiley Periodicals, Inc.

4. Clustering of obesity and dental caries with lifestyle factors among Danish adolescents

DEFF Research Database (Denmark)

Cinar, Ayse Basak; Christensen, Lisa Boge; Hede, Borge

2011-01-01

To assess any clustering between obesity, dental health, and lifestyle factors (dietary patterns, physical activity, smoking, and alcohol consumption) among adolescents.......To assess any clustering between obesity, dental health, and lifestyle factors (dietary patterns, physical activity, smoking, and alcohol consumption) among adolescents....

5. Dancoff factors with partial absorption in cluster geometry by the direct method

International Nuclear Information System (INIS)

Rodrigues, Leticia Jenisch; Leite, Sergio de Queiroz Bogado; Vilhena, Marco Tullio de; Bodmann, Bardo Ernest Josef

2007-01-01

Accurate analysis of resonance absorption in heterogeneous systems is essential in problems like criticality, breeding ratios and fuel depletion calculations. In compact arrays of fuel rods, resonance absorption is strongly affected by the Dancoff factor, defined in this study as the probability that a neutron emitted from the surface of a fuel element, enters another fuel element without any collision in the moderator or cladding. In the original WIMS code, Black Dancoff factors were computed in cluster geometry by the collision probability method, for each one of the symmetrically distinct fuel pin positions in the cell. Recent improvements to the code include a new routine (PIJM) that was created to incorporate a more efficient scheme for computing the collision matrices. In that routine, each system region is considered individually, minimizing convergence problems and reducing the number of neutron track lines required in the in-plane integrations of the Bickley functions for any given accuracy. In the present work, PIJM is extended to compute Grey Dancoff factors for two-dimensional cylindrical cells in cluster geometry. The effectiveness of the method is accessed by comparing Grey Dancoff factors as calculated by PIJM, with those available in the literature by the Monte Carlo method, for the irregular geometry of the Canadian CANDU37 assembly. Dancoff factors at five symmetrically distinct fuel pin positions are found in very good agreement with the literature results (author)

6. "Factor Analysis Using ""R"""

Directory of Open Access Journals (Sweden)

A. Alexander Beaujean

2013-02-01

Full Text Available R (R Development Core Team, 2011 is a very powerful tool to analyze data, that is gaining in popularity due to its costs (its free and flexibility (its open-source. This article gives a general introduction to using R (i.e., loading the program, using functions, importing data. Then, using data from Canivez, Konold, Collins, and Wilson (2009, this article walks the user through how to use the program to conduct factor analysis, from both an exploratory and confirmatory approach.

7. Cluster analysis of radionuclide concentrations in beach sand

NARCIS (Netherlands)

de Meijer, R.J.; James, I.; Jennings, P.J.; Keoyers, J.E.

This paper presents a method in which natural radionuclide concentrations of beach sand minerals are traced along a stretch of coast by cluster analysis. This analysis yields two groups of mineral deposit with different origins. The method deviates from standard methods of following dispersal of

8. Principal Component Clustering Approach to Teaching Quality Discriminant Analysis

Science.gov (United States)

Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan

2016-01-01

Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…

9. Pattern recognition in menstrual bleeding diaries by statistical cluster analysis

Directory of Open Access Journals (Sweden)

Wessel Jens

2009-07-01

Full Text Available Abstract Background The aim of this paper is to empirically identify a treatment-independent statistical method to describe clinically relevant bleeding patterns by using bleeding diaries of clinical studies on various sex hormone containing drugs. Methods We used the four cluster analysis methods single, average and complete linkage as well as the method of Ward for the pattern recognition in menstrual bleeding diaries. The optimal number of clusters was determined using the semi-partial R2, the cubic cluster criterion, the pseudo-F- and the pseudo-t2-statistic. Finally, the interpretability of the results from a gynecological point of view was assessed. Results The method of Ward yielded distinct clusters of the bleeding diaries. The other methods successively chained the observations into one cluster. The optimal number of distinctive bleeding patterns was six. We found two desirable and four undesirable bleeding patterns. Cyclic and non cyclic bleeding patterns were well separated. Conclusion Using this cluster analysis with the method of Ward medications and devices having an impact on bleeding can be easily compared and categorized.

10. Technology Clusters Exploration for Patent Portfolio through Patent Abstract Analysis

Directory of Open Access Journals (Sweden)

Gabjo Kim

2016-12-01

Full Text Available This study explores technology clusters through patent analysis. The aim of exploring technology clusters is to grasp competitors’ levels of sustainable research and development (R&D and establish a sustainable strategy for entering an industry. To achieve this, we first grouped the patent documents with similar technologies by applying affinity propagation (AP clustering, which is effective while grouping large amounts of data. Next, in order to define the technology clusters, we adopted the term frequency-inverse document frequency (TF-IDF weight, which lists the terms in order of importance. We collected the patent data of Korean electric car companies from the United States Patent and Trademark Office (USPTO to verify our proposed methodology. As a result, our proposed methodology presents more detailed information on the Korean electric car industry than previous studies.

11. Methodology сomparative statistical analysis of Russian industry based on cluster analysis

Directory of Open Access Journals (Sweden)

Sergey S. Shishulin

2017-01-01

Full Text Available The article is devoted to researching of the possibilities of applying multidimensional statistical analysis in the study of industrial production on the basis of comparing its growth rates and structure with other developed and developing countries of the world. The purpose of this article is to determine the optimal set of statistical methods and the results of their application to industrial production data, which would give the best access to the analysis of the result.Data includes such indicators as output, output, gross value added, the number of employed and other indicators of the system of national accounts and operational business statistics. The objects of observation are the industry of the countrys of the Customs Union, the United States, Japan and Erope in 2005-2015. As the research tool used as the simplest methods of transformation, graphical and tabular visualization of data, and methods of statistical analysis. In particular, based on a specialized software package (SPSS, the main components method, discriminant analysis, hierarchical methods of cluster analysis, Ward’s method and k-means were applied.The application of the method of principal components to the initial data makes it possible to substantially and effectively reduce the initial space of industrial production data. Thus, for example, in analyzing the structure of industrial production, the reduction was from fifteen industries to three basic, well-interpreted factors: the relatively extractive industries (with a low degree of processing, high-tech industries and consumer goods (medium-technology sectors. At the same time, as a result of comparison of the results of application of cluster analysis to the initial data and data obtained on the basis of the principal components method, it was established that clustering industrial production data on the basis of new factors significantly improves the results of clustering.As a result of analyzing the parameters of

12. Cluster-cluster clustering

International Nuclear Information System (INIS)

Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

1985-01-01

The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

13. CLUSTER ANALYSIS UKRAINIAN REGIONAL DISTRIBUTION BY LEVEL OF INNOVATION

Directory of Open Access Journals (Sweden)

Roman Shchur

2016-07-01

Full Text Available   SWOT-analysis of the threats and benefits of innovation development strategy of Ivano-Frankivsk region in the context of financial support was сonducted. Methodical approach to determine of public-private partnerships potential that is tool of innovative economic development financing was identified. Cluster analysis of possibilities of forming public-private partnership in a particular region was carried out. Optimal set of problem areas that require urgent solutions and financial security is defined on the basis of cluster approach. It will help to form practical recommendations for the formation of an effective financial mechanism in the regions of Ukraine. Key words: the mechanism of innovation development financial provision, innovation development, public-private partnerships, cluster analysis, innovative development strategy.

14. Somatosensory nociceptive characteristics differentiate subgroups in people with chronic low back pain: a cluster analysis.

Science.gov (United States)

Rabey, Martin; Slater, Helen; OʼSullivan, Peter; Beales, Darren; Smith, Anne

2015-10-01

The objectives of this study were to explore the existence of subgroups in a cohort with chronic low back pain (n = 294) based on the results of multimodal sensory testing and profile subgroups on demographic, psychological, lifestyle, and general health factors. Bedside (2-point discrimination, brush, vibration and pinprick perception, temporal summation on repeated monofilament stimulation) and laboratory (mechanical detection threshold, pressure, heat and cold pain thresholds, conditioned pain modulation) sensory testing were examined at wrist and lumbar sites. Data were entered into principal component analysis, and 5 component scores were entered into latent class analysis. Three clusters, with different sensory characteristics, were derived. Cluster 1 (31.9%) was characterised by average to high temperature and pressure pain sensitivity. Cluster 2 (52.0%) was characterised by average to high pressure pain sensitivity. Cluster 3 (16.0%) was characterised by low temperature and pressure pain sensitivity. Temporal summation occurred significantly more frequently in cluster 1. Subgroups were profiled on pain intensity, disability, depression, anxiety, stress, life events, fear avoidance, catastrophizing, perception of the low back region, comorbidities, body mass index, multiple pain sites, sleep, and activity levels. Clusters 1 and 2 had a significantly greater proportion of female participants and higher depression and sleep disturbance scores than cluster 3. The proportion of participants undertaking Low back pain, therefore, does not appear to be homogeneous. Pain mechanisms relating to presentations of each subgroup were postulated. Future research may investigate prognoses and interventions tailored towards these subgroups.

15. Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum

Energy Technology Data Exchange (ETDEWEB)

Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

2015-05-20

X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ~10–30 kpc within radii of 30–220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90–140 km s-1 on ~20–30 kpc scales and 70–100 km s-1 on smaller scales ~7–10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7–8 per cent for radii ~30–220 kpc from the centre, leading to a density bias of less than 3–4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density–velocity perturbation relation and further reduce systematic uncertainties in this analysis.

16. Cluster-based analysis of multi-model climate ensembles

Science.gov (United States)

Hyde, Richard; Hossaini, Ryan; Leeson, Amber A.

2018-06-01

Clustering - the automated grouping of similar data - can provide powerful and unique insight into large and complex data sets, in a fast and computationally efficient manner. While clustering has been used in a variety of fields (from medical image processing to economics), its application within atmospheric science has been fairly limited to date, and the potential benefits of the application of advanced clustering techniques to climate data (both model output and observations) has yet to be fully realised. In this paper, we explore the specific application of clustering to a multi-model climate ensemble. We hypothesise that clustering techniques can provide (a) a flexible, data-driven method of testing model-observation agreement and (b) a mechanism with which to identify model development priorities. We focus our analysis on chemistry-climate model (CCM) output of tropospheric ozone - an important greenhouse gas - from the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Tropospheric column ozone from the ACCMIP ensemble was clustered using the Data Density based Clustering (DDC) algorithm. We find that a multi-model mean (MMM) calculated using members of the most-populous cluster identified at each location offers a reduction of up to ˜ 20 % in the global absolute mean bias between the MMM and an observed satellite-based tropospheric ozone climatology, with respect to a simple, all-model MMM. On a spatial basis, the bias is reduced at ˜ 62 % of all locations, with the largest bias reductions occurring in the Northern Hemisphere - where ozone concentrations are relatively large. However, the bias is unchanged at 9 % of all locations and increases at 29 %, particularly in the Southern Hemisphere. The latter demonstrates that although cluster-based subsampling acts to remove outlier model data, such data may in fact be closer to observed values in some locations. We further demonstrate that clustering can provide a viable and

17. Application of Cluster Analysis in Assessment of Dietary Habits of Secondary School Students

Directory of Open Access Journals (Sweden)

Zalewska Magdalena

2014-12-01

Full Text Available Maintenance of proper health and prevention of diseases of civilization are now significant public health problems. Nutrition is an important factor in the development of youth, as well as the current and future state of health. The aim of the study was to show the benefits of the application of cluster analysis to assess the dietary habits of high school students. The survey was carried out on 1,631 eighteen-year-old students in seven randomly selected secondary schools in Bialystok using a self-prepared anonymous questionnaire. An evaluation of the time of day meals were eaten and the number of meals consumed was made for the surveyed students. The cluster analysis allowed distinguishing characteristic structures of dietary habits in the observed population. Four clusters were identified, which were characterized by relative internal homogeneity and substantial variation in terms of the number of meals during the day and the time of their consumption. The most important characteristics of cluster 1 were cumulated food ration in 2 or 3 meals and long intervals between meals. Cluster 2 was characterized by eating the recommended number of 4 or 5 meals a day. In the 3rd cluster, students ate 3 meals a day with large intervals between them, and in the 4th they had four meals a day while maintaining proper intervals between them. In all clusters dietary mistakes occurred, but most of them were related to clusters 1 and 3. Cluster analysis allowed for the identification of major flaws in nutrition, which may include irregular eating and skipping meals, and indicated possible connections between eating patterns and disturbances of body weight in the examined population.

18. Application of microarray analysis on computer cluster and cloud platforms.

Science.gov (United States)

Bernau, C; Boulesteix, A-L; Knaus, J

2013-01-01

Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.

19. Sequence analysis of porothramycin biosynthetic gene cluster

Czech Academy of Sciences Publication Activity Database

Najmanová, Lucie; Ulanová, Dana; Jelínková, Markéta; Kameník, Zdeněk; Kettnerová, Eliška; Koběrská, Markéta; Gažák, Radek; Radojevič, Bojana; Janata, Jiří

2014-01-01

Roč. 59, č. 6 (2014), s. 543-552 ISSN 0015-5632 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : BIOLOGICAL-ACTIVITY * ANTHRAMYCIN * SPECIFICITY Subject RIV: EE - Microbiology, Virology Impact factor: 1.000, year: 2014

20. Cluster Analysis as an Analytical Tool of Population Policy

Directory of Open Access Journals (Sweden)

Oksana Mikhaylovna Shubat

2017-12-01

Full Text Available The predicted negative trends in Russian demography (falling birth rates, population decline actualize the need to strengthen measures of family and population policy. Our research purpose is to identify groups of Russian regions with similar characteristics in the family sphere using cluster analysis. The findings should make an important contribution to the field of family policy. We used hierarchical cluster analysis based on the Ward method and the Euclidean distance for segmentation of Russian regions. Clustering is based on four variables, which allowed assessing the family institution in the region. The authors used the data of Federal State Statistics Service from 2010 to 2015. Clustering and profiling of each segment has allowed forming a model of Russian regions depending on the features of the family institution in these regions. The authors revealed four clusters grouping regions with similar problems in the family sphere. This segmentation makes it possible to develop the most relevant family policy measures in each group of regions. Thus, the analysis has shown a high degree of differentiation of the family institution in the regions. This suggests that a unified approach to population problems’ solving is far from being effective. To achieve greater results in the implementation of family policy, a differentiated approach is needed. Methods of multidimensional data classification can be successfully applied as a relevant analytical toolkit. Further research could develop the adaptation of multidimensional classification methods to the analysis of the population problems in Russian regions. In particular, the algorithms of nonparametric cluster analysis may be of relevance in future studies.

1. Latent class factor and cluster models, bi-plots and tri-plots and related graphical displays

NARCIS (Netherlands)

Magidson, J.; Vermunt, J.K.

2001-01-01

We propose an alternative method of conducting exploratory latent class analysis that utilizes latent class factor models, and compare it to the more traditional approach based on latent class cluster models. We show that when formulated in terms of R mutually independent, dichotomous latent

2. Patient clusters in acute, work-related back pain based on patterns of disability risk factors.

Science.gov (United States)

Shaw, William S; Pransky, Glenn; Patterson, William; Linton, Steven J; Winters, Thomas

2007-02-01

To identify subgroups of patients with work-related back pain based on disability risk factors. Patients with work-related back pain (N = 528) completed a 16-item questionnaire of potential disability risk factors before their initial medical evaluation. Outcomes of pain, functional limitation, and work disability were assessed 1 and 3 months later. A K-Means cluster analysis of 5 disability risk factors (pain, depressed mood, fear avoidant beliefs, work inflexibility, and poor expectations for recovery) resulted in 4 sub-groups: low risk (n = 182); emotional distress (n = 103); severe pain/fear avoidant (n = 102); and concerns about job accommodation (n = 141). Pain and disability outcomes at follow-up were superior in the low-risk group and poorest in the severe pain/fear avoidant group. Patients with acute back pain can be discriminated into subgroups depending on whether disability is related to pain beliefs, emotional distress, or workplace concerns.

3. Automated analysis of organic particles using cluster SIMS

Energy Technology Data Exchange (ETDEWEB)

Gillen, Greg; Zeissler, Cindy; Mahoney, Christine; Lindstrom, Abigail; Fletcher, Robert; Chi, Peter; Verkouteren, Jennifer; Bright, David; Lareau, Richard T.; Boldman, Mike

2004-06-15

Cluster primary ion bombardment combined with secondary ion imaging is used on an ion microscope secondary ion mass spectrometer for the spatially resolved analysis of organic particles on various surfaces. Compared to the use of monoatomic primary ion beam bombardment, the use of a cluster primary ion beam (SF{sub 5}{sup +} or C{sub 8}{sup -}) provides significant improvement in molecular ion yields and a reduction in beam-induced degradation of the analyte molecules. These characteristics of cluster bombardment, along with automated sample stage control and custom image analysis software are utilized to rapidly characterize the spatial distribution of trace explosive particles, narcotics and inkjet-printed microarrays on a variety of surfaces.

4. Assessment of surface water quality using hierarchical cluster analysis

Directory of Open Access Journals (Sweden)

Dheeraj Kumar Dabgerwal

2016-02-01

Full Text Available This study was carried out to assess the physicochemical quality river Varuna inVaranasi,India. Water samples were collected from 10 sites during January-June 2015. Pearson correlation analysis was used to assess the direction and strength of relationship between physicochemical parameters. Hierarchical Cluster analysis was also performed to determine the sources of pollution in the river Varuna. The result showed quite high value of DO, Nitrate, BOD, COD and Total Alkalinity, above the BIS permissible limit. The results of correlation analysis identified key water parameters as pH, electrical conductivity, total alkalinity and nitrate, which influence the concentration of other water parameters. Cluster analysis identified three major clusters of sampling sites out of total 10 sites, according to the similarity in water quality. This study illustrated the usefulness of correlation and cluster analysis for getting better information about the river water quality.International Journal of Environment Vol. 5 (1 2016,  pp: 32-44

5. application of single-linkage clustering method in the analysis of ...

African Journals Online (AJOL)

Admin

ANALYSIS OF GROWTH RATE OF GROSS DOMESTIC PRODUCT. (GDP) AT ... The end result of the algorithm is a tree of clusters called a dendrogram, which shows how the clusters are ..... Number of cluster sum from from observations of ...

6. Cluster Analysis of Clinical Data Identifies Fibromyalgia Subgroups

Science.gov (United States)

Docampo, Elisa; Collado, Antonio; Escaramís, Geòrgia; Carbonell, Jordi; Rivera, Javier; Vidal, Javier; Alegre, José

2013-01-01

Introduction Fibromyalgia (FM) is mainly characterized by widespread pain and multiple accompanying symptoms, which hinder FM assessment and management. In order to reduce FM heterogeneity we classified clinical data into simplified dimensions that were used to define FM subgroups. Material and Methods 48 variables were evaluated in 1,446 Spanish FM cases fulfilling 1990 ACR FM criteria. A partitioning analysis was performed to find groups of variables similar to each other. Similarities between variables were identified and the variables were grouped into dimensions. This was performed in a subset of 559 patients, and cross-validated in the remaining 887 patients. For each sample and dimension, a composite index was obtained based on the weights of the variables included in the dimension. Finally, a clustering procedure was applied to the indexes, resulting in FM subgroups. Results Variables clustered into three independent dimensions: “symptomatology”, “comorbidities” and “clinical scales”. Only the two first dimensions were considered for the construction of FM subgroups. Resulting scores classified FM samples into three subgroups: low symptomatology and comorbidities (Cluster 1), high symptomatology and comorbidities (Cluster 2), and high symptomatology but low comorbidities (Cluster 3), showing differences in measures of disease severity. Conclusions We have identified three subgroups of FM samples in a large cohort of FM by clustering clinical data. Our analysis stresses the importance of family and personal history of FM comorbidities. Also, the resulting patient clusters could indicate different forms of the disease, relevant to future research, and might have an impact on clinical assessment. PMID:24098674

7. Transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis

Directory of Open Access Journals (Sweden)

Riccardi Giovanna

2009-03-01

Full Text Available Abstract Background The ESAT-6 (early secreted antigenic target, 6 kDa family collects small mycobacterial proteins secreted by Mycobacterium tuberculosis, particularly in the early phase of growth. There are 23 ESAT-6 family members in M. tuberculosis H37Rv. In a previous work, we identified the Zur- dependent regulation of five proteins of the ESAT-6/CFP-10 family (esxG, esxH, esxQ, esxR, and esxS. esxG and esxH are part of ESAT-6 cluster 3, whose expression was already known to be induced by iron starvation. Results In this research, we performed EMSA experiments and transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis (msmeg0615-msmeg0625 and M. tuberculosis. In contrast to what we had observed in M. tuberculosis, we found that in M. smegmatis ESAT-6 cluster 3 responds only to iron and not to zinc. In both organisms we identified an internal promoter, a finding which suggests the presence of two transcriptional units and, by consequence, a differential expression of cluster 3 genes. We compared the expression of msmeg0615 and msmeg0620 in different growth and stress conditions by means of relative quantitative PCR. The expression of msmeg0615 and msmeg0620 genes was essentially similar; they appeared to be repressed in most of the tested conditions, with the exception of acid stress (pH 4.2 where msmeg0615 was about 4-fold induced, while msmeg0620 was repressed. Analysis revealed that in acid stress conditions M. tuberculosis rv0282 gene was 3-fold induced too, while rv0287 induction was almost insignificant. Conclusion In contrast with what has been reported for M. tuberculosis, our results suggest that in M. smegmatis only IdeR-dependent regulation is retained, while zinc has no effect on gene expression. The role of cluster 3 in M. tuberculosis virulence is still to be defined; however, iron- and zinc-dependent expression strongly suggests that cluster 3 is highly expressed in the infective process, and that the cluster

8. clusters

Indian Academy of Sciences (India)

2017-09-27

Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

9. clusters

Indian Academy of Sciences (India)

environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

10. Cluster Analysis of International Information and Social Development.

Science.gov (United States)

Lau, Jesus

1990-01-01

Analyzes information activities in relation to socioeconomic characteristics in low, middle, and highly developed economies for the years 1960 and 1977 through the use of cluster analysis. Results of data from 31 countries suggest that information development is achieved mainly by countries that have also achieved social development. (26…

11. Making Sense of Cluster Analysis: Revelations from Pakistani Science Classes

Science.gov (United States)

Pell, Tony; Hargreaves, Linda

2011-01-01

Cluster analysis has been applied to quantitative data in educational research over several decades and has been a feature of the Maurice Galton's research in primary and secondary classrooms. It has offered potentially useful insights for teaching yet its implications for practice are rarely implemented. It has been subject also to negative…

12. Cluster analysis for validated climatology stations using precipitation in Mexico

NARCIS (Netherlands)

Bravo Cabrera, J. L.; Azpra-Romero, E.; Zarraluqui-Such, V.; Gay-García, C.; Estrada Porrúa, F.

2012-01-01

Annual average of daily precipitation was used to group climatological stations into clusters using the k-means procedure and principal component analysis with varimax rotation. After a careful selection of the stations deployed in Mexico since 1950, we selected 349 characterized by having 35 to 40

13. A Cluster Analysis of Personality Style in Adults with ADHD

Science.gov (United States)

Robin, Arthur L.; Tzelepis, Angela; Bedway, Marquita

2008-01-01

Objective: The purpose of this study was to use hierarchical linear cluster analysis to examine the normative personality styles of adults with ADHD. Method: A total of 311 adults with ADHD completed the Millon Index of Personality Styles, which consists of 24 scales assessing motivating aims, cognitive modes, and interpersonal behaviors. Results:…

14. Characterization of population exposure to organochlorines: A cluster analysis application

NARCIS (Netherlands)

R.M. Guimarães (Raphael Mendonça); S. Asmus (Sven); A. Burdorf (Alex)

2013-01-01

textabstractThis study aimed to show the results from a cluster analysis application in the characterization of population exposure to organochlorines through variables related to time and exposure dose. Characteristics of 354 subjects in a population exposed to organochlorine pesticides residues

15. Robustness in cluster analysis in the presence of anomalous observations

NARCIS (Netherlands)

Zhuk, EE

Cluster analysis of multivariate observations in the presence of "outliers" (anomalous observations) in a sample is studied. The expected (mean) fraction of erroneous decisions for the decision rule is computed analytically by minimizing the intraclass scatter. A robust decision rule (stable to

16. Language Learner Motivational Types: A Cluster Analysis Study

Science.gov (United States)

Papi, Mostafa; Teimouri, Yasser

2014-01-01

The study aimed to identify different second language (L2) learner motivational types drawing on the framework of the L2 motivational self system. A total of 1,278 secondary school students learning English in Iran completed a questionnaire survey. Cluster analysis yielded five different groups based on the strength of different variables within…

17. Cluster analysis as a prediction tool for pregnancy outcomes.

Science.gov (United States)

Banjari, Ines; Kenjerić, Daniela; Šolić, Krešimir; Mandić, Milena L

2015-03-01

Considering specific physiology changes during gestation and thinking of pregnancy as a "critical window", classification of pregnant women at early pregnancy can be considered as crucial. The paper demonstrates the use of a method based on an approach from intelligent data mining, cluster analysis. Cluster analysis method is a statistical method which makes possible to group individuals based on sets of identifying variables. The method was chosen in order to determine possibility for classification of pregnant women at early pregnancy to analyze unknown correlations between different variables so that the certain outcomes could be predicted. 222 pregnant women from two general obstetric offices' were recruited. The main orient was set on characteristics of these pregnant women: their age, pre-pregnancy body mass index (BMI) and haemoglobin value. Cluster analysis gained a 94.1% classification accuracy rate with three branch- es or groups of pregnant women showing statistically significant correlations with pregnancy outcomes. The results are showing that pregnant women both of older age and higher pre-pregnancy BMI have a significantly higher incidence of delivering baby of higher birth weight but they gain significantly less weight during pregnancy. Their babies are also longer, and these women have significantly higher probability for complications during pregnancy (gestosis) and higher probability of induced or caesarean delivery. We can conclude that the cluster analysis method can appropriately classify pregnant women at early pregnancy to predict certain outcomes.

18. Boolean Factor Analysis by Attractor Neural Network

Czech Academy of Sciences Publication Activity Database

Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

2007-01-01

Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

19. Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study

Directory of Open Access Journals (Sweden)

Ma Jinhui

2013-01-01

Full Text Available Abstracts Background The objective of this simulation study is to compare the accuracy and efficiency of population-averaged (i.e. generalized estimating equations (GEE and cluster-specific (i.e. random-effects logistic regression (RELR models for analyzing data from cluster randomized trials (CRTs with missing binary responses. Methods In this simulation study, clustered responses were generated from a beta-binomial distribution. The number of clusters per trial arm, the number of subjects per cluster, intra-cluster correlation coefficient, and the percentage of missing data were allowed to vary. Under the assumption of covariate dependent missingness, missing outcomes were handled by complete case analysis, standard multiple imputation (MI and within-cluster MI strategies. Data were analyzed using GEE and RELR. Performance of the methods was assessed using standardized bias, empirical standard error, root mean squared error (RMSE, and coverage probability. Results GEE performs well on all four measures — provided the downward bias of the standard error (when the number of clusters per arm is small is adjusted appropriately — under the following scenarios: complete case analysis for CRTs with a small amount of missing data; standard MI for CRTs with variance inflation factor (VIF 50. RELR performs well only when a small amount of data was missing, and complete case analysis was applied. Conclusion GEE performs well as long as appropriate missing data strategies are adopted based on the design of CRTs and the percentage of missing data. In contrast, RELR does not perform well when either standard or within-cluster MI strategy is applied prior to the analysis.

20. Performance Analysis of Unsupervised Clustering Methods for Brain Tumor Segmentation

Directory of Open Access Journals (Sweden)

Tushar H Jaware

2013-10-01

Full Text Available Medical image processing is the most challenging and emerging field of neuroscience. The ultimate goal of medical image analysis in brain MRI is to extract important clinical features that would improve methods of diagnosis & treatment of disease. This paper focuses on methods to detect & extract brain tumour from brain MR images. MATLAB is used to design, software tool for locating brain tumor, based on unsupervised clustering methods. K-Means clustering algorithm is implemented & tested on data base of 30 images. Performance evolution of unsupervised clusteringmethods is presented.

1. Identifying clinical course patterns in SMS data using cluster analysis

DEFF Research Database (Denmark)

Kent, Peter; Kongsted, Alice

2012-01-01

ABSTRACT: BACKGROUND: Recently, there has been interest in using the short message service (SMS or text messaging), to gather frequent information on the clinical course of individual patients. One possible role for identifying clinical course patterns is to assist in exploring clinically important...... showed that clinical course patterns can be identified by cluster analysis using all SMS time points as cluster variables. This method is simple, intuitive and does not require a high level of statistical skill. However, there are alternative ways of managing SMS data and many different methods...

2. The Amish furniture cluster in Ohio: competitive factors and wood use estimates

Science.gov (United States)

Matthew Bumgardner; Robert Romig; William Luppold

2008-01-01

This paper is an assessment of wood use by the Amish furniture cluster located in northeastern Ohio. The paper also highlights the competitive and demographic factors that have enabled cluster growth and new business formation in a time of declining market share for the overall U.S. furniture industry. Several secondary information sources and discussions with local...

3. Outcome-Driven Cluster Analysis with Application to Microarray Data.

Directory of Open Access Journals (Sweden)

Jessie J Hsu

Full Text Available One goal of cluster analysis is to sort characteristics into groups (clusters so that those in the same group are more highly correlated to each other than they are to those in other groups. An example is the search for groups of genes whose expression of RNA is correlated in a population of patients. These genes would be of greater interest if their common level of RNA expression were additionally predictive of the clinical outcome. This issue arose in the context of a study of trauma patients on whom RNA samples were available. The question of interest was whether there were groups of genes that were behaving similarly, and whether each gene in the cluster would have a similar effect on who would recover. For this, we develop an algorithm to simultaneously assign characteristics (genes into groups of highly correlated genes that have the same effect on the outcome (recovery. We propose a random effects model where the genes within each group (cluster equal the sum of a random effect, specific to the observation and cluster, and an independent error term. The outcome variable is a linear combination of the random effects of each cluster. To fit the model, we implement a Markov chain Monte Carlo algorithm based on the likelihood of the observed data. We evaluate the effect of including outcome in the model through simulation studies and describe a strategy for prediction. These methods are applied to trauma data from the Inflammation and Host Response to Injury research program, revealing a clustering of the genes that are informed by the recovery outcome.

4. Behavioral Health Risk Profiles of Undergraduate University Students in England, Wales, and Northern Ireland: A Cluster Analysis

Directory of Open Access Journals (Sweden)

Walid El Ansari

2018-05-01

Full Text Available BackgroundLimited research has explored clustering of lifestyle behavioral risk factors (BRFs among university students. This study aimed to explore clustering of BRFs, composition of clusters, and the association of the clusters with self-rated health and perceived academic performance.MethodWe assessed (BRFs, namely tobacco smoking, physical inactivity, alcohol consumption, illicit drug use, unhealthy nutrition, and inadequate sleep, using a self-administered general Student Health Survey among 3,706 undergraduates at seven UK universities.ResultsA two-step cluster analysis generated: Cluster 1 (the high physically active and health conscious with very high health awareness/consciousness, good nutrition, and physical activity (PA, and relatively low alcohol, tobacco, and other drug (ATOD use. Cluster 2 (the abstinent had very low ATOD use, high health awareness, good nutrition, and medium high PA. Cluster 3 (the moderately health conscious included the highest regard for healthy eating, second highest fruit/vegetable consumption, and moderately high ATOD use. Cluster 4 (the risk taking showed the highest ATOD use, were the least health conscious, least fruit consuming, and attached the least importance on eating healthy. Compared to the healthy cluster (Cluster 1, students in other clusters had lower self-rated health, and particularly, students in the risk taking cluster (Cluster 4 reported lower academic performance. These associations were stronger for men than for women. Of the four clusters, Cluster 4 had the youngest students.ConclusionOur results suggested that prevention among university students should address multiple BRFs simultaneously, with particular focus on the younger students.

5. Using the Cluster Analysis and the Principal Component Analysis in Evaluating the Quality of a Destination

Directory of Open Access Journals (Sweden)

Ida Vajčnerová

2016-01-01

Full Text Available The objective of the paper is to explore possibilities of evaluating the quality of a tourist destination by means of the principal components analysis (PCA and the cluster analysis. In the paper both types of analysis are compared on the basis of the results they provide. The aim is to identify advantage and limits of both methods and provide methodological suggestion for their further use in the tourism research. The analyses is based on the primary data from the customers’ satisfaction survey with the key quality factors of a destination. As output of the two statistical methods is creation of groups or cluster of quality factors that are similar in terms of respondents’ evaluations, in order to facilitate the evaluation of the quality of tourist destinations. Results shows the possibility to use both tested methods. The paper is elaborated in the frame of wider research project aimed to develop a methodology for the quality evaluation of tourist destinations, especially in the context of customer satisfaction and loyalty.

6. High-dimensional cluster analysis with the Masked EM Algorithm

Science.gov (United States)

Kadir, Shabnam N.; Goodman, Dan F. M.; Harris, Kenneth D.

2014-01-01

Cluster analysis faces two problems in high dimensions: first, the “curse of dimensionality” that can lead to overfitting and poor generalization performance; and second, the sheer time taken for conventional algorithms to process large amounts of high-dimensional data. We describe a solution to these problems, designed for the application of “spike sorting” for next-generation high channel-count neural probes. In this problem, only a small subset of features provide information about the cluster member-ship of any one data vector, but this informative feature subset is not the same for all data points, rendering classical feature selection ineffective. We introduce a “Masked EM” algorithm that allows accurate and time-efficient clustering of up to millions of points in thousands of dimensions. We demonstrate its applicability to synthetic data, and to real-world high-channel-count spike sorting data. PMID:25149694

7. A cluster analysis investigation of workaholism as a syndrome.

Science.gov (United States)

Aziz, Shahnaz; Zickar, Michael J

2006-01-01

Workaholism has been conceptualized as a syndrome although there have been few tests that explicitly consider its syndrome status. The authors analyzed a three-dimensional scale of workaholism developed by Spence and Robbins (1992) using cluster analysis. The authors identified three clusters of individuals, one of which corresponded to Spence and Robbins's profile of the workaholic (high work involvement, high drive to work, low work enjoyment). Consistent with previously conjectured relations with workaholism, individuals in the workaholic cluster were more likely to label themselves as workaholics, more likely to have acquaintances label them as workaholics, and more likely to have lower life satisfaction and higher work-life imbalance. The importance of considering workaholism as a syndrome and the implications for effective interventions are discussed. Copyright 2006 APA.

8. Cosmological analysis of galaxy clusters surveys in X-rays

International Nuclear Information System (INIS)

Clerc, N.

2012-01-01

Clusters of galaxies are the most massive objects in equilibrium in our Universe. Their study allows to test cosmological scenarios of structure formation with precision, bringing constraints complementary to those stemming from the cosmological background radiation, supernovae or galaxies. They are identified through the X-ray emission of their heated gas, thus facilitating their mapping at different epochs of the Universe. This report presents two surveys of galaxy clusters detected in X-rays and puts forward a method for their cosmological interpretation. Thanks to its multi-wavelength coverage extending over 10 sq. deg. and after one decade of expertise, the XMM-LSS allows a systematic census of clusters in a large volume of the Universe. In the framework of this survey, the first part of this report describes the techniques developed to the purpose of characterizing the detected objects. A particular emphasis is placed on the most distant ones (z ≥ 1) through the complementarity of observations in X-ray, optical and infrared bands. Then the X-CLASS survey is fully described. Based on XMM archival data, it provides a new catalogue of 800 clusters detected in X-rays. A cosmological analysis of this survey is performed thanks to 'CR-HR' diagrams. This new method self-consistently includes selection effects and scaling relations and provides a means to bypass the computation of individual cluster masses. Propositions are made for applying this method to future surveys as XMM-XXL and eRosita. (author) [fr

9. Cluster analysis by optimal decomposition of induced fuzzy sets

Energy Technology Data Exchange (ETDEWEB)

Backer, E

1978-01-01

Nonsupervised pattern recognition is addressed and the concept of fuzzy sets is explored in order to provide the investigator (data analyst) additional information supplied by the pattern class membership values apart from the classical pattern class assignments. The basic ideas behind the pattern recognition problem, the clustering problem, and the concept of fuzzy sets in cluster analysis are discussed, and a brief review of the literature of the fuzzy cluster analysis is given. Some mathematical aspects of fuzzy set theory are briefly discussed; in particular, a measure of fuzziness is suggested. The optimization-clustering problem is characterized. Then the fundamental idea behind affinity decomposition is considered. Next, further analysis takes place with respect to the partitioning-characterization functions. The iterative optimization procedure is then addressed. The reclassification function is investigated and convergence properties are examined. Finally, several experiments in support of the method suggested are described. Four object data sets serve as appropriate test cases. 120 references, 70 figures, 11 tables. (RWR)

10. Profitability and efficiency of Italian utilities: cluster analysis of financial statement ratios

International Nuclear Information System (INIS)

Linares, E.

2008-01-01

The last ten years have witnessed conspicuous changes in European and Italian regulation of public utility services and in the strategies of the major players in these fields. In response to these changes Italian utilities have made a variety of choices regarding size, presence in more or less capital-intensive stages of different value chains, and diversification. These choices have been implemented both through internal growth and by means of mergers and acquisitions. In this context it is interesting to try to establish whether there is a nexus between these choices and the performance of Italian utilities in terms of profitability and efficiency. Therefore statistical multivariate analysis techniques (cluster analysis and factor analysis) have been applied to several ratios obtained from the 2005 financial statement of 34 utilities. First, a hierarchical cluster analysis method has been applied to financial statement data in order to identify homogeneous groups based on several indicators of the incidence of costs (external costs, personnel costs, depreciation and amortization), profitability (return on sales, return on assets, return on equity) and efficiency (in the utilization of personnel, of total assets, of property, plant and equipment). Five clusters have been found. Then the clusters have been characterized in terms of the aforementioned indicators, the presence in different stages of the energy value chains (electricity and gas) and other descriptive variables (such as turnover, number of employees, assets, percentage of property, plant and equipment on total assets, sales revenues from electricity, gas, water supply and sanitation, waste collection and treatment and other services). In a second round cluster analysis has been preceded by factor analysis, in order to find a smaller set of variables. This procedure has revealed three not directly observable factors that can be interpreted as follows: i) efficiency in ordinary and financial management

11. Clustering of Multiple Lifestyle Behaviours and Its Association to Cardiovascular Risk Factors in Children

DEFF Research Database (Denmark)

Bel-Serrat, Silvia; Mouratidou, Theodora; Santaliestra-Pasías, Alba María

2013-01-01

ratio, triglycerides, sum of two skinfolds and systolic blood pressure (SBP) z-scores were summed to compute a CVD risk score. Cluster analyses stratified by sex and age groups (2 to ...) consumption, PA performance and television video/DVD viewing. RESULTS: Five clusters were identified. Associations between CVD risk factors and score, and clusters were obtained by multiple linear regression using cluster 5 (‘low beverages consumption and low sedentary’) as the reference cluster. SBP...... association was observed between CVD risk score and clusters 2 (β=0.60; 95% CI: 0.20, 1.01), 3 (β=0.55; 95% CI: 0.14, 0.97) and 4 (β=0.60, 95% CI: 0.18, 1.02) in older boys. CONCLUSIONS: Low television/video/DVD viewing levels and low SSB consumption may result in a healthier CVD profile rather than having...

12. Factors affecting construction performance: exploratory factor analysis

Science.gov (United States)

Soewin, E.; Chinda, T.

2018-04-01

The present work attempts to develop a multidimensional performance evaluation framework for a construction company by considering all relevant measures of performance. Based on the previous studies, this study hypothesizes nine key factors, with a total of 57 associated items. The hypothesized factors, with their associated items, are then used to develop questionnaire survey to gather data. The exploratory factor analysis (EFA) was applied to the collected data which gave rise 10 factors with 57 items affecting construction performance. The findings further reveal that the items constituting ten key performance factors (KPIs) namely; 1) Time, 2) Cost, 3) Quality, 4) Safety & Health, 5) Internal Stakeholder, 6) External Stakeholder, 7) Client Satisfaction, 8) Financial Performance, 9) Environment, and 10) Information, Technology & Innovation. The analysis helps to develop multi-dimensional performance evaluation framework for an effective measurement of the construction performance. The 10 key performance factors can be broadly categorized into economic aspect, social aspect, environmental aspect, and technology aspects. It is important to understand a multi-dimension performance evaluation framework by including all key factors affecting the construction performance of a company, so that the management level can effectively plan to implement an effective performance development plan to match with the mission and vision of the company.

13. Multi-view clustering via multi-manifold regularized non-negative matrix factorization.

Science.gov (United States)

Zong, Linlin; Zhang, Xianchao; Zhao, Long; Yu, Hong; Zhao, Qianli

2017-04-01

Non-negative matrix factorization based multi-view clustering algorithms have shown their competitiveness among different multi-view clustering algorithms. However, non-negative matrix factorization fails to preserve the locally geometrical structure of the data space. In this paper, we propose a multi-manifold regularized non-negative matrix factorization framework (MMNMF) which can preserve the locally geometrical structure of the manifolds for multi-view clustering. MMNMF incorporates consensus manifold and consensus coefficient matrix with multi-manifold regularization to preserve the locally geometrical structure of the multi-view data space. We use two methods to construct the consensus manifold and two methods to find the consensus coefficient matrix, which leads to four instances of the framework. Experimental results show that the proposed algorithms outperform existing non-negative matrix factorization based algorithms for multi-view clustering. Copyright © 2017 Elsevier Ltd. All rights reserved.

14. DGA Clustering and Analysis: Mastering Modern, Evolving Threats, DGALab

Directory of Open Access Journals (Sweden)

Alexander Chailytko

2016-05-01

Full Text Available Domain Generation Algorithms (DGA is a basic building block used in almost all modern malware. Malware researchers have attempted to tackle the DGA problem with various tools and techniques, with varying degrees of success. We present a complex solution to populate DGA feed using reversed DGAs, third-party feeds, and a smart DGA extraction and clustering based on emulation of a large number of samples. Smart DGA extraction requires no reverse engineering and works regardless of the DGA type or initialization vector, while enabling a cluster-based analysis. Our method also automatically allows analysis of the whole malware family, specific campaign, etc. We present our system and demonstrate its abilities on more than 20 malware families. This includes showing connections between different campaigns, as well as comparing results. Most importantly, we discuss how to utilize the outcome of the analysis to create smarter protections against similar malware.

15. Analysis of RXTE data on Clusters of Galaxies

Science.gov (United States)

Petrosian, Vahe

2004-01-01

This grant provided support for the reduction, analysis and interpretation of of hard X-ray (HXR, for short) observations of the cluster of galaxies RXJO658--5557 scheduled for the week of August 23, 2002 under the RXTE Cycle 7 program (PI Vahe Petrosian, Obs. ID 70165). The goal of the observation was to search for and characterize the shape of the HXR component beyond the well established thermal soft X-ray (SXR) component. Such hard components have been detected in several nearby clusters. distant cluster would provide information on the characteristics of this radiation at a different epoch in the evolution of the imiverse and shed light on its origin. We (Petrosian, 2001) have argued that thermal bremsstrahlung, as proposed earlier, cannot be the mechanism for the production of the HXRs and that the most likely mechanism is Compton upscattering of the cosmic microwave radiation by relativistic electrons which are known to be present in the clusters and be responsible for the observed radio emission. Based on this picture we estimated that this cluster, in spite of its relatively large distance, will have HXR signal comparable to the other nearby ones. The planned observation of a relatively The proposed RXTE observations were carried out and the data have been analyzed. We detect a hard X-ray tail in the spectrum of this cluster with a flux very nearly equal to our predicted value. This has strengthen the case for the Compton scattering model. We intend the data obtained via this observation to be a part of a larger data set. We have identified other clusters of galaxies (in archival RXTE and other instrument data sets) with sufficiently high quality data where we can search for and measure (or at least put meaningful limits) on the strength of the hard component. With these studies we expect to clarify the mechanism for acceleration of particles in the intercluster medium and provide guidance for future observations of this intriguing phenomenon by instrument

16. Full text clustering and relationship network analysis of biomedical publications.

Directory of Open Access Journals (Sweden)

Renchu Guan

Full Text Available Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

17. The Productivity Analysis of Chennai Automotive Industry Cluster

Science.gov (United States)

Bhaskaran, E.

2014-07-01

Chennai, also called the Detroit of India, is India's second fastest growing auto market and exports auto components and vehicles to US, Germany, Japan and Brazil. For inclusive growth and sustainable development, 250 auto component industries in Ambattur, Thirumalisai and Thirumudivakkam Industrial Estates located in Chennai have adopted the Cluster Development Approach called Automotive Component Cluster. The objective is to study the Value Chain, Correlation and Data Envelopment Analysis by determining technical efficiency, peer weights, input and output slacks of 100 auto component industries in three estates. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper model by taking net worth, fixed assets, employment as inputs and gross output as outputs. The non-zero represents the weights for efficient clusters. The higher slack obtained reveals the excess net worth, fixed assets, employment and shortage in gross output. To conclude, the variables are highly correlated and the inefficient industries should increase their gross output or decrease the fixed assets or employment. Moreover for sustainable development, the cluster should strengthen infrastructure, technology, procurement, production and marketing interrelationships to decrease costs and to increase productivity and efficiency to compete in the indigenous and export market.

18. Sirenomelia in Argentina: Prevalence, geographic clusters and temporal trends analysis.

Science.gov (United States)

Groisman, Boris; Liascovich, Rosa; Gili, Juan Antonio; Barbero, Pablo; Bidondo, María Paz

2016-07-01

Sirenomelia is a severe malformation of the lower body characterized by a single medial lower limb and a variable combination of visceral abnormalities. Given that Sirenomelia is a very rare birth defect, epidemiological studies are scarce. The aim of this study is to evaluate prevalence, geographic clusters and time trends of sirenomelia in Argentina, using data from the National Network of Congenital Anomalies of Argentina (RENAC) from November 2009 until December 2014. This is a descriptive study using data from the RENAC, a hospital-based surveillance system for newborns affected with major morphological congenital anomalies. We calculated sirenomelia prevalence throughout the period, searched for geographical clusters, and evaluated time trends. The prevalence of confirmed cases of sirenomelia throughout the period was 2.35 per 100,000 births. Cluster analysis showed no statistically significant geographical aggregates. Time-trends analysis showed that the prevalence was higher in years 2009 to 2010. The observed prevalence was higher than the observed in previous epidemiological studies in other geographic regions. We observed a likely real increase in the initial period of our study. We used strict diagnostic criteria, excluding cases that only had clinical diagnosis of sirenomelia. Therefore, real prevalence could be even higher. This study did not show any geographic clusters. Because etiology of sirenomelia has not yet been established, studies of epidemiological features of this defect may contribute to define its causes. Birth Defects Research (Part A) 106:604-611, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

19. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

Science.gov (United States)

Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

2016-04-01

Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

20. Full text clustering and relationship network analysis of biomedical publications.

Science.gov (United States)

Guan, Renchu; Yang, Chen; Marchese, Maurizio; Liang, Yanchun; Shi, Xiaohu

2014-01-01

Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP) to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

1. The Quantitative Analysis of Chennai Automotive Industry Cluster

Science.gov (United States)

Bhaskaran, Ethirajan

2016-07-01

Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

2. Applications of Cluster Analysis to the Creation of Perfectionism Profiles: A Comparison of two Clustering Approaches

Directory of Open Access Journals (Sweden)

Jocelyn H Bolin

2014-04-01

Full Text Available Although traditional clustering methods (e.g., K-means have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.

3. Applications of cluster analysis to the creation of perfectionism profiles: a comparison of two clustering approaches.

Science.gov (United States)

Bolin, Jocelyn H; Edwards, Julianne M; Finch, W Holmes; Cassady, Jerrell C

2014-01-01

Although traditional clustering methods (e.g., K-means) have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.

4. Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol

Directory of Open Access Journals (Sweden)

I. Crawford

2015-11-01

Full Text Available In this paper we present improved methods for discriminating and quantifying primary biological aerosol particles (PBAPs by applying hierarchical agglomerative cluster analysis to multi-parameter ultraviolet-light-induced fluorescence (UV-LIF spectrometer data. The methods employed in this study can be applied to data sets in excess of 1 × 106 points on a desktop computer, allowing for each fluorescent particle in a data set to be explicitly clustered. This reduces the potential for misattribution found in subsampling and comparative attribution methods used in previous approaches, improving our capacity to discriminate and quantify PBAP meta-classes. We evaluate the performance of several hierarchical agglomerative cluster analysis linkages and data normalisation methods using laboratory samples of known particle types and an ambient data set. Fluorescent and non-fluorescent polystyrene latex spheres were sampled with a Wideband Integrated Bioaerosol Spectrometer (WIBS-4 where the optical size, asymmetry factor and fluorescent measurements were used as inputs to the analysis package. It was found that the Ward linkage with z-score or range normalisation performed best, correctly attributing 98 and 98.1 % of the data points respectively. The best-performing methods were applied to the BEACHON-RoMBAS (Bio–hydro–atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen–Rocky Mountain Biogenic Aerosol Study ambient data set, where it was found that the z-score and range normalisation methods yield similar results, with each method producing clusters representative of fungal spores and bacterial aerosol, consistent with previous results. The z-score result was compared to clusters generated with previous approaches (WIBS AnalysiS Program, WASP where we observe that the subsampling and comparative attribution method employed by WASP results in the overestimation of the fungal spore concentration by a factor of 1.5 and the

5. Statistical analysis of the spatial distribution of galaxies and clusters

International Nuclear Information System (INIS)

Cappi, Alberto

1993-01-01

This thesis deals with the analysis of the distribution of galaxies and clusters, describing some observational problems and statistical results. First chapter gives a theoretical introduction, aiming to describe the framework of the formation of structures, tracing the history of the Universe from the Planck time, t_p = 10"-"4"3 sec and temperature corresponding to 10"1"9 GeV, to the present epoch. The most usual statistical tools and models of the galaxy distribution, with their advantages and limitations, are described in chapter two. A study of the main observed properties of galaxy clustering, together with a detailed statistical analysis of the effects of selecting galaxies according to apparent magnitude or diameter, is reported in chapter three. Chapter four delineates some properties of groups of galaxies, explaining the reasons of discrepant results on group distributions. Chapter five is a study of the distribution of galaxy clusters, with different statistical tools, like correlations, percolation, void probability function and counts in cells; it is found the same scaling-invariant behaviour of galaxies. Chapter six describes our finding that rich galaxy clusters too belong to the fundamental plane of elliptical galaxies, and gives a discussion of its possible implications. Finally chapter seven reviews the possibilities offered by multi-slit and multi-fibre spectrographs, and I present some observational work on nearby and distant galaxy clusters. In particular, I show the opportunities offered by ongoing surveys of galaxies coupled with multi-object fibre spectrographs, focusing on the ESO Key Programme A galaxy redshift survey in the south galactic pole region to which I collaborate and on MEFOS, a multi-fibre instrument with automatic positioning. Published papers related to the work described in this thesis are reported in the last appendix. (author) [fr

6. Sensory over responsivity and obsessive compulsive symptoms: A cluster analysis.

Science.gov (United States)

Ben-Sasson, Ayelet; Podoly, Tamar Yonit

2017-02-01

Several studies have examined the sensory component in Obsesseive Compulsive Disorder (OCD) and described an OCD subtype which has a unique profile, and that Sensory Phenomena (SP) is a significant component of this subtype. SP has some commonalities with Sensory Over Responsivity (SOR) and might be in part a characteristic of this subtype. Although there are some studies that have examined SOR and its relation to Obsessive Compulsive Symptoms (OCS), literature lacks sufficient data on this interplay. First to further examine the correlations between OCS and SOR, and to explore the correlations between SOR modalities (i.e. smell, touch, etc.) and OCS subscales (i.e. washing, ordering, etc.). Second, to investigate the cluster analysis of SOR and OCS dimensions in adults, that is, to classify the sample using the sensory scores to find whether a sensory OCD subtype can be specified. Our third goal was to explore the psychometric features of a new sensory questionnaire: the Sensory Perception Quotient (SPQ). A sample of non clinical adults (n=350) was recruited via e-mail, social media and social networks. Participants completed questionnaires for measuring SOR, OCS, and anxiety. SOR and OCI-F scores were moderately significantly correlated (n=274), significant correlations between all SOR modalities and OCS subscales were found with no specific higher correlation between one modality to one OCS subscale. Cluster analysis revealed four distinct clusters: (1) No OC and SOR symptoms (NONE; n=100), (2) High OC and SOR symptoms (BOTH; n=28), (3) Moderate OC symptoms (OCS; n=63), (4) Moderate SOR symptoms (SOR; n=83). The BOTH cluster had significantly higher anxiety levels than the other clusters, and shared OC subscales scores with the OCS cluster. The BOTH cluster also reported higher SOR scores across tactile, vision, taste and olfactory modalities. The SPQ was found reliable and suitable to detect SOR, the sample SPQ scores was normally distributed (n=350). SOR is a

7. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations

Directory of Open Access Journals (Sweden)

F. Darrouzet

2006-07-01

Full Text Available Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles have been derived from the electron plasma frequency identified by the WHISPER sounder supplemented, in-between soundings, by relative variations of the spacecraft potential measured by the electric field instrument EFW; ion velocity is also measured onboard these satellites. The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 min; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations of three plume events and compare CLUSTER in-situ data with global images of the plasmasphere obtained by IMAGE. In particular, we study the geometry and the orientation of plasmaspheric plumes by using four-point analysis methods. We compare several aspects of plume motion as determined by different methods: (i inner and outer plume boundary velocity calculated from time delays of this boundary as observed by the wave experiment WHISPER on the four spacecraft, (ii drift velocity measured by the electron drift instrument EDI onboard CLUSTER and (iii global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.

8. Cohort study on clustering of lifestyle risk factors and understanding its association with stress on health and wellbeing among school teachers in Malaysia (CLUSTer)--a study protocol.

Science.gov (United States)

Moy, Foong Ming; Hoe, Victor Chee Wai; Hairi, Noran Naqiah; Buckley, Brian; Wark, Petra A; Koh, David; Bueno-de-Mesquita, H Bas; Bulgiba, Awang M

2014-06-17

The study on Clustering of Lifestyle risk factors and Understanding its association with Stress on health and wellbeing among school Teachers in Malaysia (CLUSTer) is a prospective cohort study which aims to extensively study teachers in Malaysia with respect to clustering of lifestyle risk factors and stress, and subsequently, to follow-up the population for important health outcomes. This study is being conducted in six states within Peninsular Malaysia. From each state, schools from each district are randomly selected and invited to participate in the study. Once the schools agree to participate, all teachers who fulfilled the inclusion criteria are invited to participate. Data collection includes a questionnaire survey and health assessment. Information collected in the questionnaire includes socio-demographic characteristics, participants' medical history and family history of chronic diseases, teaching characteristics and burden, questions on smoking, alcohol consumption and physical activities (IPAQ); a food frequency questionnaire, the job content questionnaire (JCQ); depression, anxiety and stress scale (DASS21); health related quality of life (SF12-V2); Voice Handicap Index 10 on voice disorder, questions on chronic pain, sleep duration and obstetric history for female participants. Following blood drawn for predefined clinical tests, additional blood and urine specimens are collected and stored for future analysis. Active follow up of exposure and health outcomes will be carried out every two years via telephone or face to face contact. Data collection started in March 2013 and as of the end of March 2014 has been completed for four states: Kuala Lumpur, Selangor, Melaka and Penang. Approximately 6580 participants have been recruited. The first round of data collection and blood sampling is expected to be completed by the end of 2014 with an expected 10,000 participants recruited. Our study will provide a good basis for exploring the clustering of

9. HORIZONTAL BRANCH MORPHOLOGY OF GLOBULAR CLUSTERS: A MULTIVARIATE STATISTICAL ANALYSIS

International Nuclear Information System (INIS)

Jogesh Babu, G.; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar; Mondal, Saptarshi

2009-01-01

The proper interpretation of horizontal branch (HB) morphology is crucial to the understanding of the formation history of stellar populations. In the present study a multivariate analysis is used (principal component analysis) for the selection of appropriate HB morphology parameter, which, in our case, is the logarithm of effective temperature extent of the HB (log T effHB ). Then this parameter is expressed in terms of the most significant observed independent parameters of Galactic globular clusters (GGCs) separately for coherent groups, obtained in a previous work, through a stepwise multiple regression technique. It is found that, metallicity ([Fe/H]), central surface brightness (μ v ), and core radius (r c ) are the significant parameters to explain most of the variations in HB morphology (multiple R 2 ∼ 0.86) for GGC elonging to the bulge/disk while metallicity ([Fe/H]) and absolute magnitude (M v ) are responsible for GGC belonging to the inner halo (multiple R 2 ∼ 0.52). The robustness is tested by taking 1000 bootstrap samples. A cluster analysis is performed for the red giant branch (RGB) stars of the GGC belonging to Galactic inner halo (Cluster 2). A multi-episodic star formation is preferred for RGB stars of GGC belonging to this group. It supports the asymptotic giant branch (AGB) model in three episodes instead of two as suggested by Carretta et al. for halo GGC while AGB model is suggested to be revisited for bulge/disk GGC.

10. Poisson cluster analysis of cardiac arrest incidence in Columbus, Ohio.

Science.gov (United States)

Warden, Craig; Cudnik, Michael T; Sasson, Comilla; Schwartz, Greg; Semple, Hugh

2012-01-01

Scarce resources in disease prevention and emergency medical services (EMS) need to be focused on high-risk areas of out-of-hospital cardiac arrest (OHCA). Cluster analysis using geographic information systems (GISs) was used to find these high-risk areas and test potential predictive variables. This was a retrospective cohort analysis of EMS-treated adults with OHCAs occurring in Columbus, Ohio, from April 1, 2004, through March 31, 2009. The OHCAs were aggregated to census tracts and incidence rates were calculated based on their adult populations. Poisson cluster analysis determined significant clusters of high-risk census tracts. Both census tract-level and case-level characteristics were tested for association with high-risk areas by multivariate logistic regression. A total of 2,037 eligible OHCAs occurred within the city limits during the study period. The mean incidence rate was 0.85 OHCAs/1,000 population/year. There were five significant geographic clusters with 76 high-risk census tracts out of the total of 245 census tracts. In the case-level analysis, being in a high-risk cluster was associated with a slightly younger age (-3 years, adjusted odds ratio [OR] 0.99, 95% confidence interval [CI] 0.99-1.00), not being white, non-Hispanic (OR 0.54, 95% CI 0.45-0.64), cardiac arrest occurring at home (OR 1.53, 95% CI 1.23-1.71), and not receiving bystander cardiopulmonary resuscitation (CPR) (OR 0.77, 95% CI 0.62-0.96), but with higher survival to hospital discharge (OR 1.78, 95% CI 1.30-2.46). In the census tract-level analysis, high-risk census tracts were also associated with a slightly lower average age (-0.1 years, OR 1.14, 95% CI 1.06-1.22) and a lower proportion of white, non-Hispanic patients (-0.298, OR 0.04, 95% CI 0.01-0.19), but also a lower proportion of high-school graduates (-0.184, OR 0.00, 95% CI 0.00-0.00). This analysis identified high-risk census tracts and associated census tract-level and case-level characteristics that can be used to

11. Performance Based Clustering for Benchmarking of Container Ports: an Application of Dea and Cluster Analysis Technique

Directory of Open Access Journals (Sweden)

Jie Wu

2010-12-01

Full Text Available The operational performance of container ports has received more and more attentions in both academic and practitioner circles, the performance evaluation and process improvement of container ports have also been the focus of several studies. In this paper, Data Envelopment Analysis (DEA, an effective tool for relative efficiency assessment, is utilized for measuring the performances and benchmarking of the 77 world container ports in 2007. The used approaches in the current study consider four inputs (Capacity of Cargo Handling Machines, Number of Berths, Terminal Area and Storage Capacity and a single output (Container Throughput. The results for the efficiency scores are analyzed, and a unique ordering of the ports based on average cross efficiency is provided, also cluster analysis technique is used to select the more appropriate targets for poorly performing ports to use as benchmarks.

12. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

Science.gov (United States)

Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

2015-01-01

Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

13. Fuzzy Clustering

DEFF Research Database (Denmark)

Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

2000-01-01

A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

14. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections.

Science.gov (United States)

Castro-Mondragon, Jaime Abraham; Jaeger, Sébastien; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

2017-07-27

Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

15. Cluster analysis for DNA methylation profiles having a detection threshold

Directory of Open Access Journals (Sweden)

Siegmund Kimberly D

2006-07-01

Full Text Available Abstract Background DNA methylation, a molecular feature used to investigate tumor heterogeneity, can be measured on many genomic regions using the MethyLight technology. Due to the combination of the underlying biology of DNA methylation and the MethyLight technology, the measurements, while being generated on a continuous scale, have a large number of 0 values. This suggests that conventional clustering methodology may not perform well on this data. Results We compare performance of existing methodology (such as k-means with two novel methods that explicitly allow for the preponderance of values at 0. We also consider how the ability to successfully cluster such data depends upon the number of informative genes for which methylation is measured and the correlation structure of the methylation values for those genes. We show that when data is collected for a sufficient number of genes, our models do improve clustering performance compared to methods, such as k-means, that do not explicitly respect the supposed biological realities of the situation. Conclusion The performance of analysis methods depends upon how well the assumptions of those methods reflect the properties of the data being analyzed. Differing technologies will lead to data with differing properties, and should therefore be analyzed differently. Consequently, it is prudent to give thought to what the properties of the data are likely to be, and which analysis method might therefore be likely to best capture those properties.

16. Extending the input–output energy balance methodology in agriculture through cluster analysis

International Nuclear Information System (INIS)

Bojacá, Carlos Ricardo; Casilimas, Héctor Albeiro; Gil, Rodrigo; Schrevens, Eddie

2012-01-01

The input–output balance methodology has been applied to characterize the energy balance of agricultural systems. This study proposes to extend this methodology with the inclusion of multivariate analysis to reveal particular patterns in the energy use of a system. The objective was to demonstrate the usefulness of multivariate exploratory techniques to analyze the variability found in a farming system and, establish efficiency categories that can be used to improve the energy balance of the system. To this purpose an input–output analysis was applied to the major greenhouse tomato production area in Colombia. Individual energy profiles were built and the k-means clustering method was applied to the production factors. On average, the production system in the study zone consumes 141.8 GJ ha −1 to produce 96.4 GJ ha −1 , resulting in an energy efficiency of 0.68. With the k-means clustering analysis, three clusters of farmers were identified with energy efficiencies of 0.54, 0.67 and 0.78. The most energy efficient cluster grouped 56.3% of the farmers. It is possible to optimize the production system by improving the management practices of those with the lowest energy use efficiencies. Multivariate analysis techniques demonstrated to be a complementary pathway to improve the energy efficiency of a system. -- Highlights: ► An input–output energy balance was estimated for greenhouse tomatoes in Colombia. ► We used the k-means clustering method to classify growers based on their energy use. ► Three clusters of growers were found with energy efficiencies of 0.54, 0.67 and 0.78. ► Overall system optimization is possible by improving the energy use of the less efficient.

17. Cluster Analysis of the International Stellarator Confinement Database

International Nuclear Information System (INIS)

Kus, A.; Dinklage, A.; Preuss, R.; Ascasibar, E.; Harris, J. H.; Okamura, S.; Yamada, H.; Sano, F.; Stroth, U.; Talmadge, J.

2008-01-01

Heterogeneous structure of collected data is one of the problems that occur during derivation of scalings for energy confinement time, and whose analysis tourns out to be wide and complicated matter. The International Stellarator Confinement Database [1], shortly ISCDB, comprises in its latest version 21 a total of 3647 observations from 8 experimental devices, 2067 therefrom beeing so far completed for upcoming analyses. For confinement scaling studies 1933 observation were chosen as the standard dataset. Here we describe a statistical method of cluster analysis for identification of possible cohesive substructures in ISDCB and present some preliminary results

18. Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation

International Nuclear Information System (INIS)

Neuscamman, Eric

2013-01-01

We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N 2 bond breaking. In double-ζ treatments of the HF and H 2 O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation

19. Accommodating error analysis in comparison and clustering of molecular fingerprints.

Science.gov (United States)

Salamon, H; Segal, M R; Ponce de Leon, A; Small, P M

1998-01-01

Molecular epidemiologic studies of infectious diseases rely on pathogen genotype comparisons, which usually yield patterns comprising sets of DNA fragments (DNA fingerprints). We use a highly developed genotyping system, IS6110-based restriction fragment length polymorphism analysis of Mycobacterium tuberculosis, to develop a computational method that automates comparison of large numbers of fingerprints. Because error in fragment length measurements is proportional to fragment length and is positively correlated for fragments within a lane, an align-and-count method that compensates for relative scaling of lanes reliably counts matching fragments between lanes. Results of a two-step method we developed to cluster identical fingerprints agree closely with 5 years of computer-assisted visual matching among 1,335 M. tuberculosis fingerprints. Fully documented and validated methods of automated comparison and clustering will greatly expand the scope of molecular epidemiology.

20. Cluster analysis in systems of magnetic spheres and cubes

Energy Technology Data Exchange (ETDEWEB)

Pyanzina, E.S., E-mail: elena.pyanzina@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Gudkova, A.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Donaldson, J.G. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

2017-06-01

In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube. - Highlights: • A comparison of the degree of self-assembly in systems of magnetic spheres and cubes. • Spheres are more likely to form larger clusters than cubes. • Differences in microstructure will manifest in the magnetic response of each system.

1. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

Science.gov (United States)

Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

2018-01-01

To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

2. Network clustering coefficient approach to DNA sequence analysis

Energy Technology Data Exchange (ETDEWEB)

Gerhardt, Guenther J.L. [Universidade Federal do Rio Grande do Sul-Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos 2350/sala 2040/90035-003 Porto Alegre (Brazil); Departamento de Fisica e Quimica da Universidade de Caxias do Sul, Rua Francisco Getulio Vargas 1130, 95001-970 Caxias do Sul (Brazil); Lemke, Ney [Programa Interdisciplinar em Computacao Aplicada, Unisinos, Av. Unisinos, 950, 93022-000 Sao Leopoldo, RS (Brazil); Corso, Gilberto [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, Campus Universitario, 59072 970 Natal, RN (Brazil)]. E-mail: corso@dfte.ufrn.br

2006-05-15

In this work we propose an alternative DNA sequence analysis tool based on graph theoretical concepts. The methodology investigates the path topology of an organism genome through a triplet network. In this network, triplets in DNA sequence are vertices and two vertices are connected if they occur juxtaposed on the genome. We characterize this network topology by measuring the clustering coefficient. We test our methodology against two main bias: the guanine-cytosine (GC) content and 3-bp (base pairs) periodicity of DNA sequence. We perform the test constructing random networks with variable GC content and imposed 3-bp periodicity. A test group of some organisms is constructed and we investigate the methodology in the light of the constructed random networks. We conclude that the clustering coefficient is a valuable tool since it gives information that is not trivially contained in 3-bp periodicity neither in the variable GC content.

3. Factor analysis of multivariate data

Digital Repository Service at National Institute of Oceanography (India)

Fernandes, A.A.; Mahadevan, R.

A brief introduction to factor analysis is presented. A FORTRAN program, which can perform the Q-mode and R-mode factor analysis and the singular value decomposition of a given data matrix is presented in Appendix B. This computer program, uses...

4. Multiscale visual quality assessment for cluster analysis with self-organizing maps

Science.gov (United States)

Bernard, Jürgen; von Landesberger, Tatiana; Bremm, Sebastian; Schreck, Tobias

2011-01-01

Cluster analysis is an important data mining technique for analyzing large amounts of data, reducing many objects to a limited number of clusters. Cluster visualization techniques aim at supporting the user in better understanding the characteristics and relationships among the found clusters. While promising approaches to visual cluster analysis already exist, these usually fall short of incorporating the quality of the obtained clustering results. However, due to the nature of the clustering process, quality plays an important aspect, as for most practical data sets, typically many different clusterings are possible. Being aware of clustering quality is important to judge the expressiveness of a given cluster visualization, or to adjust the clustering process with refined parameters, among others. In this work, we present an encompassing suite of visual tools for quality assessment of an important visual cluster algorithm, namely, the Self-Organizing Map (SOM) technique. We define, measure, and visualize the notion of SOM cluster quality along a hierarchy of cluster abstractions. The quality abstractions range from simple scalar-valued quality scores up to the structural comparison of a given SOM clustering with output of additional supportive clustering methods. The suite of methods allows the user to assess the SOM quality on the appropriate abstraction level, and arrive at improved clustering results. We implement our tools in an integrated system, apply it on experimental data sets, and show its applicability.

5. Arterial stiffness and its association with clustering of metabolic syndrome risk factors

Directory of Open Access Journals (Sweden)

Wanda R. P. Lopes-Vicente

2017-10-01

Full Text Available Abstract Background Metabolic syndrome (MetS is associated with structural and functional vascular abnormalities, which may lead to increased arterial stiffness, more frequent cardiovascular events and higher mortality. However, the role played by clustering of risk factors and the combining pattern of MetS risk factors and their association with the arterial stiffness have yet to be fully understood. Age, hypertension and diabetes mellitus seem to be strongly associated with increased pulse wave velocity (PWV. This study aimed at determining the clustering and combining pattern of MetS risk factors and their association with the arterial stiffness in non-diabetic and non-hypertensive patients. Methods Recently diagnosed and untreated patients with MetS (n = 64, 49 ± 8 year, 32 ± 4 kg/m2 were selected, according to ATP III criteria and compared to a control group (Control, n = 17, 49 ± 6 year, 27 ± 2 kg/m2. Arterial stiffness was evaluated by PWV in the carotid-femoral segment. Patients were categorized and analyzed according MetS risk factors clustering (3, 4 and 5 factors and its combinations. Results Patients with MetS had increased PWV when compared to Control (7.8 ± 1.1 vs. 7.0 ± 0.5 m/s, p < 0.001. In multivariate analysis, the variables that remained as predictors of PWV were age (β = 0.450, p < 0.001, systolic blood pressure (β = 0.211, p = 0.023 and triglycerides (β = 0.212, p = 0.037. The increased number of risk factors reflected in a progressive increase in PWV. When adjusted to systolic blood pressure, PWV was greater in the group with 5 risk factors when compared to the group with 3 risk factors and Control (8.5 ± 0.4 vs. 7.5 ± 0.2, p = 0.011 and 7.2 ± 0.3 m/s, p = 0.012. Similarly, the 4 risk factors group had higher PWV than the Control (7.9 ± 0.2 vs. 7.2 ± 0.3, p = 0.047. Conclusions The number of risk factors seems to increase arterial stiffness. Notably, besides

6. Steady state subchannel analysis of AHWR fuel cluster

International Nuclear Information System (INIS)

Dasgupta, A.; Chandraker, D.K.; Vijayan, P.K.; Saha, D.

2006-09-01

Subchannel analysis is a technique used to predict the thermal hydraulic behavior of reactor fuel assemblies. The rod cluster is subdivided into a number of parallel interacting flow subchannels. The conservation equations are solved for each of these subchannels, taking into account subchannel interactions. Subchannel analysis of AHWR D-5 fuel cluster has been carried out to determine the variations in thermal hydraulic conditions of coolant and fuel temperatures along the length of the fuel bundle. The hottest regions within the AHWR fuel bundle have been identified. The effect of creep on the fuel performance has also been studied. MCHFR has been calculated using Jansen-Levy correlation. The calculations have been backed by sensitivity analysis for parameters whose values are not known accurately. The sensitivity analysis showed the calculations to have a very low sensitivity to these parameters. Apart from the analysis, the report also includes a brief introduction of a few subchannel codes. A brief description of the equations and solution methodology used in COBRA-IIIC and COBRA-IV-I is also given. (author)

7. Dancoff factors with partial neutrons absorption in cluster geometry by the direct method

International Nuclear Information System (INIS)

Rodrigues, Leticia Jenisch

2007-01-01

Accurate analysis of resonance absorption in heterogeneous systems is essential in problems like criticality, breeding ratios and fuel depletion calculations. In compact arrays of fuel rods, resonance absorption is strongly affected by the Dancoff factor, defined in mis study as the probability that a neutron emitted from the surface of a fuel element, enters another fuel element without any collusion in the moderator or cladding. In fact, in the most practical cases of irregular cells, it is observed that inaccuracies in computing both Grey and Black Dancoff factors, i.e. for partially and perfectly absorbing fuel rods, can lead to considerable errors in the calculated values of such integral quantities. For this reason, much effort has been made in the past decades to further improve the models for calculating Dancoff factors, a task that has been accomplished in connection with the development of faster computers. In the WIMS code, Black Dancoff factors based on the above mentioned collusion probability definition are computed in cluster geometry, for each one of the symmetrically distinct fuel pin positions in the cell. Sets of equally-spaced parallel lines are drawn in subroutine PIJ, at a number of discrete equally-incremented azimuthal angles, covering the whole system and forming a mesh over which the in-plane integrations of the Bickley functions are carried out by simple trapezoidal rule, leading to the first-flight collusion matrices. Although fast, the method in PIJ is inefficient, since the constructed mesh does not depended on the system details, so that regions of small relative volumes are crossed out by relatively few lines, which affects the convergence of the calculated probabilities. A new routine (PIJM) was then created to incorporate a more efficient integration scheme considering each system region individually, minimizing convergence problems and reducing the number of neutron track lines required in the in-plane integrations for any given

8. A Novel Double Cluster and Principal Component Analysis-Based Optimization Method for the Orbit Design of Earth Observation Satellites

Directory of Open Access Journals (Sweden)

Yunfeng Dong

2017-01-01

Full Text Available The weighted sum and genetic algorithm-based hybrid method (WSGA-based HM, which has been applied to multiobjective orbit optimizations, is negatively influenced by human factors through the artificial choice of the weight coefficients in weighted sum method and the slow convergence of GA. To address these two problems, a cluster and principal component analysis-based optimization method (CPC-based OM is proposed, in which many candidate orbits are gradually randomly generated until the optimal orbit is obtained using a data mining method, that is, cluster analysis based on principal components. Then, the second cluster analysis of the orbital elements is introduced into CPC-based OM to improve the convergence, developing a novel double cluster and principal component analysis-based optimization method (DCPC-based OM. In DCPC-based OM, the cluster analysis based on principal components has the advantage of reducing the human influences, and the cluster analysis based on six orbital elements can reduce the search space to effectively accelerate convergence. The test results from a multiobjective numerical benchmark function and the orbit design results of an Earth observation satellite show that DCPC-based OM converges more efficiently than WSGA-based HM. And DCPC-based OM, to some degree, reduces the influence of human factors presented in WSGA-based HM.

9. A spatial cluster analysis of tractor overturns in Kentucky from 1960 to 2002.

Directory of Open Access Journals (Sweden)

Daniel M Saman

Full Text Available Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns.A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns.The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55 and 10 counties in eastern Kentucky (RR = 1.97. Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002 and a greater percent of total tractors with less than 40 horsepower by county (p<0.0001.This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions with the intention of reducing tractor overturns in the highest risk counties in Kentucky.

10. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.

Science.gov (United States)

Bi, Qifang; Azman, Andrew S; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S; Lessler, Justin

2016-02-01

Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets) near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs) to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98), type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00), and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00) exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a cholera endemic

11. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.

Directory of Open Access Journals (Sweden)

Qifang Bi

2016-02-01

Full Text Available Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98, type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00, and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00 exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a

12. Analysis of Learning Development With Sugeno Fuzzy Logic And Clustering

Directory of Open Access Journals (Sweden)

Maulana Erwin Saputra

2017-06-01

Full Text Available In the first journal, I made this attempt to analyze things that affect the achievement of students in each school of course vary. Because students are one of the goals of achieving the goals of successful educational organizations. The mental influence of students’ emotions and behaviors themselves in relation to learning performance. Fuzzy logic can be used in various fields as well as Clustering for grouping, as in Learning Development analyzes. The process will be performed on students based on the symptoms that exist. In this research will use fuzzy logic and clustering. Fuzzy is an uncertain logic but its excess is capable in the process of language reasoning so that in its design is not required complicated mathematical equations. However Clustering method is K-Means method is method where data analysis is broken down by group k (k = 1,2,3, .. k. To know the optimal number of Performance group. The results of the research is with a questionnaire entered into matlab will produce a value that means in generating the graph. And simplify the school in seeing Student performance in the learning process by using certain criteria. So from the system that obtained the results for a decision-making required by the school.

13. IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering.

Science.gov (United States)

Wu, Lingxiang; Chen, Xiujie; Zhang, Denan; Zhang, Wubing; Liu, Lei; Ma, Hongzhe; Yang, Jingbo; Xie, Hongbo; Liu, Bo; Jin, Qing

2016-01-01

Analysis of gene sets has been widely applied in various high-throughput biological studies. One weakness in the traditional methods is that they neglect the heterogeneity of genes expressions in samples which may lead to the omission of some specific and important gene sets. It is also difficult for them to reflect the severities of disease and provide expression profiles of gene sets for individuals. We developed an application software called IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples clustering. IGSA calculates gene sets expression scores for each sample and takes an accumulating clustering strategy to let the samples gather into the set according to the progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian cancer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA clustering and different similarity measurement methods. Notably, IGSA is proved to be more sensitive and specific in finding significant pathways, and can indicate related changes in pathways with the severity of disease. In addition, IGSA provides with significant gene sets profile for each sample.

14. Segmentation of Residential Gas Consumers Using Clustering Analysis

Directory of Open Access Journals (Sweden)

Marta P. Fernandes

2017-12-01

Full Text Available The growing environmental concerns and liberalization of energy markets have resulted in an increased competition between utilities and a strong focus on efficiency. To develop new energy efficiency measures and optimize operations, utilities seek new market-related insights and customer engagement strategies. This paper proposes a clustering-based methodology to define the segmentation of residential gas consumers. The segments of gas consumers are obtained through a detailed clustering analysis using smart metering data. Insights are derived from the segmentation, where the segments result from the clustering process and are characterized based on the consumption profiles, as well as according to information regarding consumers’ socio-economic and household key features. The study is based on a sample of approximately one thousand households over one year. The representative load profiles of consumers are essentially characterized by two evident consumption peaks, one in the morning and the other in the evening, and an off-peak consumption. Significant insights can be derived from this methodology regarding typical consumption curves of the different segments of consumers in the population. This knowledge can assist energy utilities and policy makers in the development of consumer engagement strategies, demand forecasting tools and in the design of more sophisticated tariff systems.

15. Comparison of cluster and principal component analysis techniques to derive dietary patterns in Irish adults.

Science.gov (United States)

Hearty, Aine P; Gibney, Michael J

2009-02-01

The aims of the present study were to examine and compare dietary patterns in adults using cluster and factor analyses and to examine the format of the dietary variables on the pattern solutions (i.e. expressed as grams/day (g/d) of each food group or as the percentage contribution to total energy intake). Food intake data were derived from the North/South Ireland Food Consumption Survey 1997-9, which was a randomised cross-sectional study of 7 d recorded food and nutrient intakes of a representative sample of 1379 Irish adults aged 18-64 years. Cluster analysis was performed using the k-means algorithm and principal component analysis (PCA) was used to extract dietary factors. Food data were reduced to thirty-three food groups. For cluster analysis, the most suitable format of the food-group variable was found to be the percentage contribution to energy intake, which produced six clusters: 'Traditional Irish'; 'Continental'; 'Unhealthy foods'; 'Light-meal foods & low-fat milk'; 'Healthy foods'; 'Wholemeal bread & desserts'. For PCA, food groups in the format of g/d were found to be the most suitable format, and this revealed four dietary patterns: 'Unhealthy foods & high alcohol'; 'Traditional Irish'; 'Healthy foods'; 'Sweet convenience foods & low alcohol'. In summary, cluster and PCA identified similar dietary patterns when presented with the same dataset. However, the two dietary pattern methods required a different format of the food-group variable, and the most appropriate format of the input variable should be considered in future studies.

16. Feasibility Study of Parallel Finite Element Analysis on Cluster-of-Clusters

Science.gov (United States)

Muraoka, Masae; Okuda, Hiroshi

With the rapid growth of WAN infrastructure and development of Grid middleware, it's become a realistic and attractive methodology to connect cluster machines on wide-area network for the execution of computation-demanding applications. Many existing parallel finite element (FE) applications have been, however, designed and developed with a single computing resource in mind, since such applications require frequent synchronization and communication among processes. There have been few FE applications that can exploit the distributed environment so far. In this study, we explore the feasibility of FE applications on the cluster-of-clusters. First, we classify FE applications into two types, tightly coupled applications (TCA) and loosely coupled applications (LCA) based on their communication pattern. A prototype of each application is implemented on the cluster-of-clusters. We perform numerical experiments executing TCA and LCA on both the cluster-of-clusters and a single cluster. Thorough these experiments, by comparing the performances and communication cost in each case, we evaluate the feasibility of FEA on the cluster-of-clusters.

17. Charge form factors and alpha-cluster internal structure of 12C

International Nuclear Information System (INIS)

Luk'yanov, V.K.; Zemlyanaya, E.V.; Kadrev, D.N.; Antonov, A.N.; Spasova, K.; Anagnostatos, G.S.; Ginis, P.; Giapitzakis, J.

1999-01-01

The transition densities and form factors of 0 + , 2 + , and 3 - states in 12 C are calculated in alpha-cluster model using the triangle frame with clusters in the vertices. The wave functions of nucleons in the alpha clusters are taken as they were obtained in the framework of the models used for the description of the 4 He form factor and momentum distribution which are based on the one-body density matrix construction. They contain effects of the short-range NN correlations, as well as the d-shell admixtures in 4 He. Calculations and the comparison with the experimental data show that visible effects on the form and magnitude of the 12 C form factors take place, especially at relatively large momentum transfers

18. Local bladder cancer clusters in southeastern Michigan accounting for risk factors, covariates and residential mobility.

Directory of Open Access Journals (Sweden)

Geoffrey M Jacquez

Full Text Available In case control studies disease risk not explained by the significant risk factors is the unexplained risk. Considering unexplained risk for specific populations, places and times can reveal the signature of unidentified risk factors and risk factors not fully accounted for in the case-control study. This potentially can lead to new hypotheses regarding disease causation.Global, local and focused Q-statistics are applied to data from a population-based case-control study of 11 southeast Michigan counties. Analyses were conducted using both year- and age-based measures of time. The analyses were adjusted for arsenic exposure, education, smoking, family history of bladder cancer, occupational exposure to bladder cancer carcinogens, age, gender, and race.Significant global clustering of cases was not found. Such a finding would indicate large-scale clustering of cases relative to controls through time. However, highly significant local clusters were found in Ingham County near Lansing, in Oakland County, and in the City of Jackson, Michigan. The Jackson City cluster was observed in working-ages and is thus consistent with occupational causes. The Ingham County cluster persists over time, suggesting a broad-based geographically defined exposure. Focused clusters were found for 20 industrial sites engaged in manufacturing activities associated with known or suspected bladder cancer carcinogens. Set-based tests that adjusted for multiple testing were not significant, although local clusters persisted through time and temporal trends in probability of local tests were observed.Q analyses provide a powerful tool for unpacking unexplained disease risk from case-control studies. This is particularly useful when the effect of risk factors varies spatially, through time, or through both space and time. For bladder cancer in Michigan, the next step is to investigate causal hypotheses that may explain the excess bladder cancer risk localized to areas of

19. Cluster analysis in systems of magnetic spheres and cubes

Science.gov (United States)

Pyanzina, E. S.; Gudkova, A. V.; Donaldson, J. G.; Kantorovich, S. S.

2017-06-01

In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube.

20. Cluster analysis of activity-time series in motor learning

DEFF Research Database (Denmark)

Balslev, Daniela; Nielsen, Finn Årup; Frutiger, Sally A.

2002-01-01

Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel...... practice-related activity in a fronto-parieto-cerebellar network, in agreement with previous studies of motor learning. These voxels were separated from a group of voxels showing an unspecific time-effect and another group of voxels, whose activation was an artifact from smoothing. Hum. Brain Mapping 15...

1. Clustering of obesity and dental health with lifestyle factors among Turkish and Finnish pre-adolescents

DEFF Research Database (Denmark)

Cinar, Basak; Murtomaa, Heikki

2008-01-01

This study aims to assess any clustering between obesity, number of decayed, missing, and filled teeth (DMFT), television (TV) viewing, and lifestyle factors among pre-adolescents living in 2 countries with different developmental status and oral health care systems - Turkey and Finland.......This study aims to assess any clustering between obesity, number of decayed, missing, and filled teeth (DMFT), television (TV) viewing, and lifestyle factors among pre-adolescents living in 2 countries with different developmental status and oral health care systems - Turkey and Finland....

2. Case-control geographic clustering for residential histories accounting for risk factors and covariates

Science.gov (United States)

2006-01-01

Background Methods for analyzing space-time variation in risk in case-control studies typically ignore residential mobility. We develop an approach for analyzing case-control data for mobile individuals and apply it to study bladder cancer in 11 counties in southeastern Michigan. At this time data collection is incomplete and no inferences should be drawn – we analyze these data to demonstrate the novel methods. Global, local and focused clustering of residential histories for 219 cases and 437 controls is quantified using time-dependent nearest neighbor relationships. Business address histories for 268 industries that release known or suspected bladder cancer carcinogens are analyzed. A logistic model accounting for smoking, gender, age, race and education specifies the probability of being a case, and is incorporated into the cluster randomization procedures. Sensitivity of clustering to definition of the proximity metric is assessed for 1 to 75 k nearest neighbors. Results Global clustering is partly explained by the covariates but remains statistically significant at 12 of the 14 levels of k considered. After accounting for the covariates 26 Local clusters are found in Lapeer, Ingham, Oakland and Jackson counties, with the clusters in Ingham and Oakland counties appearing in 1950 and persisting to the present. Statistically significant focused clusters are found about the business address histories of 22 industries located in Oakland (19 clusters), Ingham (2) and Jackson (1) counties. Clusters in central and southeastern Oakland County appear in the 1930's and persist to the present day. Conclusion These methods provide a systematic approach for evaluating a series of increasingly realistic alternative hypotheses regarding the sources of excess risk. So long as selection of cases and controls is population-based and not geographically biased, these tools can provide insights into geographic risk factors that were not specifically assessed in the case

3. Case-control geographic clustering for residential histories accounting for risk factors and covariates

Directory of Open Access Journals (Sweden)

Goovaerts Pierre

2006-08-01

Full Text Available Abstract Background Methods for analyzing space-time variation in risk in case-control studies typically ignore residential mobility. We develop an approach for analyzing case-control data for mobile individuals and apply it to study bladder cancer in 11 counties in southeastern Michigan. At this time data collection is incomplete and no inferences should be drawn – we analyze these data to demonstrate the novel methods. Global, local and focused clustering of residential histories for 219 cases and 437 controls is quantified using time-dependent nearest neighbor relationships. Business address histories for 268 industries that release known or suspected bladder cancer carcinogens are analyzed. A logistic model accounting for smoking, gender, age, race and education specifies the probability of being a case, and is incorporated into the cluster randomization procedures. Sensitivity of clustering to definition of the proximity metric is assessed for 1 to 75 k nearest neighbors. Results Global clustering is partly explained by the covariates but remains statistically significant at 12 of the 14 levels of k considered. After accounting for the covariates 26 Local clusters are found in Lapeer, Ingham, Oakland and Jackson counties, with the clusters in Ingham and Oakland counties appearing in 1950 and persisting to the present. Statistically significant focused clusters are found about the business address histories of 22 industries located in Oakland (19 clusters, Ingham (2 and Jackson (1 counties. Clusters in central and southeastern Oakland County appear in the 1930's and persist to the present day. Conclusion These methods provide a systematic approach for evaluating a series of increasingly realistic alternative hypotheses regarding the sources of excess risk. So long as selection of cases and controls is population-based and not geographically biased, these tools can provide insights into geographic risk factors that were not specifically

4. Characterizing the course of back pain after osteoporotic vertebral fracture: a hierarchical cluster analysis of a prospective cohort study.

Science.gov (United States)

Toyoda, Hiromitsu; Takahashi, Shinji; Hoshino, Masatoshi; Takayama, Kazushi; Iseki, Kazumichi; Sasaoka, Ryuichi; Tsujio, Tadao; Yasuda, Hiroyuki; Sasaki, Takeharu; Kanematsu, Fumiaki; Kono, Hiroshi; Nakamura, Hiroaki

2017-09-23

This study demonstrated four distinct patterns in the course of back pain after osteoporotic vertebral fracture (OVF). Greater angular instability in the first 6 months after the baseline was one factor affecting back pain after OVF. Understanding the natural course of symptomatic acute OVF is important in deciding the optimal treatment strategy. We used latent class analysis to classify the course of back pain after OVF and identify the risk factors associated with persistent pain. This multicenter cohort study included 218 consecutive patients with ≤ 2-week-old OVFs who were enrolled at 11 institutions. Dynamic x-rays and back pain assessment with a visual analog scale (VAS) were obtained at enrollment and at 1-, 3-, and 6-month follow-ups. The VAS scores were used to characterize patient groups, using hierarchical cluster analysis. VAS for 128 patients was used for hierarchical cluster analysis. Analysis yielded four clusters representing different patterns of back pain progression. Cluster 1 patients (50.8%) had stable, mild pain. Cluster 2 patients (21.1%) started with moderate pain and progressed quickly to very low pain. Patients in cluster 3 (10.9%) had moderate pain that initially improved but worsened after 3 months. Cluster 4 patients (17.2%) had persistent severe pain. Patients in cluster 4 showed significant high baseline pain intensity, higher degree of angular instability, and higher number of previous OVFs, and tended to lack regular exercise. In contrast, patients in cluster 2 had significantly lower baseline VAS and less angular instability. We identified four distinct groups of OVF patients with different patterns of back pain progression. Understanding the course of back pain after OVF may help in its management and contribute to future treatment trials.

5. Physicochemical properties of different corn varieties by principal components analysis and cluster analysis

International Nuclear Information System (INIS)

Zeng, J.; Li, G.; Sun, J.

2013-01-01

Principal components analysis and cluster analysis were used to investigate the properties of different corn varieties. The chemical compositions and some properties of corn flour which processed by drying milling were determined. The results showed that the chemical compositions and physicochemical properties were significantly different among twenty six corn varieties. The quality of corn flour was concerned with five principal components from principal component analysis and the contribution rate of starch pasting properties was important, which could account for 48.90%. Twenty six corn varieties could be classified into four groups by cluster analysis. The consistency between principal components analysis and cluster analysis indicated that multivariate analyses were feasible in the study of corn variety properties. (author)

6. Cluster analysis of autoantibodies in 852 patients with systemic lupus erythematosus from a single center.

Science.gov (United States)

Artim-Esen, Bahar; Çene, Erhan; Şahinkaya, Yasemin; Ertan, Semra; Pehlivan, Özlem; Kamali, Sevil; Gül, Ahmet; Öcal, Lale; Aral, Orhan; Inanç, Murat

2014-07-01

Associations between autoantibodies and clinical features have been described in systemic lupus erythematosus (SLE). Herein, we aimed to define autoantibody clusters and their clinical correlations in a large cohort of patients with SLE. We analyzed 852 patients with SLE who attended our clinic. Seven autoantibodies were selected for cluster analysis: anti-DNA, anti-Sm, anti-RNP, anticardiolipin (aCL) immunoglobulin (Ig)G or IgM, lupus anticoagulant (LAC), anti-Ro, and anti-La. Two-step clustering and Kaplan-Meier survival analyses were used. Five clusters were identified. A cluster consisted of patients with only anti-dsDNA antibodies, a cluster of anti-Sm and anti-RNP, a cluster of aCL IgG/M and LAC, and a cluster of anti-Ro and anti-La antibodies. Analysis revealed 1 more cluster that consisted of patients who did not belong to any of the clusters formed by antibodies chosen for cluster analysis. Sm/RNP cluster had significantly higher incidence of pulmonary hypertension and Raynaud phenomenon. DsDNA cluster had the highest incidence of renal involvement. In the aCL/LAC cluster, there were significantly more patients with neuropsychiatric involvement, antiphospholipid syndrome, autoimmune hemolytic anemia, and thrombocytopenia. According to the Systemic Lupus International Collaborating Clinics damage index, the highest frequency of damage was in the aCL/LAC cluster. Comparison of 10 and 20 years survival showed reduced survival in the aCL/LAC cluster. This study supports the existence of autoantibody clusters with distinct clinical features in SLE and shows that forming clinical subsets according to autoantibody clusters may be useful in predicting the outcome of the disease. Autoantibody clusters in SLE may exhibit differences according to the clinical setting or population.

7. [Typologies of Madrid's citizens (Spain) at the end-of-life: cluster analysis].

Science.gov (United States)

Ortiz-Gonçalves, Belén; Perea-Pérez, Bernardo; Labajo González, Elena; Albarrán Juan, Elena; Santiago-Sáez, Andrés

2018-03-06

To establish typologies within Madrid's citizens (Spain) with regard to end-of-life by cluster analysis. The SPAD 8 programme was implemented in a sample from a health care centre in the autonomous region of Madrid (Spain). A multiple correspondence analysis technique was used, followed by a cluster analysis to create a dendrogram. A cross-sectional study was made beforehand with the results of the questionnaire. Five clusters stand out. Cluster 1: a group who preferred not to answer numerous questions (5%). Cluster 2: in favour of receiving palliative care and euthanasia (40%). Cluster 3: would oppose assisted suicide and would not ask for spiritual assistance (15%). Cluster 4: would like to receive palliative care and assisted suicide (16%). Cluster 5: would oppose assisted suicide and would ask for spiritual assistance (24%). The following four clusters stood out. Clusters 2 and 4 would like to receive palliative care, euthanasia (2) and assisted suicide (4). Clusters 4 and 5 regularly practiced their faith and their family members did not receive palliative care. Clusters 3 and 5 would be opposed to euthanasia and assisted suicide in particular. Clusters 2, 4 and 5 had not completed an advance directive document (2, 4 and 5). Clusters 2 and 3 seldom practiced their faith. This study could be taken into consideration to improve the quality of end-of-life care choices. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

8. Reliability analysis of cluster-based ad-hoc networks

International Nuclear Information System (INIS)

Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

2008-01-01

The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks

9. Shape Analysis of HII Regions - I. Statistical Clustering

Science.gov (United States)

Campbell-White, Justyn; Froebrich, Dirk; Kume, Alfred

2018-04-01

We present here our shape analysis method for a sample of 76 Galactic HII regions from MAGPIS 1.4 GHz data. The main goal is to determine whether physical properties and initial conditions of massive star cluster formation is linked to the shape of the regions. We outline a systematic procedure for extracting region shapes and perform hierarchical clustering on the shape data. We identified six groups that categorise HII regions by common morphologies. We confirmed the validity of these groupings by bootstrap re-sampling and the ordinance technique multidimensional scaling. We then investigated associations between physical parameters and the assigned groups. Location is mostly independent of group, with a small preference for regions of similar longitudes to share common morphologies. The shapes are homogeneously distributed across Galactocentric distance and latitude. One group contains regions that are all younger than 0.5 Myr and ionised by low- to intermediate-mass sources. Those in another group are all driven by intermediate- to high-mass sources. One group was distinctly separated from the other five and contained regions at the surface brightness detection limit for the survey. We find that our hierarchical procedure is most sensitive to the spatial sampling resolution used, which is determined for each region from its distance. We discuss how these errors can be further quantified and reduced in future work by utilising synthetic observations from numerical simulations of HII regions. We also outline how this shape analysis has further applications to other diffuse astronomical objects.

10. Time series clustering analysis of health-promoting behavior

Science.gov (United States)

Yang, Chi-Ta; Hung, Yu-Shiang; Deng, Guang-Feng

2013-10-01

Health promotion must be emphasized to achieve the World Health Organization goal of health for all. Since the global population is aging rapidly, ComCare elder health-promoting service was developed by the Taiwan Institute for Information Industry in 2011. Based on the Pender health promotion model, ComCare service offers five categories of health-promoting functions to address the everyday needs of seniors: nutrition management, social support, exercise management, health responsibility, stress management. To assess the overall ComCare service and to improve understanding of the health-promoting behavior of elders, this study analyzed health-promoting behavioral data automatically collected by the ComCare monitoring system. In the 30638 session records collected for 249 elders from January, 2012 to March, 2013, behavior patterns were identified by fuzzy c-mean time series clustering algorithm combined with autocorrelation-based representation schemes. The analysis showed that time series data for elder health-promoting behavior can be classified into four different clusters. Each type reveals different health-promoting needs, frequencies, function numbers and behaviors. The data analysis result can assist policymakers, health-care providers, and experts in medicine, public health, nursing and psychology and has been provided to Taiwan National Health Insurance Administration to assess the elder health-promoting behavior.

11. Cluster, adaptation and extroversion : a cognitive and entrepreneurial analysis of the Marche music cluster

NARCIS (Netherlands)

Tappi, D.

2005-01-01

Over recent decades, clusters like industrial districts have increasingly attracted attention in economic debate. The study of clusters, particularly in the Italian literature, highlights the inadequacy of the mainstream body of explanation to provide a theory of the emergence and transformation

12. Fitness, fatness and clustering of cardiovascular risk factors in children from Denmark, Estonia and Portugal

DEFF Research Database (Denmark)

Andersen, Lars B; Sardinha, Luis B; Froberg, Karsten

2008-01-01

BACKGROUND: Levels of overweight have increased and fitness has decreased in children. Potentially, these changes may be a threat to future health. Numerous studies have measured changes in body mass index (BMI), but few have assessed the independent effects of low fitness, overweight and physical...... inactivity on cardiovascular (CVD) risk factors. METHODS: A cross-sectional multi-center study including 1 769 children from Denmark, Estonia and Portugal. The main outcome was clustering of CVD risk factors. Independent variables were waist circumference, skinfolds, physical activity and cardio......-respiratory fitness. RESULTS: Both waist circumference and skinfolds were associated with clustered CVD risk. Odds ratios for clustered CVD risk for the upper quartiles compared with the lowest quartile were 9.13 (95% CI: 5.78-14.43) and 11.62 (95% CI: 7.11-18.99) when systolic blood pressure, triglyceride, insulin...

13. Phenotypes Determined by Cluster Analysis in Moderate to Severe Bronchial Asthma.

Science.gov (United States)

Youroukova, Vania M; Dimitrova, Denitsa G; Valerieva, Anna D; Lesichkova, Spaska S; Velikova, Tsvetelina V; Ivanova-Todorova, Ekaterina I; Tumangelova-Yuzeir, Kalina D

2017-06-01

Bronchial asthma is a heterogeneous disease that includes various subtypes. They may share similar clinical characteristics, but probably have different pathological mechanisms. To identify phenotypes using cluster analysis in moderate to severe bronchial asthma and to compare differences in clinical, physiological, immunological and inflammatory data between the clusters. Forty adult patients with moderate to severe bronchial asthma out of exacerbation were included. All underwent clinical assessment, anthropometric measurements, skin prick testing, standard spirometry and measurement fraction of exhaled nitric oxide. Blood eosinophilic count, serum total IgE and periostin levels were determined. Two-step cluster approach, hierarchical clustering method and k-mean analysis were used for identification of the clusters. We have identified four clusters. Cluster 1 (n=14) - late-onset, non-atopic asthma with impaired lung function, Cluster 2 (n=13) - late-onset, atopic asthma, Cluster 3 (n=6) - late-onset, aspirin sensitivity, eosinophilic asthma, and Cluster 4 (n=7) - early-onset, atopic asthma. Our study is the first in Bulgaria in which cluster analysis is applied to asthmatic patients. We identified four clusters. The variables with greatest force for differentiation in our study were: age of asthma onset, duration of diseases, atopy, smoking, blood eosinophils, nonsteroidal anti-inflammatory drugs hypersensitivity, baseline FEV1/FVC and symptoms severity. Our results support the concept of heterogeneity of bronchial asthma and demonstrate that cluster analysis can be an useful tool for phenotyping of disease and personalized approach to the treatment of patients.

14. First course in factor analysis

CERN Document Server

Comrey, Andrew L

2013-01-01

The goal of this book is to foster a basic understanding of factor analytic techniques so that readers can use them in their own research and critically evaluate their use by other researchers. Both the underlying theory and correct application are emphasized. The theory is presented through the mathematical basis of the most common factor analytic models and several methods used in factor analysis. On the application side, considerable attention is given to the extraction problem, the rotation problem, and the interpretation of factor analytic results. Hence, readers are given a background of

15. Integrating PROOF Analysis in Cloud and Batch Clusters

International Nuclear Information System (INIS)

Rodríguez-Marrero, Ana Y; Fernández-del-Castillo, Enol; López García, Álvaro; Marco de Lucas, Jesús; Matorras Weinig, Francisco; González Caballero, Isidro; Cuesta Noriega, Alberto

2012-01-01

High Energy Physics (HEP) analysis are becoming more complex and demanding due to the large amount of data collected by the current experiments. The Parallel ROOT Facility (PROOF) provides researchers with an interactive tool to speed up the analysis of huge volumes of data by exploiting parallel processing on both multicore machines and computing clusters. The typical PROOF deployment scenario is a permanent set of cores configured to run the PROOF daemons. However, this approach is incapable of adapting to the dynamic nature of interactive usage. Several initiatives seek to improve the use of computing resources by integrating PROOF with a batch system, such as Proof on Demand (PoD) or PROOF Cluster. These solutions are currently in production at Universidad de Oviedo and IFCA and are positively evaluated by users. Although they are able to adapt to the computing needs of users, they must comply with the specific configuration, OS and software installed at the batch nodes. Furthermore, they share the machines with other workloads, which may cause disruptions in the interactive service for users. These limitations make PROOF a typical use-case for cloud computing. In this work we take profit from Cloud Infrastructure at IFCA in order to provide a dynamic PROOF environment where users can control the software configuration of the machines. The Proof Analysis Framework (PAF) facilitates the development of new analysis and offers a transparent access to PROOF resources. Several performance measurements are presented for the different scenarios (PoD, SGE and Cloud), showing a speed improvement closely correlated with the number of cores used.

16. Determining wood chip size: image analysis and clustering methods

Directory of Open Access Journals (Sweden)

Paolo Febbi

2013-09-01

Full Text Available One of the standard methods for the determination of the size distribution of wood chips is the oscillating screen method (EN 15149- 1:2010. Recent literature demonstrated how image analysis could return highly accurate measure of the dimensions defined for each individual particle, and could promote a new method depending on the geometrical shape to determine the chip size in a more accurate way. A sample of wood chips (8 litres was sieved through horizontally oscillating sieves, using five different screen hole diameters (3.15, 8, 16, 45, 63 mm; the wood chips were sorted in decreasing size classes and the mass of all fractions was used to determine the size distribution of the particles. Since the chip shape and size influence the sieving results, Wang’s theory, which concerns the geometric forms, was considered. A cluster analysis on the shape descriptors (Fourier descriptors and size descriptors (area, perimeter, Feret diameters, eccentricity was applied to observe the chips distribution. The UPGMA algorithm was applied on Euclidean distance. The obtained dendrogram shows a group separation according with the original three sieving fractions. A comparison has been made between the traditional sieve and clustering results. This preliminary result shows how the image analysis-based method has a high potential for the characterization of wood chip size distribution and could be further investigated. Moreover, this method could be implemented in an online detection machine for chips size characterization. An improvement of the results is expected by using supervised multivariate methods that utilize known class memberships. The main objective of the future activities will be to shift the analysis from a 2-dimensional method to a 3- dimensional acquisition process.

17. A comparison of hierarchical cluster analysis and league table rankings as methods for analysis and presentation of district health system performance data in Uganda.

Science.gov (United States)

Tashobya, Christine K; Dubourg, Dominique; Ssengooba, Freddie; Speybroeck, Niko; Macq, Jean; Criel, Bart

2016-03-01

In 2003, the Uganda Ministry of Health introduced the district league table for district health system performance assessment. The league table presents district performance against a number of input, process and output indicators and a composite index to rank districts. This study explores the use of hierarchical cluster analysis for analysing and presenting district health systems performance data and compares this approach with the use of the league table in Uganda. Ministry of Health and district plans and reports, and published documents were used to provide information on the development and utilization of the Uganda district league table. Quantitative data were accessed from the Ministry of Health databases. Statistical analysis using SPSS version 20 and hierarchical cluster analysis, utilizing Wards' method was used. The hierarchical cluster analysis was conducted on the basis of seven clusters determined for each year from 2003 to 2010, ranging from a cluster of good through moderate-to-poor performers. The characteristics and membership of clusters varied from year to year and were determined by the identity and magnitude of performance of the individual variables. Criticisms of the league table include: perceived unfairness, as it did not take into consideration district peculiarities; and being oversummarized and not adequately informative. Clustering organizes the many data points into clusters of similar entities according to an agreed set of indicators and can provide the beginning point for identifying factors behind the observed performance of districts. Although league table ranking emphasize summation and external control, clustering has the potential to encourage a formative, learning approach. More research is required to shed more light on factors behind observed performance of the different clusters. Other countries especially low-income countries that share many similarities with Uganda can learn from these experiences. © The Author 2015

18. A Novel Clustering Model Based on Set Pair Analysis for the Energy Consumption Forecast in China

Directory of Open Access Journals (Sweden)

Mingwu Wang

2014-01-01

Full Text Available The energy consumption forecast is important for the decision-making of national economic and energy policies. But it is a complex and uncertainty system problem affected by the outer environment and various uncertainty factors. Herein, a novel clustering model based on set pair analysis (SPA was introduced to analyze and predict energy consumption. The annual dynamic relative indicator (DRI of historical energy consumption was adopted to conduct a cluster analysis with Fisher’s optimal partition method. Combined with indicator weights, group centroids of DRIs for influence factors were transferred into aggregating connection numbers in order to interpret uncertainty by identity-discrepancy-contrary (IDC analysis. Moreover, a forecasting model based on similarity to group centroid was discussed to forecast energy consumption of a certain year on the basis of measured values of influence factors. Finally, a case study predicting China’s future energy consumption as well as comparison with the grey method was conducted to confirm the reliability and validity of the model. The results indicate that the method presented here is more feasible and easier to use and can interpret certainty and uncertainty of development speed of energy consumption and influence factors as a whole.

19. Genetic factors influence the clustering of depression among individuals with lower socioeconomic status

NARCIS (Netherlands)

S. López León (Sandra); W.C. Choy (Wing Chi); Y.S. Aulchenko (Yurii); S. Claes (Stephan); B.A. Oostra (Ben); J.P. Mackenbach (Johan); C.M. van Duijn (Cornelia); A.C.J.W. Janssens (Cécile)

2009-01-01

textabstractObjective: To investigate the extent to which shared genetic factors can explain the clustering of depression among individuals with lower socioeconomic status, and to examine if neuroticism or intelligence are involved in these pathways. Methods: In total 2,383 participants (1,028 men

20. Tracking of clustered cardiovascular disease risk factors from childhood to adolescence

DEFF Research Database (Denmark)

Bugge, Anna; El-Naaman, Bianca; McMurray, Robert G

2013-01-01

samples were analyzed for CVD risk factors. A clustered risk-score (z-score) was constructed by adding sex-specific z-scores for blood pressure, homeostatic model assessment (HOMA-IR), triglyceride, skinfolds and negative values of high-density lipoprotein cholesterol (HDLc) and VO(2peak...

1. Cluster analysis of received constellations for optical performance monitoring

NARCIS (Netherlands)

van Weerdenburg, J.J.A.; van Uden, R.; Sillekens, E.; de Waardt, H.; Koonen, A.M.J.; Okonkwo, C.

2016-01-01

Performance monitoring based on centroid clustering to investigate constellation generation offsets. The tool allows flexibility in constellation generation tolerances by forwarding centroids to the demapper. The relation of fibre nonlinearities and singular value decomposition of intra-cluster

2. The composite sequential clustering technique for analysis of multispectral scanner data

Science.gov (United States)

Su, M. Y.

1972-01-01

The clustering technique consists of two parts: (1) a sequential statistical clustering which is essentially a sequential variance analysis, and (2) a generalized K-means clustering. In this composite clustering technique, the output of (1) is a set of initial clusters which are input to (2) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum likelihood classification techniques. The mathematical algorithms for the composite sequential clustering program and a detailed computer program description with job setup are given.

3. Genetic Diversity and Relationships of Neolamarckia cadamba (Roxb. Bosser progenies through cluster analysis

Directory of Open Access Journals (Sweden)

M. Preethi Shree

2018-04-01

Full Text Available Genetic diversity analysis was conducted for biometric attributes in 20 progenies of Neolamarckia cadamba. The application of D2 clustering technique in Neolamarckia cadamba genetic resources resolved the 20 progenies into five clusters. The maximum intra cluster distance was shown by the cluster II. The maximum inter cluster distance was recorded between cluster III and V which indicated the presence of wider genetic distance between Neolamarckia cadamba progenies. Among the growth attributes, volume (36.84 % contributed maximum towards genetic divergence followed by bole height, basal diameter, tree height, number of branches in Neolamarckia cadamba progenies.

4. Cohort study on clustering of lifestyle risk factors and understanding its association with stress on health and wellbeing among school teachers in Malaysia (CLUSTer) – a study protocol

Science.gov (United States)

2014-01-01

Background The study on Clustering of Lifestyle risk factors and Understanding its association with Stress on health and wellbeing among school Teachers in Malaysia (CLUSTer) is a prospective cohort study which aims to extensively study teachers in Malaysia with respect to clustering of lifestyle risk factors and stress, and subsequently, to follow-up the population for important health outcomes. Method/design This study is being conducted in six states within Peninsular Malaysia. From each state, schools from each district are randomly selected and invited to participate in the study. Once the schools agree to participate, all teachers who fulfilled the inclusion criteria are invited to participate. Data collection includes a questionnaire survey and health assessment. Information collected in the questionnaire includes socio-demographic characteristics, participants’ medical history and family history of chronic diseases, teaching characteristics and burden, questions on smoking, alcohol consumption and physical activities (IPAQ); a food frequency questionnaire, the job content questionnaire (JCQ); depression, anxiety and stress scale (DASS21); health related quality of life (SF12-V2); Voice Handicap Index 10 on voice disorder, questions on chronic pain, sleep duration and obstetric history for female participants. Following blood drawn for predefined clinical tests, additional blood and urine specimens are collected and stored for future analysis. Active follow up of exposure and health outcomes will be carried out every two years via telephone or face to face contact. Data collection started in March 2013 and as of the end of March 2014 has been completed for four states: Kuala Lumpur, Selangor, Melaka and Penang. Approximately 6580 participants have been recruited. The first round of data collection and blood sampling is expected to be completed by the end of 2014 with an expected 10,000 participants recruited. Discussion Our study will provide a good basis

5. QTL global meta-analysis: are trait determining genes clustered?

Directory of Open Access Journals (Sweden)

Adelson David L

2009-04-01

Full Text Available Abstract Background A key open question in biology is if genes are physically clustered with respect to their known functions or phenotypic effects. This is of particular interest for Quantitative Trait Loci (QTL where a QTL region could contain a number of genes that contribute to the trait being measured. Results We observed a significant increase in gene density within QTL regions compared to non-QTL regions and/or the entire bovine genome. By grouping QTL from the Bovine QTL Viewer database into 8 categories of non-redundant regions, we have been able to analyze gene density and gene function distribution, based on Gene Ontology (GO with relation to their location within QTL regions, outside of QTL regions and across the entire bovine genome. We identified a number of GO terms that were significantly over represented within particular QTL categories. Furthermore, select GO terms expected to be associated with the QTL category based on common biological knowledge have also proved to be significantly over represented in QTL regions. Conclusion Our analysis provides evidence of over represented GO terms in QTL regions. This increased GO term density indicates possible clustering of gene functions within QTL regions of the bovine genome. Genes with similar functions may be grouped in specific locales and could be contributing to QTL traits. Moreover, we have identified over-represented GO terminology that from a biological standpoint, makes sense with respect to QTL category type.

6. Risk factors associated with cluster size of Mycobacterium tuberculosis (Mtb) of different RFLP lineages in Brazil.

Science.gov (United States)

Peres, Renata Lyrio; Vinhas, Solange Alves; Ribeiro, Fabíola Karla Correa; Palaci, Moisés; do Prado, Thiago Nascimento; Reis-Santos, Bárbara; Zandonade, Eliana; Suffys, Philip Noel; Golub, Jonathan E; Riley, Lee W; Maciel, Ethel Leonor

2018-02-08

Tuberculosis (TB) transmission is influenced by patient-related risk, environment and bacteriological factors. We determined the risk factors associated with cluster size of IS6110 RFLP based genotypes of Mycobacterium tuberculosis (Mtb) isolates from Vitoria, Espirito Santo, Brazil. Cross-sectional study of new TB cases identified in the metropolitan area of Vitoria, Brazil between 2000 and 2010. Mtb isolates were genotyped by the IS6110 RFLP, spoligotyping and RD Rio . The isolates were classified according to genotype cluster sizes by three genotyping methods and associated patient epidemiologic characteristics. Regression Model was performed to identify factors associated with cluster size. Among 959 Mtb isolates, 461 (48%) cases had an isolate that belonged to an RFLP cluster, and six clusters with ten or more isolates were identified. Of the isolates spoligotyped, 448 (52%) were classified as LAM and 412 (48%) as non-LAM. Our regression model found that 6-9 isolates/RFLP cluster were more likely belong to the LAM family, having the RD Rio genotype and to be smear-positive (adjusted OR = 1.17, 95% CI 1.08-1.26; adjusted OR = 1.25, 95% CI 1.14-1.37; crude OR = 2.68, 95% IC 1.13-6.34; respectively) and living in a Serra city neighborhood decrease the risk of being in the 6-9 isolates/RFLP cluster (adjusted OR = 0.29, 95% CI, 0.10-0.84), than in the others groups. Individuals aged 21 to 30, 31 to 40 and > 50 years were less likely of belonging the 2-5 isolates/RFLP cluster than unique patterns compared to individuals cluster group (adjustment OR = 0.45, 95% CI 0.24-0.85) than unique patterns. We found that a large proportion of new TB infections in Vitoria is caused by prevalent Mtb genotypes belonging to the LAM family and RD Rio genotypes. Such information demonstrates that some genotypes are more likely to cause recent transmission. Targeting interventions such as screening in specific areas and social risk groups, should be a priority

7. Cluster decay analysis and related structure effects of fissionable ...

Indian Academy of Sciences (India)

2015-08-01

Aug 1, 2015 ... Collective clusterization approach of dynamical cluster decay model (DCM) has been ... fusion–fission process resulting in the emission of symmetric and/or ... represents the relative separation distance between two fragments or clusters ... decay constant λ or decay half-life T1/2 is defined as λ = (ln 2/T1/2) ...

8. Maximum-entropy clustering algorithm and its global convergence analysis

Institute of Scientific and Technical Information of China (English)

2001-01-01

Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.

9. Hybrid Tracking Algorithm Improvements and Cluster Analysis Methods.

Science.gov (United States)

1982-02-26

UPGMA ), and Ward’s method. Ling’s papers describe a (k,r) clustering method. Each of these methods have individual characteristics which make them...Reference 7), UPGMA is probably the most frequently used clustering strategy. UPGMA tries to group new points into an existing cluster by using an

10. MMPI profiles of males accused of severe crimes: a cluster analysis

NARCIS (Netherlands)

Spaans, M.; Barendregt, M.; Muller, E.; Beurs, E. de; Nijman, H.L.I.; Rinne, T.

2009-01-01

In studies attempting to classify criminal offenders by cluster analysis of Minnesota Multiphasic Personality Inventory-2 (MMPI-2) data, the number of clusters found varied between 10 (the Megargee System) and two (one cluster indicating no psychopathology and one exhibiting serious

11. Cluster analysis of rural, urban, and curbside atmospheric particle size data.

Science.gov (United States)

Beddows, David C S; Dall'Osto, Manuel; Harrison, Roy M

2009-07-01

Particle size is a key determinant of the hazard posed by airborne particles. Continuous multivariate particle size data have been collected using aerosol particle size spectrometers sited at four locations within the UK: Harwell (Oxfordshire); Regents Park (London); British Telecom Tower (London); and Marylebone Road (London). These data have been analyzed using k-means cluster analysis, deduced to be the preferred cluster analysis technique, selected from an option of four partitional cluster packages, namelythe following: Fuzzy; k-means; k-median; and Model-Based clustering. Using cluster validation indices k-means clustering was shown to produce clusters with the smallest size, furthest separation, and importantly the highest degree of similarity between the elements within each partition. Using k-means clustering, the complexity of the data set is reduced allowing characterization of the data according to the temporal and spatial trends of the clusters. At Harwell, the rural background measurement site, the cluster analysis showed that the spectra may be differentiated by their modal-diameters and average temporal trends showing either high counts during the day-time or night-time hours. Likewise for the urban sites, the cluster analysis differentiated the spectra into a small number of size distributions according their modal-diameter, the location of the measurement site, and time of day. The responsible aerosol emission, formation, and dynamic processes can be inferred according to the cluster characteristics and correlation to concurrently measured meteorological, gas phase, and particle phase measurements.

12. Lithuanian Population Aging Factors Analysis

Directory of Open Access Journals (Sweden)

Agnė Garlauskaitė

2015-05-01

Full Text Available The aim of this article is to identify the factors that determine aging of Lithuania’s population and to assess the influence of these factors. The article shows Lithuanian population aging factors analysis, which consists of two main parts: the first describes the aging of the population and its characteristics in theoretical terms. Second part is dedicated to the assessment of trends that influence the aging population and demographic factors and also to analyse the determinants of the aging of the population of Lithuania. After analysis it is concluded in the article that the decline in the birth rate and increase in the number of emigrants compared to immigrants have the greatest impact on aging of the population, so in order to show the aging of the population, a lot of attention should be paid to management of these demographic processes.

13. Clustering analysis of line indices for LAMOST spectra with AstroStat

Science.gov (United States)

Chen, Shu-Xin; Sun, Wei-Min; Yan, Qi

2018-06-01

The application of data mining in astronomical surveys, such as the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey, provides an effective approach to automatically analyze a large amount of complex survey data. Unsupervised clustering could help astronomers find the associations and outliers in a big data set. In this paper, we employ the k-means method to perform clustering for the line index of LAMOST spectra with the powerful software AstroStat. Implementing the line index approach for analyzing astronomical spectra is an effective way to extract spectral features for low resolution spectra, which can represent the main spectral characteristics of stars. A total of 144 340 line indices for A type stars is analyzed through calculating their intra and inter distances between pairs of stars. For intra distance, we use the definition of Mahalanobis distance to explore the degree of clustering for each class, while for outlier detection, we define a local outlier factor for each spectrum. AstroStat furnishes a set of visualization tools for illustrating the analysis results. Checking the spectra detected as outliers, we find that most of them are problematic data and only a few correspond to rare astronomical objects. We show two examples of these outliers, a spectrum with abnormal continuumand a spectrum with emission lines. Our work demonstrates that line index clustering is a good method for examining data quality and identifying rare objects.

14. Cluster form factor calculation in the ab initio no-core shell model

International Nuclear Information System (INIS)

Navratil, Petr

2004-01-01

We derive expressions for cluster overlap integrals or channel cluster form factors for ab initio no-core shell model (NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting point for the description of low-energy nuclear reactions. We consider the composite system and the target nucleus to be described in the Slater determinant (SD) harmonic oscillator (HO) basis while the projectile eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious center of mass components present in the SD bases are removed exactly. The calculated cluster overlap integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations for 5 He vertical bar 4 He+n>, 5 He vertical bar 3 H+d>, 6 Li vertical bar 4 He+d>, 6 Be vertical bar 3 He+ 3 He>, 7 Li vertical bar 4 He+ 3 H>, 7 Li vertical bar 6 Li+n>, 8 Be vertical bar 6 Li+d>, 8 Be vertical bar 7 Li+p>, 9 Li vertical bar 8 Li+n>, and 13 C vertical bar 12 C+n>, with all the nuclei described by multi-(ℎ/2π)Ω NCSM wave functions

15. A weak lensing analysis of the PLCK G100.2-30.4 cluster

Science.gov (United States)

Radovich, M.; Formicola, I.; Meneghetti, M.; Bartalucci, I.; Bourdin, H.; Mazzotta, P.; Moscardini, L.; Ettori, S.; Arnaud, M.; Pratt, G. W.; Aghanim, N.; Dahle, H.; Douspis, M.; Pointecouteau, E.; Grado, A.

2015-07-01

We present a mass estimate of the Planck-discovered cluster PLCK G100.2-30.4, derived from a weak lensing analysis of deep Subaru griz images. We perform a careful selection of the background galaxies using the multi-band imaging data, and undertake the weak lensing analysis on the deep (1 h) r -band image. The shape measurement is based on the Kaiser-Squires-Broadhurst algorithm; we adopt the PSFex software to model the point spread function (PSF) across the field and correct for this in the shape measurement. The weak lensing analysis is validated through extensive image simulations. We compare the resulting weak lensing mass profile and total mass estimate to those obtained from our re-analysis of XMM-Newton observations, derived under the hypothesis of hydrostatic equilibrium. The total integrated mass profiles agree remarkably well, within 1σ across their common radial range. A mass M500 ~ 7 × 1014M⊙ is derived for the cluster from our weak lensing analysis. Comparing this value to that obtained from our reanalysis of XMM-Newton data, we obtain a bias factor of (1-b) = 0.8 ± 0.1. This is compatible within 1σ with the value of (1-b) obtained in Planck 2015 from the calibration of the bias factor using newly available weak lensing reconstructed masses. Based on data collected at Subaru Telescope (University of Tokyo).

16. The relationship between supplier networks and industrial clusters: an analysis based on the cluster mapping method

Directory of Open Access Journals (Sweden)

Ichiro IWASAKI

2010-06-01

Full Text Available Michael Porter’s concept of competitive advantages emphasizes the importance of regional cooperation of various actors in order to gain competitiveness on globalized markets. Foreign investors may play an important role in forming such cooperation networks. Their local suppliers tend to concentrate regionally. They can form, together with local institutions of education, research, financial and other services, development agencies, the nucleus of cooperative clusters. This paper deals with the relationship between supplier networks and clusters. Two main issues are discussed in more detail: the interest of multinational companies in entering regional clusters and the spillover effects that may stem from their participation. After the discussion on the theoretical background, the paper introduces a relatively new analytical method: “cluster mapping” - a method that can spot regional hot spots of specific economic activities with cluster building potential. Experience with the method was gathered in the US and in the European Union. After the discussion on the existing empirical evidence, the authors introduce their own cluster mapping results, which they obtained by using a refined version of the original methodology.

17. Higgs Pair Production: Choosing Benchmarks With Cluster Analysis

CERN Document Server

Carvalho, Alexandra; Dorigo, Tommaso; Goertz, Florian; Gottardo, Carlo A.; Tosi, Mia

2016-01-01

New physics theories often depend on a large number of free parameters. The precise values of those parameters in some cases drastically affect the resulting phenomenology of fundamental physics processes, while in others finite variations can leave it basically invariant at the level of detail experimentally accessible. When designing a strategy for the analysis of experimental data in the search for a signal predicted by a new physics model, it appears advantageous to categorize the parameter space describing the model according to the corresponding kinematical features of the final state. A multi-dimensional test statistic can be used to gauge the degree of similarity in the kinematics of different models; a clustering algorithm using that metric may then allow the division of the space into homogeneous regions, each of which can be successfully represented by a benchmark point. Searches targeting those benchmark points are then guaranteed to be sensitive to a large area of the parameter space. In this doc...

18. Critical Factors in Transnational Oil Companies Localisation Decisions - Clusters and Portfolio Optimisation

International Nuclear Information System (INIS)

Kind, Hans Jarle; Osmundsen, Petter; Tverteraas, Ragnar

2001-10-01

Enhanced understanding of the factors determining trans national companies' localisation decisions is important for regulators and other stake holders concerned about maintaining current activity levels in a petroleum producing country. This article discusses localisation decisions in the context of theories of industrial clusters and real portfolio optimisation theory (materiality), which we argue are two fruitful lines of explanation for trans national companies' behaviour. The industrial cluster literature is concerned about the level of positive externalities associated with geographic clustering of related production activities. The concept of materiality, implying that investment projects in an oil province must be of a certain minimum size in order to be interesting for oil companies, is evaluated empirically and compared to predictions of mainstream economic theory. (author)

19. Critical Factors in Transnational Oil Companies Localisation Decisions - Clusters and Portfolio Optimisation

Energy Technology Data Exchange (ETDEWEB)

Kind, Hans Jarle; Osmundsen, Petter; Tverteraas, Ragnar

2001-10-01

Enhanced understanding of the factors determining transnational companies' localisation decisions is important for regulators and other stakeholders concerned about maintaining current activity levels in a petroleum producing country. This article discusses localisation decisions in the context of theories of industrial clusters and real portfolio optimisation theory (materiality), which we argue are two fruitful lines of explanation for transnational companies' behaviour. The industrial cluster literature is concerned about the level of positive externalities associated with geographic clustering of related production activities. The concept of materiality, implying that investment projects in an oil province must be of a certain minimum size in order to be interesting for oil companies, is evaluated empirically and compared to predictions of mainstream economic theory. (author)

20. Factor Structure of the PTSD Checklist for DSM-5: Relationships Among Symptom Clusters, Anger, and Impulsivity.

Science.gov (United States)

Armour, Cherie; Contractor, Ateka; Shea, Tracie; Elhai, Jon D; Pietrzak, Robert H

2016-02-01

Scarce data are available regarding the dimensional structure of Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) posttraumatic stress disorder (PTSD) symptoms and how factors relate to external constructs. We evaluated six competing models of DSM-5 PTSD symptoms, including Anhedonia, Externalizing Behaviors, and Hybrid models, using confirmatory factor analyses in a sample of 412 trauma-exposed college students. We then examined whether PTSD symptom clusters were differentially related to measures of anger and impulsivity using Wald chi-square tests. The seven-factor Hybrid model was deemed optimal compared with the alternatives. All symptom clusters were associated with anger; the strongest association was between externalizing behaviors and anger (r = 0.54). All symptom clusters, except re-experiencing and avoidance, were associated with impulsivity, with the strongest association between externalizing behaviors and impulsivity (r = 0.49). A seven-factor Hybrid model provides superior fit to DSM-5 PTSD symptom data, with the externalizing behaviors factor being most strongly related to anger and impulsivity.

1. Clusters and Factors Associated with Complementary Basic Education in Tanzania Mainland

Science.gov (United States)

Edwin, Paul; Amina, Msengwa S.; Godwin, Naimani M.

2017-01-01

Complimentary Basic Education in Tanzania (COBET) is a community-based programme initiated in 1999 to provide formal education system opportunity to over aged children or children above school age. The COBET program was analyzed using secondary data collected from 21 regions from 2008 to 2012. Cluster analysis was applied to classify the 21…

2. Performance analysis of clustering techniques over microarray data: A case study

Science.gov (United States)

Dash, Rasmita; Misra, Bijan Bihari

2018-03-01

Handling big data is one of the major issues in the field of statistical data analysis. In such investigation cluster analysis plays a vital role to deal with the large scale data. There are many clustering techniques with different cluster analysis approach. But which approach suits a particular dataset is difficult to predict. To deal with this problem a grading approach is introduced over many clustering techniques to identify a stable technique. But the grading approach depends on the characteristic of dataset as well as on the validity indices. So a two stage grading approach is implemented. In this study the grading approach is implemented over five clustering techniques like hybrid swarm based clustering (HSC), k-means, partitioning around medoids (PAM), vector quantization (VQ) and agglomerative nesting (AGNES). The experimentation is conducted over five microarray datasets with seven validity indices. The finding of grading approach that a cluster technique is significant is also established by Nemenyi post-hoc hypothetical test.

3. Transforming Rubrics Using Factor Analysis

Science.gov (United States)

Baryla, Ed; Shelley, Gary; Trainor, William

2012-01-01

Student learning and program effectiveness is often assessed using rubrics. While much time and effort may go into their creation, it is equally important to assess how effective and efficient the rubrics actually are in terms of measuring competencies over a number of criteria. This study demonstrates the use of common factor analysis to identify…

4. Depth data research of GIS based on clustering analysis algorithm

Science.gov (United States)

Xiong, Yan; Xu, Wenli

2018-03-01

The data of GIS have spatial distribution. Geographic data has both spatial characteristics and attribute characteristics, and also changes with time. Therefore, the amount of data is very large. Nowadays, many industries and departments in the society are using GIS. However, without proper data analysis and mining scheme, GIS will not exert its maximum effectiveness and will waste a lot of data. In this paper, we use the geographic information demand of a national security department as the experimental object, combining the characteristics of GIS data, taking into account the characteristics of time, space, attributes and so on, and using cluster analysis algorithm. We further study the mining scheme for depth data, and get the algorithm model. This algorithm can automatically classify sample data, and then carry out exploratory analysis. The research shows that the algorithm model and the information mining scheme can quickly find hidden depth information from the surface data of GIS, thus improving the efficiency of the security department. This algorithm can also be extended to other fields.

5. Characterizing Heterogeneity within Head and Neck Lesions Using Cluster Analysis of Multi-Parametric MRI Data.

Directory of Open Access Journals (Sweden)

Marco Borri

Full Text Available To describe a methodology, based on cluster analysis, to partition multi-parametric functional imaging data into groups (or clusters of similar functional characteristics, with the aim of characterizing functional heterogeneity within head and neck tumour volumes. To evaluate the performance of the proposed approach on a set of longitudinal MRI data, analysing the evolution of the obtained sub-sets with treatment.The cluster analysis workflow was applied to a combination of dynamic contrast-enhanced and diffusion-weighted imaging MRI data from a cohort of squamous cell carcinoma of the head and neck patients. Cumulative distributions of voxels, containing pre and post-treatment data and including both primary tumours and lymph nodes, were partitioned into k clusters (k = 2, 3 or 4. Principal component analysis and cluster validation were employed to investigate data composition and to independently determine the optimal number of clusters. The evolution of the resulting sub-regions with induction chemotherapy treatment was assessed relative to the number of clusters.The clustering algorithm was able to separate clusters which significantly reduced in voxel number following induction chemotherapy from clusters with a non-significant reduction. Partitioning with the optimal number of clusters (k = 4, determined with cluster validation, produced the best separation between reducing and non-reducing clusters.The proposed methodology was able to identify tumour sub-regions with distinct functional properties, independently separating clusters which were affected differently by treatment. This work demonstrates that unsupervised cluster analysis, with no prior knowledge of the data, can be employed to provide a multi-parametric characterization of functional heterogeneity within tumour volumes.

6. CLUSTERIZATION – A FACTOR OF EFFICIENCY IN SMALL AND MEDIUM HOSPITALITY ENTERPRISES

Directory of Open Access Journals (Sweden)

Zorica Krželj-Čolović

2016-12-01

Full Text Available In the modern global economy that is constantly changing and causing constant threats and challenges, various forms of association and networking enterprises are of growing importance. Considering that small and medium enterprises are drivers of economic growth and employment, they should be the most dynamic and most efficient segment of the economy. The same is true for the hospitality industry, where small and medium hospitality enterprises are the main providers of the tourism offer. The lack of networks in clusters of small and medium hospitality enterprises in Croatia is the cause of the unsatisfactory level of competitiveness and quality of hotel facilities with negative implications for economic and social development. The beginning of clustering in Croatia could be a good way to increase the economic efficiency of Croatian small and medium hospitality enterprises. The aim of this paper is to present clustering as a factor that affects the quality of small and medium hospitality enterprises by increasing their competitiveness in the tourism market which is becoming an important element for their business efficiency. For the purposes of the research, a survey was carried out on a sample of 72 small and medium hospitality enterprises in the period from June to September 2012. The survey results have shown that clusterization is a factor of efficiency in small and medium hospitality enterprises.

7. Analysis of the dynamical cluster approximation for the Hubbard model

OpenAIRE

Aryanpour, K.; Hettler, M. H.; Jarrell, M.

2002-01-01

We examine a central approximation of the recently introduced Dynamical Cluster Approximation (DCA) by example of the Hubbard model. By both analytical and numerical means we study non-compact and compact contributions to the thermodynamic potential. We show that approximating non-compact diagrams by their cluster analogs results in a larger systematic error as compared to the compact diagrams. Consequently, only the compact contributions should be taken from the cluster, whereas non-compact ...

8. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

Energy Technology Data Exchange (ETDEWEB)

Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone, E-mail: wspereira@inb.gov.br [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Grupo Multidisciplinar de Radioprotecao; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Lab. de Radiobiologia e Radiometria Pedro Lopes dos Santos; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Desenvolvimento de Processos; Dores, Luis Augusto de Carvalho Bresser [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Gerencia de Descomissionamento

2011-07-01

The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

9. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

International Nuclear Information System (INIS)

Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone; Kelecom, Alphonse; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova; Dores, Luis Augusto de Carvalho Bresser

2011-01-01

The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

10. X-Ray Morphological Analysis of the Planck ESZ Clusters

Energy Technology Data Exchange (ETDEWEB)

Lovisari, Lorenzo; Forman, William R.; Jones, Christine; Andrade-Santos, Felipe; Randall, Scott; Kraft, Ralph [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ettori, Stefano [INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Arnaud, Monique; Démoclès, Jessica; Pratt, Gabriel W. [Laboratoire AIM, IRFU/Service d’Astrophysique—CEA/DRF—CNRS—Université Paris Diderot, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France)

2017-09-01

X-ray observations show that galaxy clusters have a very large range of morphologies. The most disturbed systems, which are good to study how clusters form and grow and to test physical models, may potentially complicate cosmological studies because the cluster mass determination becomes more challenging. Thus, we need to understand the cluster properties of our samples to reduce possible biases. This is complicated by the fact that different experiments may detect different cluster populations. For example, Sunyaev–Zeldovich (SZ) selected cluster samples have been found to include a greater fraction of disturbed systems than X-ray selected samples. In this paper we determine eight morphological parameters for the Planck Early Sunyaev–Zeldovich (ESZ) objects observed with XMM-Newton . We found that two parameters, concentration and centroid shift, are the best to distinguish between relaxed and disturbed systems. For each parameter we provide the values that allow selecting the most relaxed or most disturbed objects from a sample. We found that there is no mass dependence on the cluster dynamical state. By comparing our results with what was obtained with REXCESS clusters, we also confirm that the ESZ clusters indeed tend to be more disturbed, as found by previous studies.

11. Comparison Analysis and Evaluation of Urban Competitiveness in Chinese Urban Clusters

Directory of Open Access Journals (Sweden)

Haixiang Guo

2015-04-01

Full Text Available With accelerating urbanization, urban competitiveness has become a worldwide academic focus. Previous studies always focused on economic factors but ignored social elements when measuring urban competitiveness. In this paper, a city was considered as a whole containing different units such as departments, individuals and economic activities, which interact with each other and affect its economic operation. Moreover, a city’s development was compared to an object’s movement, and the components were compared to different forces acting upon the object. With the analysis of the principle of object movement, this study has established a more scientific evaluation index system that involves 4 subsystems, 12 elements and 58 indexes. By using the TOPSIS method, the study has worked out the urban competitiveness of 141 cities from 28 Chinese urban clusters in 2009. According to the calculation results, these cities were divided into four levels: A, B, C, D. Furthermore, in order to analyze the competitiveness of cities and urban clusters, cities and urban clusters have been divided into four groups according to their distributive characteristics: the southeast, the northeast and Bohai Rim, the central region and the west. Suggestions and recommendations for each group are provided based on careful analysis.

12. Analysis of brood sex ratios: implications of offspring clustering

Czech Academy of Sciences Publication Activity Database

Krackow, S.; Tkadlec, Emil

Roc. 50, č. 4 (2001), s. 293-301 ISSN 0340-5443 R&D Projects: GA ČR GA524/01/1316 Institutional research plan: CEZ:AV0Z6093917 Keywords : generalized linear mixed models * random coefficients * multilevel analysis Subject RIV: EG - Zoology Impact factor: 2.353, year: 2001

13. Identification and validation of asthma phenotypes in Chinese population using cluster analysis.

Science.gov (United States)

Wang, Lei; Liang, Rui; Zhou, Ting; Zheng, Jing; Liang, Bing Miao; Zhang, Hong Ping; Luo, Feng Ming; Gibson, Peter G; Wang, Gang

2017-10-01

Asthma is a heterogeneous airway disease, so it is crucial to clearly identify clinical phenotypes to achieve better asthma management. To identify and prospectively validate asthma clusters in a Chinese population. Two hundred eighty-four patients were consecutively recruited and 18 sociodemographic and clinical variables were collected. Hierarchical cluster analysis was performed by the Ward method followed by k-means cluster analysis. Then, a prospective 12-month cohort study was used to validate the identified clusters. Five clusters were successfully identified. Clusters 1 (n = 71) and 3 (n = 81) were mild asthma phenotypes with slight airway obstruction and low exacerbation risk, but with a sex differential. Cluster 2 (n = 65) described an "allergic" phenotype, cluster 4 (n = 33) featured a "fixed airflow limitation" phenotype with smoking, and cluster 5 (n = 34) was a "low socioeconomic status" phenotype. Patients in clusters 2, 4, and 5 had distinctly lower socioeconomic status and more psychological symptoms. Cluster 2 had a significantly increased risk of exacerbations (risk ratio [RR] 1.13, 95% confidence interval [CI] 1.03-1.25), unplanned visits for asthma (RR 1.98, 95% CI 1.07-3.66), and emergency visits for asthma (RR 7.17, 95% CI 1.26-40.80). Cluster 4 had an increased risk of unplanned visits (RR 2.22, 95% CI 1.02-4.81), and cluster 5 had increased emergency visits (RR 12.72, 95% CI 1.95-69.78). Kaplan-Meier analysis confirmed that cluster grouping was predictive of time to the first asthma exacerbation, unplanned visit, emergency visit, and hospital admission (P clusters as "allergic asthma," "fixed airflow limitation," and "low socioeconomic status" phenotypes that are at high risk of severe asthma exacerbations and that have management implications for clinical practice in developing countries. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

14. Genome-scale analysis of positional clustering of mouse testis-specific genes

Directory of Open Access Journals (Sweden)

Lee Bernett TK

2005-01-01

Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

15. ANALYSIS OF DEVELOPING BATIK INDUSTRY CLUSTER IN BAKARAN VILLAGE CENTRAL JAVA PROVINCE

Directory of Open Access Journals (Sweden)

Hermanto Hermanto

2017-06-01

Full Text Available SMEs grow in a cluster in a certain geographical area. The entrepreneurs grow and thrive through the business cluster. Central Java Province has a lot of business clusters in improving the regional economy, one of which is batik industry cluster. Pati Regency is one of regencies / city in Central Java that has the lowest turnover. Batik industy cluster in Pati develops quite well, which can be seen from the increasing number of batik industry incorporated in the cluster. This research examines the strategy of developing the batik industry cluster in Pati Regency. The purpose of this research is to determine the proper strategy for developing the batik industry clusters in Pati. The method of research is quantitative. The analysis tool of this research is the Strengths, Weakness, Opportunity, Threats (SWOT analysis. The result of SWOT analysis in this research shows that the proper strategy for developing the batik industry cluster in Pati is optimizing the management of batik business cluster in Bakaran Village; the local government provides information of the facility of business capital loans; the utilization of labors from Bakaran Village while improving the quality of labors by training, and marketing the Bakaran batik to the broader markets while maintaining the quality of batik. Advice that can be given from this research is that the parties who have a role in batik industry cluster development in Bakaran Village, Pati Regency, such as the Local Government.

16. The analysis for energy distribution and biological effects of the clusters from electrons in the tissue equivalent material

International Nuclear Information System (INIS)

Zhang Wenzhong; Guo Yong; Luo Yisheng; Wang Yong

2004-01-01

Objective: To study energy distribution of the clusters from electrons in the tissue equivalent material, and discuss the important aspects of these clusters on inducing biological effects. Methods: Based on the physical mechanism for electrons interacting with tissue equivalent material, the Monte Carlo (MC) method was used. The electron tracks were lively simulated on an event-by-event (ionization, excitation, elastic scattering, Auger electron emission) basis in the material. The relevant conclusions were drawn from the statistic analysis of these events. Results: The electrons will deposit their energy in the form (30%) of cluster in passing through tissue equivalent material, and most clusters (80%) have the energy amount of more than 50 eV. The cluster density depends on its diameter and energy of electrons, and the deposited energy in the cluster depends on the type and energy of radiation. Conclusion: The deposited energy in cluster is the most important factor in inducing all sort of lesions on DNA molecules in tissue cells

17. Analysis of genetic association using hierarchical clustering and cluster validation indices.

Science.gov (United States)

Pagnuco, Inti A; Pastore, Juan I; Abras, Guillermo; Brun, Marcel; Ballarin, Virginia L

2017-10-01

It is usually assumed that co-expressed genes suggest co-regulation in the underlying regulatory network. Determining sets of co-expressed genes is an important task, based on some criteria of similarity. This task is usually performed by clustering algorithms, where the genes are clustered into meaningful groups based on their expression values in a set of experiment. In this work, we propose a method to find sets of co-expressed genes, based on cluster validation indices as a measure of similarity for individual gene groups, and a combination of variants of hierarchical clustering to generate the candidate groups. We evaluated its ability to retrieve significant sets on simulated correlated and real genomics data, where the performance is measured based on its detection ability of co-regulated sets against a full search. Additionally, we analyzed the quality of the best ranked groups using an online bioinformatics tool that provides network information for the selected genes. Copyright © 2017 Elsevier Inc. All rights reserved.

18. WebGimm: An integrated web-based platform for cluster analysis, functional analysis, and interactive visualization of results.

Science.gov (United States)

Joshi, Vineet K; Freudenberg, Johannes M; Hu, Zhen; Medvedovic, Mario

2011-01-17

Cluster analysis methods have been extensively researched, but the adoption of new methods is often hindered by technical barriers in their implementation and use. WebGimm is a free cluster analysis web-service, and an open source general purpose clustering web-server infrastructure designed to facilitate easy deployment of integrated cluster analysis servers based on clustering and functional annotation algorithms implemented in R. Integrated functional analyses and interactive browsing of both, clustering structure and functional annotations provides a complete analytical environment for cluster analysis and interpretation of results. The Java Web Start client-based interface is modeled after the familiar cluster/treeview packages making its use intuitive to a wide array of biomedical researchers. For biomedical researchers, WebGimm provides an avenue to access state of the art clustering procedures. For Bioinformatics methods developers, WebGimm offers a convenient avenue to deploy their newly developed clustering methods. WebGimm server, software and manuals can be freely accessed at http://ClusterAnalysis.org/.

19. Cluster analysis of HZE particle tracks as applied to space radiobiology problems

International Nuclear Information System (INIS)

Batmunkh, M.; Bayarchimeg, L.; Lkhagva, O.; Belov, O.

2013-01-01

A cluster analysis is performed of ionizations in tracks produced by the most abundant nuclei in the charge and energy spectra of the galactic cosmic rays. The frequency distribution of clusters is estimated for cluster sizes comparable to the DNA molecule at different packaging levels. For this purpose, an improved K-mean-based algorithm is suggested. This technique allows processing particle tracks containing a large number of ionization events without setting the number of clusters as an input parameter. Using this method, the ionization distribution pattern is analyzed depending on the cluster size and particle's linear energy transfer

20. Application of cluster analysis and unsupervised learning to multivariate tissue characterization

International Nuclear Information System (INIS)

Momenan, R.; Insana, M.F.; Wagner, R.F.; Garra, B.S.; Loew, M.H.

1987-01-01

This paper describes a procedure for classifying tissue types from unlabeled acoustic measurements (data type unknown) using unsupervised cluster analysis. These techniques are being applied to unsupervised ultrasonic image segmentation and tissue characterization. The performance of a new clustering technique is measured and compared with supervised methods, such as a linear Bayes classifier. In these comparisons two objectives are sought: a) How well does the clustering method group the data?; b) Do the clusters correspond to known tissue classes? The first question is investigated by a measure of cluster similarity and dispersion. The second question involves a comparison with a supervised technique using labeled data

1. On the form factors of relevant operators and their cluster property

International Nuclear Information System (INIS)

Acerbi, C.; Valleriani, A.; Mussardo, G.

1996-09-01

We compute the Form Factors of the relevant scaling operators in a class of integrable models without internal symmetries by exploiting their cluster properties. Their identification is established by computing the corresponding anomalous dimensions by means of Delfino-Simonetti-Cardy sum-rule and further confirmed by comparing some universal ratios of the nearby non-integrable quantum field theories with their independent numerical determination. (author). 21 refs, 5 figs, 16 tabs

2. Participant intimacy: A cluster analysis of the intranuclear cascade

International Nuclear Information System (INIS)

Cugnon, J.; Knoll, J.; Randrup, J.

1981-01-01

The intranuclear cascade for relativistic nuclear collisions is analyzed in terms of clusters consisting of groups of nucleons which are dynamically linked to each other by violent interactions. The formation cross sections for the different cluster types as well as their intrinsic dynamics are studied and compared with the predictions of the linear cascade model ( rows-on-rows ). (orig.)

3. An evaluation of centrality measures used in cluster analysis

Science.gov (United States)

Engström, Christopher; Silvestrov, Sergei

2014-12-01

Clustering of data into groups of similar objects plays an important part when analysing many types of data, especially when the datasets are large as they often are in for example bioinformatics, social networks and computational linguistics. Many clustering algorithms such as K-means and some types of hierarchical clustering need a number of centroids representing the 'center' of the clusters. The choice of centroids for the initial clusters often plays an important role in the quality of the clusters. Since a data point with a high centrality supposedly lies close to the 'center' of some cluster, this can be used to assign centroids rather than through some other method such as picking them at random. Some work have been done to evaluate the use of centrality measures such as degree, betweenness and eigenvector centrality in clustering algorithms. The aim of this article is to compare and evaluate the usefulness of a number of common centrality measures such as the above mentioned and others such as PageRank and related measures.

4. Prevalence, Co-Occurrence and Clustering of Lifestyle Risk Factors Among UK Men

Directory of Open Access Journals (Sweden)

Stephen Zwolinsky

2017-01-01

Full Text Available Objective: Men – more than women - engage in unhealthy lifestyle practices that place them at greater risk of developing non-communicable disease. This paper aims to explore the prevalence, co-occurrence and clustering of four core lifestyle risk factors and examine the socio demographic variation of their distribution, among men living in two central London boroughs. Method: A stratified street survey was undertaken with N=859 men. Prevalence odds ratios calculated risk factor clustering and a multinomial logistic regression model examined the socio-demographic variation. Results: Over 72% of men presented with combinations of lifestyle risk factors. Physical inactivity combined with a lack of fruit and vegetables was the most common combination. Co-occurrence was more prominent for unemployed, widowed, divorced/separated and white British men. Clustering was evident for adherence and non-adherence to UK health recommendations. Conclusion: Men may benefit from targeted health interventions that address multiple – rather than single – health related behaviours.

5. A comparison of heuristic and model-based clustering methods for dietary pattern analysis.

Science.gov (United States)

Greve, Benjamin; Pigeot, Iris; Huybrechts, Inge; Pala, Valeria; Börnhorst, Claudia

2016-02-01

Cluster analysis is widely applied to identify dietary patterns. A new method based on Gaussian mixture models (GMM) seems to be more flexible compared with the commonly applied k-means and Ward's method. In the present paper, these clustering approaches are compared to find the most appropriate one for clustering dietary data. The clustering methods were applied to simulated data sets with different cluster structures to compare their performance knowing the true cluster membership of observations. Furthermore, the three methods were applied to FFQ data assessed in 1791 children participating in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants) Study to explore their performance in practice. The GMM outperformed the other methods in the simulation study in 72 % up to 100 % of cases, depending on the simulated cluster structure. Comparing the computationally less complex k-means and Ward's methods, the performance of k-means was better in 64-100 % of cases. Applied to real data, all methods identified three similar dietary patterns which may be roughly characterized as a 'non-processed' cluster with a high consumption of fruits, vegetables and wholemeal bread, a 'balanced' cluster with only slight preferences of single foods and a 'junk food' cluster. The simulation study suggests that clustering via GMM should be preferred due to its higher flexibility regarding cluster volume, shape and orientation. The k-means seems to be a good alternative, being easier to use while giving similar results when applied to real data.

6. Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables.

Science.gov (United States)

Horiuchi, Yu; Tanimoto, Shuzou; Latif, A H M Mahbub; Urayama, Kevin Y; Aoki, Jiro; Yahagi, Kazuyuki; Okuno, Taishi; Sato, Yu; Tanaka, Tetsu; Koseki, Keita; Komiyama, Kota; Nakajima, Hiroyoshi; Hara, Kazuhiro; Tanabe, Kengo

2018-07-01

Acute heart failure (AHF) is a heterogeneous disease caused by various cardiovascular (CV) pathophysiology and multiple non-CV comorbidities. We aimed to identify clinically important subgroups to improve our understanding of the pathophysiology of AHF and inform clinical decision-making. We evaluated detailed clinical data of 345 consecutive AHF patients using non-hierarchical cluster analysis of 77 variables, including age, sex, HF etiology, comorbidities, physical findings, laboratory data, electrocardiogram, echocardiogram and treatment during hospitalization. Cox proportional hazards regression analysis was performed to estimate the association between the clusters and clinical outcomes. Three clusters were identified. Cluster 1 (n=108) represented "vascular failure". This cluster had the highest average systolic blood pressure at admission and lung congestion with type 2 respiratory failure. Cluster 2 (n=89) represented "cardiac and renal failure". They had the lowest ejection fraction (EF) and worst renal function. Cluster 3 (n=148) comprised mostly older patients and had the highest prevalence of atrial fibrillation and preserved EF. Death or HF hospitalization within 12-month occurred in 23% of Cluster 1, 36% of Cluster 2 and 36% of Cluster 3 (p=0.034). Compared with Cluster 1, risk of death or HF hospitalization was 1.74 (95% CI, 1.03-2.95, p=0.037) for Cluster 2 and 1.82 (95% CI, 1.13-2.93, p=0.014) for Cluster 3. Cluster analysis may be effective in producing clinically relevant categories of AHF, and may suggest underlying pathophysiology and potential utility in predicting clinical outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

7. The Flemish frozen-vegetable industry as an example of cluster analysis : Flanders Vegetable Valley

NARCIS (Netherlands)

Vanhaverbeke, W.P.M.; Larosse, J.; Winnen, W.; Hulsink, W.; Dons, J.J.M.

2008-01-01

In this contribution we present a strategic analysis of the cluster dynamics in the frozen-vegetable industry in Flanders (Belgium)1. The main purpose of this case is twofold. First, we determine the added value of using data about customer and supplier relationships in cluster analysis. Second, we

8. Tracking Undergraduate Student Achievement in a First-Year Physiology Course Using a Cluster Analysis Approach

Science.gov (United States)

Brown, S. J.; White, S.; Power, N.

2015-01-01

A cluster analysis data classification technique was used on assessment scores from 157 undergraduate nursing students who passed 2 successive compulsory courses in human anatomy and physiology. Student scores in five summative assessment tasks, taken in each of the courses, were used as inputs for a cluster analysis procedure. We aimed to group…

9. Performance Analysis of Cluster Formation in Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Edgar Romo Montiel

2017-12-01

Full Text Available Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes.

10. Performance Analysis of Cluster Formation in Wireless Sensor Networks.

Science.gov (United States)

Montiel, Edgar Romo; Rivero-Angeles, Mario E; Rubino, Gerardo; Molina-Lozano, Heron; Menchaca-Mendez, Rolando; Menchaca-Mendez, Ricardo

2017-12-13

Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes.

11. Inflammatory Markers and Clustered Cardiovascular Disease Risk Factors in Danish Adolescents

DEFF Research Database (Denmark)

Bugge, Anna; El-Naaman, Bianca; McMurray, Robert G

2012-01-01

Aims: To evaluate the associations between inflammatory markers and clustering of cardiovascular disease (CVD) risk factors, and to examine how inflammatory markers and CVD risk are related to fatness and cardiorespiratory fitness (VO(2peak)) in adolescents. Methods: Body mass and height, skinfolds...... and blood pressure of 413 adolescents (mean age 13.4 ± 0.3 years) were measured. Circulating fasting levels of glucose, insulin, lipids, adiponectin, C-reactive protein (CRP), tumor necrosis factor (TNF)α, soluble TNF receptor-1 (sTNFR1), interleukin (IL)-6 and IL-1 receptor antagonist (IL-1Ra) were...

12. Higgs pair production: choosing benchmarks with cluster analysis

Energy Technology Data Exchange (ETDEWEB)

Carvalho, Alexandra; Dall’Osso, Martino; Dorigo, Tommaso [Dipartimento di Fisica e Astronomia and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Goertz, Florian [CERN,1211 Geneva 23 (Switzerland); Gottardo, Carlo A. [Physikalisches Institut, Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Tosi, Mia [CERN,1211 Geneva 23 (Switzerland)

2016-04-20

New physics theories often depend on a large number of free parameters. The phenomenology they predict for fundamental physics processes is in some cases drastically affected by the precise value of those free parameters, while in other cases is left basically invariant at the level of detail experimentally accessible. When designing a strategy for the analysis of experimental data in the search for a signal predicted by a new physics model, it appears advantageous to categorize the parameter space describing the model according to the corresponding kinematical features of the final state. A multi-dimensional test statistic can be used to gauge the degree of similarity in the kinematics predicted by different models; a clustering algorithm using that metric may allow the division of the space into homogeneous regions, each of which can be successfully represented by a benchmark point. Searches targeting those benchmarks are then guaranteed to be sensitive to a large area of the parameter space. In this document we show a practical implementation of the above strategy for the study of non-resonant production of Higgs boson pairs in the context of extensions of the standard model with anomalous couplings of the Higgs bosons. A non-standard value of those couplings may significantly enhance the Higgs boson pair-production cross section, such that the process could be detectable with the data that the LHC will collect in Run 2.

13. The triply troubled teenager--chronic conditions associated with fewer protective factors and clustered risk behaviours.

Science.gov (United States)

Nylander, Charlotte; Seidel, Carina; Tindberg, Ylva

2014-02-01

This study aimed to measure protective factors and risk behaviour among adolescents with chronic conditions (CCs) and to evaluate the impact of protective factors on risk-taking. A population-based study of 7262 students aged 15 and 17 years old was performed in Sörmland, Sweden 2008 (response rate 82%). The questionnaire explored background factors, CCs, risk behaviours and protective factors. CCs were reported by 8%, while 58% had no health problems. Girls with CCs encompassed less individual protective factors, while boys with CCs tended to over-report all individual risk behaviours compared with healthy peers. Both boys and girls with CCs were more likely to report few protective factors and co-occurrence of risk behaviours. The adjOR for clustered health risk behaviours was 1.6 (1.0-2.5) in youths with CCs and ≥4 protective factors and 6.3 (3.6-10.9) in youths with CCs and 0-3 protective factors, as compared to healthy peers with ≥4 protective factors. Adolescents with CCs reported fewer protective factors and more risk behaviours than their healthy peers. The vulnerability of adolescents with CCs and few protective factors is important to acknowledge. Professionals should provide stronger protection for these adolescents, to prevent risky behaviour. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

14. Clusters of galaxies as tools in observational cosmology : results from x-ray analysis

International Nuclear Information System (INIS)

Weratschnig, J.M.

2009-01-01

Clusters of galaxies are the largest gravitationally bound structures in the universe. They can be used as ideal tools to study large scale structure formation (e.g. when studying merger clusters) and provide highly interesting environments to analyse several characteristic interaction processes (like ram pressure stripping of galaxies, magnetic fields). In this dissertation thesis, we have studied several clusters of galaxies using X-ray observations. To obtain scientific results, we have applied different data reduction and analysis methods. With a combination of morphological and spectral analysis, the merger cluster Abell 514 was studied in much detail. It has a highly interesting morphology and shows signs for an ongoing merger as well as a shock. using a new method to detect substructure, we have analysed several clusters to determine whether any substructure is present in the X-ray image. This hints towards a real structure in the distribution of the intra-cluster medium (ICM) and is evidence for ongoing mergers. The results from this analysis are extensively used with the cluster of galaxies Abell S1136. Here, we study the ICM distribution and compare its structure with the spatial distribution of star forming galaxies. Cluster magnetic fields are another important topic of my thesis. They can be studied in Radio observations, which can be put into relation with results from X-ray observations. using observational data from several clusters, we could support the theory that cluster magnetic fields are frozen into the ICM. (author)

15. Interactive K-Means Clustering Method Based on User Behavior for Different Analysis Target in Medicine.

Science.gov (United States)

Lei, Yang; Yu, Dai; Bin, Zhang; Yang, Yang

2017-01-01

Clustering algorithm as a basis of data analysis is widely used in analysis systems. However, as for the high dimensions of the data, the clustering algorithm may overlook the business relation between these dimensions especially in the medical fields. As a result, usually the clustering result may not meet the business goals of the users. Then, in the clustering process, if it can combine the knowledge of the users, that is, the doctor's knowledge or the analysis intent, the clustering result can be more satisfied. In this paper, we propose an interactive K -means clustering method to improve the user's satisfactions towards the result. The core of this method is to get the user's feedback of the clustering result, to optimize the clustering result. Then, a particle swarm optimization algorithm is used in the method to optimize the parameters, especially the weight settings in the clustering algorithm to make it reflect the user's business preference as possible. After that, based on the parameter optimization and adjustment, the clustering result can be closer to the user's requirement. Finally, we take an example in the breast cancer, to testify our method. The experiments show the better performance of our algorithm.

16. Phenotypic clustering: a novel method for microglial morphology analysis.

Science.gov (United States)

Verdonk, Franck; Roux, Pascal; Flamant, Patricia; Fiette, Laurence; Bozza, Fernando A; Simard, Sébastien; Lemaire, Marc; Plaud, Benoit; Shorte, Spencer L; Sharshar, Tarek; Chrétien, Fabrice; Danckaert, Anne

2016-06-17

Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex "dendritic-like" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. Our results counteract the classical view of a homogenous regional resting

17. Cluster Computing For Real Time Seismic Array Analysis.

Science.gov (United States)

Martini, M.; Giudicepietro, F.

A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by

18. Global classification of human facial healthy skin using PLS discriminant analysis and clustering analysis.

Science.gov (United States)

Guinot, C; Latreille, J; Tenenhaus, M; Malvy, D J

2001-04-01

Today's classifications of healthy skin are predominantly based on a very limited number of skin characteristics, such as skin oiliness or susceptibility to sun exposure. The aim of the present analysis was to set up a global classification of healthy facial skin, using mathematical models. This classification is based on clinical, biophysical skin characteristics and self-reported information related to the skin, as well as the results of a theoretical skin classification assessed separately for the frontal and the malar zones of the face. In order to maximize the predictive power of the models with a minimum of variables, the Partial Least Square (PLS) discriminant analysis method was used. The resulting PLS components were subjected to clustering analyses to identify the plausible number of clusters and to group the individuals according to their proximities. Using this approach, four PLS components could be constructed and six clusters were found relevant. So, from the 36 hypothetical combinations of the theoretical skin types classification, we tended to a strengthened six classes proposal. Our data suggest that the association of the PLS discriminant analysis and the clustering methods leads to a valid and simple way to classify healthy human skin and represents a potentially useful tool for cosmetic and dermatological research.

19. Types of Obesity and Its Association with the Clustering of Cardiovascular Disease Risk Factors in Jilin Province of China

OpenAIRE

Zhang, Peng; Wang, Rui; Gao, Chunshi; Song, Yuanyuan; Lv, Xin; Jiang, Lingling; Yu, Yaqin; Wang, Yuhan; Li, Bo

2016-01-01

Cardiovascular disease (CVD) has become a serious public health problem in recent years in China. Aggregation of CVD risk factors in one individual increases the risk of CVD and the risk increases substantially with each additional risk factor. This study aims to explore the relationship between the number of clustered CVD risk factors and different types of obesity. A multistage stratified random cluster sampling design was used in this population-based cross-sectional study in 2012. Informa...

20. Propuesta teorica de factores que impulsan la colaboracion interempresarial en la etapa de la conformacion de los Clusters

Directory of Open Access Journals (Sweden)

Rolando Porchini

2010-01-01

Full Text Available Present research intends to clarify relationship between intercompanies collaboration and cluster successful conformation. This project shows theoretical concepts about clusters, origins and how clusters evolution parallels the globalization process. The investigation also clarifies differences about concepts of intercompanies cooperation and collaboration used so far without distinction. Actual scientific literature is analyzed about early phase of cluster conformation. intercompanies collaboration (C.I. is considered key to cluster successful conformation, and highlights which key factors are most relevant in cluster conformation, its consolidation and its competitiveness. This is why this research is important regarding what theoretical framework lies behind the 7 factors recognized as the intercompanies collaboration (C.I. construct. Such factors are: i Interchange of strategic information (I.E., ii formalized and consensual rules (R.C.; iii preexistence of particular strategies (P.E.; iv Process of firms selection (P.S.; v Government roll as facilitator (R.G.; vi Expected leadership in first cluster president (L.P. and vii Expected leadership in first cluster manager (L.G.. This theoretical framework is the first part of an investigation presented here in qualitative terms and the quantitative results will be presented shortly. Finally, some recommendations are presented useful to new clusters being founded in the state as well in Mexico.

1. Comparative analysis of clustering methods for gene expression time course data

Directory of Open Access Journals (Sweden)

Ivan G. Costa

2004-01-01

Full Text Available This work performs a data driven comparative study of clustering methods used in the analysis of gene expression time courses (or time series. Five clustering methods found in the literature of gene expression analysis are compared: agglomerative hierarchical clustering, CLICK, dynamical clustering, k-means and self-organizing maps. In order to evaluate the methods, a k-fold cross-validation procedure adapted to unsupervised methods is applied. The accuracy of the results is assessed by the comparison of the partitions obtained in these experiments with gene annotation, such as protein function and series classification.

2. Hessian regularization based symmetric nonnegative matrix factorization for clustering gene expression and microbiome data.

Science.gov (United States)

Ma, Yuanyuan; Hu, Xiaohua; He, Tingting; Jiang, Xingpeng

2016-12-01

Nonnegative matrix factorization (NMF) has received considerable attention due to its interpretation of observed samples as combinations of different components, and has been successfully used as a clustering method. As an extension of NMF, Symmetric NMF (SNMF) inherits the advantages of NMF. Unlike NMF, however, SNMF takes a nonnegative similarity matrix as an input, and two lower rank nonnegative matrices (H, H T ) are computed as an output to approximate the original similarity matrix. Laplacian regularization has improved the clustering performance of NMF and SNMF. However, Laplacian regularization (LR), as a classic manifold regularization method, suffers some problems because of its weak extrapolating ability. In this paper, we propose a novel variant of SNMF, called Hessian regularization based symmetric nonnegative matrix factorization (HSNMF), for this purpose. In contrast to Laplacian regularization, Hessian regularization fits the data perfectly and extrapolates nicely to unseen data. We conduct extensive experiments on several datasets including text data, gene expression data and HMP (Human Microbiome Project) data. The results show that the proposed method outperforms other methods, which suggests the potential application of HSNMF in biological data clustering. Copyright Â© 2016. Published by Elsevier Inc.

3. Input frequency and lexical variability in phonological development: a survival analysis of word-initial cluster production.

Science.gov (United States)

Ota, Mitsuhiko; Green, Sam J

2013-06-01

Although it has been often hypothesized that children learn to produce new sound patterns first in frequently heard words, the available evidence in support of this claim is inconclusive. To re-examine this question, we conducted a survival analysis of word-initial consonant clusters produced by three children in the Providence Corpus (0 ; 11-4 ; 0). The analysis took account of several lexical factors in addition to lexical input frequency, including the age of first production, production frequency, neighborhood density and number of phonemes. The results showed that lexical input frequency was a significant predictor of the age at which the accuracy level of cluster production in each word first reached 80%. The magnitude of the frequency effect differed across cluster types. Our findings indicate that some of the between-word variance found in the development of sound production can indeed be attributed to the frequency of words in the child's ambient language.

4. [Styles of interpersonal conflict in patients with panic disorder, alcoholism, rheumatoid arthritis and healthy controls: a cluster analysis study].

Science.gov (United States)

Eher, R; Windhaber, J; Rau, H; Schmitt, M; Kellner, E

2000-05-01

Conflict and conflict resolution in intimate relationships are not only among the most important factors influencing relationship satisfaction but are also seen in association with clinical symptoms. Styles of conflict will be assessed in patients suffering from panic disorder with and without agoraphobia, in alcoholics and in patients suffering from rheumatoid arthritis. 176 patients and healthy controls filled out the Styles of Conflict Inventory and questionnaires concerning severity of clinical symptoms. A cluster analysis revealed 5 types of conflict management. Healthy controls showed predominantely assertive and constructive styles, patients with panic disorder showed high levels of cognitive and/or behavioral aggression. Alcoholics showed high levels of repressed aggression, and patients with rheumatoid arthritis often did not exhibit any aggression during conflict. 5 Clusters of conflict pattern have been identified by cluster analysis. Each patient group showed considerable different patterns of conflict management.

5. Hierarchical cluster analysis of progression patterns in open-angle glaucoma patients with medical treatment.

Science.gov (United States)

Bae, Hyoung Won; Rho, Seungsoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun

2014-04-29

To classify medically treated open-angle glaucoma (OAG) by the pattern of progression using hierarchical cluster analysis, and to determine OAG progression characteristics by comparing clusters. Ninety-five eyes of 95 OAG patients who received medical treatment, and who had undergone visual field (VF) testing at least once per year for 5 or more years. OAG was classified into subgroups using hierarchical cluster analysis based on the following five variables: baseline mean deviation (MD), baseline visual field index (VFI), MD slope, VFI slope, and Glaucoma Progression Analysis (GPA) printout. After that, other parameters were compared between clusters. Two clusters were made after a hierarchical cluster analysis. Cluster 1 showed -4.06 ± 2.43 dB baseline MD, 92.58% ± 6.27% baseline VFI, -0.28 ± 0.38 dB per year MD slope, -0.52% ± 0.81% per year VFI slope, and all "no progression" cases in GPA printout, whereas cluster 2 showed -8.68 ± 3.81 baseline MD, 77.54 ± 12.98 baseline VFI, -0.72 ± 0.55 MD slope, -2.22 ± 1.89 VFI slope, and seven "possible" and four "likely" progression cases in GPA printout. There were no significant differences in age, sex, mean IOP, central corneal thickness, and axial length between clusters. However, cluster 2 included more high-tension glaucoma patients and used a greater number of antiglaucoma eye drops significantly compared with cluster 1. Hierarchical cluster analysis of progression patterns divided OAG into slow and fast progression groups, evidenced by assessing the parameters of glaucomatous progression in VF testing. In the fast progression group, the prevalence of high-tension glaucoma was greater and the number of antiglaucoma medications administered was increased versus the slow progression group. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

6. The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor Clustering.

Science.gov (United States)

Magge, Sheela N; Goodman, Elizabeth; Armstrong, Sarah C

2017-07-24

Metabolic syndrome (MetS) was developed by the National Cholesterol Education Program Adult Treatment Panel III, identifying adults with at least 3 of 5 cardiometabolic risk factors (hyperglycemia, increased central adiposity, elevated triglycerides, decreased high-density lipoprotein cholesterol, and elevated blood pressure) who are at increased risk of diabetes and cardiovascular disease. The constellation of MetS component risk factors has a shared pathophysiology and many common treatment approaches grounded in lifestyle modification. Several attempts have been made to define MetS in the pediatric population. However, in children, the construct is difficult to define and has unclear implications for clinical care. In this Clinical Report, we focus on the importance of screening for and treating the individual risk factor components of MetS. Focusing attention on children with cardiometabolic risk factor clustering is emphasized over the need to define a pediatric MetS. Copyright © 2017 by the American Academy of Pediatrics.

7. OMERACT-based fibromyalgia symptom subgroups: an exploratory cluster analysis.

Science.gov (United States)

Vincent, Ann; Hoskin, Tanya L; Whipple, Mary O; Clauw, Daniel J; Barton, Debra L; Benzo, Roberto P; Williams, David A

2014-10-16

The aim of this study was to identify subsets of patients with fibromyalgia with similar symptom profiles using the Outcome Measures in Rheumatology (OMERACT) core symptom domains. Female patients with a diagnosis of fibromyalgia and currently meeting fibromyalgia research survey criteria completed the Brief Pain Inventory, the 30-item Profile of Mood States, the Medical Outcomes Sleep Scale, the Multidimensional Fatigue Inventory, the Multiple Ability Self-Report Questionnaire, the Fibromyalgia Impact Questionnaire-Revised (FIQ-R) and the Short Form-36 between 1 June 2011 and 31 October 2011. Hierarchical agglomerative clustering was used to identify subgroups of patients with similar symptom profiles. To validate the results from this sample, hierarchical agglomerative clustering was repeated in an external sample of female patients with fibromyalgia with similar inclusion criteria. A total of 581 females with a mean age of 55.1 (range, 20.1 to 90.2) years were included. A four-cluster solution best fit the data, and each clustering variable differed significantly (P FIQ-R total scores (P = 0.0004)). In our study, we incorporated core OMERACT symptom domains, which allowed for clustering based on a comprehensive symptom profile. Although our exploratory cluster solution needs confirmation in a longitudinal study, this approach could provide a rationale to support the study of individualized clinical evaluation and intervention.

8. Comparison of Outputs for Variable Combinations Used in Cluster Analysis on Polarmetric Imagery

National Research Council Canada - National Science Library

Petre, Melinda

2008-01-01

.... More specifically, two techniques, Cluster Analysis (CA) and Principle Component Analysis (PCA) can be combined to process Stoke s imagery by distinguishing between pixels, and producing groups of pixels with similar characteristics...

9. Symptom Clusters in People Living with HIV Attending Five Palliative Care Facilities in Two Sub-Saharan African Countries: A Hierarchical Cluster Analysis.

Science.gov (United States)

Moens, Katrien; Siegert, Richard J; Taylor, Steve; Namisango, Eve; Harding, Richard

2015-01-01

Symptom research across conditions has historically focused on single symptoms, and the burden of multiple symptoms and their interactions has been relatively neglected especially in people living with HIV. Symptom cluster studies are required to set priorities in treatment planning, and to lessen the total symptom burden. This study aimed to identify and compare symptom clusters among people living with HIV attending five palliative care facilities in two sub-Saharan African countries. Data from cross-sectional self-report of seven-day symptom prevalence on the 32-item Memorial Symptom Assessment Scale-Short Form were used. A hierarchical cluster analysis was conducted using Ward's method applying squared Euclidean Distance as the similarity measure to determine the clusters. Contingency tables, X2 tests and ANOVA were used to compare the clusters by patient specific characteristics and distress scores. Among the sample (N=217) the mean age was 36.5 (SD 9.0), 73.2% were female, and 49.1% were on antiretroviral therapy (ART). The cluster analysis produced five symptom clusters identified as: 1) dermatological; 2) generalised anxiety and elimination; 3) social and image; 4) persistently present; and 5) a gastrointestinal-related symptom cluster. The patients in the first three symptom clusters reported the highest physical and psychological distress scores. Patient characteristics varied significantly across the five clusters by functional status (worst functional physical status in cluster one, ppeople living with HIV with longitudinally collected symptom data to test cluster stability and identify common symptom trajectories is recommended.

10. Cardiovascular risk factor clustering and its association with fitness in nine-year-old rural Norwegian children

DEFF Research Database (Denmark)

Resaland, G K; Mamen, A; Boreham, C

2010-01-01

of those in the other quartiles. Finally, subjects were cross-tabulated into different fat-fit groups. For both sexes, the unfit and overweight/obese group had a significantly higher CVD risk factor score than the fit and normal weight group. Clustering of CVD risk factors was present in this group......This paper describes cardiovascular disease (CVD) risk factor levels in a population-representative sample of healthy, rural Norwegian children and examines the association between fitness and clustering of CVD risk factors. Final analyses included 111 boys and 116 girls (mean age 9.3 +/- 0.......3). To determine the degree of clustering, six CVD risk factors were selected: homeostasis model assessment score, waist circumference, triglycerides, systolic blood pressure, total cholesterol to high-density lipoprotein ratio and fitness (VO(2peak)). Clustering was observed in 9.9% of the boys and 13...

11. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

Science.gov (United States)

Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

2018-04-01

The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

12. [Principal component analysis and cluster analysis of inorganic elements in sea cucumber Apostichopus japonicus].

Science.gov (United States)

Liu, Xiao-Fang; Xue, Chang-Hu; Wang, Yu-Ming; Li, Zhao-Jie; Xue, Yong; Xu, Jie

2011-11-01

The present study is to investigate the feasibility of multi-elements analysis in determination of the geographical origin of sea cucumber Apostichopus japonicus, and to make choice of the effective tracers in sea cucumber Apostichopus japonicus geographical origin assessment. The content of the elements such as Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Hg and Pb in sea cucumber Apostichopus japonicus samples from seven places of geographical origin were determined by means of ICP-MS. The results were used for the development of elements database. Cluster analysis(CA) and principal component analysis (PCA) were applied to differentiate the sea cucumber Apostichopus japonicus geographical origin. Three principal components which accounted for over 89% of the total variance were extracted from the standardized data. The results of Q-type cluster analysis showed that the 26 samples could be clustered reasonably into five groups, the classification results were significantly associated with the marine distribution of the sea cucumber Apostichopus japonicus samples. The CA and PCA were the effective methods for elements analysis of sea cucumber Apostichopus japonicus samples. The content of the mineral elements in sea cucumber Apostichopus japonicus samples was good chemical descriptors for differentiating their geographical origins.

13. Global myeloma research clusters, output, and citations: a bibliometric mapping and clustering analysis.

Directory of Open Access Journals (Sweden)

Jens Peter Andersen

Full Text Available International collaborative research is a mechanism for improving the development of disease-specific therapies and for improving health at the population level. However, limited data are available to assess the trends in research output related to orphan diseases.We used bibliometric mapping and clustering methods to illustrate the level of fragmentation in myeloma research and the development of collaborative efforts. Publication data from Thomson Reuters Web of Science were retrieved for 2005-2009 and followed until 2013. We created a database of multiple myeloma publications, and we analysed impact and co-authorship density to identify scientific collaborations, developments, and international key players over time. The global annual publication volume for studies on multiple myeloma increased from 1,144 in 2005 to 1,628 in 2009, which represents a 43% increase. This increase is high compared to the 24% and 14% increases observed for lymphoma and leukaemia. The major proportion (>90% of publications was from the US and EU over the study period. The output and impact in terms of citations, identified several successful groups with a large number of intra-cluster collaborations in the US and EU. The US-based myeloma clusters clearly stand out as the most productive and highly cited, and the European Myeloma Network members exhibited a doubling of collaborative publications from 2005 to 2009, still increasing up to 2013.Multiple myeloma research output has increased substantially in the past decade. The fragmented European myeloma research activities based on national or regional groups are progressing, but they require a broad range of targeted research investments to improve multiple myeloma health care.

14. Genomic and Metabolomic Profile Associated to Clustering of Cardio-Metabolic Risk Factors.

Science.gov (United States)

Marrachelli, Vannina G; Rentero, Pilar; Mansego, María L; Morales, Jose Manuel; Galan, Inma; Pardo-Tendero, Mercedes; Martinez, Fernando; Martin-Escudero, Juan Carlos; Briongos, Laisa; Chaves, Felipe Javier; Redon, Josep; Monleon, Daniel

2016-01-01

To identify metabolomic and genomic markers associated with the presence of clustering of cardiometabolic risk factors (CMRFs) from a general population. One thousand five hundred and two subjects, Caucasian, > 18 years, representative of the general population, were included. Blood pressure measurement, anthropometric parameters and metabolic markers were measured. Subjects were grouped according the number of CMRFs (Group 1: profile was assessed by 1H NMR spectra using a Brucker Advance DRX 600 spectrometer. From the total population, 1217 (mean age 54±19, 50.6% men) with high genotyping call rate were analysed. A differential metabolomic profile, which included products from mitochondrial metabolism, extra mitochondrial metabolism, branched amino acids and fatty acid signals were observed among the three groups. The comparison of metabolomic patterns between subjects of Groups 1 to 3 for each of the genotypes associated to those subjects with three or more CMRFs revealed two SNPs, the rs174577_AA of FADS2 gene and the rs3803_TT of GATA2 transcription factor gene, with minimal or no statistically significant differences. Subjects with and without three or more CMRFs who shared the same genotype and metabolomic profile differed in the pattern of CMRFS cluster. Subjects of Group 3 and the AA genotype of the rs174577 had a lower prevalence of hypertension compared to the CC and CT genotype. In contrast, subjects of Group 3 and the TT genotype of the rs3803 polymorphism had a lower prevalence of T2DM, although they were predominantly males and had higher values of plasma creatinine. The results of the present study add information to the metabolomics profile and to the potential impact of genetic factors on the variants of clustering of cardiometabolic risk factors.

15. Topic modeling for cluster analysis of large biological and medical datasets.

Science.gov (United States)

Zhao, Weizhong; Zou, Wen; Chen, James J

2014-01-01

The big data moniker is nowhere better deserved than to describe the ever-increasing prodigiousness and complexity of biological and medical datasets. New methods are needed to generate and test hypotheses, foster biological interpretation, and build validated predictors. Although multivariate techniques such as cluster analysis may allow researchers to identify groups, or clusters, of related variables, the accuracies and effectiveness of traditional clustering methods diminish for large and hyper dimensional datasets. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. Its ability to reduce high dimensionality to a small number of latent variables makes it suitable as a means for clustering or overcoming clustering difficulties in large biological and medical datasets. In this study, three topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, are proposed and tested on the cluster analysis of three large datasets: Salmonella pulsed-field gel electrophoresis (PFGE) dataset, lung cancer dataset, and breast cancer dataset, which represent various types of large biological or medical datasets. All three various methods are shown to improve the efficacy/effectiveness of clustering results on the three datasets in comparison to traditional methods. A preferable cluster analysis method emerged for each of the three datasets on the basis of replicating known biological truths. Topic modeling could be advantageously applied to the large datasets of biological or medical research. The three proposed topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, yield clustering improvements for the three different data types. Clusters more efficaciously represent truthful groupings and subgroupings in the data than traditional methods, suggesting

16. Clinical Characteristics of Exacerbation-Prone Adult Asthmatics Identified by Cluster Analysis.

Science.gov (United States)

Kim, Mi Ae; Shin, Seung Woo; Park, Jong Sook; Uh, Soo Taek; Chang, Hun Soo; Bae, Da Jeong; Cho, You Sook; Park, Hae Sim; Yoon, Ho Joo; Choi, Byoung Whui; Kim, Yong Hoon; Park, Choon Sik

2017-11-01

Asthma is a heterogeneous disease characterized by various types of airway inflammation and obstruction. Therefore, it is classified into several subphenotypes, such as early-onset atopic, obese non-eosinophilic, benign, and eosinophilic asthma, using cluster analysis. A number of asthmatics frequently experience exacerbation over a long-term follow-up period, but the exacerbation-prone subphenotype has rarely been evaluated by cluster analysis. This prompted us to identify clusters reflecting asthma exacerbation. A uniform cluster analysis method was applied to 259 adult asthmatics who were regularly followed-up for over 1 year using 12 variables, selected on the basis of their contribution to asthma phenotypes. After clustering, clinical profiles and exacerbation rates during follow-up were compared among the clusters. Four subphenotypes were identified: cluster 1 was comprised of patients with early-onset atopic asthma with preserved lung function, cluster 2 late-onset non-atopic asthma with impaired lung function, cluster 3 early-onset atopic asthma with severely impaired lung function, and cluster 4 late-onset non-atopic asthma with well-preserved lung function. The patients in clusters 2 and 3 were identified as exacerbation-prone asthmatics, showing a higher risk of asthma exacerbation. Two different phenotypes of exacerbation-prone asthma were identified among Korean asthmatics using cluster analysis; both were characterized by impaired lung function, but the age at asthma onset and atopic status were different between the two. Copyright © 2017 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease

17. Clustering of Risk Factors for Non-Communicable Diseases among Adolescents from Southern Brazil.

Directory of Open Access Journals (Sweden)

Heloyse Elaine Gimenes Nunes

Full Text Available The aim of this study was to investigate the simultaneous presence of risk factors for non-communicable diseases and the association of these risk factors with demographic and economic factors among adolescents from southern Brazil.The study included 916 students (14-19 years old enrolled in the 2014 school year at state schools in São José, Santa Catarina, Brazil. Risk factors related to lifestyle (i.e., physical inactivity, excessive alcohol consumption, smoking, sedentary behaviour and unhealthy diet, demographic variables (sex, age and skin colour and economic variables (school shift and economic level were assessed through a questionnaire. Simultaneous behaviours were assessed by the ratio between observed and expected prevalences of risk factors for non-communicable diseases. The clustering of risk factors was analysed by multinomial logistic regression. The clusters of risk factors that showed a higher prevalence were analysed by binary logistic regression.The clustering of two, three, four, and five risk factors were found in 22.2%, 49.3%, 21.7% and 3.1% of adolescents, respectively. Subgroups that were more likely to have both behaviours of physical inactivity and unhealthy diet simultaneously were mostly composed of girls (OR = 3.03, 95% CI = 1.57-5.85 and those with lower socioeconomic status (OR = 1.83, 95% CI = 1.05-3.21; simultaneous physical inactivity, excessive alcohol consumption, sedentary behaviour and unhealthy diet were mainly observed among older adolescents (OR = 1.49, 95% CI = 1.05-2.12. Subgroups less likely to have both behaviours of sedentary behaviour and unhealthy diet were mostly composed of girls (OR = 0.58, 95% CI = 0.38-0.89; simultaneous physical inactivity, sedentary behaviour and unhealthy diet were mainly observed among older individuals (OR = 0.66, 95% CI = 0.49-0.87 and those of the night shift (OR = 0.59, 95% CI = 0.43-0.82.Adolescents had a high prevalence of simultaneous risk factors for NCDs

18. Clustering of Risk Factors for Non-Communicable Diseases among Adolescents from Southern Brazil.

Science.gov (United States)

Nunes, Heloyse Elaine Gimenes; Gonçalves, Eliane Cristina de Andrade; Vieira, Jéssika Aparecida Jesus; Silva, Diego Augusto Santos

2016-01-01

The aim of this study was to investigate the simultaneous presence of risk factors for non-communicable diseases and the association of these risk factors with demographic and economic factors among adolescents from southern Brazil. The study included 916 students (14-19 years old) enrolled in the 2014 school year at state schools in São José, Santa Catarina, Brazil. Risk factors related to lifestyle (i.e., physical inactivity, excessive alcohol consumption, smoking, sedentary behaviour and unhealthy diet), demographic variables (sex, age and skin colour) and economic variables (school shift and economic level) were assessed through a questionnaire. Simultaneous behaviours were assessed by the ratio between observed and expected prevalences of risk factors for non-communicable diseases. The clustering of risk factors was analysed by multinomial logistic regression. The clusters of risk factors that showed a higher prevalence were analysed by binary logistic regression. The clustering of two, three, four, and five risk factors were found in 22.2%, 49.3%, 21.7% and 3.1% of adolescents, respectively. Subgroups that were more likely to have both behaviours of physical inactivity and unhealthy diet simultaneously were mostly composed of girls (OR = 3.03, 95% CI = 1.57-5.85) and those with lower socioeconomic status (OR = 1.83, 95% CI = 1.05-3.21); simultaneous physical inactivity, excessive alcohol consumption, sedentary behaviour and unhealthy diet were mainly observed among older adolescents (OR = 1.49, 95% CI = 1.05-2.12). Subgroups less likely to have both behaviours of sedentary behaviour and unhealthy diet were mostly composed of girls (OR = 0.58, 95% CI = 0.38-0.89); simultaneous physical inactivity, sedentary behaviour and unhealthy diet were mainly observed among older individuals (OR = 0.66, 95% CI = 0.49-0.87) and those of the night shift (OR = 0.59, 95% CI = 0.43-0.82). Adolescents had a high prevalence of simultaneous risk factors for NCDs. Demographic

19. A hierarchical clustering scheme approach to assessment of IP-network traffic using detrended fluctuation analysis

Science.gov (United States)

Takuma, Takehisa; Masugi, Masao

2009-03-01

This paper presents an approach to the assessment of IP-network traffic in terms of the time variation of self-similarity. To get a comprehensive view in analyzing the degree of long-range dependence (LRD) of IP-network traffic, we use a hierarchical clustering scheme, which provides a way to classify high-dimensional data with a tree-like structure. Also, in the LRD-based analysis, we employ detrended fluctuation analysis (DFA), which is applicable to the analysis of long-range power-law correlations or LRD in non-stationary time-series signals. Based on sequential measurements of IP-network traffic at two locations, this paper derives corresponding values for the LRD-related parameter α that reflects the degree of LRD of measured data. In performing the hierarchical clustering scheme, we use three parameters: the α value, average throughput, and the proportion of network traffic that exceeds 80% of network bandwidth for each measured data set. We visually confirm that the traffic data can be classified in accordance with the network traffic properties, resulting in that the combined depiction of the LRD and other factors can give us an effective assessment of network conditions at different times.

20. Cluster analysis of tropical cyclone tracks in the Southern Hemisphere

Energy Technology Data Exchange (ETDEWEB)

Ramsay, Hamish A. [Monash University, Monash Weather and Climate, School of Mathematical Sciences, Clayton, VIC (Australia); Camargo, Suzana J.; Kim, Daehyun [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States)

2012-08-15

A probabilistic clustering method is used to describe various aspects of tropical cyclone (TC) tracks in the Southern Hemisphere, for the period 1969-2008. A total of 7 clusters are examined: three in the South Indian Ocean, three in the Australian Region, and one in the South Pacific Ocean. Large-scale environmental variables related to TC genesis in each cluster are explored, including sea surface temperature, low-level relative vorticity, deep-layer vertical wind shear, outgoing longwave radiation, El Nino-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO). Composite maps, constructed 2 days prior to genesis, show some of these to be significant precursors to TC formation - most prominently, westerly wind anomalies equatorward of the main development regions. Clusters are also evaluated with respect to their genesis location, seasonality, mean peak intensity, track duration, landfall location, and intensity at landfall. ENSO is found to play a significant role in modulating annual frequency and mean genesis location in three of the seven clusters (two in the South Indian Ocean and one in the Pacific). The ENSO-modulating effect on genesis frequency is caused primarily by changes in low-level zonal flow between the equator and 10 S, and associated relative vorticity changes in the main development regions. ENSO also has a significant effect on mean genesis location in three clusters, with TCs forming further equatorward (poleward) during El Nino (La Nina) in addition to large shifts in mean longitude. The MJO has a strong influence on TC genesis in all clusters, though the amount modulation is found to be sensitive to the definition of the MJO. (orig.)

1. A clustering analysis of lipoprotein diameters in the metabolic syndrome

Directory of Open Access Journals (Sweden)

Frazier-Wood Alexis C

2011-12-01

Full Text Available Abstract Background The presence of smaller low-density lipoproteins (LDL has been associated with atherosclerosis risk, and the insulin resistance (IR underlying the metabolic syndrome (MetS. In addition, some research has supported the association of very low-, low- and high-density lipoprotein (VLDL HDL particle diameters with components of the metabolic syndrome (MetS, although this has been the focus of less research. We aimed to explore the relationship of VLDL, LDL and HDL diameters to MetS and its features, and by clustering individuals by their diameters of VLDL, LDL and HDL particles, to capture information across all three fractions of lipoprotein into a unified phenotype. Methods We used nuclear magnetic resonance spectroscopy measurements on fasting plasma samples from a general population sample of 1,036 adults (mean ± SD, 48.8 ± 16.2 y of age. Using latent class analysis, the sample was grouped by the diameter of their fasting lipoproteins, and mixed effects models tested whether the distribution of MetS components varied across the groups. Results Eight discrete groups were identified. Two groups (N = 251 were enriched with individuals meeting criteria for the MetS, and were characterized by the smallest LDL/HDL diameters. One of those two groups, one was additionally distinguished by large VLDL, and had significantly higher blood pressure, fasting glucose, triglycerides, and waist circumference (WC; P Conclusions While small LDL diameters remain associated with IR and the MetS, the occurrence of these in conjunction with a shift to overall larger VLDL diameter may identify those with the highest fasting glucose, TG and WC within the MetS. If replicated, the association of this phenotype with more severe IR-features indicated that it may contribute to identifying of those most at risk for incident type II diabetes and cardiometabolic disease.

2. Using Cluster Analysis to Compartmentalize a Large Managed Wetland Based on Physical, Biological, and Climatic Geospatial Attributes.

Science.gov (United States)

Hahus, Ian; Migliaccio, Kati; Douglas-Mankin, Kyle; Klarenberg, Geraldine; Muñoz-Carpena, Rafael

2018-04-27

Hierarchical and partitional cluster analyses were used to compartmentalize Water Conservation Area 1, a managed wetland within the Arthur R. Marshall Loxahatchee National Wildlife Refuge in southeast Florida, USA, based on physical, biological, and climatic geospatial attributes. Single, complete, average, and Ward's linkages were tested during the hierarchical cluster analyses, with average linkage providing the best results. In general, the partitional method, partitioning around medoids, found clusters that were more evenly sized and more spatially aggregated than those resulting from the hierarchical analyses. However, hierarchical analysis appeared to be better suited to identify outlier regions that were significantly different from other areas. The clusters identified by geospatial attributes were similar to clusters developed for the interior marsh in a separate study using water quality attributes, suggesting that similar factors have influenced variations in both the set of physical, biological, and climatic attributes selected in this study and water quality parameters. However, geospatial data allowed further subdivision of several interior marsh clusters identified from the water quality data, potentially indicating zones with important differences in function. Identification of these zones can be useful to managers and modelers by informing the distribution of monitoring equipment and personnel as well as delineating regions that may respond similarly to future changes in management or climate.

3. Clonal Clusters and Virulence Factors of Group C and G Streptococcus Causing Severe Infections, Manitoba, Canada, 2012-2014.

Science.gov (United States)

Lother, Sylvain A; Demczuk, Walter; Martin, Irene; Mulvey, Michael; Dufault, Brenden; Lagacé-Wiens, Philippe; Keynan, Yoav

2017-07-01

The incidence of group C and G Streptococcus (GCGS) bacteremia, which is associated with severe disease and death, is increasing. We characterized clinical features, outcomes, and genetic determinants of GCGS bacteremia for 89 patients in Winnipeg, Manitoba, Canada, who had GCGS bacteremia during 2012-2014. Of the 89 patients, 51% had bacteremia from skin and soft tissue, 70% had severe disease features, and 20% died. Whole-genome sequencing analysis was performed on isolates derived from 89 blood samples and 33 respiratory sample controls: 5 closely related genetic lineages were identified as being more likely to cause invasive disease than non-clade isolates (83% vs. 57%, p = 0.002). Virulence factors cbp, fbp, speG, sicG, gfbA, and bca clustered clonally into these clades. A clonal distribution of virulence factors may account for severe and fatal cases of bacteremia caused by invasive GCGS.

4. Assessment of Random Assignment in Training and Test Sets using Generalized Cluster Analysis Technique

Directory of Open Access Journals (Sweden)

Sorana D. BOLBOACĂ

2011-06-01

Full Text Available Aim: The properness of random assignment of compounds in training and validation sets was assessed using the generalized cluster technique. Material and Method: A quantitative Structure-Activity Relationship model using Molecular Descriptors Family on Vertices was evaluated in terms of assignment of carboquinone derivatives in training and test sets during the leave-many-out analysis. Assignment of compounds was investigated using five variables: observed anticancer activity and four structure descriptors. Generalized cluster analysis with K-means algorithm was applied in order to investigate if the assignment of compounds was or not proper. The Euclidian distance and maximization of the initial distance using a cross-validation with a v-fold of 10 was applied. Results: All five variables included in analysis proved to have statistically significant contribution in identification of clusters. Three clusters were identified, each of them containing both carboquinone derivatives belonging to training as well as to test sets. The observed activity of carboquinone derivatives proved to be normal distributed on every. The presence of training and test sets in all clusters identified using generalized cluster analysis with K-means algorithm and the distribution of observed activity within clusters sustain a proper assignment of compounds in training and test set. Conclusion: Generalized cluster analysis using the K-means algorithm proved to be a valid method in assessment of random assignment of carboquinone derivatives in training and test sets.

5. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome

Energy Technology Data Exchange (ETDEWEB)

Lalonde, Michel, E-mail: mlalonde15@rogers.com; Wassenaar, Richard [Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Wells, R. Glenn; Birnie, David; Ruddy, Terrence D. [Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7 (Canada)

2014-07-15

Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster

6. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome

International Nuclear Information System (INIS)

Lalonde, Michel; Wassenaar, Richard; Wells, R. Glenn; Birnie, David; Ruddy, Terrence D.

2014-01-01

Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster

7. Nurses' beliefs about nursing diagnosis: A study with cluster analysis.

Science.gov (United States)

D'Agostino, Fabio; Pancani, Luca; Romero-Sánchez, José Manuel; Lumillo-Gutierrez, Iris; Paloma-Castro, Olga; Vellone, Ercole; Alvaro, Rosaria

2018-06-01

To identify clusters of nurses in relation to their beliefs about nursing diagnosis among two populations (Italian and Spanish); to investigate differences among clusters of nurses in each population considering the nurses' socio-demographic data, attitudes towards nursing diagnosis, intentions to make nursing diagnosis and actual behaviours in making nursing diagnosis. Nurses' beliefs concerning nursing diagnosis can influence its use in practice but this is still unclear. A cross-sectional design. A convenience sample of nurses in Italy and Spain was enrolled. Data were collected between 2014-2015 using tools, that is, a socio-demographic questionnaire and behavioural, normative and control beliefs, attitudes, intentions and behaviours scales. The sample included 499 nurses (272 Italians & 227 Spanish). Of these, 66.5% of the Italian and 90.7% of the Spanish sample were female. The mean age was 36.5 and 45.2 years old in the Italian and Spanish sample respectively. Six clusters of nurses were identified in Spain and four in Italy. Three clusters were similar among the two populations. Similar significant associations between age, years of work, attitudes towards nursing diagnosis, intentions to make nursing diagnosis and behaviours in making nursing diagnosis and cluster membership in each population were identified. Belief profiles identified unique subsets of nurses that have distinct characteristics. Categorizing nurses by belief patterns may help administrators and educators to tailor interventions aimed at improving nursing diagnosis use in practice. © 2018 John Wiley & Sons Ltd.

8. Cluster Analysis of Customer Reviews Extracted from Web Pages

Directory of Open Access Journals (Sweden)

S. Shivashankar

2010-01-01

Full Text Available As e-commerce is gaining popularity day by day, the web has become an excellent source for gathering customer reviews / opinions by the market researchers. The number of customer reviews that a product receives is growing at very fast rate (It could be in hundreds or thousands. Customer reviews posted on the websites vary greatly in quality. The potential customer has to read necessarily all the reviews irrespective of their quality to make a decision on whether to purchase the product or not. In this paper, we make an attempt to assess are view based on its quality, to help the customer make a proper buying decision. The quality of customer review is assessed as most significant, more significant, significant and insignificant.A novel and effective web mining technique is proposed for assessing a customer review of a particular product based on the feature clustering techniques, namely, k-means method and fuzzy c-means method. This is performed in three steps : (1Identify review regions and extract reviews from it, (2 Extract and cluster the features of reviews by a clustering technique and then assign weights to the features belonging to each of the clusters (groups and (3 Assess the review by considering the feature weights and group belongingness. The k-means and fuzzy c-means clustering techniques are implemented and tested on customer reviews extracted from web pages. Performance of these techniques are analyzed.

9. Social and Behavioral Risk Marker Clustering Associated with Biological Risk Factors for Coronary Heart Disease: NHANES 2001–2004

Directory of Open Access Journals (Sweden)

Nicholas J. Everage

2014-01-01

Full Text Available Background. Social and behavioral risk markers (e.g., physical activity, diet, smoking, and socioeconomic position cluster; however, little is known whether clustering is associated with coronary heart disease (CHD risk. Objectives were to determine if sociobehavioral clustering is associated with biological CHD risk factors (total cholesterol, HDL cholesterol, systolic blood pressure, body mass index, waist circumference, and diabetes and whether associations are independent of individual clustering components. Methods. Participants included 4,305 males and 4,673 females aged ≥20 years from NHANES 2001–2004. Sociobehavioral Risk Marker Index (SRI included a summary score of physical activity, fruit/vegetable consumption, smoking, and educational attainment. Regression analyses evaluated associations of SRI with aforementioned biological CHD risk factors. Receiver operator curve analyses assessed independent predictive ability of SRI. Results. Healthful clustering (SRI = 0 was associated with improved biological CHD risk factor levels in 5 of 6 risk factors in females and 2 of 6 risk factors in males. Adding SRI to models containing age, race, and individual SRI components did not improve C-statistics. Conclusions. Findings suggest that healthful sociobehavioral risk marker clustering is associated with favorable CHD risk factor levels, particularly in females. These findings should inform social ecological interventions that consider health impacts of addressing social and behavioral risk factors.

10. Identification and comparative analysis of the protocadherin cluster in a reptile, the green anole lizard.

Directory of Open Access Journals (Sweden)

Xiao-Juan Jiang

Full Text Available BACKGROUND: The vertebrate protocadherins are a subfamily of cell adhesion molecules that are predominantly expressed in the nervous system and are believed to play an important role in establishing the complex neural network during animal development. Genes encoding these molecules are organized into a cluster in the genome. Comparative analysis of the protocadherin subcluster organization and gene arrangements in different vertebrates has provided interesting insights into the history of vertebrate genome evolution. Among tetrapods, protocadherin clusters have been fully characterized only in mammals. In this study, we report the identification and comparative analysis of the protocadherin cluster in a reptile, the green anole lizard (Anolis carolinensis. METHODOLOGY/PRINCIPAL FINDINGS: We show that the anole protocadherin cluster spans over a megabase and encodes a total of 71 genes. The number of genes in the anole protocadherin cluster is significantly higher than that in the coelacanth (49 genes and mammalian (54-59 genes clusters. The anole protocadherin genes are organized into four subclusters: the delta, alpha, beta and gamma. This subcluster organization is identical to that of the coelacanth protocadherin cluster, but differs from the mammalian clusters which lack the delta subcluster. The gene number expansion in the anole protocadherin cluster is largely due to the extensive gene duplication in the gammab subgroup. Similar to coelacanth and elephant shark protocadherin genes, the anole protocadherin genes have experienced a low frequency of gene conversion. CONCLUSIONS/SIGNIFICANCE: Our results suggest that similar to the protocadherin clusters in other vertebrates, the evolution of anole protocadherin cluster is driven mainly by lineage-specific gene duplications and degeneration. Our analysis also shows that loss of the protocadherin delta subcluster in the mammalian lineage occurred after the divergence of mammals and reptiles

11. Non-negative matrix factorization by maximizing correntropy for cancer clustering

KAUST Repository

Wang, Jim Jing-Yan; Wang, Xiaolei; Gao, Xin

2013-01-01

Background: Non-negative matrix factorization (NMF) has been shown to be a powerful tool for clustering gene expression data, which are widely used to classify cancers. NMF aims to find two non-negative matrices whose product closely approximates the original matrix. Traditional NMF methods minimize either the l2 norm or the Kullback-Leibler distance between the product of the two matrices and the original matrix. Correntropy was recently shown to be an effective similarity measurement due to its stability to outliers or noise.Results: We propose a maximum correntropy criterion (MCC)-based NMF method (NMF-MCC) for gene expression data-based cancer clustering. Instead of minimizing the l2 norm or the Kullback-Leibler distance, NMF-MCC maximizes the correntropy between the product of the two matrices and the original matrix. The optimization problem can be solved by an expectation conditional maximization algorithm.Conclusions: Extensive experiments on six cancer benchmark sets demonstrate that the proposed method is significantly more accurate than the state-of-the-art methods in cancer clustering. 2013 Wang et al.; licensee BioMed Central Ltd.

12. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery.

Science.gov (United States)

Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren; Brickner, Jason H

2016-03-14

In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. © 2016 Randise-Hinchliff et al.

13. Non-negative matrix factorization by maximizing correntropy for cancer clustering

KAUST Repository

Wang, Jim Jing-Yan

2013-03-24

Background: Non-negative matrix factorization (NMF) has been shown to be a powerful tool for clustering gene expression data, which are widely used to classify cancers. NMF aims to find two non-negative matrices whose product closely approximates the original matrix. Traditional NMF methods minimize either the l2 norm or the Kullback-Leibler distance between the product of the two matrices and the original matrix. Correntropy was recently shown to be an effective similarity measurement due to its stability to outliers or noise.Results: We propose a maximum correntropy criterion (MCC)-based NMF method (NMF-MCC) for gene expression data-based cancer clustering. Instead of minimizing the l2 norm or the Kullback-Leibler distance, NMF-MCC maximizes the correntropy between the product of the two matrices and the original matrix. The optimization problem can be solved by an expectation conditional maximization algorithm.Conclusions: Extensive experiments on six cancer benchmark sets demonstrate that the proposed method is significantly more accurate than the state-of-the-art methods in cancer clustering. 2013 Wang et al.; licensee BioMed Central Ltd.

14. Clustering analysis of malware behavior using Self Organizing Map

DEFF Research Database (Denmark)

Pirscoveanu, Radu-Stefan; Stevanovic, Matija; Pedersen, Jens Myrup

2016-01-01

For the time being, malware behavioral classification is performed by means of Anti-Virus (AV) generated labels. The paper investigates the inconsistencies associated with current practices by evaluating the identified differences between current vendors. In this paper we rely on Self Organizing...... Map, an unsupervised machine learning algorithm, for generating clusters that capture the similarities between malware behavior. A data set of approximately 270,000 samples was used to generate the behavioral profile of malicious types in order to compare the outcome of the proposed clustering...... approach with the labels collected from 57 Antivirus vendors using VirusTotal. Upon evaluating the results, the paper concludes on shortcomings of relying on AV vendors for labeling malware samples. In order to solve the problem, a cluster-based classification is proposed, which should provide more...

15. Marketing Mix Formulation for Higher Education: An Integrated Analysis Employing Analytic Hierarchy Process, Cluster Analysis and Correspondence Analysis

Science.gov (United States)

Ho, Hsuan-Fu; Hung, Chia-Chi

2008-01-01

Purpose: The purpose of this paper is to examine how a graduate institute at National Chiayi University (NCYU), by using a model that integrates analytic hierarchy process, cluster analysis and correspondence analysis, can develop effective marketing strategies. Design/methodology/approach: This is primarily a quantitative study aimed at…

16. Influence of birth cohort on age of onset cluster analysis in bipolar I disorder

DEFF Research Database (Denmark)

Bauer, M; Glenn, T; Alda, M

2015-01-01

Purpose: Two common approaches to identify subgroups of patients with bipolar disorder are clustering methodology (mixture analysis) based on the age of onset, and a birth cohort analysis. This study investigates if a birth cohort effect will influence the results of clustering on the age of onset...... cohort. Model-based clustering (mixture analysis) was then performed on the age of onset data using the residuals. Clinical variables in subgroups were compared. Results: There was a strong birth cohort effect. Without adjusting for the birth cohort, three subgroups were found by clustering. After...... on the age of onset, and that there is a birth cohort effect. Including the birth cohort adjustment altered the number and characteristics of subgroups detected when clustering by age of onset. Further investigation is needed to determine if combining both approaches will identify subgroups that are more...

17. Dancoff factors of unit cells in cluster geometry with partial absorption of neutrons

International Nuclear Information System (INIS)

Rodrigues, Leticia Jenisch

2011-01-01

In its classical formulation, the Dancoff factor for a perfectly absorbing fuel rod is defined as the relative reduction in the incurrent of resonance neutrons into the rod in the presence of neighboring rods, as compared to the incurrent into a single fuel rod immersed in an infinite moderator. Alternatively, this factor can be viewed as the probability that a neutron emerging from the surface of a fuel rod will enter another fuel rod without any collision in the moderator or cladding. For perfectly absorbing fuel these definitions are equivalent. In the last years, several works appeared in literature reporting improvements in the calculation of Dancoff factors, using both the classical and the collision probability definitions. In this work, we step further reporting Dancoff factors for perfectly absorbing (Black) and partially absorbing (Grey) fuel rods calculated by the collision probability method, in cluster cells with square outer boundaries. In order to validate the results, comparisons are made with the equivalent cylindricalized cell in hypothetical test cases. The calculation is performed considering specularly reflecting boundary conditions, for the square lattice, and diffusive reflecting boundary conditions, for the cylindrical geometry. The results show the expected asymptotic behavior of the solution with increasing cell sizes. In addition, Dancoff factors are computed for the Canadian cells CANDU-37 and CANFLEX by the Monte Carlo and Direct methods. Finally, the effective multiplication factors, k eff , for these cells (cluster cell with square outer boundaries and the equivalent cylindricalized cell) are also computed, and the differences reported for the cases using the perfect and partial absorption assumptions. (author)

18. Parkinson's Disease Subtypes Identified from Cluster Analysis of Motor and Non-motor Symptoms.

Science.gov (United States)

Mu, Jesse; Chaudhuri, Kallol R; Bielza, Concha; de Pedro-Cuesta, Jesus; Larrañaga, Pedro; Martinez-Martin, Pablo

2017-01-01

Parkinson's disease is now considered a complex, multi-peptide, central, and peripheral nervous system disorder with considerable clinical heterogeneity. Non-motor symptoms play a key role in the trajectory of Parkinson's disease, from prodromal premotor to end stages. To understand the clinical heterogeneity of Parkinson's disease, this study used cluster analysis to search for subtypes from a large, multi-center, international, and well-characterized cohort of Parkinson's disease patients across all motor stages, using a combination of cardinal motor features (bradykinesia, rigidity, tremor, axial signs) and, for the first time, specific validated rater-based non-motor symptom scales. Two independent international cohort studies were used: (a) the validation study of the Non-Motor Symptoms Scale ( n = 411) and (b) baseline data from the global Non-Motor International Longitudinal Study ( n = 540). k -means cluster analyses were performed on the non-motor and motor domains (domains clustering) and the 30 individual non-motor symptoms alone (symptoms clustering), and hierarchical agglomerative clustering was performed to group symptoms together. Four clusters are identified from the domains clustering supporting previous studies: mild, non-motor dominant, motor-dominant, and severe. In addition, six new smaller clusters are identified from the symptoms clustering, each characterized by clinically-relevant non-motor symptoms. The clusters identified in this study present statistical confirmation of the increasingly important role of non-motor symptoms (NMS) in Parkinson's disease heterogeneity and take steps toward subtype-specific treatment packages.

19. Cluster transfer form factor and intercluster relative motion in the orthogonality-condition model

International Nuclear Information System (INIS)

Lovas, R.G.; Pal, K.F.

1984-01-01

The orthogonality-condition model (OCM), as an approximation method for calculating the overlap and potential overlap functions involved in the form factor of transfer reactions, is tested against microscopic cluster calculations for the 7 Li=α+t system. The OCM overlap and potential overlap turned out to depend strongly on the OCM potential although the potentials are chosen so as to produce the same asymptotic phase. Excellent approximations to microscopic overlaps and potential overlaps are, however, obtained by optimizing the OCM potential so that the OCM may reproduce the microscopic energy surface. This way the dependence on the OCM potential is traced back to the underlying nucleon-nucleon force. (author)

20. iterClust: a statistical framework for iterative clustering analysis.

Science.gov (United States)

Ding, Hongxu; Wang, Wanxin; Califano, Andrea

2018-03-22

In a scenario where populations A, B1 and B2 (subpopulations of B) exist, pronounced differences between A and B may mask subtle differences between B1 and B2. Here we present iterClust, an iterative clustering framework, which can separate more pronounced differences (e.g. A and B) in starting iterations, followed by relatively subtle differences (e.g. B1 and B2), providing a comprehensive clustering trajectory. iterClust is implemented as a Bioconductor R package. andrea.califano@columbia.edu, hd2326@columbia.edu. Supplementary information is available at Bioinformatics online.

1. Dynamic analysis of clustered building structures using substructures methods

International Nuclear Information System (INIS)

Leimbach, K.R.; Krutzik, N.J.

1989-01-01

The dynamic substructure approach to the building cluster on a common base mat starts with the generation of Ritz-vectors for each building on a rigid foundation. The base mat plus the foundation soil is subjected to kinematic constraint modes, for example constant, linear, quadratic or cubic constraints. These constraint modes are also imposed on the buildings. By enforcing kinematic compatibility of the complete structural system on the basis of the constraint modes a reduced Ritz model of the complete cluster is obtained. This reduced model can now be analyzed by modal time history or response spectrum methods

2. Applying Clustering to Statistical Analysis of Student Reasoning about Two-Dimensional Kinematics

Science.gov (United States)

Springuel, R. Padraic; Wittman, Michael C.; Thompson, John R.

2007-01-01

We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and…

3. Differences Between Ward's and UPGMA Methods of Cluster Analysis: Implications for School Psychology.

Science.gov (United States)

Hale, Robert L.; Dougherty, Donna

1988-01-01

Compared the efficacy of two methods of cluster analysis, the unweighted pair-groups method using arithmetic averages (UPGMA) and Ward's method, for students grouped on intelligence, achievement, and social adjustment by both clustering methods. Found UPGMA more efficacious based on output, on cophenetic correlation coefficients generated by each…

4. The reflection of hierarchical cluster analysis of co-occurrence matrices in SPSS

NARCIS (Netherlands)

Zhou, Q.; Leng, F.; Leydesdorff, L.

2015-01-01

Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the SPSS hierarchical clustering module for co-occurrence matrices in order to compare

5. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

Science.gov (United States)

Chan, Julia Y. K.; Bauer, Christopher F.

2014-01-01

The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

6. Social Learning Network Analysis Model to Identify Learning Patterns Using Ontology Clustering Techniques and Meaningful Learning

Science.gov (United States)

Firdausiah Mansur, Andi Besse; Yusof, Norazah

2013-01-01

Clustering on Social Learning Network still not explored widely, especially when the network focuses on e-learning system. Any conventional methods are not really suitable for the e-learning data. SNA requires content analysis, which involves human intervention and need to be carried out manually. Some of the previous clustering techniques need…

7. Development of innovative methods for risk assessment in high-rise construction based on clustering of risk factors

Science.gov (United States)

Okolelova, Ella; Shibaeva, Marina; Shalnev, Oleg

2018-03-01

The article analyses risks in high-rise construction in terms of investment value with account of the maximum probable loss in case of risk event. The authors scrutinized the risks of high-rise construction in regions with various geographic, climatic and socio-economic conditions that may influence the project environment. Risk classification is presented in general terms, that includes aggregated characteristics of risks being common for many regions. Cluster analysis tools, that allow considering generalized groups of risk depending on their qualitative and quantitative features, were used in order to model the influence of the risk factors on the implementation of investment project. For convenience of further calculations, each type of risk is assigned a separate code with the number of the cluster and the subtype of risk. This approach and the coding of risk factors makes it possible to build a risk matrix, which greatly facilitates the task of determining the degree of impact of risks. The authors clarified and expanded the concept of the price risk, which is defined as the expected value of the event, 105 which extends the capabilities of the model, allows estimating an interval of the probability of occurrence and also using other probabilistic methods of calculation.

8. Symptom Cluster Research With Biomarkers and Genetics Using Latent Class Analysis.

Science.gov (United States)

Conley, Samantha

2017-12-01

The purpose of this article is to provide an overview of latent class analysis (LCA) and examples from symptom cluster research that includes biomarkers and genetics. A review of LCA with genetics and biomarkers was conducted using Medline, Embase, PubMed, and Google Scholar. LCA is a robust latent variable model used to cluster categorical data and allows for the determination of empirically determined symptom clusters. Researchers should consider using LCA to link empirically determined symptom clusters to biomarkers and genetics to better understand the underlying etiology of symptom clusters. The full potential of LCA in symptom cluster research has not yet been realized because it has been used in limited populations, and researchers have explored limited biologic pathways.

9. Insulin sensitivity and clustering of coronary heart disease risk factors in young adults. The Northern Ireland Young Hearts Study

DEFF Research Database (Denmark)

Andersen, Lars Bo; Boreham, Colin A.G.; Young, Ian S.

2006-01-01

risk factor. Subjects with clustered risk were defined as those displaying four or more risk factors. Blood glucose and insulin were measured in the fasting state and 2 h after ingestion of a 75 g glucose load. Results. Fasting insulin and the homeostasis model assessment insulin resistance score (HOMA......) were strong, graded predictors of clustered risk. The odds ratio (OR) for having clustered risk was 10.8 (95% CI: 3.6-32.4) for the upper quartile of fasting insulin compared to the lowest quartile, and the corresponding OR for HOMA was 23.2 (95% CI: 5.3-101.6). Conclusion. HOMA score predicts...

10. Urbanization factors associated with childhood asthma and prematurity: a population-based analysis aged from 0 to 5 years in Taiwan by using Cox regression within a hospital cluster model.

Science.gov (United States)

Lin, Sheng-Chieh; Lin, Hui-Wen

2015-04-01

Childhood asthma and premature birth are both common; however, no studies have reported urbanization association between asthma and prematurity and the duration of prematurity affect asthma development. We use Taiwan Longitudinal Health Insurance Database (LHID) to explore association between asthma and prematurity among children by using a population-based analysis. This is a retrospective cohort study with registration data derived from Taiwan LHID. We evaluated prematurely born infants and children aged prematurely and 13 851 (40.27 per 1000 person-years) controls. The hazard ratio for asthma during 5-year follow-up period was 1.95 (95% confidence interval = 1.67-2.28) among children born prematurely. Boys born prematurely aged 0-2 years were associated with higher asthma rates compared with girls in non-premature and premature groups. Living in urban areas, those born prematurely were associated with higher rates of asthma compared with non-prematurity. Those born prematurely lived in northern region had higher asthma hazard ratio than other regions. Our analyses indicated that sex, age, urbanization level, and geographic region are significantly associated with prematurity and asthma. Based on cumulative asthma-free survival curve generated using the Kaplan-Meier method, infants born prematurely should be closely monitored to see if they would develop asthma until the age of 6 years.

11. Clusters of Insomnia Disorder: An Exploratory Cluster Analysis of Objective Sleep Parameters Reveals Differences in Neurocognitive Functioning, Quantitative EEG, and Heart Rate Variability.

Science.gov (United States)

Miller, Christopher B; Bartlett, Delwyn J; Mullins, Anna E; Dodds, Kirsty L; Gordon, Christopher J; Kyle, Simon D; Kim, Jong Won; D'Rozario, Angela L; Lee, Rico S C; Comas, Maria; Marshall, Nathaniel S; Yee, Brendon J; Espie, Colin A; Grunstein, Ronald R

2016-11-01

To empirically derive and evaluate potential clusters of Insomnia Disorder through cluster analysis from polysomnography (PSG). We hypothesized that clusters would differ on neurocognitive performance, sleep-onset measures of quantitative ( q )-EEG and heart rate variability (HRV). Research volunteers with Insomnia Disorder (DSM-5) completed a neurocognitive assessment and overnight PSG measures of total sleep time (TST), wake time after sleep onset (WASO), and sleep onset latency (SOL) were used to determine clusters. From 96 volunteers with Insomnia Disorder, cluster analysis derived at least two clusters from objective sleep parameters: Insomnia with normal objective sleep duration (I-NSD: n = 53) and Insomnia with short sleep duration (I-SSD: n = 43). At sleep onset, differences in HRV between I-NSD and I-SSD clusters suggest attenuated parasympathetic activity in I-SSD (P insomnia clusters derived from cluster analysis differ in sleep onset HRV. Preliminary data suggest evidence for three clusters in insomnia with differences for sustained attention and sleep-onset q -EEG. Insomnia 100 sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR) identification number 12612000049875. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347742. © 2016 Associated Professional Sleep Societies, LLC.

12. The identification of credit card encoders by hierarchical cluster analysis of the jitters of magnetic stripes.

Science.gov (United States)

Leung, S C; Fung, W K; Wong, K H

1999-01-01

The relative bit density variation graphs of 207 specimen credit cards processed by 12 encoding machines were examined first visually, and then classified by means of hierarchical cluster analysis. Twenty-nine credit cards being treated as 'questioned' samples were tested by way of cluster analysis against 'controls' derived from known encoders. It was found that hierarchical cluster analysis provided a high accuracy of identification with all 29 'questioned' samples classified correctly. On the other hand, although visual comparison of jitter graphs was less discriminating, it was nevertheless capable of giving a reasonably accurate result.

13. Clustering Analysis for Credit Default Probabilities in a Retail Bank Portfolio

Directory of Open Access Journals (Sweden)

Elena ANDREI (DRAGOMIR

2012-08-01

Full Text Available Methods underlying cluster analysis are very useful in data analysis, especially when the processed volume of data is very large, so that it becomes impossible to extract essential information, unless specific instruments are used to summarize and structure the gross information. In this context, cluster analysis techniques are used particularly, for systematic information analysis. The aim of this article is to build an useful model for banking field, based on data mining techniques, by dividing the groups of borrowers into clusters, in order to obtain a profile of the customers (debtors and good payers. We assume that a class is appropriate if it contains members that have a high degree of similarity and the standard method for measuring the similarity within a group shows the lowest variance. After clustering, data mining techniques are implemented on the cluster with bad debtors, reaching a very high accuracy after implementation. The paper is structured as follows: Section 2 describes the model for data analysis based on a specific scoring model that we proposed. In section 3, we present a cluster analysis using K-means algorithm and the DM models are applied on a specific cluster. Section 4 shows the conclusions.

14. An easy guide to factor analysis

CERN Document Server

Kline, Paul

2014-01-01

Factor analysis is a statistical technique widely used in psychology and the social sciences. With the advent of powerful computers, factor analysis and other multivariate methods are now available to many more people. An Easy Guide to Factor Analysis presents and explains factor analysis as clearly and simply as possible. The author, Paul Kline, carefully defines all statistical terms and demonstrates step-by-step how to work out a simple example of principal components analysis and rotation. He further explains other methods of factor analysis, including confirmatory and path analysis, a

15. Profiling physical activity motivation based on self-determination theory: a cluster analysis approach.

Science.gov (United States)

Friederichs, Stijn Ah; Bolman, Catherine; Oenema, Anke; Lechner, Lilian

2015-01-01

In order to promote physical activity uptake and maintenance in individuals who do not comply with physical activity guidelines, it is important to increase our understanding of physical activity motivation among this group. The present study aimed to examine motivational profiles in a large sample of adults who do not comply with physical activity guidelines. The sample for this study consisted of 2473 individuals (31.4% male; age 44.6 ± 12.9). In order to generate motivational profiles based on motivational regulation, a cluster analysis was conducted. One-way analyses of variance were then used to compare the clusters in terms of demographics, physical activity level, motivation to be active and subjective experience while being active. Three motivational clusters were derived based on motivational regulation scores: a low motivation cluster, a controlled motivation cluster and an autonomous motivation cluster. These clusters differed significantly from each other with respect to physical activity behavior, motivation to be active and subjective experience while being active. Overall, the autonomous motivation cluster displayed more favorable characteristics compared to the other two clusters. The results of this study provide additional support for the importance of autonomous motivation in the context of physical activity behavior. The three derived clusters may be relevant in the context of physical activity interventions as individuals within the different clusters might benefit most from different intervention approaches. In addition, this study shows that cluster analysis is a useful method for differentiating between motivational profiles in large groups of individuals who do not comply with physical activity guidelines.

16. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis

Directory of Open Access Journals (Sweden)

Huanhuan Li

2017-08-01

Full Text Available The Shipboard Automatic Identification System (AIS is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW, a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our

17. Deconstructing Bipolar Disorder and Schizophrenia: A cross-diagnostic cluster analysis of cognitive phenotypes.

Science.gov (United States)

Lee, Junghee; Rizzo, Shemra; Altshuler, Lori; Glahn, David C; Miklowitz, David J; Sugar, Catherine A; Wynn, Jonathan K; Green, Michael F

2017-02-01

Bipolar disorder (BD) and schizophrenia (SZ) show substantial overlap. It has been suggested that a subgroup of patients might contribute to these overlapping features. This study employed a cross-diagnostic cluster analysis to identify subgroups of individuals with shared cognitive phenotypes. 143 participants (68 BD patients, 39 SZ patients and 36 healthy controls) completed a battery of EEG and performance assessments on perception, nonsocial cognition and social cognition. A K-means cluster analysis was conducted with all participants across diagnostic groups. Clinical symptoms, functional capacity, and functional outcome were assessed in patients. A two-cluster solution across 3 groups was the most stable. One cluster including 44 BD patients, 31 controls and 5 SZ patients showed better cognition (High cluster) than the other cluster with 24 BD patients, 35 SZ patients and 5 controls (Low cluster). BD patients in the High cluster performed better than BD patients in the Low cluster across cognitive domains. Within each cluster, participants with different clinical diagnoses showed different profiles across cognitive domains. All patients are in the chronic phase and out of mood episode at the time of assessment and most of the assessment were behavioral measures. This study identified two clusters with shared cognitive phenotype profiles that were not proxies for clinical diagnoses. The finding of better social cognitive performance of BD patients than SZ patients in the Lowe cluster suggest that relatively preserved social cognition may be important to identify disease process distinct to each disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

18. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis.

Science.gov (United States)

Li, Huanhuan; Liu, Jingxian; Liu, Ryan Wen; Xiong, Naixue; Wu, Kefeng; Kim, Tai-Hoon

2017-08-04

The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with

19. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

Energy Technology Data Exchange (ETDEWEB)

Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303 (United States); Hammond, Karl D. [Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

2015-10-28

We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.

20. Prediction of line failure fault based on weighted fuzzy dynamic clustering and improved relational analysis

Science.gov (United States)

Meng, Xiaocheng; Che, Renfei; Gao, Shi; He, Juntao

2018-04-01

With the advent of large data age, power system research has entered a new stage. At present, the main application of large data in the power system is the early warning analysis of the power equipment, that is, by collecting the relevant historical fault data information, the system security is improved by predicting the early warning and failure rate of different kinds of equipment under certain relational factors. In this paper, a method of line failure rate warning is proposed. Firstly, fuzzy dynamic clustering is carried out based on the collected historical information. Considering the imbalance between the attributes, the coefficient of variation is given to the corresponding weights. And then use the weighted fuzzy clustering to deal with the data more effectively. Then, by analyzing the basic idea and basic properties of the relational analysis model theory, the gray relational model is improved by combining the slope and the Deng model. And the incremental composition and composition of the two sequences are also considered to the gray relational model to obtain the gray relational degree between the various samples. The failure rate is predicted according to the principle of weighting. Finally, the concrete process is expounded by an example, and the validity and superiority of the proposed method are verified.

1. Crowd Analysis by Using Optical Flow and Density Based Clustering

DEFF Research Database (Denmark)

Santoro, Francesco; Pedro, Sergio; Tan, Zheng-Hua

2010-01-01

In this paper, we present a system to detect and track crowds in a video sequence captured by a camera. In a first step, we compute optical flows by means of pyramidal Lucas-Kanade feature tracking. Afterwards, a density based clustering is used to group similar vectors. In the last step...

2. Weighted Clustering

DEFF Research Database (Denmark)

Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

2012-01-01

We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

3. Performance comparison analysis library communication cluster system using merge sort

Science.gov (United States)

Wulandari, D. A. R.; Ramadhan, M. E.

2018-04-01

Begins by using a single processor, to increase the speed of computing time, the use of multi-processor was introduced. The second paradigm is known as parallel computing, example cluster. The cluster must have the communication potocol for processing, one of it is message passing Interface (MPI). MPI have many library, both of them OPENMPI and MPICH2. Performance of the cluster machine depend on suitable between performance characters of library communication and characters of the problem so this study aims to analyze the comparative performances libraries in handling parallel computing process. The case study in this research are MPICH2 and OpenMPI. This case research execute sorting’s problem to know the performance of cluster system. The sorting problem use mergesort method. The research method is by implementing OpenMPI and MPICH2 on a Linux-based cluster by using five computer virtual then analyze the performance of the system by different scenario tests and three parameters for to know the performance of MPICH2 and OpenMPI. These performances are execution time, speedup and efficiency. The results of this study showed that the addition of each data size makes OpenMPI and MPICH2 have an average speed-up and efficiency tend to increase but at a large data size decreases. increased data size doesn’t necessarily increased speed up and efficiency but only execution time example in 100000 data size. OpenMPI has a execution time greater than MPICH2 example in 1000 data size average execution time with MPICH2 is 0,009721 and OpenMPI is 0,003895 OpenMPI can customize communication needs.

4. Phenotypes of asthma in low-income children and adolescents: cluster analysis

Directory of Open Access Journals (Sweden)

Anna Lucia Barros Cabral

Full Text Available ABSTRACT Objective: Studies characterizing asthma phenotypes have predominantly included adults or have involved children and adolescents in developed countries. Therefore, their applicability in other populations, such as those of developing countries, remains indeterminate. Our objective was to determine how low-income children and adolescents with asthma in Brazil are distributed across a cluster analysis. Methods: We included 306 children and adolescents (6-18 years of age with a clinical diagnosis of asthma and under medical treatment for at least one year of follow-up. At enrollment, all the patients were clinically stable. For the cluster analysis, we selected 20 variables commonly measured in clinical practice and considered important in defining asthma phenotypes. Variables with high multicollinearity were excluded. A cluster analysis was applied using a twostep agglomerative test and log-likelihood distance measure. Results: Three clusters were defined for our population. Cluster 1 (n = 94 included subjects with normal pulmonary function, mild eosinophil inflammation, few exacerbations, later age at asthma onset, and mild atopy. Cluster 2 (n = 87 included those with normal pulmonary function, a moderate number of exacerbations, early age at asthma onset, more severe eosinophil inflammation, and moderate atopy. Cluster 3 (n = 108 included those with poor pulmonary function, frequent exacerbations, severe eosinophil inflammation, and severe atopy. Conclusions: Asthma was characterized by the presence of atopy, number of exacerbations, and lung function in low-income children and adolescents in Brazil. The many similarities with previous cluster analyses of phenotypes indicate that this approach shows good generalizability.

5. Genome cluster database. A sequence family analysis platform for Arabidopsis and rice.

Science.gov (United States)

Horan, Kevin; Lauricha, Josh; Bailey-Serres, Julia; Raikhel, Natasha; Girke, Thomas

2005-05-01

The genome-wide protein sequences from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) spp. japonica were clustered into families using sequence similarity and domain-based clustering. The two fundamentally different methods resulted in separate cluster sets with complementary properties to compensate the limitations for accurate family analysis. Functional names for the identified families were assigned with an efficient computational approach that uses the description of the most common molecular function gene ontology node within each cluster. Subsequently, multiple alignments and phylogenetic trees were calculated for the assembled families. All clustering results and their underlying sequences were organized in the Web-accessible Genome Cluster Database (http://bioinfo.ucr.edu/projects/GCD) with rich interactive and user-friendly sequence family mining tools to facilitate the analysis of any given family of interest for the plant science community. An automated clustering pipeline ensures current information for future updates in the annotations of the two genomes and clustering improvements. The analysis allowed the first systematic identification of family and singlet proteins present in both organisms as well as those restricted to one of them. In addition, the established Web resources for mining these data provide a road map for future studies of the composition and structure of protein families between the two species.

6. Impaired Fasting Glucose in Nondiabetic Range: Is It a Marker of Cardiovascular Risk Factor Clustering?

Directory of Open Access Journals (Sweden)

Giovanna Valentino

2015-01-01

Full Text Available Background. Impaired fasting glucose (IFG through the nondiabetic range (100–125 mg/dL is not considered in the cardiovascular (CV risk profile. Aim. To compare the clustering of CV risk factors (RFs in nondiabetic subjects with normal fasting glucose (NFG and IFG. Material and Methods. Cross-sectional study in 3739 nondiabetic subjects. Demographics, medical history, and CV risk factors were collected and lipid profile, fasting glucose levels (FBG, C-reactive protein (hsCRP, blood pressure (BP, anthropometric measurements, and aerobic capacity were determined. Results. 559 (15% subjects had IFG: they had a higher mean age, BMI, waist circumference, non-HDL cholesterol, BP, and hsCRP (p<0.0001 and lower HDL (p<0.001 and aerobic capacity (p<0.001. They also had a higher prevalence of hypertension (34% versus 25%; p<0.001, dyslipidemia (79% versus 74%; p<0.001, and obesity (29% versus 16%; p<0.001 and a higher Framingham risk score (8% versus 6%; p<0.001. The probability of presenting 3 or more CV RFs adjusted by age and gender was significantly higher in the top quintile of fasting glucose (≥98 mg/dL; OR = 2.02; 1.62–2.51. Conclusions. IFG in the nondiabetic range is associated with increased cardiovascular RF clustering.

7. Low rank factorization of the Coulomb integrals for periodic coupled cluster theory.

Science.gov (United States)

Hummel, Felix; Tsatsoulis, Theodoros; Grüneis, Andreas

2017-03-28

We study a tensor hypercontraction decomposition of the Coulomb integrals of periodic systems where the integrals are factorized into a contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices compared to the number of real space grid points. The cost of computing the matrices scales as O(N 4 ) using a regularized form of the alternating least squares algorithm. The studied factorization of the Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor contractions appearing in the amplitude equations of coupled cluster methods with respect to system size. We apply the developed methodologies to calculate the adsorption energy of a single water molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary conditions.

8. Cardiorespiratory fitness, cardiovascular workload and risk factors among cleaners; a cluster randomized worksite intervention

DEFF Research Database (Denmark)

Korshøj, Mette; Krustrup, Peter; Jørgensen, Marie Birk

2012-01-01

. The clusters will be balanced on the following criteria: Geographical work location, gender, age and seniority. Cleaners are randomized to either I) a reference group, receiving lectures concerning healthy living, or II) an intervention group, performing worksite aerobic exercise. Data collection......ABSTRACT: BACKGROUND: Prevalence of cardiovascular risk factors is unevenly distributed among occupational groups. The working environment, as well as lifestyle and socioeconomic status contribute to the disparity and variation in prevalence of these risk factors. High physical work demands have...... been shown to increase the risk for cardiovascular disease and mortality, contrary to leisure time physical activity. High physical work demands in combination with a low cardiorespiratory fitness infer a high relative workload and an excessive risk for cardiovascular mortality. Therefore, the aim...

9. Clusters of Insomnia Disorder: An Exploratory Cluster Analysis of Objective Sleep Parameters Reveals Differences in Neurocognitive Functioning, Quantitative EEG, and Heart Rate Variability

Science.gov (United States)

Miller, Christopher B.; Bartlett, Delwyn J.; Mullins, Anna E.; Dodds, Kirsty L.; Gordon, Christopher J.; Kyle, Simon D.; Kim, Jong Won; D'Rozario, Angela L.; Lee, Rico S.C.; Comas, Maria; Marshall, Nathaniel S.; Yee, Brendon J.; Espie, Colin A.; Grunstein, Ronald R.

2016-01-01

Study Objectives: To empirically derive and evaluate potential clusters of Insomnia Disorder through cluster analysis from polysomnography (PSG). We hypothesized that clusters would differ on neurocognitive performance, sleep-onset measures of quantitative (q)-EEG and heart rate variability (HRV). Methods: Research volunteers with Insomnia Disorder (DSM-5) completed a neurocognitive assessment and overnight PSG measures of total sleep time (TST), wake time after sleep onset (WASO), and sleep onset latency (SOL) were used to determine clusters. Results: From 96 volunteers with Insomnia Disorder, cluster analysis derived at least two clusters from objective sleep parameters: Insomnia with normal objective sleep duration (I-NSD: n = 53) and Insomnia with short sleep duration (I-SSD: n = 43). At sleep onset, differences in HRV between I-NSD and I-SSD clusters suggest attenuated parasympathetic activity in I-SSD (P insomnia clusters derived from cluster analysis differ in sleep onset HRV. Preliminary data suggest evidence for three clusters in insomnia with differences for sustained attention and sleep-onset q-EEG. Clinical Trial Registration: Insomnia 100 sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR) identification number 12612000049875. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347742. Citation: Miller CB, Bartlett DJ, Mullins AE, Dodds KL, Gordon CJ, Kyle SD, Kim JW, D'Rozario AL, Lee RS, Comas M, Marshall NS, Yee BJ, Espie CA, Grunstein RR. Clusters of Insomnia Disorder: an exploratory cluster analysis of objective sleep parameters reveals differences in neurocognitive functioning, quantitative EEG, and heart rate variability. SLEEP 2016;39(11):1993–2004. PMID:27568796

10. Identifying Two Groups of Entitled Individuals: Cluster Analysis Reveals Emotional Stability and Self-Esteem Distinction.

Science.gov (United States)

Crowe, Michael L; LoPilato, Alexander C; Campbell, W Keith; Miller, Joshua D

2016-12-01

The present study hypothesized that there exist two distinct groups of entitled individuals: grandiose-entitled, and vulnerable-entitled. Self-report scores of entitlement were collected for 916 individuals using an online platform. Model-based cluster analyses were conducted on the individuals with scores one standard deviation above mean (n = 159) using the five-factor model dimensions as clustering variables. The results support the existence of two groups of entitled individuals categorized as emotionally stable and emotionally vulnerable. The emotionally stable cluster reported emotional stability, high self-esteem, more positive affect, and antisocial behavior. The emotionally vulnerable cluster reported low self-esteem and high levels of neuroticism, disinhibition, conventionality, psychopathy, negative affect, childhood abuse, intrusive parenting, and attachment difficulties. Compared to the control group, both clusters reported being more antagonistic, extraverted, Machiavellian, and narcissistic. These results suggest important differences are missed when simply examining the linear relationships between entitlement and various aspects of its nomological network.

11. Cluster analysis and ecology of living benthonic foraminiferids from inner shelf off Ratnagiri, West Coast, India

Digital Repository Service at National Institute of Oceanography (India)

Nigam, R.; Sarupria, J.S.

Q-mode cluster analysis explains the spatial distribution data of living benthonic foraminiferids from the inner shelf off Ratnagiri. Two main biotopes and two sub-biotopes are revognised within the study area; biotope A, characterised by @i...

12. Statistical Techniques Applied to Aerial Radiometric Surveys (STAARS): cluster analysis. National Uranium Resource Evaluation

International Nuclear Information System (INIS)

Pirkle, F.L.; Stablein, N.K.; Howell, J.A.; Wecksung, G.W.; Duran, B.S.

1982-11-01

One objective of the aerial radiometric surveys flown as part of the US Department of Energy's National Uranium Resource Evaluation (NURE) program was to ascertain the regional distribution of near-surface radioelement abundances. Some method for identifying groups of observations with similar radioelement values was therefore required. It is shown in this report that cluster analysis can identify such groups even when no a priori knowledge of the geology of an area exists. A method of convergent k-means cluster analysis coupled with a hierarchical cluster analysis is used to classify 6991 observations (three radiometric variables at each observation location) from the Precambrian rocks of the Copper Mountain, Wyoming, area. Another method, one that combines a principal components analysis with a convergent k-means analysis, is applied to the same data. These two methods are compared with a convergent k-means analysis that utilizes available geologic knowledge. All three methods identify four clusters. Three of the clusters represent background values for the Precambrian rocks of the area, and one represents outliers (anomalously high 214 Bi). A segmentation of the data corresponding to geologic reality as discovered by other methods has been achieved based solely on analysis of aerial radiometric data. The techniques employed are composites of classical clustering methods designed to handle the special problems presented by large data sets. 20 figures, 7 tables

13. Analysis of candidates for interacting galaxy clusters. I. A1204 and A2029/A2033

Science.gov (United States)

Gonzalez, Elizabeth Johana; de los Rios, Martín; Oio, Gabriel A.; Lang, Daniel Hernández; Tagliaferro, Tania Aguirre; Domínguez R., Mariano J.; Castellón, José Luis Nilo; Cuevas L., Héctor; Valotto, Carlos A.

2018-04-01

Context. Merging galaxy clusters allow for the study of different mass components, dark and baryonic, separately. Also, their occurrence enables to test the ΛCDM scenario, which can be used to put constraints on the self-interacting cross-section of the dark-matter particle. Aim. It is necessary to perform a homogeneous analysis of these systems. Hence, based on a recently presented sample of candidates for interacting galaxy clusters, we present the analysis of two of these cataloged systems. Methods: In this work, the first of a series devoted to characterizing galaxy clusters in merger processes, we perform a weak lensing analysis of clusters A1204 and A2029/A2033 to derive the total masses of each identified interacting structure together with a dynamical study based on a two-body model. We also describe the gas and the mass distributions in the field through a lensing and an X-ray analysis. This is the first of a series of works which will analyze these type of system in order to characterize them. Results: Neither merging cluster candidate shows evidence of having had a recent merger event. Nevertheless, there is dynamical evidence that these systems could be interacting or could interact in the future. Conclusions: It is necessary to include more constraints in order to improve the methodology of classifying merging galaxy clusters. Characterization of these clusters is important in order to properly understand the nature of these systems and their connection with dynamical studies.

14. Subtypes of autism by cluster analysis based on structural MRI data.

Science.gov (United States)

Hrdlicka, Michal; Dudova, Iva; Beranova, Irena; Lisy, Jiri; Belsan, Tomas; Neuwirth, Jiri; Komarek, Vladimir; Faladova, Ludvika; Havlovicova, Marketa; Sedlacek, Zdenek; Blatny, Marek; Urbanek, Tomas

2005-05-01

The aim of our study was to subcategorize Autistic Spectrum Disorders (ASD) using a multidisciplinary approach. Sixty four autistic patients (mean age 9.4+/-5.6 years) were entered into a cluster analysis. The clustering analysis was based on MRI data. The clusters obtained did not differ significantly in the overall severity of autistic symptomatology as measured by the total score on the Childhood Autism Rating Scale (CARS). The clusters could be characterized as showing significant differences: Cluster 1: showed the largest sizes of the genu and splenium of the corpus callosum (CC), the lowest pregnancy order and the lowest frequency of facial dysmorphic features. Cluster 2: showed the largest sizes of the amygdala and hippocampus (HPC), the least abnormal visual response on the CARS, the lowest frequency of epilepsy and the least frequent abnormal psychomotor development during the first year of life. Cluster 3: showed the largest sizes of the caput of the nucleus caudatus (NC), the smallest sizes of the HPC and facial dysmorphic features were always present. Cluster 4: showed the smallest sizes of the genu and splenium of the CC, as well as the amygdala, and caput of the NC, the most abnormal visual response on the CARS, the highest frequency of epilepsy, the highest pregnancy order, abnormal psychomotor development during the first year of life was always present and facial dysmorphic features were always present. This multidisciplinary approach seems to be a promising method for subtyping autism.

15. Schedulability Analysis and Optimization for the Synthesis of Multi-Cluster Distributed Embedded Systems

DEFF Research Database (Denmark)

Pop, Paul; Eles, Petru; Peng, Zebo

2003-01-01

We present an approach to schedulability analysis for the synthesis of multi-cluster distributed embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. We have also proposed a buffer size and worst case queuing delay analysis for the gateways......, responsible for routing inter-cluster traffic. Optimization heuristics for the priority assignment and synthesis of bus access parameters aimed at producing a schedulable system with minimal buffer needs have been proposed. Extensive experiments and a real-life example show the efficiency of our approaches....

16. Schedulability Analysis and Optimization for the Synthesis of Multi-Cluster Distributed Embedded Systems

DEFF Research Database (Denmark)

Pop, Paul; Eles, Petru; Peng, Zebo

2003-01-01

An approach to schedulability analysis for the synthesis of multi-cluster distributed embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways, is presented. A buffer size and worst case queuing delay analysis for the gateways, responsible for routing...... inter-cluster traffic, is also proposed. Optimisation heuristics for the priority assignment and synthesis of bus access parameters aimed at producing a schedulable system with minimal buffer needs have been proposed. Extensive experiments and a real-life example show the efficiency of the approaches....

17. FLOCK cluster analysis of mast cell event clustering by high-sensitivity flow cytometry predicts systemic mastocytosis.

Science.gov (United States)

Dorfman, David M; LaPlante, Charlotte D; Pozdnyakova, Olga; Li, Betty

2015-11-01

In our high-sensitivity flow cytometric approach for systemic mastocytosis (SM), we identified mast cell event clustering as a new diagnostic criterion for the disease. To objectively characterize mast cell gated event distributions, we performed cluster analysis using FLOCK, a computational approach to identify cell subsets in multidimensional flow cytometry data in an unbiased, automated fashion. FLOCK identified discrete mast cell populations in most cases of SM (56/75 [75%]) but only a minority of non-SM cases (17/124 [14%]). FLOCK-identified mast cell populations accounted for 2.46% of total cells on average in SM cases and 0.09% of total cells on average in non-SM cases (P < .0001) and were predictive of SM, with a sensitivity of 75%, a specificity of 86%, a positive predictive value of 76%, and a negative predictive value of 85%. FLOCK analysis provides useful diagnostic information for evaluating patients with suspected SM, and may be useful for the analysis of other hematopoietic neoplasms. Copyright© by the American Society for Clinical Pathology.

18. SU-E-J-98: Radiogenomics: Correspondence Between Imaging and Genetic Features Based On Clustering Analysis

International Nuclear Information System (INIS)

Harmon, S; Wendelberger, B; Jeraj, R

2014-01-01

Purpose: Radiogenomics aims to establish relationships between patient genotypes and imaging phenotypes. An open question remains on how best to integrate information from these distinct datasets. This work investigates if similarities in genetic features across patients correspond to similarities in PET-imaging features, assessed with various clustering algorithms. Methods: [ 18 F]FDG PET data was obtained for 26 NSCLC patients from a public database (TCIA). Tumors were contoured using an in-house segmentation algorithm combining gradient and region-growing techniques; resulting ROIs were used to extract 54 PET-based features. Corresponding genetic microarray data containing 48,778 elements were also obtained for each tumor. Given mismatch in feature sizes, two dimension reduction techniques were also applied to the genetic data: principle component analysis (PCA) and selective filtering of 25 NSCLC-associated genes-ofinterest (GOI). Gene datasets (full, PCA, and GOI) and PET feature datasets were independently clustered using K-means and hierarchical clustering using variable number of clusters (K). Jaccard Index (JI) was used to score similarity of cluster assignments across different datasets. Results: Patient clusters from imaging data showed poor similarity to clusters from gene datasets, regardless of clustering algorithms or number of clusters (JI mean = 0.3429±0.1623). Notably, we found clustering algorithms had different sensitivities to data reduction techniques. Using hierarchical clustering, the PCA dataset showed perfect cluster agreement to the full-gene set (JI =1) for all values of K, and the agreement between the GOI set and the full-gene set decreased as number of clusters increased (JI=0.9231 and 0.5769 for K=2 and 5, respectively). K-means clustering assignments were highly sensitive to data reduction and showed poor stability for different values of K (JI range : 0.2301–1). Conclusion: Using commonly-used clustering algorithms, we found

19. SU-E-J-98: Radiogenomics: Correspondence Between Imaging and Genetic Features Based On Clustering Analysis

Energy Technology Data Exchange (ETDEWEB)

Harmon, S; Wendelberger, B [University of Wisconsin-Madison, Madison, WI (United States); Jeraj, R [University of Wisconsin-Madison, Madison, WI (United States); University of Ljubljana (Slovenia)

2014-06-01

Purpose: Radiogenomics aims to establish relationships between patient genotypes and imaging phenotypes. An open question remains on how best to integrate information from these distinct datasets. This work investigates if similarities in genetic features across patients correspond to similarities in PET-imaging features, assessed with various clustering algorithms. Methods: [{sup 18}F]FDG PET data was obtained for 26 NSCLC patients from a public database (TCIA). Tumors were contoured using an in-house segmentation algorithm combining gradient and region-growing techniques; resulting ROIs were used to extract 54 PET-based features. Corresponding genetic microarray data containing 48,778 elements were also obtained for each tumor. Given mismatch in feature sizes, two dimension reduction techniques were also applied to the genetic data: principle component analysis (PCA) and selective filtering of 25 NSCLC-associated genes-ofinterest (GOI). Gene datasets (full, PCA, and GOI) and PET feature datasets were independently clustered using K-means and hierarchical clustering using variable number of clusters (K). Jaccard Index (JI) was used to score similarity of cluster assignments across different datasets. Results: Patient clusters from imaging data showed poor similarity to clusters from gene datasets, regardless of clustering algorithms or number of clusters (JI{sub mean}= 0.3429±0.1623). Notably, we found clustering algorithms had different sensitivities to data reduction techniques. Using hierarchical clustering, the PCA dataset showed perfect cluster agreement to the full-gene set (JI =1) for all values of K, and the agreement between the GOI set and the full-gene set decreased as number of clusters increased (JI=0.9231 and 0.5769 for K=2 and 5, respectively). K-means clustering assignments were highly sensitive to data reduction and showed poor stability for different values of K (JI{sub range}: 0.2301–1). Conclusion: Using commonly-used clustering algorithms

20. Space-Time Analysis of Testicular Cancer Clusters Using Residential Histories: A Case-Control Study in Denmark

Science.gov (United States)

Sloan, Chantel D.; Nordsborg, Rikke B.; Jacquez, Geoffrey M.; Raaschou-Nielsen, Ole; Meliker, Jaymie R.

2015-01-01

Though the etiology is largely unknown, testicular cancer incidence has seen recent significant increases in northern Europe and throughout many Western regions. The most common cancer in males under age 40, age period cohort models have posited exposures in the in utero environment or in early childhood as possible causes of increased risk of testicular cancer. Some of these factors may be tied to geography through being associated with behavioral, cultural, sociodemographic or built environment characteristics. If so, this could result in detectable geographic clusters of cases that could lead to hypotheses regarding environmental targets for intervention. Given a latency period between exposure to an environmental carcinogen and testicular cancer diagnosis, mobility histories are beneficial for spatial cluster analyses. Nearest-neighbor based Q-statistics allow for the incorporation of changes in residency in spatial disease cluster detection. Using these methods, a space-time cluster analysis was conducted on a population-wide case-control population selected from the Danish Cancer Registry with mobility histories since 1971 extracted from the Danish Civil Registration System. Cases (N=3297) were diagnosed between 1991 and 2003, and two sets of controls (N=3297 for each set) matched on sex and date of birth were included in the study. We also examined spatial patterns in maternal residential history for those cases and controls born in 1971 or later (N= 589 case-control pairs). Several small clusters were detected when aligning individuals by year prior to diagnosis, age at diagnosis and calendar year of diagnosis. However, the largest of these clusters contained only 2 statistically significant individuals at their center, and were not replicated in SaTScan spatial-only analyses which are less susceptible to multiple testing bias. We found little evidence of local clusters in residential histories of testicular cancer cases in this Danish population. PMID

1. Space-time analysis of testicular cancer clusters using residential histories: a case-control study in Denmark.

Directory of Open Access Journals (Sweden)

Chantel D Sloan

Full Text Available Though the etiology is largely unknown, testicular cancer incidence has seen recent significant increases in northern Europe and throughout many Western regions. The most common cancer in males under age 40, age period cohort models have posited exposures in the in utero environment or in early childhood as possible causes of increased risk of testicular cancer. Some of these factors may be tied to geography through being associated with behavioral, cultural, sociodemographic or built environment characteristics. If so, this could result in detectable geographic clusters of cases that could lead to hypotheses regarding environmental targets for intervention. Given a latency period between exposure to an environmental carcinogen and testicular cancer diagnosis, mobility histories are beneficial for spatial cluster analyses. Nearest-neighbor based Q-statistics allow for the incorporation of changes in residency in spatial disease cluster detection. Using these methods, a space-time cluster analysis was conducted on a population-wide case-control population selected from the Danish Cancer Registry with mobility histories since 1971 extracted from the Danish Civil Registration System. Cases (N=3297 were diagnosed between 1991 and 2003, and two sets of controls (N=3297 for each set matched on sex and date of birth were included in the study. We also examined spatial patterns in maternal residential history for those cases and controls born in 1971 or later (N= 589 case-control pairs. Several small clusters were detected when aligning individuals by year prior to diagnosis, age at diagnosis and calendar year of diagnosis. However, the largest of these clusters contained only 2 statistically significant individuals at their center, and were not replicated in SaTScan spatial-only analyses which are less susceptible to multiple testing bias. We found little evidence of local clusters in residential histories of testicular cancer cases in this Danish

2. Space-time analysis of testicular cancer clusters using residential histories: a case-control study in Denmark.

Science.gov (United States)

Sloan, Chantel D; Nordsborg, Rikke B; Jacquez, Geoffrey M; Raaschou-Nielsen, Ole; Meliker, Jaymie R

2015-01-01

Though the etiology is largely unknown, testicular cancer incidence has seen recent significant increases in northern Europe and throughout many Western regions. The most common cancer in males under age 40, age period cohort models have posited exposures in the in utero environment or in early childhood as possible causes of increased risk of testicular cancer. Some of these factors may be tied to geography through being associated with behavioral, cultural, sociodemographic or built environment characteristics. If so, this could result in detectable geographic clusters of cases that could lead to hypotheses regarding environmental targets for intervention. Given a latency period between exposure to an environmental carcinogen and testicular cancer diagnosis, mobility histories are beneficial for spatial cluster analyses. Nearest-neighbor based Q-statistics allow for the incorporation of changes in residency in spatial disease cluster detection. Using these methods, a space-time cluster analysis was conducted on a population-wide case-control population selected from the Danish Cancer Registry with mobility histories since 1971 extracted from the Danish Civil Registration System. Cases (N=3297) were diagnosed between 1991 and 2003, and two sets of controls (N=3297 for each set) matched on sex and date of birth were included in the study. We also examined spatial patterns in maternal residential history for those cases and controls born in 1971 or later (N= 589 case-control pairs). Several small clusters were detected when aligning individuals by year prior to diagnosis, age at diagnosis and calendar year of diagnosis. However, the largest of these clusters contained only 2 statistically significant individuals at their center, and were not replicated in SaTScan spatial-only analyses which are less susceptible to multiple testing bias. We found little evidence of local clusters in residential histories of testicular cancer cases in this Danish population.

3. Bayesian Nonparametric Measurement of Factor Betas and Clustering with Application to Hedge Fund Returns

Directory of Open Access Journals (Sweden)

Urbi Garay

2016-03-01

Full Text Available We define a dynamic and self-adjusting mixture of Gaussian Graphical Models to cluster financial returns, and provide a new method for extraction of nonparametric estimates of dynamic alphas (excess return and betas (to a choice set of explanatory factors in a multivariate setting. This approach, as well as the outputs, has a dynamic, nonstationary and nonparametric form, which circumvents the problem of model risk and parametric assumptions that the Kalman filter and other widely used approaches rely on. The by-product of clusters, used for shrinkage and information borrowing, can be of use to determine relationships around specific events. This approach exhibits a smaller Root Mean Squared Error than traditionally used benchmarks in financial settings, which we illustrate through simulation. As an illustration, we use hedge fund index data, and find that our estimated alphas are, on average, 0.13% per month higher (1.6% per year than alphas estimated through Ordinary Least Squares. The approach exhibits fast adaptation to abrupt changes in the parameters, as seen in our estimated alphas and betas, which exhibit high volatility, especially in periods which can be identified as times of stressful market events, a reflection of the dynamic positioning of hedge fund portfolio managers.

4. Fermi liquid, clustering, and structure factor in dilute warm nuclear matter

Science.gov (United States)

Röpke, G.; Voskresensky, D. N.; Kryukov, I. A.; Blaschke, D.

2018-02-01

Properties of nuclear systems at subsaturation densities can be obtained from different approaches. We demonstrate the use of the density autocorrelation function which is related to the isothermal compressibility and, after integration, to the equation of state. This way we connect the Landau Fermi liquid theory well elaborated in nuclear physics with the approaches to dilute nuclear matter describing cluster formation. A quantum statistical approach is presented, based on the cluster decomposition of the polarization function. The fundamental quantity to be calculated is the dynamic structure factor. Comparing with the Landau Fermi liquid theory which is reproduced in lowest approximation, the account of bound state formation and continuum correlations gives the correct low-density result as described by the second virial coefficient and by the mass action law (nuclear statistical equilibrium). Going to higher densities, the inclusion of medium effects is more involved compared with other quantum statistical approaches, but the relation to the Landau Fermi liquid theory gives a promising approach to describe not only thermodynamic but also collective excitations and non-equilibrium properties of nuclear systems in a wide region of the phase diagram.

5. The dynamics of cyclone clustering in re-analysis and a high-resolution climate model

Science.gov (United States)

Priestley, Matthew; Pinto, Joaquim; Dacre, Helen; Shaffrey, Len

2017-04-01

Extratropical cyclones have a tendency to occur in groups (clusters) in the exit of the North Atlantic storm track during wintertime, potentially leading to widespread socioeconomic impacts. The Winter of 2013/14 was the stormiest on record for the UK and was characterised by the recurrent clustering of intense extratropical cyclones. This clustering was associated with a strong, straight and persistent North Atlantic 250 hPa jet with Rossby wave-breaking (RWB) on both flanks, pinning the jet in place. Here, we provide for the first time an analysis of all clustered events in 36 years of the ERA-Interim Re-analysis at three latitudes (45˚ N, 55˚ N, 65˚ N) encompassing various regions of Western Europe. The relationship between the occurrence of RWB and cyclone clustering is studied in detail. Clustering at 55˚ N is associated with an extended and anomalously strong jet flanked on both sides by RWB. However, clustering at 65(45)˚ N is associated with RWB to the south (north) of the jet, deflecting the jet northwards (southwards). A positive correlation was found between the intensity of the clustering and RWB occurrence to the north and south of the jet. However, there is considerable spread in these relationships. Finally, analysis has shown that the relationships identified in the re-analysis are also present in a high-resolution coupled global climate model (HiGEM). In particular, clustering is associated with the same dynamical conditions at each of our three latitudes in spite of the identified biases in frequency and intensity of RWB.

6. Genetic factors influence the clustering of depression among individuals with lower socioeconomic status.

Directory of Open Access Journals (Sweden)

Sandra López-León

Full Text Available OBJECTIVE: To investigate the extent to which shared genetic factors can explain the clustering of depression among individuals with lower socioeconomic status, and to examine if neuroticism or intelligence are involved in these pathways. METHODS: In total 2,383 participants (1,028 men and 1,355 women of the Erasmus Rucphen Family Study were assessed with the Center for Epidemiologic Studies Depression Scale (CES-D and the Hospital Anxiety and Depression Scale (HADS-D. Socioeconomic status was assessed as the highest level of education obtained. The role of shared genetic factors was quantified by estimating genetic correlations (rhoG between symptoms of depression and education level, with and without adjustment for premorbid intelligence and neuroticism scores. RESULTS: Higher level of education was associated with lower depression scores (partial correlation coefficient -0.09 for CES-D and -0.17 for HADS-D. Significant genetic correlations were found between education and both CES-D (rhoG = -0.65 and HADS-D (rhoG = -0.50. The genetic correlations remained statistically significant after adjusting for premorbid intelligence and neuroticism scores. CONCLUSIONS: Our study suggests that shared genetic factors play a role in the co-occurrence of lower socioeconomic status and symptoms of depression, which suggest that genetic factors play a role in health inequalities. Further research is needed to investigate the validity, causality and generalizability of our results.

7. Clustering eating habits: frequent consumption of different dietary patterns among the Italian general population in the association with obesity, physical activity, sociocultural characteristics and psychological factors.

Science.gov (United States)

Denoth, Francesca; Scalese, Marco; Siciliano, Valeria; Di Renzo, Laura; De Lorenzo, Antonino; Molinaro, Sabrina

2016-06-01

(a) To identify clusters of eating patterns among the Italian population aged 15-64 years, focusing on typical Mediterranean diet (Med-diet) items consumption; (b) to examine the distribution of eating habits, as identified clusters, among age classes and genders; (c) evaluate the impact of: belonging to a specific eating cluster, level of physical activity (PA), sociocultural and psychological factors, as elements determining weight abnormalities. Data for this cross-sectional study were collected using self-reporting questionnaires administered to a sample of 33,127 subjects participating in the Italian population survey on alcohol and other drugs (IPSAD(®)2011). The cluster analysis was performed on a subsample (n = 5278 subjects) which provided information on eating habits, and adapted to identify categories of eating patterns. Stepwise multinomial regression analysis was performed to evaluate the associations between weight categories and eating clusters, adjusted for the following background variables: PA levels, sociocultural and psychological factors. Three clusters were identified: "Mediterranean-like", "Western-like" and "low fruit/vegetables". Frequent consumption of Med-diet patterns was more common among females and elderly. The relationship between overweight/obesity and male gender, educational level, PA, depression and eating disorders (p obesity. The low consumption of Med-diet patterns among youth, and the frequent association of sociocultural, psychological issues and inappropriate lifestyle with overweight/obesity, highlight the need for an interdisciplinary approach including market policies, to promote a wider awareness of the Mediterranean eating habit benefits in combination with an appropriate lifestyle.

8. Clustering of Major Cardiovascular Risk Factors and the Association with Unhealthy Lifestyles in the Chinese Adult Population.

Directory of Open Access Journals (Sweden)

Bixia Gao

Full Text Available Previous studies indicated that lifestyle-related cardiovascular risk factors tend to be clustered in certain individuals. However, population-based studies, especially from developing countries with substantial economic heterogeneity, are extremely limited. Our study provides updated data on the clustering of cardiovascular risk factors, as well as the impact of lifestyle on those factors in China.A representative sample of adult population in China was obtained using a multistage, stratified sampling method. We investigated the clustering of four cardiovascular disease (CVD risk factors (defined as two or more of the following: hypertension, diabetes, dyslipidemia and overweight and their association with unhealthy lifestyles (habitual drinking, physical inactivity, chronic use of non-steroidal anti-inflammatory drugs (NSAIDs and a low modified Dietary Approaches to Stop Hypertension (DASH score.Among the 46,683 participants enrolled in this study, only 31.1% were free of any pre-defined CVD risk factor. A total of 20,292 subjects had clustering of CVD risk factors, and 83.5% of them were younger than 65 years old. The adjusted prevalence of CVD risk factor clustering was 36.2%, and the prevalence was higher among males than among females (37.9% vs. 34.5%. Habitual drinking, physical inactivity, and chronic use of NSAIDs were positively associated with the clustering of CVD risk factors, with ORs of 1.60 (95% confidence interval [CI] 1.40 to1.85, 1.20 (95%CI 1.11 to 1.30 and 2.17 (95%CI 1.84 to 2.55, respectively. The modified DASH score was inversely associated with the clustering of CVD risk factors, with an OR of 0.73 (95%CI 0.67 to 0.78 for those with modified DASH scores in the top tertile. The lifestyle risk factors were more prominent among participants with low socioeconomic status.Clustering of CVD risk factors was common in China. Lifestyle modification might be an effective strategy to control CVD risk factors.

9. Positron Emission Tomography Particle tracking using cluster analysis

International Nuclear Information System (INIS)

Gundogdu, O.

2004-01-01

Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method

10. Positron Emission Tomography Particle tracking using cluster analysis

Energy Technology Data Exchange (ETDEWEB)

Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham, B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

2004-12-01

Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method.

11. Communication Base Station Log Analysis Based on Hierarchical Clustering

Directory of Open Access Journals (Sweden)

Zhang Shao-Hua

2017-01-01

Full Text Available Communication base stations generate massive data every day, these base station logs play an important value in mining of the business circles. This paper use data mining technology and hierarchical clustering algorithm to group the scope of business circle for the base station by recording the data of these base stations.Through analyzing the data of different business circle based on feature extraction and comparing different business circle category characteristics, which can choose a suitable area for operators of commercial marketing.

12. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

Science.gov (United States)

Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

2017-12-01

Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

13. Analysis of Health Behavior Theories for Clustering of Health Behaviors.

Science.gov (United States)

Choi, Seung Hee; Duffy, Sonia A

The objective of this article was to review the utility of established behavior theories, including the Health Belief Model, Theory of Reasoned Action, Theory of Planned Behavior, Transtheoretical Model, and Health Promotion Model, for addressing multiple health behaviors among people who smoke. It is critical to design future interventions for multiple health behavior changes tailored to individuals who currently smoke, yet it has not been addressed. Five health behavior theories/models were analyzed and critically evaluated. A review of the literature included a search of PubMed and Google Scholar from 2010 to 2016. Two hundred sixty-seven articles (252 studies from the initial search and 15 studies from the references of initially identified studies) were included in the analysis. Most of the health behavior theories/models emphasize psychological and cognitive constructs that can be applied only to one specific behavior at a time, thus making them not suitable to address multiple health behaviors. However, the Health Promotion Model incorporates "related behavior factors" that can explain multiple health behaviors among persons who smoke. Future multiple behavior interventions guided by the Health Promotion Model are necessary to show the utility and applicability of the model to address multiple health behaviors.

14. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis

Directory of Open Access Journals (Sweden)

Chao Zhang

2017-09-01

Full Text Available A wireless-powered sensor network (WPSN consisting of one hybrid access point (HAP, a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

15. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis.

Science.gov (United States)

Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan

2017-09-27

A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

16. Point Cluster Analysis Using a 3D Voronoi Diagram with Applications in Point Cloud Segmentation

Directory of Open Access Journals (Sweden)

Shen Ying

2015-08-01

Full Text Available Three-dimensional (3D point analysis and visualization is one of the most effective methods of point cluster detection and segmentation in geospatial datasets. However, serious scattering and clotting characteristics interfere with the visual detection of 3D point clusters. To overcome this problem, this study proposes the use of 3D Voronoi diagrams to analyze and visualize 3D points instead of the original data item. The proposed algorithm computes the cluster of 3D points by applying a set of 3D Voronoi cells to describe and quantify 3D points. The decompositions of point cloud of 3D models are guided by the 3D Voronoi cell parameters. The parameter values are mapped from the Voronoi cells to 3D points to show the spatial pattern and relationships; thus, a 3D point cluster pattern can be highlighted and easily recognized. To capture different cluster patterns, continuous progressive clusters and segmentations are tested. The 3D spatial relationship is shown to facilitate cluster detection. Furthermore, the generated segmentations of real 3D data cases are exploited to demonstrate the feasibility of our approach in detecting different spatial clusters for continuous point cloud segmentation.

17. Detection of secondary structure elements in proteins by hydrophobic cluster analysis.

Science.gov (United States)

Woodcock, S; Mornon, J P; Henrissat, B

1992-10-01

Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.

18. Improving cluster-based methods for investigating potential for insect pest species establishment: region-specific risk factors

Directory of Open Access Journals (Sweden)

Michael J. Watts

2011-09-01

Full Text Available Existing cluster-based methods for investigating insect species assemblages or profiles of a region to indicate the risk of new insect pest invasion have a major limitation in that they assign the same species risk factors to each region in a cluster. Clearly regions assigned to the same cluster have different degrees of similarity with respect to their species profile or assemblage. This study addresses this concern by applying weighting factors to the cluster elements used to calculate regional risk factors, thereby producing region-specific risk factors. Using a database of the global distribution of crop insect pest species, we found that we were able to produce highly differentiated region-specific risk factors for insect pests. We did this by weighting cluster elements by their Euclidean distance from the target region. Using this approach meant that risk weightings were derived that were more realistic, as they were specific to the pest profile or species assemblage of each region. This weighting method provides an improved tool for estimating the potential invasion risk posed by exotic species given that they have an opportunity to establish in a target region.

19. A factor analysis to detect factors influencing building national brand

Directory of Open Access Journals (Sweden)

Naser Azad

Full Text Available Developing a national brand is one of the most important issues for development of a brand. In this study, we present factor analysis to detect the most important factors in building a national brand. The proposed study uses factor analysis to extract the most influencing factors and the sample size has been chosen from two major auto makers in Iran called Iran Khodro and Saipa. The questionnaire was designed in Likert scale and distributed among 235 experts. Cronbach alpha is calculated as 84%, which is well above the minimum desirable limit of 0.70. The implementation of factor analysis provides six factors including “cultural image of customers”, “exciting characteristics”, “competitive pricing strategies”, “perception image” and “previous perceptions”.

20. Cluster and principal component analysis based on SSR markers of Amomum tsao-ko in Jinping County of Yunnan Province

Science.gov (United States)

Ma, Mengli; Lei, En; Meng, Hengling; Wang, Tiantao; Xie, Linyan; Shen, Dong; Xianwang, Zhou; Lu, Bingyue

2017-08-01

Amomum tsao-ko is a commercial plant that used for various purposes in medicinal and food industries. For the present investigation, 44 germplasm samples were collected from Jinping County of Yunnan Province. Clusters analysis and 2-dimensional principal component analysis (PCA) was used to represent the genetic relations among Amomum tsao-ko by using simple sequence repeat (SSR) markers. Clustering analysis clearly distinguished the samples groups. Two major clusters were formed; first (Cluster I) consisted of 34 individuals, the second (Cluster II) consisted of 10 individuals, Cluster I as the main group contained multiple sub-clusters. PCA also showed 2 groups: PCA Group 1 included 29 individuals, PCA Group 2 included 12 individuals, consistent with the results of cluster analysis. The purpose of the present investigation was to provide information on genetic relationship of Amomum tsao-ko germplasm resources in main producing areas, also provide a theoretical basis for the protection and utilization of Amomum tsao-ko resources.

1. The CERN analysis facility-a PROOF cluster for day-one physics analysis

International Nuclear Information System (INIS)

Grosse-Oetringhaus, J F

2008-01-01

ALICE (A Large Ion Collider Experiment) at the LHC plans to use a PROOF cluster at CERN (CAF - CERN Analysis Facility) for analysis. The system is especially aimed at the prototyping phase of analyses that need a high number of development iterations and thus require a short response time. Typical examples are the tuning of cuts during the development of an analysis as well as calibration and alignment. Furthermore, the use of an interactive system with very fast response will allow ALICE to extract physics observables out of first data quickly. An additional use case is fast event simulation and reconstruction. A test setup consisting of 40 machines is used for evaluation since May 2006. The PROOF system enables the parallel processing and xrootd the access to files distributed on the test cluster. An automatic staging system for files either catalogued in the ALICE file catalog or stored in the CASTOR mass storage system has been developed. The current setup and ongoing development towards disk quotas and CPU fairshare are described. Furthermore, the integration of PROOF into ALICE's software framework (AliRoot) is discussed

2. Clustering-based analysis for residential district heating data

DEFF Research Database (Denmark)

Gianniou, Panagiota; Liu, Xiufeng; Heller, Alfred

2018-01-01

The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze r....... These findings will be valuable for district heating utilities and energy planners to optimize their operations, design demand-side management strategies, and develop targeting energy-efficiency programs or policies.......The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze...... residential heating consumption data and evaluate information included in national building databases. The proposed method uses the K-means algorithm to segment consumption groups based on consumption intensity and representative patterns and ranks the groups according to daily consumption. This paper also...

3. Cluster cosmological analysis with X ray instrumental observables: introduction and testing of AsPIX method

International Nuclear Information System (INIS)

Valotti, Andrea

2016-01-01

Cosmology is one of the fundamental pillars of astrophysics, as such it contains many unsolved puzzles. To investigate some of those puzzles, we analyze X-ray surveys of galaxy clusters. These surveys are possible thanks to the bremsstrahlung emission of the intra-cluster medium. The simultaneous fit of cluster counts as a function of mass and distance provides an independent measure of cosmological parameters such as Ω m , σ s , and the dark energy equation of state w0. A novel approach to cosmological analysis using galaxy cluster data, called top-down, was developed in N. Clerc et al. (2012). This top-down approach is based purely on instrumental observables that are considered in a two-dimensional X-ray color-magnitude diagram. The method self-consistently includes selection effects and scaling relationships. It also provides a means of bypassing the computation of individual cluster masses. My work presents an extension of the top-down method by introducing the apparent size of the cluster, creating a three-dimensional X-ray cluster diagram. The size of a cluster is sensitive to both the cluster mass and its angular diameter, so it must also be included in the assessment of selection effects. The performance of this new method is investigated using a Fisher analysis. In parallel, I have studied the effects of the intrinsic scatter in the cluster size scaling relation on the sample selection as well as on the obtained cosmological parameters. To validate the method, I estimate uncertainties of cosmological parameters with MCMC method Amoeba minimization routine and using two simulated XMM surveys that have an increasing level of complexity. The first simulated survey is a set of toy catalogues of 100 and 10000 deg 2 , whereas the second is a 1000 deg 2 catalogue that was generated using an Aardvark semi-analytical N-body simulation. This comparison corroborates the conclusions of the Fisher analysis. In conclusion, I find that a cluster diagram that accounts

4. Neck circumference and clustered cardiovascular risk factors in children and adolescents: cross-sectional study.

Science.gov (United States)

Castro-Piñero, José; Delgado-Alfonso, Alvaro; Gracia-Marco, Luis; Gómez-Martínez, Sonia; Esteban-Cornejo, Irene; Veiga, Oscar L; Marcos, Ascensión; Segura-Jiménez, Víctor

2017-09-11

Early detection of cardiovascular disease (CVD) risk factors, such as obesity, is crucial to prevent adverse long-term effects on individuals' health. Therefore, the aims were: (1) to explore the robustness of neck circumference (NC) as a predictor of CVD and examine its association with numerous anthropometric and body composition indices and (2) to release sex and age-specific NC cut-off values to classify youths as overweight/obese. Cross-sectional study. 23 primary schools and 17 secondary schools from Spain. 2198 students (1060 girls), grades 1-4 and 7-10. Pubertal development, anthropometric and body composition indices, systolic and diastolic blood pressure (SBP and DBP, respectively), cardiorespiratory fitness, blood sampling triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), glucose and inflammatory markers. Homoeostasis model assessment (HOMA-IR) and cluster of CVD risk factors were calculated. NC was negatively associated with maximum oxygen consumption (R2=0.231, P<0.001 for boys; R2=0.018, P<0.001 for girls) and adiponectin (R2=0.049, P<0.001 for boys; R2=0.036, P<0.001 for girls); and positively associated with SBP, DBP, TC/HDL-c, TG, HOMA, complement factors C-3 and C-4, leptin and clustered CVD risk factor in both sexes (R2 from 0.035 to 0.353, P<0.01 for boys; R2 from 0.024 to 0.215, P<0.001 for girls). Moreover, NC was positively associated with serum C reactive protein and LDL-c only in boys (R2 from 0.013 to 0.055, P<0.05). NC is a simple, low-cost and practical screening tool of excess of upper body obesity and CVD risk factors in children and adolescents. Paediatricians can easily use it as a screening tool for overweight/obesity in children and adolescents. For this purpose, sex and age-specific thresholds to classify children and adolescents as normal weight or overweight/obese are provided. © Article author(s) (or their employer(s) unless otherwise stated

5. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.

Science.gov (United States)

Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J

2008-06-18

Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson

6. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression

Directory of Open Access Journals (Sweden)

Sakaki Yoshiyuki

2004-02-01

Full Text Available Abstract Background Gene expression is regulated mainly by transcription factors (TFs that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS using position weight matrices (PWMs that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. Results We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster, we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. Conclusion Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1 those that show TFBS clustered in promoters associated with CGI, and (2 those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in

7. Cardiovascular disease risk factor clustering among rural adult population in West Bengal, India.

Science.gov (United States)

Nag, Tanmay; Ghosh, Arnab

2016-01-01

This study aimed to find out the prevalence of cardiovascular disease (CVD) risk factor clustering in a rural adult population of West Bengal, India. This cross-sectional study was carried out among 1007 participants (645 males and 362 females) aged ≥20 years in a rural community. All participants were grouped: Group I (20-39 years); Group II (40-59 years); Group III (≥60 years). Anthropometric measures were collected using standard techniques. Metabolic profiles and blood pressure were also measured. Mean of minimum waist circumference (MWC), waist-hip ratio (WHR), trunk-extremity ratio (TER), fat free mass (FFM), basal metabolic rate (BMR), intra-abdominal visceral fat (IVF) and arm muscle area (AMA) was found to be higher among males in comparison to females, whereas, the mean of body mass index (BMI), maximum hip circumference (MHC), waist-height ratio (WHtR), sum of four skinfolds (∑SF4), percentage of body fat (%BF), fat mass (FM), insulin, HOMA-IR and arm fat area (AFA) was higher in females. 37% of individuals (males 25% and females 49%) with high triglyceride (TG) also had low high density lipoprotein (HDL), whereas, 25% individuals (males 25% and females 24%) with overweight also had high fasting blood glucose (FBG). The prevalence of high systolic blood pressure (SBP) among individuals having high %BF was higher in the age groups of 40-59 years for both sexes. The study showed that prevalence of CVD risk factor clustering is high in the study population and warranted early intervention to safeguard the cardiovascular health of the nation. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

8. Clustered, regularly interspaced short palindromic repeat (CRISPR) diversity and virulence factor distribution in avian Escherichia coli.

Science.gov (United States)

Fu, Qiang; Su, Zhixin; Cheng, Yuqiang; Wang, Zhaofei; Li, Shiyu; Wang, Heng'an; Sun, Jianhe; Yan, Yaxian

In order to investigate the diverse characteristics of clustered, regularly interspaced short palindromic repeat (CRISPR) arrays and the distribution of virulence factor genes in avian Escherichia coli, 80 E. coli isolates obtained from chickens with avian pathogenic E. coli (APEC) or avian fecal commensal E. coli (AFEC) were identified. Using the multiplex polymerase chain reaction (PCR), five genes were subjected to phylogenetic typing and examined for CRISPR arrays to study genetic relatedness among the strains. The strains were further analyzed for CRISPR loci and virulence factor genes to determine a possible association between their CRISPR elements and their potential virulence. The strains were divided into five phylogenetic groups: A, B1, B2, D and E. It was confirmed that two types of CRISPR arrays, CRISPR1 and CRISPR2, which contain up to 246 distinct spacers, were amplified in most of the strains. Further classification of the isolates was achieved by sorting them into nine CRISPR clusters based on their spacer profiles, which indicates a candidate typing method for E. coli. Several significant differences in invasion-associated gene distribution were found between the APEC isolates and the AFEC isolates. Our results identified the distribution of 11 virulence genes and CRISPR diversity in 80 strains. It was demonstrated that, with the exception of iucD and aslA, there was no sharp demarcation in the gene distribution between the pathogenic (APEC) and commensal (AFEC) strains, while the total number of indicated CRISPR spacers may have a positive correlation with the potential pathogenicity of the E. coli isolates. Copyright © 2016. Published by Elsevier Masson SAS.

9. The Infinitesimal Jackknife with Exploratory Factor Analysis

Science.gov (United States)

Zhang, Guangjian; Preacher, Kristopher J.; Jennrich, Robert I.

2012-01-01

The infinitesimal jackknife, a nonparametric method for estimating standard errors, has been used to obtain standard error estimates in covariance structure analysis. In this article, we adapt it for obtaining standard errors for rotated factor loadings and factor correlations in exploratory factor analysis with sample correlation matrices. Both…

10. MMPI-2: Cluster Analysis of Personality Profiles in Perinatal Depression—Preliminary Evidence

Directory of Open Access Journals (Sweden)

Valentina Meuti

2014-01-01

Full Text Available Background. To assess personality characteristics of women who develop perinatal depression. Methods. The study started with a screening of a sample of 453 women in their third trimester of pregnancy, to which was administered a survey data form, the Edinburgh Postnatal Depression Scale (EPDS and the Minnesota Multiphasic Personality Inventory 2 (MMPI-2. A clinical group of subjects with perinatal depression (PND, 55 subjects was selected; clinical and validity scales of MMPI-2 were used as predictors in hierarchical cluster analysis carried out. Results. The analysis identified three clusters of personality profile: two “clinical” clusters (1 and 3 and an “apparently common” one (cluster 2. The first cluster (39.5% collects structures of personality with prevalent obsessive or dependent functioning tending to develop a “psychasthenic” depression; the third cluster (13.95% includes women with prevalent borderline functioning tending to develop “dysphoric” depression; the second cluster (46.5% shows a normal profile with a “defensive” attitude, probably due to the presence of defense mechanisms or to the fear of stigma. Conclusion. Characteristics of personality have a key role in clinical manifestations of perinatal depression; it is important to detect them to identify mothers at risk and to plan targeted therapeutic interventions.

11. MMPI-2: Cluster Analysis of Personality Profiles in Perinatal Depression—Preliminary Evidence

Science.gov (United States)

Grillo, Alessandra; Lauriola, Marco; Giacchetti, Nicoletta

2014-01-01

Background. To assess personality characteristics of women who develop perinatal depression. Methods. The study started with a screening of a sample of 453 women in their third trimester of pregnancy, to which was administered a survey data form, the Edinburgh Postnatal Depression Scale (EPDS) and the Minnesota Multiphasic Personality Inventory 2 (MMPI-2). A clinical group of subjects with perinatal depression (PND, 55 subjects) was selected; clinical and validity scales of MMPI-2 were used as predictors in hierarchical cluster analysis carried out. Results. The analysis identified three clusters of personality profile: two “clinical” clusters (1 and 3) and an “apparently common” one (cluster 2). The first cluster (39.5%) collects structures of personality with prevalent obsessive or dependent functioning tending to develop a “psychasthenic” depression; the third cluster (13.95%) includes women with prevalent borderline functioning tending to develop “dysphoric” depression; the second cluster (46.5%) shows a normal profile with a “defensive” attitude, probably due to the presence of defense mechanisms or to the fear of stigma. Conclusion. Characteristics of personality have a key role in clinical manifestations of perinatal depression; it is important to detect them to identify mothers at risk and to plan targeted therapeutic interventions. PMID:25574499

12. Cluster: A New Application for Spatial Analysis of Pixelated Data for Epiphytotics.

Science.gov (United States)

Nelson, Scot C; Corcoja, Iulian; Pethybridge, Sarah J

2017-12-01

Spatial analysis of epiphytotics is essential to develop and test hypotheses about pathogen ecology, disease dynamics, and to optimize plant disease management strategies. Data collection for spatial analysis requires substantial investment in time to depict patterns in various frames and hierarchies. We developed a new approach for spatial analysis of pixelated data in digital imagery and incorporated the method in a stand-alone desktop application called Cluster. The user isolates target entities (clusters) by designating up to 24 pixel colors as nontargets and moves a threshold slider to visualize the targets. The app calculates the percent area occupied by targeted pixels, identifies the centroids of targeted clusters, and computes the relative compass angle of orientation for each cluster. Users can deselect anomalous clusters manually and/or automatically by specifying a size threshold value to exclude smaller targets from the analysis. Up to 1,000 stochastic simulations randomly place the centroids of each cluster in ranked order of size (largest to smallest) within each matrix while preserving their calculated angles of orientation for the long axes. A two-tailed probability t test compares the mean inter-cluster distances for the observed versus the values derived from randomly simulated maps. This is the basis for statistical testing of the null hypothesis that the clusters are randomly distributed within the frame of interest. These frames can assume any shape, from natural (e.g., leaf) to arbitrary (e.g., a rectangular or polygonal field). Cluster summarizes normalized attributes of clusters, including pixel number, axis length, axis width, compass orientation, and the length/width ratio, available to the user as a downloadable spreadsheet. Each simulated map may be saved as an image and inspected. Provided examples demonstrate the utility of Cluster to analyze patterns at various spatial scales in plant pathology and ecology and highlight the

13. Semiparametric Bayesian analysis of accelerated failure time models with cluster structures.

Science.gov (United States)

Li, Zhaonan; Xu, Xinyi; Shen, Junshan

2017-11-10

In this paper, we develop a Bayesian semiparametric accelerated failure time model for survival data with cluster structures. Our model allows distributional heterogeneity across clusters and accommodates their relationships through a density ratio approach. Moreover, a nonparametric mixture of Dirichlet processes prior is placed on the baseline distribution to yield full distributional flexibility. We illustrate through simulations that our model can greatly improve estimation accuracy by effectively pooling information from multiple clusters, while taking into account the heterogeneity in their random error distributions. We also demonstrate the implementation of our method using analysis of Mayo Clinic Trial in Primary Biliary Cirrhosis. Copyright © 2017 John Wiley & Sons, Ltd.

14. A formal concept analysis approach to consensus clustering of multi-experiment expression data

Science.gov (United States)

2014-01-01

Background Presently, with the increasing number and complexity of available gene expression datasets, the combination of data from multiple microarray studies addressing a similar biological question is gaining importance. The analysis and integration of multiple datasets are expected to yield more reliable and robust results since they are based on a larger number of samples and the effects of the individual study-specific biases are diminished. This is supported by recent studies suggesting that important biological signals are often preserved or enhanced by multiple experiments. An approach to combining data from different experiments is the aggregation of their clusterings into a consensus or representative clustering solution which increases the confidence in the common features of all the datasets and reveals the important differences among them. Results We propose a novel generic consensus clustering technique that applies Formal Concept Analysis (FCA) approach for the consolidation and analysis of clustering solutions derived from several microarray datasets. These datasets are initially divided into groups of related experiments with respect to a predefined criterion. Subsequently, a consensus clustering algorithm is applied to each group resulting in a clustering solution per group. These solutions are pooled together and further analysed by employing FCA which allows extracting valuable insights from the data and generating a gene partition over all the experiments. In order to validate the FCA-enhanced approach two consensus clustering algorithms are adapted to incorporate the FCA analysis. Their performance is evaluated on gene expression data from multi-experiment study examining the global cell-cycle control of fission yeast. The FCA results derived from both methods demonstrate that, although both algorithms optimize different clustering characteristics, FCA is able to overcome and diminish these differences and preserve some relevant biological

15. The Awareness and Educational Status on Oral Health of Elite Athletes: A Cross-Sectional Study with Cluster Analysis

Science.gov (United States)

Ozgur, Bahar Odabas

2016-01-01

In this cross-sectional survey, this study aimed to determine the factors associated with oral health of elite athletes and to determine the clustering tendency of the variables by dendrogram, and to determine the relationship between predefined clusters and see how these clusters can converge. A total of 97 elite (that is, top-level performing)…

16. A critical cluster analysis of 44 indicators of author-level performance

DEFF Research Database (Denmark)

Wildgaard, Lorna Elizabeth

2016-01-01

-four indicators of individual researcher performance were computed using the data. The clustering solution was supported by continued reference to the researcher’s curriculum vitae, an effect analysis and a risk analysis. Disciplinary appropriate indicators were identified and used to divide the researchers......This paper explores a 7-stage cluster methodology as a process to identify appropriate indicators for evaluation of individual researchers at a disciplinary and seniority level. Publication and citation data for 741 researchers from 4 disciplines was collected in Web of Science. Forty...... of statistics in research evaluation. The strength of the 7-stage cluster methodology is that it makes clear that in the evaluation of individual researchers, statistics cannot stand alone. The methodology is reliant on contextual information to verify the bibliometric values and cluster solution...

17. Applying clustering to statistical analysis of student reasoning about two-dimensional kinematics

Directory of Open Access Journals (Sweden)

R. Padraic Springuel

2007-12-01

Full Text Available We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and written elements. The primary goal of this paper is to describe the methodology itself; we include a brief overview of relevant results.

18. A Deep Learning Prediction Model Based on Extreme-Point Symmetric Mode Decomposition and Cluster Analysis

OpenAIRE

Li, Guohui; Zhang, Songling; Yang, Hong

2017-01-01

Aiming at the irregularity of nonlinear signal and its predicting difficulty, a deep learning prediction model based on extreme-point symmetric mode decomposition (ESMD) and clustering analysis is proposed. Firstly, the original data is decomposed by ESMD to obtain the finite number of intrinsic mode functions (IMFs) and residuals. Secondly, the fuzzy c-means is used to cluster the decomposed components, and then the deep belief network (DBN) is used to predict it. Finally, the reconstructed ...

19. Statistical analysis of activation and reaction energies with quasi-variational coupled-cluster theory

Science.gov (United States)

Black, Joshua A.; Knowles, Peter J.

2018-06-01

The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.

20. Stream gradient Hotspot and Cluster Analysis (SL-HCA) for improving the longitudinal profiles metrics

Science.gov (United States)

Troiani, Francesco; Piacentini, Daniela; Seta Marta, Della

2016-04-01

Many researches successfully focused on stream longitudinal profiles analysis through Stream Length-gradient (SL) index for detecting, at different spatial scales, either tectonic structures or hillslope processes. The analysis and interpretation of spatial variability of SL values, both at a regional and local scale, is often complicated due to the concomitance of different factors generating SL anomalies, including the bedrock composition. The creation of lithologically-filtered SL maps is often problematic in areas where homogeneously surveyed geological maps, with a sufficient resolution are unavailable. Moreover, both the SL map classification and the unbiased anomaly detection are rather difficult. For instance, which is the best threshold to define the anomalous SL values? Further, is there a minimum along-channel extent of anomalous SL values for objectively defining over-steeped segments on long-profiles? This research investigates the relevance and potential of a new approach based on Hotspot and Cluster Analysis of SL values (SL-HCA) for detecting knickzones on long-profiles at a regional scale and for fine-tuning the interpretation of their geological-geomorphological meaning. We developed this procedure within a 2800 km2-wide area located in the mountainous sector of the Northern Apennines of Italy. The Getis-Ord Gi∗ statistic is applied for the SL-HCA approach. The value of SL, calculated starting from a 5x5 m Digital Elevation Model, is used as weighting factor and the Gi∗ index is calculated for each 50 m-long channel segment for the whole fluvial system. The outcomes indicate that high positive Gi∗ values imply the clustering of SL anomalies, thus the occurrence of knickzones on the stream long-profiles. Results show that high and very high Gi* values (i.e. values beyond two standard deviations from the mean) correlate well with the principal knickzones detected with existent lithologically-filtered SL maps. Field checks and remote sensing

1. SOMFlow: Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance.

Science.gov (United States)

Sacha, Dominik; Kraus, Matthias; Bernard, Jurgen; Behrisch, Michael; Schreck, Tobias; Asano, Yuki; Keim, Daniel A

2018-01-01

Clustering is a core building block for data analysis, aiming to extract otherwise hidden structures and relations from raw datasets, such as particular groups that can be effectively related, compared, and interpreted. A plethora of visual-interactive cluster analysis techniques has been proposed to date, however, arriving at useful clusterings often requires several rounds of user interactions to fine-tune the data preprocessing and algorithms. We present a multi-stage Visual Analytics (VA) approach for iterative cluster refinement together with an implementation (SOMFlow) that uses Self-Organizing Maps (SOM) to analyze time series data. It supports exploration by offering the analyst a visual platform to analyze intermediate results, adapt the underlying computations, iteratively partition the data, and to reflect previous analytical activities. The history of previous decisions is explicitly visualized within a flow graph, allowing to compare earlier cluster refinements and to explore relations. We further leverage quality and interestingness measures to guide the analyst in the discovery of useful patterns, relations, and data partitions. We conducted two pair analytics experiments together with a subject matter expert in speech intonation research to demonstrate that the approach is effective for interactive data analysis, supporting enhanced understanding of clustering results as well as the interactive process itself.

2. Analysis and comparison of very large metagenomes with fast clustering and functional annotation

Directory of Open Access Journals (Sweden)

Li Weizhong

2009-10-01

Full Text Available Abstract Background The remarkable advance of metagenomics presents significant new challenges in data analysis. Metagenomic datasets (metagenomes are large collections of sequencing reads from anonymous species within particular environments. Computational analyses for very large metagenomes are extremely time-consuming, and there are often many novel sequences in these metagenomes that are not fully utilized. The number of available metagenomes is rapidly increasing, so fast and efficient metagenome comparison methods are in great demand. Results The new metagenomic data analysis method Rapid Analysis of Multiple Metagenomes with a Clustering and Annotation Pipeline (RAMMCAP was developed using an ultra-fast sequence clustering algorithm, fast protein family annotation tools, and a novel statistical metagenome comparison method that employs a unique graphic interface. RAMMCAP processes extremely large datasets with only moderate computational effort. It identifies raw read clusters and protein clusters that may include novel gene families, and compares metagenomes using clusters or functional annotations calculated by RAMMCAP. In this study, RAMMCAP was applied to the two largest available metagenomic collections, the "Global Ocean Sampling" and the "Metagenomic Profiling of Nine Biomes". Conclusion RAMMCAP is a very fast method that can cluster and annotate one million metagenomic reads in only hundreds of CPU hours. It is available from http://tools.camera.calit2.net/camera/rammcap/.

3. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

Science.gov (United States)

Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

2017-07-01

Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

4. Clustering analysis for muon tomography data elaboration in the Muon Portal project

Science.gov (United States)

Bandieramonte, M.; Antonuccio-Delogu, V.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Riggi, S.; Sciacca, E.; Vitello, F.

2015-05-01

Clustering analysis is one of multivariate data analysis techniques which allows to gather statistical data units into groups, in order to minimize the logical distance within each group and to maximize the one between different groups. In these proceedings, the authors present a novel approach to the muontomography data analysis based on clustering algorithms. As a case study we present the Muon Portal project that aims to build and operate a dedicated particle detector for the inspection of harbor containers to hinder the smuggling of nuclear materials. Clustering techniques, working directly on scattering points, help to detect the presence of suspicious items inside the container, acting, as it will be shown, as a filter for a preliminary analysis of the data.

5. Profiling nurses' job satisfaction, acculturation, work environment, stress, cultural values and coping abilities: A cluster analysis.

Science.gov (United States)

Goh, Yong-Shian; Lee, Alice; Chan, Sally Wai-Chi; Chan, Moon Fai

2015-08-01

This study aimed to determine whether definable profiles existed in a cohort of nursing staff with regard to demographic characteristics, job satisfaction, acculturation, work environment, stress, cultural values and coping abilities. A survey was conducted in one hospital in Singapore from June to July 2012, and 814 full-time staff nurses completed a self-report questionnaire (89% response rate). Demographic characteristics, job satisfaction, acculturation, work environment, perceived stress, cultural values, ways of coping and intention to leave current workplace were assessed as outcomes. The two-step cluster analysis revealed three clusters. Nurses in cluster 1 (n = 222) had lower acculturation scores than nurses in cluster 3. Cluster 2 (n = 362) was a group of younger nurses who reported higher intention to leave (22.4%), stress level and job dissatisfaction than the other two clusters. Nurses in cluster 3 (n = 230) were mostly Singaporean and reported the lowest intention to leave (13.0%). Resources should be allocated to specifically address the needs of younger nurses and hopefully retain them in the profession. Management should focus their retention strategies on junior nurses and provide a work environment that helps to strengthen their intention to remain in nursing by increasing their job satisfaction. © 2014 Wiley Publishing Asia Pty Ltd.

6. Fatigue Feature Extraction Analysis based on a K-Means Clustering Approach

Directory of Open Access Journals (Sweden)

M.F.M. Yunoh

2015-06-01

Full Text Available This paper focuses on clustering analysis using a K-means approach for fatigue feature dataset extraction. The aim of this study is to group the dataset as closely as possible (homogeneity for the scattered dataset. Kurtosis, the wavelet-based energy coefficient and fatigue damage are calculated for all segments after the extraction process using wavelet transform. Kurtosis, the wavelet-based energy coefficient and fatigue damage are used as input data for the K-means clustering approach. K-means clustering calculates the average distance of each group from the centroid and gives the objective function values. Based on the results, maximum values of the objective function can be seen in the two centroid clusters, with a value of 11.58. The minimum objective function value is found at 8.06 for five centroid clusters. It can be seen that the objective function with the lowest value for the number of clusters is equal to five; which is therefore the best cluster for the dataset.

7. Cluster analysis for the probability of DSB site induced by electron tracks

Energy Technology Data Exchange (ETDEWEB)

Yoshii, Y. [Biological Research, Education and Instrumentation Center, Sapporo Medical University, Sapporo 060-8556 (Japan); Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Sasaki, K. [Faculty of Health Sciences, Hokkaido University of Science, Sapporo 006-8585 (Japan); Matsuya, Y. [Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Date, H., E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan)

2015-05-01

To clarify the influence of bio-cells exposed to ionizing radiations, the densely populated pattern of the ionization in the cell nucleus is of importance because it governs the extent of DNA damage which may lead to cell lethality. In this study, we have conducted a cluster analysis of ionization and excitation events to estimate the number of double-strand breaks (DSBs) induced by electron tracks. A Monte Carlo simulation for electrons in liquid water was performed to determine the spatial location of the ionization and excitation events. The events were divided into clusters by using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The algorithm enables us to sort out the events into the groups (clusters) in which a minimum number of neighboring events are contained within a given radius. For evaluating the number of DSBs in the extracted clusters, we have introduced an aggregation index (AI). The computational results show that a sub-keV electron produces DSBs in a dense formation more effectively than higher energy electrons. The root-mean square radius (RMSR) of the cluster size is below 5 nm, which is smaller than the chromatin fiber thickness. It was found that this size of clustering events has a high possibility to cause lesions in DNA within the chromatin fiber site.

8. Support Policies in Clusters: Prioritization of Support Needs by Cluster Members According to Cluster Life Cycle

Directory of Open Access Journals (Sweden)

Gulcin Salıngan

2012-07-01

Full Text Available Economic development has always been a moving target. Both the national and local governments have been facing the challenge of implementing the effective and efficient economic policy and program in order to best utilize their limited resources. One of the recent approaches in this area is called cluster-based economic analysis and strategy development. This study reviews key literature and some of the cluster based economic policies adopted by different governments. Based on this review, it proposes “the cluster life cycle” as a determining factor to identify the support requirements of clusters. A survey, designed based on literature review of International Cluster support programs, was conducted with 30 participants from 3 clusters with different maturity stage. This paper discusses the results of this study conducted among the cluster members in Eskişehir- Bilecik-Kütahya Region in Turkey on the requirement of the support to foster the development of related clusters.

9. ENTREPRENEURIAL ACTIVITY IN ROMANIA – A TIME SERIES CLUSTERING ANALYSIS AT THE NUTS3 LEVEL

Directory of Open Access Journals (Sweden)

Sipos-Gug Sebastian

2013-07-01

Full Text Available Entrepreneurship is an active field of research, having known a major increase in interest and publication levels in the last years (Landström et al., 2012. Within this field recently there has been an increasing interest in understanding why some regions seem to have a significantly higher entrepreneurship activity compared to others. In line with this research field, we would like to investigate the differences in entrepreneurial activity among the Romanian counties (NUTS 3 regions. While the classical research paradigm in this field is to conduct a temporally stationary analysis, we choose to use a time series clustering analysis to better understanding the dynamics of entrepreneurial activity between counties. Our analysis showed that if we use the total number of new privately owned companies that are founded each year in the last decade (2002-2012 we can distinguish between 5 clusters, one with high total entrepreneurial activity (18 counties, one with above average activity (8 counties, two clusters with average and slightly below average activity (total of 18 counties and one cluster with low and declining activity (2 counties. If we are interested in the entrepreneurial activity rate, that is the number of new privately owned companies founded each year adjusted by the population of the respective county, we obtain 4 clusters, one with a very high entrepreneurial rate (1 county, one with average rate (10 counties, and two clusters with below average entrepreneurial rate (total of 31 counties. In conclusion, our research shows that Romania is far from being a homogeneous geographical area in respect to entrepreneurial activity. Depending on what we are interested in, it can be divided in 5 or 4 clusters of counties, which behave differently as a function of time. Further research should be focused on explaining these regional differences, on studying the high performance clusters and trying to improve the low performing ones.

10. THE USE OF CLUSTER ANALYSIS IN THE RESEARCH ON SHOPPING PREFERENCES REGARDING REGIONAL PRODUCTS FROM LUBELSKIE VOIVODESHIP

Directory of Open Access Journals (Sweden)

Jan Czeczelewski

2017-03-01

Full Text Available An increasing awareness of consumers is reflected in a growing demand for products which are manufactured in a particular way, with unique ingredients, or which are of a particular origin. The analysis of consumers’ preferences makes it possible to define factors which determine the purchase of regional products. The aim of the work was to identify factors which determine the purchase of regional products from Lubelskie Voivodeship on the basis of cluster analysis using Ward’s hierarchical agglomerative clustering method. The research was carried out in 2016 and included 383 individuals. Statistical analysis of results was conducted on the basis of frequency analysis and cluster analysis. According to the respondents, the most frequently purchased regional products included bakery products (47%, dairy products (35.3%, meat (33.3%, and alcoholic beverages (29.4%. Over 53% of the respondents claimed that the prices of regional products are too high, every third person (29.6% concluded that they are reasonable, while slightly over 3% of the respondents said they are low. Television and the Internet as well as close relatives and friends appeared to be the best forms of reaching the client with information concerning regional products when bringing them out on the market. However, the most common places where regional products were purchased were food fairs and festivals. Every second respondent purchased regional products at least once a month. Additionally, it was revealed that the consumers’ income was not a decisive factor when purchasing regional products. Despite financial stability, individuals who could be defined as “rich” in Polish conditions purchased regional products relatively rarely.

11. Risk factors and clusters of Highly Pathogenic Avian Influenza H5N1 outbreaks in Bangladesh

Science.gov (United States)

Loth, Leo; Gilbert, Marius; Osmani, Mozaffar G.; Kalam, Abul M.; Xiao, Xiangming

2016-01-01

Between March 2007 and July 2009, 325 Highly Pathogenic Avian Influenza (HPAI, subtype H5N1) outbreaks in poultry were reported in 154 out of a total of 486 sub-districts in Bangladesh. This study analyzed the temporal and spatial patterns of HPAI H5N1 outbreaks and quantified the relationship between several spatial risk factors and HPAI outbreaks in sub-districts in Bangladesh. We assessed spatial autocorrelation and spatial dependence, and identified clustering sub-districts with disease statistically similar to or dissimilar from their neighbors. Three significant risk factors associated to HPAI H5N1 virus outbreaks were identified; the quadratic log-transformation of human population density [humans per square kilometer, P = 0.01, OR 1.15 (95% CI: 1.03–1.28)], the log-transformation of the total commercial poultry population [number of commercial poultry per sub-district, P Bangladesh to target surveillance and to concentrate response efforts in areas where disease is likely to occur. Concentrating response efforts may help to combat HPAI more effectively, reducing the environmental viral load and so reducing the number of disease incidents. PMID:20554337

12. Ecosystem health pattern analysis of urban clusters based on emergy synthesis: Results and implication for management

International Nuclear Information System (INIS)

Su, Meirong; Fath, Brian D.; Yang, Zhifeng; Chen, Bin; Liu, Gengyuan

2013-01-01

The evaluation of ecosystem health in urban clusters will help establish effective management that promotes sustainable regional development. To standardize the application of emergy synthesis and set pair analysis (EM–SPA) in ecosystem health assessment, a procedure for using EM–SPA models was established in this paper by combining the ability of emergy synthesis to reflect health status from a biophysical perspective with the ability of set pair analysis to describe extensive relationships among different variables. Based on the EM–SPA model, the relative health levels of selected urban clusters and their related ecosystem health patterns were characterized. The health states of three typical Chinese urban clusters – Jing-Jin-Tang, Yangtze River Delta, and Pearl River Delta – were investigated using the model. The results showed that the health status of the Pearl River Delta was relatively good; the health for the Yangtze River Delta was poor. As for the specific health characteristics, the Pearl River Delta and Yangtze River Delta urban clusters were relatively strong in Vigor, Resilience, and Urban ecosystem service function maintenance, while the Jing-Jin-Tang was relatively strong in organizational structure and environmental impact. Guidelines for managing these different urban clusters were put forward based on the analysis of the results of this study. - Highlights: • The use of integrated emergy synthesis and set pair analysis model was standardized. • The integrated model was applied on the scale of an urban cluster. • Health patterns of different urban clusters were compared. • Policy suggestions were provided based on the health pattern analysis

13. Association of Parental Overweight and Cardiometabolic Diseases and Pediatric Adiposity and Lifestyle Factors with Cardiovascular Risk Factor Clustering in Adolescents

Directory of Open Access Journals (Sweden)

Chun-Ying Lee

2016-09-01

Full Text Available Cardiometabolic risk factors or their precursors are observed in childhood and may continue into adulthood. We investigated the effects of parental overweight and cardiometabolic diseases and pediatric lifestyle factors on the clustering of cardiovascular risk factors among adolescents, and examined the mediating and modifying effects of pediatric adiposity on these associations. Representative adolescents (n = 2727; age, 12–16 years were randomly recruited through multistage stratified sampling from 36 schools in Southern Taiwan. Adolescent and parent surveys were conducted in schools and participant homes, respectively. Their demographic factors, diet patterns, and physical, anthropometric, and clinical parameters were collected and analyzed. Adolescents with 1–2 and ≥3 risk components for pediatric metabolic syndrome (MetS were defined as potential MetS (pot-MetS and MetS, respectively. Adolescents whose parents were overweight/obese, or with diabetes and hypertension had a higher prevalence ratio of pot-MetS and MetS (1.5–1.6 and 1.9–4.2-fold, respectively. Low physical activity (<952.4 MET·min/week, long screen time (≥3 h/day and high sugar-sweetened beverage intake (>500 mL/day were associated with a 3.3- (95% confidence intervals (CI = 1.5–7.3, 2.2- (95% CI = 1.1–4.4, and 26.9-fold (95% CI = 3.2–229.0 odds ratio (OR of MetS, respectively. Pediatric body mass index (BMI accounted for 18.8%–95.6% and 16.9%–60.3% increased prevalence ratios of these parental and pediatric risk factors for MetS. The OR of pot-MetS + MetS for sugar-sweetened beverage consumption was multiplicatively enhanced among adolescents with overweight/obesity (combined OR, 8.6-fold (95% CI = 4.3–17.3; p for multiplicative interaction, 0.009. The results suggest that parental overweight and cardiometabolic diseases and pediatric sedentary and high sugar-intake lifestyles correlate with the development of adolescent MetS, and an elevated child BMI

14. Validity of a four-factor modelunderlying the physical fitness in adults with intellectual disabilities a confirmatory factor analysis

OpenAIRE

Cuesta-Vargas, Antonio; Solera Martinez, M; Rodriguez Moya, Alejandro; Perez, Y; Martinez Vizcaino, V

2011-01-01

Purpose: To use confirmatory factor analysis to test whether a four factor might explain the clustering of the components of the physical fitness in adults with intellectual disabilities (FID). Relevance: Individuals with intellectual disabilities (ID) are significantly weaker than individuals without ID at all stages of life. These subjects might be particularly susceptible to loss of basic function because of poor physical fitness. Participants: We studied 267 adults with intellectual...

15. Analysis of Bernstein's factorization circuit

NARCIS (Netherlands)

Lenstra, A.K.; Shamir, A.; Tomlinson, J.; Tromer, E.; Zheng, Y.

2002-01-01

In [1], Bernstein proposed a circuit-based implementation of the matrix step of the number field sieve factorization algorithm. These circuits offer an asymptotic cost reduction under the measure "construction cost x run time". We evaluate the cost of these circuits, in agreement with [1], but argue

16. Differentiating Procrastinators from Each Other: A Cluster Analysis.

Science.gov (United States)

Rozental, Alexander; Forsell, Erik; Svensson, Andreas; Forsström, David; Andersson, Gerhard; Carlbring, Per

2015-01-01

Procrastination refers to the tendency to postpone the initiation and completion of a given course of action. Approximately one-fifth of the adult population and half of the student population perceive themselves as being severe and chronic procrastinators. Albeit not a psychiatric diagnosis, procrastination has been shown to be associated with increased stress and anxiety, exacerbation of illness, and poorer performance in school and work. However, despite being severely debilitating, little is known about the population of procrastinators in terms of possible subgroups, and previous research has mainly investigated procrastination among university students. The current study examined data from a screening process recruiting participants to a randomized controlled trial of Internet-based cognitive behavior therapy for procrastination (Rozental et al., in press). In total, 710 treatment-seeking individuals completed self-report measures of procrastination, depression, anxiety, and quality of life. The results suggest that there might exist five separate subgroups, or clusters, of procrastinators: "Mild procrastinators" (24.93%), "Average procrastinators" (27.89%), "Well-adjusted procrastinators" (13.94%), "Severe procrastinators" (21.69%), and "Primarily depressed" (11.55%). Hence, there seems to be marked differences among procrastinators in terms of levels of severity, as well as a possible subgroup for which procrastinatory problems are primarily related to depression. Tailoring the treatment interventions to the specific procrastination profile of the individual could thus become important, as well as screening for comorbid psychiatric diagnoses in order to target difficulties associated with, for instance, depression.

17. On the blind use of statistical tools in the analysis of globular cluster stars

Science.gov (United States)

D'Antona, Francesca; Caloi, Vittoria; Tailo, Marco

2018-04-01

As with most data analysis methods, the Bayesian method must be handled with care. We show that its application to determine stellar evolution parameters within globular clusters can lead to paradoxical results if used without the necessary precautions. This is a cautionary tale on the use of statistical tools for big data analysis.

18. Standardized Effect Size Measures for Mediation Analysis in Cluster-Randomized Trials

Science.gov (United States)

Stapleton, Laura M.; Pituch, Keenan A.; Dion, Eric

2015-01-01

This article presents 3 standardized effect size measures to use when sharing results of an analysis of mediation of treatment effects for cluster-randomized trials. The authors discuss 3 examples of mediation analysis (upper-level mediation, cross-level mediation, and cross-level mediation with a contextual effect) with demonstration of the…

19. Cluster Analysis of Flow Cytometric List Mode Data on a Personal Computer

NARCIS (Netherlands)

Bakker Schut, Tom C.; Bakker schut, T.C.; de Grooth, B.G.; Greve, Jan

1993-01-01

A cluster analysis algorithm, dedicated to analysis of flow cytometric data is described. The algorithm is written in Pascal and implemented on an MS-DOS personal computer. It uses k-means, initialized with a large number of seed points, followed by a modified nearest neighbor technique to reduce

20. Identification of Counterfeit Alcoholic Beverages Using Cluster Analysis in Principal-Component Space

Science.gov (United States)

Khodasevich, M. A.; Sinitsyn, G. V.; Gres'ko, M. A.; Dolya, V. M.; Rogovaya, M. V.; Kazberuk, A. V.

2017-07-01

A study of 153 brands of commercial vodka products showed that counterfeit samples could be identified by introducing a unified additive at the minimum concentration acceptable for instrumental detection and multivariate analysis of UV-Vis transmission spectra. Counterfeit products were detected with 100% probability by using hierarchical cluster analysis or the C-means method in two-dimensional principal-component space.

1. Functional Interference Clusters in Cancer Patients With Bone Metastases: A Secondary Analysis of RTOG 9714

International Nuclear Information System (INIS)

Chow, Edward; James, Jennifer; Barsevick, Andrea; Hartsell, William; Ratcliffe, Sarah; Scarantino, Charles; Ivker, Robert; Roach, Mack; Suh, John; Petersen, Ivy; Konski, Andre; Demas, William; Bruner, Deborah

2010-01-01

Purpose: To explore the relationships (clusters) among the functional interference items in the Brief Pain Inventory (BPI) in patients with bone metastases. Methods: Patients enrolled in the Radiation Therapy Oncology Group (RTOG) 9714 bone metastases study were eligible. Patients were assessed at baseline and 4, 8, and 12 weeks after randomization for the palliative radiotherapy with the BPI, which consists of seven functional items: general activity, mood, walking ability, normal work, relations with others, sleep, and enjoyment of life. Principal component analysis with varimax rotation was used to determine the clusters between the functional items at baseline and the follow-up. Cronbach's alpha was used to determine the consistency and reliability of each cluster at baseline and follow-up. Results: There were 448 male and 461 female patients, with a median age of 67 years. There were two functional interference clusters at baseline, which accounted for 71% of the total variance. The first cluster (physical interference) included normal work and walking ability, which accounted for 58% of the total variance. The second cluster (psychosocial interference) included relations with others and sleep, which accounted for 13% of the total variance. The Cronbach's alpha statistics were 0.83 and 0.80, respectively. The functional clusters changed at week 12 in responders but persisted through week 12 in nonresponders. Conclusion: Palliative radiotherapy is effective in reducing bone pain. Functional interference component clusters exist in patients treated for bone metastases. These clusters changed over time in this study, possibly attributable to treatment. Further research is needed to examine these effects.

2. Analysis of precipitation data in Bangladesh through hierarchical clustering and multidimensional scaling

Science.gov (United States)

Rahman, Md. Habibur; Matin, M. A.; Salma, Umma

2017-12-01

The precipitation patterns of seventeen locations in Bangladesh from 1961 to 2014 were studied using a cluster analysis and metric multidimensional scaling. In doing so, the current research applies four major hierarchical clustering methods to precipitation in conjunction with different dissimilarity measures and metric multidimensional scaling. A variety of clustering algorithms were used to provide multiple clustering dendrograms for a mixture of distance measures. The dendrogram of pre-monsoon rainfall for the seventeen locations formed five clusters. The pre-monsoon precipitation data for the areas of Srimangal and Sylhet were located in two clusters across the combination of five dissimilarity measures and four hierarchical clustering algorithms. The single linkage algorithm with Euclidian and Manhattan distances, the average linkage algorithm with the Minkowski distance, and Ward's linkage algorithm provided similar results with regard to monsoon precipitation. The results of the post-monsoon and winter precipitation data are shown in different types of dendrograms with disparate combinations of sub-clusters. The schematic geometrical representations of the precipitation data using metric multidimensional scaling showed that the post-monsoon rainfall of Cox's Bazar was located far from those of the other locations. The results of a box-and-whisker plot, different clustering techniques, and metric multidimensional scaling indicated that the precipitation behaviour of Srimangal and Sylhet during the pre-monsoon season, Cox's Bazar and Sylhet during the monsoon season, Maijdi Court and Cox's Bazar during the post-monsoon season, and Cox's Bazar and Khulna during the winter differed from those at other locations in Bangladesh.

3. Sejong Open Cluster Survey (SOS). 0. Target Selection and Data Analysis

Science.gov (United States)

Sung, Hwankyung; Lim, Beomdu; Bessell, Michael S.; Kim, Jinyoung S.; Hur, Hyeonoh; Chun, Moo-Young; Park, Byeong-Gon

2013-06-01

Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBVI system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - M_V relations, Sp - T_{eff} relations, Sp - color relations, and T_{eff} - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.

4. Approximate fuzzy C-means (AFCM) cluster analysis of medical magnetic resonance image (MRI) data

International Nuclear Information System (INIS)

DelaPaz, R.L.; Chang, P.J.; Bernstein, R.; Dave, J.V.

1987-01-01

The authors describe the application of an approximate fuzzy C-means (AFCM) clustering algorithm as a data dimension reduction approach to medical magnetic resonance images (MRI). Image data consisted of one T1-weighted, two T2-weighted, and one T2*-weighted (magnetic susceptibility) image for each cranial study and a matrix of 10 images generated from 10 combinations of TE and TR for each body lymphoma study. All images were obtained with a 1.5 Tesla imaging system (GE Signa). Analyses were performed on over 100 MR image sets with a variety of pathologies. The cluster analysis was operated in an unsupervised mode and computational overhead was minimized by utilizing a table look-up approach without adversely affecting accuracy. Image data were first segmented into 2 coarse clusters, each of which was then subdivided into 16 fine clusters. The final tissue classifications were presented as color-coded anatomically-mapped images and as two and three dimensional displays of cluster center data in selected feature space (minimum spanning tree). Fuzzy cluster analysis appears to be a clinically useful dimension reduction technique which results in improved diagnostic specificity of medical magnetic resonance images

5. Fault detection of flywheel system based on clustering and principal component analysis

Directory of Open Access Journals (Sweden)

Wang Rixin

2015-12-01

Full Text Available Considering the nonlinear, multifunctional properties of double-flywheel with closed-loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of “integrated power and attitude control” system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the reachability-plot. Finally, the last step of proposed model is used to define the relationship of parameters in each operation through the principal component analysis (PCA method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.

6. A Model-Based Cluster Analysis of Maternal Emotion Regulation and Relations to Parenting Behavior.

Science.gov (United States)

Shaffer, Anne; Whitehead, Monica; Davis, Molly; Morelen, Diana; Suveg, Cynthia

2017-10-15

In a diverse community sample of mothers (N = 108) and their preschool-aged children (M age  = 3.50 years), this study conducted person-oriented analyses of maternal emotion regulation (ER) based on a multimethod assessment incorporating physiological, observational, and self-report indicators. A model-based cluster analysis was applied to five indicators of maternal ER: maternal self-report, observed negative affect in a parent-child interaction, baseline respiratory sinus arrhythmia (RSA), and RSA suppression across two laboratory tasks. Model-based cluster analyses revealed four maternal ER profiles, including a group of mothers with average ER functioning, characterized by socioeconomic advantage and more positive parenting behavior. A dysregulated cluster demonstrated the greatest challenges with parenting and dyadic interactions. Two clusters of intermediate dysregulation were also identified. Implications for assessment and applications to parenting interventions are discussed. © 2017 Family Process Institute.

7. Grey Wolf Optimizer Based on Powell Local Optimization Method for Clustering Analysis

Directory of Open Access Journals (Sweden)

Sen Zhang

2015-01-01

Full Text Available One heuristic evolutionary algorithm recently proposed is the grey wolf optimizer (GWO, inspired by the leadership hierarchy and hunting mechanism of grey wolves in nature. This paper presents an extended GWO algorithm based on Powell local optimization method, and we call it PGWO. PGWO algorithm significantly improves the original GWO in solving complex optimization problems. Clustering is a popular data analysis and data mining technique. Hence, the PGWO could be applied in solving clustering problems. In this study, first the PGWO algorithm is tested on seven benchmark functions. Second, the PGWO algorithm is used for data clustering on nine data sets. Compared to other state-of-the-art evolutionary algorithms, the results of benchmark and data clustering demonstrate the superior performance of PGWO algorithm.

8. Socio-demographic association of multiple modifiable lifestyle risk factors and their clustering in a representative urban population of adults: a cross-sectional study in Hangzhou, China

Directory of Open Access Journals (Sweden)

Wang Shengfeng

2011-05-01

Full Text Available Abstract Background To plan long-term prevention strategies and develop tailored intervention activities, it is important to understand the socio-demographic characteristics of the subpopulations at high risk of developing chronic diseases. This study aimed to examine the socio-demographic characteristics associated with multiple lifestyle risk factors and their clustering. Methods We conducted a simple random sampling survey to assess lifestyle risk factors in three districts of Hangzhou, China between 2008 and 2009. A two-step cluster analysis was used to identify different health-related lifestyle clusters based on tobacco use, physical activity, fruit and vegetable consumption, and out-of-home eating. Multinomial logistic regression was used to model the association between socio-demographic factors and lifestyle clusters. Results A total of 2016 eligible people (977 men and 1039 women, ages 18-64 years completed the survey. Three distinct clusters were identified from the cluster analysis: an unhealthy (UH group (25.7%, moderately healthy (MH group (31.1%, and healthy (H group (43.1%. UH group was characterised by a high prevalence of current daily smoking, a moderate or low level of PA, low FV consumption with regard to the frequency or servings, and more occurrences of eating out. H group was characterised by no current daily smoking, a moderate level of PA, high FV consumption, and the fewest times of eating out. MH group was characterised by no current daily smoking, a low or high level of PA, and an intermediate level of FV consumption and frequency of eating out. Men were more likely than women to have unhealthy lifestyles. Adults aged 50-64 years were more likely to live healthy lifestyles. Adults aged 40-49 years were more likely to be in the UH group. Adults whose highest level of education was junior high school or below were more likely to be in the UH group. Adults with a high asset index were more likely to be in the MH group

9. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

Energy Technology Data Exchange (ETDEWEB)

Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

2017-01-10

We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.

10. Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis

Science.gov (United States)

Yen, Chi-Fu; Sivasankar, Sanjeevi

2018-03-01

Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xβ, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.

11. Importance of Viral Sequence Length and Number of Variable and Informative Sites in Analysis of HIV Clustering.

Science.gov (United States)

Novitsky, Vlad; Moyo, Sikhulile; Lei, Quanhong; DeGruttola, Victor; Essex, M

2015-05-01

To improve the methodology of HIV cluster analysis, we addressed how analysis of HIV clustering is associated with parameters that can affect the outcome of viral clustering. The extent of HIV clustering and tree certainty was compared between 401 HIV-1C near full-length genome sequences and subgenomic regions retrieved from the LANL HIV Database. Sliding window analysis was based on 99 windows of 1,000 bp and 45 windows of 2,000 bp. Potential associations between the extent of HIV clustering and sequence length and the number of variable and informative sites were evaluated. The near full-length genome HIV sequences showed the highest extent of HIV clustering and the highest tree certainty. At the bootstrap threshold of 0.80 in maximum likelihood (ML) analysis, 58.9% of near full-length HIV-1C sequences but only 15.5% of partial pol sequences (ViroSeq) were found in clusters. Among HIV-1 structural genes, pol showed the highest extent of clustering (38.9% at a bootstrap threshold of 0.80), although it was significantly lower than in the near full-length genome sequences. The extent of HIV clustering was significantly higher for sliding windows of 2,000 bp than 1,000 bp. We found a strong association between the sequence length and proportion of HIV sequences in clusters, and a moderate association between the number of variable and informative sites and the proportion of HIV sequences in clusters. In HIV cluster analysis, the extent of detectable HIV clustering is directly associated with the length of viral sequences used, as well as the number of variable and informative sites. Near full-length genome sequences could provide the most informative HIV cluster analysis. Selected subgenomic regions with a high extent of HIV clustering and high tree certainty could also be considered as a second choice.

12. Multi-Scale Factor Analysis of High-Dimensional Brain Signals

KAUST Repository

Ting, Chee-Ming

2017-05-18

In this paper, we develop an approach to modeling high-dimensional networks with a large number of nodes arranged in a hierarchical and modular structure. We propose a novel multi-scale factor analysis (MSFA) model which partitions the massive spatio-temporal data defined over the complex networks into a finite set of regional clusters. To achieve further dimension reduction, we represent the signals in each cluster by a small number of latent factors. The correlation matrix for all nodes in the network are approximated by lower-dimensional sub-structures derived from the cluster-specific factors. To estimate regional connectivity between numerous nodes (within each cluster), we apply principal components analysis (PCA) to produce factors which are derived as the optimal reconstruction of the observed signals under the squared loss. Then, we estimate global connectivity (between clusters or sub-networks) based on the factors across regions using the RV-coefficient as the cross-dependence measure. This gives a reliable and computationally efficient multi-scale analysis of both regional and global dependencies of the large networks. The proposed novel approach is applied to estimate brain connectivity networks using functional magnetic resonance imaging (fMRI) data. Results on resting-state fMRI reveal interesting modular and hierarchical organization of human brain networks during rest.

13. Application of clustering analysis in the prediction of photovoltaic power generation based on neural network

Science.gov (United States)

Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

2017-11-01

In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.

14. Parallelization and scheduling of data intensive particle physics analysis jobs on clusters of PCs

CERN Document Server

Ponce, S

2004-01-01

Summary form only given. Scheduling policies are proposed for parallelizing data intensive particle physics analysis applications on computer clusters. Particle physics analysis jobs require the analysis of tens of thousands of particle collision events, each event requiring typically 200ms processing time and 600KB of data. Many jobs are launched concurrently by a large number of physicists. At a first view, particle physics jobs seem to be easy to parallelize, since particle collision events can be processed independently one from another. However, since large amounts of data need to be accessed, the real challenge resides in making an efficient use of the underlying computing resources. We propose several job parallelization and scheduling policies aiming at reducing job processing times and at increasing the sustainable load of a cluster server. Since particle collision events are usually reused by several jobs, cache based job splitting strategies considerably increase cluster utilization and reduce job ...

15. Dancoff factors of unit cells in cluster geometry with partial absorption of neutrons; Fatores de Dancoff de celulas unitarias em geometria cluster com absorcao parcial de neutrons

Energy Technology Data Exchange (ETDEWEB)

Rodrigues, Leticia Jenisch

2011-01-15

In its classical formulation, the Dancoff factor for a perfectly absorbing fuel rod is defined as the relative reduction in the incurrent of resonance neutrons into the rod in the presence of neighboring rods, as compared to the incurrent into a single fuel rod immersed in an infinite moderator. Alternatively, this factor can be viewed as the probability that a neutron emerging from the surface of a fuel rod will enter another fuel rod without any collision in the moderator or cladding. For perfectly absorbing fuel these definitions are equivalent. In the las